Science.gov

Sample records for high-energy cosmic rays

  1. High-energy cosmic ray interactions

    SciTech Connect

    Engel, Ralph; Orellana, Mariana; Reynoso, Matias M.; Vila, Gabriela S.

    2009-04-30

    Research into hadronic interactions and high-energy cosmic rays are closely related. On one hand--due to the indirect observation of cosmic rays through air showers--the understanding of hadronic multiparticle production is needed for deriving the flux and composition of cosmic rays at high energy. On the other hand the highest energy particles from the universe allow us to study the characteristics of hadronic interactions at energies far beyond the reach of terrestrial accelerators. This is the summary of three introductory lectures on our current understanding of hadronic interactions of cosmic rays.

  2. The Mystery of Ultra-High Energy Cosmic Rays

    SciTech Connect

    Olinto, Angela V.

    2006-07-11

    Cosmic rays with energies well above 1019 eV are messengers of an unknown extremely high-energy universe. The current state and future prospects of ultra high energy cosmic ray physics are briefly reviewed.

  3. Terrestrial effects of high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra

    On geological timescales, the Earth is likely to be exposed to higher than the usual flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. These high-energy particles strike the Earth's atmosphere, initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles and photons. Increased ionization leads to changes in atmospheric chemistry, resulting in ozone depletion. This increases the flux of solar UVB radiation at the surface, which is potentially harmful to living organisms. Increased ionization affects the global electrical circuit, which could enhance the low-altitude cloud formation rate. Secondary particles such as muons and thermal neutrons produced as a result of hadronic interactions of the primary cosmic rays with the atmosphere are able to reach the ground, enhancing the biological radiation dose. The muon flux dominates the radiation dose from cosmic rays causing damage to DNA and an increase in mutation rates and cancer, which can have serious biological implications for surface and sub-surface life. Using CORSIKA, we perform massive computer simulations and construct lookup tables for 10 GeV - 1 PeV primaries, which can be used to quantify these effects from enhanced cosmic ray exposure to any astrophysical source. These tables are freely available to the community and can be used for other studies. We use these tables to study the terrestrial implications of galactic shock generated by the infall of our galaxy toward the Virgo cluster. Increased radiation dose from muons could be a possible mechanism explaining the observed periodicity in biodiversity in paleobiology databases.

  4. Ultra high energy cosmic ray spectrum

    NASA Technical Reports Server (NTRS)

    Baltrusaitis, R. M.; Cady, R.; Cassiday, G. L.; Cooper, R.; Elbert, J. W.; Gerhardy, P. R.; Ko, P. R.; Loh, E. C.; Mizumoto, Y.; Salamon, M. H.

    1985-01-01

    Ultra-high energy cosmic rays have been observed by means of atmospheric fluorescence with the Fly's Eye since 1981. The differential energy spectrum above 0.1 EeV is well fitted by a power law with slope 2.94 + or - 0.02. Some evidence of flattening of the spectrum is observed or energies greater than 10 EeV, however only one event is observed with energy greater than 50 EeV and a spectral cutoff is indicated above 70 EeV.

  5. Terrestrial Effects of High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra

    2011-01-01

    On geological timescales, the Earth is likely to be exposed to an increased flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. These high-energy particles strike the Earth's atmosphere initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles. Increased ionization could lead to changes in atmospheric chemistry, resulting in ozone depletion. This could increase the flux of solar UVB radiation at the surface, which is potentially harmful to living organisms. Increased ionization affects the global electrical circuit can could possibly enhance the low-altitude cloud formation rate. Secondary particles such as muons and thermal neutrons produced as a result of nuclear interactions are able to reach the ground, enhancing the biological radiation dose. The muon flux dominates radiation dose from cosmic rays causing DNA damage and increase in the mutation rates, which can have serious biological implications for terrestrial and sub-terrestrial life. This radiation dose is an important constraint on the habitability of a planet. Using CORSIKA, we perform massive computer simulations and construct lookup tables from 10 GeV - 1 PeV primaries (1 PeV - 0.1 ZeV in progress), which can be used to quantify these effects. These tables are freely available to the community and can be used for other studies, not necessarily relevant to Astrobiology. We use these tables to study the terrestrial implications of galactic shock generated by the infall of our galaxy toward the Virgo cluster. This could be a possible mechanism explaining the observed periodicity in biodiversity in paleobiology databases.

  6. High energy physics in cosmic rays

    SciTech Connect

    Jones, Lawrence W.

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  7. EDITORIAL: Focus on High Energy Cosmic Rays FOCUS ON HIGH ENERGY COSMIC RAYS

    NASA Astrophysics Data System (ADS)

    Teshima, Masahiro; Watson, Alan A.

    2009-06-01

    The topic of high-energy cosmic rays has recently attracted significant attention. While the AGASA and HiRes Observatories have closed after many years of successful operation, the Pierre Auger Observatory began taking data in January 2004 and the first results have been reported. Plans for the next generation of instruments are in hand: funding is now being sought for the northern phase of the Auger Observatory and plans for a space detector, JEM-EUSO, to be launched in 2013-14 are well advanced with the long-term target of a dedicated satellite for the 2020s. It therefore seemed an appropriate time to make a collection of outstanding and original research articles from the leading experimental groups and from some of the theorists who seek to interpret the hard-won data and to speculate on the origin of the highest energy cosmic rays. This focus issue in New Journal of Physics on the topic of high energy cosmic rays, contains a comprehensive account of the work of the Yakutsk group (A A Ivanov, S P Knurenko and I Ye Sleptsov) who have used Cerenkov radiation produced by shower particles in the air to provide the basis for energy calibration. This technique contrasts with that of detecting fluorescence radiation from space that is proposed for the JEM-EUSO instrument to be placed on the International Space Station in 2013, described by Y Takahashi. Supplementing this is an article by A Santangelo and A Petrolini describing the scientific goals, requirements and main instrument features of the Super Extreme Universe Space Observatory mission (S-EUSO). The use of fluorescence light to measure energies was the key component of the HiRes instrument and is also used extensively by the Pierre Auger Collaboration so an article, by F Arqueros, F Blanco and J Rosado, summarizing the properties of fluorescence emission, still not fully understood, is timely. M Nagano, one of the architects of the AGASA Observatory, has provided an overview of the experimental situation with regard to the energy spectrum of the highest energy cosmic rays. The remaining contributions are of a more theoretical nature and discuss propagation (T Stanev), the time structure of multi-messenger signals (G H W Sigl), ultra-high energy cosmic ray production near black holes (A Yu Neronov, D V Semikoz and I I Tkachev), production in jets associated with black holes (C D Dermer, S Razzaque, J Finke and A Atoyan) and emission from a specific object, Cen A (M Kachelriess, S S Ostapchenko and R Tomas). Additionally the potential of high energy cosmic rays to give information about features of hadronic interactions, specifically the cross-section for p-air collisions, is discussed in the paper by R Ulrich et al. We thank all our authors most sincerely for their efforts and Tim Smith and his editorial team for their hard work. We believe that this collection of articles will be of great value to workers in the field: further contributions to this focus issue will be published during the course of 2009. Focus on High Energy Cosmic Rays Contents The cosmic ray energy spectrum as measured using the Pierre Auger Observatory Giorgio Matthiae The northern site of the Pierre Auger Observatory Johannes Blmer and the Pierre Auger Collaboration Searching for new physics with ultrahigh energy cosmic rays Floyd W Stecker and Sean T Scully On the measurement of the proton-air cross section using air shower data R Ulrich, J Blmer, R Engel, F Schssler and M Unger High energy radiation from Centaurus A M Kachelrie, S Ostapchenko and R Toms Ultra-high-energy cosmic rays from black hole jets of radio galaxies C D Dermer, S Razzaque, J D Finke and A Atoyan Ultra-high energy cosmic ray production in the polar cap regions of black hole magnetospheres A Yu Neronov, D V Semikoz and I I Tkachev Time structure and multi-messenger signatures of ultra-high energy cosmic ray sources Gnter Sigl Propagation of ultrahigh-energy cosmic rays Todor Stanev Search for the end of the energy spectrum of primary cosmic rays M Nagano Analysis of the fluorescence emission from atmospheric ni

  8. Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Colon, Rafael Antonio; Moncada, Roberto; Guerra, Juan; Anchordoqui, Luis

    2016-01-01

    The search for the origin(s) of ultra-high energy (UHE) cosmic rays (CR) remains one of the cornerstones of high energy astrophysics. The previously proposed sources of acceleration for these UHECRs were gamma-ray bursts (GRB) and active galactic nuclei (AGN) due to their energetic activity and powerful jets. However, a problem arises between the acceleration method and the observed CR spectrum. The CRs from GRBs or AGN jets are assumed to undergo Fermi acceleration and a source injection spectrum proportional to E^-2 is expected. However, the most recent fits to the spectrum and nuclear composition suggest an injection spectrum proportional to E^-1. It is well known that such a hard spectrum is characteristic of unipolar induction of rotating compact objects. When this method is applied to the AGN cores, they prove to be much too luminous to accelerate CR nuclei without photodisintegrating, thus creating significant energy losses. Instead, here we re-examine the possibility of these particles being accelerated around the much less luminous quasar remnants, or dead quasars. We compare the interaction times of curvature radiation and photodisintegration, the two primary energy loss considerations with the acceleration time scale. We show that the energy losses at the source are not significant enough as to prevent these CRs from reaching the maximum observed energies. Using data from observatories in the northern and southern sky, the Telescope Array and the Pierre Auger Observatory respectively, two hotspots have been discerned which have some associated quasar remnants that help to motivate our study.

  9. Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Sokolsky, Pierre

    We describe the current status of the High Resolution Fly's Eye detector. Recent results indicate that the UHE cosmic ray spectrum exhibits significant structure near 1019 eV. A few events are seen beyond 1020 eV in contradiction to the AGASA ground array claim of no cut-off. The composition of the cosmic rays is found to change from a predominantly heavy to a predominantly light mixture between and 1017 and 1018 eV. No evidence for anisotropy, on either small scales or large scales is found, in contradiction to AGASA. Systematic errors and absolute energy scale issues are now being carefully considered to see how to partially resolve this discrepancy. A new experiment(FLASH) at the Stanford Linear Accelerator Center (SLAC) to measure the Nitrogen fluorescence efficiency more precisely is described.

  10. Ultra High Energy Cosmic Rays and the Pierre Auger Observatory

    SciTech Connect

    Unger, Michael

    2007-01-12

    We present first physics results from the ultra high energy cosmic ray data collected with the southern Pierre Auger Observatory: A search for anisotropies near the direction of the Galactic Centre, a limit on the photon fraction in cosmic rays with energies above 1019 eV and an estimate of the differential energy spectrum above 3{center_dot}1018 eV.

  11. The ATLAS Hadronic Physics Program and High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Pinfold, J. L.

    2013-06-01

    The various aspects of the current and future ATLAS programs to explore hadronic physics, including diffraction and forward physic are discussed The emphasis is p laced on those results and future plans that have particular relevance for high-energy, and ultra high-energy, cosmic ray physics. In closing the latest ATLAS resul ts on the search for the Higgs boson are summarized.

  12. High Energy Cosmic Electrons: Messengers from Nearby Cosmic Ray Sources or Dark Matter?

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2011-01-01

    This slide presentation reviews the recent discoveries by the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-Ray Telescope in reference to high energy cosmic electrons, and whether their source is cosmic rays or dark matter. Specific interest is devoted to Cosmic Ray electrons anisotropy,

  13. Cosmogenic neutrinos and ultra-high energy cosmic ray models

    NASA Astrophysics Data System (ADS)

    Aloisio, R.; Boncioli, D.; di Matteo, A.; Grillo, A. F.; Petrera, S.; Salamida, F.

    2015-10-01

    We use an updated version of SimProp, a Monte Carlo simulation scheme for the propagation of ultra-high energy cosmic rays, to compute cosmogenic neutrino fluxes expected on Earth in various scenarios. These fluxes are compared with the newly detected IceCube events at PeV energies and with recent experimental limits at EeV energies of the Pierre Auger Observatory. This comparison allows us to draw some interesting conclusions about the source models for ultra-high energy cosmic rays. We will show how the available experimental observations are almost at the level of constraining such models, mainly in terms of the injected chemical composition and cosmological evolution of sources. The results presented here will also be important in the evaluation of the discovery capabilities of the future planned ultra-high energy cosmic ray and neutrino observatories.

  14. Some methods in high energy cosmic ray measurement

    NASA Technical Reports Server (NTRS)

    Shand, J. B., Jr.

    1980-01-01

    Problems concerning ion chamber and emulsion detection techniques for high energy cosmic ray measurement are investigated. The calculation of the average energy actually deposited in an ion chamber by an ultra-high energy particle of large mass and charge is examined. A calculational scheme already applied successfully to particles of charge 1 is extended. Also, the calibration of a plate of plastic scintillator for measurement of the position of a cosmic ray shower passing through it is discussed. The method of calibration is to inject pulses of flight at known positions on the plate and record the responses of photomultiplier tubes at the corner of the plate.

  15. Cosmic strings and ultra-high energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, Pijushpani

    1989-01-01

    The flux is calculated of ultrahigh energy protons due to the process of cusp evaporation from cosmic string loops. For the standard value of the dimensionless cosmic string parameter epsilon is identical to G(sub mu) approx. = 10(exp -6), the flux is several orders of magnitude below the observed cosmic ray flux of ultrahigh energy protons. However, the flux at any energy initially increases as the value of epsilon is decreased. This at first suggests that there may be a lower limit on the value of epsilon, which would imply a lower limit on the temperature of a cosmic string forming phase transition in the early universe. However, the calculation shows that this is not the case -- the particle flux at any energy reaches its highest value at epsilon approx. = 10(exp -15) and it then decreases for further decrease of the value of epsilon. This is due to the fact that for too small values of epsilon (less than 10(exp -15)), the energy loss of the loops through the cusp evaporation process itself (rather than gravitational energy loss of the loops) becomes the dominant factor that controls the behavior of the number density of the loops at the relevant times of emission of the particles. The highest flux at any energy remains at least four orders of magnitude below the observed flux. There is thus no lower limit on epsilon.

  16. Cosmic ray transport and anisotropies to high energies

    NASA Astrophysics Data System (ADS)

    Biermann, P. L.; Caramete, L. I.; Meli, A.; Nath, B. N.; Seo, E.-S.; de Souza, V.; Becker Tjus, J.

    2015-10-01

    A model is introduced, in which the irregularity spectrum of the Galactic magnetic field beyond the dissipation length scale is first a Kolmogorov spectrum k-5/3 at small scales ? = 2 ?/k with k the wave-number, then a saturation spectrum k-1, and finally a shock-dominated spectrum k-2 mostly in the halo/wind outside the Cosmic Ray disk. In an isotropic approximation such a model is consistent with the Interstellar Medium (ISM) data. With this model we discuss the Galactic Cosmic Ray (GCR) spectrum, as well as the extragalactic Ultra High Energy Cosmic Rays (UHECRs), their chemical abundances and anisotropies. UHECRs may include a proton component from many radio galaxies integrated over vast distances, visible already below 3 EeV.

  17. Anomalous Transport of High Energy Cosmic Rays in Galactic Superbubbles

    NASA Technical Reports Server (NTRS)

    Barghouty, Nasser F.

    2014-01-01

    High-energy cosmic rays may exhibit anomalous transport as they traverse and are accelerated by a collection of supernovae explosions in a galactic superbubble. Signatures of this anomalous transport can show up in the particles' evolution and their spectra. In a continuous-time-random- walk (CTRW) model assuming standard diffusive shock acceleration theory (DSA) for each shock encounter, and where the superbubble (an OB stars association) is idealized as a heterogeneous region of particle sources and sinks, acceleration and transport in the superbubble can be shown to be sub-diffusive. While the sub-diffusive transport can be attributed to the stochastic nature of the acceleration time according to DSA theory, the spectral break appears to be an artifact of transport in a finite medium. These CTRW simulations point to a new and intriguing phenomenon associated with the statistical nature of collective acceleration of high energy cosmic rays in galactic superbubbles.

  18. Ultra-high energy cosmic rays: Setting the stage

    NASA Astrophysics Data System (ADS)

    Sokolsky, P.

    2013-06-01

    The history of ultra-high energy cosmic ray physics is reviewed from the post-war era of arrays such as Volcano Ranch, Haverah Park and Akeno to the development of air-fluorescence and current hybrid arrays. The aim of this paper is to present the background information needed for a better understanding of the current issues in this field that are discussed in much greater depth in the rest of this conference.

  19. Common origin of the high energy astronomical gamma rays, neutrinos and cosmic ray positrons?

    NASA Astrophysics Data System (ADS)

    Dado, Shlomo; Dar, Arnon

    2016-03-01

    We show that the observed fluxes, spectra and sky distributions of the high energy astronomical neutrinos, gamma rays and cosmic ray positrons satisfy the simple relations expected from their common production in hadronic collisions in/near source of high energy cosmic rays with diffuse matter.

  20. On the Origin of Ultra High Energy Cosmic Rays

    SciTech Connect

    Fowler, T; Colgate, S; Li, H

    2009-07-01

    Turbulence-driven plasma accelerators produced by magnetized accretion disks around black holes are proposed as the mechanism mainly responsible for observed cosmic ray protons with ultra high energies 10{sup 19}-10{sup 21} eV. The magnetized disk produces a voltage comparable to these cosmic ray energies. Here we present a Poynting model in which this voltage provides all of the energy to create the jet-like structures observed to be ejected from accretion disks, and this voltage also accelerates ions to high energies at the top of the expanding structure. Since the inductive electric field E = -v x B driving expansion has no component parallel to the magnetic field B, ion acceleration requires plasma wave generation - either a coherent wave accelerator as recently proposed, or instability-driven turbulence. We find that turbulence can tap the full inductive voltage as a quasi-steady accelerator, and even higher energies are produced by transient events on this structure. We find that both MHD modes due to the current and ion diffusion due to kinetic instability caused by the non-Maxwellian ion distribution contribute to acceleration. We apply our results to extragalactic giant radiolobes, whose synchrotron emissions serve to calibrate the model, and we discuss extrapolating to other astrophysical structures. Approximate calculations of the cosmic ray intensity and energy spectrum are in rough agreement with data and serve to motivate more extensive MHD and kinetic simulations of turbulence that could provide more accurate cosmic ray and synchrotron spectra to be compared with observations. A distinctive difference from previous models is that the cosmic ray and synchrotron emissions arise from different parts of the magnetic structure, thus providing a signature for the model.

  1. A simulation of high energy cosmic ray propagation 1

    NASA Technical Reports Server (NTRS)

    Honda, M.; Kifune, T.; Matsubara, Y.; Mori, M.; Nishijima, K.; Teshima, M.

    1985-01-01

    High energy cosmic ray propagation of the energy region 10 to the 14.5 power - 10 to the 18th power eV is simulated in the inter steller circumstances. In conclusion, the diffusion process by turbulent magnetic fields is classified into several regions by ratio of the gyro-radius and the scale of turbulence. When the ratio becomes larger then 10 to the minus 0.5 power, the analysis with the assumption of point scattering can be applied with the mean free path E sup 2. However, when the ratio is smaller than 10 to the minus 0.5 power, we need a more complicated analysis or simulation. Assuming the turbulence scale of magnetic fields of the Galaxy is 10-30pc and the mean magnetic field strength is 3 micro gauss, the energy of cosmic ray with that gyro-radius is about 10 to the 16.5 power eV.

  2. On the Origin of Ultra High Energy Cosmic Rays II

    SciTech Connect

    Fowler, T K; Colgate, S; Li, H; Bulmer, R H; Pino, J

    2011-03-08

    We show that accretion disks around Active Galactic Nuclei (AGNs) could account for the enormous power in observed ultra high energy cosmic rays {approx}10{sup 20} eV (UHEs). In our model, cosmic rays are produced by quasi-steady acceleration of ions in magnetic structures previously proposed to explain jets around Active Galactic Nuclei with supermassive black holes. Steady acceleration requires that an AGN accretion disk act as a dynamo, which we show to follow from a modified Standard Model in which the magnetic torque of the dynamo replaces viscosity as the dominant mechanism accounting for angular momentum conservation during accretion. A black hole of mass M{sub BH} produces a steady dynamo voltage V {proportional_to} {radical}M{sub BH} giving V {approx} 10{sup 20} volts for M{sub BH} {approx} 10{sup 8} solar masses. The voltage V reappears as an inductive electric field at the advancing nose of a dynamo-driven jet, where plasma instability inherent in collisionless runaway acceleration allows ions to be steadily accelerated to energies {approx} V, finally ejected as cosmic rays. Transient events can produce much higher energies. The predicted disk radiation is similar to the Standard Model. Unique predictions concern the remarkable collimation of jets and emissions from the jet/radiolobe structure. Given MBH and the accretion rate, the model makes 7 predictions roughly consistent with data: (1) the jet length; (2) the jet radius; (3) the steady-state cosmic ray energy spectrum; (4) the maximum energy in this spectrum; (5) the UHE cosmic ray intensity on Earth; (6) electron synchrotron wavelengths; and (7) the power in synchrotron radiation. These qualitative successes motivate new computer simulations, experiments and data analysis to provide a quantitative verification of the model.

  3. TESTING THE ORIGIN OF HIGH-ENERGY COSMIC RAYS

    SciTech Connect

    Vladimirov, A. E.; Moskalenko, I. V.; Porter, T. A.; Johannesson, G.

    2012-06-10

    Recent accurate measurements of cosmic-ray (CR) protons and nuclei by ATIC-2, CREAM, and PAMELA reveal (1) unexpected spectral hardening in the spectra of CR species above a few hundred GeV per nucleon, (2) a harder spectrum of He compared to protons, and (3) softening of the CR spectra just below the break energy. These newly discovered features may offer a clue to the origin of the observed high-energy Galactic CRs. We discuss possible interpretations of these spectral features and make predictions for the secondary CR fluxes and secondary-to-primary ratios, anisotropy of CRs, and diffuse Galactic {gamma}-ray emission in different phenomenological scenarios. Our predictions can be tested by currently running or near-future high-energy astrophysics experiments.

  4. Percolation Effects in Very-High-Energy Cosmic Rays

    SciTech Connect

    Dias de Deus, J.; Santo, M.C. Espirito; Pimenta, M.; Pajares, C.

    2006-04-28

    Cosmic ray data at high energies present a number of well-known puzzles. At very high energies (E{approx}10{sup 20} eV) there are indications of a discrepancy between ground array experiments and fluorescence detectors. On the other hand, the dependence of the depth of the shower maximum X{sub max} with the primary energy shows a change in slope (E{approx}10{sup 17} eV) which is usually explained assuming a composition change. Both effects could be accounted for in models predicting that above a certain energy showers would develop deeper in the atmosphere. In this Letter we argue that this can be done naturally by including percolation effects in the description of the shower development, which cause a change in the behavior of the inelasticity K above E{approx_equal}10{sup 17} eV.

  5. pp interaction at very high energies in cosmic ray experiments

    NASA Astrophysics Data System (ADS)

    Kendi Kohara, A.; Ferreira, Erasmo; Kodama, Takeshi

    2014-11-01

    An analysis of p-air cross section data from extensive air shower measurements is presented, based on an analytical representation of the pp scattering amplitudes that describes with high precision all available accelerator data at ISR, SPS and LHC energies. The theoretical basis of the representation, together with the very smooth energy dependence of parameters controlled by unitarity and dispersion relations, permits reliable extrapolation to high energy cosmic ray (CR) and asymptotic energy ranges. Calculations of σ p-airprod based on Glauber formalism are made using the input values of the quantities σ , ρ , BI and BR at high energies, with attention given to the independence of the slope parameters, with {{B}R}\

  6. High-Energy Cosmic Ray Event Data from the Pierre Auger Cosmic Ray Observatory

    DOE Data Explorer

    The Pierre Auger Cosmic Ray Observatory in Mendoza, Argentina is the result of an international collaboration funded by 15 countries and many different organizations. Its mission is to capture high-energy cosmic ray events or air showers for research into their origin and nature. The Pierre Auger Collaboration agreed to make 1% of its data available to the public. The Public Event Explorer is a search tool that allows users to browse or search for and display figures and data plots of events collected since 2004. The repository is updated daily, and, as of June, 2014, makes more than 35,000 events publicly available. The energy of a cosmic ray is measured in Exa electron volts or EeV. These event displays can be browsed in order of their energy level from 0.1 to 41.1 EeV. Each event has an individual identification number.

    The event displays provide station data, cosmic ray incoming direction, various energy measurements, plots, vector-based images, and an ASCII data file.

  7. On the origin of ultra high energy cosmic ray particles

    NASA Astrophysics Data System (ADS)

    Thielheim, K. O.

    1998-06-01

    Understanding physical mechanisms by which Nature succeeds in bestowing `macroscopic' amounts of energy on single `microscopic' particles remains one of the greatest challenges for both, astrophysicists seeking to understand the functioning of cosmic objects, and accelerator designers inventing new conjectures for more powerful machines. The first and introductory chapter of this contribution is a short retrospective on our early research work, in the `Mathematical Physics Division' at Kiel, on the origin of Ultra High Energy Cosmic Ray Particles (UHECRP), beginning in the sixties and seventies with studies on Atmospheric Particle Propagation, proceeding in the seventies and eighties to investigations on Galactic Particle Transfer, and leading in the eighties and nineties to our present work on mechanisms for particle acceleration in pulsar magnetospheres. Cosmic rays, more than many fields of research, are found to be closely related to other branches of physics2. When looking on powerful cosmic accelerators from the point of view of fundamental physics, one has to study charged particle dynamics in extremely strong electromagnetic fields, of a kind that is expected near the surface of rapidly rotating, strongly magnetized neutron stars. Conventional Maxwell Theory (MT), for clearly discernable reasons, does not provide an adequate theoretical means of description in this case. Selfconsistent Electrodynamics (SCED), distinguished from MT through some of its essential premises offers itself, alternatively, as an appropriate language. Therefore, in the second chapter of my talk, I shall outline some features of SCED and reproduce the equation of particle motion on these grounds. In the third and concluding chapter, I shall discuss a mechanism to create very narrow bundles of energetic particles in the polar regions of aligned rotators3.

  8. Development of Ultra High-Energy Cosmic Ray Research

    NASA Astrophysics Data System (ADS)

    Kampert, Karl-Heinz; Watson, Alan A.

    The discovery of extensive air showers by Rossi, Schmeiser, Bothe, Kolhrster and Auger at the end of the 1930s, facilitated by the coincidence technique of Bothe and Rossi, led to fundamental contributions in the field of cosmic ray physics and laid the foundation for high-energy particle physics. Soon after World War II a cosmic ray group at MIT in the USA pioneered detailed investigations of air shower phenomena and their experimental skill laid the foundation for many of the methods and much of the instrumentation used today. Soon interests focused to the highest energies requiring much larger detectors to be operated. The first detection of air fluorescence light by Japanese and US groups in the early 1970s marked an important experimental breakthrough towards this end as it allowed huge volumes of atmosphere to be monitored by optical telescopes. Radio observations of air showers, pioneered in the 1960s, are presently experiencing a renaissance and may revolutionise the field again. In the last 7 decades the research has seen many ups but also a few downs. However, the example of the Cygnus X-3 story demonstrated that even non-confirmable observations can have a huge impact by boosting new instrumentation to make discoveries and shape an entire scientific community.

  9. Simulations of ultra-high-energy cosmic rays propagation

    NASA Astrophysics Data System (ADS)

    Kalashev, O. E.; Kido, E.

    2015-05-01

    We compare two techniques for simulation of the propagation of ultra-high-energy cosmic rays (UHECR) in intergalactic space: the Monte Carlo approach and a method based on solving transport equations in one dimension. For the former, we adopt the publicly available tool CRPropa and for the latter, we use the code TransportCR, which has been developed by the first author and used in a number of applications, and is made available online with publishing this paper. While the CRPropa code is more universal, the transport equation solver has the advantage of a roughly 100 times higher calculation speed. We conclude that the methods give practically identical results for proton or neutron primaries if some accuracy improvements are introduced to the CRPropa code.

  10. Modulation of high-energy cosmic rays in the heliosphere

    NASA Astrophysics Data System (ADS)

    Hall, D. L.; Humble, J. E.; Duldig, M. L.

    1994-11-01

    We have used sidereal diurnal variations observed by neutron monitors and surface and underground muon telescopes to examine the north-south anisotropy and radical density gradient of high-energy galactic cosmic rays between 1957 and 1985. We have derived the average amplitude and rigidity spectrum of the anistropy for this period and estimate the radial gradient to be best represented as a function of rigidity P by 1.02 x (P/10)-0.5%/AU for rigidities less than approximately 450 GV. The temporal variation of both the north-south anisotropy and the radical density gradient show a solar cycle variation. Possible dependence of the anisotropy on the solar magnetic polarity state has been examined under the assumptions of a static and a nonstatic rigidity spectrum, with conflicting results. We show that the analysis is affected by a further sidereal variation and that the responsible anisotropy is related to the asymmetric heliospheric modulation of a galactic anisotropy.

  11. A simulation of high energy cosmic ray propagation 2

    NASA Technical Reports Server (NTRS)

    Honda, M.; Kamata, K.; Kifune, T.; Matsubara, Y.; Mori, M.; Nishijima, K.

    1985-01-01

    The cosmic ray propagation in the Galactic arm is simulated. The Galactic magnetic fields are known to go along with so called Galactic arms as a main structure with turbulences of the scale about 30pc. The distribution of cosmic ray in Galactic arm is studied. The escape time and the possible anisotropies caused by the arm structure are discussed.

  12. On the acceleration of ultra-high-energy cosmic rays.

    PubMed

    Fraschetti, Federico

    2008-12-13

    Ultra-high-energy cosmic rays (UHECRs) hit the Earth's atmosphere with energies exceeding 10(18)eV. This is the same energy as carried by a tennis ball moving at 100 km h-1, but concentrated on a subatomic particle. UHECRs are so rare (the flux of particles with E>10(20)eV is 0.5 km -2 per century) that only a few such particles have been detected over the past 50 years. Recently, the HiRes and Auger experiments have reported the discovery of a high-energy cut-off in the UHECR spectrum, and Auger has found an apparent clustering of the highest energy events towards nearby active galactic nuclei. Consensus is building that the highest energy particles are accelerated within the radio-bright lobes of these objects, but it remains unclear how this actually happens, and whether the cut-off is due to propagation effects or reflects an intrinsically physical limitation of the acceleration process. The low event statistics presently allows for many different plausible models; nevertheless observations are beginning to impose strong constraints on them. These observations have also motivated suggestions that new physics may be implicated. We present a review of the key theoretical and observational issues related to the processes of propagation and acceleration of UHECRs and proposed solutions. PMID:18812295

  13. Ultra-High Energy Cosmic Rays: A Recap of the Discussions at the European Cosmic Ray Symposium 2014

    NASA Astrophysics Data System (ADS)

    Haungs, Andreas

    2015-08-01

    This contribution summarizes the talks, posters, and discussions of the ECRS 2014, held in Kiel, Germany - related to the research field of ultra-high energy cosmic rays (UHECR). Here, the definition of UHECR is cosmic rays with an energy above approximately 0.1 EeV, i.e. 1017 eV, and the corresponding sessions were named HECR-II. Recent experimental results, like the identified heavy knee in the cosmic ray energy spectrum or the hotspot in the arrival direction of cosmic rays with highest energy, will be shown and discussed in relation to the need and requirements of future experimental efforts.

  14. Inductive acceleration of ultra-high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Alvarez, Jorge Alonso

    Ultra high energy cosmic rays (UHECRs) are charged particles that have energy in excess of 1018 eV and are mostly of extra-galactic origin. Their astrophysical origin and the acceleration mechanisms are still unknown, 50 years after their discovery and 100 years after cosmic rays in general were first identified. Lower energy cosmic rays (CRs), up to approximately 1015 eV ("the knee") are of galactic origin, presumably accelerated in supernova remnants. The UHECRs above "the ankle" at 1018 eV can't be contained by the Galactic magnetic field and are thus extragalactic. Considerable progress in CR research has recently been stimulated by the construction and the successful operation of the Pierre Auger observatory. Among the key yearly results is the correlation of the arrival directions of the UHECRs with the large scale structure, though the precise nature of the acceleration sites remains unknown. Noteworthy, a large number of UHECRs come from the direction of Cen A, the nearest AGN. The most commonly suggested mechanism of CR acceleration, initially due to Fermi, suggests that particles gain energy stochastically, by experiencing multiple scatterings off magnetohydrodynamic turbulence. Thus, the rate of the acceleration is low. In this work we investigate an alternative novel mechanism, specific to the UHECRs. We point out that relativistic outflows carrying large scale magnetic field have large inductive potential and may accelerate protons to ultra-high energies. We suggest that magnetized jets of Active Galactic Nuclei (AGN) can accelerate UHECRs via regular energy gain in the inductive electric fields. Cyclotron motion of a CR particle in a sheared magnetic field may become unstable for sufficiently large Larmor radii, comparable with the shear scales. As an unbound particle crosses the jet, it gains the inductive potential square root(L/c), where L is the Poynting luminosity of a jet. Key features of the mechanism are that (i) highest rigidity cosmic rays are accelerated most efficiently; (ii) maximum possible acceleration rate does reach the inverse relativistic gyro-frequency. In this work we study the kinetic motion of the UHECRs in realistic electromagnetic configurations of astrophysical jets. The key issue is the condition for particle motion to become unstable: large energy gains require stronger magnetic fields, which reduce the Larmor radius and make the motion more stable (bound). We find that large energy gains, more than an order of magnitude, are indeed possible for generic profiles of the magnetic field and the velocity shear inside the jet. On the other hand, the CRs that gained the full jet potential are typically beamed along the jet direction - this poses a problem, e.g., in the case of Cen A, whose jets are directed at large angles to the line of sight.

  15. Laboratory laser acceleration and high energy astrophysics: {gamma}-ray bursts and cosmic rays

    SciTech Connect

    Tajima, T.; Takahashi, Y.

    1998-08-20

    Recent experimental progress in laser acceleration of charged particles (electrons) and its associated processes has shown that intense electromagnetic pulses can promptly accelerate charged particles to high energies and that their energy spectrum is quite hard. On the other hand some of the high energy astrophysical phenomena such as extremely high energy cosmic rays and energetic components of {gamma}-ray bursts cry for new physical mechanisms for promptly accelerating particles to high energies. The authors suggest that the basic physics involved in laser acceleration experiments sheds light on some of the underlying mechanisms and their energy spectral characteristics of the promptly accelerated particles in these high energy astrophysical phenomena.

  16. Ultra high energy gamma rays, cosmic rays and neutrinos from accreting degenerate stars

    NASA Technical Reports Server (NTRS)

    Brecher, K.; Chanmugam, G.

    1985-01-01

    Super-Eddington accretion for a recently proposed unipolar induction model of cosmic ray acceleration in accreting binary star systems containing magnetic white dwarfs or neutron stars is considered. For sufficiently high accretion rates and low magnetic fields, the model can account for: (1) acceleration of cosmic ray nuclei up to energies of 10 to the 19th power eV; (2) production of more or less normal solar cosmic ray composition; (3) the bulk of cosmic rays observed with energies above 1 TeV, and probably even down to somewhat lower energies as well; and (4) possibly the observed antiproton cosmic ray flux. It can also account for the high ultra high energy (UHE) gamma ray flux observed from several accreting binary systems (including Cygnus X-3), while allowing the possibility of an even higher neutrino flux from these sources, with L sub nu/L sub gamma is approximately 100.

  17. High energy neutrino, photon, and cosmic ray fluxes from VHS cosmic strings

    NASA Astrophysics Data System (ADS)

    Wichoski, Ubi F.; MacGibbon, Jane H.; Brandenberger, Robert H.

    2002-03-01

    Decaying topological defects, in particular cosmic strings, can produce a significant flux of high energy neutrinos, photons and cosmic rays. According to the prevailing understanding of cosmic string dynamics in an expanding Universe, the network of long strings loses its energy first into string loops, which in turn give off most of their energy as gravitational radiation. However, it has been suggested by Vincent, Hindmarsh, and Sakellariadou (VHS) that particle emission may be the dominant energy loss channel for the long string network. In this case, the predicted flux of high energy particles would be much larger. Here we calculate the predicted flux of high energy gamma rays, neutrinos and cosmic ray antiprotons and protons as a function of the scale of symmetry breaking ? at which the strings are produced and as a function of the initial energy mJ of the particle jets which result from the string decay. Assuming the validity of the VHS scenario, we find that due to the interactions with the cosmic radiation backgrounds all fluxes but the neutrino flux are suppressed at the highest energies. This indicates that the observed events above the GZK cutoff can only be accounted for in this scenario if the primary particle is a neutrino and ? is somewhat less than the GUT scale, i.e. ?<~1023 eV. The domain of parameter space corresponding to GUT-scale symmetry breaking is excluded also by the current observations below the GZK cutoff. A new aspect of this work is the calculation of the spectrum of the tau neutrinos directly produced in the decay of the X particles. This significantly increases the tau neutrino signal at high energies in all cosmic string scenarios.

  18. Variation of the intensity of high-energy cosmic-ray hadrons with altitude.

    NASA Astrophysics Data System (ADS)

    Liu, Suiling; Ren, Jingru; Su, Shi; Wang, Chengrui; He, Mao

    1992-10-01

    Using small Pb emulsion chambers placed at a mountaineering camp site on Mt. Qomolangma [Mt. Everest] at 6500 m altitude above sea level, the intensity of high-energy cosmic ray hadrons is determined. Combining with data obtained at Mt. Kanbala (5500 m above sea level) and the Yunnan Cosmic Ray Observatory (3200 m above sea level), variations of the intensity of high-energy cosmic ray hadrons with altitude are obtained.

  19. "Espresso" Acceleration of Ultra-high-energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Caprioli, Damiano

    2015-10-01

    We propose that ultra-high-energy (UHE) cosmic rays (CRs) above 1018 eV are produced in relativistic jets of powerful active galactic nuclei via an original mechanism, which we dub “espresso” acceleration: “seed” galactic CRs with energies ≲1017 eV that penetrate the jet sideways receive a “one-shot” boost of a factor of ∼Γ2 in energy, where Γ is the Lorentz factor of the relativistic flow. For typical jet parameters, a few percent of the CRs in the host galaxy can undergo this process, and powerful blazars with Γ ≳ 30 may accelerate UHECRs up to more than 1020 eV. The chemical composition of espresso-accelerated UHECRs is determined by that at the Galactic CR knee and is expected to be proton-dominated at 1018 eV and increasingly heavy at higher energies, in agreement with recent observations made at the Pierre Auger Observatory.

  20. Laboratory laser acceleration and high energy astrophysics: (gamma)-ray bursts and cosmic rays

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Takahashi, Y.

    1998-08-01

    Recent experimental progress in laser acceleration of charged particles (electrons) and its associated processes has shown that intense electromagnetic pulses can promptly accelerate charged particles to high energies and that astrophysical phenomena such as extremely high energy cosmic rays and energetic components of (gamma)-ray bursts cry for new physical mechanisms for promptly accelerating particles to high energies. The authors suggest that the basic physics involved in laser acceleration experiments sheds light on some of the underlying mechanisms and their energy spectral characteristics of the promptly accelerated particles in these high energy astrophysical phenomena.

  1. Are Gamma-Ray Bursts the Sources of the Ultra-High Energy Cosmic Rays?

    NASA Astrophysics Data System (ADS)

    Dermer, Charles D.

    2011-08-01

    A checklist of criteria is presented to help establish the sources of ultra-high energy cosmic rays (UHECRs). These criteria are applied to long-duration GRBs in order to determine if they are UHECR sources. The evidence seems to favor blazars and radio galaxies (or other sources) over GRBs.

  2. Search for ultra high energy cosmic ray anisotropy with Auger

    NASA Astrophysics Data System (ADS)

    Boghrat, Pedram

    2008-09-01

    Although the existence of ultra high energy cosmic rays (UHECR) with energies on the order of 10 20 eV, has been shown by past experiments, the source of these particles is not yet understood. Theoretical models motivate the consideration of nearby active galactic nuclei (AGN) as a source candidate. However, AGN have not been declared as the source unambiguously and alternative hypotheses have also been made claiming radio galaxies are a significant source of UHECR. A third source candidate named Centaurus A (Cen A) is also considered. The focus of this thesis will be to test these hypotheses using the Pierre Auger detector, which observes the air showers generated by the UHECR primary after entering the Earth's atmosphere. The detector utilizes an array of 1600 ground detectors, each consisting of 12 metric tons of water spread over roughly 3000 km 2 . Each tank of water is watched by three 9" photomultipliers that detect Cherenkov radiation emitted by air shower particles passing through the water. The light emitted by atmospheric nitrogen that has been excited by passing air shower particles is also observed in order to obtain a calorimetric measurement of the energy of the UHECR. The first hypothesis that will be tested concerns the possibility that UHECR with energies larger than 57EeV correlate within 3.2 of AGN within 0.018 redshift. Given that the region 3.2 around these AGN covers 23% of the sky, on average 2.3 events out of 10 are expected to correlate within 3.2 of an AGN under the assumption of isotropy. Given only one out of 10 events in an independent data set are found to correlate, this hypothesis is disfavored. The second hypothesis that will be tested claims an excess of UHECR are found within 3.5 of radio galaxies within about 70 Mpc. Given that the region 3.5 around radio galaxies covers 10% of the sky, on average one out of 10 even s are expected to correlate within 3.5 of a radio galaxy, under the assumption that the UHECR are isotropic. In fact, no events out of 10 events in an independent data set are found to correlate. Therefore, this hypothesis is also disfavored. The region 17 around Cen A is shown to have an excess of UHECR with energies larger than 57EeV with a confidence of 2.3x10 -3 . However, Cen A is not shown to be the source unambiguously. Despite this, Cen A is the closest radiogalaxy, at 3.4 Mpc, whose radio lobes extend over about 10 of the sky and is themost likely source of this anisotropy.

  3. Electron calibration of a high energy cosmic ray detector

    NASA Technical Reports Server (NTRS)

    Simnett, G. M.; Silverberg, R. F.; Crannell, C. J.; Gearhart, R. A.; Hagen, F. A.; Jones, W. V.; Kurz, R. J.; Ormes, J. F.; Price, R. D.

    1972-01-01

    The spectrum of cosmic ray electrons above 10 GeV was studied extensively. The spectrum is predicted to steepen at an energy which is related to the lifetime of electrons in the interstellar medium against losses due to inverse Compton collisions with photons and to synchrotron radiation in galactic magnetic fields. The experimental results diverge widely; the lack of agreement between the various measurements is due to a variety of experimental problems.

  4. High energy neutrinos from astrophysical accelerators of cosmic ray nuclei

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Hooper, Dan; Sarkar, Subir; Taylor, Andrew M.

    2008-02-01

    Ongoing experimental efforts to detect cosmic sources of high energy neutrinos are guided by the expectation that astrophysical accelerators of cosmic ray protons would also generate neutrinos through interactions with ambient matter and/or photons. However, there will be a reduction in the predicted neutrino flux if cosmic ray sources accelerate not only protons but also significant numbers of heavier nuclei, as is indicated by recent air shower data. We consider plausible extragalactic sources such as active galactic nuclei, gamma ray bursts and starburst galaxies and demand consistency with the observed cosmic ray composition and energy spectrum at Earth after allowing for propagation through intergalactic radiation fields. This allows us to calculate the expected neutrino fluxes from the sources, normalized to the observed cosmic ray spectrum. We find that the likely signals are still within reach of next generation neutrino telescopes such as IceCube.PACS95.85.Ry98.70.Rz98.54.Cm98.54.EpReferencesFor a review, see:F.HalzenD.HooperRep. Prog. Phys.6520021025A.AchterbergIceCube CollaborationPhys. Rev. Lett.972006221101A.AchterbergIceCube CollaborationAstropart. Phys.262006282arXiv:astro-ph/0611063arXiv:astro-ph/0702265V.NiessANTARES CollaborationAIP Conf. Proc.8672006217I.KravchenkoPhys. Rev. D732006082002S.W.BarwickANITA CollaborationPhys. Rev. Lett.962006171101V.Van ElewyckPierre Auger CollaborationAIP Conf. Proc.8092006187For a survey of possible sources and event rates in km3 detectors see e.g.,W.BednarekG.F.BurgioT.MontaruliNew Astron. Rev.4920051M.D.KistlerJ.F.BeacomPhys. Rev. D742006063007A. Kappes, J. Hinton, C. Stegmann, F.A. Aharonian, arXiv:astro-ph/0607286.A.LevinsonE.WaxmanPhys. Rev. Lett.872001171101C.DistefanoD.GuettaE.WaxmanA.LevinsonAstrophys. J.5752002378F.A.AharonianL.A.AnchordoquiD.KhangulyanT.MontaruliJ. Phys. Conf. Ser.392006408J.Alvarez-MunizF.HalzenAstrophys. J.5762002L33F.VissaniAstropart. Phys.262006310F.W.SteckerC.DoneM.H.SalamonP.SommersPhys. Rev. Lett.6619912697(Erratum-ibid. 69 (1992) 2738)F.W.SteckerPhys. Rev. D722005107301A.AtoyanC.D.DermerPhys. Rev. Lett.872001221102L.A.AnchordoquiH.GoldbergF.HalzenT.J.WeilerPhys. Lett. B6002004202E.WaxmanJ.N.BahcallPhys. Rev. Lett.7819972292C.D.DermerA.AtoyanPhys. Rev. Lett.912003071102D.GuettaD.HooperJ.Alvarez-MunizF.HalzenE.ReuveniAstropart. Phys.202004429J.Alvarez-MunizF.HalzenD.W.HooperPhys. Rev. D622000093015A.LoebE.WaxmanJCAP06052006003S. Inoue, G. Sigl, F. Miniati, E. Armengaud, arXiv:astro-ph/0701167.E.WaxmanJ.N.BahcallPhys. Rev. D591999023002Phys. Rev. D642001023002K.MannheimR.J.ProtheroeJ.P.RachenPhys. Rev. D632001023003arXiv:astro-ph/9908031M.AhlersL.A.AnchordoquiH.GoldbergF.HalzenA.RingwaldT.J.WeilerPhys. Rev. D722005023001E.WaxmanAstrophys. J.4521995L1Note that the neutrino spectral shape can deviate from that for protons if the Feynman plateau is not flat in pseudo-rapidity space;L.AnchordoquiH.GoldbergC.NunezPhys. Rev. D712005065014This is in fact suggested by Tevatron data;F.AbeCDF CollaborationPhys. Rev. D4119902330J.G.LearnedS.PakvasaAstropart. Phys.31995267F.HalzenD.SaltzbergPhys. Rev. Lett.8119984305J.F.BeacomN.F.BellD.HooperS.PakvasaT.J.WeilerPhys. Rev. D682003093005(Erratum-ibid. D 72 (2005) 019901)L.A.AnchordoquiH.GoldbergF.HalzenT.J.WeilerPhys. Lett. B593200442L.A.AnchordoquiH.GoldbergF.HalzenT.J.WeilerPhys. Lett. B621200518A.M.HillasAnn. Rev. Astron. Astrophys.221984425For a general discussion on the acceleration time-scale in these sources see, e.g.,D.F.TorresL.A.AnchordoquiRep. Prog. Phys.6720041663M.C.BegelmanB.RudakM.SikoraAstrophys. J.362199038M.J.ChodorowskiA.A.ZdziarskiM.SikoraAstrophys. J.4001992181S.MichalowskiD.AndrewsJ.EickmeyerT.GentileN.MistryR.TalmanK.UenoPhys. Rev. Lett.391977737J.L.PugetF.W.SteckerJ.H.BredekampAstrophys. J.2051976638D.HooperS.SarkarA.M.TaylorAstropart. Phys.272007199The non-thermal energy release in GRBs is much smaller than that output by AGN.P.L.BiermannP.A.StrittmatterAstrophys. J.3221987643R.J.ProtheroeA.P.SzaboPhys. Rev. Lett.6919922885J.P.RachenP.L.BiermannAstron. Astrophys.2721993161J.P.RachenT.StanevP.L.BiermannAstron. Astrophys.2731993377R.C.HartmanEGRET CollaborationAstrophys. J. Suppl.123199979See e.g.,M.PunchNature3581992477D.PetryHEGRA CollaborationAstron. Astrophys.3111996L13P.M.ChadwickAstrophys. J.5131999161C.D.DermerR.SchlickeiserA.MastichiadisAstron. Astrophys.2561992L27S.D.BloomA.P.MarscherAstrophys. J.4611996657K.MannheimAstron. Astrophys.269199367K.MannheimScience2791998684A.DarA.LaorAstrophys. J.4781997L5F.A.AharonianNew Astron.52000377M.BoettcherAstrophys. J.5151999L21C.D.DermerR.SchlickeiserAstrophys. J.4161993458F.W.SteckerPhys. Rev. Lett.2119681016G.J.FishmanC.A.MeeganAnn. Rev. Astron. Astrophys.331995415For a list of papers related to SWIFT, see: http://swift.gsfc.nasa.gov/docs/swift/results/publist/.B.LinkR.I.EpsteinAstrophys. J.4661996764C.A.MeeganNature3551992143M.R.MetzgerNature3871997878See e.g.,T.PiranPhys. Rep.3141999575T.PiranPhys. Rep.3332000529For a recent review of GRB phenomenology, see:P.MeszarosRep. Prog. Phys.6920062259E.WaxmanLect. Notes Phys.5762001122M.MilgromV.UsovAstrophys. J.4491995L37E.WaxmanPhys. Rev. Lett.751995386M.VietriPhys. Rev. Lett.7819974328D.BandAstrophys. J.4131993281F. Halzen, in: K. Oliver (Ed.), Proceedings of the TASI’98, Boulder, 1998, p. 524.J.W.ElbertP.SommersAstrophys. J.4411995151L.A.AnchordoquiG.E.RomeroJ.A.CombiPhys. Rev. D601999103001L.A. Anchordoqui, J.F. Beacom, H. Goldberg, S. Palomares-Ruiz, T.J. Weiler, arXiv:astro-ph/0611580; arXiv:astro-ph/0611581.The factor 9/(4R) results from calculating ∫dr∫dr|r-r|(4πR/3), where r is the position of a star and r is the position of an observer (the position of the reaction), in a region of radius R uniformly filled with sources.D.A.ForbesM.J.WardV.RotaciucM.BlietzR.GenzelS.DrapatzP.P.van der WerfA.KrabbeAstrophys. J.4061993L11P. Chanial, H. Flores, B. Guiderdoni, D. Elbaz, F. Hammer, L. Vigroux, arXiv:astro-ph/0610900.P.O.LagageC.J.CesarskyAstron. Astrophys.1181983223S.P.LaiJ.M.GirartR.CrutcherAstrophys. J.5982003392W.BednarekMon. Not. R. Astron. Soc.3452003847W.BednarekR.J.ProtheroeAstropart. Phys.162002397P.BlasiA.V.OlintoPhys. Rev. D591999023001F.W.SteckerAstropart. Phys.262007398F.W. Stecker, arXiv:astro-ph/0610208.A γ-ray signal from the nearby starburst galaxy NGC253 was reported by the CANGAROO-II Collaboration but their subsequent re-analysis of the data is consistent with the expectation from backgrounds:C.ItohCANGAROO-II CollaborationAstron. Astrophys.3962002L1(Erratum-ibid. 462 (2007) 67)T.A. Thompson, E. Quataert, E. Waxman, A. Loeb, arXiv:astro-ph/0608699.D.J.BirdFly’s Eye CollaborationPhys. Rev. Lett.7119933401D.R.BergmanHiRes CollaborationNucl. Phys. Proc. Suppl.136200440T.Abu-ZayyadHiRes-MIA CollaborationAstrophys. J.5572001686M.NaganoJ. Phys. G181992423V.BerezinskyA.Z.GazizovS.I.GrigorievaPhys. Rev. D742006043005R.U.AbbasiHiRes CollaborationPhys. Rev. Lett.922004151101V.BerezinskyA.Z.GazizovS.I.GrigorievaPhys. Lett. B6122005147V.S.BerezinskyS.I.GrigorievaB.I.HnatykAstropart. Phys.212004617See Fig. 21 in:L.AnchordoquiM.T.DovaA.MariazziT.McCauleyT.PaulS.ReucroftJ.SwainAnn. Phys.3142004145D.AllardE.ParizotE.KhanS.GorielyA.V.OlintoAstron. Astrophys.4432005L29D.AllardE.ParizotA.V.OlintoAstropart. Phys.27200761T.Abu-ZayyadHigh Resolution Fly’s Eye CollaborationAstropart. Phys.232005157P. Sommers, et al., Pierre Auger Collaboration, arXiv:astro-ph/0507150.R.U.AbbasiHiRes CollaborationAstrophys. J.6222005910B.N. Afanasiev, et al., Yakutsk Collaboration, in: M. Nagano (Ed.), Proceedings of the Tokyo Workshop on Techniques for the Study of the Extremely High Energy Cosmic Rays, 1993.J. Knapp, private communication.J.RanftPhys. Rev. D51199564R.S.FletcherT.K.GaisserP.LipariT.StanevPhys. Rev. D5019945710J.EngelT.K.GaisserT.StanevP.LipariPhys. Rev. D4619925013N.N.KalmykovS.S.OstapchenkoA.I.PavlovNucl. Phys. Proc. Suppl.52B19977It is important to stress that the Auger data are still at a preliminary stage and the reconstruction procedures are still to be finalised. However, even allowing for the systematic uncertainties still present, it does appear that at the highest energies fewer events are seen than expected from the AGASA analysis.V.S.BerezinskyG.T.ZatsepinPhys. Lett. B281969423F.W.SteckerAstrophys. J.2281979919R.EngelD.SeckelT.StanevPhys. Rev. D642001093010Z.FodorS.D.KatzA.RingwaldH.TuJCAP03112003015D.De MarcoT.StanevF.W.SteckerPhys. Rev. D732006043003D.HooperA.TaylorS.SarkarAstropart. Phys.23200511M.AveN.BuscaA.V.OlintoA.A.WatsonT.YamamotoAstropart. Phys.23200519A point worth noting at this juncture: If iron nuclei are accelerated to very high energies (much higher than the energy spectrum has been measured), then disintegration can lead to large numbers of protons above the spectrum cutoff. In this case, the resulting cosmogenic neutrino flux is not dramatically suppressed. On the other hand, if iron nuclei are only largely accelerated to around 10eV or less, then the liberated protons will only rarely interact with the CMB to produce pions, hence the cosmogenic neutrino flux will be significantly reduced.

  5. SimProp: a simulation code for ultra high energy cosmic ray propagation

    SciTech Connect

    Aloisio, R.; Grillo, A.F.; Boncioli, D.; Petrera, S.; Salamida, F. E-mail: denise.boncioli@roma2.infn.it E-mail: petrera@aquila.infn.it

    2012-10-01

    A new Monte Carlo simulation code for the propagation of Ultra High Energy Cosmic Rays is presented. The results of this simulation scheme are tested by comparison with results of another Monte Carlo computation as well as with the results obtained by directly solving the kinetic equation for the propagation of Ultra High Energy Cosmic Rays. A short comparison with the latest flux published by the Pierre Auger collaboration is also presented.

  6. Primary and secondary nuclei in high-energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Ormes, J. F.

    1973-01-01

    Charge and particle trajectory measurements during a balloon-borne experiment observing the composition of cosmic rays, are interpreted by plotting differential intensities of various nuclei of both primary and secondary origin above 3 GeV/nucleon. The large spectral difference between carbon plus oxygen and iron is confirmed in the difference between their secondary products. This large difference cannot be explained as being solely due to propagation effects and it is concluded that preferential acceleration of heavy nuclei due to a source effect is present.

  7. HIGH-ENERGY EMISSION INDUCED BY ULTRA-HIGH-ENERGY PHOTONS AS A PROBE OF ULTRA-HIGH-ENERGY COSMIC-RAY ACCELERATORS EMBEDDED IN THE COSMIC WEB

    SciTech Connect

    Murase, Kohta

    2012-02-15

    The photomeson production in ultra-high-energy cosmic-ray (UHECR) accelerators such as {gamma}-ray bursts and active galaxies may lead to ultra-high-energy (UHE) {gamma}-ray emission. We show that the generation of UHE pairs in magnetized structured regions where the sources are embedded is inevitable, and accompanying {approx}> 0.1 TeV synchrotron emission provides an important probe of UHECR acceleration. It would especially be relevant for powerful transient sources, and synchrotron pair echoes may be detected by future CTA via coordinated search for transients of duration {approx}0.1-1 yr for the structured regions of {approx}Mpc. Detections will be useful for knowing structured extragalactic magnetic fields as well as properties of the sources.

  8. Cosmic ray composition measurements and high energy ionization spectrometers

    NASA Technical Reports Server (NTRS)

    Arens, J. F.; Ormes, J. F.

    1974-01-01

    Element abundances of cosmic rays Li through Si with energy above 0.8 GeV/amu were measured on a balloon borne instrument containing a total absorption ionization spectrometer. Statistical techniques were used to analyze the five measurements of each particle to determine its charge and energy. The technique allows a determination of systematic errors to be made. Corrections for Landau fluctuations, spark chamber inefficiency, and background particles were included. Comparison with other published results is made. Differences in the shape of the spectrum determined from measurements of different workers indicate that the absolute intensity is still known to only plus or minus 15% between 2 and 10 GV/c rigidity.

  9. High-energy cosmic rays and neutrinos from semirelativistic hypernovae

    SciTech Connect

    Wang Xiangyu; Razzaque, Soebur; Meszaros, Peter; Dai Zigao

    2007-10-15

    The origin of the ultrahigh-energy (UHE) cosmic rays (CRs) from the second knee ({approx}6x10{sup 17} eV) above in the CR spectrum is still unknown. Recently, there has been growing evidence that a peculiar type of supernovae, called hypernovae, are associated with subenergetic gamma-ray bursts, such as SN1998bw/GRB980425 and SN2003lw/GRB031203. Such hypernovae appear to have high (up to mildly relativistic) velocity ejecta, which may be linked to the subenergetic gamma-ray bursts. Assuming a continuous distribution of the kinetic energy of the hypernova ejecta as a function of its velocity E{sub k}{proportional_to}({gamma}{beta}){sup -{alpha}} with {alpha}{approx}2, we find that (1) the external shock wave produced by the high-velocity ejecta of a hypernova can accelerate protons up to energies as high as 10{sup 19} eV; (2) the cosmological hypernova rate is sufficient to account for the energy flux above the second knee; and (3) the steeper spectrum of CRs at these energies can arise in these sources. In addition, hypernovae would also give rise to a faint diffuse UHE neutrino flux, due to p{gamma} interactions of the UHE CRs with hypernova optical-UV photons.

  10. Contribution from individual nearby sources to the spectrum of high-energy cosmic-ray electrons

    NASA Astrophysics Data System (ADS)

    Sedrati, R.; Attallah, R.

    2014-04-01

    In the last few years, very important data on high-energy cosmic-ray electrons and positrons from high-precision space-born and ground-based experiments have attracted a great deal of interest. These particles represent a unique probe for studying local comic-ray accelerators because they lose energy very rapidly. These energy losses reduce the lifetime so drastically that high-energy cosmic-ray electrons can attain the Earth only from rather local astrophysical sources. This work aims at calculating, by means of Monte Carlo simulation, the contribution from some known nearby astrophysical sources to the cosmic-ray electron/positron spectra at high energy (≥ 10 GeV). The background to the electron energy spectrum from distant sources is determined with the help of the GALPROP code. The obtained numerical results are compared with a set of experimental data.

  11. High-energy cosmic ray muons in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Kochanov, A. A.; Sinegovskaya, T. S.; Sinegovsky, S. I.

    2013-03-01

    We present the calculations of the atmospheric muon fluxes at energies 10-107 GeV based on a numerical-analytical method for solving the hadron-nucleus cascade equations. It allows the non-power-law behavior of the primary cosmic ray (PCR) spectrum, the violation of Feynman scaling, and the growth of the total inelastic cross sections for hadron-nucleus collisions with increasing energy to be taken into account. The calculations have been performed for a wide class of hadron-nucleus interaction models using directly the PCR measurements made in the ATIC-2 and GAMMA experiments and the parameterizations of the primary spectrum based on a set of experiments. We study the dependence of atmospheric muon flux characteristics on the hadronic interaction model and the influence of uncertainties in the PCR spectrum and composition on the muon flux at sea level. Comparison of the calculated muon energy spectra at sea level with the data from a large number of experiments shows that the cross sections for hadron-nucleus interactions introduce the greatest uncertainty in the energy region that does not include the knee in the primary spectrum.

  12. High-energy cosmic ray muons in the Earth's atmosphere

    SciTech Connect

    Kochanov, A. A.; Sinegovskaya, T. S.; Sinegovsky, S. I.

    2013-03-15

    We present the calculations of the atmospheric muon fluxes at energies 10-10{sup 7} GeV based on a numerical-analytical method for solving the hadron-nucleus cascade equations. It allows the non-power-law behavior of the primary cosmic ray (PCR) spectrum, the violation of Feynman scaling, and the growth of the total inelastic cross sections for hadron-nucleus collisions with increasing energy to be taken into account. The calculations have been performed for a wide class of hadron-nucleus interaction models using directly the PCR measurements made in the ATIC-2 and GAMMA experiments and the parameterizations of the primary spectrum based on a set of experiments. We study the dependence of atmospheric muon flux characteristics on the hadronic interaction model and the influence of uncertainties in the PCR spectrum and composition on the muon flux at sea level. Comparison of the calculated muon energy spectra at sea level with the data from a large number of experiments shows that the cross sections for hadron-nucleus interactions introduce the greatest uncertainty in the energy region that does not include the knee in the primary spectrum.

  13. Air Shower Events of High-Energy Cosmic Rays Measured at Seoul, South Korea

    NASA Astrophysics Data System (ADS)

    Cho, Wooram; Shin, Jae-Ik; Kim, Hongki; Lee, Seulgi; Lim, Sunin; Nam, Sinwoo; Yang, Jongmann; Cheon, Byunggu; Bang, Hyungchan; Kwon, Youngjoon

    2011-09-01

    The COsmic ray Research and Education Array (COREA) collaboration has installed an array of six detector stations at two high schools in and near Seoul, Korea for measurement of air-shower events from high-energy cosmic rays. Three stations are installed at each site, where each station consists of four plastic scintillation detectors covering an area of 2m2. In this presentation, we report the currenst status of the COREA project, describing the experimental equipment and measurement of coincident events.

  14. A method for constraining cosmic magnetic field models using ultra-high energy cosmic rays: The Field Scan Method

    NASA Astrophysics Data System (ADS)

    Sutherland, Michael S.; Baughman, Brian M.; Beatty, J. J.

    2012-09-01

    The Galactic magnetic field, locally observed to be on the order of a few ?G, is sufficiently strong to induce deflections in the arrival directions of ultra-high energy cosmic rays. We present a method that establishes measures of self-consistency for hypothesis sets comprised of cosmic magnetic field models and ultra-high energy cosmic ray composition and source distributions. The method uses two independent procedures to compare the backtracked velocity vectors outside the magnetic field model to the distribution of backtracked velocity directions of many isotropic observations with the same primary energies. This allows for an estimate of the statistical consistency between the observed data and simulated isotropic observations. Inconsistency with the isotropic expectation of source correlation in both procedures is interpreted as the hypothesis set providing a self-consistent description of GMF and UHECR properties for the cosmic ray observations.

  15. Upper limits on the ultra-high energy cosmic ray flux from unresolved sources

    NASA Astrophysics Data System (ADS)

    Burton, Ross E.

    The Pierre Auger Observatory is the world's largest ultra-high energy cosmic ray detector. Its goals include answering basic questions about the origins and composition of cosmic rays at the highest energies. We outline the scientific motivation for constructing such an observatory and we highlight some of the significant results produced so far by this world-class instrument. We present the results of our own contributions toward calibrating the timing characteristics of the instrument followed by two alternative techniques for analyzing cosmic ray arrival direction data. The first technique is based on a Bayesian statistical framework and is presented as a solution to some of the difficulties in applying a standard analysis to identify anisotropy in the cosmic ray flux. The second analysis we present is based on a Markov Chain Monte Carlo method for identifying sources of cosmic rays in our arrival direction data. We are able to use our method to set an upper limit of 0.15 per square km per year on the flux from any potential sources producing ultra-high energy cosmic rays with energy E ≥ 3 EeV. We conclude with a proposal for enhancing the already successful observatory with an array of non-imaging Cherenkov detectors. According to our simulation work, such an array could serve as both an independent measure of the cosmic ray energy and, if the array is dense enough, it could also provide insight into the composition of ultra-high energy cosmic rays on an event by event basis.

  16. Constraining pion interactions at very high energies by cosmic ray data

    NASA Astrophysics Data System (ADS)

    Ostapchenko, Sergey; Bleicher, Marcus

    2016-03-01

    We demonstrate that a substantial part of the present uncertainties in model predictions for the average maximum depth of cosmic ray-induced extensive air showers is related to very high energy pion-air collisions. Our analysis shows that the position of the maximum of the muon production profile in air showers is strongly sensitive to the properties of such interactions. Therefore, the measurements of the maximal muon production depth by cosmic ray experiments provide a unique opportunity to constrain the treatment of pion-air interactions at very high energies and to reduce thereby model-related uncertainties for the shower maximum depth.

  17. Plasma effects on extragalactic ultra-high-energy cosmic ray hadron beams in cosmic voids

    SciTech Connect

    Krakau, S.; Schlickeiser, R. E-mail: rsch@tp4.rub.de

    2014-07-01

    The linear instability of an ultrarelativistic hadron beam (Γ {sub b} ≈ 10{sup 6}) in the unmagnetized intergalactic medium (IGM) is investigated with respect to the excitation of collective electrostatic and aperiodic electromagnetic fluctuations. This analysis is important for the propagation of extragalactic ultrarelativistic cosmic rays (E > 10{sup 15} eV) from their distant sources to Earth. We calculate minimum instability growth times that are orders of magnitude shorter than the cosmic ray propagation time in the IGM. Due to nonlinear effects, especially the modulation instability, the cosmic ray beam stabilizes and can propagate with nearly no energy loss through the IGM.

  18. Lookup tables to compute high energy cosmic ray induced atmospheric ionization and changes in atmospheric chemistry

    SciTech Connect

    Atri, Dimitra; Melott, Adrian L.; Thomas, Brian C. E-mail: melott@ku.edu

    2010-05-01

    A variety of events such as gamma-ray bursts and supernovae may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. Existing atmospheric chemistry software does not have the capability of incorporating the effects of substantial cosmic ray flux above 10 GeV. An atmospheric code, the NASA-Goddard Space Flight Center two-dimensional (latitude, altitude) time-dependent atmospheric model (NGSFC), is used to study atmospheric chemistry changes. Using CORSIKA, we have created tables that can be used to compute high energy cosmic ray (10 GeV–1 PeV) induced atmospheric ionization and also, with the use of the NGSFC code, can be used to simulate the resulting atmospheric chemistry changes. We discuss the tables, their uses, weaknesses, and strengths.

  19. High-energy galactic gamma radiation from cosmic rays concentrated in spiral arms

    NASA Technical Reports Server (NTRS)

    Bignami, G. F.; Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.

    1975-01-01

    A model for the emission of high-energy (exceeding 100 Mev) gamma-rays from the galactic disk has been developed and compared with recent SAS-2 observations. In the calculation, it is assumed that (1) the high energy galactic gamma-rays result primarily from the interaction of cosmic rays with galactic matter, (2) the cosmic-ray density is proportional to the matter density on the scale of galactic arms, and (3) the matter in the Galaxy is distributed in a spiral pattern consistent with density-wave theory and experimental data on the matter distribution that is available, including the 21-cm H I line emission, continuum emission from H II regions, and data currently being used to estimate the H2 density. The calculated galactic-longitude distribution of gamma rays is in good agreement with the SAS-2 observations in relative shape and absolute flux. As a corollary, the nonuniform cosmic-ray distribution of this model tends to support the galactic origin of the fraction of cosmic rays which is important in the production of high-energy photons. Modifications of the basic model show that the gamma-ray flux is relatively sensitive to large variations of the assumed distribution of molecular hydrogen in the Galaxy.

  20. LAT Perspectives in Detection of High Energy Cosmic Ray Electrons

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Ormes, J. F.; Funk, Stefan

    2007-01-01

    The GLAST Large Area Telescope (LAT) science objectives and capabilities in the detection of high energy electrons in the energy range from 20 GeV to approx. 1 TeV are presented. LAT simulations are used to establish the event selections. It is found that maintaining the efficiency of electron detection at the level of 30% the residual hadron contamination does not exceed 2-3% of the electron flux. LAT should collect approx. ten million of electrons with the energy above 20 GeV for each year of observation. Precise spectral reconstruction with high statistics presents us with a unique opportunity to investigate several important problems such as studying galactic models of IC radiation, revealing the signatures of nearby sources such as high energy cutoff in the electron spectrum, testing the propagation model, and searching for KKDM particles decay through their contribution to the electron spectrum.

  1. High-energy multiple muons and heavy primary cosmic-rays

    NASA Technical Reports Server (NTRS)

    Mizutani, K.; Sato, T.; Takahashi, T.; Higashi, S.

    1985-01-01

    Three-dimensional simulations were carried out on high-energy multiple muons. On the lateral spread, the comparison with the deep underground observations indicates that the primary cosmic rays include heavy nuclei of high content. A method to determine the average mass number of primary particles in the energy around 10 to the 15th power eV is suggested.

  2. Cosmic rays and high-energy interactions - Is there a necessity for a new phenomenon?

    NASA Astrophysics Data System (ADS)

    Capdevielle, J. N.; Gawin, J.; Grochalska, B.; Wdowczyk, J.

    1982-12-01

    A critical analysis is performed of several secondary cosmic ray phenomena, with a view to the difficulties associated with the description of longitudinal development by an assumption concerning the model of high energy interactions and primary mass composition. It is noted that extensive air shower development can be better described if the direct production of gamma-rays and baryons is postulated. As a possible model for such a scheme, the creation of a glob of condensed matter, together with associated processes, is suggested. This scheme has the virtue of accounting for various strange cosmic ray phenomena observed at various depths in the atmosphere.

  3. High energy cosmic ray signature of quark nuggets

    NASA Technical Reports Server (NTRS)

    Audouze, J.; Schaeffer, R.; Silk, J.

    1985-01-01

    It has been recently proposed that dark matter in the Universe might consist of nuggets of quarks which populate the nuclear desert between nucleons and neutron star matter. It is further suggested that the Centauro events which could be the signature of particles with atomic mass A approx. 100 and energy E approx. 10 to 15th power eV might also be related to debris produced in the encounter of two neutron stars. A further consequence of the former proposal is examined, and it is shown that the production of relativistic quark nuggets is accompanied by a substantial flux of potentially observable high energy neutrinos.

  4. High Energy Neutrinos and Cosmic-Rays From Low-Luminosity Gamma-Ray Bursts?

    SciTech Connect

    Murase, Kohta; Ioka, Kunihito; Nagataki, Shigehiro; Nakamura, Takashi; /Kyoto U.

    2006-07-10

    The recently discovered gamma-ray burst (GRB) 060218/SN 2006aj is classified as an X-ray Flash with very long duration driven possibly by a neutron star. Since GRB 060218 is very near {approx} 140 Mpc and very dim, one-year observation by Swift suggests that the true rate of GRB 060218-like events might be very high so that such low luminosity GRBs (LL-GRBs) might form a different population of GRBs from the cosmological high luminosity GRBs (HL-GRBs). We found that the high energy neutrino background from such LL-GRBs could be comparable with or larger than that from HL-GRBs. If each neutrino event is detected by IceCube, later optical-infrared follow-up observations such as by Subaru could identify a Type Ibc supernova associated with LL-GRBs, even if gamma- and X-rays are not observed by Swift. This is in a sense a new window from neutrino astronomy, which might enable us to confirm the existence of LL-GRBs and to obtain information about their rate and origin. We also argue LL-GRBs as high energy gamma-ray and cosmic-ray sources.

  5. Searching for signals of magnetic lensing in ultra-high energy cosmic rays

    SciTech Connect

    Golup, Geraldina; Harari, Diego; Mollerach, Silvia; Roulet, Esteban E-mail: harari@cab.cnea.gov.ar E-mail: roulet@cab.cnea.gov.ar

    2011-07-01

    Ultra-high energy cosmic rays are mostly charged particles and they are therefore deflected by magnetic fields on their path from their sources to Earth. An interesting phenomenon arising from these deflections is the appearance of multiple images of a source, i.e. cosmic rays with the same energy coming from the same source that can arrive to the Earth from different directions. In this work we present a technique to identify secondary images, produced by the regular component of the galactic magnetic field, benefiting from the fact that near caustics the flux is significantly magnified.

  6. Dark matter distribution in the universe and ultra-high energy cosmic rays

    SciTech Connect

    Pasquale Blasi

    2000-10-10

    Two of the greatest mysteries of modern physics are the origin of the dark matter in the universe and the nature of the highest energy particles in the cosmic ray spectrum. The authors discuss here possible direct and indirect connections between these two problems, with particular attention to two cases: in the first they study the local clustering of possible sources of ultra-high energy cosmic rays (UHECRs) driven by the local dark matter overdensity. In the second case they study the possibility that UHECRs are directly generated by the decay of weakly unstable super heavy dark matter.

  7. Very high energy cosmic gamma rays from radio and X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Chadwick, Paula Mary

    The detection of very high energy cosmic gamma rays from isolated pulsars and X-ray binary sources using the atmospheric Cerenkov techniques is investigated. A general introduction to gamma ray detection techniques is followed by a description of the properties of atmospheric Cerenkov radiation and a discussion of the principles of the atmospheric Cerenkov technique. The Mark 1 and 2 gamma ray telescopes operated in Dugway, Utah between 1981 and 1984 are briefly described. There follows a discussion of the results from observations at many different wavelengths of Cygnus X-3. The discovery of a 12.59 ms pulsar in data taken on Cygnus X-3 in 1983 is described. Evidence is presented which suggests this periodicity is also present at a weaker level in earlier data and also in the data taken in Durham in 1985. Results from observations of PSR1937 + 21, PSR1953 + 29 and six radio pulsars, are presented. The design and construction of the Mark 3 telescope, now operating in Narrabri, N.S.W., is described in detail. Preliminary results from observations with the Mark 3 telescope of three objects, LMC X-4, the Vela pulsar and Centaurus X-3, are presented. A brief discussion of the mechanisms by which VHE gamma rays may be produced in isolated pulsars and X-ray binary pulsars is given, followed by a description of the future prospects for the Mark 3 and Mark 4 telescopes.

  8. Detection of High Energy Cosmic Ray with the Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Fazely, Ali R.

    2003-01-01

    ATIC is a balloon-borne investigation of cosmic ray spectra, from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Gemmate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pixels capable of charge identification in cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction 'target'. Very high energy gamma-rays and their energy spectrum may provide insight to the flux of extremely high energy neutrinos which will be investigated in detail with several proposed cubic kilometer scale neutrino observatories in the next decade.

  9. Possible Interpretations of the High Energy Cosmic Ray Electron Spectrum Measured with the Fermi Space Telescope

    SciTech Connect

    Grasso, D.; Profumo, S.; Strong, A.W.; Baldini, L.; Bellazzini, R.; Bloom, E.D.; Bregeon, J.; Di Bernardo, G.; Gaggero, D.; Giglietto, N.; Kamae, T.; Latronico, L.; Longo, F.; Mazziotta, M.N.; Moiseev, A.A.; Morselli, A.; Ormes, J.F.; Pesce-Rollins, M.; Pohl, M.; Razzano, M.; Sgro, C.; /INFN, Pisa /INFN, Pisa /NASA, Ames

    2012-04-25

    The Fermi Large Area Telescope has provided the measurement of the high energy (20 GeV to 1 TeV) cosmic ray electrons and positrons spectrum with unprecedented accuracy. This measurement represents a unique probe for studying the origin and diffusive propagation of cosmic rays as well as for looking for possible evidences of Dark Matter. In this contribution we focus mainly on astrophysical sources of cosmic ray electrons and positrons which include the standard primary and secondary diffuse galactic contribution, as well as nearby point-sources which are expected to contribute more significantly to higher energies. In this framework, we discuss possible interpretations of Fermi results in relation with other recent experimental data on energetic electrons and positrons (specifically the most recent ones reported by PAMELA, ATIC, PPB-BETS and H.E.S.S.).

  10. Study of the high energy Cosmic Rays large scale anisotropies with the ANTARES neutrino telescope

    NASA Astrophysics Data System (ADS)

    Illuminati, Giulia

    2016-02-01

    We present the analysis method used to search for an anisotropy in the high energy Cosmic Rays arrival distribution using data collected by the ANTARES telescope. ANTARES is a neutrino detector, where the collected data are dominated by a large background of cosmic ray muons. Therefore, the background data are suitable for high-statistics studies of cosmic rays in the Northern sky. The main challenge for this analysis is accounting for those effects which can mimic an apparent anisotropy in the muon arrival direction: the detector exposure asymmetries, non-uniform time coverage, diurnal and seasonal variation of the atmospheric temperature. Once all these effects have been corrected, a study of the anisotropy profiles along the right ascension can be performed.

  11. Propagation of Ultra-high-energy Cosmic Rays in Galactic Magnetic Field

    NASA Astrophysics Data System (ADS)

    Takami, Hajime

    2011-09-01

    The propagation trajectories of ultra-high-energy cosmic rays (UHECRs) are inevitably affected by Galactic magnetic field (GMF). Because of the inevitability, the importance of the studies of the propagation in GMF have increased to interpret the results of recent UHECR experiments. This article reviews the effects of GMF to the propagation and arrival directions of UHECRs and introduces recent studies to constrain UHECR sources.

  12. The AMY experiment to measure GHz radiation for Ultra-High Energy Cosmic Ray detection

    NASA Astrophysics Data System (ADS)

    Alvarez-Muniz, J.; Bohacova, M.; Cataldi, G.; Coluccia, M. R.; Creti, P.; De Mitri, I.; Di Giulio, C.; Engel, R.; Facal San Luis, P.; Iarlori, M.; Martello, D.; Monasor, M.; Perrone, L.; Petrera, S.; Privitera, P.; Riegel, M.; Rizi, V.; Rodriguez Fernandez, G.; Salamida, F.; Salina, G.; Settimo, M.; Smida, R.; Verzi, V.; Werner, F.; Williams, C.

    2013-02-01

    The Air Microwave Yield (AMY) project aims to measure the emission in the GHz regime from test-beam induced air-shower. The experiment is using the Beam Test Facility (BTF) of the Frascati INFN National Laboratories in Italy. The final purpose is to characterize a process to be used in a next generation of ultra-high energy cosmic rays (UHECRs) detectors. We describe the experimental apparatus and the first test performed in November 2011.

  13. The ANITA experiment: new high-energy neutrino limits and detection of ultra-high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Binns, Walter; Gorham, P. W.; Allison, P.; Baughmann, B.; Beatty, J. J.; Belov, K.; Besson, D. Z.; Bevan, S.; Binns, W. R.; Chen, C.; Chen, P.; Clem, J. M.; Connolly, A.; Detrixhe, M.; Demarco, D.; Dowkontt, P. F.; Goodhue-Vieregg, A.; Grashorn, E.; Hill, N. Griffith. B.; Hoover, S.; Israel, M. H.; Javaid, A.; Liewer, K. M.; Matsuno, S.; Mercurio, B. C.; Miki, C.; Mottram, M.; Nam, J.; Nichol, R. J.; Palladino, K.; Romero-Wolf, A.; Ruckman, L.; Saltzberg, D.; Seckel, D.; Varner, G. S.; Wang, Y.

    The ANITA (ANtarctic Impulsive Transient Antenna) instrument is a balloon-borne telescope designed to detect coherent radio Cherenkov emission in the frequency range of 200-1200 MHz from showers produced in the Antarctic ice by interaction of cosmogenic ultra-high energy neu-trinos with energy greater than about 3 x 1018 eV. We will discuss results from the second flight (ANITA-II), which was launched in December 2008 from Antarctica and included signif-icant improvements in sensitivity and efficiency for neutrino detection over that of ANITA-I, which was launched in December 2006. Additionally, the balloon trajectory of ANITA-II gave substantially more time over deep ice than that of ANITA-I. We will present upper limits on neutrinos that constrain models of neutrino origin. In addition, we have 16 events detected in the ANITA-I flight with strong evidence of their origin as geosynchrotron radio emission reflecting off of the Antarctic snow from ultra-high-energy (of order 1019 eV) cosmic-ray air showers. The increasing aperture of this technique with energy allows us to set limits on the presence of cosmic rays with energies beyond 1020 eV.

  14. Observations of High Energy Cosmic Ray Electrons by the ATIC Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Guzik, T. G.; Chang, J.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Christl, M.; Isbert, J.; Kim, K. C.; Kuznetsov, E. N.; Panasyuk, M. I.; Panov, A. D.; Schmidt, W. K. H.; Seo, E. S.; Sokolskaya N. V.; Watts, J. W.; Wefel, J. P.; Wu, J.; Zatsepin, V. I.

    2009-01-01

    Recently the Advanced Thin Ionization Calorimeter (ATIC) balloon experiment reported observations of high energy cosmic ray electrons over the energy range 300 to 800 GeV, indicating a feature or "bump" in the otherwise smoothly decreasing energy spectrum. The severe energy losses that occur as these high energy particles traverse the galaxy render the cosmic ray electron spectrum sensitive to local (a few kiloparsecs) sources and hence very interesting. The ATIC results are the first time that such a cosmic ray spectrum anomaly has been observed at high energy. Potential sources of this electron excess include pulsars, microquasars, supernovae remnants as well as the annihilation of exotic dark matter candidate particles. ATIC has had three successful high altitude flights over the continent of Antarctica 2000-2001, 2002-2003 and 2007-2008. Only results from the first two flights have been reported so far. During this talk we will discuss the ATIC experiment, the electron observations (including preliminary results from the most recent ATIC flight), examine the merits of the various source models and compare the ATIC observations with other recent measurements.

  15. High Energy Cosmic Ray Electron Spectra measured from the ATIC Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G.; Batkov, K. E.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.

    2003-01-01

    The Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) is specifically designed for high energy cosmic ray ion detection. From simulation and a CERN beam test exposure we find that the design consisting of a graphite target and an energy detection device, a totally active calorimeter of BGO scintillator, gives us sufficient information to distinguish electrons from protons up to the TeV energy range. Balloon observations were successfully carried out over Antarctica in both 2000/2001 and 2002/2003 for a total of more than 35 days. This paper presents preliminary results on the spectrum of high energy electrons observed in the first ATIC flight.

  16. High energy neutrinos from primary cosmic rays accelerated in the cores of active galaxies

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Done, C.; Salamon, M. H.; Sommers, P.

    1991-01-01

    The spectra and high-energy neutrino fluxes are calculated from photomeson production in active galactic nuclei (AGN) such as quasars and Seyfert galaxies using recent UV and X-ray observations to define the photon fields and an accretion-disk shock-acceleration model for producing ultrahigh-energy cosmic rays in the AGN. Collectively AGN should produce the dominant isotropic neutrino background between 10 exp 4 and 10 exp 10 GeV. Measurement of this background could be critical in determining the energy-generation mechanism, evolution, and distribution of AGN. High-energy background spectra and spectra from bright AGN such as NGC4151 and 3C273 are predicted which should be observable with present detectors. High energy AGN nus should produce a sphere of stellar disruption around their cores which could explain their observed broad-line emission regions.

  17. New Results on High Energy Cosmic Ray Electrons Observed with Fermi LAT and Their Implications on the Models of Pulsars

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2010-01-01

    This viewgraph presentation describes, in detail, the Fermi Large Area Telescope (LAT) and GLAST Burst Monitor (GBM). Observations made from the June 11, 2008 launch and a discussion of observations made of high energy cosmic ray electrons is also presented.

  18. Evaluation of the cosmic-ray induced background in coded aperture high energy gamma-ray telescopes

    NASA Technical Reports Server (NTRS)

    Owens, Alan; Barbier, Loius M.; Frye, Glenn M.; Jenkins, Thomas L.

    1991-01-01

    While the application of coded-aperture techniques to high-energy gamma-ray astronomy offers potential arc-second angular resolution, concerns were raised about the level of secondary radiation produced in a thick high-z mask. A series of Monte-Carlo calculations are conducted to evaluate and quantify the cosmic-ray induced neutral particle background produced in a coded-aperture mask. It is shown that this component may be neglected, being at least a factor of 50 lower in intensity than the cosmic diffuse gamma-rays.

  19. Monocular measurement of the ultra-high energy cosmic ray spectrum

    NASA Astrophysics Data System (ADS)

    Shah, Priti Dhanesh

    The Telescope Array Project was designed to observe cosmic rays with energies greater than 1018 eV. Its goals are to study the physics of cosmic rays by measuring their anisotropy, composition, and energy spectrum. This work makes a monocular measurement of the ultra high energy cosmic ray spectrum and analyzes the physics produced from that spectrum. The flux of cosmic rays observed on Earth follows a power law over 12 decades in energy and 32 decades in flux. At the highest energies, the spectrum has detailed structure. Studying these features can tell us about the astrophysics of the production and propagation of cosmic rays. First, it can tell us about the sources of cosmic rays such as they capable of producing a power law spectrum and the maximum energy of cosmic rays that they can produce. Second, the acceleration mechanisms that can boost cosmic rays to ultra high energies can be studied. Third, the spectral features themselves can tell us about their possible cause for formation. For example, the ankle feature in the ultra high energy regime can tell us if it is the galactic-extragalactic transition or if it is due to e+e- pair production. Fourth, the energy losses that cosmic rays incur can tell us about their physical interactions during propagation. Studying the physics of the cosmic ray spectrum in the ultra high energy regime with data from the Telescope Array Project is the goal of this analysis. The Telescope Array Project consists of three fluorescence detectors overlooking an array of 507 scintillation surface detectors. Due to their extremely low flux at these energies, cosmic rays can only be observed indirectly via an extensive air shower produced when they collide with the nucleus of an atom in the Earth's atmosphere. These charged secondary particles produce fluorescence light. The array of surface detectors observes the lateral footprint of the extensive air shower when it reaches the ground. The fluorescence detectors observe the longitudinal profile of this fluorescence light. This thesis analyzes the data from one of the fluorescence detectors, Middle Drum, using a different geometry reconstruction technique, the Time versus Angle geometry. The results of this analysis show an ultra high energy cosmic ray spectrum that is consistent with the results previously published by the High Resolution Fly's Eye (HiRes) experiment, the Telescope Array surface detectors, and other experiments in this energy region. Due to insufficient statistics at this date, the GZK cutoff cannot be confirmed in this analysis, but a fit shows the cutoff to be at log10 E (E/eV) = 19.56 0.36, with a spectral index after the cutoff of - 3.86 2.0. This is within the range determined previously by other measurements. This analysis shows that the feature known as the ankle occurs at log10 E (E/eV) = 18.63 0.09, with a spectral index of - 3.27 0.07 before the ankle and a spectral index of - 2.81 0.10 after the ankle. The normalized log likelihood per degree of freedom is 0.90. The ankle is observed at the 4 5 ? confidence level. The fit to the ankle is also in excellent agreement with previous measurements, and even more remarkable given that some other measurements use different techniques. While this study cannot tell us information about the sources or the acceleration mechanisms of cosmic rays, it does show us a feature and tell us about energy losses during propagation. The dip at the ankle is clearly visible in the spectrum. The results of this study are consistent with the energy loss model of extragalactic protons interacting with the cosmic microwave background radiation and supports the idea that the ankle is excavated due to e+e- pair production. The location of the ankle at a threshold greater than for e+e- pair production supports that the ankle is a composite feature where the redshift energy losses begin to dominate the e+e- pair production losses. The location of the ankle also implies that sources at larger distances than the GZK cutoff contribute to its formation.

  20. Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Othman, M. Abou Bakr; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W. H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S. L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Takai, H.; Thomson, G. B.; Von Maluski, D.

    2014-12-01

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest "conventional" cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  1. PARSEC: A parametrized simulation engine for ultra-high energy cosmic ray protons

    NASA Astrophysics Data System (ADS)

    Bretz, Hans-Peter; Erdmann, Martin; Schiffer, Peter; Walz, David; Winchen, Tobias

    2014-02-01

    We present a new simulation engine for fast generation of ultra-high energy cosmic ray data based on parametrizations of common assumptions of UHECR origin and propagation. Implemented are deflections in unstructured turbulent extragalactic fields, energy losses for protons due to photo-pion production and electron-pair production, as well as effects from the expansion of the universe. Additionally, a simple model to estimate propagation effects from iron nuclei is included. Deflections in the Galactic magnetic field are included using a matrix approach with precalculated lenses generated from backtracked cosmic rays. The PARSEC program is based on object oriented programming paradigms enabling users to extend the implemented models and is steerable with a graphical user interface.

  2. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    SciTech Connect

    Abbasi, R.; Takai, H.; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Abou Bakr Othman, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W.H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S. L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Thomson, G. B.; Von Maluski, D.

    2014-08-19

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  3. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    DOE PAGESBeta

    Abbasi, R.; Takai, H.; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Abou Bakr Othman, M.; Farhang-Boroujeny, B.; Gardner, A.; et al

    2014-08-19

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe themore » design and performance of the TARA transmitter and receiver systems.« less

  4. Effects of Cosmic Infrared Background on High Energy Delayed Gamma-Rays From Gamma-Ray Bursts

    SciTech Connect

    Murase, Kohta; Asano, Katsuaki; Nagataki, Shigehiro; /Kyoto U., Yukawa Inst., Kyoto /KIPAC, Menlo Park

    2007-04-06

    Regenerated high energy emissions from gamma-ray bursts (GRBs) are studied in detail. If the primary emission spectrum extends to TeV range, these very high energy photons will be absorbed by the cosmic infrared background (CIB). The created high energy electron-positron pairs up-scatter not only cosmic microwave background (CMB) photons but also CIB photons, and secondary photons are generated in the GeV-TeV range. These secondary delayed photons may be observed in the near future, and useful for a consistency check for the primary spectra and GRB physical parameters. The up-scattered CIB photons cannot be neglected for low redshift bursts and/or GRBs with a relatively low maximum photon energy. The secondary gamma-rays also give us additional information on the CIB, which is uncertain in observations so far.

  5. Numerical Simulation of the Anomalous Transport of High-Energy Cosmic Rays in Galactic Superbubble

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; Price, E. M.; MeWaldt, R. A.

    2013-01-01

    A continuous-time random-walk (CTRW) model to simulate the transport and acceleration of high-energy cosmic rays in galactic superbubbles has recently been put forward (Barghouty & Schnee 2102). The new model has been developed to simulate and highlight signatures of anomalous transport on particles' evolution and their spectra in a multi-shock, collective acceleration context. The superbubble is idealized as a heterogeneous region of particle sources and sinks bounded by a random surface. This work concentrates on the effects of the bubble's assumed astrophysical characteristics (cf. geometry and roughness) on the particles' spectra.

  6. The Pierre Auger project: An observatory for measuring extremely high-energy cosmic rays

    SciTech Connect

    Zavrtanik, D.

    1998-10-01

    We present the scientific motivation and conceptual design of the P. Auger Observatory. Two giant ground arrays of water {hacek C}erenkov tanks overlooked by fluorescence detectors will cover an area of 3000 km{sup 2} each. They will be build in the Southern and Northern hemisphere to provide full sky coverage. The total aperture of 14000&hthinsp;km{sup 2}sr will allow to study all observable aspects of cosmic rays from below 10 EeV up to arbitrarily high energies with an unprecedented accuracy. {copyright} {ital 1998 American Institute of Physics.}

  7. The Pierre Auger project: An observatory for measuring extremely high-energy cosmic rays

    SciTech Connect

    Zavrtanik, D.

    1998-10-19

    We present the scientific motivation and conceptual design of the P. Auger Observatory. Two giant ground arrays of water Cerenkov tanks overlooked by fluorescence detectors will cover an area of 3000 km{sup 2} each. They will be build in the Southern and Northern hemisphere to provide full sky coverage. The total aperture of 14000 km{sup 2}sr will allow to study all observable aspects of cosmic rays from below 10 EeV up to arbitrarily high energies with an unprecedented accuracy.

  8. Multichannel readout ASIC design flow for high energy physics and cosmic rays experiments

    NASA Astrophysics Data System (ADS)

    Voronin, A.; Malankin, E.

    2016-02-01

    In the large-scale high energy physics and astrophysics experiments multi-channel readout application specific integrated circuits (ASICs) are widely used. The ASICs for such experiments are complicated systems, which usually include both analog and digital building blocks. The complexity and large number of channels in such ASICs require the proper methodological approach to their design. The paper represents the mixed-signal design flow of the ASICs for high energy physics and cosmic rays experiments. This flow was successfully embedded to the development of the read-out ASIC prototype for the muon chambers of the CBM experiment. The approach was approved in UMC CMOS MMRF 180 nm process. The design flow enable to analyse the mixed-signal system operation on the different levels: functional, behavioural, schematic and post layout including parasitic elements. The proposed design flow allows reducing the simulation period and eliminating the functionality mismatches on the very early stage of the design.

  9. Atmospheric influence on space-based observation of high-energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Falk, Stefanie; JEM-EUSO Collaboration

    2015-08-01

    High-energy extensive air showers developing in the Earth's atmosphere emit faint UV light that can be detected from space. The impact of varying atmospheric conditions on light emission and transmission has been studied in detail for the space-borne ultra high-energy cosmic ray observatory JEM-EUSO. By these studies, the importance of atmospheric scattering and reflection from ground on the fraction of Cherenkov light as well as fluorescence light received by JEM-EUSO is pointed out. For any telescope measuring UV light from an altitude higher than 40 km, the attenuating influence of the ozone layer cannot be disregarded. Based upon air shower simulation, quantitative numbers of ozone attenuation will be presented.

  10. Ultra-high-energy cosmic ray acceleration in engine-driven relativistic supernovae

    NASA Astrophysics Data System (ADS)

    Chakraborti, S.; Ray, A.; Soderberg, A. M.; Loeb, A.; Chandra, P.

    2011-02-01

    The origin of ultra-high-energy cosmic rays (UHECRs) remains an enigma. They offer a window to new physics, including tests of physical laws at energies unattainable by terrestrial accelerators. They must be accelerated locally, otherwise, background radiations would severely suppress the flux of protons and nuclei, at energies above the Greisen-Zatsepin-Kuzmin (GZK) limit. Nearby, gamma ray bursts (GRBs), hypernovae, active galactic nuclei and their flares have all been suggested and debated as possible sources. A local sub-population of type Ibc supernovae (SNe) with mildly relativistic outflows have been detected as sub-energetic GRBs, X-ray flashes and recently as radio afterglows without detected GRB counterparts. Here, we measure the size-magnetic field evolution, baryon loading and energetics, using the observed radio spectra of SN 2009bb. We place such engine-driven SNe above the Hillas line and establish that they can readily explain the post-GZK UHECRs.

  11. Ultra-high-energy cosmic ray acceleration in engine-driven relativistic supernovae.

    PubMed

    Chakraborti, S; Ray, A; Soderberg, A M; Loeb, A; Chandra, P

    2011-01-01

    The origin of ultra-high-energy cosmic rays (UHECRs) remains an enigma. They offer a window to new physics, including tests of physical laws at energies unattainable by terrestrial accelerators. They must be accelerated locally, otherwise, background radiations would severely suppress the flux of protons and nuclei, at energies above the Greisen-Zatsepin-Kuzmin (GZK) limit. Nearby, gamma ray bursts (GRBs), hypernovae, active galactic nuclei and their flares have all been suggested and debated as possible sources. A local sub-population of type Ibc supernovae (SNe) with mildly relativistic outflows have been detected as sub-energetic GRBs, X-ray flashes and recently as radio afterglows without detected GRB counterparts. Here, we measure the size-magnetic field evolution, baryon loading and energetics, using the observed radio spectra of SN 2009bb. We place such engine-driven SNe above the Hillas line and establish that they can readily explain the post-GZK UHECRs. PMID:21285953

  12. CONSTRAINTS ON THE SOURCE OF ULTRA-HIGH-ENERGY COSMIC RAYS USING ANISOTROPY VERSUS CHEMICAL COMPOSITION

    SciTech Connect

    Liu, Ruo-Yu; Wang, Xiang-Yu; Taylor, Andrew M.; Lemoine, Martin; Waxman, Eli

    2013-10-20

    The joint analysis of anisotropy signals and chemical composition of ultra-high-energy cosmic rays offers strong potential for shedding light on the sources of these particles. Following up on an earlier idea, this paper studies the anisotropies produced by protons of energy >E/Z, assuming that anisotropies at energy >E have been produced by nuclei of charge Z, which share the same magnetic rigidity. We calculate the number of secondary protons produced through photodisintegration of the primary heavy nuclei. Making the extreme assumption that the source does not inject any proton, we find that the source(s) responsible for anisotropies such as reported by the Pierre Auger Observatory should lie closer than ∼20-30, 80-100, and 180-200 Mpc if the anisotropy signal is mainly composed of oxygen, silicon, and iron nuclei, respectively. A violation of this constraint would otherwise result in the secondary protons forming a more significant anisotropy signal at lower energies. Even if the source were located closer than this distance, it would require an extraordinary metallicity ∼> 120, 1600, and 1100 times solar metallicity in the acceleration zone of the source, for oxygen, silicon, and iron, respectively, to ensure that the concomitantly injected protons do not produce a more significant low-energy anisotropy. This offers interesting prospects for constraining the nature and the source of ultra-high-energy cosmic rays with the increase in statistics expected from next-generation detectors.

  13. Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition

    SciTech Connect

    Aloisio, R.; Blasi, P.

    2014-10-01

    We use a kinetic-equation approach to describe the propagation of ultra high energy cosmic ray protons and nuclei and calculate the expected spectra and mass composition at the Earth for different assumptions on the source injection spectra and chemical abundances. When compared with the spectrum, the elongation rate X{sub max}(E) and dispersion σ(X{sub max}) as observed with the Pierre Auger Observatory, several important consequences can be drawn: a) the injection spectra of nuclei must be very hard, ∼ E{sup -γ} with γ∼ 1- 1.6; b) the maximum energy of nuclei of charge Z in the sources must be ∼ 5Z× 10{sup 18} eV, thereby not requiring acceleration to extremely high energies; c) the fit to the Auger spectrum can be obtained only at the price of adding an ad hoc light extragalactic component with a steep injection spectrum ∼ E{sup -2.7}). In this sense, at the ankle E{sub A}≈ 5× 10{sup 18} eV) all the components are of extragalactic origin, thereby suggesting that the transition from Galactic to extragalactic cosmic rays occurs below the ankle. Interestingly, the additional light extragalactic component postulated above compares well, in terms of spectrum and normalization, with the one recently measured by KASCADE-Grande.

  14. High energy galactic gamma radiation from cosmic rays concentrated in spiral arms. [using SAS-B satellite

    NASA Technical Reports Server (NTRS)

    Bignami, G. F.; Fichtel, C. E.; Thompson, D. J.; Kniffen, D. A.

    1974-01-01

    A model for the emission of high energy ( 100 MeV) gamma rays from the galactic disk was developed and compared to recent SAS-2 observations. In the calculation, it is assumed that (1) the high energy galactic gamma rays result primarily from the interaction of cosmic rays with galactic matter; (2) on the basis of theoretical and experimental arguments the cosmic ray density is proportional to the matter density on the scale of galactic arms; and (3) the matter in the galaxy, atomic and molecular, is distributed in a spiral pattern consistent with density wave theory and the experimental data on the matter distribution.

  15. Production of high-energy gamma rays by cosmic ray interactions in the atmosphere and lunar surface

    SciTech Connect

    Morris, D.J.

    1996-12-01

    The production of gamma rays above 10 MeV by the interaction of cosmic rays in the atmosphere and the lunar surface is simulated using Monte Carlo methods. The calculation incorporates a new model of high-energy nucleon-nucleus interactions based on empirical fits to inclusive cross sections for the production of pions and nucleons. The atmospheric gamma ray flux is calculated as a function of direction, energy, and atmospheric depth. These calculations are compared with observations from balloons and from the SAS 2 satellite. Estimates of the flux of earth albedo electrons produced by cosmic ray interactions are presented. The lunar gamma ray albedo is calculated and compared with an upper limit based on SAS 2 measurements.

  16. Ultra high energy cosmic rays and possible signature of black strings

    NASA Astrophysics Data System (ADS)

    dos Anjos, Rita C.; Coimbra-Araújo, Carlos H.; da Rocha, Roldão; de Souza, Vitor

    2016-03-01

    Ultra high energy cosmic rays (UHECRs) probably originate in extreme conditions in which extra dimension effects might be important. In this paper we calculate the correction in black hole accretion mechanisms due to extra dimension effects in the static and rotating cases. A parametrization of the external Kerr horizons in both cases is presented and analysed. We use previous calculations of upper limits on the UHECR flux to set limits on the UHECR production efficiency of nine sources. The upper limit on the UHECR luminosity calculation is based on GeV-TeV gamma-ray measurements. The total luminosity due to the accretion mechanism is compared to the upper limit on UHECRs. The dependence of the UHECR production efficiency upper limit on black hole mass is also presented and discussed.

  17. New detection technologies for ultra-high energy cosmic rays and neutrinos

    NASA Astrophysics Data System (ADS)

    Bser, Sebastian

    2013-06-01

    Even with an accumulated data set from an integrated six years of lifetime from the Auger experiment, no point sources of charged cosmic rays have be identified at the highest energies. Significantly increased apertures such as promised by the JEMEUSO mission will be required to identify these sources from the cosmic ray signatures themselves. However, in employing water-cherenkov surface detectors as well as fluorescence telescopes, Auger has demonstrated the power provided by the hybrid technology approach. New detection technologies thus provide a valuable tool, in particular for the study of systematic effects. Over the past decade, in particular radio detection of cosmic ray air-showers has become a viable future detection technology to enhance and complement existing air-shower experiments. Following the proof-of-principle provided by the Lopes experiment, this technology is now being pursued in all major air-shower detectors. In the MHz regime, the radio signal is dominated by geomagnetic emission from the electrons deflected in the earth magnetic field, with secondary contributions from a global charge excess. As the majority of the energy in the shower is carried by these electron and the radio signal traverses the atmosphere basically unattenuated, this approach not only promises superior energy resolution but may also provide an independent handle on the longitudinal shower development and hence the primary composition. Theoretical signal predictions provided by detailed Monte-Carlo simulations as well as analytic shower parametrizations are in good agreement with measurements provided by the AERA and Codalema experiments. Recent efforts also include studies of the radio emission in the GHz regime, where the ambient noise is significantly reduced, yet the emission mechanism in this regime has not been firmly established yet. As neutrinos are not deflected in the intergalactic magnetic fields, the detection of neutrino-induced cascades in dense media provides another promising approachfor the identification of the sources of cosmic rays. The low event rates and large required target volumes limit the experimental methods to far-ranging signatures .from the cascade, such as acoustic emission from the quasi-instantaneous energy deposit or Cherenkov emission from the charged particles in the cascade. Searching for optical Cherenkov photons in a cubic-kilometer of Antarctic ice, the IceCube experiment has recently found an excess of high-energy neutrinos in the TeV-PeV range.Yet its effective volume is too small to detect the GZK flux predicted from interaction of the highest-energy cosmic rays with the ambient cosmic microwave background. Seeking to increase the observed target volume, radio observations of the rim of the moon have energy thresholds well beyond the EeV scale and thus are more likely to find interactions of charged cosmic rays than GZK neutrinos. The currently best sensitivity to this flux is provided from searches for GHz radio emission of neutrino-induced cascades in the antarctic ice from the ANITA ballon experiment. While no high-energy neutrinos have been found, a geomagnetic emission component from air-showers

  18. ULTRA-HIGH-ENERGY COSMIC RAYS FROM CENTAURUS A: JET INTERACTION WITH GASEOUS SHELLS

    SciTech Connect

    Gopal-Krishna; Biermann, Peter L.; De Souza, Vitor; Wiita, Paul J.

    2010-09-10

    Ultra-high-energy cosmic rays (UHECRs), with energies above {approx}6 x 10{sup 19} eV, seem to show a weak correlation with the distribution of matter relatively near to us in the universe. It has earlier been proposed that UHECRs could be accelerated in either the nucleus or the outer lobes of the nearby radio galaxy Cen A. We show that UHECR production at a spatially intermediate location about 15 kpc northeast from the nucleus, where the jet emerging from the nucleus is observed to strike a large star-forming shell of gas, is a plausible alternative. A relativistic jet is capable of accelerating lower energy heavy seed cosmic rays (CRs) to UHECRs on timescales comparable to the time it takes the jet to pierce the large gaseous cloud. In this model, many CRs arising from a starburst, with a composition enhanced in heavy elements near the knee region around PeV, are boosted to ultra-high energies by the relativistic shock of a newly oriented jet. This model matches the overall spectrum shown by the Auger data and also makes a prediction for the chemical composition as a function of particle energy. We thus predict an observable anisotropy in the composition at high energy in the sense that lighter nuclei should preferentially be seen toward the general direction of Cen A. Taking into consideration the magnetic field models for the Galactic disk and a Galactic magnetic wind, this scenario may resolve the discrepancy between HiRes and Auger results concerning the chemical composition of UHECRs.

  19. The UCSD high energy X-ray timing experiment cosmic ray particle anticoincidence detector

    NASA Technical Reports Server (NTRS)

    Hink, P. L.; Rothschild, R. E.; Pelling, M. R.; Macdonald, D. R.; Gruber, D. E.

    1991-01-01

    The HEXTE, part of the X-Ray Timing Explorer (XTE), is designed to make high sensitivity temporal and spectral measurements of X-rays with energies between 15 and 250 keV using NaI/CsI phoswich scintillation counters. To achieve the required sensitivity it is necessary to provide anticoincidence of charged cosmic ray particles incident upon the instrument, some of which interact to produce background X-rays. The proposed cosmic ray particle anticoincidence shield detector for HEXTE uses a novel design based on plastic scintillators and wavelength-shifter bars. It consists of five segments, each with a 7 mm thick plastic scintillator, roughly 50 cm x 50 cm in size, coupled to two wavelength-shifter bars viewed by 1/2 inch photomultiplier tubes. These segments are configured into a five-sided, box-like structure around the main detector system. Results of laboratory testing of a model segment, and calculations of the expected performance of the flight segments and particle anticoincidence detector system are presented to demonstrate that the above anticoincidence detector system satisfies its scientific requirements.

  20. Galactic PeVatrons: modeling the new sources of high-energy cosmic rays.

    NASA Astrophysics Data System (ADS)

    Gladilin, Petr; Bykov, Andrey; Osipov, Sergey

    Recent observations (experiments Tunka, KASCADE, etc.) indicate that the spectrum of galactic cosmic rays in the energy range of 10(14) - 10(16) eV has notable features (fluctuations) against the background of a general power law. There are breaks in the spectrum and the spectral index varies from 2.93 to 3.21 on them. A possible explanation for this behavior of the spectrum is the imposition of particle spectra from the sources with different spectral indices of accelerated particles. One of these sources could be the systems of two colliding shocks. Such systems can often occur, for example, in active starforming regions near the Galactic Center or in stellar clusters. Special attention is paid to the regions where the shock of the expanding supernova remnant approaches the stellar wind of nearby massive star (or stars). The number of these systems is estimated as 10 systems per Galaxy. Using the non-linear time-dependent model of charged particle acceleration in two shocks colliding system we have shown that these systems have a set of important features and can make a significant contribution to the total flux of galactic cosmic rays in the high energy range 10(12) - 10(16) eV. Numerical calculations showed that the particles accelerated in the system have very hard spectral energy distribution with the index gamma=1. Maximal energies of the proton component accelerated via two-shocks systems extend well above the “knee” and can reach up to 10(15)-10({17)) eV depending on the magnitude of the amplified magnetic field, flows velocities and the system’s size. Hard spectrum of the particles on these energies and high proton intensity (up to 10(36) erg/s) make these sources possibly responsible for the fluctuations in the galactic cosmic rays spectrum.

  1. Extensive air showers and ultra high-energy cosmic rays: a historical review

    NASA Astrophysics Data System (ADS)

    Kampert, Karl-Heinz; Watson, Alan A.

    2012-08-01

    The discovery of extensive air showers by Rossi, Schmeiser, Bothe, Kohlhörster and Auger at the end of the 1930s, facilitated by the coincidence technique of Bothe and Rossi, led to fundamental contributions in the field of cosmic ray physics and laid the foundation for high-energy particle physics. Soon after World War II a cosmic ray group at MIT in the USA pioneered detailed investigations of air shower phenomena and their experimental skill laid the foundation for many of the methods and much of the instrumentation used today. Soon interests focussed on the highest energies requiring much larger detectors to be operated. The first detection of air fluorescence light by Japanese and US groups in the early 1970s marked an important experimental breakthrough towards this end as it allowed huge volumes of atmosphere to be monitored by optical telescopes. Radio observations of air showers, pioneered in the 1960s, are presently experiencing a renaissance and may revolutionise the field again. In the last 7 decades the research has seen many ups but also a few downs. However, the example of the Cygnus X-3 story demonstrated that even non-confirmable observations can have a huge impact by boosting new instrumentation to make discoveries and shape an entire scientific community.

  2. Large doppler shift in radar detection of ultra-high energy cosmic rays.

    SciTech Connect

    Underwood, D. G.; High Energy Physics

    2008-01-01

    Radar detection of cosmic ray air showers has been discussed for 60 years, but never clearly observed. The topic was reexamined by Gorham in 2001 and some serious simulations were done by Takai, who also initiated the Mariachi project utilizing commercial television transmissions as a signal source. The air showers from ultra-high energy cosmic rays are expected to generate a plasma with plasma frequency in the high VHF region. One factor limiting the received signal strength is the short ion recombination time in air at low altitude. However, a major factor which has not been the center of attention so far is the possible large Doppler shifts for non-specular reflection, and the soft transition between specular and diffuse for small objects and short time scales. We discuss recent work on receivers, and simulations of the Doppler shift. These simulations assume a very short ion recombination time in the lower atmosphere, and use an extremely simple mathematical model. A central feature of our simulations is large Doppler shift from non-moving material.

  3. Magnetic diffusion effects on the ultra-high energy cosmic ray spectrum and composition

    SciTech Connect

    Mollerach, Silvia; Roulet, Esteban E-mail: roulet@cab.cnea.gov.ar

    2013-10-01

    We discuss the effects of diffusion of high energy cosmic rays in turbulent extra-galactic magnetic fields. We find an approximate expression for the low energy suppression of the spectrum of the different mass components (with charge Z) in the case in which this suppression happens at energies below ∼ Z EeV, so that energy losses are dominated by the adiabatic ones. The low energy suppression appears when cosmic rays from the closest sources take a time comparable to the age of the Universe to reach the Earth. This occurs for energies E < Z EeV (B/nG)√(l{sub c}/Mpc)(d{sub s}/70Mpc) in terms of the magnetic field RMS strength B, its coherence length l{sub c} and the typical separation between sources d{sub s}. We apply this to scenarios in which the sources produce a mixed composition and have a relatively low maximum rigidity (E{sub max} ∼ (2–10)Z EeV), finding that diffusion has a significant effect on the resulting spectrum, the average mass and on its spread, in particular reducing this last one. For reasonable values of B and l{sub c} these effects can help to reproduce the composition trends observed by the Auger Collaboration for source spectra compatible with Fermi acceleration.

  4. Magnetic deflections of ultra-high energy cosmic rays from Centaurus A

    NASA Astrophysics Data System (ADS)

    Keivani, Azadeh; Farrar, Glennys R.; Sutherland, Michael

    2015-02-01

    We present the results of a study that simulates trajectories of ultra-high energy cosmic rays from Centaurus A to Earth, for particle rigidities from E/Z=2 EV to 100 EV, i.e., covering the possibility of primary particles as heavy as Fe nuclei with energies exceeding 50 EeV. The Galactic magnetic field is modeled using the recent work of Jansson and Farrar (JF12) which fitted its parameters to match extragalactic Faraday rotation measures and WMAP7 synchrotron emission maps. We include the random component of the GMF using the JF12 3D model for Brand(r?) and explore the impact of different random realizations, coherence length and other features on cosmic ray deflections. Gross aspects of the arrival direction distribution such as mean deflection and the RMS dispersion depend mainly on rigidity and differ relatively little from one realization to another. However different realizations exhibit non-trivial substructure whose specific features vary considerably from one realization to another, especially for lower rigidities. At the lowest rigidity of 2 EV, the distribution is broad enough that it might be compatible with a scenario in which Cen A is the principle source of all UHECRs. No attempt is made here to formulate a robust test of this possibility, although some challenges to such a scenario are noted.

  5. Detection of ultra-high energy cosmic ray showers with a single-pixel fluorescence telescope

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Malacari, M.; Bertaina, M.; Casolino, M.; Dawson, B.; Horvath, P.; Hrabovsky, M.; Jiang, J.; Mandat, D.; Matalon, A.; Matthews, J. N.; Motloch, P.; Palatka, M.; Pech, M.; Privitera, P.; Schovanek, P.; Takizawa, Y.; Thomas, S. B.; Travnicek, P.; Yamazaki, K.

    2016-02-01

    We present a concept for large-area, low-cost detection of ultra-high energy cosmic rays (UHECRs) with a Fluorescence detector Array of Single-pixel Telescopes (FAST), addressing the requirements for the next generation of UHECR experiments. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. We report first results of a FAST prototype installed at the Telescope Array site, consisting of a single 200 mm photomultiplier tube at the focal plane of a 1 m2 Fresnel lens system taken from the prototype of the JEM-EUSO experiment. The FAST prototype took data for 19 nights, demonstrating remarkable operational stability. We detected laser shots at distances of several kilometers as well as 16 highly significant UHECR shower candidates.

  6. Characteristics of cesium iodide for use as a particle discriminator for high energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Kurz, R. J.; Viehmann, W.

    1973-01-01

    The possible use of CsI to discriminate between high energy cosmic ray electrons and interacting protons has been investigated. The pulse-shape properties as a function of ionization density, temperature, and spectral response are presented for thallium-activated CsI and as a function of ionization density for sodium-activated CsI. The results are based on previously published data and on corroborative measurements from the present work. Experimental results on the response of CsI to electron-induced electromagnetic cascades and to interacting hadrons are described. Bibliographies of publications dealing with the properties of CsI and with pulse-shape discrimination techniques are presented.

  7. The MIDAS telescope for microwave detection of ultra-high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, J.; Amaral Soares, E.; Berlin, A.; Bogdan, M.; Boháčová, M.; Bonifazi, C.; Carvalho, W. R.; de Mello Neto, J. R. T.; Facal San Luis, P.; Genat, J. F.; Hollon, N.; Mills, E.; Monasor, M.; Privitera, P.; Ramos de Castro, A.; Reyes, L. C.; Richardson, M.; Rouille d'Orfeuil, B.; Santos, E. M.; Wayne, S.; Williams, C.; Zas, E.; Zhou, J.

    2013-08-01

    We present the design, implementation and data taking performance of the MIcrowave Detection of Air Showers (MIDAS) experiment, a large field of view imaging telescope designed to detect microwave radiation from extensive air showers induced by ultra-high energy cosmic rays. This novel technique may bring a tenfold increase in detector duty cycle when compared to the standard fluorescence technique based on detection of ultraviolet photons. The MIDAS telescope consists of a 4.5 m diameter dish with a 53-pixel receiver camera, instrumented with feed horns operating in the commercial extended C-Band (3.4-4.2 GHz). A self-trigger capability is implemented in the digital electronics. The main objectives of this first prototype of the MIDAS telescope - to validate the telescope design, and to demonstrate a large detector duty cycle - were successfully accomplished in a dedicated data taking run at the University of Chicago campus prior to installation at the Pierre Auger Observatory.

  8. The Isotropy Problem of Ultra-High Energy Cosmic Rays: The Effects of Anisotropic Transport

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Eichler, David

    2013-04-01

    Time dependent anisotropic transport of ultra-high energy cosmic rays (UHECRs) from point-like sources in the Galaxy is calculated in various ways. To fully account for the discreteness of UHECR sources in space and time, the Monte Carlo method is used to randomly place sources in the Galaxy and calculate the anisotropy of UHECR flux, given specific realisations of source distribution. We show that reduction in the rate of cross-field transport reduces the anisotropy. However, if the crossfield transport is very small, drift of UHECRs in the Galactic magnetic field (GMF) becomes the dominant contributor to the anisotropy. Test particle simulations further illustrate the effect of drift and verify our analytical calculation. The surprisingly low anisotropy measured by Auger can be interpreted as intermittency of UHECR sources, without invoking a flat source distribution and/or a high source rate. Frequent events that follow star formation, such as hypernovae, imply an anisotropy that exceeds the Auger limit.

  9. On the prospects of Ultra-High Energy Cosmic Rays detection by high altitude antennas

    NASA Astrophysics Data System (ADS)

    Motloch, P.; Hollon, N.; Privitera, P.

    2014-02-01

    Radio emission from Ultra-High Energy Cosmic Rays (UHECR) showers detected after specular reflection off the Antarctic ice surface has been recently demonstrated by the ANITA balloon-borne experiment. An antenna observing a large area of ice or water from a mountaintop, a balloon or a satellite may be competitive with more conventional techniques. We present an estimate of the exposure of a high altitude antenna, which provides insight on the prospects of this technique for UHECR detection. We find that a satellite antenna may reach a significantly larger exposure than existing UHECR observatories, but an experimental characterization of the radio reflected signal is required to establish the potential of this approach. A balloon-borne or a mountaintop antenna are found not to be competitive under any circumstances.

  10. Japanese-American Cooperative Emulsion Experiment /JACEE/. [high energy cosmic ray studies

    NASA Technical Reports Server (NTRS)

    Huggett, R. W.; Hunter, S. D.; Jones, W. V.; Takahashi, Y.; Ogata, T.; Saito, T.; Holynski, R.; Jurak, A.; Wolter, W.; Parnell, T. A.

    1981-01-01

    The instrumentation and results of long duration balloon flights carried out jointly by U.S. and Japan researchers to examine high energy cosmic rays are reported. Basic detector geometries are 2.5 sq m sr with operation at altitudes with 3-4 g/sq cm pressure, with observations thus far of over 100 hr. Energies from 2-100 TeV are recorded for nucleus-nucleus and hadron-nucleus interactions, and searches are made for new particle or interactions. The detector is an emulsion chamber which comprises doubly-coated nuclear emulsions on 800 micron thick methacryl substrates, X-ray films, etchable detectors, low density spacers, and lead sheets. Segmentation of the instrument into a primary charge module, a target section, a spacer section, and a lead-emulsion calorimeter allows accurate charge measurement for primary nuclei, reliable energy resolution, and a large geometrical factor for collecting high energy events. A primary Ca nucleus of 300 TeV has been observed.

  11. Patterns in ultra-high energy cosmic ray arrival directions: a possible footprint of large scale cosmic structures

    SciTech Connect

    Serpico, Pasquale Dario; /Fermilab

    2007-07-01

    The public available data of cosmic ray arrival directions with energies above 4 x 10{sup 19} eV present a broad maximum in the cumulative two-point autocorrelation function around 25 degrees. This has been interpreted as the first imprint of the filamentary pattern of large scale structures (LSS) of matter in the near universe. We analyze this suggestion in light of the clustering properties expected from a catalogue of galaxies of the local universe (redshift z {approx}< 0:06). The data reproduce particularly well the clustering properties of the nearby universe within z {approx}< 0:02. There is no statistically significant cross-correlation between data and structures, although intriguingly the nominal cross-correlation chance probability for displacements within {approx}50 degree drops from O(50%) to O(10%) using the catalogue with a smaller horizon. Our results suggest a relevant role of magnetic fields (possibly extragalactic ones, too) and/or possibly some heavy nuclei fraction in the ultra-high energy cosmic rays.

  12. Perspectives of the GAMMA-400 space observatory for high-energy gamma rays and cosmic rays measurements

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Bonvicini, V.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, S.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dalkarov, O. D.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Finetti, N.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Men'shenin, A. L.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu; Papini, P.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Yurkin, Yu T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2016-02-01

    The GAMMA-400 gamma-ray telescope is intended to measure the fluxes of gamma-rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. Such measurements concern the following scientific tasks: investigation of point sources of gamma-rays, studies of the energy spectra of Galactic and extragalactic diffuse emission, studies of gamma-ray bursts and gamma-ray emission from the Sun, as well as high precision measurements of spectra of high-energy electrons and positrons. Also the GAMMA- 400 instrument provides the possibility for protons and nuclei measurements up to knee. But the main goal for the GAMMA-400 mission is to perform a sensitive search for signatures of dark matter particles in high-energy gamma-ray emission. To fulfill these measurements the GAMMA-400 gamma-ray telescope possesses unique physical characteristics in comparison with previous and present experiments. The major advantage of the GAMMA-400 instrument is excellent angular and energy resolution for gamma-rays above 10 GeV. The GAMMA-400 experiment will be installed onboard of the Navigator space platform, manufactured by the NPO Lavochkin Association. The expected orbit will be a highly elliptical orbit (with apogee 300.000 km and perigee 500 km) with 7 days orbital period. An important profit of such an orbit is the fact that the full sky coverage will always be available for gamma ray astronomy.

  13. Gamma Ray Bursts: the high energy photon emission, and implications for UHE cosmic rays and neutrinos

    NASA Astrophysics Data System (ADS)

    Mszros, Peter

    Gamma-ray bursts have been detected at photon energies up to tens of GeV, and there are reasons to believe that the sources emit at least up to TeV energies, via leptonic or/and hadronic mechanisms. I review some recent developments in the GeV photon phenomenology in the light of Fermi observations, as well as recent related theoretical work. I discuss then the acceleration of cosmic rays in GRB, which can extend to GZK energies, and the possible associated photon emission from both synchrotron and inverse Compton, as well as hadronic processes. Photo-meson interactions also produce neutrinos at energies ranging from sub-TeV to EeV, which are targets for experiments such as IceCube, ANITA and KM3NeT.

  14. Correlation of γ-ray and high-energy cosmic ray fluxes from the giant lobes of Centaurus A

    SciTech Connect

    Fraija, N.

    2014-03-01

    The spectral energy distribution of giant lobes shows one main peak detected by the Wilkinson Microwave Anisotropy Probe at the low energy of 10{sup –5} eV and a faint γ-ray flux imaged by the Fermi Large Area Telescope at an energy of ≥100 MeV. On the other hand, the Pierre Auger Observatory associated some ultra-high-energy cosmic rays with the direction of Centaurus A and IceCube reported 28 neutrino-induced events in a TeV-PeV energy range, although none of them related with this direction. In this work, we describe the spectra for each of the lobes, the main peak with synchrotron radiation, and the high-energy emission with p-p interactions. After obtaining a good description of the main peak, we deduce the magnetic fields, electron densities, and the age of the lobes. Successfully describing the γ-ray emission by p-p interactions and considering thermal particles in the lobes with density in the range 10{sup –10}-10{sup –4} cm{sup –3} as targets, we calculate the number of ultra-high-energy cosmic rays. Although the γ-spectrum is well described with any density in the range, only when 10{sup –4} cm{sup –3} is considered are the expected number of events very similar to that observed by the Pierre Auger Observatory, otherwise we obtain an excessive luminosity. In addition, correlating the γ-ray and neutrino fluxes through p-p interactions, we calculate the number of high-energy neutrinos expected in IceCube. Our analysis indicates that neutrinos above 1 TeV cannot be produced in the lobes of Centaurus A, which is consistent with the results recently published by the IceCube Collaboration.

  15. ULTRA-HIGH ENERGY COSMIC-RAY ACCELERATION IN THE JET OF CENTAURUS A

    SciTech Connect

    Honda, Mitsuru

    2009-12-01

    We evaluate the achievable maximum energy of nuclei diffusively accelerated by shock wave in the jet of Cen A, based on an updated model involving the stochastic magnetic fields that are responsible for recent synchrotron X-ray measurements. For the maximum energy analysis, conceivable energy constraints from spatiotemporal scales are systematically considered for the jet-wide including discrete X-ray knots. We find that in the inner region within approx1 arcmin from galactic core, which includes knots AX and BX, proton and iron nucleus can be accelerated to 10{sup 19}-10{sup 20} and 10{sup 21} eV (10-100 EeV and ZeV) ranges, respectively. The upper cutoff energy of the very energetic neutrinos produced via photopion interaction is also provided. These are essential for identifying the acceleration site of the ultra-high energy cosmic ray detected in the Pierre Auger Observatory, which signifies the arrival from nearby galaxies including Cen A.

  16. Propagation of cosmic rays in the galaxy and their measurements at very high energies with LORA

    NASA Astrophysics Data System (ADS)

    Thoudam, Satyendra

    2012-06-01

    In the first part of this thesis, the cosmic-ray propagation in the Galaxy is discussed with main emphasis given on the nearby sources. The study assumes that supernova remnants are the main sources of cosmic rays in the Galaxy. In particular, the effects of the presence of nearby supernova remnants on the observed cosmic-ray spectra are discussed in detail both under the assumption of burst-like point sources where cosmic rays of all energies are assumed to escape at one time from the remnant and also, under an energy dependent escape model where cosmic rays of different energies are assumed to escape at different stages during the evolution of the remnant. A significant portion of the work presented in this thesis is driven by the new results recently provided by the new generation cosmic-ray and gamma-ray experiments which are difficult to explain under the standard models of cosmic-ray production and their propagation in the Galaxy

  17. Cosmic rays at very high energies - Discussion of some new results

    NASA Technical Reports Server (NTRS)

    Juliusson, E.; Meyer, P.; Mueller, D.

    1974-01-01

    Recent measurements of the nuclear cosmic ray composition up to 100 GeV/n and of the spectrum of cosmic ray electrons to almost 1000 GeV have provided new evidence relevant to the origin of these particles and to their propagation in the interstellar medium. It was shown that the abundance of galactic daughter nuclei decreases with increasing energy relative to the abundance of parent nuclei. It was also found that the energy spectrum of electrons is consistent with a single power law up to 1000 GeV without much steepening. These results are possibly related, and the present work discusses them in terms of (1) a relatively local origin of energetic cosmic rays, (2) an extragalactic origin of the cosmic radiation, and (3) an energy dependent confinement of galactic cosmic rays.

  18. Energy reconstruction of hadron-initiated showers of ultra-high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Ros, G.; Medina-Tanco, G. A.; Supanitsky, A. D.; del Peral, L.; Rodrguez-Fras, M. D.

    2015-09-01

    The current methods to determine the primary energy of ultra-high energy cosmic rays (UHECRs) are different when dealing with hadron or photon primaries. The current experiments combine two different techniques, an array of surface detectors and fluorescence telescopes. The latter allow an almost calorimetric measurement of the primary energy. Thus, hadron-initiated showers detected by both type of detectors are used to calibrate the energy estimator from the surface array (usually the interpolated signal at a certain distance from the shower core S (r0)) with the primary energy. On the other hand, this calibration is not feasible when searching for photon primaries since no high energy photon has been unambiguously detected so far. Therefore, pure Monte Carlo parametrizations are used instead. In this work, we present a new method to determine the primary energy of hadron-induced showers in a hybrid experiment based on a technique previously developed for photon primaries. It consists on a set of calibration curves that relate the surface energy estimator, S (r0) , and the depth of maximum development of the shower, Xmax , obtained from the fluorescence telescopes. Then, the primary energy can be determined from pure surface information since S (r0) and the zenith angle of the incoming shower are only needed. Considering a mixed sample of ultra-high energy proton and iron primaries and taking into account the reconstruction uncertainties and shower to shower fluctuations, we demonstrate that the primary energy may be determined with a systematic uncertainty below 1% and resolution around 16% in the energy range from 1018.5 to 1019.6 eV. Several array geometries, the shape of the energy error distributions and the uncertainties due to the unknown composition of the primary flux have been analyzed as well.

  19. Multidirectional Muon Telescopes and eEAS Arrays for High Energy Cosmic Ray Research

    NASA Astrophysics Data System (ADS)

    Dorman, Lev I.

    2007-11-01

    Two multidirectional muon telescopes with EAS arrays are now under construction in Israel: one from 24 scintillators on Mt. Hermon (in combination with neutron monitor), and one from 96 scintillators as semi-underground (in the big bomb-shelter in Qazrin at a distance of about 1 nkm from the Central Laboratory of the Israel Cosmic Ray & Space Weather Center). The big one consists from 49 scintillation detectors inside the special constructed building with very light roof over the bomb-shelter and 49 scintillation detectors underground inside the bomb-shelter. This multidirectional telescope contain more than two thousand elementary telescopes directed at different zenith and az-imuthal angles and formed by double coincidences of any top scintillator with each bottom scintillator (the effective energy of primary CR from about 50 GeV for vertical direction to about 1-2 TeV for very inclined directions). It will give possibility to investigate global and other types of galactic CR modulations in the Heliosphere at very high energies, near the upper limit of CR energy on which magnetic fields frozen in solar wind may yet influence. Also we plane to obtain detailed information on the sidereal CR anisotropy in this range of energy. We will measure also three types of EAS. Our estimations show that by EAS array we can continue measure high energy CR time variations in the broad range from about 1-2 TeV to about 10,000 TeV. By this experiment, we suppose to investigate with a high accuracy CR anisotropy in the Galaxy in dependence of particle energy and CR modulation in the Heliosphere at high-energy range.

  20. Baryon production at LHC energies and very high energy cosmic ray spectra

    NASA Astrophysics Data System (ADS)

    Piskounova, O. I.

    2015-08-01

    The spectra of baryons at LHC can explain the features of CR proton spectra. It seems important to study all baryon data that are available from collider experiments in a wide range of energies. Transverse momentum spectra of baryons from RHIC (√(s) = 62 and 200 GeV) and LHC experiments (√(s) = 0.9 and 7 TeV) have been considered. It is seen that the slope of low pT distributions is changing with energy. The QGSM fit of distributions gives the average transverse momenta which behave approximately as s0.06 that is similar to the previously observed behavior of Λ baryon spectra. This slow growing of in hadron interactions of VHE in CR detectors cannot cause the "knee" in experimental proton spectra. In addition, the available data on Λc production from LHCb at √s = 7 TeV were also studied. The preliminary dependence of hadron average transverse momenta on their masses at the LHC energy is presented. The possible source of cosmic ray antiparticle-to-particle ratios that are growing with energy was also analyzed. The growing ratios are the result of local leading asymmetry for spectra of baryons and antibaryons that are produced in the kinematical region of proton target fragmentation. This asymmetry of baryon spectra, as they are converted into the energy distributions in the laboratory system, seems to result in an increasing ratio of secondary antiparticle-to-particle spectra up to a few hundreds of GeV. This conclusion makes important the particle production at the sources of very high energy cosmic rays where the VHE interactions with positive matter target may take place.

  1. On ultra-high energy cosmic ray acceleration at the termination shock of young pulsar winds

    NASA Astrophysics Data System (ADS)

    Lemoine, Martin; Kotera, Kumiko; Ptri, Jrme

    2015-07-01

    Pulsar wind nebulae (PWNe) are outstanding accelerators in Nature, in the sense that they accelerate electrons up to the radiation reaction limit. Motivated by this observation, this paper examines the possibility that young pulsar wind nebulae can accelerate ions to ultra-high energies at the termination shock of the pulsar wind. We consider here powerful PWNe, fed by pulsars born with ~ millisecond periods. Assuming that such pulsars exist, at least during a few years after the birth of the neutron star, and that they inject ions into the wind, we find that protons could be accelerated up to energies of the order of the Greisen-Zatsepin-Kuzmin cut-off, for a fiducial rotation period P ~ 1 msec and a pulsar magnetic field Bstar ~ 1013 G, implying a fiducial wind luminosity Lp ~ 1045 erg/s and a spin-down time tsd ~ 3 107 s. The main limiting factor is set by synchrotron losses in the nebula and by the size of the termination shock; ions with Z>= 1 may therefore be accelerated to even higher energies. We derive an associated neutrino flux produced by interactions in the source region. For a proton-dominated composition, our maximum flux lies slightly below the 5-year sensitivity of IceCube-86 and above the 3-year sensitivity of the projected Askaryan Radio Array. It might thus become detectable in the next decade, depending on the exact level of contribution of these millisecond pulsar wind nebulae to the ultra-high energy cosmic ray flux.

  2. HIGH-ENERGY COSMIC-RAY DIFFUSION IN MOLECULAR CLOUDS: A NUMERICAL APPROACH

    SciTech Connect

    Fatuzzo, M.; Melia, F.; Todd, E.; Adams, F. C. E-mail: melia@physics.arizona.ed E-mail: fca@umich.ed

    2010-12-10

    The propagation of high-energy cosmic rays (CRs) through giant molecular clouds constitutes a fundamental process in astronomy and astrophysics. The diffusion of CRs through these magnetically turbulent environments is often studied through the use of energy-dependent diffusion coefficients, although these are not always well motivated theoretically. Now, however, it is feasible to perform detailed numerical simulations of the diffusion process computationally. While the general problem depends upon both the field structure and particle energy, the analysis may be greatly simplified by dimensionless analysis. That is, for a specified purely turbulent field, the analysis depends almost exclusively on a single parameter-the ratio of the maximum wavelength of the turbulent field cells to the particle gyration radius. For turbulent magnetic fluctuations superimposed over an underlying uniform magnetic field, particle diffusion depends on a second dimensionless parameter that characterizes the ratio of the turbulent to uniform magnetic field energy densities. We consider both of these possibilities and parametrize our results to provide simple quantitative expressions that suitably characterize the diffusion process within molecular cloud environments. Doing so, we find that the simple scaling laws often invoked by the high-energy astrophysics community to model CR diffusion through such regions appear to be fairly robust for the case of a uniform magnetic field with a strong turbulent component, but are only valid up to {approx}50 TeV particle energies for a purely turbulent field. These results have important consequences for the analysis of CR processes based on TeV emission spectra associated with dense molecular clouds.

  3. The Large Scale Structure of the Galactic Magnetic Field and High Energy Cosmic Ray Anisotropy

    NASA Astrophysics Data System (ADS)

    Alvarez-Muiz, Jaime; Stanev, Todor

    2006-10-01

    Measurements of the magnetic field in our Galaxy are complex and usually difficult to interpret. A spiral regular field in the disk is favored by observations, however the number of field reversals is still under debate. Measurements of the parity of the field across the Galactic plane are also very difficult due to the presence of the disk field itself. In this work we demonstrate that cosmic ray protons in the energy range 1018 to 1019eV, if accelerated near the center of the Galaxy, are sensitive to the large scale structure of the Galactic Magnetic Field (GMF). In particular if the field is of even parity, and the spiral field is bi-symmetric (BSS), ultra high energy protons will predominantly come from the Southern Galactic hemisphere, and predominantly from the Northern Galactic hemisphere if the field is of even parity and axi-symmetric (ASS). There is no sensitivity to the BSS or ASS configurations if the field is of odd parity.

  4. Planck-scale Lorentz violation constrained by Ultra-High-Energy Cosmic Rays

    SciTech Connect

    Maccione, Luca; Taylor, Andrew M.; Liberati, Stefano; Mattingly, David M. E-mail: andrew.taylor@mpi-hd.mpg.de E-mail: liberati@sissa.it

    2009-04-15

    We investigate the consequences of higher dimension Lorentz violating, CPT even kinetic operators that couple standard model fields to a non-zero vector field in an Effective Field Theory framework. Comparing the ultra-high energy cosmic ray spectrum reconstructed in the presence of such terms with data from the Pierre Auger observatory allows us to establish two sided bounds on the coefficients of the mass dimension five and six operators for the proton and pion. Our bounds imply that for both protons and pions, the energy scale of Lorentz symmetry breaking must be well above the Planck scale. In particular, the dimension five operators are constrained at the level of 10{sup -3}M{sub Planck}{sup -1}. The magnitude of the dimension six proton coefficient is bounded at the level of 10{sup -6}M{sub Planck}{sup -2} except in a narrow range where the pion and proton coefficients are both negative and nearly equal. In this small area, the magnitude of the dimension six proton coefficient must only be below 10{sup -3}M{sub Planck}{sup -2}. Constraints on the dimension six pion coefficient are found to be much weaker, but still below M{sub Planck}{sup -2}.

  5. The Isotropy Problem of Sub-ankle Ultra High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Eichler, David

    2014-01-01

    We study the time dependent propagation of sub-ankle ultra high energy cosmic rays (UHECRs) originating from point-like Galactic sources. We show that drift in the Galactic magnetic field (GMF) may play an important role in the propagation of UHECRs and their measured anisotropy, particularly when the transport is anisotropic. To fully account for the discreteness of UHECR sources in space and time, a Monte Carlo method is used to randomly place sources in the Galaxy. The low anisotropy measured by Auger is not generally characteristic of the theoretical models, given that the sources are distributed in proportion to the star formation rate, but it can possibly be understood as (1) intermittency effects due to the discrete nature of the sources or, with extreme parameters, (2) a cancellation of drift current along a current sheet with outward radial diffusive flux. We conclude that it is possible to interpret the Galactic sub-ankle CR flux as being due entirely to intermittent discrete Galactic sources distributed in proportion to star formation, but only with a probability of roughly 35%, of which the spectrum is in accord with observations about 30% of the time. An alternative explanation for the low anisotropy may be that they are mostly extragalactic and/or heavy.

  6. The isotropy problem of sub-ankle ultra high energy cosmic rays

    SciTech Connect

    Kumar, Rahul; Eichler, David

    2014-01-20

    We study the time dependent propagation of sub-ankle ultra high energy cosmic rays (UHECRs) originating from point-like Galactic sources. We show that drift in the Galactic magnetic field (GMF) may play an important role in the propagation of UHECRs and their measured anisotropy, particularly when the transport is anisotropic. To fully account for the discreteness of UHECR sources in space and time, a Monte Carlo method is used to randomly place sources in the Galaxy. The low anisotropy measured by Auger is not generally characteristic of the theoretical models, given that the sources are distributed in proportion to the star formation rate, but it can possibly be understood as (1) intermittency effects due to the discrete nature of the sources or, with extreme parameters, (2) a cancellation of drift current along a current sheet with outward radial diffusive flux. We conclude that it is possible to interpret the Galactic sub-ankle CR flux as being due entirely to intermittent discrete Galactic sources distributed in proportion to star formation, but only with a probability of roughly 35%, of which the spectrum is in accord with observations about 30% of the time. An alternative explanation for the low anisotropy may be that they are mostly extragalactic and/or heavy.

  7. BLAZARS AS ULTRA-HIGH-ENERGY COSMIC-RAY SOURCES: IMPLICATIONS FOR TeV GAMMA-RAY OBSERVATIONS

    SciTech Connect

    Murase, Kohta; Dermer, Charles D.; Takami, Hajime; Migliori, Giulia

    2012-04-10

    The spectra of BL Lac objects and Fanaroff-Riley I radio galaxies are commonly explained by the one-zone leptonic synchrotron self-Compton (SSC) model. Spectral modeling of correlated multiwavelength data gives the comoving magnetic field strength, the bulk outflow Lorentz factor, and the emission region size. Assuming the validity of the SSC model, the Hillas condition shows that only in rare cases such sources accelerate protons to much above 10{sup 19} eV, so {approx}> 10{sup 20} eV ultra-high-energy cosmic rays (UHECRs) are likely to be heavy ions if powered by this type of radio-loud active galactic nuclei (AGNs). Survival of nuclei is shown to be possible in TeV BL Lacs and misaligned counterparts with weak photohadronic emissions. Another signature of hadronic production is intergalactic UHECR-induced cascade emission, which is an alternative explanation of the TeV spectra of some extreme non-variable blazars such as 1ES 0229+200 or 1ES 1101-232. We study this kind of cascade signal, taking into account effects of the structured extragalactic magnetic fields in which the sources should be embedded. We demonstrate the importance of cosmic-ray deflections on the {gamma}-ray flux, and show that required absolute cosmic-ray luminosities are larger than the average UHECR luminosity inferred from UHECR observations and can even be comparable to the Eddington luminosity of supermassive black holes. Future TeV {gamma}-ray observations using the Cerenkov Telescope Array and the High Altitude Water Cerenkov detector array can test for UHECR acceleration by observing >25 TeV photons from relatively low redshift sources such as 1ES 0229+200, and {approx}>TeV photons from more distant radio-loud AGNs.

  8. On the Possible Association of Ultra High Energy Cosmic Rays with Nearby Active Galaxies

    SciTech Connect

    Moskalenko, Igor V.; Stawarz, Lukasz; Porter, Troy A.; Cheung, Chi C.

    2008-05-14

    Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of cosmic rays (CRs) with energies >57 EeV that suggests a correlation with the positions of active galactic nuclei (AGN) located within {approx}75 Mpc. However, this analysis does not take into account AGN morphology. A detailed study of the sample of AGN whose positions correlate with the CR events shows that most of them are classified as Seyfert 2 and low-ionization nuclear emission-line region (LINER) galaxies which do not differ from other local AGN of the same types. Therefore, the claimed correlation between the CR events observed by the Pierre Auger Observatory and local active galaxies should be considered as resulting from a chance coincidence, if the production of the highest energy CRs is not episodic in nature, but operates in a single object on long ({ge} Myr) timescales. Additionally, most of the selected sources do not show significant jet activity, and hence--in the framework of the jet paradigm--there are no reasons for expecting them to accelerate CRs up to the highest energies, {approx}10{sup 20} eV, at all. If the extragalactic magnetic fields and the sources of these CRs are coupled with matter, it is possible that the deflection angle is larger than expected in the case of a uniform source distribution due to effectively larger fields. A future analysis has to take into account AGN morphology and may yield a correlation with a larger deflection angle and/or more distant sources. We further argue that Cen A alone could be associated with at least 4 events due to its large radio extent, and Cen B can be associated with more than 1 event due to its proximity to the Galactic plane and, correspondingly, the stronger Galactic magnetic field the ultra high energy CRs (UHECRs) encounter during propagation. If the UHECRs associated with these events are indeed accelerated by Cen A and Cen B, their deflection angles may provide information on the structure of the magnetic field in the direction of these putative sources. Future -ray observations (by, e.g., Gamma-Ray Large Area Space Telescope [GLAST], High Energy Stereoscopic System [HESS]) may provide additional clues to the nature of the accelerators of the UHECRs in the local Universe.

  9. Diffuse fluxes of cosmic high energy neutrinos

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    Production spectra of high-energy neutrinos from galactic cosmic ray interactions with interstellar gas and extragalactic ultrahigh energy cosmic-ray interactions with microwave black-body photons are presented and discussed. These production processes involve the decay of charged pions and are thus related to the production of cosmic gamma-rays from the decay of neutral pions. Estimates of the neutrino fluxes from various diffuse cosmic sources are then made and the reasons fro significant differences with previous estimates are discussed. Predicted event rates for a DUMAND type detection system are significantly lower than early estimates indicated.

  10. Nearby low-luminosity gamma-ray bursts as the sources of ultra-high-energy cosmic rays revisited

    NASA Astrophysics Data System (ADS)

    Liu, Ruo-Yu; Wang, Xiang-Yu; Dai, Zi-Gao

    2011-12-01

    Low-luminosity gamma-ray bursts (GRBs) with the luminosity ? 1049 erg s-1 probably constitute a distinct population from the classic high-luminosity GRBs. They are the most luminous objects detected so far within 100 Mpc, the horizon distance of ultra-high-energy cosmic rays (UHECRs), so they are considered to be the candidate sources of UHECRs. It was recently argued that the energy production rate in UHECRs is much larger than that in gamma-ray photons of long GRBs measured by the Fermi satellite, which, if true, would challenge the view that GRBs can be the sources of UHECRs. We here suggest that many of the low-luminosity GRBs, due to their low luminosity, cannot trigger the current GRB detectors and hence their contribution to the local gamma-ray energy production rate is missing. We find that the real local energy production rate by low-luminosity GRBs, taking into account the missing part, which constitutes a dominant fraction of the total amount, could be sufficient to account for the flux of UHECRs. Due to the low luminosity, only intermediate-mass or heavy nuclei can be accelerated to 1020 eV. We discuss the acceleration and survival of these ultra-high-energy nuclei in low-luminosity GRBs, especially in those missing low-luminosity GRBs. At last, the accompanying diffuse neutrino flux from the whole low-luminosity GRB population is calculated.

  11. The KASCADE-Grande observatory and the composition of very high-energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Arteaga-Velzquez, J. C.; Apel, W. D.; Bekk, K.; Bertaina, M.; Blmer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hrandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; ?uczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschlger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schrder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2015-11-01

    KASCADE-Grande is an air-shower observatory devoted to the detection of cosmic rays with energies in the range of 1016 to 1018 eV. This energy region is of particular interest for the cosmic ray astrophysics, since it is the place where some models predict the existence of a transition from galactic to extragalactic origin of cosmic rays and the presence of a break in the flux of its heavy component. The detection of these features requires detailed and simultaneous measurements of the energy and composition of cosmic rays with sufficient statistics. These kinds of studies are possible for the first time in KASCADE-Grande due to the accurate measurements of several air-shower observables, i.e., the number of charged particles, electrons and muons in the shower, using the different detector systems of the observatory. In this contribution, a detailed look into the composition of 1016 1018 eV cosmic rays with KASCADE-Grande is presented.

  12. Very high energy antineutrinos from photo-disintegration of cosmic ray nuclei

    NASA Astrophysics Data System (ADS)

    Gupta, Nayantara

    2016-02-01

    The photo-disintegration of cosmic ray nuclei by starlight leads to the production of secondary antineutrinos. We have assumed that the flux of the ultrahigh energy cosmic ray nuclei near the Galactic plane region is the same as that observed near the earth and calculated the antineutrino flux produced from their photo-disintegration. The IceCube detector has measured the neutrino/antineutrino flux in the TeV-PeV energy range. Our calculated secondary antineutrino flux in the energy range of 10-100 TeV is found to be much less compared to the flux detected by the IceCube collaboration. The upper limit on the intensity of the radiation field in the extragalactic medium is much lower than that near the Galactic center. If we extend our formalism to the extragalactic medium the contribution from the photo-disintegration of ultrahigh energy cosmic ray heavy nuclei remains insignificant due to their very low flux.

  13. High-energy cosmic-ray electrons - A new measurement using transition-radiation detectors

    NASA Technical Reports Server (NTRS)

    Hartmann, G.; Mueller, D.; Prince, T.

    1977-01-01

    A new detector for cosmic-ray electrons, consisting of a combination of a transition-radiation detector and a shower detector, has been constructed, calibrated at accelerator beams, and exposed in a balloon flight under 5 g/sq cm of atmosphere. The design of this instrument and the methods of data analysis are described. Preliminary results in the energy range 9-300 GeV are presented. The energy spectrum of electrons is found to be significantly steeper than that of protons, consistent with a long escape lifetime of cosmic rays in the galaxy.

  14. The coherent acceleration of ultra high energy cosmic rays and the galactic dynamo

    SciTech Connect

    Colgate, S.A.

    1995-05-01

    In order to accelerate cosmic rays to ultra high energy, >10{sup 18} ev, requires that the step size in energy in a diffusive process be very much larger than occurs in galactic or extra galactic hydrodynamic mechanisms where {Delta}E/F {approximately} v/c{approximately}1/300 per step. This step size requires >10{sup 5} scatterings per doubling in energy (the shock mechanism) and therefore <10{sup {minus}5} energy loss per scattering. Coherent acceleration (CA), on the other hand, is proposed in which the energy gained, {Delta}E per particle in the CA region is very much larger so that only one or several scatterings are required to reach the final energy. The power law spectrum is created by the probability of loss from the CA region where this probability is inversely proportional to the particle`s rigidity, E. Therefore the fractional loss in number per fractional gain in energy, dN/N {approximately} {minus}{Gamma} dE/E, results in a power law spectrum. CA depends upon the electric field, E = {eta}J, J, the current density, in a force free field, where magnetic helicity, J={alpha}B, arises universally in all evolving mass condensations due to twisting of magnetic flux by the large number of turns before pressure support. The acceleration process is E*v, where universe beam instabilities enhance {eta} leading to phased coherent acceleration (PCA). The result of the energy transfer from field energy to matter energy is the relaxation of the field helicity, or reconnection but with J{parallel}B rather than J{perpendicular}B.

  15. ANOMALOUS TRANSPORT OF HIGH-ENERGY COSMIC RAYS IN GALACTIC SUPERBUBBLES. I. NUMERICAL SIMULATIONS

    SciTech Connect

    Barghouty, A. F.; Schnee, D. A.

    2012-04-20

    We present a simple continuous-time random-walk model for the transport of energetic particles accelerated by a collection of supernova explosions in a galactic superbubble, developed to simulate and highlight signatures of anomalous transport on the particles' evolution and their spectra in a multi-shock context. We assume standard diffusive shock acceleration (DSA) theory for each shock encounter. The superbubble (an OB stars association) is idealized as a heterogeneous region of particle sources and sinks bounded by a random surface. The model is based on two coupled stochastic differential equations and is applied for protons and alpha particles. Using characteristic values for a typical bubble, our simulations suggest that acceleration and transport in the bubble may be sub-diffusive. In addition, a spectral break in the particles' evolution and spectra is evident located at Almost-Equal-To 10{sup 15} eV for protons and Almost-Equal-To 3 Multiplication-Sign 10{sup 15} eV for alphas. Our simulations are consistent with a bubble's mean magnetic field strength of Almost-Equal-To 1 {mu}G and a shock separation distance {approx}0.1 Multiplication-Sign the characteristic radius of the bubble. The simulations imply that the diffusion coefficient (for the elementary shock acceleration process) is {approx}< 10{sup 27} cm{sup 2} s{sup -1} at 1 GeV/c. While the sub-diffusive transport is readily attributed to the stochastic nature of the acceleration time according to DSA theory, the spectral break appears to be an artifact of transport in a finite medium. These simulations point to a new and intriguing phenomenon associated with the statistical nature of collective acceleration of high-energy cosmic rays in galactic superbubbles.

  16. Ultra-High Energy Cosmic Rays: Composition, Early Air Shower Interactions, and Xmax Skewness

    NASA Astrophysics Data System (ADS)

    Stapleton, James

    The composition of Ultra-High Energy Cosmic Rays (UHECRs) is still not completely understood, and must be inferred from Extended Air Shower (EAS), particle cascades which they initiate upon entering the atmosphere. The atmospheric depth at which the shower contains the maximum number of particles ( Xmax) is the most composition-sensitive property of the air shower, but its interpretation is hindered by intrinsic statistical fluctuations in EAS development which cause distinct compositions to produce overlapping Xmax distributions as well as our limited knowledge at these energies of hadronic physics which strongly impacts the Xmax distribution's shape. These issues ultimately necessitate a variety of complementary approaches to interpreting UHECR composition from Xmax data. The current work advances these approaches by connecting X max skewness to the uncertainties above. The study of X max has historically focused only on the mean and standard deviation of its distribution, but skewness is shown here to be strongly related to both the statistical fluctuations in EAS development as well as the least-understood hadronic cross-sections in the air shower. This leads into a treatment of the Exponentially-Modified Gaussian (EMG) distribution, whose little-known properties make it very useful for Xmax analysis and for data analysis in general. A powerful method emerges which uses only descriptive statistics in a robust check for energy-dependent changes in UHECR mass or EAS development. The application of these analyses to X max data provides tantalizing clues concerning issues of critical importance, such as the relationship between Xmax and the 'ankle' break in the UHECR energy spectrum, or the inferred properties of the UHECR mass distribution and its strong dependence on hadronic model systematics.

  17. Ultra-high-energy cosmic rays from low-luminosity active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Du?an, Ioana; Caramete, Lauren?iu I.

    2015-03-01

    We investigate the production of ultra-high-energy cosmic ray (UHECR) in relativistic jets from low-luminosity active galactic nuclei (LLAGN). We start by proposing a model for the UHECR contribution from the black holes (BHs) in LLAGN, which present a jet power Pj ?1046 erg s-1. This is in contrast to the opinion that only high-luminosity AGN can accelerate particles to energies ? 50 EeV. We rewrite the equations which describe the synchrotron self-absorbed emission of a non-thermal particle distribution to obtain the observed radio flux density from sources with a flat-spectrum core and its relationship to the jet power. We found that the UHECR flux is dependent on the observed radio flux density, the distance to the AGN, and the BH mass, where the particle acceleration regions can be sustained by the magnetic energy extraction from the BH at the center of the AGN. We use a complete sample of 29 radio sources with a total flux density at 5 GHz greater than 0.5 Jy to make predictions for the maximum particle energy, luminosity, and flux of the UHECRs from nearby AGN. These predictions are then used in a semi-analytical code developed in Mathematica (SAM code) as inputs for the Monte-Carlo simulations to obtain the distribution of the arrival direction at the Earth and the energy spectrum of the UHECRs, taking into account their deflection in the intergalactic magnetic fields. For comparison, we also use the CRPropa code with the same initial conditions as for the SAM code. Importantly, to calculate the energy spectrum we also include the weighting of the UHECR flux per each UHECR source. Next, we compare the energy spectrum of the UHECRs with that obtained by the Pierre Auger Observatory.

  18. Results from the ANITA search for Ultra-High Energy Neutrinos and Cosmic Rays using the Radio detection technique

    NASA Astrophysics Data System (ADS)

    Saltzberg, David

    2010-02-01

    ANITA is a balloon-borne radio telescope flown on Long Duration Balloons in Antarctica. The payload looks for Ultra-high energy cosmic neutrinos striking the ice via their emission of radio-Cherenkov radiation. I will present the results of our neutrino searches in the data from ANITA's two full flights. In a different polarization, ANITA observes the radio emission of extensive air showers via their radio emission in the atmosphere below the payload. I will present evidence for these events being induced by cosmic rays and discuss their properties. )

  19. New Results on High Energy Cosmic Ray Electrons Observed with Fermi LAT and Their Implications on the Origin of Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2010-01-01

    The Large Area Telescope on-board the Fermi Gamma-Ray Space Telescope has collected more than 10 million cosmic ray electrons with energy above 7 GeV since its science operation on orbit. High energy electrons rapidly lose their energy by synchrotron radiation on Galactic magnetic fields and by inverse Compton scattering on the interstellar radiation field. The typical distance over which a 1 TeV electron loses half its total energy is estimated to be 300-400 pc.This makes them a unique tool for probing nearby Galactic space. Observed spectrum has a harder spectral index than was previously reported and suggests the presence of nearby sources of high energy electrons. One of viable candidates are nearby pulsars, possibly some of recently discovered by Fermi. At the same time the dark matter origin of such sources cannot be ruled out. I will also report our current upper limits on cosmic ray electrons anisotropy which helps to set constraints on their local sources.

  20. The Microwave Air Yield Beam Experiment (MAYBE): measurement of GHz radiation for Ultra-High Energy Cosmic Rays detection

    NASA Astrophysics Data System (ADS)

    Williams, Christopher; Bohacova, Martina; Bonifazi, Carla; Cataldi, Gabriella; Chemerisov, Sergey; de Mello Neto, Joao; Facal San Luis, Pedro; Fox, Brendan; Gorham, Peter W.; Hojvat, Carlos; Hollon, Nick; Meyhandan, Rishi; Reyes, Luis; Rouille D'Orfeuil, Benjamin; Santos, Edivaldo M.; Pochez, James; Privitera, Paolo; Spinka, Hal; Verzi, Valerio; Monasor, Maria; Zhou, Jing

    2012-03-01

    We present measurements of microwave emission from an electron beam induced air plasma, performed at the electron Van de Graaff facility of the Argonne National Laboratory. Radio emission is studied over a wide range of frequencies between 1 and 15 GHz. This measurement provides further insight on microwave emission from extensive air showers as a novel detection technique for Ultra-High Energy Cosmic Rays.

  1. High-Energy Cosmic Ray Self-Confinement Close to Extra-Galactic Sources

    NASA Astrophysics Data System (ADS)

    Blasi, Pasquale; Amato, Elena; D'Angelo, Marta

    2015-09-01

    The ultrahigh-energy cosmic rays observed on the Earth are most likely accelerated in extra-Galactic sources. For the typical luminosities invoked for such sources, the electric current associated to the flux of cosmic rays that leave them is large. The associated plasma instabilities create magnetic fluctuations that can efficiently scatter particles. We argue that this phenomenon forces cosmic rays to be self-confined in the source proximity for energies E cosmic rays are confined close to their sources for energies E

  2. High-Energy Cosmic Ray Self-Confinement Close to Extra-Galactic Sources.

    PubMed

    Blasi, Pasquale; Amato, Elena; D'Angelo, Marta

    2015-09-18

    The ultrahigh-energy cosmic rays observed on the Earth are most likely accelerated in extra-Galactic sources. For the typical luminosities invoked for such sources, the electric current associated to the flux of cosmic rays that leave them is large. The associated plasma instabilities create magnetic fluctuations that can efficiently scatter particles. We argue that this phenomenon forces cosmic rays to be self-confined in the source proximity for energies Ecosmic rays are confined close to their sources for energies E

  3. Note on the detection of high energy primary cosmic gamma rays by air shower observation

    NASA Technical Reports Server (NTRS)

    Kasahara, K.; Torii, S.; Yuda, T.

    1985-01-01

    A mountain altitude experiment is planned at Mt. Norikura in Japan to search for point sources of astrophysical high-energy gamma rays in the 10 to the 15th power eV range. The advantages of mountain level observation of IR showers is stressed, especially in the case of high-energy gamma primaries from Cygnus X3 and other similar point sources.

  4. Local atmospheric electricity and its possible application in high energy cosmic ray air shower detection

    NASA Astrophysics Data System (ADS)

    Chen, Chuxing

    Near ground atmospheric electricity was studied experimentally. The main objective was to gain more understanding of this particular aspect of atmospheric phenomena, while testing the possible application to cosmic ray research. The results in atmospheric electricity show that there are certain patterns in ion grouping such as the size and lifetime. The average lifetime of ion group is 0.7 seconds and the average size is about 10 meters at our experimental site. Ultrahigh energy cosmic ray air showers should create sizable slow atmospheric electric pulses according to theoretical calculations. Preliminary studies on air showers with total particle number N equal or greater than 105 (1015 eV) have yielded strong evidence that slow atmospheric current pulses are associated with air showers. The theory and the experiment agree with each other fairly well when averaged over large numbers of events. With the current experimental arrangement, when the air shower exceeds a certain size, the system response saturates. Therefore it is extremely desirable in future research that the counter array be designed for a much higher threshold level, since this prototype experiment indicates that interesting data would be obtained. Another reason for further experimental research being directed toward ultrahigh energy, and higher, is to establish a calibration of the slow atmospheric electric signals generated by cosmic rays as a function of primary cosmic ray energy and core location. This type of slow atmospheric electric signal, if fully understood and calibrated, offers a new and potentially less expensive technique to observe ultrahigh energy cosmic ray events, which hold some fundamental keys to the knowledge of the universe on a large scale.

  5. High-energy cosmic rays and the Greisen-Zatsepin-Kuz'min effect.

    PubMed

    Watson, A A

    2014-03-01

    Although cosmic rays were discovered over 100 years ago their origin remains uncertain. They have an energy spectrum that extends from ?1GeV to beyond 10(20)eV, where the rate is less than 1 particle perkm(2) per century. Shortly after the discovery of the cosmic microwave background in 1965, it was pointed out that the spectrum of cosmic rays should steepen fairly abruptly above about 4נ10(19)eV, provided the sources are distributed uniformly throughout the Universe. This prediction, by Greisen and by Zatsepin and Kuz'min, has become known as the GZK effect and in this article I discuss the current position with regard to experimental data on the energy spectrum of the highest cosmic-ray energies that have been accumulated in a search that has lasted nearly 50 years. Although there is now little doubt that a suppression of the spectrum exists near the energy predicted, it is by no means certain that this is a manifestation of the GZK effect as it might be that this energy is also close to the maximum to which sources can accelerate particles, with the highest energy beam containing a large fraction of nuclei heavier than protons. The way forward is briefly mentioned. PMID:24552650

  6. High-energy cosmic rays and the Greisen-Zatsepin-Kuz'min effect

    NASA Astrophysics Data System (ADS)

    Watson, A. A.

    2014-03-01

    Although cosmic rays were discovered over 100 years ago their origin remains uncertain. They have an energy spectrum that extends from ˜1 GeV to beyond 1020 eV, where the rate is less than 1 particle per km2 per century. Shortly after the discovery of the cosmic microwave background in 1965, it was pointed out that the spectrum of cosmic rays should steepen fairly abruptly above about 4 × 1019 eV, provided the sources are distributed uniformly throughout the Universe. This prediction, by Greisen and by Zatsepin and Kuz'min, has become known as the GZK effect and in this article I discuss the current position with regard to experimental data on the energy spectrum of the highest cosmic-ray energies that have been accumulated in a search that has lasted nearly 50 years. Although there is now little doubt that a suppression of the spectrum exists near the energy predicted, it is by no means certain that this is a manifestation of the GZK effect as it might be that this energy is also close to the maximum to which sources can accelerate particles, with the highest energy beam containing a large fraction of nuclei heavier than protons. The way forward is briefly mentioned.

  7. Workshop on Cosmic Ray and High Energy Gamma Ray Experiments for the Space Station Era, Louisiana State University, Baton Rouge, October 17-20, 1984, Proceedings

    NASA Technical Reports Server (NTRS)

    Jones, W. V. (Editor); Wefel, J. P. (Editor)

    1985-01-01

    The potential of the Space Station as a platform for cosmic-ray and high-energy gamma-ray astronomy is discussed in reviews, reports, and specific proposals. Topics examined include antiparticles and electrons, science facilities and new technology, high-energy nuclear interactions, nuclear composition and energy spectra, Space Shuttle experiments, Space Station facilities and detectors, high-energy gamma rays, and gamma-ray facilities and techniques. Consideration is given to universal-baryon-symmetry testing on the scale of galactic clusters, particle studies in a high-inclination orbit, balloon-borne emulsion-chamber results on ultrarelativistic nucleus-nucleus interactions, ionization states of low-energy cosmic rays, a large gamma-ray telescope for point-source studies above 1 GeV, and the possible existence of stable quark matter.

  8. Discrimination of ultra high energy cosmic rays with the extreme universe space observatory

    NASA Astrophysics Data System (ADS)

    Sáez Cano, G.

    2015-02-01

    This thesis is framed in the study of Ultra High Energy Cosmic Rays (UHECRs) by space-based telescopes such as the Extreme Universe Space Observatory (EUSO) that will be place on the International Space Station (ISS). After a brief summary of the main features of UHECRs in chapter 2, a description of the JEM-EUSO experiment has been carried out in chapter 3. In the following chapters, which are focused on my work, it has been studied how different clouds might affect the development of the Extensive Air Shower (EAS) produced in the atmosphere by UHECRs and detected from space. This effect depends not only on the optical depth and on the altitude of the cloud, but also on some properties of the EAS (such as the arrival direction or the primary energy). In chapter 4 we have investigated how the EAS signal looks like depending on the part of the Field of View (FoV) where it is produced, analyzing the difference in the number of detected photons or in the duration of the shower development in the atmosphere. In chapter 5, a trigger efficiency in cloudy conditions, called cloud efficiency, has been calculated considering the maximum development visibility requirement. This is, the maximum of the shower must be visible. We have estimated how the shower geometry and the primary particle energy are modified by the cloud in comparison with the same case in a clear atmosphere. Also, a three dimensional photon propagation module has been developed to include a more complete model of the atmosphere for a deeper shower study. In chapter 6, the two methods to reconstruct the primary energy of the UHECR and the shower maximum of the EAS in a clear atmosphere have been modified to be used in stratus-like clouds: the Cherenkov method, that relies on the determination of the Cherenkov reflected bump on the top of the cloud, and the slant depth method, which relies on the previous geometry reconstruction of the shower.

  9. Detection of High Energy Cosmic Rays with Advanced Thin Ionization Calorimeter, ATIC

    NASA Technical Reports Server (NTRS)

    Adams, J. H.; Ahn, E. J.; Ahn, H. S.; Bashindzhagyan, G.; Case, G.; Chang, J.; Christl, M.; Ellison, S.; Fazely, A. R.; Ganel, O.

    2002-01-01

    The author presents preliminary results of the first flight of the Advanced Thin Ionization Calorimeter (ATIC). ATIC is a multiple, long duration balloon flight, investigation for the study of cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pads capable of charge identification of cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction 'target'.

  10. A model for the origin of high-energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.; Morfill, G. E.

    1985-01-01

    It is suggested that cosmic rays, up to the highest energies observed, originate in the Galaxy and are accelerated in astrophysical shock waves. If there is a galactic wind, in analogy with the solar wind, a hierarchy of shocks ranging from supernova shocks to the galactic wind termination shock is expected. This leads to a consistent model in which most cosmic rays, up to perhaps 10 to the 14th eV energy, are accelerated by supernova shocks, but that particles with energies of 10 to the 15th eV and higher are accelerated at the termination shock of the galactic wind. Intermediate energies may be accelerated by intermediate-scale shocks, and there may be larger scale shocks associated with the Local Group of galaxies.

  11. The spectrum of high-energy cosmic rays measured with KASCADE-Grande

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2012-08-01

    The energy spectrum of cosmic rays between 1016 eV and 1018 eV, derived from measurements of the shower size (total number of charged particles) and the total muon number of extensive air showers by the KASCADE-Grande experiment, is described. The resulting all-particle energy spectrum exhibits strong hints for a hardening of the spectrum at approximately 2 · 1016 eV and a significant steepening at ≈8 · 1016 eV. These observations challenge the view that the spectrum is a single power law between knee and ankle. Possible scenarios generating such features are discussed in terms of astrophysical processes that may explain the transition region from galactic to extragalactic origin of cosmic rays.

  12. Model-dependent estimate on the connection between fast radio bursts and ultra high energy cosmic rays

    SciTech Connect

    Li, Xiang; Zhou, Bei; He, Hao-Ning; Fan, Yi-Zhong; Wei, Da-Ming

    2014-12-10

    The existence of fast radio bursts (FRBs), a new type of extragalatic transient, has recently been established, and quite a few models have been proposed. In this work, we discuss the possible connection between the FRB sources and ultra high energy (>10{sup 18} eV) cosmic rays. We show that in the blitzar model and the model of merging binary neutron stars, which includes the huge energy release of each FRB central engine together with the rather high rate of FRBs, the accelerated EeV cosmic rays may contribute significantly to the observed ones. In other FRB models, including, for example, the merger of double white dwarfs and the energetic magnetar radio flares, no significant EeV cosmic ray is expected. We also suggest that the mergers of double neutron stars, even if they are irrelevant to FRBs, may play a nonignorable role in producing EeV cosmic ray protons if supramassive neutron stars are formed in a sufficient fraction of mergers and the merger rate is ≳ 10{sup 3} yr{sup –1} Gpc{sup –3}. Such a possibility will be unambiguously tested in the era of gravitational wave astronomy.

  13. A new measurement of the flux of the light cosmic-ray nuclei at high energies

    NASA Technical Reports Server (NTRS)

    Buckley, J.; Dwyer, J.; Mueller, D.; Swordy, S.; Tang, K. K.

    1994-01-01

    A new cosmic-ray detector utilizing a ring-imaging Cerenkov counter to determine the energy of light cosmic-ray nuclei was flown on high-altitude balloon from Fort Sumner, NM, in 1991 September. We describe the design and performance of this instrument and discuss the data analysis procedures. The measurement provides a new determination of the absolute flux and differential energy spectrum of the primary cosmic-ray species helium between 40 and 320 GeV/nucleon. The experiment also yields the spectra of carbon and oxygen and some information on the intensities of the secondary nuclei Li, Be, and B. A comparison between our results and previous measurements of heavier nuclei (Z greater than or equal to 4) from HEAO 3 and Spacelab 2 indicates good consistency between these measurements. The data set is compared with the results of a leaky box propagation model. We find good agreement with this model if the abundance of helium relative to oxygen at the source is taken to be 25 +/- 6 and if the source spectrum is given by a power law in energy proportional to E(exp -2.15).

  14. PROPAGATION AND SOURCE ENERGY SPECTRA OF COSMIC RAY NUCLEI AT HIGH ENERGIES

    SciTech Connect

    Ave, M.; Boyle, P. J.; Hoeppner, C.; Marshall, J.; Mueller, D.

    2009-05-20

    A recent measurement of the TRACER instrument on long-duration balloon has determined the individual energy spectra of the major primary cosmic ray nuclei from oxygen (Z = 8) to iron (Z = 26). The measurements cover a large range of energies and extend to energies beyond 10{sup 14} eV. We investigate if the data set can be described by a simple but plausible model for acceleration and propagation of cosmic rays. The model assumes a power-law energy spectrum at the source with a common spectral index {alpha} for all nuclear species, and an energy-dependent propagation path length ({lambda} {proportional_to} E {sup -0.6}) combined with an energy-independent residual path length {lambda}{sub 0}. We find that the data can be fitted with a fairly soft source spectrum ({alpha} = 2.3-2.4), and with a residual path length {lambda}{sub 0} as high as 0.3 g cm{sup -2}. We discuss this model in the context of other pertinent information, and we determine the relative abundances of the elements at the cosmic ray source.

  15. Gradients and anisotropies of high energy cosmic rays in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Fillius, W.; Roelof, E. C.; Smith, E. J.; Wood, D.; Ip, W. H.

    1985-01-01

    Two cosmic rays which pass through the same point going in opposite directions will, in the absence of scattering and inhomogeneities in the magnetic field, trace helices about adjacent flux tubes, whose centerlines are separated by one gyrodiameter. A directional anisotropy at the point suggests a difference in the number of cosmic rays loading the two flux tubes; that is, a density gradient over the baseline of a gyrodiameter. Previous studies at lower energies have shown that the cosmic ray density gradients vary in time and space. It is suggested that the radial gradient associated with solar cycle modulation is supported largely by narrow barriers which encircle the sun and propagate outward with the solar wind. If so, the anisotropy is a desirable way to detect spatial gradients, because it can be associated with the local solar wind and magnetic field conditions. Anisotropic measurements made by Cerenkov detectors on Pioneers 10 and 11 were studied. It was found that local anisotropy varies greatly, but that the long term average is consistent with the global radial gradient measured between two spacecraft over a baseline of many AU.

  16. Propagation of ultra-high-energy cosmic ray nuclei in cosmic magnetic fields and implications for anisotropy measurements

    NASA Astrophysics Data System (ADS)

    Takami, Hajime; Inoue, Susumu; Yamamoto, Tokonatsu

    2012-07-01

    Recent results from the Pierre Auger Observatory (PAO) indicate that the composition of ultra-high-energy cosmic rays (UHECRs) with energies above 1019 eV may be dominated by heavy nuclei. An important question is whether the distribution of arrival directions for such UHECR nuclei can exhibit observable anisotropy or positional correlations with their astrophysical source objects despite the expected strong deflections by intervening magnetic fields. For this purpose, we have simulated the propagation of UHECR nuclei including models for both the extragalactic magnetic field (EGMF) and the Galactic magnetic field (GMF). We find that the GMF is particularly crucial for suppressing the anisotropy as well as source correlations. Assuming that only iron nuclei are injected steadily from sources with equal luminosity and spatially distributed according to the observed large scale structure in the local Universe, at the number of events published by the PAO so far (69 events above 5.5 1019 eV), the arrival distribution of UHECRs would be consistent with no auto-correlation at 95% confidence if the mean number density of UHECR sources ns ? 10-6 Mpc-3, and consistent with no cross-correlation with sources within 95% errors for ns ? 10-5 Mpc-3. On the other hand, with 1000 events above 5.5 1019 eV in the whole sky, next generation experiments can reveal auto-correlation with more than 99% probability even for ns ? 10-3 Mpc-3, and cross-correlation with sources with more than 99% probability for ns ? 10-4 Mpc-3. In addition, we find that the contribution of Centaurus A is required to reproduce the currently observed UHECR excess in the Centaurus region. Secondary protons generated by photodisintegration of primary heavy nuclei during propagation play a crucial role in all cases, and the resulting anisotropy at small angular scales should provide a strong hint of the source location if the maximum energies of the heavy nuclei are sufficiently high.

  17. High-energy cosmic rays and tests of basic principles of Physics. Looking at the Planck scale and beyond

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mestres, L.

    2014-04-01

    With the present understanding of data, the observed flux suppression for ultra-high energy cosmic rays (UHECR) at energies above 4.1019 eV can be a signature of the Greisen-Zatsepin-Kuzmin (GZK) cutoff or be related to a similar mechanism. But it may also correspond, for instance, to the maximum energies available at the relevant sources. In both cases, violations of special relativity modifying cosmic-ray propagation or acceleration at very high energy can potentially play a role. Other violations of fundamental principles of standard particle physics (quantum mechanics, energy and momentum conservation, vacuum homogeneity and "static" properties, effective space dimensions, quark confinement) can also be relevant at these energies. In particular, UHECR data would in principle allow to set bounds on Lorentz symmetry violation (LSV) in patterns incorporating a privileged local reference frame (the "vacuum rest frame", VRF). But the precise analysis is far from trivial, and other effects can also be present. The effective parameters can be related to Planckscale physics, or even to physics beyond Planck scale, as well as to the dynamics and effective symmetries of LSV for nucleons, quarks, leptons and the photon. LSV can also be at the origin of GZK-like effects. In the presence of a VRF, and contrary to a "grand unification" view, LSV and other violations of standard principles can modify the internal structure of particles at very high energy and conventional symmetries may cease to be valid at energies close to the Planck scale. We present an updated discussion of these topics, including experimental prospects, new potentialities for high-energy cosmic ray phenomenology and the possible link with unconventional pre-Big Bang scenarios, superbradyon (superluminal preon) patterns The subject of a possible superluminal propagation of neutrinos at accelerator energies is also dealt with.

  18. Magnetowave Induced Plasma Wakefield Acceleration for Ultra High Energy Cosmic Rays

    SciTech Connect

    Chang, Feng-Yin; Chen, Pisin; Lin, Guey-Lin; Noble, Robert; Sydora, Richard; /Alberta U.

    2009-10-17

    Magnetowave induced plasma wakefield acceleration (MPWA) in a relativistic astrophysical outflow has been proposed as a viable mechanism for the acceleration of cosmic particles to ultrahigh energies. Here we present simulation results that clearly demonstrate the viability of this mechanism for the first time. We invoke the high frequency and high speed whistler mode for the driving pulse. The plasma wakefield obtained in the simulations compares favorably with our newly developed relativistic theory of the MPWA. We show that, under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over hundreds of plasma skin depths. Invoking active galactic nuclei as the site, we show that MPWA production of ultrahigh energy cosmic rays beyond ZeV (10{sup 21} eV) is possible.

  19. CRT: A numerical tool for propagating ultra-high energy cosmic rays through Galactic magnetic field models

    NASA Astrophysics Data System (ADS)

    Sutherland, M. S.; Baughman, B. M.; Beatty, J. J.

    2010-11-01

    Deflection of ultra-high energy cosmic rays (UHECRs) by the Galactic magnetic field (GMF) may be sufficiently strong to hinder identification of the UHECR source distribution. A common method for determining the effect of GMF models on source identification efforts is back-tracking cosmic rays. We present the public numerical tool CRT for propagating charged particles through Galactic magnetic field models by numerically integrating the relativistic equation of motion. It is capable of both forward- and back-tracking particles with varying compositions through pre-defined and custom user-created magnetic fields. These particles are injected from various types of sources specified and distributed according to the user. Here, we present a description of some source and magnetic field model implementations, as well as validation of the integration routines.

  20. ROLE OF LINE-OF-SIGHT COSMIC-RAY INTERACTIONS IN FORMING THE SPECTRA OF DISTANT BLAZARS IN TeV GAMMA RAYS AND HIGH-ENERGY NEUTRINOS

    SciTech Connect

    Essey, Warren; Kusenko, Alexander; Kalashev, Oleg; Beacom, John F.

    2011-04-10

    Active galactic nuclei (AGNs) can produce both gamma rays and cosmic rays. The observed high-energy gamma-ray signals from distant blazars may be dominated by secondary gamma rays produced along the line of sight by the interactions of cosmic-ray protons with background photons. This explains the surprisingly low attenuation observed for distant blazars, because the production of secondary gamma rays occurs, on average, much closer to Earth than the distance to the source. Thus, the observed spectrum in the TeV range does not depend on the intrinsic gamma-ray spectrum, while it depends on the output of the source in cosmic rays. We apply this hypothesis to a number of sources and, in every case, we obtain an excellent fit, strengthening the interpretation of the observed spectra as being due to secondary gamma rays. We explore the ramifications of this interpretation for limits on the extragalactic background light and for the production of cosmic rays in AGNs. We also make predictions for the neutrino signals, which can help probe the acceleration of cosmic rays in AGNs.

  1. Measurement of the ultra high energy cosmic ray energy spectrum with the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Rodriguez, G.

    2014-04-01

    We report a measurement of the cosmic ray energy spectrum based on a large amount of data collected by the Pierre Auger Observatory. This measurement combines data from the fluorescence (FD) and surface (SD) detectors of the Observatory and does not rely on detailed numerical simulation or any assumption about the chemical composition. The energy calibration of the observables, which exploits the correlation of surface detector data with fluorescence measurements in hybrid events, is presented in detail. Besides presenting statistical uncertainties, we address the impact of systematic uncertainties. We also summarize the combined energy spectrum obtained when hybrid data are used to extend the spectrum to lower energies.

  2. Observation of ultra high energy cosmic rays with the surface detector array of the TA experiment

    NASA Astrophysics Data System (ADS)

    Sagawa, Hiroyuki

    The Telescope Array (TA) experiment is an array of surface detectors surrounded by three stations of fluorescence telescopes in Utah, USA, to investigate the origin of the highest energy cosmic rays of energy beyond 1020eV. We deployed about 500 plastic scintillation counters on a grid with 1.2 km spacing as a surface array by March 2007. Each surface detector is outfitted with double layer scintillators of 3m2 area, readout electronics, and wireless LAN communication system, which are powered by solar system. Here we present the performance of the surface detector array and the status and the prospect of observation of air shower events.

  3. TIERRAS: A package to simulate high energy cosmic ray showers underground, underwater and under-ice

    NASA Astrophysics Data System (ADS)

    Tueros, Matas; Sciutto, Sergio

    2010-02-01

    In this paper we present TIERRAS, a Monte Carlo simulation program based on the well-known AIRES air shower simulations system that enables the propagation of particle cascades underground, providing a tool to study particles arriving underground from a primary cosmic ray on the atmosphere or to initiate cascades directly underground and propagate them, exiting into the atmosphere if necessary. We show several cross-checks of its results against CORSIKA, FLUKA, GEANT and ZHS simulations and we make some considerations regarding its possible use and limitations. The first results of full underground shower simulations are presented, as an example of the package capabilities. Program summaryProgram title: TIERRAS for AIRES Catalogue identifier: AEFO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 36 489 No. of bytes in distributed program, including test data, etc.: 3 261 669 Distribution format: tar.gz Programming language: Fortran 77 and C Computer: PC, Alpha, IBM, HP, Silicon Graphics and Sun workstations Operating system: Linux, DEC Unix, AIX, SunOS, Unix System V RAM: 22 Mb bytes Classification: 1.1 External routines: TIERRAS requires AIRES 2.8.4 to be installed on the system. AIRES 2.8.4 can be downloaded from http://www.fisica.unlp.edu.ar/auger/aires/eg_AiresDownload.html. Nature of problem: Simulation of high and ultra high energy underground particle showers. Solution method: Modification of the AIRES 2.8.4 code to accommodate underground conditions. Restrictions: In AIRES some processes that are not statistically significant on the atmosphere are not simulated. In particular, it does not include muon photonuclear processes. This imposes a limitation on the application of this package to a depth of 1 km of standard rock (or 2.5 km of water equivalent). Neutrinos are not tracked on the simulation, but their energy is taken into account in decays. Running time: A TIERRAS for AIRES run of a 10 eV shower with statistical sampling (thinning) below 10 eV and 0.2 weight factor (see [1]) uses approximately 1 h of CPU time on an Intel Core 2 Quad Q6600 at 2.4 GHz. It uses only one core, so 4 simultaneous simulations can be run on this computer. Aires includes a spooling system to run several simultaneous jobs of any type. References:S. Sciutto, AIRES 2.6 User Manual, http://www.fisica.unlp.edu.ar/auger/aires/.

  4. Programs that Think. Programs that Love. Programs that Identify the Composition of Ultra High Energy Cosmic Rays.

    NASA Astrophysics Data System (ADS)

    Gussert, Michael

    2009-10-01

    The use of evolutionary neural network techniques to identify the composition of ultra high energy cosmic rays is being explored. The air shower parameters measured by the Pierre Auger Observatory cannot easily identify the composition of the shower primary. However, Artificial Neural Networks (ANNs) can be evolved to learn the dependence of these parameters on the primary composition. Once completed, such a network would then be able to estimate the composition of the primary for a given air shower. A modified version of the Symbiotic, Adaptive, Neuro-Evolution (SANE) algorithm is being studied to allow neurons within the network to specialize in a specific aspect of the dependence.

  5. A balloon-borne ionization spectrometer with very large aperture for the detection of high energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Atallah, K.; Modlinger, A.; Schmidt, W. K. H.; Cleghorn, T. F.

    1975-01-01

    A balloon experiment which was used to determine the chemical composition of very high-energy cosmic rays up to and beyond 100 GeV/nucleon is described. The detector had a geometric factor of 1 sq m sr and a total weight on the balloon of 2100 kg. The apparatus consisted of an ionization spectrometer, spark chambers, and plastic scintillation and Cherenkov counters. It was calibrated at CERN up to 24 GeV/c protons and at DESY up to 7 GeV/c electrons. In October 1972 it was flown successfully on a stratospheric balloon.

  6. Concept and Analysis of a Satellite for Space-Based Radio Detection of Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Romero-Wolf, Andrew; Gorham, P.; Booth, J.; Chen, P.; Duren, R. M.; Liewer, K.; Nam, J.; Saltzberg, D.; Schoorlemmer, H.; Wissel, S.; Zairfian, P.

    2014-01-01

    We present a concept for on-orbit radio detection of ultra-high energy cosmic rays (UHECRs) that has the potential to provide collection rates of ~100 events per year for energies above 10^20 eV. The synoptic wideband orbiting radio detector (SWORD) mission's high event statistics at these energies combined with the pointing capabilities of a space-borne antenna array could enable charged particle astronomy. The detector concept is based on ANITA's successful detection UHECRs where the geosynchrotron radio signal produced by the extended air shower is reflected off the Earth's surface and detected in flight.

  7. The Microwave Air Yield Beam Experiment (MAYBE): measurement of GHz radiation for Ultra-High Energy Cosmic Rays detection

    NASA Astrophysics Data System (ADS)

    Monasor, Maria

    We present first measurements by MAYBE of microwave emission from an electron beam induced air plasma, performed at the electron Van de Graaff facility of the Argonne National Laboratory. Coherent radio Cherenkov, a major background in a previous beam experiment, is not produced by the 3 MeV beam, which simplifies the interpretation of the data. Radio emission is studied over a wide range of frequencies between 3 and 12 GHz. This measurement provides further insight on microwave emission from extensive air showers as a novel detection technique for Ultra-High Energy Cosmic Rays.

  8. Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory

    SciTech Connect

    Collaboration: Pierre Auger Collaboration

    2013-05-01

    We derive lower bounds on the density of sources of ultra-high energy cosmic rays from the lack of significant clustering in the arrival directions of the highest energy events detected at the Pierre Auger Observatory. The density of uniformly distributed sources of equal intrinsic intensity was found to be larger than ∼ (0.06−5) × 10{sup −4} Mpc{sup −3} at 95% CL, depending on the magnitude of the magnetic deflections. Similar bounds, in the range (0.2−7) × 10{sup −4} Mpc{sup −3}, were obtained for sources following the local matter distribution.

  9. PeV neutrinos from the propagation of ultra-high energy cosmic rays

    SciTech Connect

    Roulet, Esteban; Mollerach, Silvia; Sigl, Guenter; Vliet, Arjen van E-mail: guenter.sigl@desy.de E-mail: mollerach@cab.cnea.gov.ar

    2013-01-01

    We discuss the possibility that the PeV neutrinos recently observed by IceCube are produced by the interactions of extragalactic cosmic rays during their propagation through the radiation backgrounds. We show that the fluxes resulting from the decays of neutrons produced in the interactions of cosmic ray protons with the CMB background are suppressed (E{sub ?}{sup 2}d?{sub ?}/dE < 10{sup ?10} GeV/cm{sup 2} s sr), with those resulting from the decays of pions produced in the interactions with the UV/optical/IR backgrounds being the dominant ones at PeV energies. The anti-neutrino fluxes produced by the decay of neutrons resulting from the photodisintegration of heavy nuclei with CMB photons are also shown to be quite suppressed (E{sub ?}{sup 2}d?{sub ?}/dE < 10{sup ?11} GeV/cm{sup 2} s sr), while those produced by photo-pion processes with UV/optical/IR backgrounds may be larger, although they are not expected to be above those achievable in the pure proton case. Scenarios with mixed composition and low cutoff rigidities can lead to PeV neutrino fluxes enhanced with respect to those in the pure Fe scenarios. We also discuss the possible impact of the Glashow resonance for the detection of these scenarios, showing that it plays a moderate role.

  10. Ultra High Energy Cosmic Rays from Engine-driven Relativistic Supernovae

    NASA Astrophysics Data System (ADS)

    Chakraborti, Sayan

    2012-09-01

    The sources of the highest energy cosmic rays remain an enigma half a century after their discovery. Understanding their origin is a crucial step in probing new physics at energies unattainable by terrestrial accelerators. They must be accelerated in the local universe as otherwise interaction with cosmic background radiations would severely deplete the flux of protons and nuclei at energies above the Greisen-Zatsepin-Kuzmin (GZK) limit. Hypernovae, nearby GRBs, AGNs and their flares have all been suggested and debated in the literature as possible sources. Type Ibc supernovae have a local sub-population with mildly relativistic ejecta which are known to be sub-energetic GRBs or X-Ray Flashes for sometime and more recently as those with radio afterglows but without detected GRB counterparts, such as SN 2009bb. In this talk we present the size-magnetic field evolution, baryon loading and energetics of SN 2009bb using its radio spectra obtained with VLA and GMRT. We show that the engine-driven SNe lie above the Hillas line and they can explain the characteristics of post-GZK UHECRs.

  11. Engine-driven Relativistic Supernovae as Sources of Ultra High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Ray, Alak; Chakraborti, Sayan

    2011-08-01

    Understanding the origin of the highest energy cosmic rays is a crucial step in probing new physics at energies unattainable by terrestrial accelerators. Their sources remain an enigma half a century after their discovery. They must be accelerated in the local universe as otherwise interaction with cosmic background radiations would severely deplete the flux of protons and nuclei at energies above the Greisen-Zatsepin-Kuzmin (GZK) limit. Hypernovae, nearby GRBs, AGNs and their flares have all been suggested and debated in the literature as possible sources. Type Ibc supernovae have a local sub-population with mildly relativistic ejecta which are known to be sub-energetic GRBs or X-Ray Flashes for sometime and more recently as those with radio afterglows but without detected GRB counterparts, such as SN 2009bb. In this work we measure the size-magnetic field evolution, baryon loading and energetics of SN 2009bb using its radio spectra obtained with VLA and GMRT. We show that the engine-driven SNe lie above the Hillas line and they can explain the characteristics of post-GZK UHECRs.

  12. Fermi LAT Results and Perspectives in Measurements of High Energy Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2010-01-01

    Real breakthrough during last 1-1.5 years in cosmic ray electrons: ATIC, HESS, Pamela, and finally Fermi-LAT. New quality data have made it possible to start quantitative modeling. With the new data more puzzles than before on CR electrons origin. Need "multi-messenger" campaign: electrons, positrons, gammas, X-ray, radio, neutrino... It is viable that we are dealing with at least two distinct mechanisms of "primary" electron (both signs) production: a softer spectrum of negative electrons, and a harder spectrum of both e(+)+e(-). Exotic (e.g. DM) origin is not ruled out. Upper limits on CR electrons anisotropy are set. Good perspectives to have the Fermi LAT results on proton spectrum and positron fraction.

  13. CRT: A Numerical Tool for Propagating Ultra-High Energy Cosmic Rays Through Galactic Magnetic Field Models

    NASA Astrophysics Data System (ADS)

    Sutherland, Michael; Baughman, Brian; Beatty, James

    2011-04-01

    The deflection of ultra high energy cosmic rays (UHECRs) by cosmic magnetic fields, particularly the Galactic magnetic field (GMF), may be sufficiently large to confuse identification of their sources. Here we present a publicly available numerical tool CRT, which can forward- or back-track particles of any type through multiple magnetic field configurations. Trajectories are determined by numerically integrating the relativistic equation of motion. Users may specify magnetic field, source, and particle parameters through an input configuration file. CRT's modular nature allows users to include additional field models and source distributions of their own. The interface is designed to be simple while still allowing the user to manipulate important runtime parameters. Output includes complete simulation information and a full description of each event's initial and final states. The current stage of development (available on the web) will be discussed, as well as plans for future updates.

  14. A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory

    SciTech Connect

    Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E.J.; Albuquerque, I.F.M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muiz, J.; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Antici'c, T.; Arganda, E.; Arqueros, F.; Collaboration: Pierre Auger Collaboration; and others

    2012-04-01

    Observations of cosmic ray arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Vron-Cetty Vron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2ptL, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three methods can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. Using data taken from January 1, 2004 to July 31, 2010 we examined the 20,30,...,110 highest energy events with a corresponding minimum energy threshold of about 49.3 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.

  15. A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory

    SciTech Connect

    Abreu, P.; ,

    2012-01-01

    Observations of cosmic ray arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Veron-Cetty Veron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three methods can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. Using data taken from January 1, 2004 to July 31, 2010 we examined the 20, 30, ..., 110 highest energy events with a corresponding minimum energy threshold of about 51 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.

  16. A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antici'c, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bcker, T.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Buml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Belltoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blmer, H.; Bohcov, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Coluccia, M. R.; Conceio, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; del Ro, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Daz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Filevich, A.; Filipcic, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Frhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; Garca, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gmez Berisso, M.; Gmez Vitale, P. F.; Gonalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hrandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovsk, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kgl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krmer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leo, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lpez, R.; Lopez Agera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martnez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mi'canovi'c, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostaf, M.; Moura, C. A.; Muller, M. A.; Mller, G.; Mnchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Noka, L.; Nyklicek, M.; Oehlschlger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.

    2012-04-01

    Observations of cosmic ray arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Vron-Cetty Vron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three methods can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. Using data taken from January 1, 2004 to July 31, 2010 we examined the 20,30,...,110 highest energy events with a corresponding minimum energy threshold of about 49.3 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.

  17. Ultra High Energy Cosmic Rays and the Fluorescence in Air Showers (flash) Experiment at SLAC

    NASA Astrophysics Data System (ADS)

    Matthews, John N.

    2004-10-01

    The High Resolution Fly's Eye collaboration has measured the spectrum of cosmic rays above 1017 eV using the air fluorescence technique. It is now possible to observe structure within this spectrum including a steep fall which is consistent with a GZK cut-off. This steep fall is inconsistent with measurements made by the AGASA ground array detector which indicates a continuing spectrum above 1019.5 eV. A difference in energy scales between the experiments could be part of the problem. A new collaboration, FLASH, has been formed to re-measure the fluorescence yield and its contribution to the uncertainty in the energy scale. A test run successfully demonstrated the feasibility of making these measurements at the Stanford Linear Accelerator Center. A program of three short experiments (E-165) has been approved by the SLAC experimental program advisory committee and the experiment has now been scheduled for beam time.

  18. Possible interpretations of the high energy cosmic ray electron spectrum measured with the Fermi space telescope

    NASA Astrophysics Data System (ADS)

    Grasso, D.; Profumo, S.; Strong, A. W.; Baldini, L.; Bellazzini, R.; Bloom, E. D.; Bregeon, J.; di Bernardo, G.; Gaggero, D.; Giglietto, N.; Kamae, T.; Latronico, L.; Longo, F.; Mazziotta, M. N.; Moiseev, A. A.; Morselli, A.; Ormes, J. F.; Pesce-Rollins, M.; Pohl, M.; Razzano, M.; Sgro, C.; Spandre, G.; Stephens, T. E.

    2011-02-01

    The Fermi Large Area Telescope (LAT) recently measured the cosmic ray electrons-plus-positrons (CRE) spectrum between 20 GeV and 1 TeV. In this contribution we discuss several interpretations of those measurements in combination with other experimental data. We show that, as far as concerns the reported Fermi-LAT data alone, a simple interpretation invoking a single class of astrophysical electron sources is possible. If, however, also the CRE spectrum measured by H.E.S.S. and especially the positron fraction reported by PAMELA are accounted, that scenario fails to provide a combined description of those results. Rather, we show that several combinations of parameters, involving e± pair emission by pulsars or dark matter annihilation, allow a consistent interpretation of all data sets.

  19. Gradients and anisotropies of high energy cosmic rays in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Fillius, W.; Roelof, E. C.; Smith, E. J.; Wood, D.; Ip, W. H.

    1985-01-01

    Previous studies at lower energies have shown that the cosmic ray density gradients vary in space and time, and many authors currently are suggesting that the radial gradient associated with solar cycle modulation is supported largely by narrow barriers which encircle the Sun and propagate outward with the solar wind. If so, the anisotropy is a desirable way to detect spatial gradients, because it can be associated with the local solar wind and magnetic field conditions. With this in mind, the anisotropy measurements made by the UCSD Cerenkov detectors on Pioneers 10 and 11 are studied. It is shown that the local anisotropy varies greatly, but that the long term average is consistent with the global radial gradient measured between two spacecraft over a baseline of many AU.

  20. Probing the origin of cosmic rays with extremely high energy neutrinos using the IceCube Observatory

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Arguelles, C.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Bser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Bruijn, R.; Casey, J.; Casier, M.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Clevermann, F.; Coenders, S.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; Day, M.; De Clercq, C.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de With, M.; DeYoung, T.; Daz-Vlez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Eisch, J.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Gra, D.; Grandmont, D. T.; Grant, D.; Gretskov, P.; Groh, J. C.; Gro, A.; Ha, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Jagielski, K.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Kelley, J. L.; Kiryluk, J.; Kls, J.; Klein, S. R.; Khne, J.-H.; Kohnen, G.; Kolanoski, H.; Kpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kriesten, A.; Krings, K.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Landsman, H.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leute, J.; Lnemann, J.; Macas, O.; Madsen, J.; Maggi, G.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Paul, L.; Pepper, J. A.; Prez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rdel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schneberg, S.; Schnwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Sheremata, C.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stl, A.; Strahler, E. A.; Strm, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tei?, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zoll, M.

    2013-12-01

    We have searched for extremely high energy neutrinos using data taken with the IceCube detector between May 2010 and May 2012. Two neutrino-induced particle shower events with energies around 1 PeV were observed, as reported previously. In this work, we investigate whether these events could originate from cosmogenic neutrinos produced in the interactions of ultrahigh energy cosmic rays with ambient photons while propagating through intergalactic space. Exploiting IceCubes large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out the corresponding models at more than 90% confidence level. The model-independent quasidifferential 90% C.L. upper limit, which amounts to E2??e+??+??=1.210-7GeVcm-2s-1sr-1 at 1 EeV, provides the most stringent constraint in the energy range from 10 PeV to 10 EeV. Our observation disfavors strong cosmological evolution of the highest energy cosmic-ray sources such as the Fanaroff-Riley type II class of radio galaxies.

  1. A cosmic ray super high energy multicore family event. 2: Structure and fragmentation characteristics of the jets

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Quarks and gluons are not directly observable, but may be displayed through fragmentation in the form of hadronic jets, the evidence of which was first revealed in cosmic ray interactions before the advent of the modern theory of strong interactions. Experimental results from ISR and SPPS collider rendered the jet phenomena more confident and definite. All the properties of jets observed up to now at ISR and SPPS collider are in agreement with the predictions of QCD. In order to make further test of QCD in still higher energy regions, detailed study of super high energy jet events in cosmic rays is very desirable. The event KO E19 observed in the Mt. Kambala emulsion chamber is an interesting event for such study. The general features of KO E19 is described. Its total visible energy is sigma E sub gamma = 1537 TeV(E sub min = 1.5 TeV) and production height H=(70 + or - 30)m, with a hadron as its primary particle. Besides about forty small clusters, there are five super high energy cores or jets, one lying near the center of the event while the other four surrounding it, having incident directions making small angles with that of the primary particle. Detailed analysis is done on the emulsion plates inserted in the chamber, making full use of their fine granularity, superior in detecting and analyzing jet events, specially their substructures.

  2. Probing The Cosmic History of Light With High-Energy Gamma Rays

    NASA Astrophysics Data System (ADS)

    Hartmann, Dieter

    2016-01-01

    The Cosmic Microwave Background (CMB) holds answers to many questions of moderrn cosmology. The origin of the CMB lies in the early universe, and when it was released during the recombination phase the conditions were not yet right for new sources of light. But the first generation of stars born in a mostly neutral universe quickly re-ionized their surroubding baryonic environments, and dust was produced which allowed reprocessing of some star light into the infrared specral region. Black holes and other compact objects were born and the emissions from their accretion processes and relativistic jetted outflws contributed new light. Today, we observe this evolving radiation field as the Extragalactic Backgroud Light (EBL), ranging from the radio- to the gamma-ray band. The evolution of the diffuse electromagnetic energy content of the universe is the focus of this special session, and I will discuss its importance within the context of modern cosmology. I will emphasize the role of gamma-ray astronomy, which probes the EBL and the CMB through the opacity created by photon-photon pair production.

  3. MEASUREMENTS OF THE RELATIVE ABUNDANCES OF HIGH-ENERGY COSMIC-RAY NUCLEI IN THE TeV/NUCLEON REGION

    SciTech Connect

    Ahn, H. S.; Ganel, O.; Han, J. H.; Kim, K. C.; Lee, M. H.; Malinin, A.; Allison, P. S.; Beatty, J. J.; Brandt, T. J.; Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S.; Barbier, L.; Childers, J. T.; DuVernois, M. A.; Conklin, N. B.; Coutu, S.; Jeon, J. A.; Lee, J.

    2010-06-01

    We present measurements of the relative abundances of cosmic-ray nuclei in the energy range of 500-3980 GeV/nucleon from the second flight of the Cosmic Ray Energetics And Mass balloon-borne experiment. Particle energy was determined using a sampling tungsten/scintillating-fiber calorimeter, while particle charge was identified precisely with a dual-layer silicon charge detector installed for this flight. The resulting element ratios C/O, N/O, Ne/O, Mg/O, Si/O, and Fe/O at the top of atmosphere are 0.919 {+-} 0.123{sup stat} {+-} 0.030{sup syst}, 0.076 {+-} 0.019{sup stat} {+-} 0.013{sup syst}, 0.115 {+-} 0.031{sup stat} {+-} 0.004{sup syst}, 0.153 {+-} 0.039{sup stat} {+-} 0.005{sup syst}, 0.180 {+-} 0.045{sup stat} {+-} 0.006{sup syst}, and 0.139 {+-} 0.043{sup stat} {+-} 0.005{sup syst}, respectively, which agree with measurements at lower energies. The source abundance of N/O is found to be 0.054 {+-} 0.013{sup stat} {+-} 0.009{sup syst+0.010esc} {sub -0.017}. The cosmic-ray source abundances are compared to local Galactic (LG) abundances as a function of first ionization potential and as a function of condensation temperature. At high energies the trend that the cosmic-ray source abundances at large ionization potential or low condensation temperature are suppressed compared to their LG abundances continues. Therefore, the injection mechanism must be the same at TeV/nucleon energies as at the lower energies measured by HEAO-3, CRN, and TRACER. Furthermore, the cosmic-ray source abundances are compared to a mixture of 80% solar system abundances and 20% massive stellar outflow (MSO) as a function of atomic mass. The good agreement with TIGER measurements at lower energies confirms the existence of a substantial fraction of MSO material required in the {approx}TeV per nucleon region.

  4. Can multistate dark matter annihilation explain the high-energy cosmic ray lepton anomalies?

    NASA Astrophysics Data System (ADS)

    Cirelli, Marco; Cline, James M.

    2010-07-01

    Multistate dark matter (DM) models with small mass splittings and couplings to light hidden sector bosons have been proposed as an explanation for the PAMELA/Fermi/H.E.S.S. high-energy lepton excesses. We investigate this proposal over a wide range of DM density profiles, in the framework of concrete models with doublet or triplet dark matter and a hidden SU(2) gauge sector that mixes with standard model hypercharge. The gauge coupling is bounded from below by the DM relic density, and the Sommerfeld enhancement factor is explicitly computable for given values of the DM and gauge boson masses M, ? and the (largest) dark matter mass splitting ?M12. Sommerfeld enhancement is stronger at the galactic center than near the Sun because of the radial dependence of the DM velocity profile, which strengthens the inverse Compton (IC) gamma ray constraints relative to usual assumptions. We find that the PAMELA/Fermi/H.E.S.S. lepton excesses are marginally compatible with the model predictions, and with CMB and Fermi gamma ray constraints, for M?800GeV, ??200MeV, and a dark matter profile with noncuspy Einasto parameters ??0.20, rs30kpc. We also find that the annihilating DM must provide only a subdominant (?0.4) component of the total DM mass density, since otherwise the boost factor due to Sommerfeld enhancement is too large.

  5. Radio detection of high-energy cosmic rays at the Pierre Auger Observatory

    SciTech Connect

    Berg, A.M.van den; Collaboration, for the Pierre Auger

    2007-08-01

    The southern Auger Observatory provides an excellent test bed to study the radio detection of extensive air showers as an alternative, cost-effective, and accurate tool for cosmic-ray physics. The data from the radio setup can be correlated with those from the well-calibrated baseline detectors of the Pierre Auger Observatory. Furthermore, human-induced radio noise levels at the southern Auger site are relatively low. We have started an R&D program to test various radio-detection concepts. Our studies will reveal Radio Frequency Interferences (RFI) caused by natural effects such as day-night variations, thunderstorms, and by human-made disturbances. These RFI studies are conducted to optimize detection parameters such as antenna design, frequency interval, antenna spacing and signal processing. The data from our initial setups, which presently consist of typically 3 - 4 antennas, will be used to characterize the shower from radio signals and to optimize the initial concepts. Furthermore, the operation of a large detection array requires autonomous detector stations. The current design is aiming at stations with antennas for two polarizations, solar power, wireless communication, and local trigger logic. The results of this initial phase will provide an important stepping stone for the design of a few tens kilometers square engineering array.

  6. Chinese high energy cosmic particle explorer (DAMPE)

    NASA Astrophysics Data System (ADS)

    Chang, Jin; Hu, Yiming; Wu, Jian

    The first Chinese high energy cosmic particle explorer (DArk Matter Particle Explorer-DAMPE) aims to detect electron/gamma at the range between 5GeV and 10TeV in space. DAMPE would be on the lookout for gamma rays produced when dark matter particles annihilate each other. The craft would also tune in to a high-energy electron spectrum that may shed light on the mysterious propagation and acceleration of cosmic rays.DAMPE is composed of four major payloads from top to bottom:The plastic scintillator detector,The silicon tracker,The BGO calorimeter and The neutron detector. Under CASs new Innovation 2020 program, the qualification model of DAMPE has already been done, and the flight model will be done by the end of year 2014.

  7. Super Heavy Dark Matter in light of BICEP2, Planck and Ultra High Energy Cosmic Rays Observations

    NASA Astrophysics Data System (ADS)

    Aloisio, R.; Matarrese, S.; Olinto, A. V.

    2015-08-01

    The announcement by BICEP2 of the detection of B-mode polarization consistent with primordial gravitational waves with a tensor-to-scalar ratio, r=0.2+0.07-0.05, challenged predictions from most inflationary models of a lower value for r. More recent results by Planck on polarized dust emission show that the observed tensor modes signal is compatible with pure foreground emission. A more significant constraint on r was then obtained by a joint analysis of Planck, BICEP2 and Keck Array data showing an upper limit to the tensor to scalar ratio r<= 0.12, excluding the case 0r= with low statistical significance. Forthcoming measurements by BICEP3, the Keck Array, and other CMB polarization experiments, open the possibility for making the fundamental measurement of r. Here we discuss how r sets the scale for models where the dark matter is created at the inflationary epoch, the generically called super-heavy dark matter models. We also consider the constraints on such scenarios given by recent data from ultrahigh energy cosmic ray observatories which set the limit on super-heavy dark matter particles lifetime. We discuss how super-heavy dark matter can be discovered by a precise measurement of r combined with future observations of ultra high energy cosmic rays.

  8. On the influence of galactic magnetic fields on the arrival direction distribution of ultra-high-energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Kim, Hang Bae

    2013-07-01

    We study the influence of galactic magnetic field (GMF) on both the correlation between ultra-high-energy cosmic rays (UHECRs) and active galactic nuclei (AGNs) and the clustering of UHECRs in the direction of Centaurus A (Cen A), both of which are observed in the arrival direction distribution of 69 UHECRs with energy E ? 55 EeV detected by the Pierre Auger Observatory. If UHECRs are dominated by protons, the correlation and the clustering are not affected significantly. However, if UHECRs are dominated by iron nuclei, the influence of the GMF becomes significant, and the correlation and the clustering may be fake due to the GMF while the arrival direction distribution outside of the GMF is compatible with the isotropy.

  9. Germ cell mutagenesis in medaka fish after exposures to high-energy cosmic ray nuclei: A human model

    NASA Astrophysics Data System (ADS)

    Shimada, Atsuko; Shima, Akihiro; Nojima, Kumie; Seino, Yo; Setlow, Richard B.

    2005-04-01

    Astronauts beyond the Earth's orbit are exposed to high-energy cosmic-ray nuclei with high values of linear energy transfer (LET), resulting in much more biological damage than from x-rays or -rays and may result in mutations and cancer induction. The relative biological effectiveness of these nuclei depends on the LET, rising to as high as 50 at LET values of 100-200 keV/m. An endpoint of concern is germ cell mutations passed on to offspring, arising from exposure to these nuclei. A vertebrate model for germ cell mutation is Medaka fish (Oryzias latipes). We exposed wild type males to doses of 1 GeV per nucleon Fe nuclei or to 290 MeV per nucleon C nuclei. They were mated to females with recessive mutations at five-color loci. The transparent embryos from >100 days of mating (representing exposed sperm, spermatids, or spermatogonia) were observed so as to detect dominant lethal mutations and total color mutations, even though the embryos might not hatch. The relative number of mutant embryos as a function of dose were compared with those induced by -rays. The relative biological effectiveness values for dominant lethal mutations and total color mutations for exposed sperm and spermatids were 1.3-2.1 for exposure to C nuclei and 1.5-3.0 for exposure to Fe nuclei. (The spermatogonial data were uncertain.) These low values, and the negligible number of viable mutations, compared with those for mutations in somatic cells and for neoplastic transformation, indicate that germ cell mutations arising from exposures to cosmic ray nuclei are not a significant hazard to astronauts. astronaut hazards | linear energy transfer | relative biological effect

  10. Fermi LAT Observation of Diffuse Gamma Rays Produced Through Interactions Between Local Interstellar Matter and High-energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T. H.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Carlson, P.; Casandjian, J. M.; Cecchi, C.; elik, .; Chekhtman, A.; Cheung, C. C.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hughes, R. E.; Jhannesson, G.; Johnson, A. S.; Johnson, R. P.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kawai, N.; Kerr, M.; Kndlseder, J.; Kocian, M. L.; Kuehn, F.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McEnery, J. E.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Pohl, M.; Porter, T. A.; Rain, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Rochester, L. S.; Rodriguez, A. Y.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Saz Parkinson, P. M.; Schalk, T. L.; Sellerholm, A.; Sgr, C.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Starck, J.-L.; Stecker, F. W.; Strickman, M. S.; Strong, A. W.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Ylinen, T.; Ziegler, M.

    2009-10-01

    Observations by the Large Area Telescope (LAT) on the Fermi mission of diffuse ?-rays in a mid-latitude region in the third quadrant (Galactic longitude l from 200 to 260 and latitude |b| from 22 to 60) are reported. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of ?-ray point sources and inverse Compton scattering are estimated and subtracted. The residual ?-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV. The measured integrated ?-ray emissivity is (1.63 0.05) 10-26 photons s-1sr-1 H-atom-1 and (0.66 0.02) 10-26 photons s-1sr-1 H-atom-1 above 100 MeV and above 300 MeV, respectively, with an additional systematic error of ~10%. The differential emissivity from 100 MeV to 10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. The results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within ~10%.

  11. Peculiar high energy cosmic ray stratospheric event reveals a heavy primary origin particle above the knee region of the cosmic ray spectrum

    SciTech Connect

    Kopenkin, V.; Fujimoto, Y.

    2005-01-15

    We wish to put forward an explanation for a peculiar cosmic ray event with energy {sigma}E{sub {gamma}}{>=}2x10{sup 15} eV detected in 1975 by the balloon borne emulsion chamber experiment performed in the stratosphere, at the altitude {>=}30 km above sea level. For almost 30 years the event has been described as unusual, invoking new exotic mechanisms or models. In our opinion there is no need for an extraordinary explanation. Contrary to the widespread belief, the event gives us an example of 'unrecognized standard physics'. At the same time this event revealed a variety of features which are of considerable interest for cosmic rays, nuclear physics, and astrophysics. Here we show that the observed family is most likely to be a result of a heavy nucleus interaction with an air nucleus. In this case a primary particle would originally have been in the energy region above 'the knee' of the cosmic ray spectrum.

  12. Origin of the high energy cosmic neutrino background.

    PubMed

    Dado, Shlomo; Dar, Arnon

    2014-11-01

    The diffuse background of very high energy extraterrestrial neutrinos recently discovered with IceCube is compatible with that expected from cosmic ray interactions in the Galactic interstellar medium plus that expected from hadronic interactions near the source and in the intergalactic medium of the cosmic rays which have been accelerated by the jets that produce gamma ray bursts. PMID:25415894

  13. A Hybrid Monte Carlo Generator for Ultra-High Energy Cosmic Rays from their Sources to the Observer

    NASA Astrophysics Data System (ADS)

    Bretz, H.-P.; Dolag, K.; Erdmann, M.; Kuempel, D.; Mueller, G.; Schiffer, P.; Urban, M.; Walz, D.; Winchen, T.

    2012-12-01

    To understand in detail cosmic magnetic fields and sources of Ultra-High Energy Cosmic Rays (UHECRs) we have developed a Monte Carlo simulation for galactic and extragalactic propagation. In our approach we identify three different propagation regimes for UHECRs, the Milky Way, the local universe out to 110 Mpc, and the distant universe. For deflections caused by the galactic magnetic field a lensing technique based on matrices is applied which are created from backtracking of antiparticles through galactic field models. Propagation in the local universe uses forward tracking through structured magnetic fields extracted from simulations of the large scale structure of the universe. UHECRs from distant sources are simulated using parameterized models. In this contribution we present the combination of all three simulation techniques by means of probability maps. The combined probability maps are used to generate a large number of UHECRs, and to create distributions from approximately realistic universe scenarios. Comparisons with physics analyses of UHECR measurements enable the development of new analysis techniques and help to constrain parameters of the underlying physics models like the source density and the magnetic field strength in the universe.

  14. Fermi LAT Observation of Diffuse Gamma-Rays Produced through Interactions Between Local Interstellar Matter and High Energy Cosmic Rays

    SciTech Connect

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T.H.; /more authors..

    2012-03-30

    Observations by the Large Area Telescope (LAT) on the Fermi mission of diffuse {gamma}-rays in a mid-latitude region in the third quadrant (Galactic longitude l from 200{sup o} to 260{sup o} and latitude |b| from 22{sup o} to 60{sup o}) are reported. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of {gamma}-ray point sources and inverse Compton scattering are estimated and subtracted. The residual {gamma}-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV. The measured integrated {gamma}-ray emissivity is (1.63 {+-} 0.05) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} and (0.66 {+-} 0.02) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} above 100 MeV and above 300 MeV, respectively, with an additional systematic error of {approx}10%. The differential emissivity from 100 MeV to 10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. The results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within {approx}10%.

  15. Effects of the galactic magnetic field on observed properties of ultra-high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Keivani, Azadeh

    2012-04-01

    We present the results of propagating ultra-high energy protons and iron nuclei through several models of the galactic magnetic field (GMF) using the CRT code. Particles are injected from the locations of nearby active galactic nuclei (AGN) in the VCV catalog. We analyze the correlations of the observed arrival directions with the AGN directions and study differences of the energy spectrum observed at earth from that injected at the AGN.

  16. Effects of the galactic magnetic field on observed properties of ultra-high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Keivani, Azadeh

    2011-04-01

    We present the results of propagating ultra high energy protons and iron nuclei through several models of the galactic magnetic field (GMF) using the CRT code. In this analysis, the particles have been injected from the locations of active galactic nuclei (AGN) in the VCV catalog. We analyze the correlations of the observed arrival directions with the AGN directions and study differences of the energy spectrum observed at earth from that injected at the AGN.

  17. Monte Carlo calculations of high energy nucleon meson cascades and applications to galactic cosmic ray transport

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Alsmiller, R. G., Jr.; Chandler, K. C.

    1972-01-01

    Results obtained using a recently developed calculational method for determining the nucleon-meson cascade induced in thick materials by high-energy nucleons and charged pions are presented. The calculational method uses the intranuclear-cascade-evaporation model to treat nonelastic collisions by particles with energies approximately or smaller than GeV and an extrapolation model at higher energies. The following configurations are considered: (1) 19.2-GeV/c protons incident on iron; (2) 30.3-GeV/c protons incident on iron; (3) solar and galactic protons incident on the moon, and (4) galactic protons incident on tissue. For the first three configurations, experimental results are available and comparisons between the experimental and calculated results are given.

  18. Diffusive Propagation of Ultra-High-Energy Cosmic Rays and the Propagation Theorem

    NASA Astrophysics Data System (ADS)

    Aloisio, R.; Berezinsky, V.

    2004-09-01

    We present a detailed analytical study of the propagation of ultra-high-energy (UHE) particles in extragalactic magnetic fields. The crucial parameter that affects the diffuse spectrum is the separation between sources. In the case of a uniform distribution of sources with a separation between them much smaller than all characteristic propagation lengths, the diffuse spectrum of UHE particles has a universal form, independent of the mode of propagation. This statement has the status of theorem. The proof is obtained using the particle number conservation during propagation and also using the kinetic equation for the propagation of UHE particles. This theorem can be also proved with the help of the diffusion equation. In particular, it is shown numerically how the diffuse fluxes converge to this universal spectrum, when the separation between sources diminishes. We study also the analytic solution of the diffusion equation in weak and strong magnetic fields with energy losses taken into account. In the case of strong magnetic fields and for a separation between sources large enough, the GZK cutoff can practically disappear, as it has been found early in numerical simulations. In practice, however, the source luminosities required are too large for this possibility.

  19. The sensitivity of past and near-future lunar radio experiments to ultra-high-energy cosmic rays and neutrinos

    NASA Astrophysics Data System (ADS)

    Bray, J. D.

    2016-04-01

    Various experiments have been conducted to search for the radio emission from ultra-high-energy (UHE) particles interacting in the lunar regolith. Although they have not yielded any detections, they have been successful in establishing upper limits on the flux of these particles. I present a review of these experiments in which I re-evaluate their sensitivity to radio pulses, accounting for effects which were neglected in the original reports, and compare them with prospective near-future experiments. In several cases, I find that past experiments were substantially less sensitive than previously believed. I apply existing analytic models to determine the resulting limits on the fluxes of UHE neutrinos and cosmic rays (CRs). In the latter case, I amend the model to accurately reflect the fraction of the primary particle energy which manifests in the resulting particle cascade, resulting in a substantial improvement in the estimated sensitivity to CRs. Although these models are in need of further refinement, in particular to incorporate the effects of small-scale lunar surface roughness, their application here indicates that a proposed experiment with the LOFAR telescope would test predictions of the neutrino flux from exotic-physics models, and an experiment with a phased-array feed on a large single-dish telescope such as the Parkes radio telescope would allow the first detection of CRs with this technique, with an expected rate of one detection per 140 h.

  20. The Lateral Trigger Probability function for the ultra-high energy cosmic ray showers detected by the Pierre Auger Observatory

    SciTech Connect

    Abreu, P.; Aglietta, M.; Ahn, E.J.; Albuquerque, I.F.M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; /INFN, Naples /Naples U. /Nijmegen U., IMAPP

    2011-01-01

    In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 10{sup 17} and 10{sup 19} eV and zenith angles up to 65{sup o}. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data using events simultaneously observed by the fluorescence and the surface detector of the Pierre Auger Observatory (hybrid events). We validate the Monte Carlo results showing how LTP functions from data are in good agreement with simulations.

  1. Measurement of the Flux of Ultra-High Energy Cosmic Rays by the Telescope Array FADC Fluorescence Detectors

    NASA Astrophysics Data System (ADS)

    Stratton, Sean R.

    Ultra-high energy cosmic rays (UHECRs) produce the most powerful collisions between single particles and atmospheric matter. They have been studied since the early 20th century yet, to this date, there is no clear answer as to the acceleration process responsible for their production. The Telescope Array Project is an experiment designed to observe the showers of particles produced as by-products of the interactions between UHECRs and the atmosphere. As a hybrid experiment, it currently utilizes 38 fluorescence detectors (FDs) divided between three sites overlooking an array of 507 surface detectors (SDs). The project's mission is to study the energy, composition and origin of UHECRs using a variety of techniques which may include some or all of the experiment's apparatus. This document, in particular, is a presentation of the UHECR energy spectrum measured at Telescope Array using the fluorescence detection technique in monocular mode. Only data from the 24 FDs at Black Rock Mesa (BR) and Long Ridge (LR) stations are used here.

  2. Design of a wireless sensor network with nanosecond time resolution for mapping of high-energy cosmic ray shower events

    NASA Astrophysics Data System (ADS)

    Frank, Michael P.; Junnarkar, Sachin S.; Fagan, Triesha; O'Neal, Ray H.; Takai, Helio

    2010-04-01

    We describe a low-cost, low-power wireless sensor network we are developing for high time-resolution (ns-scale) characterization of particle showers produced by ultra-high-energy (UHE) cosmic rays, to infer shower direction at sites where hard-wired data connections may be inconvenient to install. The front-end particle detector is a scintillator block monitored by a photomultiplier tube (PMT). We keep the sensor nodes synchronized to within 1 ns using periodic highintensity optical pulses from a light-emitting-diode (LED) overdriven at very high current (~30 A) in short (4 ns) bursts. With minimal optics, this signal is resolvable under free-space transmission in ambient light conditions at multi-meter distances using a high-speed avalanche photodiode (APD) receiver at each node. PMT pulse waveforms are digitized relative to this precise time reference on a Field Programmable Gate Array (FPGA) using a Time-over-Threshold (ToT)/Time-to-Digital Converter (TDC) digitizer developed at BNL. A central server receives timestamped, digitized PMT pulse waveforms from the sensor nodes via Wi-Fi and performs real-time data visualization & analysis. Total cost per sensor node is a few thousand dollars, with total power consumption per sensor node under 1 Watt, suitable for, e.g., solar-powered installations at remote field locations.

  3. The Lateral Trigger Probability function for the Ultra-High Energy Cosmic Ray showers detected by the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Anti?i?, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Buml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Belltoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blmer, H.; Boh?ov, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceio, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; Del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; di Giulio, C.; Diaz, J. C.; Daz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filip?i?, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Frhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; Garca, B.; Garca Gmez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gmez Berisso, M.; Gonalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Gra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hrandel, J. R.; Horneffer, A.; Hrabovsk, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kgl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krmer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leo, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lpez, R.; Lopez Agera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martnez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mi?anovi?, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostaf, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Mller, G.; Mnchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Noka, L.; Nyklicek, M.; Oehlschlger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; P?kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.

    2011-12-01

    In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 1017 and 1019 eV and zenith angles up to 65. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data using events simultaneously observed by the fluorescence and the surface detector of the Pierre Auger Observatory (hybrid events). We validate the Monte Carlo results showing how LTP functions from data are in good agreement with simulations.

  4. Magnetars in the Metagalaxy: An Origin for Ultra-High-Energy Cosmic Rays in the Nearby Universe

    NASA Astrophysics Data System (ADS)

    Arons, Jonathan

    2003-06-01

    I show that the relativistic winds of newly born magnetars (neutron stars with petagauss surface magnetic fields) with initial spin rates close to the centrifugal breakup limit, occurring in all normal galaxies with massive star formation, can provide a source of ultrarelativistic light ions with an E-1 injection spectrum, steepening to E-2 at higher energies, with an upper cutoff at 1021-1022 eV. Interactions with the cosmic microwave background yield a spectrum at the Earth that compares favorably with the spectrum of ultra-high-energy cosmic rays (UHECRs) observed at energies up to a few times 1020 eV. The fit to the observations suggests that ~5%-10% of the magnetars are born with rotation rates and voltages sufficiently high to allow the acceleration of the UHECR. The form the spectrum incident on the Earth takes depends sensitively on the mechanism and the magnitude of gravitational wave losses during the early spin-down of these neutron stars: pure electromagnetic spin-down (the E-1 injection spectrum) yields a GZK feature [a flattening of the E3J(E) spectrum] below 1020 eV, rather than a cutoff, while a moderate GZK cutoff appears if gravitational wave losses are strong enough to steepen the injection spectrum above 1020 eV. The flux above 1020 eV comes from magnetars in relatively nearby galaxies (D<50 Mpc). I outline the probable physics of acceleration of such particles in a magnetar's wind: it is a form of ``surf-riding'' in the approximately force-free fields of the wind. I also show how the high-energy particles can escape with small energy losses from the magnetars' natal supernovae. In particular, I show that the electromagnetic energy emitted by the magnetar ``shreds'' the supernova envelope in times short enough to allow most of the relativistic energy to escape largely unimpeded into the surrounding interstellar medium, where it drives a relativistic blast wave that expands to parsec scale before slowing down to nonrelativistic speeds. I also show that since the ions are accelerated in a region where the magnetic field has the structure of a strong electromagnetic wave but propagate at larger radii through a region of weaker magnetic field near the rotational equator of the outflow, the ultra-high-energy particles escape with negligible adiabatic and radiation losses. The requirement that the magnetars' relativistic winds not overproduce interstellar supershells and unusually large supernova remnants suggests that most of the initial spin-down energy is radiated in kilohertz gravitational waves for several hours after each supernova. For typical distances to events that contribute to E>100 EeV air showers, the model predicts gravitational wave strains ~3×10-21. Such bursts of gravitational radiation should correlate with bursts of ultra-high-energy particles. The Auger experiment should see bursts of particles with energy above 100 EeV every few years.

  5. Energy spectrum of ultra-high energy cosmic rays observed with the Telescope Array using a hybrid technique

    NASA Astrophysics Data System (ADS)

    Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, E. J.; Cho, W. R.; Fujii, H.; Fujii, T.; Fukuda, T.; Fukushima, M.; Hanlon, W.; Hayashi, K.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Hiyama, K.; Honda, K.; Iguchi, T.; Ikeda, D.; Ikuta, K.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Iwamoto, S.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kanbe, T.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kido, E.; Kim, H. B.; Kim, H. K.; Kim, J. H.; Kim, J. H.; Kitamoto, K.; Kitamura, S.; Kitamura, Y.; Kobayashi, K.; Kobayashi, Y.; Kondo, Y.; Kuramoto, K.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, S.; Martens, K.; Matsuda, T.; Matsuura, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Miyata, K.; Murano, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nam, S. W.; Nonaka, T.; Ogio, S.; Ohnishi, M.; Ohoka, H.; Oki, K.; Oku, D.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Roh, S. Y.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, J. I.; Shirahama, T.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T.; Suzuki, S.; Takahashi, Y.; Takeda, M.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Tsuyuguchi, Y.; Uchihori, Y.; Udo, S.; Ukai, H.; Urban, F.; Vasiloff, G.; Wada, Y.; Wong, T.; Yamakawa, Y.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zhou, X.; Zollinger, R.; Zundel, Z.

    2015-02-01

    We measure the spectrum of cosmic rays with energies greater than 1018.2 eV with the fluorescence detectors (FDs) and the surface detectors (SDs) of the Telescope Array Experiment using the data taken in our first 2.3-year observation from May 27, 2008 to September 7, 2010. A hybrid air shower reconstruction technique is employed to improve accuracies in determination of arrival directions and primary energies of cosmic rays using both FD and SD data. The energy spectrum presented here is in agreement with our previously published spectra and the HiRes results.

  6. Development of a Galactic Magnetic Field Model and its application in identifying sources of Ultra-High-Energy Cosmic Rays in Northern Sky

    NASA Astrophysics Data System (ADS)

    Davoudifar, Pantea; Rowshan Tabari, Keihanak

    2015-09-01

    New physical conditions were applied to our previous Galactic Magnetic Field model. The relative motion of a Galactic source were also considered. We simulated the propagation of Ultra-High-Energy particles under the influence of Galactic Magnetic Field. In this research the particles were originated from millisecond pulsars located in the northern sky. Considering the relative motion of Galactic sources for a proper time interval, sample test images of millisecond pulsars were produced using cosmic rays of energies ranged in 1018 - 1019, 1019 - 1020, and 1020 - 1021 eV. The results were compared with our previous ones. For each part of the sky considering the structure of Galactic Magnetic Field, the source location and its relative motion to the observer, one may use these images as a guide to find possible sources of the Ultra-High-Energy Cosmic Ray events. Consequently, a possible method of identifying the sources of these particles were introduced. Some physical limits were discussed.

  7. First results from the microwave air yield beam experiment (MAYBE): Measurement of GHz radiation for ultra-high energy cosmic ray detection

    NASA Astrophysics Data System (ADS)

    Williams, C.; Boh?ov, M.; Bonifazi, C.; Cataldi, G.; Chemerisov, S.; de Mello Neto, J. R. T.; Facal San Luis, P.; Fox, B.; Gorham, P. W.; Hojvat, C.; Hollon, N.; Meyhandan, R.; Monasor, M.; Rouill d'Orfeuil, B.; Santos, E. M.; Pochez, J.; Privitera, P.; Spinka, H.; Verzi, V.; Zhou, J.

    2013-06-01

    We present measurements of microwave emission from an electron-beam induced air plasma performed at the 3 MeV electron Van de Graaff facility of the Argonne National Laboratory. Results include the emission spectrum between 1 and 15 GHz, the polarization of the microwave radiation and the scaling of the emitted power with respect to beam intensity. MAYBE measurements provide further insight on microwave emission from extensive air showers as a novel detection technique for Ultra-High Energy Cosmic Rays.

  8. High-energy cosmic antiparticle excess vs. isotropic gamma-ray background problem in decaying dark matter Universe

    NASA Astrophysics Data System (ADS)

    Alekseev, V. V.; Belotsky, K. M.; Bogomolov, Yu V.; Budaev, R. I.; Dunaeva, O. A.; Kirillov, A. A.; Kuznetsov, A. V.; Laletin, M. N.; Lukyanov, A. D.; Malakhov, V. V.; Mayorov, A. G.; Mayorova, M. A.; Mosichkin, A. F.; Okrugin, A. A.; Rodenko, S. A.; Shitova, A. M.

    2016-02-01

    We are going to show that any conventional decaying dark matter model, providing an explanation of cosmic antiparticle excess observed by PAMELA and AMS-02, inevitably faces the contradiction with isotropic diffuse gamma-ray background, measured by FERMI/LAT.

  9. On the Possibility of Radar Detection of Ultra-high Energy Cosmic Ray- and Neutrino-induced Air Showers

    NASA Technical Reports Server (NTRS)

    Gorham, P.

    1999-01-01

    We show that cosmic rays air showers resulting from primaries with energies above 10(sup 19) eV should be straightforward to detect with radar ranging techniques, where the radar echoes are produced by scattering from the column of ionized air produced by the shower.

  10. High-Energy Cutoff for Solar Cosmic Rays by the Data of Large Non-Standard Detectors

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, Leonty I.

    2003-07-01

    A problem of the upper energy limit for solar cosmic rays (SCR) is studied. Formerly, this limit has been estimated mostly by the data of world network of standard detectors of cosmic rays neutron monitors, muon telescopes and ionization chambers. Recently, it became possible to use for this purpose also the data of some large non-standard detectors (Baksan Underground Scintillation telescope BUST, Extensive Air Shower (EAS) Arrays like Carp et and Andyrchy, project GRAND Array and others). Even though those detectors have been designed for resolving quite different nuclear and astrophysical problems, nevertheless, they proved to be sensible to the effects caused by powerful sporadic manifestations of the solar activity. These observations allow to advance into the energy range above 100 GeV and understand more distinctly the extreme potentialities of solar accelerators.

  11. AugerNext: innovative research studies for the next generation ground-based ultra-high energy cosmic ray experiment

    NASA Astrophysics Data System (ADS)

    Haungs, Andreas

    2013-06-01

    The findings so far of the Pierre Auger Observatory and also of the Telescope Array define the requirements for a possible next generation experiment: it needs to be considerably increased in size, it needs a better sensitivity to composition, and it should cover the full sky. AugerNext aims to perform innovative research studies in order to prepare a proposal fulfilling these demands. Such R&D studies are primarily focused in the following areas consolidation of the detection of cosmic rays using MHz radio antennas; proof-of-principle of cosmic-ray microwave detection; test of the large-scale application of a new generation photo-sensors; generalization of data communication techniques; development of new ways of muon detection with surface arrays. These AugerNext studies on new innovative detection methods for a next generation cosmic-ray experiment are performed at the Pierre Auger Observatory. The AugerNext consortium consists presently of fourteen partner institutions from nine European countries supported by a network of European funding agencies and it is a principal element of the ASPERA/ApPEC strategic roadmaps.

  12. The NUCLEON space experiment for direct high energy cosmic rays investigation in TeV-PeV energy range

    NASA Astrophysics Data System (ADS)

    Atkin, E.; Bulatov, V.; Dorokhov, V.; Gorbunov, N.; Filippov, S.; Grebenyuk, V.; Karmanov, D.; Kovalev, I.; Kudryashov, I.; Merkin, M.; Pakhomov, A.; Podorozhny, D.; Polkov, D.; Porokhovoy, S.; Shumikhin, V.; Sveshnikova, L.; Tkachenko, A.; Tkachev, L.; Turundaevskiy, A.; Vasiliev, O.; Voronin, A.

    2015-01-01

    The NUCLEON satellite experiment is designed to investigate directly, above the atmosphere, the energy spectra of cosmic-ray nuclei and the chemical composition from 100 GeV to 1000 TeV as well as the cosmic-ray electron spectrum from 20 GeV to 3 TeV. NUCLEON is planned to be launched in 2014. This mission is aimed at clarifying the essential details of cosmic-ray origin in this energy interval: number and types of sources, identification of actual nearby sources, and the investigation of the mechanisms responsible for the knee. Specific features of the NUCLEON instrument are relatively small thickness and small weight. A special method of energy determination by the silicon tracker was developed for this case. In this paper we describe a design of the instrument and the results of accelerator beam tests in terms of charge and energy resolution. The overall evidences of the capability of the apparatus to achieve the declared aims are also presented.

  13. High-energy X-Ray Detection of G359.89-0.08 (Sgr A-E): Magnetic Flux Tube Emission Powered by Cosmic Rays?

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; Hailey, Charles J.; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Gotthelf, Eric V.; Harrison, Fiona A.; Mori, Kaya; Nynka, Melania; Stern, Daniel; Tomsick, John A.; Zhang, William W.

    2014-03-01

    We report the first detection of high-energy X-ray (E > 10 keV) emission from the Galactic center non-thermal filament G359.89-0.08 (Sgr A-E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to ~50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index ? ? 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is FX = (2.0 0.1) 10-12 erg cm-2 s-1, corresponding to an unabsorbed X-ray luminosity LX = (2.6 0.8) 1034 erg s-1 assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A-E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to ~100 kyr) with low surface brightness and radii up to ~30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.

  14. High-Energy X-Ray Detection of G359.89-0.08 (SGR A-E): Magnetic Flux Tube Emission Powered by Cosmic Rays?

    NASA Technical Reports Server (NTRS)

    Zhang, Shuo; Hailey, Charles J.; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Gotthelf, Eric V.; Harrison, Fiona A.; Mori, Kaya; Nynka, Melania; Stern, Daniel; Tomsick, John A; Zhang, Will

    2014-01-01

    We report the first detection of high-energy X-ray (E (is) greater than 10 keV) emission from the Galactic center non-thermal filament G359.89-0.08 (Sgr A-E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to approximately 50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index gamma approximately equals 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is F(sub X) = (2.0 +/- 0.1) × 10(exp -12)erg cm(-2) s(-1) , corresponding to an unabsorbed X-ray luminosity L(sub X) = (2.6+/-0.8)×10(exp 34) erg s(-1) assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A-E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to (is) approximately 100 kyr) with low surface brightness and radii up to (is) approximately 30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.

  15. High energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.

    1974-01-01

    The SAS-2 gamma ray experiment and its detection of celestial gamma rays are described. Data also cover intensity of high energy gamma rays, gamma ray distribution, gamma ray origin, and diffuse radiation.

  16. Cosmic absorption of ultra high energy particles

    NASA Astrophysics Data System (ADS)

    Ruffini, R.; Vereshchagin, G. V.; Xue, S.-S.

    2016-02-01

    This paper summarizes the limits on propagation of ultra high energy particles in the Universe, set up by their interactions with cosmic background of photons and neutrinos. By taking into account cosmic evolution of these backgrounds and considering appropriate interactions we derive the mean free path for ultra high energy photons, protons and neutrinos. For photons the relevant processes are the Breit-Wheeler process as well as the double pair production process. For protons the relevant reactions are the photopion production and the Bethe-Heitler process. We discuss the interplay between the energy loss length and mean free path for the Bethe-Heitler process. Neutrino opacity is determined by its scattering off the cosmic background neutrino. We compute for the first time the high energy neutrino horizon as a function of its energy.

  17. High-energy X-ray detection of G359.89–0.08 (SGR A–E): Magnetic flux tube emission powered by cosmic rays?

    SciTech Connect

    Zhang, Shuo; Hailey, Charles J.; Gotthelf, Eric V.; Mori, Kaya; Nynka, Melania; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Tomsick, John A.; Christensen, Finn E.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.

    2014-03-20

    We report the first detection of high-energy X-ray (E > 10 keV) emission from the Galactic center non-thermal filament G359.89–0.08 (Sgr A–E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to ∼50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index Γ ≈ 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is F{sub X} = (2.0 ± 0.1) × 10{sup –12} erg cm{sup –2} s{sup –1}, corresponding to an unabsorbed X-ray luminosity L{sub X} = (2.6 ± 0.8) × 10{sup 34} erg s{sup –1} assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A–E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to ∼100 kyr) with low surface brightness and radii up to ∼30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.

  18. A reexamination of the cosmic-ray helium spectrum and the He-3/He-4 ratio at high energies

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Golden, R. L.; Mewaldt, R. A.

    1987-01-01

    Cosmic ray He spectral data collected by satellites in earth orbit were used to examine a recent measurement of He-3 of about 6 GeV/nucleon, an overabundance compared to predictions made with a leaky box approach. The spectral rigidity index at the time of the measurement was no more than 2.55, indicating a near-earth He-3/He-4 ratio of 0.17, although an index in the range 10-20 GV and a ratio of close to 0.24 is the usual value. New magnetic spectrometer data, however, show that a single spectral rigidity value for the near-earth He-3/He-4 ratio cannot be correct. The Fokker-Planck equation is used to demonstrate that solar modulation of the He flux yields an energy/abundance distribution close to observational data.

  19. North-south asymmetry for high-energy cosmic-ray electrons measured with the PAMELA experiment

    SciTech Connect

    Karelin, A. V.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bonechi, L.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Galper, A. M.; Danilchenko, I. A.; Donato, C. De; Santis, C. De; and others

    2013-08-15

    The north-south asymmetry for cosmic-ray particles was measured with one instrument of the PAMELA satellite-borne experiment in the period June 2006-May 2009. The analysis has been performed by two independent methods: by comparing the count rates in regions with identical geomagnetic conditions and by comparing the experimental distribution of particle directions with the simulated distribution that would be in the case of an isotropic particle flux. The dependences of the asymmetry on energy release in the PAMELA calorimeter and on time have been constructed. The asymmetry (N{sub n} - N{sub s})/(N{sub n} + N{sub s}) is 0.06 {+-} 0.004 at the threshold energy release in the calorimeter and gradually decreases with increasing energy release. The observed effect is shown to be produced by electrons in the energy range 10-100 GeV.

  20. Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Anti?i?, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Buml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Belltoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blmer, H.; Boh?ov, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceio, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Daz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filip?i?, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Frhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; Garca, B.; Garca Gmez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gmez Berisso, M.; Gonalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Gra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hrandel, J. R.; Horneffer, A.; Hrabovsk, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kgl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krmer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leo, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lpez, R.; Lopez Aera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martnez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mi?anovi?, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostaf, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Mller, G.; Mnchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Noka, L.; Nyklicek, M.; Oehlschlger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; P?kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.

    2011-06-01

    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > Eth = 5.5 1019 eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > Eth are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above Eth/Z (for illustrative values of Z = 6,13,26). If the anisotropies above Eth are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.

  1. Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    DOE PAGESBeta

    Abreu, P

    2011-06-17

    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > Eth = 5.5 x 1019 eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > Eth are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above Eth/Z (for illustrativemore » values of Z = 6,13,26). If the anisotropies above Eth are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.« less

  2. Power-law partition and entropy production of high-energy cosmic rays: Knee-ankle structure of the all-particle spectrum

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2013-10-01

    A statistical description of the all-particle cosmic-ray spectrum is given in the 10^{14}\\ \\text{eV} to 10^{20}\\ \\text{eV} interval. The high-energy cosmic-ray flux is modeled as an ultra-relativistic multi-component plasma, whose components constitute a mixture of nearly ideal but nonthermal gases of low density and high temperature. Each plasma component is described by an ultra-relativistic power-law density manifested as spectral peak in the wideband fit. The “knee” and “ankle” features of the high- and ultra-high-energy spectrum turn out to be the global and local extrema of the double-logarithmic E3-scaled flux representation in which the spectral fit is performed. The all-particle spectrum is covered by recent data sets from several air shower arrays, and can be modeled as three-component plasma in the indicated energy range extending over six decades. The temperature, specific number density, internal energy and entropy of each plasma component are extracted from the partial fluxes in the broadband fit. The grand partition function and the extensive entropy functional of a non-equilibrated gas mixture with power-law components are derived in phase space by ensemble averaging.

  3. Diffuse fluxes of cosmic high-energy neutrinos

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1979-01-01

    Production spectra of high-energy neutrinos from galactic cosmic-ray interactions with interstellar gas and extragalactic ultrahigh-energy cosmic-ray interactions with microwave blackbody photons are presented and discussed. These production processes involve the decay of charged pions and are thus related to the production of cosmic gamma rays from the decay of neutral pions. Estimates of the neutrino fluxes from various diffuse cosmic sources are then made, and the reasons for significant differences with previous estimates are discussed. Small predicted event rates for a DUMAND (deep underwater muon and neutrino detector) type detection system, combined with a possible significant flux of prompt neutrinos from the atmosphere above 50 TeV, may make the study of diffuse extraterrestrial neutrinos more difficult than previously thought.

  4. Cosmic rays from cosmic strings

    NASA Astrophysics Data System (ADS)

    Gill, A. J.; Kibble, T. W. B.

    1994-09-01

    It has been speculated that cosmic string networks could produce ultrahigh-energy cosmic rays as a by-product of their evolution. By making use of recent work on the evolution of such networks, it will be shown that the flux of cosmic rays from cosmologically useful, that is, GUT scale, strings, is too small to be used as a test for strings with any foreseeable technology.

  5. A New Method for the Reconstruction of Very-High-Energy Gamma-Ray Spectra and Application to Galactic Cosmic-Ray Accelerators

    NASA Astrophysics Data System (ADS)

    Fernandes, Milton Virgílio

    2014-06-01

    In this thesis, high-energy (HE; E > 0.1 GeV) and very-high-energy (VHE; E > 0.1 TeV) γ-ray data were investigated to probe Galactic stellar clusters (SCs) and star-forming regions (SFRs) as sites of hadronic Galactic cosmic-ray (GCR) acceleration. In principle, massive SCs and SFRs could accelerate GCRs at the shock front of the collective SC wind fed by the individual high-mass stars. The subsequently produced VHE γ rays would be measured with imaging air-Cherenkov telescopes (IACTs). A couple of the Galactic VHE γ-ray sources, including those potentially produced by SCs, fill a large fraction of the field-of-view (FoV) and require additional observations of source-free regions to determine the dominant background for a spectral reconstruction. A new method of reconstructing spectra for such extended sources without the need of further observations is developed: the Template Background Spectrum (TBS). This methods is based on a method to generate skymaps, which determines background in parameter space. The idea is the creation of a look-up of the background normalisation in energy, zenith angle, and angular separation and to account for possible systematics. The results obtained with TBS and state-of-the-art background-estimation methods on H.E.S.S. data are in good agreement. With TBS even those sources could be reconstructed that normally would need further observations. Therefore, TBS is the third method to reconstruct VHE γ-ray spectra, but the first one to not need additional observations in the analysis of extended sources. The discovery of the largest VHE γ-ray source HESS J1646-458 (2.2° in size) towards the SC Westerlund 1 (Wd 1) can be plausibly explained by the SC-wind scenario. But owing to its size, other alternative counterparts to the TeV emission (pulsar, binary system, magnetar) were found in the FoV. Therefore, an association of HESS J1646-458 with the SC is favoured, but cannot be confirmed. The SC Pismis 22 is located in the centre of the previously reported, but unidentified extended TeV γ-ray source HESS J1614-518. Unpublished H.E.S.S. data and archival multi-wavelength (MWL) data (radio, X-ray, and HE data) as well various astrophysical objects in the FoV were investigated in search of a counterpart. The energy-dependent TeV morphology (with at least two source regions) can hardly be reconciled with the MWL data. A SC-wind scenario appears unlikely and the FoV lacks plausible counterparts, but a relic pulsar wind nebula could explain the lack of prominent X-ray emission. The VHE γ-ray source remains unidentified. The analysis of unpublished H.E.S.S. data on the SFR the Gould Belt (GB) did not provide any firm evidence of VHE γ-ray emission, and upper limits on the flux and the cosmic-ray enhancement were derived. The analyses appeared to be affected by the many bright stars and a hypothetically faint large-scale extended emission, possibly posing a limitation in observations and data analysis of current IACTs. Towards Orion A, a possible discovery of extended VHE γ rays with a flux of 10.8% of the Crab Nebula is found with TBS, but cannot be confirmed and could be an artifact of the analysis of this region. Observations with the H.E.S.S. telescope system motivate that SCs and SFRs can accelerate GCRs. However, further H.E.S.S. observations are needed for further morphological and spectral studies. Also, more X-ray observations (in the case of HESS J1614-518) and further studies on the background-estimation methods and their systematics (in the case of the GB) are required.

  6. Cosmic Necklaces and Ultrahigh Energy Cosmic Rays

    SciTech Connect

    Berezinsky, V.; Vilenkin, A.

    1997-12-01

    Cosmic necklaces are hybrid topological defects consisting of monopoles and strings, with two strings attached to each monopole. We argue that the cosmological evolution of necklaces may significantly differ from that of cosmic strings. The typical velocity of necklaces can be much smaller than the speed of light, and the characteristic scale of the network much smaller than the horizon. We estimate the flux of high-energy protons produced by monopole annihilation in the decaying closed loops. For some reasonable values of the parameters it is comparable to the observed flux of ultrahigh-energy cosmic rays. {copyright} {ital 1997} {ital The American Physical Society}

  7. Constraints on dark matter models from a Fermi LAT search for high-energy cosmic-ray electrons from the Sun

    NASA Astrophysics Data System (ADS)

    Ajello, M.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Charles, E.; Chekhtman, A.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Digel, S. W.; Do Couto E Silva, E.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Iafrate, G.; Jóhannesson, G.; Johnson, A. S.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kuss, M.; Latronico, L.; Lionetto, A. M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Ritz, S.; Schalk, T. L.; Sgrò, C.; Siegal-Gaskins, J.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vilchez, N.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Zimmer, S.

    2011-08-01

    During its first year of data taking, the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope has collected a large sample of high-energy cosmic-ray electrons and positrons (CREs). We present the results of a directional analysis of the CRE events, in which we searched for a flux excess correlated with the direction of the Sun. Two different and complementary analysis approaches were implemented, and neither yielded evidence of a significant CRE flux excess from the Sun. We derive upper limits on the CRE flux from the Sun’s direction, and use these bounds to constrain two classes of dark matter models which predict a solar CRE flux: (1) models in which dark matter annihilates to CREs via a light intermediate state, and (2) inelastic dark matter models in which dark matter annihilates to CREs.

  8. Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    SciTech Connect

    Abreu, P

    2011-06-17

    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > Eth = 5.5 x 1019 eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > Eth are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above Eth/Z (for illustrative values of Z = 6,13,26). If the anisotropies above Eth are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.

  9. Cosmic-Rays and Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Meli, A.

    2013-07-01

    Cosmic-rays are subatomic particles of energies ranging between a few eV to hundreds of TeV. These particles register a power-law spectrum, and it seems that most of them originate from astrophysical galactic and extragalactic sources. The shock acceleration in superalfvenic astrophysical plasmas, is believed to be the main mechanism responsible for the production of the non-thermal cosmic-rays. Especially, the importance of the very high energy cosmic-ray acceleration, with its consequent gamma-ray radiation and neutrino production in the shocks of the relativistic jets of Gamma Ray Bursts, is a favourable theme of study. I will discuss the cosmic-ray shock acceleration mechanism particularly focusing on simulation studies of cosmic-ray acceleration occurring in the relativistic shocks of GRB jets.

  10. The Origin of Cosmic Rays

    ScienceCinema

    Blasi, Pasquale [INAF/Arcetri-Italy and Fermilab, Italy

    2010-01-08

    Cosmic Rays reach the Earth from space with energies of up to more than 1020 eV, carrying information on the most powerful particle accelerators that Nature has been able to assemble. Understanding where and how cosmic rays originate has required almost one century of investigations, and, although the last word is not written yet, recent observations and theory seem now to fit together to provide us with a global picture of the origin of cosmic rays of unprecedented clarity. Here we will describe what we learned from recent observations of astrophysical sources (such as supernova remnants and active galaxies) and we will illustrate what these observations tell us about the physics of particle acceleration and transport. We will also discuss the ?end? of the Galactic cosmic ray spectrum, which bridges out attention towards the so called ultra high energy cosmic rays (UHECRs). At ~1020 eV the gyration scale of cosmic rays in cosmic magnetic fields becomes large enough to allow us to point back to their sources, thereby allowing us to perform ?cosmic ray astronomy?, as confirmed by the recent results obtained with the Pierre Auger Observatory. We will discuss the implications of these observations for the understanding of UHECRs, as well as some questions which will likely remain unanswered and will be the target of the next generation of cosmic ray experiments.

  11. A METHOD TO SEARCH FOR CORRELATIONS OF ULTRA-HIGH ENERGY COSMIC-RAY MASSES WITH THE LARGE-SCALE STRUCTURES IN THE LOCAL GALAXY DENSITY FIELD

    SciTech Connect

    Ivanov, A. A.

    2013-02-15

    One of the main goals of investigations using present and future giant extensive air shower (EAS) arrays is the mass composition of ultra-high energy cosmic rays (UHECRs). A new approach to the problem is presented, combining the analysis of arrival directions with the statistical test of the paired EAS samples. One of the ideas of the method is to search for possible correlations between UHECR masses and their separate sources; for instance, if there are two sources in different areas of the celestial sphere injecting different nuclei, but the fluxes are comparable so that arrival directions are isotropic, then the aim is to reveal a difference in the mass composition of cosmic-ray fluxes. The method is based on a non-parametric statistical test-the Wilcoxon signed-rank routine-which does not depend on the populations fitting any parameterized distributions. Two particular algorithms are proposed: first, using measurements of the depth of the EAS maximum position in the atmosphere; and second, relying on the age variance of air showers initiated by different primary particles. The formulated method is applied to the Yakutsk array data, in order to demonstrate the possibility of searching for a difference in average mass composition between the two UHECR sets, arriving particularly from the supergalactic plane and a complementary region.

  12. A search for anisotropy in the arrival directions of ultra-high-energy cosmic rays observed by the High Resolution Fly's Eye detector

    NASA Astrophysics Data System (ADS)

    Stokes, Benjamin Taylor

    2006-06-01

    Although the existence of cosmic rays with energies extending well above 10^19 eV has been confirmed, their origin remains one of the most important questions in astro-particle physics today. The High Resolution Fly's Eye Detector (HiRes) detects Ultra High Energy Cosmic Rays (UHECRs) by employing the air- fluorescence technique to observe Extensive Air Showers (EAS) in the atmosphere over Dugway, Utah. It has been collecting data since May 1997 during which time over 1500 events with energies greater than 10 18.5 eV have been observed in monocular mode. These events are characterized by arrival directions with asymmetric uncertainties, which are explored in detail for this study. Multiple methods are developed and utilized to search for anisotropies in the arrival directions. A primary emphasis is placed upon previous reported observations that suggested small-scale clustering and global dipole biases. Additionally a new method for searching for anisotropies is explored. While all conclusions are statistically limited in their applicability, the sensitivities are shown to be compatible with prior experiments. However, all evidence to date on the arrival directions of the UHECRs observed by HiRes in monocular mode is consistent with an isotropic distribution.

  13. Estimating Ultra-High Energy Cosmic Ray Data as seen from the JEM-EUSO Fluorescence Detector for the planned space based JEM-EUSO detector

    NASA Astrophysics Data System (ADS)

    Fenn, Jeremy; Wiencke, Lawrence

    2014-03-01

    Ultra-high energy cosmic rays (UHECRs) are subatomic particles with energies above 1018 eV. UHECRs are of interest because they are the highest energy particles known to exist. Their source(s), compositions, and the acceleration mechanisms to produce them with energies beyond 1020 eV remain unknown. The Pierre Auger Observatory, located in Argentina, is the world's largest UHECR observatory. It is one of the few a hybrid detectors in the world that combines surface (SD) and fluorescence (FD) detectors. The hybrid detection system is advantageous as it provides a more accurate reconstruction of the incoming cosmic ray's energy and trajectory as it travels through the atmosphere. However, even with the advantage of a hybrid detector, the Pierre Auger has limitations being a ground based observatory. The next generation in UHECR detection is the planned JEM-EUSO mission. The JEM-EUSO mission will consist of a fluorescence detector telescope attached to the International Space Station (ISS). The JEM-EUSO detector is expected to receive an exposure level to UHECRs many times that of the Pierre Auger Observatory by viewing a much larger volume of the atmosphere. In this presentation, I will discuss how data from specific UHECRs collected by the Pierre Auger Observatory is analyzed and altered to estimate what their signatures would look like from space at the planned JEM-EUSO detector. Research advisor

  14. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  15. Charge composition of high energy heavy primary cosmic ray nuclei. Ph.D. Thesis - Catholic Univ. of Am.

    NASA Technical Reports Server (NTRS)

    Price, R. D.

    1974-01-01

    A detailed study of the charge composition of primary cosmic radiation for about 5000 charged nuclei from neon to iron with energies greater than 1.16 GeV/nucleon is presented. Values are obtained after corrections were made for detector dependences, atmospheric attenuation, and solar modulation. New values of 38.5, 32.4, 23.7, and 16.8 g/sq cm for the attenuation mean free paths in air for the same charge groups are presented.

  16. High-Energy Particles from ?-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Waxman, Eli

    The widely accepted interpretation of the phenomenology of ?-ray bursts (GRBs), bursts of 0.1 MeV-1 MeV photons lasting for a few seconds (see [1] for a review), is that the observable effects are due to the dissipation of the kinetic energy of a relativistically expanding wind, a "fireball", whose primal cause is not yet known (see [2,3] for reviews). The recent detection of "afterglows", delayed low energy (X-ray to radio) emission of GRBs (see [4] for review), confirmed the cosmological origin of the bursts, through the redshift determination of several GRB host-galaxies, and confirmed standard model predictions of afterglows that result from the collision of an expanding fireball with its surrounding medium (see [5] for review). In this review, the production in GRB fireballs of ?-rays, high-energy cosmic-rays and neutrinos is discussed in the light of recent GRB and ultra-high-energy cosmic-ray observations.Based on lectures given at the ICTP Summer School on Astroparticle Physics and Cosmology (ICTP, Trieste Italy, June 2000), and at the VI Gleb Wataghin School on High Energy Phenomenology (UNICAMP, Campinas Brazil, July 2000).

  17. A Simplified Model for the Acceleration of Cosmic Ray Particles

    ERIC Educational Resources Information Center

    Gron, Oyvind

    2010-01-01

    Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…

  18. A Simplified Model for the Acceleration of Cosmic Ray Particles

    ERIC Educational Resources Information Center

    Gron, Oyvind

    2010-01-01

    Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not

  19. High energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1987-01-01

    High energy gamma ray astronomy has evolved with the space age. Nonexistent twenty-five years ago, there is now a general sketch of the gamma ray sky which should develop into a detailed picture with the results expected to be forthcoming over the next decade. The galactic plane is the dominant feature of the gamma ray sky, the longitude and latitude distribution being generally correlated with galactic structural features including the spiral arms. Two molecular clouds were already seen. Two of the three strongest gamma ray sources are pulsars. The highly variable X-ray source Cygnus X-3 was seen at one time, but not another in the 100 MeV region, and it was also observed at very high energies. Beyond the Milky Way Galaxy, there is seen a diffuse radiation, whose origin remains uncertain, as well as at least one quasar, 3C 273. Looking to the future, the satellite opportunities for high energy gamma ray astronomy in the near term are the GAMMA-I planned to be launched in late 1987 and the Gamma Ray Observatory, scheduled for launch in 1990. The Gamma Ray Observatory will carry a total of four instruments covering the entire energy range from 30,000 eV to 3 x 10 to the 10th eV with over an order of magnitude increase in sensitivity relative to previous satellite instruments.

  20. Computational Modeling of the Class I Low-Mass Protostar Elias 29 Applying Optical Constants of Ices Processed By High Energy Cosmic Ray Analogs

    NASA Astrophysics Data System (ADS)

    Rocha, W. R. M.; Pilling, S.

    2015-04-01

    We present a study of the effects of high energy cosmic rays (CRs) over the astrophysical ices, observed toward the embedded class I protostar Elias 29, by using computational modeling and laboratory data. Its spectrum was observed with the Infrared Space Observatory (ISO) covering 2.3-190 ?m. The modeling employed the three-dimensional Monte Carlo radiative transfer code RADMC-3D and laboratory data of bombarded ice grains by CR analogs and unprocessed ices (not bombarded). We are assuming that Elias 29 has a self-irradiated disk with inclination i = 60.0, surrounded by an envelope with a bipolar cavity. The results show that absorption features toward Elias 29 are better reproduced by assuming a combination between unprocessed astrophysical ices at low temperature (H2O, CO, CO2) and bombarded ices (H2O:CO2) by high energy CRs. Evidences of the ice processing around Elias 29 can be observed by the good fitting around 5.5-8.0 ?m, by polar and apolar ice segregation in 15.15-15.25 ?m, and by the presence of the CH4 and HCOOH ices. Given that non-nitrogen compounds were employed in this work, we assume that absorption around 5.5-8.0 ?m should not be associated with the NH4+ ion (see the 2003 work of Shutte & Khanna ), but more probably with aliphatic ethers (e.g., R1-OCH2-R2), CH3CHO, and related species. The results obtained in this paper are important because they show that the environment around protostars is better modeled considering processed samples and, consequently, demonstrate the chemical evolution of the astrophysical ices.

  1. Origin of cosmic rays

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1975-01-01

    Based on recent observations of the galactic gas and gamma ray distributions, the galactic cosmic ray distribution is deduced. This distribution is identical to that of supernova remnants (within experimental error), strongly supporting the hypothesis that most observed cosmic rays are produced by supernovas in our own galaxy. The average age of the cosmic ray sources is suggested, from the character of their distribution, to be about 30 million years.

  2. Correlations of the Arrival Directions of Ultra-high Energy Cosmic Rays with Extragalactic Objects as Observed by the Telescope Array Experiment

    NASA Astrophysics Data System (ADS)

    Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, E. J.; Cho, W. R.; Fujii, H.; Fujii, T.; Fukuda, T.; Fukushima, M.; Hanlon, W.; Hayashi, K.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Hiyama, K.; Honda, K.; Iguchi, T.; Ikeda, D.; Ikuta, K.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Iwamoto, S.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kanbe, T.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, H. K.; Kim, J. H.; Kim, J. H.; Kitamoto, K.; Kitamura, S.; Kitamura, Y.; Kobayashi, K.; Kobayashi, Y.; Kondo, Y.; Kuramoto, K.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, S.; Martens, K.; Matsuda, T.; Matsuura, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Miyata, K.; Murano, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nam, S. W.; Nonaka, T.; Ogio, S.; Ohnishi, M.; Ohoka, H.; Oki, K.; Oku, D.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Roh, S. Y.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, J. I.; Shirahama, T.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T.; Suzuki, S.; Takahashi, Y.; Takeda, M.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Tsuyuguchi, Y.; Uchihori, Y.; Udo, S.; Ukai, H.; Urban, F.; Vasiloff, G.; Wada, Y.; Wong, T.; Yamakawa, Y.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zhou, X.; Zollinger, R.; Zundel, Z.

    2013-11-01

    We search for correlations between the positions of extragalactic objects and the arrival directions of ultra-high energy cosmic rays (UHECRs) with primary energy E >= 40 EeV as observed by the surface detector array of the Telescope Array (TA) experiment during the first 40 months of operation. We examine several public astronomical object catalogs, including the Veron-Cetty and Veron catalog of active galactic nuclei. We count the number of TA events correlated with objects in each catalog as a function of three parameters: the maximum angular separation between a TA event and an object, the minimum energy of the events, and the maximum redshift of the objects. We determine the combination of these parameters that maximizes the correlations, and we calculate the probability of having the same levels of correlations from an isotropic distribution of UHECR arrival directions. No statistically significant correlations are found when penalties for scanning over the above parameters and for searching in several catalogs are taken into account.

  3. Study of Ultra-High Energy Cosmic Ray composition using Telescope Array's Middle Drum detector and surface array in hybrid mode

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-04-01

    Previous measurements of the composition of Ultra-High Energy Cosmic Rays (UHECRs) made by the High Resolution Fly's Eye (HiRes) and Pierre Auger Observatory (PAO) are seemingly contradictory, but utilize different detection methods, as HiRes was a stereo detector and PAO is a hybrid detector. The five year Telescope Array (TA) Middle Drum hybrid composition measurement is similar in some, but not all, respects in methodology to PAO, and good agreement is evident between data and a light, largely protonic, composition when comparing the measurements to predictions obtained with the QGSJetII-03 and QGSJet-01c models. These models are also in agreement with previous HiRes stereo measurements, confirming the equivalence of the stereo and hybrid methods. The data is incompatible with a pure iron composition, for all models examined, over the available range of energies. The elongation rate and mean values of Xmax are in good agreement with Pierre Auger Observatory data. This analysis is presented using two methods: data cuts using simple geometrical variables and a new pattern recognition technique.

  4. Cosmic rays: 1912-2012

    NASA Astrophysics Data System (ADS)

    Israel, Martin H.

    2012-09-01

    One hundred years ago, using balloon flights up to 5 kilometers altitude, Victor Hess demonstrated that the intensity of penetrating ionizing radiation increased with altitude, indicating that Earth is exposed to high-energy radiation from space [Hess, 1912]. Since that observation, these cosmic rays have enabled discoveries basic to elementary particle physics and astrophysics. This discovery earned Hess the 1936 Nobel Prize in Physics, shared with Carl Anderson, who discovered the positron among the secondary cosmic rays near the ground [Anderson, 1933]. Then, the only known ionizing radiation with range in air more than about 30 centimeters was the ? ray (electromagnetic radiation with energy above about 100 kiloelectron volts), so the radiation from space was assumed to be ? rays and was called cosmic rays. That name has stuck, although the cosmic rays studied today are not actually rays but particles. Indeed, ? rays do impinge on Earth, and ? ray astronomy is a burgeoning area of astrophysics, but the term cosmic rays continues to apply to the charged particles that make up the bulk of the incident ionizing radiation.

  5. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  6. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  7. Aligned interactions in cosmic rays

    NASA Astrophysics Data System (ADS)

    Kempa, J.

    2015-12-01

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  8. Cosmic-ray detectors on the Moon

    NASA Technical Reports Server (NTRS)

    Linsley, John

    1988-01-01

    The state of cosmic ray physics is reviewed. It is concluded that the nonexistent lunar magnetic field, the low lunar radiation background, and the lack of an atmosphere on the Moon provide an excellent environment for the study of high energy primary cosmic rays.

  9. The Heliosphere and Galactic Cosmic Rays - Duration: 39 seconds.

    NASA Video Gallery

    The heliosphere deflects galactic cosmic rays from entering the system. Galactic cosmic rays are a very high energy form of particle radiation that are extremely difficult to shield against and are...

  10. Cosmic rays and hadronic interactions

    NASA Astrophysics Data System (ADS)

    Lipari, Paolo

    2015-08-01

    The study of cosmic rays, and more in general of the "high energy universe" is at the moment a vibrant field that, thanks to the observations by several innovative detectors for relativistic charged particles, gamma-rays, and neutrinos continue to generate surprising and exciting results. The progress in the field is rapid but many fundamental problems remain open. There is an intimate relation between the study of the high energy universe and the study of the properties of hadronic interactions. High energy cosmic rays can only be studied detecting the showers they generate in the atmosphere, and for the interpretation of the data one needs an accurate modeling of the collisions between hadrons. Also the study of cosmic rays inside their sources and in the Galaxy requires a precise description of hadronic interactions. A program of experimental studies at the LHC and at lower energy, designed to address the most pressing problems, could significantly reduce the existing uncertainties and is very desirable. Such an experimental program would also have a strong intrinsic scientific interest, allowing the broadening and deepening of our understanding of Quantum Chromo Dynamics in the non-perturbative regime, the least understood sector of the Standard Model of particle physics. It should also be noted that the cosmic ray spectrum extends to particles with energy E 1020 eV, or a nucleon-nucleon c.m. energy ?s ? 430 TeV, 30 times higher than the current LHC energy. Cosmic ray experiments therefore offer the possibility to perform studies on the properties of hadronic interactions that are impossible at accelerators.

  11. Cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1973-01-01

    The isotopic composition of cosmic rays is studied in order to develop the relationship between cosmic rays and stellar processes. Cross section and model calculations are reported on isotopes of H, He, Be, Al and Fe. Satellite instrument measuring techniques separate only the isotopes of the lighter elements.

  12. The Non-Imaging CHErenkov Array (NICHE): A TA/TALE extension to measure the flux and composition of Very-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Bergman, Douglas; Krizmanic, John; Sokolsky, Pierre

    2013-04-01

    Co-sited with TA/TALE, the Non-Imaging CHErenkov Array (NICHE) will measure the flux and nuclear composition of cosmic rays from below 10^16 eV to over 10^18 eV in its initial deployment. Furthermore, the low-energy reach can be lowered below the cosmic ray knee via counter redeployment or additional counters. NICHE uses easily deployable detectors to measure the amplitude and time-spread of the air-shower Cherenkov signal to achieve an event-by-event measurement of Xmax and energy, each with excellent resolution. NICHE will have sufficient area and angular acceptance to have significant overlap with the TA/TALE detectors to allow for energy cross-calibration. Simulated NICHE performance has shown that the array has the ability to distinguish between several different composition models as well as measure the end of Galactic cosmic ray spectrum. In this talk, the NICHE design, array performance, and status will be discussed as well as NICHE's ability to measure the cosmic ray nuclear composition as a function of energy.

  13. OBSERVATIONS OF HIGH-ENERGY COSMIC-RAY ELECTRONS FROM 30 GeV TO 3 TeV WITH EMULSION CHAMBERS

    SciTech Connect

    Kobayashi, T.; Komori, Y.; Yoshida, K.; Yanagisawa, K.; Nishimura, J.; Yamagami, T.; Saito, Y.; Tateyama, N.; Yuda, T.; Wilkes, R. J. E-mail: komori-y@kuhs.ac.jp E-mail: nisimura@icrr.u-tokyo.ac.jp E-mail: yuda@icrr.u-tokyo.ac.jp

    2012-12-01

    We have performed a series of cosmic-ray electron observations using balloon-borne emulsion chambers since 1968. While we previously reported the results from subsets of the exposures, the final results of the total exposures up to 2001 are presented here. Our successive experiments have yielded a total exposure of 8.19 m{sup 2} sr day at altitudes of 4.0-9.4 g cm{sup -2}. The performance of the emulsion chambers was examined by accelerator beam tests and Monte Carlo simulations, and the on-board calibrations were carried out by using the flight data. In this work, we present the cosmic-ray electron spectrum in the energy range from 30 GeV to 3 TeV at the top of the atmosphere, which is well represented by a power-law function with an index of -3.28 {+-} 0.10. The observed data can also be interpreted in terms of diffusive propagation models. The evidence of cosmic-ray electrons up to 3 TeV suggests the existence of cosmic-ray electron sources at distances within {approx}1 kpc and times within {approx}1 Multiplication-Sign 10{sup 5} yr ago.

  14. Very high energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.

    1976-01-01

    Recent results in ground based very high energy gamma ray astronomy are reviewed. The various modes of the atmospheric Cerenkov technique are described, and the importance of cosmic ray rejection methods is stressed. The positive detections of the Crab pulsar that suggest a very flat spectrum and time-variable pulse phase are discussed. Observations of other pulsars (particularly Vela) suggest these features may be general. Evidence that a 4.8 hr modulated effect was detected from Cyg X-3 is strengthened in that the exact period originally proposed agrees well with a recent determination of the X-ray period. The southern sky observations are reviewed, and the significance of the detection of an active galaxy (NGC 5128) is considered for source models and future observations.

  15. Ultra-high energy cosmic rays: 40 years retrospective of continuous observations at the Yakutsk array: Part 1. Cosmic ray spectrum in the energy range 1015-1018 eV and its interpretation

    NASA Astrophysics Data System (ADS)

    Knurenko, Stanislav; Petrov, Igor; Petrov, Zim; Sleptsov, Ivan

    2015-08-01

    The experimental data on the cosmic ray energy spectrum obtained from the Small Cherenkov Array in Yakutsk on the measurement of Cherenkov radiation in showers with energy 1015-1018 eV are discussed. The data were obtained by means of continuous array operation since 1994. The all particle spectrum in this energy region was found to have a complex shape and cannot be described by a simple exponential function with a single slope indicator, g. After the first kink at energy 3 · 1015 eV (knee), the spectrum becomes steeper at Δγ = 0.4 up to energy <2 · 1016 eV, then part of the spectrum becomes flat to >8 · 1016 eV, the slope of the spectrum is 2.92 ± 0.03 and then again changes slope by Δγ = 0.32 ± 0.05 from about ˜2· 1017 eV. The second kink in the spectrum observed at the Yakutsk EAS array at ˜2·1017 eV, or also called second knee, is a significant result for space astrophysics of ultra-high cosmic rays. In this paper we discuss possible scenarios for spectrum formation of cosmic rays by galactic sources to energies <1017 eV, mainly supernovae remnants (SNR) and Metagalactic origins in the energy range 1017-1018 eV. Most likely, that measurement of the second knee is related with the transitional region, galactic to extragalactic origin of cosmic rays.

  16. Cosmic-ray astrochemistry.

    PubMed

    Indriolo, Nick; McCall, Benjamin J

    2013-10-01

    Gas-phase chemistry in the interstellar medium is driven by fast ion-molecule reactions. This, of course, demands a mechanism for ionization, and cosmic rays are the ideal candidate as they can operate throughout the majority of both diffuse and dense interstellar clouds. Aside from driving interstellar chemistry via ionization, cosmic rays also interact with the interstellar medium in ways that heat the ambient gas, produce gamma rays, and produce light element isotopes. In this paper we review the observables generated by cosmic-ray interactions with the interstellar medium, focusing primarily on the relevance to astrochemistry. PMID:23812538

  17. Charged Cosmic Rays and Neutrinos

    NASA Astrophysics Data System (ADS)

    Kachelrie, M.

    2013-04-01

    High-energy neutrino astronomy has grown up, with IceCube as one of its main experiments having sufficient sensitivity to test "vanilla" models of astrophysical neutrinos. I review predictions of neutrino fluxes as well as the status of cosmic ray physics. I comment also briefly on an improvement of the Fermi-LAT limit for cosmogenic neutrinos and on the two neutrino events presented by IceCube first at "Neutrino 2012".

  18. The NuSTAR Extragalactic Survey: A First Sensitive Look at the High-Energy Cosmic X-Ray Background Population

    NASA Technical Reports Server (NTRS)

    Alexander, D. M.; Stern, D.; DelMoro, A.; Lansbury, G. B.; Assef, R. J.; Aird, J.; Ajello, M.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Christensen, F. E.; Civano, F.; Cosmastri, A.; Craig, W. W.; Elvis, M.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Luo, B.; Madsen, K. K.; Alexander, D. M.; Zhang, W. W.; Eisenhardt, P. R. M.

    2013-01-01

    We report on the first 10 identifications of sources serendipitously detected by the Nuclear Spectroscopic Telescope Array (NuSTAR) to provide the first sensitive census of the cosmic X-ray background source population at approximately greater than 10 keV. We find that these NuSTAR-detected sources are approximately 100 times fainter than those previously detected at approximately greater than 10 keV and have a broad range in redshift and luminosity (z = 0.020-2.923 and L(sub 10-40 keV) approximately equals 4 × 10(exp 41) - 5 × 10(exp 45) erg per second; the median redshift and luminosity are z approximately equal to 0.7 and L(sub 10-40 keV) approximately equal to 3 × 10(exp 44) erg per second, respectively. We characterize these sources on the basis of broad-band approximately equal to 0.5 - 32 keV spectroscopy, optical spectroscopy, and broad-band ultraviolet-to-mid-infrared spectral energy distribution analyses. We find that the dominant source population is quasars with L(sub 10-40 keV) greater than 10(exp 44) erg per second, of which approximately 50% are obscured with N(sub H) approximately greater than 10(exp 22) per square centimeters. However, none of the 10 NuSTAR sources are Compton thick (N(sub H) approximately greater than 10(exp 24) per square centimeters) and we place a 90% confidence upper limit on the fraction of Compton-thick quasars (L(sub 10-40 keV) greater than 10(exp 44) erg per second) selected at approximately greater than 10 keV of approximately less than 33% over the redshift range z = 0.5 - 1.1. We jointly fitted the rest-frame approximately equal to 10-40 keV data for all of the non-beamed sources with L(sub 10-40 keV) greater than 10(exp 43) erg per second to constrain the average strength of reflection; we find R less than 1.4 for gamma = 1.8, broadly consistent with that found for local active galactic nuclei (AGNs) observed at approximately greater than 10 keV. We also constrain the host-galaxy masses and find a median stellar mass of approximately 10(exp 11) solar mass, a factor approximately 5 times higher than the median stellar mass of nearby high-energy selected AGNs, which may be at least partially driven by the order of magnitude higher X-ray luminosities of the NuSTAR sources. Within the low source-statistic limitations of our study, our results suggest that the overall properties of the NuSTAR sources are broadly similar to those of nearby high-energy selected AGNs but scaled up in luminosity and mass.

  19. THE NuSTAR EXTRAGALACTIC SURVEY: A FIRST SENSITIVE LOOK AT THE HIGH-ENERGY COSMIC X-RAY BACKGROUND POPULATION

    SciTech Connect

    Alexander, D. M.; Del Moro, A.; Lansbury, G. B.; Aird, J.; Stern, D.; Assef, R. J.; Ajello, M.; Boggs, S. E.; Ballantyne, D. R.; Bauer, F. E.; Brandt, W. N.; Christensen, F. E.; Craig, W. W.; Civano, F.; Hickox, R. C.; Comastri, A.; Elvis, M.; Grefenstette, B. W.; Harrison, F. A.; Hailey, C. J.; and others

    2013-08-20

    We report on the first 10 identifications of sources serendipitously detected by the Nuclear Spectroscopic Telescope Array (NuSTAR) to provide the first sensitive census of the cosmic X-ray background source population at {approx}> 10 keV. We find that these NuSTAR-detected sources are Almost-Equal-To 100 times fainter than those previously detected at {approx}> 10 keV and have a broad range in redshift and luminosity (z = 0.020-2.923 and L{sub 10-40{sub keV}} Almost-Equal-To 4 Multiplication-Sign 10{sup 41}-5 Multiplication-Sign 10{sup 45} erg s{sup -1}); the median redshift and luminosity are z Almost-Equal-To 0.7 and L{sub 10-40{sub keV}} Almost-Equal-To 3 Multiplication-Sign 10{sup 44} erg s{sup -1}, respectively. We characterize these sources on the basis of broad-band Almost-Equal-To 0.5-32 keV spectroscopy, optical spectroscopy, and broad-band ultraviolet-to-mid-infrared spectral energy distribution analyses. We find that the dominant source population is quasars with L{sub 10-40{sub keV}} > 10{sup 44} erg s{sup -1}, of which Almost-Equal-To 50% are obscured with N{sub H} {approx}> 10{sup 22} cm{sup -2}. However, none of the 10 NuSTAR sources are Compton thick (N{sub H} {approx}> 10{sup 24} cm{sup -2}) and we place a 90% confidence upper limit on the fraction of Compton-thick quasars (L{sub 10-40{sub keV}} > 10{sup 44} erg s{sup -1}) selected at {approx}> 10 keV of {approx}< 33% over the redshift range z = 0.5-1.1. We jointly fitted the rest-frame Almost-Equal-To 10-40 keV data for all of the non-beamed sources with L{sub 10-40{sub keV}} > 10{sup 43} erg s{sup -1} to constrain the average strength of reflection; we find R < 1.4 for {Gamma} = 1.8, broadly consistent with that found for local active galactic nuclei (AGNs) observed at {approx}> 10 keV. We also constrain the host-galaxy masses and find a median stellar mass of Almost-Equal-To 10{sup 11} M{sub Sun }, a factor Almost-Equal-To 5 times higher than the median stellar mass of nearby high-energy selected AGNs, which may be at least partially driven by the order of magnitude higher X-ray luminosities of the NuSTAR sources. Within the low source-statistic limitations of our study, our results suggest that the overall properties of the NuSTAR sources are broadly similar to those of nearby high-energy selected AGNs but scaled up in luminosity and mass.

  20. Ultra-high energy cosmic rays detected by Auger and AGASA. Corrections for galactic magnetic field deflections, source populations, and arguments for multiple components

    NASA Astrophysics Data System (ADS)

    Nagar, N. M.; Matulich, J.

    2010-11-01

    Context. The origin and composition of ultra-high energy cosmic rays (UHECRs) remain unclear. Possible sources include active galactic nuclei - selected by various criteria - and extragalactic magnetars. Aims: We aim to improve constraints on the source population(s) and compositions of UHECRs by accounting for UHECR deflections within existing Galactic magnetic field models (GMFs). Methods: We used Monte Carlo simulations for UHECRs detected by the Pierre Auger Observatory and AGASA, to determine the UHECR trajectories within the Galaxy and their outside-the-Galaxy arrival directions. The simulations, which used UHECR compositions from protons to iron and seven models of the ordered GMF, accounted for uncertainties in the GMF and a turbulent magnetic field component. Trajectories and outside-the-Galaxy arrival directions were compared with Galactic and extragalactic sources. Results: For a given proton or light UHECR, the multiple potential outside-the-Galaxy arrival directions within a given GMF model are not very different, allowing meaningful constraints on source populations. Our previous claim of a correlation between a subset of UHECRs and nearby extended radiogalaxies remains valid, even strengthened, within several GMF models. Both the nearest radiogalaxy Cen A, and the nearest radio-extended BL Lac, CGCG 413-019, are potential sources of multiple UHECRs. The correlation appears to be linked to the extended radio source rather than a tracer of an underlying matter distribution. Several UHECRs have trajectories that pass close to the Galactic plane, some passing close to Galactic magnetars and/or microquasars. For heavier UHECRs, the multiple potential outside-the-Galaxy arrival directions of any given UHECR are highly scattered but still allow meaningful constraints. It is possible, but unlikely, that all UHECRs originate in the nearby radiogalaxy Cen A. Conclusions: Nearby radiogalaxies remain a strong potential source of a significant subset of UHECRs. For light UHECRs, about a third of UHECRs can be matched to nearby galaxies with extended radio jets. The remaining UHECRs could also be explained as originating in extended radiogalaxies if one has at least one of: a large UHECR mean free path, a high cluster and/or intergalactic magnetic field, and a heavy composition for two-thirds of the detected UHECRs. If extended radiogalaxies are, or trace, UHECR sources, the most consistent models for the ordered GMF are the BS-S and BS-A models; the GMF models of Sun and collaborators are acceptable if a dipole component is added. Figures 2, 4 and 5 are only available in electronic form at http://www.aanda.org

  1. Pion-to-proton ratio for unaccompanied high-energy cosmic-ray hadrons at mountain altitude using transition-radiation detector

    NASA Astrophysics Data System (ADS)

    Ellsworth, R. W.; Ito, A. S.; MacFall, J. R.; Siohan, F.; Streitmatter, R. E.; Tonwar, S. C.; Viswanath, P. R.; Yodh, G. B.

    1983-05-01

    A transition-radiation (TR) detector, consisting of 24 modules of styrofoam radiators and multiwire proportional chambers, and an ionization calorimeter have been used to measure the pion-to-proton ratio among the unaccompanied cosmic-ray hadrons at a mountain altitude of 730 g cm-2. Using the characteristics of the TR detector obtained from calibrations with particle beams at accelerators, the ?p ratio has been determined for cosmic-ray hadrons as ?p=0.96+/-0.15 for hadron energy = 400-800 GeV, and ?p=0.45+/-0.25 for energy > 800 GeV. Monte Carlo simulations of hadron cascades in the atmosphere using the approximate criterion of unaccompaniment suggest that the observed ?p ratio as well as the previously reported neutral-to-charge ratio can be understood by assuming a value of about 13 for the charge exchange in nucleon-air-nucleus inelastic interactions at energies above 400 GeV.

  2. Is the ultra-high energy cosmic-ray excess observed by the telescope array correlated with IceCube neutrinos?

    SciTech Connect

    Fang, Ke; Fujii, Toshihiro; Linden, Tim; Olinto, Angela V.

    2014-10-20

    The Telescope Array (TA) has observed a statistically significant excess in cosmic rays with energies above 57 EeV in a region of approximately 1150 deg{sup 2} centered on coordinates R.A. = 146.7, decl. = 43.2. We note that the location of this excess correlates with 2 of the 28 extraterrestrial neutrinos recently observed by IceCube. The overlap between the two IceCube neutrinos and the TA excess is statistically significant at the 2σ level. Furthermore, the spectrum and intensity of the IceCube neutrinos is consistent with a single source which would also produce the TA excess. Finally, we discuss possible source classes with the correct characteristics to explain the cosmic-ray and neutrino fluxes with a single source.

  3. The Non-Imaging CHErenkov (NICHE) Array: A TA/TALE extension to measure the flux and composition evolution of Very-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Krizmanic, John; Bergman, Douglas; Tsunesada, Yoshiki

    2015-04-01

    Co-sited with TA/TALE, the Non-Imaging CHErenkov (NICHE) Array will measure the flux and nuclear composition of cosmic rays from below 1015 eV to over 1018 eV in its eventual full deployment. NICHE uses easily deployable detectors to measure the amplitude and time-spread of the air-shower Cherenkov signal to achieve an event-by-event measurement of Xmax and energy, each with excellent resolution. Prototype detectors are under construction and will form an initial prototype array (jNICHE) that will be deployed in 2015, co-measuring air showers with TA/TALE. This development forms the foundation for the full NICHE array that is designed to have sufficient area and angular acceptance to have significant overlap with the TA/TALE measurements, which provides energy cross-calibration. Simulated NICHE performance has shown that the array has the ability to distinguish between several different composition models as well as measure the end of Galactic cosmic ray spectrum. In this talk, the NICHE design, array performance, prototype development, and status will be discussed as well as NICHE's ability to measure the cosmic ray nuclear composition as a function of energy.

  4. Cosmic Rays and Climate

    NASA Astrophysics Data System (ADS)

    Kirkby, J.

    2005-12-01

    Palaeoclimatic data provide extensive evidence for solar/cosmic ray forcing of Earth's climate on all timescales, but the underlying mechanism remains a mystery. However, satellite data suggest that clouds may be influenced by galactic cosmic rays, which are modulated by the solar wind, by the geomagnetic field and, on longer timescales, by galactic variations. Physical mechanisms to explain the cloud observations have been proposed and modelled. Although these are supported by recent atmospheric observations, definitive mechanistic experiments are lacking. In order to test whether cosmic rays and clouds are causally linked, a novel experiment known as CLOUD has been proposed using a beam from a CERN particle accelerator. This paper presents an overview of the palaeoclimatic evidence for cosmic ray forcing of Earth's climate, and reviews the possible physical mechanisms and the experimental prospects.

  5. Cosmic rays in astrospheres

    NASA Astrophysics Data System (ADS)

    Scherer, K.; van der Schyff, A.; Bomans, D. J.; Ferreira, S. E. S.; Fichtner, H.; Kleimann, J.; Strauss, R. D.; Weis, K.; Wiengarten, T.; Wodzinski, T.

    2015-04-01

    Context. Cosmic rays passing through large astrospheres can be efficiently cooled inside these "cavities" in the interstellar medium. Moreover, the energy spectra of these energetic particles are already modulated in front of the astrospherical bow shocks. Aims: We study the cosmic ray flux in and around λ Cephei as an example for an astrosphere. The large-scale plasma flow is modeled hydrodynamically with radiative cooling. Methods: We study the cosmic ray flux in a stellar wind cavity using a transport model based on stochastic differential equations. The required parameters, most importantly, the elements of the diffusion tensor, are based on the heliospheric parameters. The magnetic field required for the diffusion coefficients is calculated kinematically. We discuss the transport in an astrospheric scenario with varying parameters for the transport coefficients. Results: We show that large stellar wind cavities can act as sinks for the Galactic cosmic ray flux and thus can give rise to small-scale anisotropies in the direction to the observer. Conclusions: Small-scale cosmic ray anisotropies can naturally be explained by the modulation of cosmic ray spectra in huge stellar wind cavities.

  6. Cosmic rays and hadronic interactions

    SciTech Connect

    Lipari, Paolo

    2013-03-25

    The cosmic ray spectrum extends to particles with energy E{approx} 10{sup 20} eV, that corresponds (assuming that the primary particle is a proton) to a nucleon-nucleon c.m. energy {radical}(s) Asymptotically-Equal-To 430TeV, 50 times higher than the current LHC energy. These very high energy particles can be studied via the observation of the showers they generate in the atmosphere. The interpretation of the data requires therefore the modeling of hadronic interactions in an energy range beyond what can be studied in accelerator experiments. The theoretical problem of estimating the relevant properties of hadronic interactions in this energy range is therefore of central importance for the interpretation of the cosmic ray data. Viceversa, it is in principle possible to obtain information about hadronic interactions from the cosmic ray observations, but this program has to confront the fact that the (freely available) cosmic ray beam has an unknown energy spectrum and an unknown mass composition.

  7. Cosmic Gamma-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Diehl, Roland

    2013-07-01

    Penetrating gamma-rays require complex instrumentation for astronomical spectroscopy measurements of gamma-rays from cosmic sources. A combination of multiple-interaction detectors in space and post-processing of detector events on ground have lead to a spectroscopy performance which is now capable to provide new astrophysical insights. Spectral signatures in the MeV regime originate from transitions in atomic nuclei, stimulated by either radioactive decays or high-energy nuclear collisions such as with cosmic rays. Lines have been detected from radioactive isotopes produced in stellar and supernova nuclear burning, and from energetic-particle interactions in solar flares. Radioactive-decay gamma-rays from 56Ni directly reflect the power source of supernova light. 44Ti is produced in core-collapse supernova interiors and the largely unknown and dynamical conditions herein. From 26Al and 60Fe which are distributed in interstellar space from massive-star nucleosynthesis over millions of years. Additionally, nuclear de-excitation lines have been measured in solar-flare events, and convey information about energetic particle production in these outbursts, and their interaction in the solar atmosphere. Annihilating positrons add another very special astrophysical source, which has been puzzling so far, with its characteristic gamma-rays at 511 keV; it has been measured both in such solar flares, and throughout the interstellar medium of our Milky Way galaxy. We discuss instrumentation and data processing for cosmic gamma-ray spectroscopy, and the astrophysical issues and insights from these measurements.

  8. High Energy Electron and Gamma - Ray Detection with ATIC

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon borne ionization calorimeter is well suited to record and identify high energy cosmic ray electrons, and at very high energies gamma-ray photons as well. We have simulated the performance of the instrument, and compare the simulations with actual high energy electron exposures at the CERN accelerator. Simulations and measurements do not compare exactly, in detail, but overall the simulations have predicted actual measured behavior quite well. ATIC has had its first 16 day balloon flight at the turn of the year over Antarctica, and first results obtained using the analysis methods derived from simulations and calibrations will be reported.

  9. The isotopic composition of cosmic ray chlorine

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.

    1985-01-01

    The isotopic composition of galactic cosmic ray chlorine (approx. = 225 MeV/amu) has been studied using the high energy cosmic ray experiment on the International Sun Earth Explorer 3 (ISEE-3) spacecraft. The abundances of 35C1 and 37C1 are found to be consistent with the secondary production expected from a propagation model developed to account for both light and subiron secondaries. An upper limit on the abundance of the radioactive isotope 36C1 (halflife approx. = 0.3 Myr) is used to set a lower limit on the confinement time of cosmic rays of approximately 1 Myr.

  10. Cosmic ray propagation in the local superbubble

    NASA Technical Reports Server (NTRS)

    Steitmatter, R. E.; Balasubrahmanyan, V. K.; Protheroe, R. J.; Ormes, J. F.

    1984-01-01

    It is suggested that a ring of HI gas lying in the galactic plane is part of a supershell which formed some 3 x to the 7th power years ago. The consequences of a closed magnetic supershell for cosmic ray propagation are examined and it is concluded that there is no evidence which precludes the production and trapping of cosmic rays in such a region. A consequence of superbubble confinement is that the mean age of cosmic rays would be independent of energy. This can be tested by high energy observations of the isotopic composition of Be.

  11. Educational Cosmic Ray Arrays

    SciTech Connect

    Soluk, R. A.

    2006-04-11

    In the last decade a great deal of interest has arisen in using sparse arrays of cosmic ray detectors located at schools as a means of doing both outreach and physics research. This approach has the unique advantage of involving grade school students in an actual ongoing experiment, rather then a simple teaching exercise, while at the same time providing researchers with the basic infrastructure for installation of cosmic ray detectors. A survey is made of projects in North America and Europe and in particular the ALTA experiment at the University of Alberta which was the first experiment operating under this paradigm.

  12. Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Blasi, Pasquale

    2015-12-01

    The multi-facet nature of the origin of cosmic rays is such that some of the problems currently met in our path to describing available data are due to oversimplified models of CR acceleration and transport, and others to lack of knowledge of the physical processes at work in certain conditions. On the other hand, the phenomenology of cosmic rays, as arising from better observations, is getting so rich that it makes sense to try to distinguish the problems that derive from too simple views of Nature and those that are challenging the very foundations of the existing paradigms. Here I will briefly discuss some of these issues.

  13. On the determination of the cosmic infrared background radiation from the high-energy spectrum of extragalactic gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Slavin, Jonathan

    1994-01-01

    In a recent paper Stecker, De Jager, & Salamon have suggested using the observed approximately MeV to TeV spectra of extragalactic gamma-ray sources as probes of the local density of the cosmic infrared background radiation (CIBR) and have subsequently claimed a first possible measurement of the CIBR from the analysis of the gamma-ray spectrum of Mrk 421 (De Jager, Stecker, & Salamon). The CIBR from normal galaxies consists of two components: a stellar emission component (CIBRs), and a thermal dust emission component (CIBRd). Photons with energies in the approximately 0.1-2 TeV range interact primarily with the CIBRs, whereas interactions with CIBRd dominate the absorption of photons in the approximately 2-100 TeV energy range. SDS 92 and DSS94 considered only the interaction of the gamma-rays with the dust emission component of the CIBR. We present here an improved analysis of the absorption of extragalactic TeV gamma rays by the CIBR, taking the dual nature of its origin into account. Applying the analysis to the observed gamma-ray spectrum of Mrk 421, a BL Lac object at z = 0.031, we find agreement with DSS94 tentative evidence for absorption by the CINRs. Our analysis therefore limits the detection of the CIBR to the approximately 15-40 micron wavelength regime which, considering the uncertainties in the highest energy (greater than 4 TeV) data and ion the possibility of absorption inside the source, many turn out to be an upper limit on its energy density. At shorter wavelengths (lambda approximately = 1-15 microns), where the gamma-ray interactions are dominated by the CIBRs, our analysis definitely yields only an upper limit on the energy density of the CIBR. In contrast, DSS94 have claimed a possible first measurement of the CIBR over the entire 1-120 micron wavelength region. The upper limit on the CIBRs and tentative detection of the CIBRd are consistent with normal galaxies contributing most of the energy to the CIBR, and constrain the contribution of some exotic sources. With careful modeling of infrared foreground emissions, these constraints on the CIBR are above the values measurable by the DIRBE experiment on board the Cosmic Background Explorer (COBE) satellite.

  14. Cosmic gamma rays

    NASA Astrophysics Data System (ADS)

    Wolfendale, A. W.

    The composition and implications of gamma rays observed by satellites are discussed. SAS II and COS B data from the direction of the Crab and Vela pulsars, 3C273, and the molecular cloud in the vicinity of Rho Oph are examined. It is noted that the 2-3 deg resolution of the detectors demands the consideration that cosmic ray electrons interacting with the interstellar medium could invalidate any positive definition of a particular source. Mechanisms of cosmic ray production by interstellar clouds are reviewed, and evidence is cited for a possible galactic source of some of the emissions. Observations of a 100 MeV flux coming from the direction of 2CGl95 + 04, through a relatively uncluttered region, does suggest a discrete source. Extragalactic rays possibly originate in the galactic halo. Models of equal X ray flux from all directions, with some enhancement from directions containing galaxies, seem to correspond with observations.

  15. Large scale distribution of ultra high energy cosmic rays detected at the Pierre Auger Observatory with zenith angles up to 80

    SciTech Connect

    Aab, Alexander; et al.

    2015-03-30

    In this study, we present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60 and 80. We perform two Rayleigh analyses, one in the right ascension and one in the azimuth angle distributions, that are sensitive to modulations in right ascension and declination, respectively. The largest departure from isotropy appears in the $E\\gt 8$ EeV energy bin, with an amplitude for the first harmonic in right ascension $r_{1}^{\\alpha }=(4.4\\pm 1.0)\\times {{10}^{-2}}$, that has a chance probability $P(\\geqslant r_{1}^{\\alpha })=6.4\\times {{10}^{-5}}$, reinforcing the hint previously reported with vertical events alone.

  16. Large Scale Distribution of Ultra High Energy Cosmic Rays Detected at the Pierre Auger Observatory with Zenith Angles up to 80°

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Freire, M. M.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.

    2015-04-01

    We present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60° and 80°. We perform two Rayleigh analyses, one in the right ascension and one in the azimuth angle distributions, that are sensitive to modulations in right ascension and declination, respectively. The largest departure from isotropy appears in the E\\gt 8 EeV energy bin, with an amplitude for the first harmonic in right ascension r1α =(4.4+/- 1.0)× {{10}-2}, that has a chance probability P(≥slant r1α )=6.4× {{10}-5}, reinforcing the hint previously reported with vertical events alone.

  17. Large scale distribution of ultra high energy cosmic rays detected at the Pierre Auger Observatory with zenith angles up to 80°

    DOE PAGESBeta

    Aab, Alexander

    2015-03-30

    In this study, we present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60° and 80°. We perform two Rayleigh analyses, one in the right ascension and one in the azimuth angle distributions, that are sensitive to modulations in right ascension and declination, respectively. The largest departure from isotropy appears in themore » $$E\\gt 8$$ EeV energy bin, with an amplitude for the first harmonic in right ascension $$r_{1}^{\\alpha }=(4.4\\pm 1.0)\\times {{10}^{-2}}$$, that has a chance probability $$P(\\geqslant r_{1}^{\\alpha })=6.4\\times {{10}^{-5}}$$, reinforcing the hint previously reported with vertical events alone.« less

  18. Large scale distribution of ultra high energy cosmic rays detected at the Pierre Auger Observatory with zenith angles up to 80°

    SciTech Connect

    Aab, Alexander

    2015-03-30

    In this study, we present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60° and 80°. We perform two Rayleigh analyses, one in the right ascension and one in the azimuth angle distributions, that are sensitive to modulations in right ascension and declination, respectively. The largest departure from isotropy appears in the $E\\gt 8$ EeV energy bin, with an amplitude for the first harmonic in right ascension $r_{1}^{\\alpha }=(4.4\\pm 1.0)\\times {{10}^{-2}}$, that has a chance probability $P(\\geqslant r_{1}^{\\alpha })=6.4\\times {{10}^{-5}}$, reinforcing the hint previously reported with vertical events alone.

  19. Performance of the SciBar cosmic ray telescope (SciCRT) toward the detection of high-energy solar neutrons in solar cycle 24

    NASA Astrophysics Data System (ADS)

    Sasai, Yoshinori; Nagai, Yuya; Itow, Yoshitaka; Matsubara, Yutaka; Sako, Takashi; Lopez, Diego; Itow, Tsukasa; Munakata, Kazuoki; Kato, Chihiro; Kozai, Masayoshi; Miyazaki, Takahiro; Shibata, Shoichi; Oshima, Akitoshi; Kojima, Hiroshi; Tsuchiya, Harufumi; Watanabe, Kyoko; Koi, Tatsumi; Valds-Galicia, Jose Francisco; Gonzlez, Luis Xavier; Ortiz, Ernesto; Musalem, Octavio; Hurtado, Alejandro; Garcia, Rocio; Anzorena, Marcos

    2014-12-01

    We plan to observe solar neutrons at Mt. Sierra Negra (4,600 m above sea level) in Mexico using the SciBar detector. This project is named the SciBar Cosmic Ray Telescope (SciCRT). The main aims of the SciCRT project are to observe solar neutrons to study the mechanism of ion acceleration on the surface of the sun and to monitor the anisotropy of galactic cosmic-ray muons. The SciBar detector, a fully active tracker, is composed of 14,848 scintillator bars, whose dimension is 300 cm 2.5 cm 1.3 cm. The structure of the detector enables us to obtain the particle trajectory and its total deposited energy. This information is useful for the energy reconstruction of primary neutrons and particle identification. The total volume of the detector is 3.0 m 3.0 m 1.7 m. Since this volume is much larger than the solar neutron telescope (SNT) in Mexico, the detection efficiency of the SciCRT for neutrons is highly enhanced. We performed the calibration of the SciCRT at Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) located at 2,150 m above sea level in Mexico in 2012. We installed the SciCRT at Mt. Sierra Negra in April 2013 and calibrated this detector in May and August 2013. We started continuous observation in March 2014. In this paper, we report the detector performance as a solar neutron telescope and the current status of the SciCRT.

  20. The intergalactic propagation of ultrahigh energy cosmic ray nuclei

    SciTech Connect

    Hooper, Dan; Sarkar, Subir; Taylor, Andrew M.; /Oxford U.

    2006-08-01

    We investigate the propagation of ultra-high energy cosmic ray nuclei (A = 1-56) from cosmologically distant sources through the cosmic radiation backgrounds. Various models for the injected composition and spectrum and of the cosmic infrared background are studied using updated photodisintegration cross-sections. The observational data on the spectrum and the composition of ultra-high energy cosmic rays are jointly consistent with a model where all of the injected primary cosmic rays are iron nuclei (or a mixture of heavy and light nuclei).

  1. On Cosmic Ray Propagation

    NASA Astrophysics Data System (ADS)

    Medvedev, Mikhail

    2014-10-01

    Cosmic ray propagation is diffusive because of pitch angle scattering by waves. We demonstrate that if the high-amplitude magnetic turbulence with δB / B ~ 1 is present on top of the mean field gradient, the diffusion becomes asymmetric. As an example, we solve this diffusion problem in one dimension analytically with a Markov chain analysis. The cosmic ray density markedly differs from the standard diffusion prediction. The equation for the continuous limit is also derived, which shows limitations of the convection-diffusion equation. We also explore how the difference of the diffusion coefficient for positively and negatively charged species may affect their distribution throughout the system (e.g., galaxy, heliosphere). The result is mostly relevant to low energy particles. The implications of the results are discussed. The results are mostly relevant to fairly low-energy cosmic rays. However, they are general enough to be applicable to any particle transport, not just cosmic rays. Supported by Grant DOE Grant DE-FG02-07ER54940 and NSF Grant AST-1209665.

  2. Research in particles and fields. [cosmic rays, gamma rays, and cosmic plasma

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Buffington, A.; Davis, L., Jr.; Prince, T. A.; Vogt, R. E.

    1984-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are reviewed. Energetic particle and photon detector systems flown on spacecraft and balloons were used to carry out the investigations. Specific instruments mentioned are: the high energy isotope spectrometer telescope, the electron/isotope spectrometer, the heavy isotope spectrometer telescope, and magnetometers. Solar flares, planetary magnetospheres, element abundance, the isotopic composition of low energy cosmic rays, and heavy nuclei are among the topics receiving research attention.

  3. Galactic cosmic rays and nucleosynthesis

    SciTech Connect

    Kiener, Juergen

    2010-03-01

    The nucleosynthesis of the light elements Li, Be and B by galactic cosmic rays is presented. Observations of cosmic rays and the nuclear reactions responsible for Li, Be and B nucleosynthesis are described, followed by some words on propagation. At the end, some open questions concerning galactic cosmic rays are discussed.

  4. Temporal Variation in Cosmic Ray Muon Flux

    NASA Astrophysics Data System (ADS)

    Stroberg, Steven; Evans, Kalya; Lyles-Goldblum, Bethany; Swanberg, Erik; Norman, Eric

    2008-10-01

    Plastic scintillator detectors are often used in homeland security applications that look for high energy photons, such as active interrogation of cargo containers. In these applications, the background due to cosmic ray muons is assumed to be constant. However, there appears to be potentially significant variation in the muon flux over time. The muon flux was measured over a period of several months using two plastic scintillator detectors (122x61x15 cm and 30x30x10 cm). The data from these detectors were compared to data from cosmic ray neutron detectors in Kiel, Calgary, Moscow, Thule and Beijing collected during the same time period. The response function of the two detectors was also compared with a model developed in MCNPX code using the CRY simulated cosmic ray background. Preliminary data suggest that the temporal variation in muons is significantly greater than that of the cosmic ray neutrons.

  5. Experimental simulation of radiation damage of polymers in space applications by cosmic-ray-type high energy heavy ions and the resulting changes in optical properties

    NASA Astrophysics Data System (ADS)

    Hossain, U. H.; Ensinger, W.

    2015-12-01

    Devices operating in space, e.g. in satellites, are being hit by cosmic rays. These include so-called HZE-ions, with High mass (Z) and energy (E). These highly energetic heavy ions penetrate deeply into the materials and deposit a large amount of energy, typically several keV per nm range. Serious damage is created. In space vehicles, polymers are used which are degraded under ion bombardment. HZE ion irradiation can experimentally be simulated in large scale accelerators. In the present study, the radiation damage of aliphatic vinyl- and fluoro-polymers by heavy ions with energies in the GeV range is described. The ions cause bond scission and create volatile small molecular species, leading to considerable mass loss of the polymers. Since hydrogen, oxygen and fluorine-containing molecules are created and these elements are depleted, the remaining material is carbon-richer than the original polymers and contains conjugated CC double bonds. This process is investigated by measuring the optical band gap with UV-Vis absorption spectrometry as a function of ion fluence. The results show how the optical band gaps shift from the UV into the Vis region upon ion irradiation for the different polymers.

  6. Investigation of primary cosmic rays at the Moon's surface

    SciTech Connect

    Kalmykov, N. N. Konstantinov, A. A.; Muhamedshin, R. A.; Podorozhniy, D. M.; Sveshnikova, L. G.; Turundaevskiy, A. N.; Tkachev, L. G.; Chubenko, A. P.; Vasilyev, O. A.

    2013-01-15

    The possibility of experimentally studying primary cosmic rays at the Moon's surface is considered. A mathematical simulations of showers initiated in the lunar regolith by high-energy particles of primary cosmic rays is performed. It is shown that such particles can in principle be recorded by simultaneously detecting three components of backscattered radiation (secondary neutrons, gamma rays, and radio emission).

  7. Cosmic Rays in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  8. Catching Cosmic Rays with a DSLR

    ERIC Educational Resources Information Center

    Sibbernsen, Kendra

    2010-01-01

    Cosmic rays are high-energy particles from outer space that continually strike the Earth's atmosphere and produce cascades of secondary particles, which reach the surface of the Earth, mainly in the form of muons. These particles can be detected with scintillator detectors, Geiger counters, cloud chambers, and also can be recorded with commonly

  9. Catching Cosmic Rays with a DSLR

    ERIC Educational Resources Information Center

    Sibbernsen, Kendra

    2010-01-01

    Cosmic rays are high-energy particles from outer space that continually strike the Earth's atmosphere and produce cascades of secondary particles, which reach the surface of the Earth, mainly in the form of muons. These particles can be detected with scintillator detectors, Geiger counters, cloud chambers, and also can be recorded with commonly…

  10. Cosmic Rays Across the Universe

    NASA Astrophysics Data System (ADS)

    Gould Zweibel, Ellen

    2016-01-01

    Cosmic rays play an important role in the dynamics, energetics, and chemisry of gas inside and outside galaxies. It has long been recognized that gamma ray astronomy is a powerful probe of cosmic ray acceleration and propagation, and that gamma ray data, combined with other observations of cosmic rays and of the host medium and with modeling, can provide an integrated picture of cosmic rays and their environments. I will discuss the plasma physics underlying this picture, where it has been successful, and where issues remain.

  11. Galactic Cosmic Rays: From Earth to Sources

    NASA Technical Reports Server (NTRS)

    Brandt, Theresa J.

    2012-01-01

    For nearly 100 years we have known that cosmic rays come from outer space, yet proof of their origin, as well as a comprehensive understanding of their acceleration, remains elusive. Direct detection of high energy (up to 10(exp 15)eV), charged nuclei with experiments such as the balloon-born, antarctic Trans-Iron Galactic Element Recorder (TIGER) have provided insight into these mysteries through measurements of cosmic ray abundances. The abundance of these rare elements with respect to certain intrinsic properties suggests that cosmic rays include a component of massive star ejecta. Supernovae and their remnants (SNe & SNRs), often occurring at the end of a massive star's life or in an environment including massive star material, are one of the most likely candidates for sources accelerating galactic comic ray nuclei up to the requisite high energies. The Fermi Gamma-ray Space Telescope Large Area Detector (Fermi LAT) has improved our understanding of such sources by widening the window of observable energies and thus into potential sources' energetic processes. In combination with multiwavelength observations, we are now better able to constrain particle populations (often hadron-dominated at GeV energies) and environmental conditions, such as the magnetic field strength. The SNR CTB 37A is one such source which could contribute to the observed galactic cosmic rays. By assembling populations of SNRs, we will be able to more definitively define their contribution to the observed galactic cosmic rays, as well as better understand SNRs themselves. Such multimessenger studies will thus illuminate the long-standing cosmic ray mysteries, shedding light on potential sources, acceleration mechanisms, and cosmic ray propagation.

  12. A Cerenkov-delta E-Cerenkov detector for high energy cosmic ray isotopes and an accelerator study of Ar-40 and Fe-56 fragmentation. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lau, K. H.

    1985-01-01

    A high energy cosmic ray detector--the High Energy Isotope Spectrometer Telescope (HEIST) is described. It is a large area (0.25 m(swp 2) SR) balloon borne isotope spectrometer designed to make high resolution measurements of isotopes in the element range from neon to nickel (10 Z 28) at energies of about 2 GeV/nucleon. HEIST determines the mass of individual nuclei by measuring both the change in the Lorentz factor (delta gamma) that results from traversing the NaI stack, and the energy loss (delta E) in the stack. Since the total energy of an isotope is given by E = (gamma M), the mass M can be determined by M = delta E/delta, gamma. The instrument is designed to achieve a typical mass resolution of 0.2 amu. The isotopic composition of the fragments from the breakup of high energy An-40 and Fe-56 nuclei are measured experimentally. Isotope yields are compared with calculated yields based on semi-empirical cross-section formulae.

  13. Cosmic Rays: "A Thin Rain of Charged Particles."

    ERIC Educational Resources Information Center

    Friedlander, Michael

    1990-01-01

    Discussed are balloons and electroscopes, understanding cosmic rays, cosmic ray paths, isotopes and cosmic-ray travel, sources of cosmic rays, and accelerating cosmic rays. Some of the history of the discovery and study of cosmic rays is presented. (CW)

  14. JUPITER AS A GIANT COSMIC RAY DETECTOR

    SciTech Connect

    Rimmer, P. B.; Stark, C. R.; Helling, Ch.

    2014-06-01

    We explore the feasibility of using the atmosphere of Jupiter to detect ultra-high-energy cosmic rays (UHECRs). The large surface area of Jupiter allows us to probe cosmic rays of higher energies than previously accessible. Cosmic ray extensive air showers in Jupiter's atmosphere could in principle be detected by the Large Area Telescope (LAT) on the Fermi observatory. In order to be observed, these air showers would need to be oriented toward the Earth, and would need to occur sufficiently high in the atmosphere that the gamma rays can penetrate. We demonstrate that, under these assumptions, Jupiter provides an effective cosmic ray ''detector'' area of 3.3 × 10{sup 7} km{sup 2}. We predict that Fermi-LAT should be able to detect events of energy >10{sup 21} eV with fluence 10{sup –7} erg cm{sup –2} at a rate of about one per month. The observed number of air showers may provide an indirect measure of the flux of cosmic rays ≳ 10{sup 20} eV. Extensive air showers also produce a synchrotron signature that may be measurable by Atacama Large Millimeter/submillimeter Array (ALMA). Simultaneous observations of Jupiter with ALMA and Fermi-LAT could be used to provide broad constraints on the energies of the initiating cosmic rays.

  15. INTERACTING COSMIC RAYS WITH MOLECULAR CLOUDS: A BREMSSTRAHLUNG ORIGIN OF DIFFUSE HIGH-ENERGY EMISSION FROM THE INNER 2 Degree-Sign Multiplication-Sign 1 Degree-Sign OF THE GALACTIC CENTER

    SciTech Connect

    Yusef-Zadeh, F.; Roberts, D. A.; Royster, M.; Hewitt, J. W.; Wardle, M.; Tatischeff, V.; Uchiyama, H.; Nobukawa, M.; Tsuru, T. G.; Heinke, C.

    2013-01-01

    The high-energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray, and {gamma}-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using the Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of {approx}GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas. The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of Fe I 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra, and the H.E.S.S. observatories. The inferred physical quantities from modeling multiwavelength emission in the context of bremsstrahlung emission from the inner {approx}300 Multiplication-Sign 120 pc of the Galactic center are constrained to have the cosmic-ray ionization rate {approx}1-10 Multiplication-Sign 10{sup -15} s{sup -1}, molecular gas heating rate elevating the gas temperature to 75-200 K, fractional ionization of molecular gas 10{sup -6}-10{sup -5}, large-scale magnetic field 10-20 {mu}G, the density of diffuse and dense molecular gas {approx}100 and {approx}10{sup 3} cm{sup -3} over 300 pc and 50 pc path lengths, and the variability of Fe I K{alpha} 6.4 keV line emission on yearly timescales. Important implications of our study are that GeV electrons emitting in radio can explain the GeV {gamma}-rays detected by Fermi and that the cosmic-ray irradiation model, like the model of the X-ray irradiation triggered by past activity of Sgr A*, can also explain the origin of the variable 6.4 keV emission from Galactic center molecular clouds.

  16. Cosmic ray acceleration in young supernova remnants

    NASA Astrophysics Data System (ADS)

    Schure, K. M.; Bell, A. R.

    2013-10-01

    We investigate the appearance of magnetic field amplification resulting from a cosmic ray escape current in the context of supernova remnant shock waves. The current is inversely proportional to the maximum energy of cosmic rays, and is a strong function of the shock velocity. Depending on the evolution of the shock wave, which is drastically different for different circumstellar environments, the maximum energy of cosmic rays as required to generate enough current to trigger the non-resonant hybrid instability that confines the cosmic rays follows a different evolution and reaches different values. We find that the best candidates to accelerate cosmic rays to few PeV energies are young remnants in a dense environment, such as a red supergiant wind, as may be applicable to Cassiopeia A. We also find that for a typical background magnetic field strength of 5 ?G the instability is quenched in about 1000 years, making SN1006 just at the border of candidates for cosmic ray acceleration to high energies.

  17. Cosmic rays and space weather

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.

    2003-04-01

    It is well known that in periods of great FEP (Flare Energetic Particle), fluxes can be so big that memory of computers and other electronics in space may be destroyed, satellites and spacecrafts became dead (each year insurance companies paid more than 500,000,000 dollars for these failures). In these periods is necessary to switch off some part of electronics for short time to protect computer memories. These periods are also dangerous for astronauts on space-ships, and passengers and crew in commercial jets (especially during S5 radiation storms according to classification of NOAA). The problem is how to forecast exactly these dangerous phenomena. We show that exact forecast can be made by using high-energy particles (about 5-10 GeV/nucleon and higher) which transportation from the Sun is characterized by much bigger diffusion coefficient than for small and middle energy particles. Therefore high energy particles came from the Sun much more early (8-20 minutes after acceleration and escaping into solar wind) than main part of smaller energy particles caused dangerous situation for electronics and people health (about 30-60 minutes later). We describe here principles and experience of automatically working programs "FEP-Search-1 min", "FEP-Search-2 min","FEP-Search-5 min", developed and checked in the Emilio Segre' Observatory of Israel Cosmic Ray Center (2025 m above sea level, cut-off rigidity 10.8 GV). The second step is automatically determination of flare energetic particle spectrum, and then automatically determination of diffusion coefficient in the interplanetary space, time of ejection and energy spectrum of FEP in source; forecasting of expected FEP flux and radiation hazard for space-probes in space, satellites in the magnetosphere, jets and various objects in the atmosphere and on the ground. We will describe also the theory and experience of high energy cosmic ray using for forecasting of major geomagnetic storms accompanied by Forbush-effects (what influenced very much on communications, working of navigation systems, satellites and high-level technology systems in space and, the atmosphere, and on the ground). The review and original part will contain following parts: 1. Introduction (cosmic rays as object and instrument of space weather monitoring and forecasting). 2. On-line search of the start of great Flare Energetic Particle (FEP) events, automatically formation of Alerts, estimation of probability of false alerts and probability of missing alerts (realized in Israel Cosmic Ray Center and Emilio Segre’ Observatory). 3. On-line determination of flare energetic particle spectrum by the method of coupling functions. 4. Automatically determination of diffusion coefficient in the interplanetary space, time of ejection and energy spectrum of FEP in source; forecasting of expected FEP flux and radiation hazard for space-probes in space, satellites in the magnetosphere, jets and various objects in the atmosphere, and on the ground in dependence of cut-off rigidity. 5. Cosmic ray using for forecasting of major geomagnetic storms accompanied by Forbush-effects.

  18. The High Energy cosmic-Radiation Detection (HERD) Facility onboard China's Future Space Station

    NASA Astrophysics Data System (ADS)

    Wu, Bobing

    2015-08-01

    The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads of the cosmic lighthouse program onboard China's Space Station, which is planned for operation starting around 2020 for about 10 years. The main scientific objectives of HERD are indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs)from five sides except the bottom. CALO is made of about 10^4 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV, 20% for protons from 100 GeV to 1 PeV; 2) electron/proton separation power better than 10^5 ; effective geometrical factors of > 3 m^2 sr for electron and diffuse gamma-rays, > 2 m^2 sr for cosmic ray nuclei. The prototype of about 1/40 of HERD calorimeter is under construction. A beam test in CERN with the prototype is approved and will be carried out in Nov. 2015.

  19. Cosmic Rays and Climate Change

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Laken, B. A.; Sloan, T.; Wolfendale, A. W.

    2010-09-01

    A survey is made of the evidence for and against the hypothesis that cosmic rays affect cloud cover and thereby surface temperature. The analysis is made for the troposphere in the main and it includes correlations of cloud cover with cosmic ray intensity, Forbush decreases, cosmic ray short period increases and eleven year changes; also included are the electrical effects associated with cosmic rays. A complementary study comprises a search for extra cloud cover associated with terrestrial radon emissions, the Chernobyl accident and nuclear bomb tests. It is concluded that the best estimate of the fraction of (low) cloud cover attributable to a 2% change in cosmic ray intensity is about 0.02%. Insofar as the maximum change in average cosmic ray intensity over the last 50 years is about 0.2%, no more than 0.01% of cloud cover change in this period can have been caused by cosmic rays; their contribution to Global Warming is thus considered to be negligible. Not surprisingly, we find that the effect of cosmic rays on stratospheric cloud is bigger, by a factor of at least ten. In both the troposphere and the stratosphere the cosmic ray effects at the Poles are bigger than average.

  20. Antiprotons in cosmic rays

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.; Streitmatter, R. E.

    1987-01-01

    Recent experimental observations and results are discussed. It was found that the approximately 50 antiprotons collected in balloon experiments to date have generated considerable theoretical interest. Clearly, confirmatory experiments and measurements over an extended energy range are required before definite conclusions are drawn. Antiproton measurements have a bearing on astrophysical problems ranging from cosmic ray propagation to issues of cosmological import. The next generation of balloon experiments and the Particle Astrophysics Magnet Facility being discussed for operation on NASA's space station should provide data and insights of highest interest.

  1. High-energy emission in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Matz, S. M.; Forrest, D. J.; Vestrand, W. T.; Chupp, E. L.; Share, G. H.; Rieger, E.

    1985-01-01

    Between February 1980 and August 1983 the Gamma-Ray Spectrometer on the Solar Maximum Mission Satellite (SMM) detected 72 events identified as being of cosmic origin. These events are an essentially unbiased subset of all gamma-ray bursts. The measured spectra of these events show that high energy (greater than 1 MeV) emission is a common and energetically important feature. There is no evidence for a general high-energy cut-off or a distribution of cut-offs below about 6 MeV. These observations imply a limit on the preferential beaming of high energy emission. This constraint, combined with the assumption of isotropic low energy emission, implies that the typical magnetic field strength at burst radiation sites is less than 1 x 10 to the 12th gauss.

  2. Research Concerning Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Grady, Maxwell; Cunningham, John; Kuhlmann, Steve; Spinka, Hal; Underwood, Dave; Hammergren, Mark

    2010-02-01

    Throughout my academic career at Loyola I have carried out research with the Loyola University Cosmic Event Detection System concerning the possibility of detection of ultra high energy cosmic rays (UHECRs) based on radio meteor scattering methods. This research was furthered through summer internships and research fellowships at Adler Planetarium Chicago and Stony Brook University in New York. At Adler Planetarium we used a helium balloon carrying a Geiger counter and other equipment to record the cosmic ray flux at various points in the atmosphere. The results clearly show the flux depends on the atmospheric density. At Stony Brook University I studied their advanced system for detecting cosmic rays in similar manner to radio meteor scattering principles. Research there focused on detection algorithms and also on the possibility of utilizing Digital Tv (DTv) signals for further research. Through the research a solid understanding of cosmic rays was formed including topics such as origins and energy scales of cosmic rays, both of which pose unanswered questions. )

  3. Cosmic ray albedo gamma rays from the quiet sun

    NASA Technical Reports Server (NTRS)

    Seckel, D.; Stanev, T.; Gaisser, T. K.

    1992-01-01

    We estimate the flux of gamma-rays that result from collisions of high energy galactic cosmic rays with the solar atmosphere. An important aspect of our model is the propagation of cosmic rays through the magnetic fields of the inner solar systems. We use diffusion to model propagation down to the bottom of the corona. Below the corona we trace particle orbits through the photospheric fields to determine the location of cosmic ray interactions in the solar atmosphere and evolve the resultant cascades. For our nominal choice of parameters, we predict an integrated flux of gamma rays (at 1 AU) of F(E(sub gamma) greater than 100 MeV) approximately = 5 x 10(exp -8)/sq cm sec. This can be an order of magnitude above the galactic background and should be observable by the Energetic Gamma Ray experiment telescope (EGRET).

  4. Cosmic strings as emitters of extremely high energy neutrinos

    NASA Astrophysics Data System (ADS)

    Lunardini, Cecilia; Sabancilar, Eray

    2012-10-01

    We study massive particle radiation from cosmic string kinks, and its observability in extremely high energy neutrinos. In particular, we consider the emission of moduliweakly coupled scalar particles predicted in supersymmetric theoriesfrom the kinks of cosmic string loops. Since kinks move at the speed of light on strings, moduli are emitted with large Lorentz factors, and eventually decay into many pions and neutrinos via hadronic cascades. The produced neutrino flux has energy E?1011GeV, and is affected by oscillations and absorption (resonant and nonresonant). It is observable at upcoming neutrino telescopes such as JEM-EUSO, and the radio telescopes LOFAR and SKA, for a range of values of the string tension, and of the mass and coupling constant of the moduli.

  5. The high energy cosmic-radiation detection (HERD) facility onboard China's Space Station

    NASA Astrophysics Data System (ADS)

    Zhang, S. N.; Adriani, O.; Albergo, S.; Ambrosi, G.; An, Q.; Bao, T. W.; Battiston, R.; Bi, X. J.; Cao, Z.; Chai, J. Y.; Chang, J.; Chen, G. M.; Chen, Y.; Cui, X. H.; Dai, Z. G.; D'Alessandro, R.; Dong, Y. W.; Fan, Y. Z.; Feng, C. Q.; Feng, H.; Feng, Z. Y.; Gao, X. H.; Gargano, F.; Giglietto, N.; Gou, Q. B.; Guo, Y. Q.; Hu, B. L.; Hu, H. B.; He, H. H.; Huang, G. S.; Huang, J.; Huang, Y. F.; Li, H.; Li, L.; Li, Y. G.; Li, Z.; Liang, E. W.; Liu, H.; Liu, J. B.; Liu, J. T.; Liu, S. B.; Liu, S. M.; Liu, X.; Lu, J. G.; Mazziotta, M. N.; Mori, N.; Orsi, S.; Pearce, M.; Pohl, M.; Quan, Z.; Ryde, F.; Shi, H. L.; Spillantini, P.; Su, M.; Sun, J. C.; Sun, X. L.; Tang, Z. C.; Walter, R.; Wang, J. C.; Wang, J. M.; Wang, L.; Wang, R. J.; Wang, X. L.; Wang, X. Y.; Wang, Z. G.; Wei, D. M.; Wu, B. B.; Wu, J.; Wu, X.; Wu, X. F.; Xia, J. Q.; Xiao, H. L.; Xu, H. H.; Xu, M.; Xu, Z. Z.; Yan, H. R.; Yin, P. F.; Yu, Y. W.; Yuan, Q.; Zha, M.; Zhang, L.; Zhang, L.; Zhang, L. Y.; Zhang, Y.; Zhang, Y. J.; Zhang, Y. L.; Zhao, Z. G.

    2014-07-01

    The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads of the cosmic lighthouse program onboard China's Space Station, which is planned for operation starting around 2020 for about 10 years. The main scientific objectives of HERD are indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs) from five sides except the bottom. CALO is made of about 104 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. The top STK microstrips of seven X-Y layers are sandwiched with tungsten converters to make precise directional measurements of incoming electrons and gamma-rays. In the baseline design, each of the four side SKTs is made of only three layers microstrips. All STKs will also be used for measuring the charge and incoming directions of cosmic rays, as well as identifying back scattered tracks. With this design, HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV, 20% for protons from 100 GeV to 1 PeV; electron/proton separation power better than 10-5; effective geometrical factors of >3 m2sr for electron and diffuse gamma-rays, >2 m2sr for cosmic ray nuclei. R and D is under way for reading out the LYSO signals with optical fiber coupled to image intensified CCD and the prototype of one layer of CALO.

  6. PARSEC: PARametrized Simulation Engine for Cosmic rays

    NASA Astrophysics Data System (ADS)

    Bretz, Hans-Peter; Erdmann, Martin; Schiffer, Peter; Walz, David; Winchen, Tobias

    2015-02-01

    PARSEC (PARametrized Simulation Engine for Cosmic rays) is a simulation engine for fast generation of ultra-high energy cosmic ray data based on parameterizations of common assumptions of UHECR origin and propagation. Implemented are deflections in unstructured turbulent extragalactic fields, energy losses for protons due to photo-pion production and electron-pair production, as well as effects from the expansion of the universe. Additionally, a simple model to estimate propagation effects from iron nuclei is included. Deflections in the Galactic magnetic field are included using a matrix approach with precalculated lenses generated from backtracked cosmic rays. The PARSEC program is based on object oriented programming paradigms enabling users to extend the implemented models and is steerable with a graphical user interface.

  7. Superbubbles and Local Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Streitmatter, Robert E.; Jones, Frank C.

    2005-01-01

    We consider the possibility that distinctive features of the local cosmic ray spectra and composition are influenced by the Solar system being embedded within the cavity of an ancient superbubble. Shifts in the measured cosmic ray composition between 10(exp 11) and 10(exp 20) eV as well as the "knee" and "second knee" may be understood in this picture.

  8. Cosmic Rays and Experiment CZELTA

    SciTech Connect

    Smolek, Karel; Nyklicek, Michal

    2007-11-26

    This paper gives a review of the physics of cosmic rays with emphasis on the methods of detection and study. A summary is given of the Czech project CZELTA which is part of a multinational program to study cosmic rays with energies above 10{sup 14} eV.

  9. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2009-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The existing models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  10. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2010-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The exising models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  11. Final Report for NA-22/DTRA Cosmic Ray Project

    SciTech Connect

    Wurtz, Ron E.; Chapline, George F.; Glenn, Andrew M.; Nakae, Les F.; Pawelczak, Iwona A.; Sheets, Steven A.

    2015-07-21

    The primary objective of this project was to better understand the time-correlations between the muons and neutrons produced as a result of high energy primary cosmic ray particles hitting the atmosphere, and investigate whether these time correlations might be useful in connection with the detection of special nuclear materials. During the course of this project we did observe weak correlations between secondary cosmic ray muons and cosmic ray induced fast neutrons. We also observed strong correlations between tertiary neutrons produced in a Pb pile by secondary cosmic rays and minimum ionizing particles produced in association with the tertiary neutrons.

  12. Photon-axion mixing and ultra-high energy cosmic rays from BL Lac type objects: Shining light through the Universe

    NASA Astrophysics Data System (ADS)

    Fairbairn, M.; Rashba, T.; Troitsky, S.

    2011-12-01

    Photons may convert into axion-like particles and back in the magnetic field of various astrophysical objects, including active galaxies, clusters of galaxies, intergalactic space and the Milky Way. This is a potential explanation for the candidate neutral ultra-high energy (E>1018eV) particles from distant BL Lac type objects which probably have been observed by the High Resolution Flys Eye experiment. Axions of the same mass and coupling may explain also TeV photons detected from distant blazars.

  13. Spiral arms as cosmic ray source distributions

    NASA Astrophysics Data System (ADS)

    Werner, M.; Kissmann, R.; Strong, A. W.; Reimer, O.

    2015-04-01

    The Milky Way is a spiral galaxy with (or without) a bar-like central structure. There is evidence that the distribution of suspected cosmic ray sources, such as supernova remnants, are associated with the spiral arm structure of galaxies. It is yet not clearly understood what effect such a cosmic ray source distribution has on the particle transport in our Galaxy. We investigate and measure how the propagation of Galactic cosmic rays is affected by a cosmic ray source distribution associated with spiral arm structures. We use the PICARD code to perform high-resolution 3D simulations of electrons and protons in galactic propagation scenarios that include four-arm and two-arm logarithmic spiral cosmic ray source distributions with and without a central bar structure as well as the spiral arm configuration of the NE2001 model for the distribution of free electrons in the Milky Way. Results of these simulation are compared to an axisymmetric radial source distribution. Also, effects on the cosmic ray flux and spectra due to different positions of the Earth relative to the spiral structure are studied. We find that high energy electrons are strongly confined to their sources and the obtained spectra largely depend on the Earth's position relative to the spiral arms. Similar finding have been obtained for low energy protons and electrons albeit at smaller magnitude. We find that even fractional contributions of a spiral arm component to the total cosmic ray source distribution influences the spectra on the Earth. This is apparent when compared to an axisymmetric radial source distribution as well as with respect to the Earth's position relative to the spiral arm structure. We demonstrate that the presence of a Galactic bar manifests itself as an overall excess of low energy electrons at the Earth. Using a spiral arm geometry as a cosmic ray source distributions offers a genuine new quality of modeling and is used to explain features in cosmic ray spectra at the Earth that are else-wise attributed to other propagation effects. We show that realistic cosmic ray propagation scenarios have to acknowledge non-axisymmetric source distributions.

  14. X-Ray Transition Radiation from High Energy Particles

    NASA Astrophysics Data System (ADS)

    Case, G.; Cherry, M.; Guzik, T. G.; Isbert, J.; Wefel, J.

    2001-08-01

    X-ray transition radiation is used to measure the Lorentz factor of relativistic particles. At energies approaching ? = E/mc2 ~ 105 , transition radiation detectors can be optimized by using thick (~125-250 m) radiator foils with large (~5-10 mm) spacings. Such a configuration implies the production of x-rays of energy ? 100 keV and the use of scintillators as the x-ray detectors. Compton scattering of the x-rays out of the particle beam then becomes an important effect. We discuss the design of such high energy transition radiation detectors, present the results of detailed simulations, and apply the results to the ACCESS cosmic ray experiment proposed for the Space Station.

  15. Muon acceleration in cosmic-ray sources

    SciTech Connect

    Klein, Spencer R.; Mikkelsen, Rune E.; Becker Tjus, Julia

    2013-12-20

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup 1}. At gradients above 1.6 keV cm{sup 1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  16. Muon Acceleration in Cosmic-Ray Sources

    NASA Astrophysics Data System (ADS)

    Klein, Spencer R.; Mikkelsen, Rune E.; Becker Tjus, Julia

    2013-12-01

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 1013 keV cm-1. At gradients above 1.6 keV cm-1, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  17. Cosmic rays in the heliosphere

    NASA Technical Reports Server (NTRS)

    Webber, William R.

    1987-01-01

    The different types of cosmic ray particles and their role in the heliosphere are briefly described. The rates of various energetic particles were examined as a function of time and used to derive various differential energy gradients. The Pioneer and Voyager cosmic ray observations throughout the heliosphere are indeed giving a perspective on the three-dimensional character and size of the heliosphere. Most clearly the observations are emphasizing the role that transient variations in the outer heliosphere, and most likely the heliospheric boundary shock, play in the 11 year solar cycle modulation of cosmic rays.

  18. Supernova Remnants, Cosmic Rays, and GLAST

    SciTech Connect

    Reynolds, Steve

    2006-02-13

    The shock waves of supernova remnants (SNRs) are the traditional sources of Galactic cosmic rays, at least up to about 3000 TeV (the "knee" energy in the cosmic-ray spectrum). In the last decade or so, X-ray observations have confirmed in a few SNRs the presence of synchrotron-X-ray-emitting electrons with energies of order 100 TeV. TeV photons from SNRs have been observed with ground-based air Cerenkov telescopes as well, but it is still unclear whether they are due to hadronic processes (inelastic p-p scattering of cosmic-ray protons from thermal gas, with secondary neutral pions decaying to gamma rays), or to leptonic processes (inverse-Compton upscattering of cosmic microwave background photons, or bremsstrahlung). The spatial structure of synchrotron X-rays as observed with the Chandra X-ray Observatory suggests the remarkable possibility that magnetic fields are amplified by orders of magnitude in strong shock waves. The electron spectra inferred from X-rays reach 100 TeV, but at that energy are cutting off steeply, well below the "knee" energy. Are the cutoff processes due only to radiative losses so that ion spectra might continue unsteepened? Can we confirm the presence of energetic ions in SNRs at all? Are typical SNRs capable of supplying the pool of Galactic cosmic rays? Is strong magnetic-field amplification a property of strong astrophysical shocks in general? These major questions require the next generation of observational tools. I shall outline the theoretical and observational framework of particle acceleration to high energies in SNRs, and shall describe how GLAST will advance this field.

  19. Supernova Remnants, Cosmic Rays, and GLAST

    SciTech Connect

    Reynolds, Steve

    2006-02-13

    The shock waves of supernova remnants (SNRs) are the traditional sources of Galactic cosmic rays, at least up to about 3000 TeV (the 'knee' energy in the cosmic-ray spectrum). In the last decade or so, X-ray observations have confirmed in a few SNRs the presence of synchrotron-X-ray-emitting electrons with energies of order 100 TeV. TeV photons from SNRs have been observed with ground-based air Cerenkov telescopes as well, but it is still unclear whether they are due to hadronic processes (inelastic p-p scattering of cosmic-ray protons from thermal gas, with secondary neutral pions decaying to gamma rays), or to leptonic processes (inverse-Compton upscattering of cosmic microwave background photons, or bremsstrahlung). The spatial structure of synchrotron X-rays as observed with the Chandra X-ray Observatory suggests the remarkable possibility that magnetic fields are amplified by orders of magnitude in strong shock waves. The electron spectra inferred from X-rays reach 100 TeV, but at that energy are cutting off steeply, well below the 'knee' energy. Are the cutoff processes due only to radiative losses so that ion spectra might continue unsteepened? Can we confirm the presence of energetic ions in SNRs at all? Are typical SNRs capable of supplying the pool of Galactic cosmic rays? Is strong magnetic-field amplification a property of strong astrophysical shocks in general? These major questions require the next generation of observational tools. I shall outline the theoretical and observational framework of particle acceleration to high energies in SNRs, and shall describe how GLAST will advance this field.

  20. Recent high energy gamma-ray results from SAS-2

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Ogelman, H. B.; Ozel, M. E.; Tumer, T.; Lamb, R. C.

    1977-01-01

    Recent developments in gamma-ray astronomy due to the results from SAS-2 have focused on two areas. First, the emission from the plane of the Galaxy is the dominant feature in the gamma-ray sky. The galactic latitude and longitude distributions are consistent with the concept that the high-energy radiation originates from cosmic rays interacting with interstellar matter, and the measurements support a galactic origin for cosmic rays. Second, searches of the SAS-2 data for emission from localized sources have shown three strong discrete gamma-ray sources: the Crab nebula and PSR 0531 + 21, the Vela supernova remnant and PSR 0833-45, and a source near galactic coordinates 193 deg longitude, +3 deg latitude, which does not appear to be associated with other known celestial objects. Evidence has also been found for pulsed gamma-ray emission from two other radio pulsars, PSR 1818-04 and PSR 1747-46. A localized source near longitudes 76-80 deg may be associated with the X-ray source Cyg X-3.

  1. A theory of cosmic rays

    NASA Astrophysics Data System (ADS)

    Dar, Arnon; de Rújula, A.

    2008-09-01

    We present a theory of non-solar cosmic rays (CRs) in which the bulk of their observed flux is due to a single type of CR source at all energies. The total luminosity of the Galaxy, the broken power-law spectra with their observed slopes, the position of the ‘knee(s)’ and ‘ankle’, and the CR composition and its variation with energy are all predicted in terms of very simple and completely ‘standard’ physics. The source of CRs is extremely ‘economical’: it has only one parameter to be fitted to the ensemble of all of the mentioned data. All other inputs are ‘priors’, that is, theoretical or observational items of information independent of the properties of the source of CRs, and chosen to lie in their pre-established ranges. The theory is part of a ‘unified view of high-energy astrophysics’ — based on the ‘Cannonball’ model of the relativistic ejecta of accreting black holes and neutron stars. The model has been extremely successful in predicting all the novel properties of Gamma Ray Bursts recently observed with the help of the Swift satellite. If correct, this model is only lacking a satisfactory theoretical understanding of the ‘cannon’ that emits the cannonballs in catastrophic processes of accretion.

  2. Development of TUS pinhole cameras for observing transient luminous events from space and establishing role of those events as a background for ultra-high-energy cosmic-ray measurements

    NASA Astrophysics Data System (ADS)

    Kim, Ji Eun; Lee, Jik; Park, A. H.; Park, I. H.; Garipov, G. K.; Khrenov, B. A.; Klimov, P. A.; Panasyuk, M. I.

    2014-03-01

    The TUS (tracking ultraviolet setup) experiment is intended for the observation from space of ultraviolet (UV) fluorescence induced both by ultra-high-energy cosmic rays (UHECRs) with energies above 5 1019 eV and by transient luminous events (TLEs) occurring in the upper atmosphere. These two types of events are very different in terms of duration, lateral shape, and intensity; thus, each behaves as a background for the other. The TUS is equipped with two conventional pinhole cameras as auxiliary instrumentation to detect and efficiently distinguish TLEs from UHECRs. Each pinhole camera contains a MAPMT (multi-anode photo-multiplier tube) and its associated analog and digital electronics. The R11265-03-M64 MAPMT has been custom-made for space applications by Hamamatsu Photonics, particularly for the future EUSO (Extreme Universe Space Observatory) UHECR space mission. Thus, the TUS pinhole system will be the test bench for the deployment in space of a large number, 5000, of MAPMTs. In this study, we present the design and fabrication of the pinhole cameras, and we estimate the detectability of TLEs with respect to atmospheric light background.

  3. Cosmic rays and grain alignment

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Roberge, W. G.

    1997-06-01

    The recent detection of interstellar polarization in the solid CO feature near 4.67mum shows that CO-mantled grains can be aligned in cold molecular clouds. These observations conflict with a theory of grain alignment which attributes the polarization in molecular clouds to the effects of cosmic rays: according to this theory, oblate spheroidal grains with H_2O- and CO_2-dominated ice mantles are spun up to suprathermal energies by molecular evaporation from cosmic ray impact sites, but spin-up does not occur for CO-mantled grains. Motivated by this conflict, we re-examine the effects of cosmic rays on the alignment of icy grains. We show that the systematic torques produced by cosmic rays are insufficient to cause suprathermal spin. In principle, the random torques due to cosmic rays can enhance the efficiency of Davis-Greenstein alignment by raising the grain rotational temperature. However, a significant enhancement would require cosmic ray fluxes 6-7 orders of magnitude larger than the flux in a typical cold cloud.

  4. Single particle effects, Biostack, and risk evaluation - Studies on the radiation risk from Galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Curtis, Stanley B.

    1993-01-01

    The possible health risks posed by Galactic cosmic rays, especially the possible heightened cancer risk, are examined. The results of the Biostack studies of the biological effects of high-energy cosmic rays are discussed. The biological mechanisms involved in possible harm due to cosmic rays are considered.

  5. High-energy cosmic neutrinos from spine-sheath BL Lac jets

    NASA Astrophysics Data System (ADS)

    Tavecchio, F.; Ghisellini, G.

    2015-08-01

    We recently proposed that structured (spine-sheath) jets associated with BL Lac objects could offer a suitable environment for the production of the extragalactic high-energy (E > 100 TeV) neutrino recently revealed by IceCube. Our previous analysis was limited to low-power BL Lac objects. We extend our preliminary study to the entire BL Lac population, assuming that the entire diffuse emission is accounted for by these sources. The neutrino output from a single source depends on a relatively large number of parameters. However, for several of them we have constraints coming from observations and previous application of the structured jet model to blazar and radiogalaxy emission. The observed neutrino spectrum then fixes the remaining free parameters. We assume that the power of cosmic rays as well as the radiative luminosity of the sheath depends linearly on the jet power. In turn, we assume that the latter is well traced by the γ-ray luminosity. We exploit the BL Lac γ-ray luminosity function and its cosmic evolution as recently inferred from Fermi-LAT data to derive the expected neutrino cumulative intensity from the entire BL Lac population. When considering only the low-power BL Lacs, a large cosmic ray power for each source is required to account for the neutrino flux. Instead, if BL Lacs of all powers produce neutrinos, the power demand decreases, and the required cosmic ray power becomes of the same order of the radiative jet power. In our scheme, the maximum energy of cosmic rays is constrained to be ≲ few PeV by the lack of events above few PeV. Although such a value is obtained through a fine-tuning with the data, we show that it could be possibly related to the equilibrium between cooling and acceleration processes for high-energy cosmic rays. We also discuss the prospects for the direct association of IceCube events with BL Lacs, providing an estimate of the expected counts for the most promising sources.

  6. EXTRAGALACTIC VERY HIGH ENERGY GAMMA-RAY BACKGROUND

    SciTech Connect

    Neronov, A.; Semikoz, D. V.

    2012-09-20

    We study the origin of the extragalactic diffuse gamma-ray background using the data from the Fermi telescope. To estimate the background level, we count photons at high Galactic latitudes |b| > 60 Degree-Sign . Subtracting photons associated with known sources and the residual cosmic-ray and Galactic diffuse backgrounds, we estimate the extragalactic gamma-ray background (EGB) flux. We find that the spectrum of EGB in the very high energy band above 30 GeV follows the stacked spectrum of BL Lac objects. Large Area Telescope data reveal the positive (1 + z) {sup k}, 1 < k < 4 cosmological evolution of the BL Lac source population consistent with that of their parent population, Fanaroff-Riley type I radio galaxies. We show that EGB at E > 30 GeV could be completely explained by emission from unresolved BL Lac objects if k {approx_equal} 3.

  7. Radar Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Myers, Isaac

    2012-03-01

    Progress in the study of high energy cosmic ray physics is limited by low flux. In order to collect substantial statistics above 10^19 eV, the two largest ground arrays currently in operation cover 800 km^2 (Telescope Array, Utah) and 3000 km^2 (Auger Observatory, Argentina). The logistics and cost of an order-of-magnitude increase in ground array aperture is prohibitive. In the literature, radar detection experiments have been proposed but substantial results have not been reported. We have deployed a low-power (1500 W) bistatic radar facility overlapping the Telescope Array (TA) in Delta, Utah. Data acquisition systems for the radar receivers were developed in parallel. This system has taught us a great deal, but our current focus is building and deploying a 40 kW transmitter and new high-gain transmitting antenna. Theoretical simulations of CR air shower scattering of radar show that coincidences with the ground array should be detected with this new system. An FCC license for the new transmitter/antenna has been obtained. Systems monitoring and data logging systems, as well as a new, intelligent self-triggered DAQ continue to be developed. We hope to deploy the self-triggered DAQ during the first few months of 2012 and complete the transmitte

  8. SOLAR SYSTEM OBJECTS AS COSMIC RAYS DETECTORS

    SciTech Connect

    Privitera, P.; Motloch, P.

    2014-08-10

    In a recent Letter, Jupiter is presented as an efficient detector for Ultra-High Energy Cosmic Rays (UHECRs), through measurement by an Earth-orbiting satellite of gamma rays from UHECRs showers produced in Jupiter's atmosphere. We show that this result is incorrect, due to erroneous assumptions on the angular distribution of shower particles. We evaluated other solar system objects as potential targets for UHECRs detection, and found that the proposed technique is either not viable or not competitive with traditional ground-based UHECRs detectors.

  9. PREFACE: 24th European Cosmic Ray Symposium (ECRS)

    NASA Astrophysics Data System (ADS)

    2015-08-01

    The 24th European Cosmic Ray Symposium (ECRS) took place in Kiel, Germany, at the Christian-Albrechts-Universität zu Kiel from September 1 - 5, 2014, The first symposium was held in 1968 in Lodz, Poland (high energy, extensive air showers and astrophysical aspects) and in Bern (solar and heliospheric phenomena) and the two "strands" joined together in 1976 with the meeting in Leeds. The 24th ECRS covered a wide range of scientific issues divided into the following topics: HECR-I Primary cosmic rays I (experiments) HECR-II Primary cosmic rays II (theory) MN Cosmic ray muons and neutrinos GR GeV and TeV gamma astronomy SH Energetic particles in the heliosphere (solar and anomalous CRs and GCR modulation) GEO Cosmic rays and geophysics (energetic particles in the atmosphere and magnetosphere of the Earth) INS Future Instrumentation DM Dark Matter The organizers are very grateful to the Deutsche Forschungs Gemeinschaft for supporting the symposium.

  10. Gamma rays from grazing incidence cosmic rays in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Ulmer, Andrew

    1994-01-01

    Interactions of grazing incidence, ultra high-energy cosmic rays with the earth's atmosphere may provide a new method of studying energetic cosmic rays with gamma-ray satellites. It is found that these cosmic ray interactions may produce gamma-rays on millisecond timescales which may be detectable by satellites. An extremely low gamma-ray background for transient gamma-ray events and a large area of interaction, the earth's surface, make the scheme plausible. The effective cross section of detection of interactions for cosmic rays above 10(exp 20) eV is found to be more than two orders of magnitude higher than Earth-based detection techniques. This method may eventually offer an efficient way of probing this region of the cosmic-ray energy spectrum where events are scarce. In this paper, a conceptual model is presented for the production of short bursts of gamma-rays based on these grazing incidence encounters with the Earth's atmosphere.

  11. Cosmic ray propagation with CRPropa 3

    NASA Astrophysics Data System (ADS)

    Alves Batista, R.; Erdmann, M.; Evoli, C.; Kampert, K.-H.; Kuempel, D.; Mueller, G.; Sigl, G.; Van Vliet, A.; Walz, D.; Winchen, T.

    2015-05-01

    Solving the question of the origin of ultra-high energy cosmic rays (UHECRs) requires the development of detailed simulation tools in order to interpret the experimental data and draw conclusions on the UHECR universe. CRPropa is a public Monte Carlo code for the galactic and extragalactic propagation of cosmic ray nuclei above ? 1017 eV, as well as their photon and neutrino secondaries. In this contribution the new algorithms and features of CRPropa 3, the next major release, are presented. CRPropa 3 introduces time-dependent scenarios to include cosmic evolution in the presence of cosmic ray deflections in magnetic fields. The usage of high resolution magnetic fields is facilitated by shared memory parallelism, modulated fields and fields with heterogeneous resolution. Galactic propagation is enabled through the implementation of galactic magnetic field models, as well as an efficient forward propagation technique through transformation matrices. To make use of the large Python ecosystem in astrophysics CRPropa 3 can be steered and extended in Python.

  12. Cosmic Ray Electron Science with GLAST

    NASA Technical Reports Server (NTRS)

    Ormes, J. F.; Moiseev, Alexander

    2007-01-01

    Cosmic ray electrons at high energy carry information about their sources, their definition in local magnetic fields and their interactions with the photon fields through which they travel. The spectrum of the particles is affected by inverse Compton losses and synchrotron losses, the rates of which are proportional to the square of the particle's energy making the spectra very steep. However, GLAST will be able to make unique and very high statistics measurements of electrons from approx. 20 to approx. 700 GeV that will allow us to search for anisotropies in anival direction and spectral features associated with some dark matter candidates. Complementary information on electrons of still higher energy will be required to see effects of possible individual cosmic ray sources.

  13. Cosmic ray sources - Evidence for two acceleration mechanisms.

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Balasubrahmanyan, V. K.; Ormes, J. F.

    1973-01-01

    The difference between the energy spectra of iron and other cosmic rays is interpreted in terms of two source mechanisms. One mechanism, possibly acceleration at neutron star surfaces, produces the iron, and another is responsible for the rest of the primary nuclei. Within this model, observations of high-energy cosmic rays could determine whether secondary nuclei are produced in the sources or in the interstellar medium.

  14. Detectors for Cosmic Rays on Ground and in Space

    SciTech Connect

    Tajima, Hiroyasu; /SLAC

    2007-09-10

    The origin of the cosmic rays has been a great mystery since they were discovered by Victor Hess in 1912. AGASA's observation of ultra-high-energy cosmic-rays (UHECR) possibly beyond the GZK (Greisen, Zatsepin and Kuzmin) cutoff stimulated the field in great deal. In addition, Kamiokande's detection of neutrinos from SN1987A and the H.E.S.S.'s detection of TeV gamma-rays from supernova remnants demonstrated the viability of neutrino and TeV gamma-ray astronomy for cosmic-ray research. A new generation of currently-operating or soon-to-be-operating detectors for charged particles, gamma-rays and neutrinos from cosmos will get us even closer to understanding the nature and origin of cosmic rays. Detectors for UHECRs, gamma rays and neutrinos are of particular importance in order to study the origins of cosmic rays since these particles are free from the deflection due to magnetic fields. Detectors for antiparticles and gamma rays would be useful to detect cosmic rays originated from the decay of the dark matter in the Universe. I will review these cosmic-ray detectors with particular attention on the differences of ground-based, balloon-borne and satellite-borne detectors.

  15. Gamma-ray bursters as sources of cosmic rays

    NASA Astrophysics Data System (ADS)

    Milgrom, Mordehai; Usov, Vladimir

    1996-04-01

    From the little we know of the physical conditions in ?-ray bursters, it seems that they are potentially effective in the acceleration of high-energy cosmic rays (CRs), especially if the bursters are at cosmological distances. We find that, with the observed statistics and fluxes of ?-ray bursts, cosmological bursters may be an important source of cosmic rays in two regions of the observed spectrum: (1) At the very-high-energy end ( E > 10 19 eV), where CRs must be of extragalactic origin. (2) Around and above the spectral feature that has been described as a bump and/or a knee, which occurs around 10 15 eV. The occasional bursters that occur inside the Galaxy about once in a few hundred thousand years if burst emission is isotropic; more often, if it is beamed could maintain the density of galactic cosmic rays at the observed level in this range. These two energy ranges might correspond to two typical CR energy scales characteristic of bursters: one pertinent to CR acceleration due to interaction of a magnetized-fireball front with an ambient medium; the other to acceleration in the fireball itself (e.g. shock acceleration).

  16. Cosmic Rays and Global Warming

    SciTech Connect

    Sloan, T.; Wolfendale, A. W.

    2008-01-24

    Some workers have claimed that the observed temporal correlations of (low level) terrestrial cloud cover with the cosmic ray intensity changes, due to solar modulation, are causal. The possibility arises, therefore, of a connection between cosmic rays and Global Warming. If true, the implications would be very great. We have examined this claim in some detail. So far, we have not found any evidence in support and so our conclusions are to doubt it. From the absence of corroborative evidence we estimate that less than 15% at the 95% confidence level, of the 11-year cycle warming variations are due to cosmic rays and less than 2% of the warming over the last 43 years is due to this cause. The origin of the correlation itself is probably the cycle of solar irradiance although there is, as yet, no certainty.

  17. Asymmetric diffusion of cosmic rays

    NASA Astrophysics Data System (ADS)

    Medvedev, Mikhail V.; Medvedev, Viktor V.

    2015-09-01

    Cosmic ray propagation is diffusive because of pitch angle scattering by waves. We demonstrate that if the high-amplitude magnetohydrodynamic turbulence with B ˜/˜1 is present on top of the mean field gradient, the diffusion becomes asymmetric. As an example, we consider the vertical transport of cosmic rays in our Galaxy propagating away from a point-like source. We solve this diffusion problem analytically using a one-dimensional Markov chain analysis. We obtained that the cosmic ray density markedly differs from the standard diffusion prediction and has a sizable effect on their distribution throughout the galaxy. The equation for the continuous limit is also derived, which shows limitations of the convection-diffusion equation.

  18. Nonlinear Cosmic Ray Diffusion Theories

    NASA Astrophysics Data System (ADS)

    Shalchi, Andreas

    Within cosmic ray transport theory, we investigate the interaction between energetic charged particles like electrons, protons, or heavy ions and astrophysical plasmas such as the solar wind or the interstellar medium. These particles interact with a background magnetic field B 0 and with turbulent electric and magnetic fields ýE and ýB, and they therefore experience scattering parallel and perpendicular to B 0. In this introductory chapter, general properties of cosmic rays are discussed, as well as the unperturbed motion of the particles. Furthermore, the physics of parallel and perpendicular scattering is investigated. At the end of this chapter, we consider observed mean free paths of cosmic rays in the heliosphere and in the interstel- lar medium. One aim of this book is to demonstrate that a nonlinear description of particle transport is necessary to reproduce these measurements.

  19. Educational cosmic-ray experiments with Geiger counters

    NASA Astrophysics Data System (ADS)

    Blanco, F.; Fichera, F.; La Rocca, P.; Librizzi, F.; Parasole, O.; Riggi, F.

    2006-05-01

    Experiments concerning the physics of cosmic rays offer to high-school teachers and students a relatively easy approach to the field of research in high energy physics. The detection of cosmic rays does not necessarily require the use of sophisticated equipment, and various properties of the cosmic radiation can be observed and analysed even by the use of a single Geiger counter. Nevertheless, the variety of such kind of experiments and the results obtained are limited because of the inclusive nature of these measurements. A significant improvement may be obtained when two or more Geiger counters are operated in coincidence. In this paper we discuss the potential of performing educational cosmic ray experiments with Geiger counters. In order to show also the educational value of coincidence techniques, preliminary results of cosmic ray experiments carried out by the use of a simple coincidence circuit are briefly discussed.

  20. Very high energy gamma ray astrophysics

    SciTech Connect

    Lamb, R.C.; Lewis, D.A.

    1992-02-01

    The second reflector (project GRANITE) is on schedule. At present (January 1992) it and the 10 m reflector are obtaining stereoscopic views of gamma-ray air showers from the Crab Nebula which verify the expected performance of the twin reflector telescopes. With the additional improvements of the upgrade (a pending DOE proposal) the twin reflectors should reach a limiting intensity of 1% that of the Crab. The astonishing early results from the EGRET detector aboard the Compton Gamma Ray Observatory indicate that distant quasars (powered by supermassive black holes) are active at GeV energies. The Whipple instruments are poised to see if such behavior continues above 100 GeV, as well as perform sensitive observations of previously reported GeV (Geminga) and TeV (Hercules X-1, etc.) sources. In addition to observing sources and identifying their location in the sky to one arcminute, experiments are planned to search for WIMPS in the mass range 0.1 to 1 TeV, and to determine the abundance of anti-protons in the cosmic rays. The successful performance of the stereoscopic reflectors demonstrates the feasibility of the concept of arrays of Cherenkov receivers. Design studies for a much larger array (CASITA) are just beginning.

  1. Nineteenth International Cosmic Ray Conference. HE Sessions, Volume 6

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers contributed to the 19th International Cosmic Ray Conference which address high energy interactions and related phenomena are compiled. Particular topic areas include cross sections; particle production; nuclei and nuclear matter; nucleus-nucleus collisions; gamma ray and hadron spectra; C-jets, a-jets, and super families; and emulsion chamber simulations.

  2. Cosmic rays at fluid discontinuities

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.; Kota, J.; Morfill, G.

    1989-01-01

    Cosmic-ray transport near discontinuities in the background fluid velocity is considered. Matching conditions for the cosmic-ray distribution are derived for both shear and compressive (shock) discontinuities, keeping terms to second order in the ratio of fluid speed to energetic-particle speed. Acceleration is found at shear discontinuities, which is not present in the first-order theory, and a modification of the matching condition at shocks. If there is no particle source concentrated at a shock, the new condition reduces to that obtained from first-order theory. Monte Carlo simulations show good agreement with the theory.

  3. Scintillator Cosmic Ray Super Telescope

    NASA Astrophysics Data System (ADS)

    Gonzlez, L. X.; Valds-Galicia, J. F.; Matsubara, Y.; Nagai, Y.; Itow, Y.; Sako, T.; Lpez, D.; Mitsuka, G.; Munakata, K.; Kato, C.; Yasue, S.; Kosai, M.; Tsurusashi, M.; Nakamo, Y.; Shibata, S.; Takamaru, H.; Kojima, H.; Tsuchiya, H.; Watanabe, K.; Koi, T.; Fragoso, E.; Hurtado, A.; Musalem, O.

    2013-04-01

    The Scintillator Cosmic Ray Super Telescope (SciCRST) is a new experiment to detect solar neutrons, and also it is expected to work as a muon and cosmic ray detector. The SciCRST consist of 14,848 plastic scintillator bars, and it will be installed at the top of Sierra Negra volcano, Mexico, 4580 m.a.s.l. We use a prototype, called as miniSciBar, to test the hardware and software of the final experiment. In this paper, we present the status and details of the experiment, and results of the prototype.

  4. Fun Times with Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Who would have thought cosmic rays could be so hip? Although discovered 90 years ago on death-defying manned balloon flights hip even by twenty-first-century extremesport standards cosmic rays quickly lost popularity as way-cool telescopes were finding way-too-cool phenomena across the electromagnetic spectrum. Yet cosmic rays are back in vogue, boasting their own set of superlatives. Scientists are tracking them down with new resolve from the Arctic to Antarctica and even on the high western plains of Argentina. Theorists, too, now see cosmic rays as harbingers of funky physics. Cosmic rays are atomic and subatomic particles - the fastest moving bits of matter in the universe and the only sample of matter we have from outside the solar system (with the exception of interstellar dust grains). Lower-energy cosmic rays come from the Sun. Mid-energy particles come from stellar explosions - either spewed directly from the star like shrapnel, or perhaps accelerated to nearly the speed of light by shock waves. The highest-energy cosmic rays, whose unequivocal existence remains one of astronomy's greatest mysteries, clock in at a staggering 10(exp 19) to 10(exp 22) electron volts. This is the energy carried in a baseball pitch; seeing as how there are as many atomic particles in a baseball as there are baseballs in the Moon, that s one powerful toss. No simple stellar explosion could produce them. At a recent conference in Albuquerque, scientists presented the first observational evidence of a possible origin for the highest-energy variety. A team led by Elihu Boldt at NASA s Goddard Space Flight Center found that five of these very rare cosmic rays (there are only a few dozen confirmed events) come from the direction of four 'retired' quasar host galaxies just above the arm of the Big Dipper, all visible with backyard telescopes: NGC 3610, NGC 3613, NGC 4589, and NGC 5322. These galaxies are billions of years past their glory days as the brightest beacons in the universe. Yet they still harbor central, supermassive black holes, which could generate energetic particles if they are spinning.

  5. Cosmic Ray Anisotropy with KASCADE

    NASA Astrophysics Data System (ADS)

    Maier, G.; Antoni, T.; Apel, W. D.; Badea, F.; Bekk, K.; Bercuci, A.; Blmer, H.; Bozdog, H.; Brancus, I. M.; Bttner, C.; Chilingarian, A.; Daumiller, K.; Doll, P.; Engel, R.; Engler, J.; Feler, F.; Gils, H. J.; Glasstetter, R.; Haungs, A.; Heck, D.; Hrandel, J. R.; Iwan, A.; Kampert, K. H.; Klages, H. O.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mller, M.; Obenland, R.; Oehlschlger, J.; Ostapchenko, S.; Petcu, M.; Rebel, H.; Risse, M.; Schatz, G.; Schieler, H.; Scholz, J.; Thouw, T.; Ulrich, H.; van Buren, J.; Vardanyan, A.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2003-07-01

    The anisotropy of cosmic rays with energies in the region of the knee in the energy spectrum is investigated in three different persp ectives based on the arrival directions of about 150 Mio. extensive air showers measured by KASCADE. The different analyses are a harmonic analysis of the right ascension distribution and a point source search of showers above 0.5 PeV as well as an auto correlation analysis of showers above 100 PeV. All three analyses agree inside the statistical limits with an isotropic distribution of the arrival directions of cosmic rays.

  6. The microphysics and macrophysics of cosmic rays

    SciTech Connect

    Zweibel, Ellen G.

    2013-05-15

    This review paper commemorates a century of cosmic ray research, with emphasis on the plasma physics aspects. Cosmic rays comprise only ∼10{sup −9} of interstellar particles by number, but collectively their energy density is about equal to that of the thermal particles. They are confined by the Galactic magnetic field and well scattered by small scale magnetic fluctuations, which couple them to the local rest frame of the thermal fluid. Scattering isotropizes the cosmic rays and allows them to exchange momentum and energy with the background medium. I will review a theory for how the fluctuations which scatter the cosmic rays can be generated by the cosmic rays themselves through a microinstability excited by their streaming. A quasilinear treatment of the cosmic ray–wave interaction then leads to a fluid model of cosmic rays with both advection and diffusion by the background medium and momentum and energy deposition by the cosmic rays. This fluid model admits cosmic ray modified shocks, large scale cosmic ray driven instabilities, cosmic ray heating of the thermal gas, and cosmic ray driven galactic winds. If the fluctuations were extrinsic turbulence driven by some other mechanism, the cosmic ray background coupling would be entirely different. Which picture holds depends largely on the nature of turbulence in the background medium.

  7. Evaluation of Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Heiblim, Samuel; Malott, Christopher

    2009-01-01

    Models of the galactic cosmic ray spectra have been tested by comparing their predictions to an evaluated database containing more than 380 measured cosmic ray spectra extending from 1960 to the present.

  8. The Cosmic Ray Electron Excess

    NASA Technical Reports Server (NTRS)

    Chang, J.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Christl, M.; Ganel, O.; Guzik, T. G.; Isbert, J.; Kim, K. C.; Kuznetsov, E. N.; Panasyuk, M. I.; Panov, A. D.; Schmidt, W. K. H.; Seo, E. S.; Sokolskaya, N. V.; Watts, J. W.; Wefel, J. P.; Wu, J.; Zatsepin, V. I.

    2008-01-01

    This slide presentation reviews the possible sources for the apparent excess of Cosmic Ray Electrons. The presentation reviews the Advanced Thin Ionization Calorimeter (ATIC) instrument, the various parts, how cosmic ray electrons are measured, and shows graphs that review the results of the ATIC instrument measurement. A review of Cosmic Ray Electrons models is explored, along with the source candidates. Scenarios for the excess are reviewed: Supernova remnants (SNR) Pulsar Wind nebulae, or Microquasars. Each of these has some problem that mitigates the argument. The last possibility discussed is Dark Matter. The Anti-Matter Exploration and Light-nuclei Astrophysics (PAMELA) mission is to search for evidence of annihilations of dark matter particles, to search for anti-nuclei, to test cosmic-ray propagation models, and to measure electron and positron spectra. There are slides explaining the results of Pamela and how to compare these with those of the ATIC experiment. Dark matter annihilation is then reviewed, which represent two types of dark matter: Neutralinos, and kaluza-Kline (KK) particles, which are next explained. The future astrophysical measurements, those from GLAST LAT, the Alpha Magnetic Spectrometer (AMS), and HEPCAT are reviewed, in light of assisting in finding an explanation for the observed excess. Also the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) could help by revealing if there are extra dimensions.

  9. Diffusion of Cosmic-Rays and Gamma-Ray Sources

    NASA Astrophysics Data System (ADS)

    de Cea del Pozo, E.; Torres, D. F.; Marrero, A. Y. Rodrguez

    It is commonly accepted that supernova remnants (SNR) are one of the most probable scenarios of leptonic and hadronic cosmic-ray (CR) acceleration. Such energetic CR can interact with interstellar gas to produce high-energy gamma rays, which can be detected through ground-based air Cherenkov detectors and space telescopes. Here we present a theoretical model that explains the high energy phenomenology of the neighborhood SNR IC 443, as observed with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescope and the Energetic Gamma-ray Experiment Telescope (EGRET). We interpret MAGIC J0616 + 225 as delayed TeV emission of CR diffusing from IC 443, what naturally explains the displacement between EGRET and MAGIC sources.

  10. Space-atmospheric interactions of energetic cosmic rays

    NASA Astrophysics Data System (ADS)

    Isar, Paula Gina

    2015-02-01

    Ultra-high energy cosmic rays are the most energetic particles in the Universe of which origin still remain a mystery since a century from their descovery. They are unique messengers coming from far beyond our Milky Way Galaxy, which provides insights into the fundamental matter, energy, space and time. As subatomic particles flying through space to nearly light speed, the ultra-high energy cosmic rays are so rare that they strike the Earth's atmosphere at a rate of up to only one particle per square kilometer per year or century. While the atmosphere is used as a giant calorimeter where cosmic rays induced air showers are initiated and the medium through which Cherenkov or fluorescence light or radio waves propagate, all cosmic ray measurements (performed either from space or ground) rely on an accurate atmospheric monitoring and understanding of atmospheric effects. The interdisciplinary link between Astroparticle Physics and Atmospheric Environment through the ultra-high energy comic rays space - atmospheric interactions, based on the present ground- and future space-based cosmic ray observatories, will be presented.

  11. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.

    1992-01-01

    Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.

  12. Significance of medium energy gamma ray astronomy in the study of cosmic rays

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Cheung, C. Y.

    1975-01-01

    Medium energy (about 10 to 30 MeV) gamma ray astronomy provides information on the product of the galactic electron cosmic ray intensity and the galactic matter to which the electrons are dynamically coupled by the magnetic field. Because high energy (greater than 100 MeV) gamma ray astronomy provides analogous information for the nucleonic cosmic rays and the relevant matter, a comparison between high energy and medium energy gamma ray intensities provides a direct ratio of the cosmic ray electrons and nucleons throughout the galaxy. A calculation of gamma ray production by electron bremsstrahlung shows that: bremsstrahlung energy loss is probably not negligible over the lifetime of the electrons in the galaxy; and the approximate bremsstrahlung calculation often used previously overestimates the gamma ray intensity by about a factor of two. As a specific example, expected medium energy gamma ray intensities are calculated for the speral arm model.

  13. Cosmic-Ray Accelerators in Milky Way studied with the Fermi Gamma-ray Space Telescope

    SciTech Connect

    Kamae, Tuneyoshi; /SLAC /KIPAC, Menlo Park

    2012-05-04

    High-energy gamma-ray astrophysics is now situated at a confluence of particle physics, plasma physics and traditional astrophysics. Fermi Gamma-ray Space Telescope (FGST) and upgraded Imaging Atmospheric Cherenkov Telescopes (IACTs) have been invigorating this interdisciplinary area of research. Among many new developments, I focus on two types of cosmic accelerators in the Milky-Way galaxy (pulsar, pulsar wind nebula, and supernova remnants) and explain discoveries related to cosmic-ray acceleration.

  14. High energy gamma ray results from the second small astronomy satellite

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Oegelman, H.; Oezel, M. F.; Tuemer, T.

    1974-01-01

    A high energy (35 MeV) gamma ray telescope employing a thirty-two level magnetic core spark chamber system was flown on SAS 2. The high energy galactic gamma radiation is observed to dominate over the general diffuse radiation along the entire galactic plane, and when examined in detail, the longitudinal and latitudinal distribution seem generally correlated with galactic structural features, particularly with arm segments. The general high energy gamma radiation from the galactic plane, explained on the basis of its angular distribution and magnitude, probably results primarily from cosmic ray interactions with interstellar matter.

  15. Cosmic rays from binary neutron stars

    NASA Astrophysics Data System (ADS)

    Kundt, W.

    1983-02-01

    The acceleration mechanism of cosmic rays is discussed. Parker's (1965, 1979) suggestion that buoyant reordering of magnetic flux tubes is the dominant transport mechanism of cosmic rays out of the galactic disk is reinforced. Arguments that the cosmic ray sources are located inside the molecular cloud layer are presented, and the shock accretion model as the primary mechanism of cosmic ray acceleration is argued against. A model of cosmic ray acceleration is presented in which the ionic component of the rays is injected by young binary neutron stars whose rotating magnetospheres act like grindstones in the wind of their companion. The model appears versatile enough to be consistent with the observed abundance anomalies. While pulsars are probably not the dominant source of cosmic ray nuclei, they may be the dominant source of cosmic ray electrons and positrons above about 30 GeV.

  16. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1992-01-01

    This final report covers the period 1 January 1985 - 31 March 1992. It is divided into the following sections: the soft x-ray background; proportional counter and filter calibrations; sounding rocket flight preparations; new sounding rocket payload: x-ray calorimeter; and theoretical studies. Staff, publications, conference proceedings, invited talks, contributed talks, colloquia and seminars, public service lectures, and Ph. D. theses are listed.

  17. Early history of cosmic ray studies

    NASA Astrophysics Data System (ADS)

    Sekido, Y.; Elliot, H.

    1985-07-01

    The early years of cosmic ray research are reviewed from a historical perspective. Consideration is given to: the balloon measurements of the cosmic ray background carried out by V.F. Hess in 1912; the early measurements of cosmic ray intensity as a function of latitude; and the discovery of the positron and the mesotron in the 1930s. The impact of various technologies (particle accelerators, satellites, and space probes) and the pace of discovery in the field of cosmic ray studies is examined in detail. Black and white photographs of the major contributors to cosmic ray studies over the last 70 years are provided.

  18. Gamma ray bursts and extreme energy cosmic rays

    SciTech Connect

    Scarsi, Livio

    1998-06-15

    Extreme Energy Cosmic Ray particles (EECR) with E>10{sup 20} eV arriving on Earth with very low flux ({approx}1 particle/Km{sup 2}-1000yr) require for their investigation very large detecting areas, exceeding values of 1000 km{sup 2} sr. Projects with these dimensions are now being proposed: Ground Arrays ('Auger' with 2x3500 km{sup 2} sr) or exploiting the Earth Atmosphere as seen from space ('AIR WATCH' and OWL,'' with effective area reaching 1 million km{sup 2} sr). In this last case, by using as a target the 10{sup 13} tons of air viewed, also the high energy neutrino flux can be investigated conveniently. Gamma Rays Bursts are suggested as a possible source for EECR and the associated High Energy neutrino flux.

  19. Characterising CCDs with cosmic rays

    SciTech Connect

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurement technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.

  20. Characterising CCDs with cosmic rays

    DOE PAGESBeta

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurementmore » technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.« less

  1. The discovery of cosmic rays

    NASA Astrophysics Data System (ADS)

    Carlson, Per; de Angelis, Alessandro

    2011-04-01

    The work leading to the discovery of cosmic rays by Victor Hess on August 7, 1912 is reviewed. In particular the almost forgotten work of the Italian Dominico Pacini in 1909-10 is described. Hess was awarded the Nobel Prize in Physics 1936, shared with Carl Anderson for the discovery of the positron. The reason for the long delay is discussed as well as the nominations and discussions put forward in the Nobel Committee's report to the Royal Swedish Academy of Sciences.

  2. Nineteenth International Cosmic Ray Conference. HE Sessions, Volume 8

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. The present volume contains papers addressing high energy interactions and related phenomena. Specific topic areas include muons, neutrinos, magnetic monopoles, nucleon decay, searches for new particles, and acoustic and thermoluminescence detection techniques.

  3. Cosmic ray sources: Evidence for two acceleration mechanisms

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Balasubrahmanyan, V. K.; Ormes, J. F.

    1972-01-01

    The difference between the spectra of iron and other cosmic rays is interpreted in terms of two source mechanisms. One mechanism, possibly acceleration at neutron star surfaces, produces the iron and another is responsible for the rest of the primary nuclei. Within this model, high energy observations could determine whether secondary nuclei are produced in the sources or in the interstellar medium.

  4. Monopole, astrophysics and cosmic ray observatory at Gran Sasso

    NASA Technical Reports Server (NTRS)

    Demarzo, C.; Enriquez, O.; Giglietto, N.; Posa, F.; Attolini, M.; Baldetti, F.; Giacomelli, G.; Grianti, F.; Margiotta, A.; Serra, P.

    1985-01-01

    A new large area detector, MACRO was approved for installation at the Gran Sasso Laboratory in Italy. The detector will be dedicated to the study of naturally penetrating radiation deep underground. It is designed with the general philosophy of covering the largest possible area with a detector having both sufficient built-in redundancy and use of complementary techniques to study very rare phenomena. The detector capabilities will include monopole investigations significantly below the Parker bound; astrophysics studies of very high energy gamma ray and neutrino point sources; cosmic ray measurements of single and multimuons; and the general observation of rare new forms of matter in the cosmic rays.

  5. Cloud chamber visualization of primary cosmic rays

    SciTech Connect

    Earl, James A.

    2013-02-07

    From 1948 until 1963, cloud chambers were carried to the top of the atmosphere by balloons. From these flights, which were begun by Edward P. Ney at the University of Minnesota, came the following results: discovery of heavy cosmic ray nuclei, development of scintillation and cherenkov detectors, discovery of cosmic ray electrons, and studies of solar proton events. The history of that era is illustrated here by cloud chamber photographs of primary cosmic rays.

  6. An absence of neutrinos associated with cosmic-ray acceleration in ?-ray bursts

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Bser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Degner, T.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Daz-Vlez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegrd, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Gra, D.; Grant, D.; Griesel, T.; Gro, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hl?, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Khne, J.-H.; Kohnen, G.; Kolanoski, H.; Kpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lnemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mszros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Prez de Los Heros, C.; Piegsa, A.; Pieloth, D.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rizzo, A.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schneberg, S.; Schnwald, A.; Schukraft, A.; Schulte, L.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Smith, M. W. E.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stl, A.; Strahler, E. A.; Strm, R.; Ster, M.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration

    2012-04-01

    Very energetic astrophysical events are required to accelerate cosmic rays to above 1018electronvolts. GRBs (?-ray bursts) have been proposed as possible candidate sources. In the GRB `fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and ?-rays. Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux. Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions. This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 1018electronvolts or that the efficiency of neutrino production is much lower than has been predicted.

  7. An absence of neutrinos associated with cosmic-ray acceleration in ?-ray bursts.

    PubMed

    2012-04-19

    Very energetic astrophysical events are required to accelerate cosmic rays to above 10(18)?electronvolts. GRBs (?-ray bursts) have been proposed as possible candidate sources. In the GRB 'fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and ?-rays. Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux. Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions. This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 10(18)?electronvolts or that the efficiency of neutrino production is much lower than has been predicted. PMID:22517161

  8. Cosmic Ray Acceleration in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Blasi, P.

    2011-06-01

    We review the main observational and theoretical facts about acceleration of Galactic cosmic rays in supernova remnants, discussing the arguments in favor and against a connection between cosmic rays and supernova remnants, the so-called supernova remnant paradigm for the origin of Galactic cosmic rays. Recent developments in the modeling of the mechanism of diffusive shock acceleration are discussed, with emphasis on the role of 1) magnetic field amplification, 2) acceleration of nuclei heavier than hydrogen, 3) presence of neutrals in the circumstellar environment. The status of the supernova-cosmic ray connection in the time of Fermi-LAT and Cherenkov telescopes is also discussed.

  9. Propagation of cosmic rays in the galaxy

    NASA Technical Reports Server (NTRS)

    Daniel, R. R.; Stephens, S. A.

    1974-01-01

    The characteristics of a model for analyzing the propagation of cosmic rays are discussed. The requirements for analyzing the relevant observational data on cosmic rays are defines as: (1) the chemical and isotopic composition of cosmic rays as a function of energy, (2) the flux and energy spectrum of the individual nucleonic components, (3) the flux and energy spectrum of the electronic component, (4) the cosmic ray prehistory, and (5) the degree of isotropy in their arrival directions as a function of energy. It is stated that the model which has been able to bring to pass the greatest measure of success is the galactic confinement model.

  10. Ionization and heating by X-rays and cosmic rays

    NASA Astrophysics Data System (ADS)

    Güdel, Manuel

    2015-09-01

    High-energy radiation from the central T Tauri and protostars plays an important role in shaping protoplanetary disks and influences their evolution. Such radiation, in particular X-rays and extreme-ultraviolet (EUV) radiation, is predominantly generated in unstable stellar magnetic fields (e.g., the stellar corona), but also in accretion hot spots. Even jets may produce X-ray emission. Cosmic rays, i.e., high-energy particles either from the interstellar space or from the star itself, are of crucial importance. Both highenergy photons and particles ionize disk gas and lead to heating. Ionization and heating subsequently drive chemical networks, and the products of these processes are accessible through observations of molecular line emission. Furthermore, ionization supports the magnetorotational instability and therefore drives disk accretion, while heating of the disk surface layers induces photoevaporative flows. Both processes are crucial for the dispersal of protoplanetary disks and therefore critical for the time scales of planet formation. This chapter introduces the basic physics of ionization and heating starting from a quantum mechanical viewpoint, then discusses relevant processes in astrophysical gases and their applications to protoplanetary disks, and finally summarizes some properties of the most important high-energy sources for protoplanetary disks. 14th Lecture from Summer School "Protoplanetary Disks: Theory and Modelling Meet Observations"

  11. Detection of cosmic ray tracks using scintillating fibers and position sensitive multi-anode photomultipliers

    SciTech Connect

    Atac, M.; Streets, J.; Wilcer, N.

    1998-02-01

    This experiment demonstrates detection of cosmic ray tracks by using Scintillating fiber planes and multi-anode photomultipliers (MA-PMTs). In a laboratory like this, cosmic rays provide a natural source of high-energy charged particles which can be detected with high efficiency and with nanosecond time resolution.

  12. Status and future of high energy diffuse gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.

    1983-01-01

    There are two distinctly different high energy diffuse gamma-ray components, one well correlated with broad galactic features and the other apparently isotropic and presumably extragalactic. The observed diffuse galactic high energy gamma radiation is generally thought to be produced in interactions between the cosmic rays and the interstellar matter and photons. It should then ultimately be possible to obtain from the diffuse galactic emission a detailed picture of the galactic cosmic-ray distribution, a high contrast view of the general structure of the galaxy, and further insight into molecular clouds. Two of the candidates for the explanation of the extragalactic diffuse radiation are the sum of emission from active galaxies and matter-antimatter annihilation. A major advancement in the study of the properties of both galactic and extragalactic gamma radiation should occur over the next decade.

  13. The isotopic composition of cosmic-ray beryllium and its implication for the cosmic ray's age

    NASA Technical Reports Server (NTRS)

    Lukasiak, A.; Ferrando, P.; Mcdonald, F. B.; Webber, W. R.

    1994-01-01

    We report a new measurement of the cosmic-ray isotopic composition of beryllium in the low-energy range from 35 to 113 MeV per nucleon. This measurement was made using the High Energy Telescope of the CRS experiment on the Voyager 1 and 2 spacecraft during the time period from 1977 to 1991. In this overall time period of 14 years the average solar modulation level was about 500 MV. The cosmic-ray beryllium isotopes were completely separated with an average mass resolution sigma of 0.185 amu. The isotope fractions of Be-7, Be-9, and Be-10 obtained are 52.4 +/- 2.9%, 43.3 +/- 3.7%, and 4.3 +/- 1.5%, respectively. The measured cosmic-ray abundances of Be-7 and Be-9 are found to be in agreement with calculations based on standard Leaky-Box model for the interstellar propagation of cosmic-ray nuclei using the recent cross sections of the New Mexico-Saclay collaboration. From our observed ratio Be-10/Be = 4.3 +/- 1.5% we deduce an average interstellar density of about 0.28 (+0.14, -0.11) atoms/cu cm, and acosmic-ray lifetime for escape of 27 (+19, -9) x 10(exp 6) years. The surviving fraction of Be-10 is found to be 0.19 +/- 0.07. Modifications to the conclusions of the Leaky-Box model when a diffusion + convection halo model for propagation is used are also considered.

  14. Cosmic ray diffusion: Report of the Workshop in Cosmic Ray Diffusion Theory

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.; Jones, F. C.

    1975-01-01

    A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory.

  15. High-energy cosmic neutrino puzzle: a review

    NASA Astrophysics Data System (ADS)

    Ahlers, Markus; Halzen, Francis

    2015-12-01

    We appraise the status of high-energy neutrino astronomy and summarize the observations that define the IceCube puzzle. The observations are closing in on the source candidates that may contribute to the observation. We highlight the potential of multi-messenger analysis to assist in the identification of the sources. We also give a brief overview of future search strategies that include the realistic possibility of constructing a next-generation detector larger by one order of magnitude in volume.

  16. Cosmic Rays and Terrestrial Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Atri, D.

    2011-12-01

    Planetary atmospheres are constantly irradiated by both photon and particle radiation sources. These high-energy particles strike the Earth's atmosphere, initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles and photons. Increased ionization leads to changes in atmospheric chemistry, resulting in ozone depletion. This increases the flux of solar UVB radiation at the surface, which is potentially harmful to living organisms. Increased ionization affects the global electrical circuit, which could enhance the low-altitude cloud formation rate. Secondary particles such as muons and thermal neutrons produced as a result of hadronic interactions of the primary cosmic rays with the atmosphere are able to reach the ground, enhancing the biological radiation dose. I will present results obtained from a massive computer simulation using a Monte Carlo code CORSIKA to quantify these effects. Results are available in form of look-up tables for use by the scientific community.

  17. Geomagnetically trapped anomalous cosmic rays

    SciTech Connect

    Selesnick, R.S.; Cummings, A.C.; Cummings, J.R.

    1995-06-01

    Since its launch in July 1992, the polar-orbiting satellite SAMPEX has been collecting data on geomagnetically trapped heavy ions, predominantly O, N, and Ne, at energies {ge}15 MeV/nucleon and in a narrow L shell range L = 2. Their location, elemental composition, energy spectra, pitch angle distribution, and time variations all support the theory that these particles originated as singly ionized interplanetary anomalous cosmic rays that were stripped of electrons in the Earth`s upper atmosphere and subsequently trapped. The O are observed primarily at pitch angles outside the atmospheric loss cones, consistent with a trapped population, and their distribution there is nearly isotropic. The abundances relative to O of the N, possible Ne, and especially C are lower than the corresponding interplanetary values, which may be indicative of the trapping efficiencies. The distributions of trapped N, O, and Ne in energy and L shell suggest that most of the ions observed at the SAMPEX altitude of {approximately}600 km are not fully stripped when initially trapped. A comparison of the trapped intensity with the much lower interplanetary intensity of anomalous cosmic rays provides model-dependent estimates of the product of the trapping probability and the average trapped particle lifetime against ionization losses in the residual atmosphere for particles that mirror near the SAMPEX altitude. 36 refs., 13 figs., 1 tab.

  18. High-energy cosmic neutrino puzzle: a review.

    PubMed

    Ahlers, Markus; Halzen, Francis

    2015-12-01

    We appraise the status of high-energy neutrino astronomy and summarize the observations that define the 'IceCube puzzle.' The observations are closing in on the source candidates that may contribute to the observation. We highlight the potential of multi-messenger analysis to assist in the identification of the sources. We also give a brief overview of future search strategies that include the realistic possibility of constructing a next-generation detector larger by one order of magnitude in volume. PMID:26510451

  19. Cosmic rays and terrestrial life: A brief review

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra; Melott, Adrian L.

    2014-01-01

    “The investigation into the possible effects of cosmic rays on living organisms will also offer great interest.” - Victor F. Hess, Nobel Lecture, December 12, 1936 High-energy radiation bursts are commonplace in our Universe. From nearby solar flares to distant gamma ray bursts, a variety of physical processes accelerate charged particles to a wide range of energies, which subsequently reach the Earth. Such particles contribute to a number of physical processes occurring in the Earth system. A large fraction of the energy of charged particles gets deposited in the atmosphere, ionizing it, causing changes in its chemistry and affecting the global electric circuit. Remaining secondary particles contribute to the background dose of cosmic rays on the surface and parts of the subsurface region. Life has evolved over the past ∼3 billion years in presence of this background radiation, which itself has varied considerably during the period [1-3]. As demonstrated by the Miller-Urey experiment, lightning plays a very important role in the formation of complex organic molecules, which are the building blocks of more complex structures forming life. There is growing evidence of increase in the lightning rate with increasing flux of charged particles. Is there a connection between enhanced rate of cosmic rays and the origin of life? Cosmic ray secondaries are also known to damage DNA and cause mutations, leading to cancer and other diseases. It is now possible to compute radiation doses from secondary particles, in particular muons and neutrons. Have the variations in cosmic ray flux affected the evolution of life on earth? We describe the mechanisms of cosmic rays affecting terrestrial life and review the potential implications of the variation of high-energy astrophysical radiation on the history of life on earth.

  20. Nineteenth International Cosmic Ray Conference. Conference Papers: Invited Rapporteur, Highlight, Miscellaneous, Volume 9

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1986-01-01

    Invited talks, rapporteur talks, and highlight talks are included. Topics of the invited and highlight talks include astrophysical jets, gamma-ray line astronomy, cosmic rays and gamma rays in astrophysics, the early universe, elementary particle physics, solar flares and acceleration of energetic particles, cosmogenic nuclei, extragalactic astronomy, composition of solar flare particles, very high energy gamma ray sources, gamma-ray bursts, shock acceleration in the solar wind, cosmic rays in deep underground detectors, spectrum of cosmic rays at 10 to the 19th power eV, and nucleus-nucleus interactions.

  1. Future instrumentation in cosmic ray research

    NASA Astrophysics Data System (ADS)

    Yashin, I. I.

    2015-08-01

    This paper is based on a rapporteur talk given at the 24th European Cosmic Ray Symposium (Kiel, Germany, September 1 - 5, 2014). The object of the talk and paper is a summary based on oral talks and posters presented in the frame of the session Future instrumentation in cosmic ray research (INS).

  2. Early history of cosmic rays at Chicago

    NASA Astrophysics Data System (ADS)

    Yodh, Gaurang B.

    2013-02-01

    Cosmic ray studies at the University of Chicago were started by Arthur Compton during the late 1920s. The high points of cosmic ray studies at Chicago under Compton and Marcel Schein are the focus of this report, which summarizes the research done at Chicago up to the end of World War II.

  3. Origin of Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Blasi, Pasquale

    2013-06-01

    The origin of the bulk of cosmic rays (CRs) observed at Earth is the topic of a century long investigation, paved with successes and failures. From the energetic point of view, supernova remnants (SNRs) remain the most plausible sources of CRs up to rigidity ˜106-107 GV. This confidence somehow resulted in the construction of a paradigm, the so-called SNR paradigm: CRs are accelerated through diffusive shock acceleration in SNRs and propagate diffusively in the Galaxy in an energy dependent way. Qualitative confirmation of the SNR acceleration scenario has recently been provided by gamma ray and X-ray observations. Diffusive propagation in the Galaxy is probed observationally through measurement of the secondary to primary nuclei flux ratios (such as B/C). There are however some weak points in the paradigm, which suggest that we are probably missing some physical ingredients in our models. The theory of diffusive shock acceleration at SNR shocks predicts spectra of accelerated particles which are systematically too hard compared with the ones inferred from gamma ray observations. Moreover, hard injection spectra indirectly imply a steep energy dependence of the diffusion coefficient in the Galaxy, which in turn leads to anisotropy larger than the observed one. Moreover recent measurements of the flux of nuclei suggest that the spectra have a break at rigidity ˜200 GV, which does not sit well with the common wisdom in acceleration and propagation. In this paper I will review these new developments and suggest some possible implications.

  4. PREFACE: 23rd European Cosmic Ray Symposium (and 32nd Russian Cosmic Ray Conference)

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Kokoulin, R. P.; Lidvansky, A. S.; Meroshnichenko, L. I.; Panasyuk, M. I.; Panov, A. D.; Wolfendale, A. W.

    2013-02-01

    The 23rd European Cosmic Ray Symposium (ECRS) took place in Moscow at the Lomonosov Moscow State University (3-7 July 2012), and was excellently organized by the Skobeltsyn Institute of Nuclear Physics of the Lomonosov Moscow State University, with the help of the Russian Academy of Sciences and the Council on the Complex Problem of Cosmic Rays of the Russian Academy of Sciences. The first symposia were held in 1968 in Lodz, Poland (high energy, extensive air showers and astrophysical aspects) and in Bern (solar and heliospheric phenomena) and the two 'strands' joined together in 1976 with the meeting in Leeds. Since then the symposia, which have been very successful, have covered all the major topics with some emphasis on European collaborations and on meeting the demands of young scientists. Initially, a driving force was the need to overcome the divisions caused by the 'Cold War' but the symposia continued even when that threat ceased and they have shown no sign of having outlived their usefulness. 2012 has been an important year in the history of cosmic ray studies, in that it marked the centenary of the discovery of enigmatic particles in the perilous balloon ascents of Victor Hess. A number of conferences have taken place in Western Europe during the year, but this one took place in Moscow as a tribute to the successful efforts of many former USSR and other Eastern European scientists in discovering the secrets of the subject, often under very difficult conditions. The symposium covers a wide range of scientific issues divided into the following topics: PCR-IPrimary cosmic rays I (E < 1015 eV) PCR-IIPrimary cosmic rays II (E > 1015 eV) MNCosmic ray muons and neutrinos GAGeV and TeV gamma astronomy SHEnergetic particles in the heliosphere (solar and anomalous CRs and GCR modulation) GEOCosmic rays and geophysics (energetic particles in the atmosphere and magnetosphere of the Earth) On a personal note, as I step down as co-founder and chairman of the International Advisory Committee, I should like to thank those very many colleagues and friends with whom I have had the pleasure of working over the past 45 years. These thanks are extended to the present organizers. The organizers are very grateful to the Russian Foundation of Basic Research and to the Dynasty non-profit foundation for financial support. Arnold Wolfendale

  5. Cosmic-Ray Modulation Equations

    NASA Astrophysics Data System (ADS)

    Moraal, H.

    2013-06-01

    The temporal variation of the cosmic-ray intensity in the heliosphere is called cosmic-ray modulation. The main periodicity is the response to the 11-year solar activity cycle. Other variations include a 27-day solar rotation variation, a diurnal variation, and irregular variations such as Forbush decreases. General awareness of the importance of this cosmic-ray modulation has greatly increased in the last two decades, mainly in communities studying cosmogenic nuclides, upper atmospheric physics and climate, helio-climatology, and space weather, where corrections need to be made for these modulation effects. Parameterized descriptions of the modulation are even used in archeology and in planning the flight paths of commercial passenger jets. The qualitative, physical part of the modulation is generally well-understood in these communities. The mathematical formalism that is most often used to quantify it is the so-called Force-Field approach, but the origins of this approach are somewhat obscure and it is not always used correct. This is mainly because the theory was developed over more than 40 years, and all its aspects are not collated in a single document. This paper contains a formal mathematical description intended for these wider communities. It consists of four parts: (1) a description of the relations between four indicators of "energy", namely energy, speed, momentum and rigidity, (2) the various ways of how to count particles, (3) the description of particle motion with transport equations, and (4) the solution of such equations, and what these solutions mean. Part (4) was previously described in Caballero-Lopez and Moraal (J. Geophys. Res, 109: A05105, doi: 10.1029/2003JA010358, 2004). Therefore, the details are not all repeated here. The style of this paper is not to be rigorous. It rather tries to capture the relevant tools to do modulation studies, to show how seemingly unrelated results are, in fact, related to one another, and to point out the historical context of some of the results. The paper adds no new knowledge. The summary contains advice on how to use the theory most effectively.

  6. Gamma rays and the origin of Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    de Ona Wilhelmi, Emma

    2015-08-01

    Cosmic rays (CRs) are highly energetic nuclei (plus a small fraction of electrons) which fill the Galaxy and carry on average as much energy per unit volume as the energy density of starlight, the interstellar magnetic fields, or the kinetic energy density of interstellar gas. The CR spectrum extends as a featureless power-law up to ~2 PeV (the 'knee') and it is believed to be the result of acceleration of those CRs in Galactic Sources and later diffusion and convection in galactic magnetic fields. Those energetic CRs can interact with the surrounding medium via proton-proton collision resulting in secondary gamma-ray photons, observed from 100 MeV to a few tens of TeV. The results obtained by the current Cherenkov telescopes and gamma-ray satellites with the support of X-ray observations have discovered and identified more than 50 Galactic gamma-ray sources. Among them, the number of Supernova remnants (SNRs) and very-high-energy hard-spectrum sources (natural candidates to originate CRs) are steadily increasing. We expect to increase by a factor 10 at least this population of source with the future CTA experiment. I will review our current knowledge of Galactic gamma-ray sources and their connection with energetic CRs and the scientific prospects for CTA in this field. Those observations, together with a strong multi-wavelenght support from radio to hard X-rays, will finally allow us to establish the origin of the Galactic CRs.

  7. The EGRET high energy gamma ray telescope

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Bertsch, D. L.; Fichtel, C. E.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (GRO) is sensitive in the energy range from about 20 MeV to about 30,000 MeV. Electron-positron pair production by incident gamma photons is utilized as the detection mechanism. The pair production occurs in tantalum foils interleaved with the layers of a digital spark chamber system; the spark chamber records the tracks of the electron and positron, allowing the reconstruction of the arrival direction of the gamma ray. If there is no signal from the charged particle anticoincidence detector which surrounds the upper part of the detector, the spark chamber array is triggered by two hodoscopes of plastic scintillators. A time of flight requirement is included to reject events moving backward through the telescope. The energy of the gamma ray is primarily determined by absorption of the energies of the electron and positron in a 20 cm deep NaI(Tl) scintillator.

  8. The high energy X-ray universe

    PubMed Central

    Giacconi, Riccardo

    2010-01-01

    Since its beginning in the early 1960s, the field of X-ray astronomy has exploded, experiencing a ten-billion-fold increase in sensitivity, which brought it on par with the most advanced facilities at all wavelengths. I will briefly describe the revolutionary first discoveries prior to the launch of the Chandra and XMM-Newton X-ray observatories, present some of the current achievements, and offer some thoughts about the future of this field. PMID:20404148

  9. Cosmic Connections:. from Cosmic Rays to Gamma Rays, Cosmic Backgrounds and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kusenko, Alexander

    2013-12-01

    Combined data from gamma-ray telescopes and cosmic-ray detectors have produced some new surprising insights regarding intergalactic and galactic magnetic fields, as well as extragalactic background light. We review some recent advances, including a theory explaining the hard spectra of distant blazars and the measurements of intergalactic magnetic fields based on the spectra of distant sources. Furthermore, we discuss the possible contribution of transient galactic sources, such as past gamma-ray bursts and hypernova explosions in the Milky Way, to the observed ux of ultrahigh-energy cosmicrays nuclei. The need for a holistic treatment of gamma rays, cosmic rays, and magnetic fields serves as a unifying theme for these seemingly unrelated phenomena.

  10. Cosmic rays: a review for astrobiologists.

    PubMed

    Ferrari, Franco; Szuszkiewicz, Ewa

    2009-05-01

    Cosmic rays represent one of the most fascinating research themes in modern astronomy and physics. Significant progress is being made toward an understanding of the astrophysics of the sources of cosmic rays and the physics of interactions in the ultrahigh-energy range. This is possible because several new experiments in these areas have been initiated. Cosmic rays may hold answers to a great number of fundamental questions, but they also shape our natural habitat and influence the radiation environment of our planet Earth. The importance of the study of cosmic rays has been acknowledged in many fields, including space weather science and astrobiology. Here, we concentrate on the astrobiological aspects of cosmic rays with regard to the enormous amount of new data available, some of which may, in fact, improve our knowledge about the radiation of cosmic origin on Earth. We focus on fluxes arriving at Earth and doses received, and will guide the reader through the wealth of scientific literature on cosmic rays. We have prepared a concise and self-contained source of data and recipes useful for performing interdisciplinary research in cosmic rays and their effects on life on Earth. PMID:19519216

  11. SLAC Cosmic Ray Telescope Facility

    SciTech Connect

    Va'vra, J.

    2010-02-15

    SLAC does not have a test beam for the HEP detector development at present. We have therefore created a cosmic ray telescope (CRT) facility, which is presently being used to test the FDIRC prototype. We have used it in the past to debug this prototype with the original SLAC electronics before going to the ESA test beam. Presently, it is used to test a new waveform digitizing electronics developed by the University of Hawaii, and we are also planning to incorporate the new Orsay TDC/ADC electronics. As a next step, we plan to put in a full size DIRC bar box with a new focusing optics, and test it together with a final SuberB electronics. The CRT is located in building 121 at SLAC. We anticipate more users to join in the future. This purpose of this note is to provide an introductory manual for newcomers.

  12. Cosmic-ray neutron simulations and measurements in Taiwan.

    PubMed

    Chen, Wei-Lin; Jiang, Shiang-Huei; Sheu, Rong-Jiun

    2014-10-01

    This study used simulations of galactic cosmic ray in the atmosphere to investigate the neutron background environment in Taiwan, emphasising its altitude dependence and spectrum variation near interfaces. The calculated results were analysed and compared with two measurements. The first measurement was a mobile neutron survey from sea level up to 3275 m in altitude conducted using a car-mounted high-sensitivity neutron detector. The second was a previous measured result focusing on the changes in neutron spectra near air/ground and air/water interfaces. The attenuation length of cosmic-ray neutrons in the lower atmosphere was estimated to be 163 g cm(-2) in Taiwan. Cosmic-ray neutron spectra vary with altitude and especially near interfaces. The determined spectra near the air/ground and air/water interfaces agree well with measurements for neutrons below 10 MeV. However, the high-energy portion of spectra was observed to be much higher than our previous estimation. Because high-energy neutrons contribute substantially to a dose evaluation, revising the annual sea-level effective dose from cosmic-ray neutrons at ground level in Taiwan to 35 ?Sv, which corresponds to a neutron flux of 5.30 10(-3) n cm(-2) s(-1), was suggested. PMID:24573968

  13. Solar cosmic ray bursts and solar neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Basilevakaya, G. A.; Nikolsky, S. I.; Stozhkov, Y. I.; Charakhchyan, T. N.

    1985-01-01

    The neutrino flux detected in the C1-Ar experiment seems to respond to the powerful solar cosmic ray bursts. The ground-based detectors, the balloons and the satellites detect about 50% of the bursts of soalr cosmic ray generated on the Sun's visible side. As a rule, such bursts originate from the Western side of the visible solar disk. Since the solar cosmic ray bursts are in opposite phase withthe 11-year galactic cosmic ray cycle which also seems to be reflected by neutrino experiment. The neutrino generation in the bursts will flatten the possible 11-year behavior of the AR-37 production rate, Q, in the Cl-Ar experiment. The detection of solar-flare-generated gamma-quanta with energies above tens of Mev is indicative of the generation of high-energy particles which in turn may produce neutrinos. Thus, the increased Q during the runs, when the flare-generated high energy gamma-quanta have been registered, may be regarded as additional evidence for neutrino geneation in the solar flare processes.

  14. CHEMICAL COMPOSITION AND MAXIMUM ENERGY OF GALACTIC COSMIC RAYS

    SciTech Connect

    Shibata, M.; Katayose, Y.; Huang, J.; Chen, D.

    2010-06-20

    A model of the cosmic-ray energy spectrum is proposed that assumes various acceleration limits at multiple sources. The model describes the broken power-law energy spectrum of cosmic rays by superposition of multiple sources; a diffusive shock acceleration mechanism plays an essential role. The maximum energy of galactic cosmic rays is discussed based on a comparison of experimental data with calculations done using the proposed model. The model can describe the energy spectrum at very high energies of up to several times 10{sup 18} eV, but the observed highest-energy cosmic rays deviate from the model predictions, indicating a different origin, such as an extragalactic source. This model describes the steepening of the power index at the so-called knee. However, it was found that additional assumptions are needed to explain the sharpness of the knee. Two possible explanations for the structure of the knee are discussed in terms of nearby source(s) and the hard energy spectrum suggested by nonlinear effects of cosmic-ray acceleration mechanisms.

  15. Cosmic-ray transport in the galactic magnetosphere

    NASA Technical Reports Server (NTRS)

    Schulz, M.; Luhmann, J. G.

    1985-01-01

    It is advantageous to regard cosmic rays as the constitutent particles of the Galactic radiation belts and cosmic ray energization as a consequence of inward radial diffusion in the quasi-dipolar Galactic magnetosphere. This process occurs in addition to Fermi acceleration. The purpose of this work is to explore a magnetospheric explanation for the elevation of Galactic charged particles to cosmic ray energies. The magnetosphere that is of interest in this context is not a planetary magnetosphere but a galactic magnetosphere entirely analogous to those inferred from radio observations of distant galaxies. It is the magnetosphere of the Milky Way. Cosmic rays are (by this interpretation) the charged particles that constitute the radiation belts of the Galactic magnetosphere. Thus, the mechanism by which charged particles attain cosmic-ray energies is presumable the mechanism by which radiation-belt particles attain high energies in more familiar magnetosphere, i.e., the radial diffusion associated with magnetic disturbances that contain spectral power resonant with the azimuthal drift of the particles.

  16. A New View of the High Energy Gamma-Ray Sky with the Ferrni Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2009-01-01

    Following its launch in June 2008, high energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have opened a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, supernova remnants and the origin of cosmic rays, and searches for hypothetical new phenomena such as super symmetric dark matter annihilations. In this talk I will describe the current status of the Fermi observatory and review the science highlights from the first year of observations.

  17. MOLE: A new high-energy gamma-ray diagnostic

    SciTech Connect

    Moran, M.J.; Chang, B.

    1992-01-21

    Continued interest in high-energy {gamma} rays associated with fusion reactions has motivated an ongoing search for simple, effective measurement techniques. Past experiments have measured 16.7-MeV {gamma} rays with Compton-magnetic spectrometers. Some measurements have been performed with threshold Cherenkov detectors with enhanced sensitivity to high-energy {gamma} rays. The Compton spectrometers work quite well, but they require extensive calibrations and tend to be expensive and cumbersome. The threshold Cherenkov detectors are simpler to calibrate and physically compact, but have poor spectral definition and are vulnerable to background signals. This report is to describe a new type of {gamma}-ray detector, the MOLE, that may retain the simplicity of a threshold Cherenkov detector while still having sufficient energy discrimination to be effective for measuring high-energy {gamma}-rays in the presence of lower-energy {gamma}-ray fluxes.

  18. Fingerprints of disoriented chiral condensates in cosmic ray showers

    NASA Astrophysics Data System (ADS)

    de Almeida, R. M.; de Mello Neto, J. R. T.; Fraga, E. S.; Santos, E. M.

    2012-09-01

    Although the generation of disoriented chiral condensates (DCCs), where the order parameter for chiral symmetry breaking is misaligned with respect to the vacuum direction in isospin state, is quite natural in the theory of strong interactions, they have so far eluded experiments in accelerators and cosmic rays. If DCCs are formed in high-energy nuclear collisions, the relevant outcome are very large event-by-event fluctuations in the neutral-to-charged pion fraction. In this note we search for fingerprints of DCC formation in observables of ultra-high energy cosmic ray showers. We present simulation results for the depth of the maximum (Xmax) and number of muons on the ground, evaluating their sensitivity to the neutral-to-charged pion fraction asymmetry produced in the primary interaction.

  19. High energy particle astronomy.

    NASA Technical Reports Server (NTRS)

    Buffington, A.; Muller, R. A.; Smith, L. H.; Smoot, G. F.

    1972-01-01

    Discussion of techniques currently used in high energy particle astronomy for measuring charged and neutral cosmic rays and their isotope and momentum distribution. Derived from methods developed for accelerator experiments in particle physics, these techniques help perform important particle astronomy experiments pertaining to nuclear cosmic ray and gamma ray research, electron and position probes, and antimatter searches.

  20. Measurement of C-12, O-16, and Fe-56 charge changing cross sections in helium at high energy, comparison with cross sections in hydrogen, and application to cosmic-ray propagation

    NASA Technical Reports Server (NTRS)

    Ferrando, P.; Webber, W. R.; Goret, P.; Kish, J. C.; Schrier, D. A.; Soutoul, A.; Testard, O.

    1988-01-01

    We present measurements of the spallation cross sections of carbon, oxygen, and iron in helium and hydrogen, at beam energies from 540 to 1600 MeV/nucleon, performed by exposing liquid helium, CH2, and C targets. Charge changing cross sections are reported for fragments down to Ne for Fe + alpha and Fe + p reactions, and down to B for O + alpha, O + p, C + alpha, and C + p reactions. Alpha- to p-induced cross section ratios (sigma(sub alpha)/sigma(sub p)) are determined at the same energy per nucleon. From these measurements an empirical formula for the (sigma(sub alpha)/sigma(sub p)) ratios is derived and is found in good agreement with available isotopic cross sections data from radioactivity and radiochemical techniques. These results are applied to the propagation of heavy charged cosmic rays in an interstellar medium with a helium to hydrogen abundance ratio of 0.10. It is shown that the Sc-Mn/Fe ratio prediction is decreased relative to the B/C ratio when compared to propagation calculations in a pure hydrogen interstellar medium.

  1. Primary gamma rays. [resulting from cosmic ray interaction with interstellar matter

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.

    1974-01-01

    Within this galaxy, cosmic rays reveal their presence in interstellar space and probably in source regions by their interactions with interstellar matter which lead to gamma rays with a very characteristic energy spectrum. From the study of the intensity of the high energy gamma radiation as a function of galactic longitude, it is already clear that cosmic rays are almost certainly not uniformly distributed in the galaxy and are not concentrated in the center of the galaxy. The galactic cosmic rays appear to be tied to galactic structural features, presumably by the galactic magnetic fields which are in turn held by the matter in the arm segments and the clouds. On the extragalactic scale, it is now possible to say that cosmic rays are not universal at the density seen near the earth. The diffuse celestial gamma ray spectrum that is observed presents the interesting possibility of cosmological studies and possible evidence for a residual universal cosmic ray density, which is much lower than the present galactic cosmic ray density.

  2. Composition of primary cosmic rays near the knee

    NASA Technical Reports Server (NTRS)

    Acharya, B. S.; Rao, M. V. S.; Sivaprasad, K.; Sreekantan, B. V.

    1985-01-01

    The size dependence of high energy muons and the size spectrum obtained in the air shower experiment suggest that the mean mass of cosmic rays remains nearly constant at approx 15 up to 5 x 1000,000 GeV and becomes one beyond. The composition model in which nuclei are removed spectrum steepens at 6.7 x 10 power GeV due to leakage from the galaxy, which explains the data which are consistent with data from other experiments.

  3. Radiographic Images Produced by Cosmic-Ray Muons

    NASA Astrophysics Data System (ADS)

    Alfaro, Rubén

    2006-09-01

    An application of high energy physics instrumentation is to look for structure or different densities (materials) hidden in a matrix (tons) of material. By tracing muons produced by primary Cosmic Rays, it has been possible to generate a kind of radiographs which shows the inner structure of dense containers, monuments or mountains. In this paper I review the basics principles of such techniques with emphasis in the Sun Pyramid project, carried out by IFUNAM in collaboration with Instituto Nacioanal de Antropologia e Historia.

  4. Radiographic Images Produced by Cosmic-Ray Muons

    SciTech Connect

    Alfaro, Ruben

    2006-09-25

    An application of high energy physics instrumentation is to look for structure or different densities (materials) hidden in a matrix (tons) of material. By tracing muons produced by primary Cosmic Rays, it has been possible to generate a kind of radiographs which shows the inner structure of dense containers, monuments or mountains. In this paper I review the basics principles of such techniques with emphasis in the Sun Pyramid project, carried out by IFUNAM in collaboration with Instituto Nacioanal de Antropologia e Historia.

  5. THE LOCAL ALL-PARTICLE COSMIC-RAY SPECTRUM

    SciTech Connect

    O'Brien, Keran

    2010-06-10

    The local all-particle cosmic-ray spectrum calculated from an integral equation reproduces the high-energy behavior of the spectrum up to 10{sup 19} eV assuming first-order Fermi shock acceleration. The first-order approximation, valid at energies below about 10{sup 13} eV, allows the user to correct for the effect of solar modulation on spectral measurements below about 10 GeV.

  6. Cosmic Ray-Air Shower Measurement from Space

    NASA Technical Reports Server (NTRS)

    Takahashi, Yoshiyuki

    1997-01-01

    A feasibility study has been initiated to observe from space the highest energy cosmic rays above 1021 eV. A satellite observatory concept, the Maximum-energy Auger (Air)-Shower Satellite (MASS), is recently renamed as the Orbital Wide-angle Collector (OWL) by taking its unique feature of using a very wide field-of-view (FOV) optics. A huge array of imaging devices (about 10(exp 6) pixels) is required to detect and record fluorescent light profiles of cosmic ray cascades in the atmosphere. The FOV of MASS could extend to as large as about 60 in. diameter, which views (500 - 1000 km) of earth's surface and more than 300 - 1000 cosmic ray events per year could be observed above 1020 eV. From far above the atmosphere, the MASS/OWL satellite should be capable of observing events at all angles including near horizontal tracks, and would have considerable aperture for high energy photon and neutrino observation. With a large aperture and the spatial and temporal resolution, MASS could determine the energy spectrum, the mass composition, and arrival anisotropy of cosmic rays from 1020 eV to 1022 eV; a region hitherto not explored by ground-based detectors such as the Fly's Eye and air-shower arrays. MASS/OWL's ability to identify cosmic neutrinos and gamma rays may help providing evidence for the theory which attributes the above cut-off cosmic ray flux to the decay of topological defects. Very wide FOV optics system of MASS/OWL with a large array of imaging devices is applicable to observe other atmospheric phenomena including upper atmospheric lightning. The wide FOV MASS optics being developed can also improve ground-based gamma-ray observatories by allowing simultaneous observation of many gamma ray sources located at different constellations.

  7. Gamma-ray astronomy and the origin of cosmic rays

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    Recent observations of cosmic gamma radiation are reviewed. It is shown that this radiation consists of an extragalactic background as well as a bright band of galactic radiation lying in the plane of the Milky Way and produced primarily by cosmic-ray collisions with interstellar gas atoms. The galactic gamma radiation is divided into a near component apparently associated with Gould's belt and a far component originating about 15,000 light years away and narrowly confined to the galactic plane. A Great Galactic Ring is identified which is 35,000 light years in diameter and in which most galactic cosmic rays are produced and supernovae and pulsars are concentrated. The physical mechanisms responsible for the production of most of the cosmic gamma rays in the Galaxy are examined, and the origin of galactic cosmic rays is considered. It is concluded that the cosmic rays are produced either in supernova explosions or in the pulsars they leave behind

  8. Superdiffusion of cosmic rays: Implications for cosmic ray acceleration

    SciTech Connect

    Lazarian, A.; Yan, Huirong

    2014-03-20

    Diffusion of cosmic rays (CRs) is the key process for understanding their propagation and acceleration. We employ the description of spatial separation of magnetic field lines in magnetohydrodynamic turbulence in Lazarian and Vishniac to quantify the divergence of the magnetic field on scales less than the injection scale of turbulence and show that this divergence induces superdiffusion of CR in the direction perpendicular to the mean magnetic field. The perpendicular displacement squared increases, not as the distance x along the magnetic field, which is the case for a regular diffusion, but as the x {sup 3} for freely streaming CRs. The dependence changes to x {sup 3/2} for the CRs propagating diffusively along the magnetic field. In the latter case, we show that it is important to distinguish the perpendicular displacement with respect to the mean field and to the local magnetic field. We consider how superdiffusion changes the acceleration of CRs in shocks and show how it decreases efficiency of the CRs acceleration in perpendicular shocks. We also demonstrate that in the case when the small-scale magnetic field is generated in the pre-shock region, an efficient acceleration can take place for the CRs streaming without collisions along the magnetic loops.

  9. Cosmic Rays Variations and Human Physiological State

    NASA Astrophysics Data System (ADS)

    Dimitrova, S.

    2009-12-01

    It was obtained in our previous investigations that geomagnetic activity as an indirect indicator of solar activity correlates with some human physiological and psycho-physiological parameters. A lot of studies indicate that other parameters of space weather like cosmic rays Forbush decreases affect myocardial infarction, brain stroke, car accidents, etc. The purpose of that work was to study the effect of cosmic rays variations on human physiological status. It was established that the decrease in cosmic rays intensity was related to an increase in systolic and diastolic blood pressure and reported subjective psycho-physiological complaints in healthy volunteers.

  10. Size distributions of air showers accompanied with high energy gamma ray bundles observed at Mt. Chacaltaya

    NASA Technical Reports Server (NTRS)

    Matano, T.; Machida, M.; Tsuchima, I.; Kawasumi, N.; Honda, K.; Hashimoto, K.; Martinic, N.; Zapata, J.; Navia, C. E.; Aquirre, C.

    1985-01-01

    Size distributions of air showers accompanied with bundle of high energy gamma rays and/or large size bursts under emulsion chambers, to study the composition of primary cosmic rays and also characteristics of high energy nuclear interaction. Air showers initiated by particles with a large cross section of interaction may develop from narrow region of the atmosphere near the top. Starting levels of air showers by particles with smaller cross section fluctuate in wider region of the atmosphere. Air showers of extremely small size accompanied with bundle of gamma rays may be ones initiated by protons at lower level after penetrating deep atmosphere without interaction. It is determined that the relative size distribution according to the total energy of bundle of gamma rays and the total burst size observed under 15 cm lead absorber.

  11. The future of high energy gamma ray astronomy and its potential astrophysical implications

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.

    1982-01-01

    Future satellites should carry instruments having over an order of magnitude greater sensitivity than those flown thus far as well as improved energy and angular resolution. The information to be obtained from these experiments should greatly enhance knowledge of: the very energetic and nuclear processes associated with compact objects; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies; and the degree of matter-antimatter symmetry of the universe. The relevant aspects of extragalactic gamma ray phenomena are emphasized along with the instruments planned. The high energy gamma ray results of forthcoming programs such as GAMMA-1 and the Gamma Ray Observatory should justify even more sophisticated telescopes. These advanced instruments might be placed on the space station currently being considered by NASA.

  12. The Astrophysics of Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Diehl, R.; Kallenbach, R.; Parizot, E.; Von Steiger, R.

    2001-10-01

    Observations of cosmic rays and their related radio to gamma-ray signatures are surveyed and discussed critically, and compared to theoretical models of the cosmic-ray origin and propagation. The analogous heliospheric processes are included as a well-studied case of the principal physical processes of energetic particle acceleration and propagation. Reinforcements, or conflicts, in the interpretations of cosmic-ray spectral and compositional characteristics arise when cosmic-ray source and propagation models are confronted with astronomical information about the Galaxy as a whole and from potential source sites, i.e., supernova remnants or regions with high massive-star density. This volume represents the outcome of two workshops held at ISSI. In this chapter we summarize the introductory papers presented below, and include insights from the workshop discussions.

  13. Cosmic ray transport in astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Schlickeiser, R.

    2015-09-01

    Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, the heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.

  14. X-ray Production By Cosmic Muons

    SciTech Connect

    Mrdja, D.; Bikit, I.; Veskovic, M.; Forkapic, S.; Anicin, I.

    2007-04-23

    Muons have a small cross section for interactions and high energy, so they are very penetrating and give the significant contribution to the gamma spectra of Ge detectors, even in deep underground laboratories. One of the muon interaction effects with material is X-rays production. Having in mind that gold is often used as a detectors component, in this paper the production of X-rays in gold sample is analyzed by using an coincidence system based on plastic scintillation detector and Ge detector. The Au disc-shaped sample with mass of 40.6 g, radius 3.34 cm and 0.06 cm thickness was inside 12 cm thick lead shield of extended range HPGe detector. The plastic detector of 0.5 x 0.5 x 0.05 m dimensions was placed above the lead shield at the distance of 32 cm from detector endcap. The producing rate of K{alpha} rays per Au mass unit from coincidence gamma spectrum is determined as R {approx_equal}7.1 x 10-4 g-1s-1. Taking in account the measured muon flux of {phi}=54 s-1m-2, the muon cross section {sigma}K{alpha}{approx_equal} 43 Barn, for Au K{alpha} X-rays production is calculated. Also, the cross sections of X-ray production by cosmic muons in lead and tungsten are measured. Unexpectedly, the results obtained did not reveal Z dependence in the Z= 74-82 region.

  15. Fermi LAT Observations of Cosmic-Ray Electrons

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2011-01-01

    Designed as a gamma-ray instrument, the LAT is a capable detector of high energy cosmic ray electrons. The LAT is composed of a 4x4 array of identical towers. Each tower has a Tracker and a Calorimeter module. Entire LAT is covered by segmented Anti-Coincidence Detector (ACD). The electron data analysis is based on that developed for photons. The main challenge is to identify and separate electrons from all other charged species, mainly CR protons (for gamma-ray analysis this is provided by the Anti-Coincidence Detector)

  16. The Tunka detector complex: from cosmic-ray to gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Budnev, N.; Astapov, I.; Barbashina, N.; Bogdanov, A.; Bogorodskii, D.; Boreyko, V.; Büker, M.; Brückner, M.; Chiavassa, A.; Chvalaev, O.; Gress, O.; Gress, T.; Dyachok, A.; Epimakhov, S.; Gafatov, A.; Gorbunov, N.; Grebenyuk, V.; Grinuk, A.; Haungs, A.; Hiller, R.; Horns, D.; Huege, T.; Ivanova, A.; Kalinin, A.; Karpov, N.; Kalmykov, N.; Kazarina, Y.; Kindin, V.; Kirichkov, N.; Kiryuhin, S.; Kleifges, M.; Kokoulin, R.; Komponiest, K.; Konstantinov, A.; Konstantinov, E.; Korobchenko, A.; Korosteleva, E.; Kostunin, D.; Kozhin, V.; Krömer, O.; Kunnas, M.; Kuzmichev, L.; Lenok, V.; Lubsandorzhiev, B.; Lubsandorzhiev, N.; Mirgazov, R.; Mirzoyan, R.; Monkhoev, R.; Nachtigall, R.; Pakhorukov, A.; Panasyuk, M.; Pankov, L.; Petrukhin, A.; Platonov, V.; Poleschuk, V.; Popova, E.; Porelli, A.; Prosin, V.; Ptuskin, V.; Rubtsov, G.; Rühle, C.; Samoliga, V.; Satunin, P.; Savinov, V.; Saunkin, A.; Schröder, F.; Semeney, Yu; Shaibonov (junior, B.; Silaev, A.; Silaev (junior, A.; Skurikhin, A.; Slucka, V.; Spiering, C.; Sveshnikova, L.; Tabolenko, V.; Tkachenko, A.; Tkachev, L.; Tluczykont, M.; Voronin, D.; Wischnewski, R.; Zagorodnikov, A.; Zurbanov, V.; Yashin, I.

    2015-08-01

    TAIGA stands for “Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy” and is a project to build a complex, hybrid detector system for ground-based gamma- ray astronomy from a few TeV to several PeV, and for cosmic-ray studies from 100 TeV to 1 EeV. TAIGA will search for ”PeVatrons” (ultra-high energy gamma-ray sources) and measure the composition and spectrum of cosmic rays in the knee region (100 TeV - 10 PeV) with good energy resolution and high statistics. TAIGA will include Tunka-HiSCORE (an array of wide-angle air Cherenkov stations), an array of Imaging Atmospheric Cherenkov Telescopes, an array of particle detectors, both on the surface and underground, and the TUNKA-133 air Cherenkov array.

  17. High energy resolution off-resonant X-ray spectroscopy

    SciTech Connect

    Wojciech, Blachucki

    2015-01-01

    This work treats of the high energy resolution off-resonant X-ray spectroscopy (HEROS) method of determining the density of unoccupied electronic states in the vicinity of the absorption edge. HEROS is an alternative to the existing X-ray absorption spectroscopy (XAS) methods and opens the way for new studies not achievable before.

  18. Solving the Riddle of Unidentified High-Energy ?-RAY Sources

    NASA Astrophysics Data System (ADS)

    Caraveo, Patrizia A.

    2007-10-01

    Unidentified objects dominate current catalogues of high-energy (MeV-to-GeV) sources. Solving the mystery of such unidentified ?-ray sources is a major challenge for astronomy. Different approaches towards source identification have been tried in the past, with limited success. The wealth of gamma-ray sources expected in the near future calls for a novel approach.

  19. Consistency of cosmic-ray source abudances with explosive nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Kozlovsky, B.; Ramaty, R.

    1973-01-01

    A model was examined in which the cosmic ray abundances of elements from C to Fe are consistent with explosive nucleosynthesis. The observed abundance of cosmic rays near the earth, cosmic ray source abundance, and solar system abundance are discussed along with the ratios of cosmic ray sources to the solar system abundances.

  20. Cosmic ray antimatter and baryon symmetric cosmology

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1982-01-01

    The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic-ray antiprotons, including the new low-energy measurement of Buffington, et al. We conclude that the cosmic-ray antiproton data may be evidence for antimatter galaxies and baryon symmetric cosmology. The present bar P data are consistent with a primary extragalactic component having /p=/equiv 1+/- 3.2/0.7x10 = to the -4 independent of energy. We propose that the primary extragalactic cosmic ray antiprotons are most likely from active galaxies and that expected disintegration of bar alpha/alpha ban alpha/alpha. We further predict a value for ban alpha/alpha =/equiv 10 to the -5, within range of future cosmic ray detectors.

  1. Cosmic ray transport near the heliopause

    NASA Astrophysics Data System (ADS)

    Strauss, R. D.; Fichtner, H.; Potgieter, M. S.; le Roux, J. A.; Luo, X.

    2015-09-01

    In this paper we summarize our modelling efforts for cosmic rays near the heliopause, and discuss whether galactic cosmic ray modulation beyond the heliopause is possible and present an explanation for the anisotropic nature of the observed cosmic ray intensities in the very local interstellar medium. We show that (i) modulation beyond the heliopause is possible, but highly dependent on the assumed parameters (most notable, the perpendicular diffusion coefficient). Treating the heliopause as a tangential discontinuity, significantly damps this modulation effect and leads to modelled results that are similar to Voyager 1 observations. (ii) By choosing an appropriate functional form of the perpendicular diffusion coefficient on the pitch-angle level, we are able to account for the anisotropic behaviour observed for both galactic and anomalous cosmic rays in the local interstellar medium.

  2. Relativistic transport theory for cosmic-rays

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1985-01-01

    Various aspects of the transport of cosmic-rays in a relativistically moving magnetized plasma supporting a spectrum of hydromagnetic waves that scatter the cosmic-rays are presented. A local Lorentz frame moving with the waves or turbulence scattering the cosmic-rays is used to specify the individual particle momentum. The comoving frame is in general a noninertial frame in which the observer's volume element is expanding and shearing, geometric energy change terms appear in the cosmic-ray transport equation which consist of the relativistic generalization of the adiabatic deceleration term and a further term involving the acceleration vector of the scatterers. A relativistic version of the pitch angle evolution equation, including the effects of adiabatic focussing, pitch angle scattering, and energy changes is presented.

  3. Space science: Cosmic rays beyond the knees

    NASA Astrophysics Data System (ADS)

    Taylor, Andrew M.

    2016-03-01

    The development of a radio technique for detecting cosmic rays casts fresh light on the origins of some of these accelerated particles, and suggests that they might have travelled much farther than was previously thought. See Letter p.70

  4. COSMIC-RAY TRANSPORT AND ANISOTROPIES

    SciTech Connect

    Biermann, Peter L.; Becker Tjus, Julia; Mandelartz, Matthias; Seo, Eun-Suk

    2013-05-10

    We show that the large-scale cosmic-ray anisotropy at {approx}10 TeV can be explained by a modified Compton-Getting effect in the magnetized flow field of old supernova remnants. Cosmic rays arrive isotropically to the flow field and are then carried along with the flow to produce a large-scale anisotropy in the arrival direction. This approach suggests an optimum energy scale for detecting the anisotropy. Two key assumptions are that propagation is based on turbulence following a Kolmogorov law and that cosmic-ray interactions are dominated by transport via cosmic-ray-excited magnetic irregularities through the stellar wind of an exploding star and its shock shell. A prediction is that the amplitude is smaller at lower energies due to incomplete sampling of the velocity field and also smaller at larger energies due to smearing.

  5. COSMIC-RAY HELIUM HARDENING

    SciTech Connect

    Ohira, Yutaka; Ioka, Kunihito

    2011-03-01

    Recent observations by the CREAM and ATIC-2 experiments suggest that (1) the spectrum of cosmic-ray (CR) helium is harder than that of CR protons below the knee energy, 10{sup 15}eV, and (2) all CR spectra become hard at {approx}>10{sup 11}eV nucleon{sup -1}. We propose a new idea, that higher energy CRs are generated in a more helium-rich region, to explain the hardening without introducing different sources for CR helium. The helium-to-proton ratio at {approx}100 TeV exceeds the Big Bang abundance Y = 0.25 by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in a chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium if CRs escape from the supernova remnant shock in an energy-dependent way. We provide a simple analytical spectrum that also fits well the hardening due to the decreasing Mach number in the hot superbubble with {approx}10{sup 6} K. Our model predicts hard and concave spectra for heavier CR elements.

  6. Apollo 17 lunar surface cosmic ray detector

    NASA Technical Reports Server (NTRS)

    Walker, R. M.

    1974-01-01

    The objectives and selected data are presented for the Apollo 17 Lunar Surface Cosmic Ray Experiment (LSCRE) for the purpose of introducing an analysis of three of the separate detectors contained within in LSCRE package. The mica detector for measuring heavy solar wind, and the lexan stack and glass detectors for measuring energetic particles in space are discussed in terms of their deployment, exposure time, calibration, and data yield. Relevant articles on solar particles, interplanetary ions, and cosmic ray nuclei are also included.

  7. Reminiscences of cosmic ray research in Mexico

    NASA Astrophysics Data System (ADS)

    Pérez-Peraza, Jorge

    2009-11-01

    Cosmic ray research in Mexico dates from the early 1930s with the work of the pioneering physicist, Manuel Sandoval Vallarta and his students from Mexico. Several experiments of international significance were carried out during that period in Mexico: they dealt with the geomagnetic latitude effect, the north-south and west-east asymmetry of cosmic ray intensity, and the sign of the charge of cosmic rays. The international cosmic ray community has met twice in Mexico for the International Cosmic Ray Conferences (ICRC): the fourth was held in Guanajuato in 1955, and the 30th took place in Mérida, in 2007. In addition, an international meeting on the Pierre Auger Collaboration was held in Morelia in 1999, and the International Workshop on Observing UHE Cosmic Rays took place in Metepec in 2000. A wide range of research topics has been developed, from low-energy Solar Energetic Particles (SEP) to the UHE. Instrumentation has evolved since the early 1950s, from a Simpson type neutron monitor installed in Mexico City (2300 m asl) to a solar neutron telescope and an EAS Cherenkov array, (within the framework of the Auger International Collaboration), both at present operating on Mt. Sierra La Negra in the state of Puebla (4580 m asl). Research collaboration has been undertaken with many countries; in particular, the long-term collaboration with Russian scientists has been very fruitful.

  8. Cosmic gamma-rays from pion decay

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1972-01-01

    The production of gamma rays from the decay of neutral pions produced in interstellar cosmic ray interactions was studied, limited to the total gamma ray intensity. Using the upper-limit gamma ray production, an upper-limit is obtained consistent with that obtained by Kraushaar. It is shown that whatever the shape of the gamma ray spectrum, the normalization has to be consistent with data of the total cross sections.

  9. The very-high-energy gamma-ray sky.

    PubMed

    Aharonian, Felix

    2007-01-01

    Over the past few years, very-high-energy gamma-ray astronomy has emerged as a truly observational discipline, with many detected sources representing different galactic and extragalactic source populations-supernova remnants, pulsar wind nebulae, giant molecular clouds, star formation regions, compact binary systems, and active galactic nuclei. It is expected that observations with the next generation of stereoscopic arrays of imaging atmospheric Cherenkov telescopes over a very broad energy range from 10(10) to 10(15) electron volts will dramatically increase the number of very-high-energy gamma-ray sources, thus having a huge impact on the development of astrophysics, cosmology, and particle astrophysics. PMID:17204642

  10. High energy X-ray spectrum of Her X-1

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Crannell, C. J.; Dolan, J. F.; Frost, K. J.; Orwig, L. E.; Maurer, G. S.; Cutler, E. P.

    1978-01-01

    Line features in the high-energy X-ray spectrum of Her X-1 are attributed to an approximately 1% change in detector gain. The spectrum was obtained by a high-energy X-ray detector aboard OSO-8. The time-averaged spectrum of Her X-1 for the period August 31-Sept. 6, 1977 is presented; the count-rate spectrum was corrected for an average change in gain of 0.7%. The best fit power-law is reported.

  11. The COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data assimilation

    NASA Astrophysics Data System (ADS)

    Shuttleworth, J.; Rosolem, R.; Zreda, M.; Franz, T.

    2013-01-01

    Soil moisture status in land surface models (LSMs) can be updated by assimilating cosmic-ray neutron intensity measured in air above the surface. This requires a fast and accurate model to calculate the neutron intensity from the profiles of soil moisture modeled by the LSM. The existing Monte Carlo N-Particle eXtended (MCNPX) model is sufficiently accurate but too slow to be practical in the context of data assimilation. Consequently an alternative and efficient model is needed which can be calibrated accurately to reproduce the calculations made by MCNPX and used to substitute for MCNPX during data assimilation. This paper describes the construction and calibration of such a model, COSMIC, which is simple, physically-based and analytic and, because it runs at least 50 000 times faster than MCNPX, is appropriate in data assimilation applications. The model includes simple descriptions of (a) degradation of the incoming high energy neutron flux with soil depth, (b) creation of fast neutrons at each depth in the soil, and (c) scattering of the resulting fast neutrons before they reach the soil surface, all of which processes may have parameterized dependency on the chemistry and moisture content of the soil. The site-to-site variability in the parameters used in COSMIC is explored for 42 sample sites in the COsmic-ray Soil Moisture Observing System (COSMOS), and the comparative performance of COSMIC relative to MCNPX when applied to represent interactions between cosmic-ray neutrons and moist soilis explored. At an example site in Arizona, fast neutron counts calculated by COSMIC from the average soil moisture profile given by an independent network of point measurements in the COSMOS probe footprint are similar to the fast neutron intensity measured by the COSMOS probe. Moreover at this site application of data assimilation using COSMIC to update the Noah Land Surface Model constrains the modeled soil moisture such that it agrees with the values given by the independent network of point measurements, thus confirming that COSMIC can be used as a robust forward operator in data assimilation of cosmic-ray soil moisture measurements.

  12. Space Weather, Cosmic Rays, and Satellite Anomalies

    NASA Astrophysics Data System (ADS)

    Lev, Dorman

    Results are presented of the Satellite Anomaly Project, which aims to improve the methods of safeguarding satellites in the Earth’s magnetosphere from the negative effects of the space environment. Anomaly data from the USSR and Russian “Kosmos” series satellites in the period 1971-1999 are combined into one database, together with similar information on other spacecraft. This database contains, beyond the anomaly information, various characteristics of space weather: geomagnetic activity indices (Ap, AE and Dst), fluxes and fluencies of electrons and protons at different energies, high energy cosmic ray variations and other solar, interplanetary and solar wind data. A comparative analysis of the distribution of each of these parameters relative to satellite anomalies was carried out for the total number of anomalies (about 6000 events), and separately for high altitude orbit satellites ( 5000 events) and low altitude (about 800 events). No relation was found between low and high altitude satellite anomalies. Daily numbers of satellite anomalies, averaged by a superposed epoch method around sudden storm commencements and proton event onsets for high (>1500 km) and low (<1500 km) altitude orbits revealed a big difference in behavior. Satellites were divided into several groups according to their orbital characteristics (altitude and inclination). The relation of satellite anomalies to the environmental parameters was found to be different for various orbits, and this should be taken into account when developing anomaly frequency models. The preliminary anomaly frequency models are presented.

  13. Contributions to the 19th International Cosmic Ray Conference

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Various aspects of cosmic radiation, its measurements and their patterns are presented. Measurement techniques and variations in solar cosmic ray patterns and calculations of elemental abundances are reviewed.

  14. Treatment of foods with high-energy X rays

    NASA Astrophysics Data System (ADS)

    Cleland, M. R.; Meissner, J.; Herer, A. S.; Beers, E. W.

    2001-07-01

    The treatment of foods with ionizing energy in the form of gamma rays, accelerated electrons, and X rays can produce beneficial effects, such as inhibiting the sprouting in potatoes, onions, and garlic, controlling insects in fruits, vegetables, and grains, inhibiting the growth of fungi, pasteurizing fresh meat, poultry, and seafood, and sterilizing spices and food additives. After many years of research, these processes have been approved by regulatory authorities in many countries and commercial applications have been increasing. High-energy X rays are especially useful for treating large packages of food. The most attractive features are product penetration, absorbed dose uniformity, high utilization efficiency and short processing time. The ability to energize the X-ray source only when needed enhances the safety and convenience of this technique. The availability of high-energy, high-power electron accelerators, which can be used as X-ray generators, makes it feasible to process large quantities of food economically. Several industrial accelerator facilities already have X-ray conversion equipment and several more will soon be built with product conveying systems designed to take advantage of the unique characteristics of high-energy X rays. These concepts will be reviewed briefly in this paper.

  15. Search for Galactic cosmic ray sources: The multimessenger approach

    NASA Astrophysics Data System (ADS)

    Becker Tjus, Julia

    2015-12-01

    The search for the sources of high-energy cosmic rays (CRs) has made significant progress the past decade. By including multimessenger methods, the general picture of the presence of a Galactic component at low energies and an extragalactic one at the highest energies has been strengthened. Yet, unambiguous proof of the exact origins of CRs is missing. In this review, the current scientific status on Galactic CR sources from theory and experimental data is summarized. In particular, the focus of this review lies on the search for photon and neutrino signals from the Galaxy and their theoretical interpretation in the context of the quest for the origin of high-energy cosmic rays. The use of multiwavelength data, from radio to TeV energies, as well as the option of coincident observations of different wavelength bands in order to pin-point the sources of Galactic CRs are discussed. Finally, the objectives for the field of astroparticles to reach the goal of unambiguously identifying Galactic cosmic ray sources within the next decades are presented.

  16. A COsmic-ray Soil Moisture Interaction Code (COSMIC) for Use in Data Assimilation

    NASA Astrophysics Data System (ADS)

    Shuttleworth, W. J.; Rosolem, R.; Zreda, M.; Franz, T.

    2012-04-01

    If the cosmic ray induced above-ground fast neutron count is to be used to update the soil moisture status in a Soil-Vegetation Atmosphere Transfer Scheme (SVATS) using data assimilation, a model is required to accurately calculate the above-ground neutron count rate from the profiles of soil moisture modeled by the SVATS. An accurate model, the Monte Carlo N-Particle eXtended (MCNPX; http://mcnpx.lanl.gov/) exists to do this but, because this is a time consuming Monte-Carlo model, using it in the context of data assimilation is impractical. Consequently an alternative and efficient model is needed which can be calibrated to accurately reproduce the calculations made by MCNPX and used to substitute for MCNPX during data assimilation. This paper describes the construction and calibration of such a model, COSMIC, which is simple, physically-based and analytic and, because it runs approximately 5000 times faster than MCNPX, is appropriate for in data assimilation applications. The model includes description of (a) degradation of the incoming high energy neutron flux, (b) creation of fast neutrons at each depth in the soil, and (c) degradation of the resulting fast neutrons before they reach the soil surface, all of which processes have parameterized dependency on the chemistry and moisture content of the soil. The comparative performance of SPAM relative to MCNPX when applied to represent cosmic-ray/moist soil interactions at several deployment sites within the COsmic-ray Soil Moisture Observing System (COSMOS) is described.

  17. Determination and study of the cosmic-ray composition above 100 TeV

    SciTech Connect

    Sinnis, G.; Haines, T.J.; Hoffman, C.M.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to develop a new technique using ground-based measurements to determine the cosmic-ray composition at energies around 10{sup 15} eV (the knee in the cosmic-ray spectrum). Cosmic rays are high-energy nuclei that continuously bombard the earth. Though cosmic rays were first detected in the 1870s it wasn`t until 1915 that their cosmic origin was established. At present, the authors still do not know the source of cosmic rays. At energies above 50 TeV (1 TeV = 1 trillion electron-volts) they do not know the composition of the cosmic rays. At about 5 PeV (1PeV = 10{sup 15} eV) the cosmic ray spectrum steepens. Knowledge of the composition above and below this point can help determine the origin of cosmic rays.

  18. Positron fraction in cosmic rays and models of cosmic-ray propagation

    SciTech Connect

    Cowsik, R.; Burch, B.

    2010-07-15

    The positron fraction observed by PAMELA and other experiments up to {approx}100 GeV is analyzed in terms of models of cosmic-ray propagation. It is shown that generically we expect the positron fraction to reach {approx}0.6 at energies of several TeV, and its energy dependence bears an intimate but subtle connection with that of the boron to carbon ratio in cosmic rays. The observed positron fraction can be fit in a model that assumes a significant fraction of the boron below {approx}10 GeV is generated through spallation of cosmic-ray nuclei in a cocoonlike region surrounding the sources, and the positrons of energy higher than a few GeV are almost exclusively generated through cosmic-ray interactions in the general interstellar medium. Such a model is consistent with the bounds on cosmic-ray anisotropies and other observations.

  19. The origin of the spectral intensities of cosmic-ray positrons

    SciTech Connect

    Cowsik, R.; Burch, B.; Madziwa-Nussinov, T.

    2014-05-10

    We present a straightforward model of cosmic-ray propagation in the Galaxy that can account for the observed cosmic-ray positrons entirely as secondary products of cosmic-ray interactions with the interstellar medium. In addition to accounting for the observed energy dependence of the ratio of positrons to total electrons, this model can accommodate both the observed energy dependence of secondary to primary nuclei, like boron/carbon, and the observed bounds on the anisotropy of cosmic rays. This model also predicts the energy dependence of the positron fraction at energies higher than those measured to date, with the ratio rising to ∼0.7 at very high energies. The model presented in this paper arises as a natural extension of the widely used current models and allows one to include the spatial and temporal discreteness of the sources of cosmic rays.

  20. Detecting EHE Cosmic Rays Using Cherenkov Light

    NASA Astrophysics Data System (ADS)

    Bergman, Douglas

    2011-04-01

    Cherenkov light has been used to detect gamma rays in the TeV energy range using an imaging technique and cosmic rays in the PeV energy range using a non-imaging technique. We would like to extend the use of the non-imaging technique up to nearly 1 EeV. At these energies the technique can be used in conjunction with fluorescence detection of cosmic rays, allowing for hybrid reconstruction of shower geometries and cross calibration of energy scales. We envision using an array of Cherenkov detectors as part of the Telescope Array (TA) Low Energy extension (TALE), extending the energy range of the detector down to the Knee of the cosmic ray energy spectrum.

  1. THE INTERACTION OF COSMIC RAYS WITH DIFFUSE CLOUDS

    SciTech Connect

    Everett, John E.; Zweibel, Ellen G.

    2011-10-01

    We study the change in cosmic-ray pressure, the change in cosmic-ray density, and the level of cosmic-ray-induced heating via Alfven-wave damping when cosmic rays move from a hot ionized plasma to a cool cloud embedded in that plasma. The general analysis method outlined here can apply to diffuse clouds in either the ionized interstellar medium or in galactic winds. We introduce a general-purpose model of cosmic-ray diffusion building upon the hydrodynamic approximation for cosmic rays (from McKenzie and Voelk and Breitschwerdt and collaborators). Our improved method self-consistently derives the cosmic-ray flux and diffusivity under the assumption that the streaming instability is the dominant mechanism for setting the cosmic-ray flux and diffusion. We find that, as expected, cosmic rays do not couple to gas within cool clouds (cosmic rays exert no forces inside of cool clouds), that the cosmic-ray density does not increase within clouds (it may decrease slightly in general, and decrease by an order of magnitude in some cases), and that cosmic-ray heating (via Alfven-wave damping and not collisional effects as for {approx}10 MeV cosmic rays) is only important under the conditions of relatively strong (10 {mu}G) magnetic fields or high cosmic-ray pressure ({approx}10{sup -11} erg cm{sup -3}).

  2. Neutrino diagnostics of ultrahigh energy cosmic ray protons

    SciTech Connect

    Ahlers, Markus; Sarkar, Subir; Anchordoqui, Luis A.

    2009-04-15

    The energy at which cosmic rays from extra-galactic sources begin to dominate over those from galactic sources is an important open question in astroparticle physics. A natural candidate is the energy at the 'ankle' in the approximately power-law energy spectrum which is indicative of a crossover from a falling galactic component to a flatter extra-galactic component. The transition can occur without such flattening but this requires some degree of conspiracy of the spectral shapes and normalizations of the two components. Nevertheless, it has been argued that extra-galactic sources of cosmic ray protons that undergo interactions on the CMB can reproduce the energy spectrum below the ankle if the crossover energy is as low as the 'second knee' in the spectrum. This low crossover model is constrained by direct measurements by the Pierre Auger Observatory, which indicate a heavier composition at these energies. We demonstrate that upper limits on the cosmic diffuse neutrino flux provide a complementary constraint on the proton fraction in ultra-high energy extra-galactic cosmic rays and forthcoming data from IceCube will provide a definitive test of this model.

  3. The COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data assimilation

    NASA Astrophysics Data System (ADS)

    Shuttleworth, J.; Rosolem, R.; Zreda, M.; Franz, T.

    2013-08-01

    Soil moisture status in land surface models (LSMs) can be updated by assimilating cosmic-ray neutron intensity measured in air above the surface. This requires a fast and accurate model to calculate the neutron intensity from the profiles of soil moisture modeled by the LSM. The existing Monte Carlo N-Particle eXtended (MCNPX) model is sufficiently accurate but too slow to be practical in the context of data assimilation. Consequently an alternative and efficient model is needed which can be calibrated accurately to reproduce the calculations made by MCNPX and used to substitute for MCNPX during data assimilation. This paper describes the construction and calibration of such a model, COsmic-ray Soil Moisture Interaction Code (COSMIC), which is simple, physically based and analytic, and which, because it runs at least 50 000 times faster than MCNPX, is appropriate in data assimilation applications. The model includes simple descriptions of (a) degradation of the incoming high-energy neutron flux with soil depth, (b) creation of fast neutrons at each depth in the soil, and (c) scattering of the resulting fast neutrons before they reach the soil surface, all of which processes may have parameterized dependency on the chemistry and moisture content of the soil. The site-to-site variability in the parameters used in COSMIC is explored for 42 sample sites in the COsmic-ray Soil Moisture Observing System (COSMOS), and the comparative performance of COSMIC relative to MCNPX when applied to represent interactions between cosmic-ray neutrons and moist soil is explored. At an example site in Arizona, fast-neutron counts calculated by COSMIC from the average soil moisture profile given by an independent network of point measurements in the COSMOS probe footprint are similar to the fast-neutron intensity measured by the COSMOS probe. It was demonstrated that, when used within a data assimilation framework to assimilate COSMOS probe counts into the Noah land surface model at the Santa Rita Experimental Range field site, the calibrated COSMIC model provided an effective mechanism for translating model-calculated soil moisture profiles into aboveground fast-neutron count when applied with two radically different approaches used to remove the bias between data and model.

  4. Monopole annihilation and highest energy cosmic rays

    SciTech Connect

    Bhattacharjee, P. Indian Institute of Astrophysics, Sarjapur Road, Koramangala, Bangalore 560 034 ); Sigl, G. NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500 )

    1995-04-15

    Cosmic rays with energies exceeding 10[sup 20] eV have been detected. The origin of these highest energy cosmic rays remains unknown. Established astrophysical acceleration mechanisms encounter severe difficulties in accelerating particles to these energies. Alternative scenarios where these particles are created by the decay of cosmic topological defects have been suggested in the literature. In this paper we study the possibility of producing the highest energy cosmic rays through a process that involves the formation of metastable magnetic monopole-antimonopole bound states and their subsequent collapse. The annihilation of the heavy monopole-antimonopole pairs constituting the monopolonia can produce energetic nucleons, [gamma] rays, and neutrinos whose expected flux we estimate and discuss in relation to experimental data so far available. The monopoles we consider are the ones that could be produced in the early Universe during a phase transition at the grand unification energy scale. We find that observable cosmic ray fluxes can be produced with monopole abundances compatible with present bounds.

  5. Cosmic Ray Interactions in Shielding Materials

    SciTech Connect

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-09-08

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earths surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earths surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  6. Studies of low energy cosmic rays - The anomalous component

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Cummings, A. C.; Stone, E. C.

    1983-01-01

    Data from the cosmic ray subsystem on the Voyager spacecraft is used to measure the spectra of He, C, N, O, and Ne with about 4-124 MeV/nuc (for O) near 1 AU. By subtracting both a low-energy solar/interplanetary component and the high-energy galactic component the energy spectra of the anomalous cosmic-ray species He, N, O, and Ne have been determined. It is suggested that the shapes of these spectra carry information about the charge state of the particles and the rigidity dependence of the diffusion coefficient. For similar power-law source spectra at the boundary of the modulation region, the location of features in the energy spectra indicates that the anomalous particles are singly ionized.

  7. A perturbation approach to cosmic ray transients in interplanetary space

    NASA Technical Reports Server (NTRS)

    Chih, P. P.; Lee, M. A.

    1986-01-01

    A perturbation approach is used to model the linear response of the cosmic ray distribution as a function of perturbations in the solar wind transport parameters. The analytical technique permits examination of the effects of the different solar wind parameters, i.e., velocity, drift velocity and the diffusion tensor, which are additive. Cosmic ray changes in the solar wind are neglected. Variations in the diffusion coefficient and the convection-diffusion equation are applied to describing Forbush decreases and the 11-yr solar cycle variations. The treatment is limited to energies above 100 MeV, yet is considered valid enough to have identified a hysteresis effect in the 11-yr variation, wherein high-energy particles lead low-energy particles to a magnitude that increases with increasing heliocentric distance within the inner heliosphere. The calculations also indicate that the Forbush decreases are a cumulative effect of precipitous precursors accompanied by slow recoveries from travelling solar wind perturbations.

  8. KCDC — The KASCADE Cosmic-ray Data Centre

    NASA Astrophysics Data System (ADS)

    Haungs, A.; Blumer, J.; Fuchs, B.; Kang, D.; Schoo, S.; Wochele, D.; Wochele, J.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K. H.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Zabierowski, J.

    2015-08-01

    KCDC, the ‘KASCADE Cosmic-ray Data Centre’, is a web portal, where data of astroparticle physics experiments will be made available for the interested public. The KASCADE experiment, financed by public money, was a large-area detector for the measurement of high-energy cosmic rays via the detection of air showers. KASCADE and its extension KASCADE-Grande stopped finally the active data acquisition of all its components including the radio EAS experiment LOPES end of 2012 after more than 20 years of data taking. In a first release, with KCDC we provide to the public the measured and reconstructed parameters of more than 160 million air showers. In addition, KCDC provides the conceptional design, how the data can be treated and processed so that they are also usable outside the community of experts in the research field. Detailed educational examples make a use also possible for high-school students and early stage researchers.

  9. Primary Cosmic Rays Composition: Simulations and Detector Design

    SciTech Connect

    Supanitsky, D.; Etchegoyen, A.; Medina, C.; Medina-Tanco, G.; Gomez Berisso, M.

    2007-02-12

    The Pierre Auger Observatory is a hybrid detector system for the detection of very high energy cosmic rays. A most difficult and important problem in these studies is the determination of the primary cosmic ray composition for which muon content in air showers appears to be one of the best parameters to discriminate between different composition types.Although the Pierre Auger surface detectors, which consist of water Cherenkov tanks, are sensitive to muon content they are not able to measure the number of muons directly. In this work we study using simulations the information that can be gained by adding muon detectors to the Auger surface detectors. We consider muon counters with two alternative areas.

  10. Galactic gamma radiation from cosmic rays concentrated in spiral arms

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Fichtel, C. E.; Thompson, D. J.; Cheung, C. Y.; Bignami, G. F.

    1975-01-01

    Extending the model proposed by Bignami et al. (1975), and by Fichtel et al. (1975a) for the production of the galactic high energy gamma ray distribution observed by SAS-2 to lower energies indicates the radiation is dominated by the bremsstrahlung emission of cosmic ray electrons traversing the interstellar gas. Although secondary electrons contribute only about 15% to the 10-30 MeV gamma ray emission in the solar vicinity, their contribution in the model is proportional to the third power of N, where N(r, gal. long., gal. lat.) is the total interstellar gas density, as compared to the square of N for the case of the primary components, and hence their relative importance increases in high density regions. Gamma-ray observations at these energies when compared to those at high energies (above 100 MeV) may provide a means for mapping the ratio of cosmic ray electrons to nucleons throughout the galaxy without the necessity of invoking models for the galactic magnetic field.

  11. Shock-Wave and Plasma-Pinch Mechanisms of Galactic Cosmic-Ray Production

    SciTech Connect

    Trubnikov, B.A.

    2005-07-01

    Based on recent discoveries, we show that it is appropriate to complement the standard shock-wave model for the production of galactic cosmic rays by a plasma-pinch model. The latter describes well the production of high-energy cosmic rays, yields a simple formula for their intensity, and allows the threshold pattern of the knee-type kink in the secondary particle spectrum and a number of unusual phenomena observed above the threshold to be explained.

  12. On a possible solution to gamma-ray overabundance arising in dark matter explanation of cosmic antiparticle excess

    NASA Astrophysics Data System (ADS)

    Alekseev, V. V.; Belotsky, K. M.; Bogomolov, Yu V.; Budaev, R. I.; Dunaeva, O. A.; Kirillov, A. A.; Kuznetsov, A. V.; Laletin, M. N.; Lukyanov, A. D.; Malakhov, V. V.; Mayorov, A. G.; Mayorova, M. A.; Mosichkin, A. F.; Okrugin, A. A.; Rodenko, S. A.; Shitova, A. M.

    2016-02-01

    As we are going to show, some self-interacting dark matter models may provide an intriguing solution to the cosmic antiparticle excess vs. isotropic diffuse gamma-ray background problem (an overproduction of diffuse gamma rays, arising in any reasonable decaying or annihilating dark matter model explaining high-energy charged cosmic antiparticles anomalous abundance).

  13. Quantum field theories, nuclear forces, and the cosmic rays (1934--1938)

    SciTech Connect

    Brown, L.M. ); Rechenberg, H. )

    1991-07-01

    During the 1930s, cosmic rays were the most important source of data on the high-energy behavior of both quantum electrodynamics and nuclear forces. In the period 1934--1938, with which this article is concerned, the dominant fundamental theory of nuclear forces was that of the Fermi field. In sorting out the various cosmic-ray phenomena in the atmosphere, it was found that the less penetrating components were associated with electromagnetic cascade showers, and that the more penetrating component contained a new elementary'' particle, the mesotron. However, there remained puzzling features of the cosmic rays that left adequate room for other interpretations.

  14. A large detector for cosmic ray abundance and energy measurements

    NASA Astrophysics Data System (ADS)

    Alsop, C.

    A large aperture, balloon borne cosmic ray detector was designed to measure the energy spectra of individual cosmic ray species with Z greater than 8 in the energy range 0.3GeV/N to 400GeV/N. The energy dependence of the abundance spectrum extending up to such high energies will provide valuable data for determining the nature of the origin and propagation of cosmic rays in the Galaxy. The properties of cosmic ray nuclei and the interpretation of the energy dependence of the abundance spectrum are discussed. The design and response of the BUGS IV cosmic ray detector are described. The measurement techniques used are gas scintillation, gas proportional scintillation and Cerenkov radiation from both gases and solids. The light collection properties of the detector and several experimental investigations of the light collection efficiency of the drift chamber region are described. The expected signals from the gas scintillation and gas Cerenkov emissions are predicted and the choice of a suitable scintillating gas mixture for minimizing the uncertainty in the charge and energy measurements is considered. The theoretical aspects of electron drift and diffusion in gases and several experimental investigations on the electron drift in the BUGS IV drift chamber are given. Also some preliminary results from a uniform field drift chamber are included which demonstrate the sensitivity of the electron drift velocity in inert gas mixtures to water vapor contamination. The expected overall performance of BUGS IV and the results of an experimental simulation of the parachute landing of the detector are given.

  15. One century of cosmic rays - A particle physicist's view

    NASA Astrophysics Data System (ADS)

    Sutton, Christine

    2015-12-01

    Experiments on cosmic rays and the elementary particles share a common history that dates back to the 19th century. Following the discovery of radioactivity in the 1890s, the paths of the two fields intertwined, especially during the decades after the discovery of cosmic rays. Experiments demonstrated that the primary cosmic rays are positively charged particles, while other studies of cosmic rays revealed various new sub-atomic particles, including the first antiparticle. Techniques developed in common led to the birth of neutrino astronomy in 1987 and the first observation of a cosmic γ-ray source by a ground-based cosmic-ray telescope in 1989.

  16. Multiwavelength observations of unidentified high energy gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1995-01-01

    As was the case for COS B, the majority of high-energy (greater than 100 MeV) gamma-ray sources detected by the EGRET instrument on GRO are not immediately identifiable with catalogued objects at other wavelengths. These persistent gamma-ray sources are, next to the gamma-ray bursts, the least understood objects in the universe. This two year investigation is intended to support the analysis, correlation, and theoretical interpretation of data that we are obtaining at x-ray, optical, and radio wavelengths in order to render the gamma-ray data interpretable. This second year was devoted to studies of unidentified gamma-ray sources from the first EGRET catalog, similar to previous observations. Efforts have concentrated on the sources at low and intermediate Galactic latitudes, which are the most plausible pulsar candidates.

  17. NASA and Japanese X-ray observatories Clarify Origin of Cosmic Rays

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Recent observations from NASA and Japanese X-ray observatories have helped clarify one of the long-standing mysteries in astronomy -- the origin of cosmic rays. This image from Japan's Suzaku X-ray observatory shows RXJ1713.7-3946. This supernova remnant is the gaseous remnant of a massive star that exploded. The remnant is about 1,600 years old. The contour lines show where gamma-ray intensity is highest, as measured by the High Energy Stereoscopic System (HESS) in Namibia.

  18. Anomalous isotopic composition of cosmic rays

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1980-06-20

    Recent measurements of nonsolar isotopic patterns for the elements neon and (perhaps) magnesium in cosmic rays are interpreted within current models of stellar nucleosynthesis. One possible explanation is that the stars currently responsible for cosmic-ray synthesis in the Galaxy are typically super-metal-rich by a factor of two to three. Other possibilities include the selective acceleration of certain zones or masses of supernovas or the enhancement of /sup 22/Ne in the interstellar medium by mass loss from red giant stars and planetary nebulas. Measurements of critical isotopic ratios are suggested to aid in distinguishing among the various possibilities. Some of these explanations place significant constraints on the fraction of cosmic ray nuclei that must be fresh supernova debris and the masses of the supernovas involved. 1 figure, 3 tables.

  19. Cosmic ray modulation and merged interaction regions

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Goldstein, M. L.; Mcdonald, F. B.

    1985-01-01

    Beyond several AU, interactions among shocks and streams give rise to merged interaction regions in which the magnetic field is turbulent. The integral intensity of . 75 MeV/Nuc cosmic rays at Voyager is generally observed to decrease when a merged interaction region moves past the spacecraft and to increase during the passage of a rarefaction region. When the separation between interaction regions is relatively large, the cosmic ray intensity tends to increase on a scale of a few months. This was the case at Voyager 1 from July 1, 1983 to May 1, 1984, when the spacecraft moved from 16.7 to 19.6 AU. Changes in cosmic ray intensity were related to the magnetic field strength in a simple way. It is estimated that the diffusion coefficient in merged interaction regions at this distance is similar to 0.6 x 10 to the 22nd power sq cm/s.

  20. Does electromagnetic radiation accelerate galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  1. Ion acceleration to cosmic ray energies

    NASA Technical Reports Server (NTRS)

    Lee, Martin A.

    1990-01-01

    The acceleration and transport environment of the outer heliosphere is described schematically. Acceleration occurs where the divergence of the solar-wind flow is negative, that is at shocks, and where second-order Fermi acceleration is possible in the solar-wind turbulence. Acceleration at the solar-wind termination shock is presented by reviewing the spherically-symmetric calculation of Webb et al. (1985). Reacceleration of galactic cosmic rays at the termination shock is not expected to be important in modifying the cosmic ray spectrum, but acceleration of ions injected at the shock up to energies not greater than 300 MeV/charge is expected to occur and to create the anomalous cosmic ray component. Acceleration of energetic particles by solar wind turbulence is expected to play almost no role in the outer heliosphere. The one exception is the energization of interstellar pickup ions beyond the threshold for acceleration at the quasi-perpendicular termination shock.

  2. Progenitor model of cosmic ray knee

    NASA Astrophysics Data System (ADS)

    Bijay, Biplab; Bhadra, Arunava

    2016-01-01

    The primary energy spectrum of cosmic rays exhibits a knee at about 3 PeV where a change in the spectral index occurs. Despite many efforts, the origin of such a feature in the spectrum is not satisfactorily solved yet. Here it is proposed that the steepening of the spectrum beyond the knee may be a consequence of the mass distribution of the progenitor of the cosmic ray source. The proposed speculative model can account for all the major observed features of cosmic rays without invoking any fine tuning to match flux or spectra at any energy point. The prediction of the proposed model regarding the primary composition scenario beyond the knee is quite different from most of the prevailing models of the knee, and thereby can be discriminated from precise experimental measurement of the primary composition.

  3. Cosmic-ray streaming and anisotropies

    NASA Technical Reports Server (NTRS)

    Forman, M. A.; Gleeson, L. J.

    1975-01-01

    The paper is concerned with the differential current densities and anisotropies that exist in the interplanetary cosmic-ray gas, and in particular with a correct formulation and simple interpretation of the momentum equation that describes these on a local basis. Two examples of the use of this equation in the interpretation of previous data are given. It is demonstrated that in interplanetary space, the electric-field drifts and convective flow parallel to the magnetic field of cosmic-ray particles combine as a simple convective flow with the solar wind, and that there exist diffusive currents and transverse gradient drift currents. Thus direct reference to the interplanetary electric-field drifts is eliminated, and the study of steady-state and transient cosmic-ray anisotropies is both more systematic and simpler.

  4. A Tale of Cosmic Rays Narrated in ? Rays by Fermi

    NASA Astrophysics Data System (ADS)

    Tibaldo, Luigi

    2014-10-01

    Because cosmic rays are charged particles scrambled by magnetic fields, combining direct measurements with other observations is crucial to understanding their origin and propagation. As energetic particles traverse matter and electromagnetic fields, they leave marks in the form of neutral interaction products. Among those, ? rays trace interactions of nuclei that inelastically collide with interstellar gas, as well as of leptons that undergo Bremsstrahlung and inverse-Compton scattering. Data collected by the Fermi large area telescope (LAT) are therefore telling us the story of cosmic rays along their journey from sources through their home galaxies. Supernova remnants emerge as a notable ?-ray source population, and older remnants interacting with interstellar matter finally show strong evidence of the presence of accelerated nuclei. Yet the maximum energy attained by shock accelerators is poorly constrained by observations. Cygnus X, a massive star-forming region established by the LAT as housing cosmic-ray sources, provides a test case to study the impact of wind-driven turbulence on the early propagation. Interstellar emission resulting from the large-scale propagation of cosmic rays in the Milky Way is revealed in unprecedented detail that challenges some of the simple assumptions used for the modeling. Moreover, the cosmic-ray induced ?-ray luminosities of galaxies-scale quasi-linearly with their massive-star formation rates: the overall normalization of that relation below the calorimetric limit suggests that for most systems, a substantial fraction of energy in cosmic rays escapes into the intergalactic medium. The nuclear production models and the distribution of target gas and radiation fields, not determined precisely enough yet, are key to exploiting the full potential of ?-ray data. Nevertheless, data being collected by Fermi and complementary multiwavelength/multimessenger observations are bringing us ever closer to solving the cosmic-ray mystery.

  5. Detectors of Cosmic Rays, Gamma Rays, and Neutrinos

    SciTech Connect

    Altamirano, A.; Navarra, G.

    2009-04-30

    We summarize the main features, properties and performances of the typical detectors in use in Cosmic Ray Physics. A brief historical and general introduction will focus on the main classes and requirements of such detectors.

  6. The origin of galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Blasi, Pasquale

    2013-11-01

    One century ago Viktor Hess carried out several balloon flights that led him to conclude that the penetrating radiation responsible for the discharge of electroscopes was of extraterrestrial origin. One century from the discovery of this phenomenon seems to be a good time to stop and think about what we have understood about Cosmic Rays. The aim of this review is to illustrate the ideas that have been and are being explored in order to account for the observable quantities related to cosmic rays and to summarize the numerous new pieces of observation that are becoming available. In fact, despite the possible impression that development in this field is somewhat slow, the rate of new discoveries in the last decade or so has been impressive, and mainly driven by beautiful pieces of observation. At the same time scientists in this field have been able to propose new, fascinating ways to investigate particle acceleration inside the sources, making use of multifrequency observations that range from the radio, to the optical, to X-rays and gamma rays. These ideas can now be confronted with data. I will mostly focus on supernova remnants as the most plausible sources of Galactic cosmic rays, and I will review the main aspects of the modern theory of diffusive particle acceleration at supernova remnant shocks, with special attention for the dynamical reaction of accelerated particles on the shock and the phenomenon of magnetic field amplification at the shock. Cosmic-ray escape from the sources is discussed as a necessary step to determine the spectrum of cosmic rays at the Earth. The discussion of these theoretical ideas will always proceed parallel to an account of the data being collected especially in X-ray and gamma-ray astronomy. In the end of this review I will also discuss the phenomenon of cosmic-ray acceleration at shocks propagating in partially ionized media and the implications of this phenomenon in terms of width of the Balmer line emission. This field of research has recently experienced a remarkable growth, in that Hα lines have been found to bear information on the cosmic-ray acceleration efficiency of supernova shocks.

  7. Very high energy gamma-ray emission from Tycho's supernova remnant

    NASA Astrophysics Data System (ADS)

    Saxon, Dana Boltuch

    Supernova remnant (SNR) G120.1+1.4 (also known as Tycho's SNR) is the remnant of one of only five confirmed historical supernovae. As such, it has been well studied across the electromagnetic spectrum. This thesis describes the first statistically significant detection of very high energy (VHE) ( 100 GeV to 100 TeV) gamma rays from Tycho's SNR, reported in 2011 by the VERITAS collaboration. The analysis that led to that detection was performed by this author, and this dissertation will discuss the process in detail. Subsequently, a statistically significant detection in high energy (HE) ( 30 MeV to 100 GeV) gamma rays was reported by other authors using data from the Fermi Gamma-Ray Space Telescope. Comparison of models to the spectral energy distribution of the photon flux from this remnant in HE and VHE gamma rays favors a hadronic origin for the emission, particularly when combined with current X-ray data, although a leptonic origin cannot be ruled out at this time. This is significant because a confirmed hadronic origin for the gamma-ray emission would identify this SNR as a site of cosmic ray acceleration, providing observational evidence for the idea that SNRs are the source of the Galactic cosmic ray population. Chapter 1 of this dissertation will provide historical background on Tycho's SNR, along with a summary of modern observations of the remnant across the electromagnetic spectrum. Chapter 2 is a discussion of the role played by SNRs in the process of cosmic ray acceleration, including both theoretical underpinnings and observational evidence. Chapter 3 provides an overview of the field of VHE gamma-ray astronomy, with discussions of gamma-ray production mechanisms and gamma-ray source classes. Chapter 4 describes the instruments used to observe HE and VHE gamma rays. Chapter 5 is a discussion of general analysis methods and techniques for data from Imaging Atmospheric Cherenkov Telescopes (IACTs). Chapter 6 provides details about the specific analysis I completed on VERITAS data on Tycho's SNR. Lastly, Chapter 7 discusses the modeling and interpretation of the VHE Tycho detection in the context of current multiwavelength observational results.

  8. Cosmic ray research in India: 1912-2012

    NASA Astrophysics Data System (ADS)

    Tonwar, Suresh C.

    2013-02-01

    The progress of research in cosmic rays in India over the last 100 years is reviewed, starting with the pioneering work of Debendra Mohan Bose and Homi Bhabha. Experimental research in cosmic rays in India received a big push with the establishment of the Tata Institute of Fundamental Research by Homi Bhabha in Bombay in 1945, the Physical Research Laboratory by Vikram Sarabhai in Ahemedabad in 1947 and the setting up of a cosmic ray research group by Piara Singh Gill at the Aligarh Muslim University in Aligarh in 1949. Studies on high energy interactions by B.V. Sreekantan and colleagues and on muons and neutrinos deep underground in KGF mines by M.G.K. Menon and coworkers were the highlights of the research work in India in 1950's and 60's. In 1970's and 80's, important advances were made in India in several areas, for example, search for proton decay in KGF mines by M.G.K. Menon et al, search for TeV cosmic gamma-ray sources at Ooty and Pachmari by P.V. Ramanamurthy and colleagues, search for PeV cosmic gamma ray sources by S.C. Tonwar et al at Ooty and by M.V.S. Rao and coworkers at KGF. In 1990's, Sreekantan and Tonwar initiated the GRAPES-3 project at Ooty to determine the composition of cosmic ray flux around the 'knee' in the primary energy spectrum at PeV energies using a large muon detector and a compact air shower array. Another major effort to search for TeV gamma-ray sources was initiated by H. Razdan and C.L. Bhat, initially at Gulmarg in Kashmir in the 1980's, leading to successful observations with a stereoscopic imaging atmospheric Cherenkov telescope at Mount Abu in early 2000. In recent years the Pachmari group and the Mount Abu group have joined together to install a sophisticated system of atmospheric Cherenkov detectors at Hanle in the Ladakh region at an altitude of 4200 m to continue studies on VHE sources of cosmic gammarays.

  9. Cosmic rays near the heliospheric current sheet

    NASA Technical Reports Server (NTRS)

    Kota, J.; Jokipii, J. R.

    1982-01-01

    A discussion of full, three-dimensional model simulations of the solar modulation of galactic cosmic rays, including drift, is presented. Particular emphasis is on the variation of the cosmic-ray intensity near the heliospheric current sheet. It is shown that the model quite naturally produces a negative gradient away from a wavy current sheet as seen by an observer on the earth. It is concluded that recent observations of Newkirk and Lockwood (1981) are not in conflict with these model results, and hence are consistent with modulation models in which drift plays an important role.

  10. Galactic cosmic ray antiprotons and supersymmetry

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Walsh, T.; Rudaz, S.

    1985-01-01

    The physics of the annihilation of photinos is considered as a function of mass in detail, in order to obtain the energy spectra of the cosmic ray antiprotons produced under the assumption that photinos make up the missing mass in the galactic halo. The modulated spectrum is at 1 a.w. with the cosmic ray antiprotons data. A very intriguing fit is obtained to all of the present antiprotons up to 13.4 GeV data for similar to 15 GeV. A cutoff is predicted in the antiprotons spectrum at E = photino mass above which only a small flux from secondary production should remain.

  11. Search for antimatter in primary cosmic rays.

    NASA Technical Reports Server (NTRS)

    Buffington, A.; Smith, L. H.; Smoot, G. F.; Alvarez, L. W.; Wahlig, M. A.

    1972-01-01

    Data from two flights of a new superconducting magnetic spectrometer are reported. This instrument was capable of a direct matter-antimatter separation in the cosmic rays. Antimatter events would appear in the spectrometer as trajectories which curve in the opposite direction to common matter, because of their negative charge. A brief description of the equipment and of the characteristics of the instrument is presented, along with the data processing techniques used. A new upper limit on the amount of antimatter in primary cosmic rays has been established. The limits are considerably lower than those for any previous experiment.

  12. Time variation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Evenson, Paul

    1988-01-01

    Time variations in the flux of galactic cosmic rays are the result of changing conditions in the solar wind. Maximum cosmic ray fluxes, which occur when solar activity is at a minimum, are well defined. Reductions from this maximum level are typically systematic and predictable but on occasion are rapid and unexpected. Models relating the flux level at lower energy to that at neutron monitor energy are typically accurate to 20 percent of the total excursion at that energy. Other models, relating flux to observables such as sunspot number, flare frequency, and current sheet tilt are phenomenological but nevertheless can be quite accurate.

  13. FIRST SEARCH FOR POINT SOURCES OF HIGH-ENERGY COSMIC NEUTRINOS WITH THE ANTARES NEUTRINO TELESCOPE

    SciTech Connect

    Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M.; Al Samarai, I.; Aubert, J.-J.; Bertin, V.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Assis Jesus, A. C.; Astraatmadja, T.; Bogazzi, C.; Baret, B.; Basa, S.; Biagi, S.; and others

    2011-12-10

    Results are presented of a search for cosmic sources of high-energy neutrinos with the ANTARES neutrino telescope. The data were collected during 2007 and 2008 using detector configurations containing between 5 and 12 detection lines. The integrated live time of the analyzed data is 304 days. Muon tracks are reconstructed using a likelihood-based algorithm. Studies of the detector timing indicate a median angular resolution of 0.5 {+-} 0.1 deg. The neutrino flux sensitivity is 7.5 Multiplication-Sign 10{sup -8}(E{sub {nu}}/ GeV){sup -2} GeV{sup -1} s{sup -1} cm{sup -2} for the part of the sky that is always visible ({delta} < -48 deg), which is better than limits obtained by previous experiments. No cosmic neutrino sources have been observed.

  14. NASA's High Energy Vision: Chandra and the X-Ray Universe

    NASA Astrophysics Data System (ADS)

    Mais, D. E.; Stencel, R. E.; Richards, D.

    2004-05-01

    The Chandra X-Ray Observatory is the most sophisticated X-ray observatory launched by NASA. Chandra is designed to observe X-rays from high-energy regions of the universe, such as the remnants of supernovae explosions, col- liding galaxies, black holes, pulsars, neutron stars, quasars, and X-ray bi- nary stars. The spectacular results from the first five years of Chandra ob- servations are changing and redefining theories with each observation. Every exciting new image shows glimpses of such exotic phenomena as super-massive black holes, surprising black hole activity in old galaxies, rivers of grav- ity that define the cosmic landscape, unexpected x-ray activity in proto- stars and failed stars, puzzling distributions of elements in supernovae remnants, the sound waves from a super-massive black hole, and the even the tantalizing possibility of an entirely new form of matter - the strange quark star. On September 14, 2000, triggered by alerts from amateur astron- omers worldwide, Chandra observed the outburst of the brightest northern dwarf nova SS Cygni. The cooperation of hundreds of amateur variable star astronomers and the Chandra X-Ray scientists and spacecraft specialists pro- vided proof that the collaboration of amateur and professional astronomers is a powerful tool to study cosmic phenomena.

  15. Ground-based detectors in very-high-energy gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    de Naurois, Mathieu; Mazin, Daniel

    2015-08-01

    Following the discovery of the cosmic rays by Victor Hess in 1912, more than 70 years and numerous technological developments were needed before an unambiguous detection of the first very-high-energy gamma-ray source in 1989 was made. Since this discovery, the field on very-high-energy gamma-ray astronomy experienced a true revolution: a second, then a third generation of instruments were built, observing the atmospheric cascades from the ground, either through the atmospheric Cherenkov light they comprise, or via the direct detection of the charged particles they carry. Present arrays, 100 times more sensitive than the pioneering experiments, have detected a large number of astrophysical sources of various types, thus opening a new window on the non-thermal Universe. New, even more sensitive instruments are currently being built; these will allow us to explore further this fascinating domain. In this article we describe the detection techniques, the history of the field and the prospects for the future of ground-based very-high-energy gamma-ray astronomy. xml:lang="fr"

  16. High energy neutrino absorption and its effects on stars in close X-ray binaries

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stecker, F. W.

    1986-01-01

    The physics and astrophysics of high energy neutrino production and interactions in close X-ray binary systems are studied. These studies were stimulated by recent observations of ultrahigh energy gamma-rays and possibly other ultrahigh energy particles coming from the directions of Cygnus X-3 and other binary systems and possessing the periodicity characteristics of these systems. Systems in which a compact object, such as a neutron star, is a strong source of high energy particles which, in turn, produce photons, neutronos and other secondary particles by interactions in the atmosphere of the companion star were considered. The highest energy neutrinos are absorbed deep in the companion and the associated energy deposition may be large enough to effect its structure or lead to its ultimate disruption. This neutrino heating was evaluated, starting with a detailed numerical calculation of the hadronic cascade induced in the atmosphere of the companion star. For some theoretical models, the resulting energy deposition from neutrino absorption may be so great as to disrupt the companion star over an astronomically small timescale of the order of 10,000 years. Even if the energy deposition is smaller, it may still be high enough to alter the system substantially, perhaps leading to quenching of high energy signals from the source. Given the cosmic ray luminosities required to produce the observed gamma rays from cygnus X-3 and LMX X-4, such a situation may occur in these sources.

  17. High-energy X-ray spectra of five sources.

    NASA Technical Reports Server (NTRS)

    Ricker, G. R.; Mcclintock, J. E.; Gerassimenko, M.; Lewin , W. H. G.

    1973-01-01

    On October 15-16, 1970, we carried out balloon X-ray observations from Australia at energies above 15 keV. We present the high-energy X-ray spectra of three sources discovered by us, GX 301-2, GX 304-1, and GX 1 + 4. The data suggest that these high-energy sources correspond to the sources 2U 1223-62, 2U 1258-61, and 2U 1728-24 respectively. We also present the spectra for two additional sources, GX 5-1 (2U 1757-25) and GX 3 + 1 (2U 1744-26). The average intensity of the highly variable source GX 301-2 was observed to be as great as Tau X-1 in the energy range 15-50 keV.

  18. Research in cosmic and gamma ray astrophysics: Cosmic physics portion

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Schindler, Stephen

    1993-01-01

    Research in particle astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology is supported under NASA Grant NAGW-1919. A three-year proposal for continuation of support was submitted a year ago and put into effect 1 October 1992. This report is the combined progress report and continuation application called for under the Federal Demonstration Project. Gamma-ray Astrophysics at SRL is separately supported under NAGW-1919 and will be separately summarized and proposed. This report will document progress and plans for our particle spectroscopy activities and for related data analysis, calibration, and community service activities. A bibliography and a budget will be attached as appendices. The Caltech SRL research program includes a heavy emphasis on elemental and isotopic spectroscopy of energetic particles in the cosmic radiation; in solar, interplanetary, and anomalous 'cosmic' radiation; and in planetary magnetospheres as discussed.

  19. High energy gamma-rays and hadrons at Mount Fuji

    NASA Technical Reports Server (NTRS)

    Amenomori, M.; Nanjo, H.; Konishi, E.; Hotta, N.; Mizutani, K.; Kasahara, K.; Kobayashi, T.; Mikumo, E.; Sato, K.; Yuda, T.

    1985-01-01

    The energy spectra of high energy gamma-rays and hadrons were obtained by the emulsion chamber with 40 c.u. thickness at Mt. Fuji (3750 m). These results are compared with the Monte Carlo calculation based on the same model which is used in a family analysis. Our data are compatible with the model of heavy-enriched primary and scaling in the fragmentation region.

  20. High-energy gamma-ray and neutrino backgrounds from clusters of galaxies and radio constraints

    NASA Astrophysics Data System (ADS)

    Zandanel, Fabio; Tamborra, Irene; Gabici, Stefano; Ando, Shin'ichiro

    2015-06-01

    Cosmic-ray protons accumulate for cosmological times in clusters of galaxies because their typical radiative and diffusive escape times are longer than the Hubble time. Their hadronic interactions with protons of the intra-cluster medium generate secondary electrons, gamma rays, and neutrinos. In light of the high-energy neutrino events recently discovered by the IceCube neutrino observatory, for which galaxy clusters have been suggested as possible sources, and the forthcoming results from the Fermi gamma-ray survey, we here estimate the contribution from galaxy clusters to the diffuse gamma-ray and neutrino backgrounds. We modelled the cluster population by means of their mass function, using a phenomenological luminosity-mass relation applied to all clusters, as well as a detailed semi-analytical model. In the latter model, we divide clusters into cool-core/non-cool-core, and loud/quiet subsamples, as suggested by observations, and model the cosmic-ray proton population according to state-of-the-art hydrodynamic numerical simulations. Additionally, we consider observationally-motivated values for the cluster magnetic field. This is a crucial parameter since the observed radio counts of clusters need to be respected owing to synchrotron emission by secondary electrons. For a choice of parameters respecting current constraints from radio to gamma rays, and assuming a proton spectral index of -2, we find that hadronic interactions in clusters contribute less than 10% to the IceCube flux and much less to the total extragalactic gamma-ray background observed by Fermi. They account for less than 1% for spectral indices ?-2. The high-energy neutrino flux observed by IceCube can be reproduced without violating radio constraints only if a very hard (and speculative) spectral index >-2 is adopted. However, this scenario is in tension with the high-energy IceCube data, which seems to suggest a spectral energy distribution of the neutrino flux that decreases with the particle energy. We prove that IceCube should be able to test our most optimistic scenarios for spectral indices ?-2.2 by stacking a few nearby massive galaxy clusters. In the case of proton-photon interactions in clusters, we find that very likely protons do not reach sufficiently high energies to produce neutrinos in these environments. We argue that our results are optimistic because of our assumptions and that clusters of galaxies cannot make any relevant contribution to the extragalactic gamma-ray and neutrino backgrounds in any realistic scenario. Finally, we find that the cluster contribution to the angular fluctuations in the gamma-ray background is subdominant, less than 10% on sub-degree scales.

  1. Pion Production Momentum Loss of Cosmic Ray Hadrons

    NASA Astrophysics Data System (ADS)

    Krakau, S.; Schlickeiser, R.

    2015-04-01

    We present new results on the energy loss rate of high energy protons due to pion production in proton-proton interactions. Our calculations are based on the parameterized pion flux of Kelner et al. Our new results are valid for proton energies in the range of 1 GeV \\ll E?slant {{10}8} GeV, which enhance the valid energy range by orders of magnitude. With these results one can calculate the energy loss due to pion production for cosmic ray protons from low energies to energies between the knee and ankle.

  2. Nineteenth International Cosmic Ray Conference. OG Sessions, Volume 3

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume addresses cosmic ray sources and acceleration, interstellar propagation and nuclear interactions, and detection techniques and instrumentation.

  3. The Isotopic Composition of Cosmic-Ray Iron and Nickel

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M.; Binns, W.; Christian, E.; Cummings, A.; George, J.; Hink, P.; Klarmann, J.; Leske, R.; Lijowski, M.; Mewaldt, R.; Stone, E.; Rosenvinge, T. von

    2000-01-01

    Observations from the Cosmic Ray Isotope Spectrometer (CRIS) on ACE have been used to derive contraints on the locations, physical conditions, and time scales for cosmic-ray acceleration and transport.

  4. Microphysics of Cosmic Ray Driven Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Brandenburg, A.; Malkov, M. A.; Osipov, S. M.

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  5. Microphysics of Cosmic Ray Driven Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Brandenburg, A.; Malkov, M. A.; Osipov, S. M.

    2013-10-01

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  6. Exploring results of the possibility on detecting cosmic ray particles by acoustic way

    NASA Technical Reports Server (NTRS)

    Jiang, Y.; Yuan, Y.; Li, Y.; Chen, D.; Zheng, R.; Song, J.

    1985-01-01

    It has been demonstrated experimentally and theoretically that high energy particles produce detectable sounds in water. However, no one has been able to detect an acoustic signal generated by a high energy cosmic ray particle in water. Results show that transient ultrasonic signals in a large lake or reservoir are fairly complex and that the transient signals under water may arise mainly from sound radiation from microbubbles. This field is not explored in detail. Perhaps, the sounds created by cosmic ray particles hide in these ultrasonic signals. In order to develop the technique of acoustic detection, it is most important to make a thorough investigation of these ultrasonic signals in water.

  7. Implications of a possible clustering of highest-energy?cosmic?rays

    PubMed Central

    Sigl, Gnter; Schramm, David N.; Lee, Sangjin; Hill, Christopher T.

    1997-01-01

    Recently, a possible clustering of a subset of observed ultra-high energy cosmic rays above ?40 EeV (4 1019 eV) in pairs near the supergalactic plane was reported. We show that a confirmation of this effect would provide information on the origin and nature of these events and, in case of charged primaries, imply interesting constraints on the extragalactic magnetic field. Possible implications for the most common models of ultra-high energy cosmic ray production in the literature are discussed. PMID:11038576

  8. From cosmic ray physics to cosmic ray astronomy: Bruno Rossi and the opening of new windows on the universe

    NASA Astrophysics Data System (ADS)

    Bonolis, Luisa

    2014-01-01

    Bruno Rossi is considered one of the fathers of modern physics, being also a pioneer in virtually every aspect of what is today called high-energy astrophysics. At the beginning of 1930s he was the pioneer of cosmic ray research in Italy, and, as one of the leading actors in the study of the nature and behavior of the cosmic radiation, he witnessed the birth of particle physics and was one of the main investigators in this fields for many years. While cosmic ray physics moved more and more towards astrophysics, Rossi continued to be one of the inspirers of this line of research. When outer space became a reality, he did not hesitate to leap into this new scientific dimension. Rossi's intuition on the importance of exploiting new technological windows to look at the universe with new eyes, is a fundamental key to understand the profound unity which guided his scientific research path up to its culminating moments at the beginning of 1960s, when his group at MIT performed the first in situ measurements of the density, speed and direction of the solar wind at the boundary of Earth's magnetosphere, and when he promoted the search for extra-solar sources of X rays. A visionary idea which eventually led to the breakthrough experiment which discovered Scorpius X-1 in 1962, and inaugurated X-ray astronomy.

  9. Propagation of Cosmic Rays and Diffuse Galactic Gamma Rays

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.

    2004-01-01

    This paper presents an introduction to the astrophysics of cosmic rays and diffuse gamma-rays and discusses some of the puzzles that have emerged recently due to more precise data and improved propagation models: the excesses in Galactic diffuse gamma-ray emission, secondary antiprotons and positrons, and the flatter than expected gradient of cosmic rays in the Galaxy. These also involve the dark matter, a challenge to modern physics, through its indirect searches in cosmic rays. Though the final solutions are yet to be found, I discuss some ideas and results obtained mostly with the numerical propagation model GALPROP. A fleet of spacecraft and balloon experiments targeting these specific issues is set to lift off in a few years, imparting a feeling of optimism that a new era of exciting discoveries is just around the corner. A complete and comprehensive discussion of all the recent results is not attempted here due to the space limitations.

  10. Very high energy gamma ray extension of GRO observations

    NASA Technical Reports Server (NTRS)

    Weekes, Trevor C.

    1992-01-01

    This has been an exiciting year for high energy gamma-ray astronomy, both from space and from ground-based observatories. It has been a particularly active period for the Whipple Observatory gamma-ray group. In phase 1 of the Compton Gamma Ray Observatory (GRO), there has not been too much opportunity for overlapping observations with the Energetic Gamma Ray Experiment Telescope (EGRET) and the other GRO telescopes; however, significant progress was made in the development of data analysis techniques and in improving the sensitivity of the technique which will have direct application in correlative observations in phase 2. Progress made during the period 1 Jul. 1991 - 31 Dec. 1991 is presented.

  11. Believability of signals from cosmic ray sources

    SciTech Connect

    Goodman, M.

    1990-11-01

    This paper discusses some of the criteria by which an observer judges whether to believe a signal or limit that has been reported for a cosmic ray source. The importance of specifying the test before looking at the data is emphasized. 5 refs.

  12. Cosmic Ray Origin, Acceleration and Propagation

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    2000-01-01

    This paper summarizes highlights of the OG3.1, 3.2 and 3.3 sessions of the 26th International Cosmic Ray Conference in Salt Lake City, which were devoted to issues of origin/composition, acceleration and propagation.

  13. Cosmic Ray Transport in the Distant Heliosheath

    NASA Technical Reports Server (NTRS)

    Florinski, V.; Adams, James H.; Washimi, H.

    2011-01-01

    The character of energetic particle transport in the distant heliosheath and especially in the vicinity of the heliopause could be quite distinct from the other regions of the heliosphere. The magnetic field structure is dominated by a tightly wrapped oscillating heliospheric current sheet which is transported to higher latitudes by the nonradial heliosheath flows. Both Voyagers have, or are expected to enter a region dominated by the sectored field formed during the preceding solar maximum. As the plasma flow slows down on approach to the heliopause, the distance between the folds of the current sheet decreases to the point where it becomes comparable to the cyclotron radius of an energetic ion, such as a galactic cosmic ray. Then, a charged particle can effectively drift across a stack of magnetic sectors with a speed comparable with the particle s velocity. Cosmic rays should also be able to efficiently diffuse across the mean magnetic field if the distance between sector boundaries varies. The region of the heliopause could thus be much more permeable to cosmic rays than was previously thought. This new transport proposed mechanism could explain the very high intensities (approaching the model interstellar values) of galactic cosmic rays measured by Voyager 1 during 2010-2011.

  14. An alternative interpretation for cosmic ray peaks

    NASA Astrophysics Data System (ADS)

    Kim, Doojin; Park, Jong-Chul

    2015-11-01

    We propose an alternative mechanism based upon dark matter (DM) interpretation for anomalous peak signatures in cosmic ray measurements, assuming an extended dark sector with two DM species. This is contrasted with previous effort to explain various line-like cosmic-ray excesses in the context of DM models where the relevant DM candidate directly annihilates into Standard Model (SM) particles. The heavier DM is assumed to annihilate to an on-shell intermediate state. As the simplest choice, it decays directly into the lighter DM along with an unstable particle which in turn decays to a pair of SM states corresponding to the interesting cosmic anomaly. We show that a sharp continuum energy peak can be readily generated under the proposed DM scenario, depending on dark sector particle mass spectra. Remarkably, such a peak is robustly identified as half the mass of the unstable particle. Furthermore, other underlying mass parameters are analytically related to the shape of energy spectrum. We apply this idea to the two well-known line excesses in the cosmic photon spectrum: 130 GeV ?-ray line and 3.5 keV X-ray line. Each observed peak spectrum is well-reproduced by theoretical expectation predicated upon our suggested mechanism, and moreover, our resulting best fits provide rather improved ?2 values.

  15. Numerical likelihood analysis of cosmic ray anisotropies

    SciTech Connect

    Carlos Hojvat et al.

    2003-07-02

    A numerical likelihood approach to the determination of cosmic ray anisotropies is presented which offers many advantages over other approaches. It allows a wide range of statistically meaningful hypotheses to be compared even when full sky coverage is unavailable, can be readily extended in order to include measurement errors, and makes maximum unbiased use of all available information.

  16. A database of charged cosmic rays

    NASA Astrophysics Data System (ADS)

    Maurin, D.; Melot, F.; Taillet, R.

    2014-09-01

    Aims: This paper gives a description of a new online database and associated online tools (data selection, data export, plots, etc.) for charged cosmic-ray measurements. The experimental setups (type, flight dates, techniques) from which the data originate are included in the database, along with the references to all relevant publications. Methods: The database relies on the MySQL5 engine. The web pages and queries are based on PHP, AJAX and the jquery, jquery.cluetip, jquery-ui, and table-sorter third-party libraries. Results: In this first release, we restrict ourselves to Galactic cosmic rays with Z ≤ 30 and a kinetic energy per nucleon up to a few tens of TeV/n. This corresponds to more than 200 different sub-experiments (i.e., different experiments, or data from the same experiment flying at different times) in as many publications. Conclusions: We set up a cosmic-ray database (CRDB) and provide tools to sort and visualise the data. New data can be submitted, providing the community with a collaborative tool to archive past and future cosmic-ray measurements. http://lpsc.in2p3.fr/crdb; Contact: crdatabase@lpsc.in2p3.fr

  17. Cosmic rays from primordial black holes

    NASA Technical Reports Server (NTRS)

    Macgibbon, Jane H.; Carr, B. J.

    1991-01-01

    The quark and gluon emission from primordial black holes (PBHs) which may have formed from initial density perturbations or phase transitions in the early universe are investigated. If the PBHs formed from scale-invariant initial density perturbations in the radiation dominated era, it is found that the emission can explain or contribute significantly to the extragalactic photon and interstellar cosmic-ray electron, positron, and antiproton spectra around 0.1-1 GeV. In particular, the PBH emission strongly resembles the cosmic-ray gamma-ray spectrum between 50 and 170 MeV. The upper limits on the PBH density today from the gamma-ray, e(+), e(-), and antiproton data are comparable, provided that the PBHs cluster to the same degree as the other matter in the Galactic halo.

  18. Validation of Cosmic Ray Ionization Model CORIMIA applied for solar energetic particles and Anomalous Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Asenovski, S.; Velinov, P.; Mateev, L.

    2016-02-01

    Based on the electromagnetic interaction between the cosmic ray (CR) and the atmospheric neutral constituents, CORIMIA (COsmic Ray Ionization Model) gives an estimation of the dynamical ionization condition of the lower ionosphere and middle atmosphere (about 30-120 km). Galactic Cosmic Rays (GCR), modified by solar wind and later by geomagnetic and atmospheric cut offs, produce ionization in the entire atmosphere. In this paper we show the GCR ionization in periods of solar minimum and maximum. Despite the considerably lower energies than GCR, Anomalous Cosmic Rays (ACR) contribute to the ionization state mostly over the polar regions and as we present here this contribution is comparable with those of GCR. Solar energetic particles (SEP), which differ vastly from one another for different solar events, can be responsible for significant ionization over the high latitude regions. Here we compare flows of SEP caused by two of the most powerful solar proton events at February 23, 1956 and January 20, 2005.

  19. Re-evaluation of cosmic ray cutoff terminology

    NASA Technical Reports Server (NTRS)

    Cooke, D. J.; Humble, J. E.; Shea, M. A.; Smart, D. F.; Lund, N.; Rasmussen, I. L.; Byrnak, B.; Goret, P.; Petrou, N.

    1985-01-01

    The study of cosmic ray access to locations inside the geomagnetic field has evolved in a manner that has led to some misunderstanding and misapplication of the terminology originally developed to describe particle access. This paper presents what is believed to be a useful set of definitions for cosmic ray cutoff terminology for use in theoretical and experimental cosmic ray studies.

  20. Cosmic Rays Astrophysics: The Discipline, Its Scope, and Its Applications

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.

    2009-01-01

    This slide presentation gives an overview of the discipline surrounding cosmic ray astrophysics. It includes information on recent assertions surrounding cosmic rays, exposure levels, and a short history with specific information on the origin, acceleration, transport, and modulation of cosmic rays.