Science.gov

Sample records for high-energy cosmic rays

  1. High Energy Cosmic Rays

    E-print Network

    Hebbeker, Thomas

    particles = seeds for condensation + + + + + + + + - - - - - - - - Can cosmic rays initiate cloud formation ? Influence on climate ? Charged particles = seeds for condensation cloud chamber Cosmics Leaving OUtdoor Cloud chambers emulsion #12;T.Hebbeker Neutrino Oscillations Super- Kamiokande CerenkovA + Atmosphere

  2. Ultra High Energy Cosmic Rays

    E-print Network

    Pasquale Blasi

    2006-09-29

    The origin of the particles in the highest energy end of the cosmic ray spectrum is discussed in the context of the wider problem of the origin of the whole cosmic radiation as observed at the Earth. In particular we focus our attention on the acceleration problem and on the transition from galactic to extragalactic cosmic rays.

  3. Terrestrial Effects of High Energy Cosmic Rays

    E-print Network

    Atri, Dimitra

    2011-04-26

    On geological timescales, the Earth is likely to be exposed to higher than the usual flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. ...

  4. Cosmic Rays High Energy Particles

    E-print Network

    Hebbeker, Thomas

    ThierryLeMouel p e #12;T.Hebbeker Cloud Formation ? Aerosol particles = seeds for condensation + + + + + + + + - - - - - - - - Can cosmic rays initiate cloud formation ? Influence on climate ? Charged particles = seeds, Neddermeyer Muon 1937 Powell Positron ! Antimatter ! 1932 Anderson Pion Cloud chambers emulsion #12;T

  5. Lecture notes on high energy cosmic rays

    E-print Network

    M. Kachelriess

    2008-01-29

    I give a concise introduction into high energy cosmic ray physics, including also few related aspects of high energy gamma-ray and neutrino astrophysics. The main emphasis is placed on astrophysical questions, and the level of the presentation is kept basic.

  6. Cosmic Rays High Energy Particles

    E-print Network

    Hebbeker, Thomas

    Excitation of air molecules ThierryLeMouel p e #12;T.Hebbeker Cloud Formation ? Aerosol particles = seeds ? Charged particles = seeds for condensation cloud chamber / bubble chamber Cosmics Leaving OUtdoor Droplets CERN #12;T.Hebbeker Cloud Formation ? Aerosol particles = seeds for condensation

  7. Ultra High Energy Cosmic Rays

    E-print Network

    Miguel Mostafa

    2011-11-11

    Ultra high energy particles arrive at Earth constantly. They provide a beam at energies higher than any man-made accelerator, but at a very low rate. Two large experiments, the Pierre Auger Observatory and the Telescope Array experiment, have been taking data for several years now covering together the whole sky. I summarize the most recent measurements from both experiments, I compare their results and, for a change, I highlight their agreements.

  8. The Mystery of Ultra-High Energy Cosmic Rays

    SciTech Connect

    Olinto, Angela V.

    2006-07-11

    Cosmic rays with energies well above 1019 eV are messengers of an unknown extremely high-energy universe. The current state and future prospects of ultra high energy cosmic ray physics are briefly reviewed.

  9. High energy cosmic ray and neutrino astronomy

    E-print Network

    Waxman, E

    2011-01-01

    Cosmic-rays with energies exceeding 10^{19} eV are referred to as Ultra High Energy Cosmic Rays (UHECRs). The sources of these particles and their acceleration mechanism are unknown, and for many years have been the issue of much debate. The first part of this review describes the main constraints, that are implied by UHECR observations on the properties of candidate UHECR sources, the candidate sources, and the related main open questions. In order to address the challenges of identifying the UHECR sources and of probing the physical mechanisms driving them, a "multi-messenger" approach will most likely be required, combining electromagnetic, cosmic-ray and neutrino observations. The second part of the review is devoted to a discussion of high energy neutrino astronomy. It is shown that detectors, which are currently under construction, are expected to reach the effective mass required for the detection of high energy extra-Galactic neutrino sources, and may therefore play a key role in the near future in re...

  10. Terrestrial effects of high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra

    On geological timescales, the Earth is likely to be exposed to higher than the usual flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. These high-energy particles strike the Earth's atmosphere, initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles and photons. Increased ionization leads to changes in atmospheric chemistry, resulting in ozone depletion. This increases the flux of solar UVB radiation at the surface, which is potentially harmful to living organisms. Increased ionization affects the global electrical circuit, which could enhance the low-altitude cloud formation rate. Secondary particles such as muons and thermal neutrons produced as a result of hadronic interactions of the primary cosmic rays with the atmosphere are able to reach the ground, enhancing the biological radiation dose. The muon flux dominates the radiation dose from cosmic rays causing damage to DNA and an increase in mutation rates and cancer, which can have serious biological implications for surface and sub-surface life. Using CORSIKA, we perform massive computer simulations and construct lookup tables for 10 GeV - 1 PeV primaries, which can be used to quantify these effects from enhanced cosmic ray exposure to any astrophysical source. These tables are freely available to the community and can be used for other studies. We use these tables to study the terrestrial implications of galactic shock generated by the infall of our galaxy toward the Virgo cluster. Increased radiation dose from muons could be a possible mechanism explaining the observed periodicity in biodiversity in paleobiology databases.

  11. Testing fundamental principles with high-energy cosmic rays

    E-print Network

    Testing fundamental principles with high-energy cosmic rays Luis Gonzalez-Mestres LAPP, Université_sci@yahoo.fr It is not yet clear [1] whether the observed flux suppression for ultra-high energy cosmic rays (UHECR to violations of standard special relativity modifying cosmic- ray propagation or acceleration at very high

  12. Ultra high energy cosmic ray spectrum

    NASA Technical Reports Server (NTRS)

    Baltrusaitis, R. M.; Cady, R.; Cassiday, G. L.; Cooper, R.; Elbert, J. W.; Gerhardy, P. R.; Ko, P. R.; Loh, E. C.; Mizumoto, Y.; Salamon, M. H.

    1985-01-01

    Ultra-high energy cosmic rays have been observed by means of atmospheric fluorescence with the Fly's Eye since 1981. The differential energy spectrum above 0.1 EeV is well fitted by a power law with slope 2.94 + or - 0.02. Some evidence of flattening of the spectrum is observed or energies greater than 10 EeV, however only one event is observed with energy greater than 50 EeV and a spectral cutoff is indicated above 70 EeV.

  13. High energy cosmic rays, gamma rays and neutrinos from AGN

    E-print Network

    Yukio Tomozawa

    2008-02-03

    The author reviews a model for the emission of high energy cosmic rays, gamma-rays and neutrinos from AGN (Active Galactic Nuclei) that he has proposed since 1985. Further discussion of the knee energy phenomenon of the cosmic ray energy spectrum requires the existence of a heavy particle with mass in the knee energy range. A possible method of detecting such a particle in the Pierre Auger Project is suggested. Also presented is a relation between the spectra of neutrinos and gamma-rays emitted from AGN. This relation can be tested by high energy neutrino detectors such as ICECUBE, the Mediterranean Sea Detector and possibly by the Pierre Auger Project.

  14. EDITORIAL: Focus on High Energy Cosmic Rays FOCUS ON HIGH ENERGY COSMIC RAYS

    NASA Astrophysics Data System (ADS)

    Teshima, Masahiro; Watson, Alan A.

    2009-06-01

    The topic of high-energy cosmic rays has recently attracted significant attention. While the AGASA and HiRes Observatories have closed after many years of successful operation, the Pierre Auger Observatory began taking data in January 2004 and the first results have been reported. Plans for the next generation of instruments are in hand: funding is now being sought for the northern phase of the Auger Observatory and plans for a space detector, JEM-EUSO, to be launched in 2013-14 are well advanced with the long-term target of a dedicated satellite for the 2020s. It therefore seemed an appropriate time to make a collection of outstanding and original research articles from the leading experimental groups and from some of the theorists who seek to interpret the hard-won data and to speculate on the origin of the highest energy cosmic rays. This focus issue in New Journal of Physics on the topic of high energy cosmic rays, contains a comprehensive account of the work of the Yakutsk group (A A Ivanov, S P Knurenko and I Ye Sleptsov) who have used Cerenkov radiation produced by shower particles in the air to provide the basis for energy calibration. This technique contrasts with that of detecting fluorescence radiation from space that is proposed for the JEM-EUSO instrument to be placed on the International Space Station in 2013, described by Y Takahashi. Supplementing this is an article by A Santangelo and A Petrolini describing the scientific goals, requirements and main instrument features of the Super Extreme Universe Space Observatory mission (S-EUSO). The use of fluorescence light to measure energies was the key component of the HiRes instrument and is also used extensively by the Pierre Auger Collaboration so an article, by F Arqueros, F Blanco and J Rosado, summarizing the properties of fluorescence emission, still not fully understood, is timely. M Nagano, one of the architects of the AGASA Observatory, has provided an overview of the experimental situation with regard to the energy spectrum of the highest energy cosmic rays. The remaining contributions are of a more theoretical nature and discuss propagation (T Stanev), the time structure of multi-messenger signals (G H W Sigl), ultra-high energy cosmic ray production near black holes (A Yu Neronov, D V Semikoz and I I Tkachev), production in jets associated with black holes (C D Dermer, S Razzaque, J Finke and A Atoyan) and emission from a specific object, Cen A (M Kachelriess, S S Ostapchenko and R Tomas). Additionally the potential of high energy cosmic rays to give information about features of hadronic interactions, specifically the cross-section for p-air collisions, is discussed in the paper by R Ulrich et al. We thank all our authors most sincerely for their efforts and Tim Smith and his editorial team for their hard work. We believe that this collection of articles will be of great value to workers in the field: further contributions to this focus issue will be published during the course of 2009. Focus on High Energy Cosmic Rays Contents The cosmic ray energy spectrum as measured using the Pierre Auger Observatory Giorgio Matthiae The northern site of the Pierre Auger Observatory Johannes Blümer and the Pierre Auger Collaboration Searching for new physics with ultrahigh energy cosmic rays Floyd W Stecker and Sean T Scully On the measurement of the proton-air cross section using air shower data R Ulrich, J Blümer, R Engel, F Schüssler and M Unger High energy radiation from Centaurus A M Kachelrieß, S Ostapchenko and R Tomàs Ultra-high-energy cosmic rays from black hole jets of radio galaxies C D Dermer, S Razzaque, J D Finke and A Atoyan Ultra-high energy cosmic ray production in the polar cap regions of black hole magnetospheres A Yu Neronov, D V Semikoz and I I Tkachev Time structure and multi-messenger signatures of ultra-high energy cosmic ray sources Günter Sigl Propagation of ultrahigh-energy cosmic rays Todor Stanev Search for the end of the energy spectrum of primary cosmic rays M Nagano Analysis of the fluorescence emission from atmospheric ni

  15. High energy physics in cosmic rays

    SciTech Connect

    Jones, Lawrence W.

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  16. Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Colon, Rafael Antonio; Moncada, Roberto; Guerra, Juan; Anchordoqui, Luis

    2016-01-01

    The search for the origin(s) of ultra-high energy (UHE) cosmic rays (CR) remains one of the cornerstones of high energy astrophysics. The previously proposed sources of acceleration for these UHECRs were gamma-ray bursts (GRB) and active galactic nuclei (AGN) due to their energetic activity and powerful jets. However, a problem arises between the acceleration method and the observed CR spectrum. The CRs from GRBs or AGN jets are assumed to undergo Fermi acceleration and a source injection spectrum proportional to E^-2 is expected. However, the most recent fits to the spectrum and nuclear composition suggest an injection spectrum proportional to E^-1. It is well known that such a hard spectrum is characteristic of unipolar induction of rotating compact objects. When this method is applied to the AGN cores, they prove to be much too luminous to accelerate CR nuclei without photodisintegrating, thus creating significant energy losses. Instead, here we re-examine the possibility of these particles being accelerated around the much less luminous quasar remnants, or dead quasars. We compare the interaction times of curvature radiation and photodisintegration, the two primary energy loss considerations with the acceleration time scale. We show that the energy losses at the source are not significant enough as to prevent these CRs from reaching the maximum observed energies. Using data from observatories in the northern and southern sky, the Telescope Array and the Pierre Auger Observatory respectively, two hotspots have been discerned which have some associated quasar remnants that help to motivate our study.

  17. 30TH INTERNATIONAL COSMIC RAY CONFERENCE Radio Detection of UltraHigh Energy Cosmic Rays

    E-print Network

    Falcke, Heino

    offers a number of interesting advantages. Since radio waves suffer no attenuation, radio measurements30TH INTERNATIONAL COSMIC RAY CONFERENCE Radio Detection of Ultra­High Energy Cosmic Rays HEINO: The radio technique for the detection of cosmic particles has seen a major revival in recent years. New

  18. Ultra High Energy Cosmic Rays: Observations and Theoretical Aspects

    E-print Network

    Daniel De Marco

    2006-09-05

    We present a brief introduction to the physics of Ultra High Energy Cosmic Rays (UHECRs), concentrating on the experimental results obtained so far and on what, from these results, can be inferred about the sources of UHECRs.

  19. High energy cosmic rays from AGN and the GZK cutoff

    E-print Network

    Yukio Tomozawa

    2008-02-20

    Based on a model for the emission of high energy cosmic rays from AGN (Active Galactic Nuclei) that has been proposed by the author, he reviews the status of the GZK cutoff and the correlation of high energy cosmic ray sources with AGN locations in the existing data. The determination of mass for the incident particles seems to be a key factor, and a suggestion for doing that has been made in this article.

  20. RADAR SENSING OF ULTRA-HIGH ENERGY COSMIC RAY SHOWERS

    E-print Network

    RADAR SENSING OF ULTRA-HIGH ENERGY COSMIC RAY SHOWERS by Jon Paul Lundquist A Senior Honors Thesis;ABSTRACT The intent of this paper is to review the history and potential importance of the use of radar overview of a currently planned radar experiment at the Telescope Array. There is much activity in cosmic

  1. The ATLAS Hadronic Physics Program and High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Pinfold, J. L.

    2013-06-01

    The various aspects of the current and future ATLAS programs to explore hadronic physics, including diffraction and forward physic are discussed The emphasis is p laced on those results and future plans that have particular relevance for high-energy, and ultra high-energy, cosmic ray physics. In closing the latest ATLAS resul ts on the search for the Higgs boson are summarized.

  2. High energy cosmic ray iron spectrum experiment

    NASA Technical Reports Server (NTRS)

    Arens, J. F.; Balasubrahmanyan, V. K.; Ormes, J. F.; Schmidt, W. K. H.; Simon, M.; Spiegelhauer, H.

    1978-01-01

    An instrument containing a gas Cerenkov counter and an iron ionization spectrometer was constructed in order to measure the cosmic-ray iron spectrum to 300 GeV/nucleon. Trajectories of particles were determined by entopistic or position-determining scintillator systems. The geometric factors with and without the gas Cerenkov counter were 0.3 and 0.6 sq m-ster, respectively. The instrument was successfully flown in June 1976 without the spectrometer and in October 1976 with the spectrometer from Palestine, Texas. The June flight yielded 14.5 h of data; the October flight, 25 h.

  3. High Energy Cosmic Electrons: Messengers from Nearby Cosmic Ray Sources or Dark Matter?

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2011-01-01

    This slide presentation reviews the recent discoveries by the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-Ray Telescope in reference to high energy cosmic electrons, and whether their source is cosmic rays or dark matter. Specific interest is devoted to Cosmic Ray electrons anisotropy,

  4. Cosmogenic neutrinos and ultra-high energy cosmic ray models

    NASA Astrophysics Data System (ADS)

    Aloisio, R.; Boncioli, D.; di Matteo, A.; Grillo, A. F.; Petrera, S.; Salamida, F.

    2015-10-01

    We use an updated version of SimProp, a Monte Carlo simulation scheme for the propagation of ultra-high energy cosmic rays, to compute cosmogenic neutrino fluxes expected on Earth in various scenarios. These fluxes are compared with the newly detected IceCube events at PeV energies and with recent experimental limits at EeV energies of the Pierre Auger Observatory. This comparison allows us to draw some interesting conclusions about the source models for ultra-high energy cosmic rays. We will show how the available experimental observations are almost at the level of constraining such models, mainly in terms of the injected chemical composition and cosmological evolution of sources. The results presented here will also be important in the evaluation of the discovery capabilities of the future planned ultra-high energy cosmic ray and neutrino observatories.

  5. Ultra high energy neutrinos: the key to ultra high energy cosmic rays

    E-print Network

    Todor Stanev

    2006-07-26

    We discuss the relation between the acceleration spectra of extragalactic cosmic ray protons and the luminosity and cosmological evolution of their sources and the production of ultra high energy cosmogenic neutrinos in their propagation from the sources to us.

  6. Some methods in high energy cosmic ray measurement

    NASA Technical Reports Server (NTRS)

    Shand, J. B., Jr.

    1980-01-01

    Problems concerning ion chamber and emulsion detection techniques for high energy cosmic ray measurement are investigated. The calculation of the average energy actually deposited in an ion chamber by an ultra-high energy particle of large mass and charge is examined. A calculational scheme already applied successfully to particles of charge 1 is extended. Also, the calibration of a plate of plastic scintillator for measurement of the position of a cosmic ray shower passing through it is discussed. The method of calibration is to inject pulses of flight at known positions on the plate and record the responses of photomultiplier tubes at the corner of the plate.

  7. Ultra High Energy Comic Rays in the Cosmic Microwave Background

    E-print Network

    W-Y. Pauchy Hwang; Bo-Qiang Ma

    2011-07-22

    We consider the propagation of ultra high energy cosmic rays (UHECR), for energies greater than E > 10^{14} eV but less than E < 10^{26} eV, in the cosmic medium of the Cosmic Microwave Background (CMB). We find that the CMB plays a pivot role in this energy range. As example, the observed "knee(s)" and the "ankle" could be understood in reasonable terms. What we may observe at energy near 10^{25} eV (W^\\pm bursts or Z^0 bursts) is also briefly discussed.

  8. The Mystery of Ultra-High Energy Cosmic Rays

    E-print Network

    A. V. Olinto

    2000-03-01

    The origin of cosmic rays with energies higher than 10$^{20}$ eV remains a mystery. Accelerating particles up to these energies is a challenge even for the most energetic astrophysical objects known. While the isotropy in arrival directions argues for an extra-galactic origin, the photon-pion production off the cosmic background radiation limits the sources of such particles to systems less than 50 Mpc away from us. The combination of large gyroradii, efficient energy losses, and isotropic arrival directions defies most of the proposed astrophysical accelerators as well as the more exotic alternatives. I briefly review theoretical models for the acceleration and propagation of ultra-high-energy cosmic-rays and discuss the potential for future observatories to resolve this cosmic mystery.

  9. Cosmic ray transport and anisotropies to high energies

    NASA Astrophysics Data System (ADS)

    Biermann, P. L.; Caramete, L. I.; Meli, A.; Nath, B. N.; Seo, E.-S.; de Souza, V.; Becker Tjus, J.

    2015-10-01

    A model is introduced, in which the irregularity spectrum of the Galactic magnetic field beyond the dissipation length scale is first a Kolmogorov spectrum k-5/3 at small scales ? = 2 ?/k with k the wave-number, then a saturation spectrum k-1, and finally a shock-dominated spectrum k-2 mostly in the halo/wind outside the Cosmic Ray disk. In an isotropic approximation such a model is consistent with the Interstellar Medium (ISM) data. With this model we discuss the Galactic Cosmic Ray (GCR) spectrum, as well as the extragalactic Ultra High Energy Cosmic Rays (UHECRs), their chemical abundances and anisotropies. UHECRs may include a proton component from many radio galaxies integrated over vast distances, visible already below 3 EeV.

  10. Cosmic ray transport and anisotropies to high energies

    E-print Network

    Biermann, P L; Meli, A; Nath, B N; Seo, E -S; de Souza, V; Tjus, J Becker

    2015-01-01

    A model is introduced, in which the irregularity spectrum of the Galactic magnetic field beyond the dissipation length scale is first a Kolmogorov spectrum $k^{-5/3}$ at small scales $\\lambda \\, = \\, 2 \\pi/k$ with $k$ the wave-number, then a saturation spectrum $k^{-1}$, and finally a shock-dominated spectrum $k^{-2}$ mostly in the halo/wind outside the Cosmic Ray disk. In an isotropic approximation such a model is consistent with the Interstellar Medium (ISM) data. With this model we discuss the Galactic Cosmic Ray (GCR) spectrum, as well as the extragalactic Ultra High Energy Cosmic Rays (UHECRs), their chemical abundances and anisotropies. UHECRs may include a proton component from many radio galaxies integrated over vast distances, visible already below 3 EeV.

  11. Cosmic strings and ultra-high energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, Pijushpani

    1989-01-01

    The flux is calculated of ultrahigh energy protons due to the process of cusp evaporation from cosmic string loops. For the standard value of the dimensionless cosmic string parameter epsilon is identical to G(sub mu) approx. = 10(exp -6), the flux is several orders of magnitude below the observed cosmic ray flux of ultrahigh energy protons. However, the flux at any energy initially increases as the value of epsilon is decreased. This at first suggests that there may be a lower limit on the value of epsilon, which would imply a lower limit on the temperature of a cosmic string forming phase transition in the early universe. However, the calculation shows that this is not the case -- the particle flux at any energy reaches its highest value at epsilon approx. = 10(exp -15) and it then decreases for further decrease of the value of epsilon. This is due to the fact that for too small values of epsilon (less than 10(exp -15)), the energy loss of the loops through the cusp evaporation process itself (rather than gravitational energy loss of the loops) becomes the dominant factor that controls the behavior of the number density of the loops at the relevant times of emission of the particles. The highest flux at any energy remains at least four orders of magnitude below the observed flux. There is thus no lower limit on epsilon.

  12. Anomalous Transport of High Energy Cosmic Rays in Galactic Superbubbles

    NASA Technical Reports Server (NTRS)

    Barghouty, Nasser F.

    2014-01-01

    High-energy cosmic rays may exhibit anomalous transport as they traverse and are accelerated by a collection of supernovae explosions in a galactic superbubble. Signatures of this anomalous transport can show up in the particles' evolution and their spectra. In a continuous-time-random- walk (CTRW) model assuming standard diffusive shock acceleration theory (DSA) for each shock encounter, and where the superbubble (an OB stars association) is idealized as a heterogeneous region of particle sources and sinks, acceleration and transport in the superbubble can be shown to be sub-diffusive. While the sub-diffusive transport can be attributed to the stochastic nature of the acceleration time according to DSA theory, the spectral break appears to be an artifact of transport in a finite medium. These CTRW simulations point to a new and intriguing phenomenon associated with the statistical nature of collective acceleration of high energy cosmic rays in galactic superbubbles.

  13. Double Pair Production by Ultra High Energy Cosmic Ray Photons

    E-print Network

    S. V. Demidov; O. E. Kalashev

    2008-12-22

    With use of CompHEP package we've made the detailed estimate of the influence of double e+e- pair production by photons (DPP) on the propagation of ultra high energy electromagnetic cascade. We show that in the models in which cosmic ray photons energy reaches few thousand EeV refined DPP analysis may lead to substantial difference in predicted photon spectrum compared to previous rough estimates.

  14. Ultra High Energy Cosmic Rays Diffusion in an Expanding Universe

    E-print Network

    R. Aloisio; V. Berezinsky; A. Gazizov

    2007-06-14

    We study the solution of the diffusion equation for Ultra-High Energy Cosmic Rays in the general case of an expanding universe, comparing it with the well known Syrovatsky solution obtained in the more restrictive case of a static universe. The formal comparison of the two solutions with all parameters being fixed identically reveals an appreciable discrepancy. This discrepancy is less important if in both models a different set of best-fit parameters is used.

  15. On the Origin of Ultra High Energy Cosmic Rays

    SciTech Connect

    Fowler, T; Colgate, S; Li, H

    2009-07-01

    Turbulence-driven plasma accelerators produced by magnetized accretion disks around black holes are proposed as the mechanism mainly responsible for observed cosmic ray protons with ultra high energies 10{sup 19}-10{sup 21} eV. The magnetized disk produces a voltage comparable to these cosmic ray energies. Here we present a Poynting model in which this voltage provides all of the energy to create the jet-like structures observed to be ejected from accretion disks, and this voltage also accelerates ions to high energies at the top of the expanding structure. Since the inductive electric field E = -v x B driving expansion has no component parallel to the magnetic field B, ion acceleration requires plasma wave generation - either a coherent wave accelerator as recently proposed, or instability-driven turbulence. We find that turbulence can tap the full inductive voltage as a quasi-steady accelerator, and even higher energies are produced by transient events on this structure. We find that both MHD modes due to the current and ion diffusion due to kinetic instability caused by the non-Maxwellian ion distribution contribute to acceleration. We apply our results to extragalactic giant radiolobes, whose synchrotron emissions serve to calibrate the model, and we discuss extrapolating to other astrophysical structures. Approximate calculations of the cosmic ray intensity and energy spectrum are in rough agreement with data and serve to motivate more extensive MHD and kinetic simulations of turbulence that could provide more accurate cosmic ray and synchrotron spectra to be compared with observations. A distinctive difference from previous models is that the cosmic ray and synchrotron emissions arise from different parts of the magnetic structure, thus providing a signature for the model.

  16. Search for very high energy gamma rays from possible ultra-high energy cosmic ray sources by the MAGIC Telescope

    E-print Network

    K. Shinozaki; M. Teshima; for the MAGIC Collaboration

    2007-09-17

    The origin of ultra-high energy (UHE) cosmic rays is still an open question. In the present work, we searched the possible UHE cosmic ray sources using the MAGIC telescope for the associated very high energy (VHE) gamma ray emission. Due to constrained propagation distance of such cosmic rays, we selected nearby galaxies in vicinity of the direction of the AGASA triplet and a HiRes UHE cosmic ray event: NGC 3610 and NGC 3613 (quasar remnants); Arp 299 (a system of colliding galaxies). No significant excess in the VHE region was found found from these objects or their surrounding region. At multi-100 GeV regime, the upper limits on fluxes were given against gamma ray sources in surrounding region. The presented limits constrain the flux of a new hypothetical source in the region, provided the cosmic rays are emitted from a single point-like origin.

  17. A simulation of high energy cosmic ray propagation 1

    NASA Technical Reports Server (NTRS)

    Honda, M.; Kifune, T.; Matsubara, Y.; Mori, M.; Nishijima, K.; Teshima, M.

    1985-01-01

    High energy cosmic ray propagation of the energy region 10 to the 14.5 power - 10 to the 18th power eV is simulated in the inter steller circumstances. In conclusion, the diffusion process by turbulent magnetic fields is classified into several regions by ratio of the gyro-radius and the scale of turbulence. When the ratio becomes larger then 10 to the minus 0.5 power, the analysis with the assumption of point scattering can be applied with the mean free path E sup 2. However, when the ratio is smaller than 10 to the minus 0.5 power, we need a more complicated analysis or simulation. Assuming the turbulence scale of magnetic fields of the Galaxy is 10-30pc and the mean magnetic field strength is 3 micro gauss, the energy of cosmic ray with that gyro-radius is about 10 to the 16.5 power eV.

  18. The composition of cosmic rays at high energies

    NASA Astrophysics Data System (ADS)

    Muller, Dietrich

    Measurements of the composition of the cosmic rays at high energies, and of the energy spectra of the individual components provide the basis for the understanding of the sources, of the acceleration mechanism, and of the galactic containment of these particles. A brief review of the presently available information and a recent measurement performed on the Space Shuttle to substantially extend the range of energies in which the elemental composition is known are described. Results, and recent data on the electron component of cosmic rays are discussed and summarized. The body of data now available contains several features that are difficult to explain within current models of galactic shock acceleration and 'leakly box' containment. The need for further measurements is emphasized and possible opportunities for future work are briefly discussed.

  19. TESTING THE ORIGIN OF HIGH-ENERGY COSMIC RAYS

    SciTech Connect

    Vladimirov, A. E.; Moskalenko, I. V.; Porter, T. A.; Johannesson, G.

    2012-06-10

    Recent accurate measurements of cosmic-ray (CR) protons and nuclei by ATIC-2, CREAM, and PAMELA reveal (1) unexpected spectral hardening in the spectra of CR species above a few hundred GeV per nucleon, (2) a harder spectrum of He compared to protons, and (3) softening of the CR spectra just below the break energy. These newly discovered features may offer a clue to the origin of the observed high-energy Galactic CRs. We discuss possible interpretations of these spectral features and make predictions for the secondary CR fluxes and secondary-to-primary ratios, anisotropy of CRs, and diffuse Galactic {gamma}-ray emission in different phenomenological scenarios. Our predictions can be tested by currently running or near-future high-energy astrophysics experiments.

  20. On the Origin of Ultra High Energy Cosmic Rays II

    SciTech Connect

    Fowler, T K; Colgate, S; Li, H; Bulmer, R H; Pino, J

    2011-03-08

    We show that accretion disks around Active Galactic Nuclei (AGNs) could account for the enormous power in observed ultra high energy cosmic rays {approx}10{sup 20} eV (UHEs). In our model, cosmic rays are produced by quasi-steady acceleration of ions in magnetic structures previously proposed to explain jets around Active Galactic Nuclei with supermassive black holes. Steady acceleration requires that an AGN accretion disk act as a dynamo, which we show to follow from a modified Standard Model in which the magnetic torque of the dynamo replaces viscosity as the dominant mechanism accounting for angular momentum conservation during accretion. A black hole of mass M{sub BH} produces a steady dynamo voltage V {proportional_to} {radical}M{sub BH} giving V {approx} 10{sup 20} volts for M{sub BH} {approx} 10{sup 8} solar masses. The voltage V reappears as an inductive electric field at the advancing nose of a dynamo-driven jet, where plasma instability inherent in collisionless runaway acceleration allows ions to be steadily accelerated to energies {approx} V, finally ejected as cosmic rays. Transient events can produce much higher energies. The predicted disk radiation is similar to the Standard Model. Unique predictions concern the remarkable collimation of jets and emissions from the jet/radiolobe structure. Given MBH and the accretion rate, the model makes 7 predictions roughly consistent with data: (1) the jet length; (2) the jet radius; (3) the steady-state cosmic ray energy spectrum; (4) the maximum energy in this spectrum; (5) the UHE cosmic ray intensity on Earth; (6) electron synchrotron wavelengths; and (7) the power in synchrotron radiation. These qualitative successes motivate new computer simulations, experiments and data analysis to provide a quantitative verification of the model.

  1. Active Galactic Nuclei with Starbursts: Sources for Ultra High Energy Cosmic Rays

    E-print Network

    P. L. Biermann; J. K. Becker; L. Caramete; L. A. Gergely; I. C. Maris; A. Meli; V. de Souza; T. Stanev

    2009-04-10

    Ultra high energy cosmic ray events presently show a spectrum, which we interpret here as galactic cosmic rays due to a starburst in the radio galaxy Cen A pushed up in energy by the shock of a relativistic jet. The knee feature and the particles with energy immediately higher in galactic cosmic rays then turn into the bulk of ultra high energy cosmic rays. This entails that all ultra high energy cosmic rays are heavy nuclei. This picture is viable if the majority of the observed ultra high energy events come from the radio galaxy Cen A, and are scattered by intergalactic magnetic fields across most of the sky.

  2. GZK Photons as Ultra High Energy Cosmic Rays

    E-print Network

    Graciela B. Gelmini; Oleg E. Kalashev; Dmitry V. Semikoz

    2007-11-01

    We calculate the flux of "GZK-photons", namely the flux of Ultra High Energy Cosmic Rays (UHECR) consisting of photons produced by extragalactic nucleons through the resonant photoproduction of pions, the so called GZK effect. We We calculate the flux of "GZK-photons", namely the flux of Ultra High Energy Cosmic Rays (UHECR) consisting of photons produced by extragalactic nucleons through the resonant photoproduction of pions, the so called GZK effect. We show that, for primary nucleons, the GZK photon fraction of the total UHECR flux is between $10^{-4}$ and $10^{-2}$ above $10^{19}$ eV and up to the order of 0.1 above $10^{20}$ eV. The GZK photon flux depends on the assumed UHECR spectrum, slope of the nucleon flux at the source, distribution of sources and intervening backgrounds. Detection of this photon flux would open the way for UHECR gamma-ray astronomy. Detection of a larger photon flux would imply the emission of photons at the source or new physics. We compare the photon fractions expected for GZK photons and the minimal predicted by Top-Down models. We find that the photon fraction above $10^{19}$ eV is a crucial test for Top-Down models.

  3. Origin and Propagation of Ultra-High Energy Cosmic Rays

    E-print Network

    Gustavo A. Medina Tanco; Elisabete M. de Gouveia Dal Pino; Jorge E. Horvatth

    1999-01-06

    The existence of cosmic ray particles up to the ultra-high energy limit (> 10^20 eV) is now beyond any doubt. The detection of cosmic particles with such energies imposes a challenge for the comprehension of their sources and nature. On one side, particles with such high energies are difficult to be produced by any astrophysical source. On the other side, the interactions of these particles with photons of the cosmic microwave background cause substantial losses of energy which constraint the maximum distances that the particles are able to travel from the sources to the detectors. Aiming to help to elucidate the problem of UHECR source identification, we have performed 3-D simulations of particle trajectories propagated through the stochastic intergalactic and an extended Galactic halo magnetic fields. Going further, we have also performed simulations of proton and Fe nuclei through the spiral Galactic magnetic field (GMF) and built full-sky maps of their arrival direction distribution in both the detector (after deflection in the GMF) and just outside the Galaxy. In this work we summarize the main results of these investigations.

  4. Percolation Effects in Very-High-Energy Cosmic Rays

    SciTech Connect

    Dias de Deus, J.; Santo, M.C. Espirito; Pimenta, M.; Pajares, C.

    2006-04-28

    Cosmic ray data at high energies present a number of well-known puzzles. At very high energies (E{approx}10{sup 20} eV) there are indications of a discrepancy between ground array experiments and fluorescence detectors. On the other hand, the dependence of the depth of the shower maximum X{sub max} with the primary energy shows a change in slope (E{approx}10{sup 17} eV) which is usually explained assuming a composition change. Both effects could be accounted for in models predicting that above a certain energy showers would develop deeper in the atmosphere. In this Letter we argue that this can be done naturally by including percolation effects in the description of the shower development, which cause a change in the behavior of the inelasticity K above E{approx_equal}10{sup 17} eV.

  5. CREAM: High Energy Frontier of Cosmic Ray Elemental Spectra

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    The balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment was flown for 161 days in six flights over Antarctica. High energy cosmic-ray data were collected over a wide energy range from 10 (10) to 10 (15) eV at an average altitude of 38.5 km with 3.9 g/cm (2) atmospheric overburden. Cosmic-ray elements from protons (Z = 1) to iron nuclei (Z = 26) are separated with excellent charge resolution. Building on success of the balloon flights, the payload is being reconfigured for exposure on the International Space Station (ISS). This ISS-CREAM instrument is configured with the CREAM calorimeter for energy measurements, and four finely segmented Silicon Charge Detector layers for precise charge measurements. In addition, the Top and Bottom Counting Detectors (TCD and BCD) and Boronated Scintillator Detector (BSD) have been newly developed. The TCD and BCD are scintillator based segmented detectors to separate electrons from nuclei using the shower profile differences, while BSD distinguishes electrons from nuclei by detecting thermal neutrons that are dominant in nuclei induced showers. An order of magnitude increase in data collecting power is possible by utilizing the ISS to reach the highest energies practical with direct measurements. The project status including results from on-going analysis of existing data and future plans will be discussed.

  6. High-Energy Cosmic Ray Event Data from the Pierre Auger Cosmic Ray Observatory

    DOE Data Explorer

    The Pierre Auger Cosmic Ray Observatory in Mendoza, Argentina is the result of an international collaboration funded by 15 countries and many different organizations. Its mission is to capture high-energy cosmic ray events or air showers for research into their origin and nature. The Pierre Auger Collaboration agreed to make 1% of its data available to the public. The Public Event Explorer is a search tool that allows users to browse or search for and display figures and data plots of events collected since 2004. The repository is updated daily, and, as of June, 2014, makes more than 35,000 events publicly available. The energy of a cosmic ray is measured in Exa electron volts or EeV. These event displays can be browsed in order of their energy level from 0.1 to 41.1 EeV. Each event has an individual identification number.

    The event displays provide station data, cosmic ray incoming direction, various energy measurements, plots, vector-based images, and an ASCII data file.

  7. Ultra high energy cosmic rays: the highest energy frontier

    E-print Network

    João R. T. de Mello Neto

    2015-10-19

    Ultra-high energy cosmic rays (UHECRs) are the highest energy messengers of the present universe, with energies up to $10^{20}$ eV. Studies of astrophysical particles (nuclei, electrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. The primary particles interact in the atmosphere and generate extensive air showers. Analysis of those showers enables one not only to estimate the energy, direction and most probable mass of the primary cosmic particles, but also to obtain information about the properties of their hadronic interactions at an energy more than one order of magnitude above that accessible with the current highest energy human-made accelerator. In this contribution we will review the state-of-the-art in UHECRs detection. We will present the leading experiments Pierre Auger Observatory and Telescope Array and discuss the cosmic ray energy spectrum, searches for directional anisotropy, studies of mass composition, the determination of the number of shower muons (which is sensitive to the shower hadronic interactions) and the proton-air cross section.

  8. The Lamb Shift and Ultra High Energy Cosmic Rays

    E-print Network

    She-Sheng Xue

    2003-05-19

    On the analogy with the Lamb shift, we study the vacuum effect that proton's electric field interacts with virtual particles in the vacuum. We find a possible quantum instability that triggered by an external force, proton's electric field interacting with virtual particles spontaneously induces a quantum force that back reacts on the proton in the direction of the external trigger force. Such a quantum-induced force accelerates the proton runaway, by gaining the zero-point energy from the vacuum (~10^{-5} eV/cm). This effect possibly accounts for the mysterious origin and spectrum of ultra high-energy cosmic ray (UHECR) events above 10^{20}eV, and explains the puzzle why the GZK cutoff is absent. The candidates of these events could be primary protons from the early Universe.

  9. "Espresso" Acceleration of Ultra-high-energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Caprioli, Damiano

    2015-10-01

    We propose that ultra-high-energy (UHE) cosmic rays (CRs) above 1018 eV are produced in relativistic jets of powerful active galactic nuclei via an original mechanism, which we dub “espresso” acceleration: “seed” galactic CRs with energies ?1017 eV that penetrate the jet sideways receive a “one-shot” boost of a factor of ??2 in energy, where ? is the Lorentz factor of the relativistic flow. For typical jet parameters, a few percent of the CRs in the host galaxy can undergo this process, and powerful blazars with ? ? 30 may accelerate UHECRs up to more than 1020 eV. The chemical composition of espresso-accelerated UHECRs is determined by that at the Galactic CR knee and is expected to be proton-dominated at 1018 eV and increasingly heavy at higher energies, in agreement with recent observations made at the Pierre Auger Observatory.

  10. High energy nucleonic component of cosmic rays at mountain altitudes

    E-print Network

    Stora, Raymond Félix

    The diffusion equations describing the unidimensional propagation of .the high energy nucleonic component of cosmic rays throughout the atmosphere are sol"V'ed under two assumptions: (l) The nucleon-nucleon collisions are described according to Fermi's therlnOdynamical model involving completely inelastic pion and.nucleon-antinucleon pair production. (2) A somewhat opposite assumption is made assuming partially elastic collisions without nucleon-anti.nucleon pair production. Due to the present inaccuracy of experiments, we are able to derive only tentati v.e conclusions. The values computed under both hypotheses for the absorption mean free path and the charged to neutral particles ratio are found in acceptable ranges when compared to experimental data. The diffeential energy spectrum at a given depth is always found steeper than the primary, and steeper than indicated by experimental values if the primary is taken proportional to the 2.5 inverse power of energy.

  11. On the Origin of Ultra High Energy Cosmic rays (UHECR) Department of Physics

    E-print Network

    California at Los Angles, University of

    On the Origin of Ultra High Energy Cosmic rays (UHECR) A. Calvez Department of Physics California and Motivation The existence of cosmic ray particles with energies above 1020 eV is one of the intriguing of cosmic ray's sources, and on the arrival directions as a function of energy. The Greisen-Zatsepin- Kuzmin

  12. Ultra-High Energy Cosmic Rays: A Recap of the Discussions at the European Cosmic Ray Symposium 2014

    NASA Astrophysics Data System (ADS)

    Haungs, Andreas

    2015-08-01

    This contribution summarizes the talks, posters, and discussions of the ECRS 2014, held in Kiel, Germany - related to the research field of ultra-high energy cosmic rays (UHECR). Here, the definition of UHECR is cosmic rays with an energy above approximately 0.1 EeV, i.e. 1017 eV, and the corresponding sessions were named HECR-II. Recent experimental results, like the identified heavy knee in the cosmic ray energy spectrum or the hotspot in the arrival direction of cosmic rays with highest energy, will be shown and discussed in relation to the need and requirements of future experimental efforts.

  13. A simulation of high energy cosmic ray propagation 2

    NASA Technical Reports Server (NTRS)

    Honda, M.; Kamata, K.; Kifune, T.; Matsubara, Y.; Mori, M.; Nishijima, K.

    1985-01-01

    The cosmic ray propagation in the Galactic arm is simulated. The Galactic magnetic fields are known to go along with so called Galactic arms as a main structure with turbulences of the scale about 30pc. The distribution of cosmic ray in Galactic arm is studied. The escape time and the possible anisotropies caused by the arm structure are discussed.

  14. Ultra high energy gamma rays, cosmic rays and neutrinos from accreting degenerate stars

    NASA Technical Reports Server (NTRS)

    Brecher, K.; Chanmugam, G.

    1985-01-01

    Super-Eddington accretion for a recently proposed unipolar induction model of cosmic ray acceleration in accreting binary star systems containing magnetic white dwarfs or neutron stars is considered. For sufficiently high accretion rates and low magnetic fields, the model can account for: (1) acceleration of cosmic ray nuclei up to energies of 10 to the 19th power eV; (2) production of more or less normal solar cosmic ray composition; (3) the bulk of cosmic rays observed with energies above 1 TeV, and probably even down to somewhat lower energies as well; and (4) possibly the observed antiproton cosmic ray flux. It can also account for the high ultra high energy (UHE) gamma ray flux observed from several accreting binary systems (including Cygnus X-3), while allowing the possibility of an even higher neutrino flux from these sources, with L sub nu/L sub gamma is approximately 100.

  15. Intensities of high-energy cosmic rays at Mount Kanbala

    NASA Technical Reports Server (NTRS)

    Ren, J. R.; Kuang, H. H.; Huo, A. X.; Lu, S. L.; Su, S.; Wang, Y. X.; Xue, Y. G.; Wang, C. R.; He, M.; Zhang, N. J.

    1985-01-01

    The energy spectra of atmospheric cosmic rays at Mt. Kanbala (520 g/sq cm.) are measured with emulsion chambers. The power indexes of the spectra are values of about 2.0 for both gamma-rays and hadrons. Those fluxes are consistent with the ones expected from the model of primary cosmic rays with heavy nuclei of high content in the energy around 10 to the 15th power eV.

  16. A Lookup Table to Compute High Energy Cosmic Ray Effects on Terrestrial Atmospheric Chemistry

    E-print Network

    Atri, Dimitra

    2009-04-27

    A variety of events such as gamma-ray bursts and supernovae may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. Existing atmospheric chemistry software does not have...

  17. The intergalactic propagation of ultra-high energy cosmic ray nuclei

    E-print Network

    Dan Hooper; Subir Sarkar; Andrew M. Taylor

    2006-10-23

    We investigate the propagation of ultra-high energy cosmic ray nuclei (A = 1-56) from cosmologically distant sources through the cosmic radiation backgrounds. Various models for the injected composition and spectrum and of the cosmic infra-red background are studied using updated photo-disintegration cross-sections. The observational data on the spectrum and the composition of ultra-high energy cosmic rays are jointly consistent with a model where all of the injected primary cosmic rays are iron nuclei (or a mixture of heavy and light nuclei).

  18. Observations of Ultra-High Energy Cosmic Rays

    E-print Network

    A A Watson

    2005-11-29

    The status of measurements of the arrival directions, mass composition and energy spectrum of cosmic rays above 3 x 10^18 eV (3 EeV) is reviewed using reports presented at the 29th International Cosmic Ray Conference held in Pune, India, in August 2005. The paper is based on a plenary talk given at the TAUP2005 meeting in Zaragoza, 10 - 14 September 2005.

  19. Ultra-high energy cosmic rays threshold in Randers-Finsler space

    E-print Network

    Zhe Chang; Xin Li

    2008-09-27

    Kinematics in Finsler space is used to study the propagation of ultra high energy cosmic rays particles through the cosmic microwave background radiation. We find that the GZK threshold is lifted dramatically in Randers-Finsler space. A tiny deformation of spacetime from Minkowskian to Finslerian allows more ultra-high energy cosmic rays particles arrive at the earth. It is suggested that the lower bound of particle mass is related with the negative second invariant speed in Randers-Finsler space.

  20. Are gamma-ray bursts the sources of ultra-high energy cosmic rays?

    NASA Astrophysics Data System (ADS)

    Baerwald, Philipp; Bustamante, Mauricio; Winter, Walter

    2015-03-01

    We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because (a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and (b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space - unless the baryonic loading is much larger than previously anticipated.

  1. Study of the Shadow of the Moon in Very High Energy Cosmic Rays with the Milagrito Water Cherenkov Detector

    E-print Network

    California at Santa Cruz, University of

    Study of the Shadow of the Moon in Very High Energy Cosmic Rays with the Milagrito Water Cherenkov of California at Riverside 2001 #12; Study of the Shadow of the Moon in Very High Energy Cosmic Rays of the Moon in Very High Energy Cosmic Rays with the Milagrito Water Cherenkov Detector by Morgan O

  2. Are Gamma-Ray Bursts the Sources of the Ultra-High Energy Cosmic Rays?

    NASA Astrophysics Data System (ADS)

    Dermer, Charles D.

    2011-08-01

    A checklist of criteria is presented to help establish the sources of ultra-high energy cosmic rays (UHECRs). These criteria are applied to long-duration GRBs in order to determine if they are UHECR sources. The evidence seems to favor blazars and radio galaxies (or other sources) over GRBs.

  3. High energy neutrinos from astrophysical accelerators of cosmic ray nuclei

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Hooper, Dan; Sarkar, Subir; Taylor, Andrew M.

    2008-02-01

    Ongoing experimental efforts to detect cosmic sources of high energy neutrinos are guided by the expectation that astrophysical accelerators of cosmic ray protons would also generate neutrinos through interactions with ambient matter and/or photons. However, there will be a reduction in the predicted neutrino flux if cosmic ray sources accelerate not only protons but also significant numbers of heavier nuclei, as is indicated by recent air shower data. We consider plausible extragalactic sources such as active galactic nuclei, gamma ray bursts and starburst galaxies and demand consistency with the observed cosmic ray composition and energy spectrum at Earth after allowing for propagation through intergalactic radiation fields. This allows us to calculate the expected neutrino fluxes from the sources, normalized to the observed cosmic ray spectrum. We find that the likely signals are still within reach of next generation neutrino telescopes such as IceCube.PACS95.85.Ry98.70.Rz98.54.Cm98.54.EpReferencesFor a review, see:F.HalzenD.HooperRep. Prog. Phys.6520021025A.AchterbergIceCube CollaborationPhys. Rev. Lett.972006221101A.AchterbergIceCube CollaborationAstropart. Phys.262006282arXiv:astro-ph/0611063arXiv:astro-ph/0702265V.NiessANTARES CollaborationAIP Conf. Proc.8672006217I.KravchenkoPhys. Rev. D732006082002S.W.BarwickANITA CollaborationPhys. Rev. Lett.962006171101V.Van ElewyckPierre Auger CollaborationAIP Conf. Proc.8092006187For a survey of possible sources and event rates in km3 detectors see e.g.,W.BednarekG.F.BurgioT.MontaruliNew Astron. Rev.4920051M.D.KistlerJ.F.BeacomPhys. Rev. D742006063007A. Kappes, J. Hinton, C. Stegmann, F.A. Aharonian, arXiv:astro-ph/0607286.A.LevinsonE.WaxmanPhys. Rev. Lett.872001171101C.DistefanoD.GuettaE.WaxmanA.LevinsonAstrophys. J.5752002378F.A.AharonianL.A.AnchordoquiD.KhangulyanT.MontaruliJ. Phys. Conf. Ser.392006408J.Alvarez-MunizF.HalzenAstrophys. J.5762002L33F.VissaniAstropart. Phys.262006310F.W.SteckerC.DoneM.H.SalamonP.SommersPhys. Rev. Lett.6619912697(Erratum-ibid. 69 (1992) 2738)F.W.SteckerPhys. Rev. D722005107301A.AtoyanC.D.DermerPhys. Rev. Lett.872001221102L.A.AnchordoquiH.GoldbergF.HalzenT.J.WeilerPhys. Lett. B6002004202E.WaxmanJ.N.BahcallPhys. Rev. Lett.7819972292C.D.DermerA.AtoyanPhys. Rev. Lett.912003071102D.GuettaD.HooperJ.Alvarez-MunizF.HalzenE.ReuveniAstropart. Phys.202004429J.Alvarez-MunizF.HalzenD.W.HooperPhys. Rev. D622000093015A.LoebE.WaxmanJCAP06052006003S. Inoue, G. Sigl, F. Miniati, E. Armengaud, arXiv:astro-ph/0701167.E.WaxmanJ.N.BahcallPhys. Rev. D591999023002Phys. Rev. D642001023002K.MannheimR.J.ProtheroeJ.P.RachenPhys. Rev. D632001023003arXiv:astro-ph/9908031M.AhlersL.A.AnchordoquiH.GoldbergF.HalzenA.RingwaldT.J.WeilerPhys. Rev. D722005023001E.WaxmanAstrophys. J.4521995L1Note that the neutrino spectral shape can deviate from that for protons if the Feynman plateau is not flat in pseudo-rapidity space;L.AnchordoquiH.GoldbergC.NunezPhys. Rev. D712005065014This is in fact suggested by Tevatron data;F.AbeCDF CollaborationPhys. Rev. D4119902330J.G.LearnedS.PakvasaAstropart. Phys.31995267F.HalzenD.SaltzbergPhys. Rev. Lett.8119984305J.F.BeacomN.F.BellD.HooperS.PakvasaT.J.WeilerPhys. Rev. D682003093005(Erratum-ibid. D 72 (2005) 019901)L.A.AnchordoquiH.GoldbergF.HalzenT.J.WeilerPhys. Lett. B593200442L.A.AnchordoquiH.GoldbergF.HalzenT.J.WeilerPhys. Lett. B621200518A.M.HillasAnn. Rev. Astron. Astrophys.221984425For a general discussion on the acceleration time-scale in these sources see, e.g.,D.F.TorresL.A.AnchordoquiRep. Prog. Phys.6720041663M.C.BegelmanB.RudakM.SikoraAstrophys. J.362199038M.J.ChodorowskiA.A.ZdziarskiM.SikoraAstrophys. J.4001992181S.MichalowskiD.AndrewsJ.EickmeyerT.GentileN.MistryR.TalmanK.UenoPhys. Rev. Lett.391977737J.L.PugetF.W.SteckerJ.H.BredekampAstrophys. J.2051976638D.HooperS.SarkarA.M.TaylorAstropart. Phys.272007199The non-thermal energy release in GRBs is much smaller than that output by AGN.P.L.BiermannP.A.StrittmatterAstrophys. J.3221987643R.J.ProtheroeA.P.SzaboPhys. Rev. Lett.6919922885J.P.RachenP.L.BiermannAstron. Astrophys.2721993161J.P.Ra

  4. Energy spectrum of ultra high energy cosmic rays

    E-print Network

    Ioana C. Maris; for the Pierre Auger Collaboration

    2008-08-12

    The construction of the southern site of the Pierre Auger Observatory is almost completed. Three independent measurements of the flux of the cosmic rays with energies larger than 1 EeV have been performed during the construction phase. The surface detector data collected until August 2007 have been used to establish a flux suppression at the highest energies with a 6 sigma significance. The observations of cosmic rays by the fluorescence detector allowed the extension of the energy spectrum to lower energies, where the efficiency of the surface detector is less than 100% and a change in the spectral index is expected.

  5. Curvature Oscillations in Modified Gravity and High Energy Cosmic Rays

    E-print Network

    E. V. Arbuzova; A. D. Dolgov; L. Reverberi

    2012-11-24

    It is shown that F(R)-modified gravitational theories lead to curvature oscillations in astrophysical systems with rising energy density. The frequency and the amplitude of such oscillations could be very high and would lead to noticeable production of energetic cosmic ray particles.

  6. Measurement of the flux of ultra high energy cosmic rays using data from very inclined air

    E-print Network

    Hebbeker, Thomas

    Measurement of the flux of ultra high energy cosmic rays using data from very inclined air showers.1.2 Cosmic rays above 100 TeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Extensive air-model of the hadronic cascade . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Very inclined air showers

  7. The Fly's Eye Extremely High Energy Cosmic Ray Spectrum D.J. Bird,1

    E-print Network

    The Fly's Eye Extremely High Energy Cosmic Ray Spectrum D.J. Bird,1 S.C. Corbato,3 H.Y. Dai,3 B present our latest results on the cosmic ray energy spectrum above 1017 eV observed by Fly's Eye. Tracks detected by both eyes can be well reconstructed and therefore have very good energy resolution

  8. Obtaining bounds from ultra-high energy cosmic rays in isotropic modified Maxwell theory

    E-print Network

    M. Schreck

    2013-10-18

    This article reviews the methods used to obtain a two-sided bound on isotropic modified Maxwell theory from experimental data of ultra high-energy cosmic rays in 2008. The bound is updated with results from the HEGRA experiment.

  9. The Intergalactic Propagation of Ultra-High Energy Cosmic Ray Nuclei: An Analytic Approach

    E-print Network

    Dan Hooper; Subir Sarkar; Andrew M. Taylor

    2008-11-05

    It is likely that ultra-high energy cosmic rays contain a significant component of heavy or intermediate mass nuclei. The propagation of ultra-high energy nuclei through cosmic radiation backgrounds is more complicated than that of protons and its study has required the use of Monte Carlo techniques. We present an analytic method for calculating the spectrum and the composition at Earth of ultra-high energy cosmic rays which start out as heavy nuclei from their extragalactic sources. The results obtained are in good agreement with those obtained using numerical methods.

  10. SimProp: a simulation code for ultra high energy cosmic ray propagation

    SciTech Connect

    Aloisio, R.; Grillo, A.F.; Boncioli, D.; Petrera, S.; Salamida, F. E-mail: denise.boncioli@roma2.infn.it E-mail: petrera@aquila.infn.it

    2012-10-01

    A new Monte Carlo simulation code for the propagation of Ultra High Energy Cosmic Rays is presented. The results of this simulation scheme are tested by comparison with results of another Monte Carlo computation as well as with the results obtained by directly solving the kinetic equation for the propagation of Ultra High Energy Cosmic Rays. A short comparison with the latest flux published by the Pierre Auger collaboration is also presented.

  11. High-energy Neutrino Astronomy: The Cosmic Ray Connection

    E-print Network

    Francis Halzen; Dan Hooper

    2002-07-08

    This is a review of neutrino astronomy anchored to the observational fact that Nature accelerates protons and photons to energies in excess of $10^{20}$ and $10^{13}$ eV, respectively. Although the discovery of cosmic rays dates back close to a century, we do not know how and where they are accelerated. Basic elementary-particle physics dictates a universal upper limit on their energy of $5\\times10^{19}$ eV, the so-called Greisen-Kuzmin-Zatsepin cutoff; however, particles in excess of this energy have been observed by all experiments, adding one more puzzle to the cosmic ray mystery. Mystery is fertile ground for progress: we will review the facts as well as the speculations about the sources including gamma ray bursts, blazars and top-down scenarios. The important conclusion is that, independently of the specific blueprint of the source, it takes a kilometer-scale neutrino observatory to detect the neutrino beam associated with the highest energy cosmic rays and gamma rays. We also briefly review the ongoing efforts to commission such instrumentation.

  12. Electron calibration of a high energy cosmic ray detector

    NASA Technical Reports Server (NTRS)

    Simnett, G. M.; Silverberg, R. F.; Crannell, C. J.; Gearhart, R. A.; Hagen, F. A.; Jones, W. V.; Kurz, R. J.; Ormes, J. F.; Price, R. D.

    1972-01-01

    The spectrum of cosmic ray electrons above 10 GeV was studied extensively. The spectrum is predicted to steepen at an energy which is related to the lifetime of electrons in the interstellar medium against losses due to inverse Compton collisions with photons and to synchrotron radiation in galactic magnetic fields. The experimental results diverge widely; the lack of agreement between the various measurements is due to a variety of experimental problems.

  13. Massive galaxy clusters and the origin of Ultra High Energy Cosmic Rays

    E-print Network

    Elena Pierpaoli; Glennys Farrar

    2005-11-22

    We investigate whether ultra--high energy cosmic rays (UHECR) may be preferentially produced in massive galaxy clusters, by looking for correlations between UHECR directions and those of x-ray clusters. We find an excess-above-random of high energy cosmic rays which correlate with massive galaxy cluster positions. For cosmic rays with energies above 50 EeV the observed correlation is the strongest or angles of 1.2-1.6 degrees where it has a chance probability of about 0.1%. Including lower energy cosmic rays in the sample causes the angle where the most significant correlation is found to increase, as would be expected by virtue of instrumental and magnetic smearing increasing at lower energy. These results suggest that some UHECR are produced in galaxy clusters, or in objects that preferentially populate galaxy clusters.

  14. High-energy cosmic rays and neutrinos from semirelativistic hypernovae

    SciTech Connect

    Wang Xiangyu; Razzaque, Soebur; Meszaros, Peter; Dai Zigao

    2007-10-15

    The origin of the ultrahigh-energy (UHE) cosmic rays (CRs) from the second knee ({approx}6x10{sup 17} eV) above in the CR spectrum is still unknown. Recently, there has been growing evidence that a peculiar type of supernovae, called hypernovae, are associated with subenergetic gamma-ray bursts, such as SN1998bw/GRB980425 and SN2003lw/GRB031203. Such hypernovae appear to have high (up to mildly relativistic) velocity ejecta, which may be linked to the subenergetic gamma-ray bursts. Assuming a continuous distribution of the kinetic energy of the hypernova ejecta as a function of its velocity E{sub k}{proportional_to}({gamma}{beta}){sup -{alpha}} with {alpha}{approx}2, we find that (1) the external shock wave produced by the high-velocity ejecta of a hypernova can accelerate protons up to energies as high as 10{sup 19} eV; (2) the cosmological hypernova rate is sufficient to account for the energy flux above the second knee; and (3) the steeper spectrum of CRs at these energies can arise in these sources. In addition, hypernovae would also give rise to a faint diffuse UHE neutrino flux, due to p{gamma} interactions of the UHE CRs with hypernova optical-UV photons.

  15. Air Shower Events of High-Energy Cosmic Rays Measured at Seoul, South Korea

    NASA Astrophysics Data System (ADS)

    Cho, Wooram; Shin, Jae-Ik; Kim, Hongki; Lee, Seulgi; Lim, Sunin; Nam, Sinwoo; Yang, Jongmann; Cheon, Byunggu; Bang, Hyungchan; Kwon, Youngjoon

    2011-09-01

    The COsmic ray Research and Education Array (COREA) collaboration has installed an array of six detector stations at two high schools in and near Seoul, Korea for measurement of air-shower events from high-energy cosmic rays. Three stations are installed at each site, where each station consists of four plastic scintillation detectors covering an area of 2m2. In this presentation, we report the currenst status of the COREA project, describing the experimental equipment and measurement of coincident events.

  16. Propagation of Ultra High Energy Cosmic Rays and the Production of Cosmogenic Neutrinos

    E-print Network

    R. Aloisio; D. Boncioli; A. di Matteo; A. F. Grillo; S. Petrera; F. Salamida

    2015-05-18

    We present an updated version of the {\\it SimProp} Monte Carlo code to study the propagation of ultra high energy cosmic rays in astrophysical backgrounds computing the cosmogenic neutrino fluxes expected on earth. The study of secondary neutrinos provides a powerful tool to constrain the source models of these extremely energetic particles. We will show how the newly detected IceCube neutrino events at PeV energies together with the the latest experimental results of the Pierre Auger Observatory and Telescope Array experiment are almost at the level of excluding several hypothesis on the astrophysical sources of ultra high energy cosmic rays. Results presented here can be also used to evaluate the discovery capabilities of future high energy cosmic rays and neutrino detectors.

  17. Propagation of Ultra High Energy Cosmic Rays and the Production of Cosmogenic Neutrinos

    E-print Network

    Aloisio, R; di Matteo, A; Grillo, A F; Petrera, S; Salamida, F

    2015-01-01

    We present an updated version of the {\\it SimProp} Monte Carlo code to study the propagation of ultra high energy cosmic rays in astrophysical backgrounds computing the cosmogenic neutrino fluxes expected on earth. The study of secondary neutrinos provides a powerful tool to constrain the source models of these extremely energetic particles. We will show how the newly detected IceCube neutrino events at PeV energies together with the the latest experimental results of the Pierre Auger Observatory and Telescope Array experiment are almost at the level of excluding several hypothesis on the astrophysical sources of ultra high energy cosmic rays. Results presented here can be also used to evaluate the discovery capabilities of future high energy cosmic rays and neutrino detectors.

  18. 18. Supernova remnants and the origin of cosmic rays 18.1 High-energy emission from SNR

    E-print Network

    Pohl, Martin Karl Wilhelm

    18. Supernova remnants and the origin of cosmic rays 18.1 High-energy emission from SNR We have already mentioned supernova remnants as possible sources of cosmic rays, and indeed synchrotron emission rays, then the cosmic-ray density in and near the SNR should be very high, so one should be able to see

  19. High energy cosmic ray particles and the most powerful new type discharges in thunderstorm atmosphere

    E-print Network

    Gurevich, A V

    2004-01-01

    The runaway breakdown -- extensive atmospheric shower discharge (RB - EAS) excited in thunderstorm atmosphere by high energy cosmic ray particles ($\\epsilon_p>10^{17} - 10^{19}$ eV) generate very powerful radio pulse. The RB - EAS theory is compared with observations of radio pulses. An agreement between the theory and experiment is established. The existence of nowaday satellite and ground based systems which obtain regularly a large amount of observational radio data could allow to use them in combination with other methods for effective study of high energy cosmic ray particles

  20. High energy cosmic ray particles and the most powerful new type discharges in thunderstorm atmosphere

    E-print Network

    A. V. Gurevich; K. P. Zybin

    2004-04-05

    The runaway breakdown -- extensive atmospheric shower discharge (RB - EAS) excited in thunderstorm atmosphere by high energy cosmic ray particles ($\\epsilon_p>10^{17} - 10^{19}$ eV) generate very powerful radio pulse. The RB - EAS theory is compared with observations of radio pulses. An agreement between the theory and experiment is established. The existence of nowaday satellite and ground based systems which obtain regularly a large amount of observational radio data could allow to use them in combination with other methods for effective study of high energy cosmic ray particles

  1. High-energy cosmic ray muons in the Earth's atmosphere

    SciTech Connect

    Kochanov, A. A.; Sinegovskaya, T. S.; Sinegovsky, S. I.

    2013-03-15

    We present the calculations of the atmospheric muon fluxes at energies 10-10{sup 7} GeV based on a numerical-analytical method for solving the hadron-nucleus cascade equations. It allows the non-power-law behavior of the primary cosmic ray (PCR) spectrum, the violation of Feynman scaling, and the growth of the total inelastic cross sections for hadron-nucleus collisions with increasing energy to be taken into account. The calculations have been performed for a wide class of hadron-nucleus interaction models using directly the PCR measurements made in the ATIC-2 and GAMMA experiments and the parameterizations of the primary spectrum based on a set of experiments. We study the dependence of atmospheric muon flux characteristics on the hadronic interaction model and the influence of uncertainties in the PCR spectrum and composition on the muon flux at sea level. Comparison of the calculated muon energy spectra at sea level with the data from a large number of experiments shows that the cross sections for hadron-nucleus interactions introduce the greatest uncertainty in the energy region that does not include the knee in the primary spectrum.

  2. Lookup tables to compute high energy cosmic ray induced atmospheric ionization and changes in atmospheric chemistry

    SciTech Connect

    Atri, Dimitra; Melott, Adrian L.; Thomas, Brian C. E-mail: melott@ku.edu

    2010-05-01

    A variety of events such as gamma-ray bursts and supernovae may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. Existing atmospheric chemistry software does not have the capability of incorporating the effects of substantial cosmic ray flux above 10 GeV. An atmospheric code, the NASA-Goddard Space Flight Center two-dimensional (latitude, altitude) time-dependent atmospheric model (NGSFC), is used to study atmospheric chemistry changes. Using CORSIKA, we have created tables that can be used to compute high energy cosmic ray (10 GeV–1 PeV) induced atmospheric ionization and also, with the use of the NGSFC code, can be used to simulate the resulting atmospheric chemistry changes. We discuss the tables, their uses, weaknesses, and strengths.

  3. Lookup tables to compute high energy cosmic ray induced atmospheric ionization and changes in atmospheric chemistry

    E-print Network

    Dimitra Atri; Adrian L. Melott; Brian C. Thomas

    2010-05-03

    A variety of events such as gamma-ray bursts and supernovae may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. Existing atmospheric chemistry software does not have the capability of incorporating the effects of substantial cosmic ray flux above 10 GeV . An atmospheric code, the NASA-Goddard Space Flight Center two-dimensional (latitude, altitude) time-dependent atmospheric model (NGSFC), is used to study atmospheric chemistry changes. Using CORSIKA, we have created tables that can be used to compute high energy cosmic ray (10 GeV - 1 PeV) induced atmospheric ionization and also, with the use of the NGSFC code, can be used to simulate the resulting atmospheric chemistry changes. We discuss the tables, their uses, weaknesses, and strengths.

  4. A method for constraining cosmic magnetic field models using ultra-high energy cosmic rays: The Field Scan Method

    NASA Astrophysics Data System (ADS)

    Sutherland, Michael S.; Baughman, Brian M.; Beatty, J. J.

    2012-09-01

    The Galactic magnetic field, locally observed to be on the order of a few ?G, is sufficiently strong to induce deflections in the arrival directions of ultra-high energy cosmic rays. We present a method that establishes measures of self-consistency for hypothesis sets comprised of cosmic magnetic field models and ultra-high energy cosmic ray composition and source distributions. The method uses two independent procedures to compare the backtracked velocity vectors outside the magnetic field model to the distribution of backtracked velocity directions of many isotropic observations with the same primary energies. This allows for an estimate of the statistical consistency between the observed data and simulated isotropic observations. Inconsistency with the isotropic expectation of source correlation in both procedures is interpreted as the hypothesis set providing a self-consistent description of GMF and UHECR properties for the cosmic ray observations.

  5. A Method for Constraining Cosmic Magnetic Field Models Using Ultra-High Energy Cosmic Rays: The Field Scan Method

    E-print Network

    Michael S. Sutherland; Brian M. Baughman; James J. Beatty

    2012-07-06

    The Galactic magnetic field, locally observed to be on the order of a few $\\mu$G, is sufficiently strong to induce deflections in the arrival directions of ultra-high energy cosmic rays. We present a method that establishes measures of self-consistency for hypothesis sets comprised of cosmic magnetic field models and ultra-high energy cosmic ray composition and source distributions. The method uses two independent procedures to compare the backtracked velocity vectors outside the magnetic field model to the distribution of backtracked velocity directions of many isotropic observations with the same primary energies. This allows for an estimate of the statistical consistency between the observed data and simulated isotropic observations. Inconsistency with the isotropic expectation of source correlation in both procedures is interpreted as the hypothesis set providing a self-consistent description of GMF and UHECR properties for the cosmic ray observations.

  6. Shock Acceleration of High-Energy Cosmic Rays: The Importance of the Magnetic-Field Angle

    E-print Network

    Shock Acceleration of High-Energy Cosmic Rays: The Importance of the Magnetic-Field Angle Joe-mail: giacalon@lpl.arizona.edu Abstract. The physics of particle acceleration by collisionless shocks of the accelerated particles. We show that the acceleration rate is strongly dependent on Bn and is a maximum

  7. High-energy multiple muons and heavy primary cosmic-rays

    NASA Technical Reports Server (NTRS)

    Mizutani, K.; Sato, T.; Takahashi, T.; Higashi, S.

    1985-01-01

    Three-dimensional simulations were carried out on high-energy multiple muons. On the lateral spread, the comparison with the deep underground observations indicates that the primary cosmic rays include heavy nuclei of high content. A method to determine the average mass number of primary particles in the energy around 10 to the 15th power eV is suggested.

  8. Constraining sources of ultra high energy cosmic rays using high energy observations with the Fermi satellite

    SciTech Connect

    Pe'er, Asaf; Loeb, Abraham E-mail: aloeb@cfa.harvard.edu

    2012-03-01

    We analyze the conditions that enable acceleration of particles to ultra-high energies, ? 10{sup 20} eV (UHECRs). We show that broad band photon data recently provided by WMAP, ISOCAM, Swift and Fermi satellites, yield constraints on the ability of active galactic nuclei (AGN) to produce UHECRs. The high energy (MeV–GeV) photons are produced by Compton scattering of the emitted low energy photons and the cosmic microwave background or extra-galactic background light. The ratio of the luminosities at high and low photon energies can therefore be used as a probe of the physical conditions in the acceleration site. We find that existing data excludes core regions of nearby radio-loud AGN as possible acceleration sites of UHECR protons. However, we show that giant radio lobes are not excluded. We apply our method to Cen A, and show that acceleration of protons to ? 10{sup 20} eV can only occur at distances ?>100 kpc from the core.

  9. Plasma effects on extragalactic ultra-high-energy cosmic ray hadron beams in cosmic voids

    SciTech Connect

    Krakau, S.; Schlickeiser, R. E-mail: rsch@tp4.rub.de

    2014-07-01

    The linear instability of an ultrarelativistic hadron beam (? {sub b} ? 10{sup 6}) in the unmagnetized intergalactic medium (IGM) is investigated with respect to the excitation of collective electrostatic and aperiodic electromagnetic fluctuations. This analysis is important for the propagation of extragalactic ultrarelativistic cosmic rays (E > 10{sup 15} eV) from their distant sources to Earth. We calculate minimum instability growth times that are orders of magnitude shorter than the cosmic ray propagation time in the IGM. Due to nonlinear effects, especially the modulation instability, the cosmic ray beam stabilizes and can propagate with nearly no energy loss through the IGM.

  10. Could Dense Quark Matter be a Source of Super High Energy Cosmic Rays?

    E-print Network

    Mais Suleymanov

    2011-10-10

    We propose that the dense quark matter could be a source of the high-energy secondary hadrons. These particles can be created from hadronization of the parton(s), which possess the energy of grouped partons from coherent interactions as a result of their collective behav- ior in high dense medium. The medium might be formed in the centre of some massive stars, and it could be a source of the super high-energy cosmic rays. In this work we consider some experimental results as an evidence on collective phenomenon, that can lead to coherent interactions in high dense medium and production of the high-energy secondary hadrons.

  11. LAT Perspectives in Detection of High Energy Cosmic Ray Electrons

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Ormes, J. F.; Funk, Stefan

    2007-01-01

    The GLAST Large Area Telescope (LAT) science objectives and capabilities in the detection of high energy electrons in the energy range from 20 GeV to approx. 1 TeV are presented. LAT simulations are used to establish the event selections. It is found that maintaining the efficiency of electron detection at the level of 30% the residual hadron contamination does not exceed 2-3% of the electron flux. LAT should collect approx. ten million of electrons with the energy above 20 GeV for each year of observation. Precise spectral reconstruction with high statistics presents us with a unique opportunity to investigate several important problems such as studying galactic models of IC radiation, revealing the signatures of nearby sources such as high energy cutoff in the electron spectrum, testing the propagation model, and searching for KKDM particles decay through their contribution to the electron spectrum.

  12. High energy cosmic ray signature of quark nuggets

    NASA Technical Reports Server (NTRS)

    Audouze, J.; Schaeffer, R.; Silk, J.

    1985-01-01

    It has been recently proposed that dark matter in the Universe might consist of nuggets of quarks which populate the nuclear desert between nucleons and neutron star matter. It is further suggested that the Centauro events which could be the signature of particles with atomic mass A approx. 100 and energy E approx. 10 to 15th power eV might also be related to debris produced in the encounter of two neutron stars. A further consequence of the former proposal is examined, and it is shown that the production of relativistic quark nuggets is accompanied by a substantial flux of potentially observable high energy neutrinos.

  13. The Highest Energy Particles in Nature (Ultra High Energy Cosmic Rays)

    SciTech Connect

    Watson, Alan

    2002-10-30

    The study of Ultra High Energy Cosmic Rays (UHECR) has attracted great attention in recent years. I will outline why there is such interest and review the existing experimental data that has led to an apparent enigma, as the cosmic rays of 1020 eV must be young but no sources are seen nearby. After a brief survey of proposals made to explain this enigma, I will give an overview of the prospects and promise of the Pierre Auger Observatory that has now been recording showers for over a year with its Engineering Array.

  14. Intensities of high-energy cosmic rays at Mount Kanbala

    NASA Technical Reports Server (NTRS)

    Ren, J. R.; Kuang, H. H.; Huo, A. X.; Lu, S. L.; Su, S.; Wang, Y. X.; Xue, Y. G.; Wang, C. R.; He, M.; Zhang, N. J.

    1985-01-01

    General features of family events with Summary E sub gamma 200 TeV, observed by the emulsion chambers at Mt. Kanbala, are presented in comparison with the Monte Carlo simulation. The lateral and cluster structure, and the energy spectra of constituent gamma-rays and hadrons are shown to be consistent with the Monte Carlo results calculated under the assumption of heavy-enriched primary, scaling, QCD jets and increasing cross-section.

  15. A C++ Code to Solve the DGLAP Equations Applied to Ultra High Energy Cosmic Rays

    E-print Network

    Ramon Toldra

    2002-01-10

    We solve numerically the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations for the evolution of fragmentation functions using the Laguerre method. We extend this method to include supersymmetric evolution. The solution to the DGLAP equations is particularly interesting to calculate the expected spectra of Ultra High Energy Cosmic Rays in models where they are produced by the decay of a massive particle X, M_X > 10^{12} GeV.

  16. Propagation of Ultra-high-energy Cosmic Rays in Galactic Magnetic Field

    NASA Astrophysics Data System (ADS)

    Takami, Hajime

    2011-09-01

    The propagation trajectories of ultra-high-energy cosmic rays (UHECRs) are inevitably affected by Galactic magnetic field (GMF). Because of the inevitability, the importance of the studies of the propagation in GMF have increased to interpret the results of recent UHECR experiments. This article reviews the effects of GMF to the propagation and arrival directions of UHECRs and introduces recent studies to constrain UHECR sources.

  17. Large scale structure in the intergalactic magnetic field and ultra-high energy cosmic ray propagation

    E-print Network

    Gustavo Medina Tanco

    1998-07-31

    The possibility that the magnetic field is strongly correlated with the large-scale structure of the universe has been recently proposed in the literature. In this scenario the intergalactic magnetic field has a strong (m Gauss) regular component spanning tens of Mpc. This could have severe consequences on the propagation of ultra-high energy cosmic rays, and the observed spectra, isotropy and composition. A quantitative discussion of these effects is given in the present work.

  18. High Energy Cosmic Ray Electron Spectra measured from the ATIC Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G.; Batkov, K. E.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.

    2003-01-01

    The Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) is specifically designed for high energy cosmic ray ion detection. From simulation and a CERN beam test exposure we find that the design consisting of a graphite target and an energy detection device, a totally active calorimeter of BGO scintillator, gives us sufficient information to distinguish electrons from protons up to the TeV energy range. Balloon observations were successfully carried out over Antarctica in both 2000/2001 and 2002/2003 for a total of more than 35 days. This paper presents preliminary results on the spectrum of high energy electrons observed in the first ATIC flight.

  19. The ANITA experiment: new high-energy neutrino limits and detection of ultra-high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Binns, Walter; Gorham, P. W.; Allison, P.; Baughmann, B.; Beatty, J. J.; Belov, K.; Besson, D. Z.; Bevan, S.; Binns, W. R.; Chen, C.; Chen, P.; Clem, J. M.; Connolly, A.; Detrixhe, M.; Demarco, D.; Dowkontt, P. F.; Goodhue-Vieregg, A.; Grashorn, E.; Hill, N. Griffith. B.; Hoover, S.; Israel, M. H.; Javaid, A.; Liewer, K. M.; Matsuno, S.; Mercurio, B. C.; Miki, C.; Mottram, M.; Nam, J.; Nichol, R. J.; Palladino, K.; Romero-Wolf, A.; Ruckman, L.; Saltzberg, D.; Seckel, D.; Varner, G. S.; Wang, Y.

    The ANITA (ANtarctic Impulsive Transient Antenna) instrument is a balloon-borne telescope designed to detect coherent radio Cherenkov emission in the frequency range of 200-1200 MHz from showers produced in the Antarctic ice by interaction of cosmogenic ultra-high energy neu-trinos with energy greater than about 3 x 1018 eV. We will discuss results from the second flight (ANITA-II), which was launched in December 2008 from Antarctica and included signif-icant improvements in sensitivity and efficiency for neutrino detection over that of ANITA-I, which was launched in December 2006. Additionally, the balloon trajectory of ANITA-II gave substantially more time over deep ice than that of ANITA-I. We will present upper limits on neutrinos that constrain models of neutrino origin. In addition, we have 16 events detected in the ANITA-I flight with strong evidence of their origin as geosynchrotron radio emission reflecting off of the Antarctic snow from ultra-high-energy (of order 1019 eV) cosmic-ray air showers. The increasing aperture of this technique with energy allows us to set limits on the presence of cosmic rays with energies beyond 1020 eV.

  20. Observations of High Energy Cosmic Ray Electrons by the ATIC Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Guzik, T. G.; Chang, J.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Christl, M.; Isbert, J.; Kim, K. C.; Kuznetsov, E. N.; Panasyuk, M. I.; Panov, A. D.; Schmidt, W. K. H.; Seo, E. S.; Sokolskaya N. V.; Watts, J. W.; Wefel, J. P.; Wu, J.; Zatsepin, V. I.

    2009-01-01

    Recently the Advanced Thin Ionization Calorimeter (ATIC) balloon experiment reported observations of high energy cosmic ray electrons over the energy range 300 to 800 GeV, indicating a feature or "bump" in the otherwise smoothly decreasing energy spectrum. The severe energy losses that occur as these high energy particles traverse the galaxy render the cosmic ray electron spectrum sensitive to local (a few kiloparsecs) sources and hence very interesting. The ATIC results are the first time that such a cosmic ray spectrum anomaly has been observed at high energy. Potential sources of this electron excess include pulsars, microquasars, supernovae remnants as well as the annihilation of exotic dark matter candidate particles. ATIC has had three successful high altitude flights over the continent of Antarctica 2000-2001, 2002-2003 and 2007-2008. Only results from the first two flights have been reported so far. During this talk we will discuss the ATIC experiment, the electron observations (including preliminary results from the most recent ATIC flight), examine the merits of the various source models and compare the ATIC observations with other recent measurements.

  1. High energy neutrinos from primary cosmic rays accelerated in the cores of active galaxies

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Done, C.; Salamon, M. H.; Sommers, P.

    1991-01-01

    The spectra and high-energy neutrino fluxes are calculated from photomeson production in active galactic nuclei (AGN) such as quasars and Seyfert galaxies using recent UV and X-ray observations to define the photon fields and an accretion-disk shock-acceleration model for producing ultrahigh-energy cosmic rays in the AGN. Collectively AGN should produce the dominant isotropic neutrino background between 10 exp 4 and 10 exp 10 GeV. Measurement of this background could be critical in determining the energy-generation mechanism, evolution, and distribution of AGN. High-energy background spectra and spectra from bright AGN such as NGC4151 and 3C273 are predicted which should be observable with present detectors. High energy AGN nus should produce a sphere of stellar disruption around their cores which could explain their observed broad-line emission regions.

  2. Physics from the Very-High Energy Cosmic-Ray Shadows of the Moon and Sun with Milagro

    E-print Network

    California at Santa Cruz, University of

    Physics from the Very-High Energy Cosmic-Ray Shadows of the Moon and Sun with Milagro by Grant E of the Moon and Sun in TeV cosmic rays are unique probes of the character of these particles and the magnetic analyzed here are primarily a sample of 700 million events within ±10 of the Moon and 650 million events

  3. New Results on High Energy Cosmic Ray Electrons Observed with Fermi LAT and Their Implications on the Models of Pulsars

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2010-01-01

    This viewgraph presentation describes, in detail, the Fermi Large Area Telescope (LAT) and GLAST Burst Monitor (GBM). Observations made from the June 11, 2008 launch and a discussion of observations made of high energy cosmic ray electrons is also presented.

  4. Ultra High Energy Cosmic Rays from decays of Holeums in Galactic Halos

    E-print Network

    Abhijit L. Chavda; L. K. Chavda

    2008-06-03

    Stable, quantized gravitational bound states of primordial black holes called Holeums could have been produced in the early universe and could be a component of the Super Heavy Dark Matter (SHDM) present in galactic halos. We show that Holeums of masses of the order of 10**13 to 10**14 GeV and above are stable enough to survive in the present-day universe. We identify such Holeums as promising candidates for the SHDM "X-particle" and show that the decay of such Holeums by pressure ionization can give rise to cosmic rays of all observed energies, including Ultra High Energy Cosmic Rays (UHECR). The absence of the GZK cut-off is explained by the galactic halo origin of the UHECR. We predict that the cosmic rays are a manifestation of the end-stage Hawking radiation burst of the primordial black holes (PBH) liberated by the ionization of Holeums. Antimatter detected in cosmic rays could be a signature of their Holeum origin.

  5. Effects of Cosmic Infrared Background on High Energy Delayed Gamma-Rays From Gamma-Ray Bursts

    SciTech Connect

    Murase, Kohta; Asano, Katsuaki; Nagataki, Shigehiro; /Kyoto U., Yukawa Inst., Kyoto /KIPAC, Menlo Park

    2007-04-06

    Regenerated high energy emissions from gamma-ray bursts (GRBs) are studied in detail. If the primary emission spectrum extends to TeV range, these very high energy photons will be absorbed by the cosmic infrared background (CIB). The created high energy electron-positron pairs up-scatter not only cosmic microwave background (CMB) photons but also CIB photons, and secondary photons are generated in the GeV-TeV range. These secondary delayed photons may be observed in the near future, and useful for a consistency check for the primary spectra and GRB physical parameters. The up-scattered CIB photons cannot be neglected for low redshift bursts and/or GRBs with a relatively low maximum photon energy. The secondary gamma-rays also give us additional information on the CIB, which is uncertain in observations so far.

  6. Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Othman, M. Abou Bakr; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W. H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S. L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Takai, H.; Thomson, G. B.; Von Maluski, D.

    2014-12-01

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest "conventional" cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  7. PARSEC: A parametrized simulation engine for ultra-high energy cosmic ray protons

    NASA Astrophysics Data System (ADS)

    Bretz, Hans-Peter; Erdmann, Martin; Schiffer, Peter; Walz, David; Winchen, Tobias

    2014-02-01

    We present a new simulation engine for fast generation of ultra-high energy cosmic ray data based on parametrizations of common assumptions of UHECR origin and propagation. Implemented are deflections in unstructured turbulent extragalactic fields, energy losses for protons due to photo-pion production and electron-pair production, as well as effects from the expansion of the universe. Additionally, a simple model to estimate propagation effects from iron nuclei is included. Deflections in the Galactic magnetic field are included using a matrix approach with precalculated lenses generated from backtracked cosmic rays. The PARSEC program is based on object oriented programming paradigms enabling users to extend the implemented models and is steerable with a graphical user interface.

  8. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    SciTech Connect

    Abbasi, R.; Takai, H.; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Abou Bakr Othman, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W.H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S. L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Thomson, G. B.; Von Maluski, D.

    2014-08-19

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  9. "Explosive regime" should dominate collisions of ultra-high energy cosmic rays

    E-print Network

    Tigran Kalaydzhyan; Edward Shuryak

    2015-04-03

    Since the launch of LHC experiments it has been discovered that the high multiplicity trigger in pp, pA collisions finds events behaving differently from the typical (minimally biased) ones. In central pPb case it has been proven that those possess collective phenomena known as the radial, elliptic and triangular flows, similar to what is known in heavy ion (AA) collisions. In this paper we argue that at the ultra-high energies, E_lab ~ 10^{20} eV, of the observed cosmic rays this regime changes from a small-probability fluctuation to a dominant one. We estimate velocity of the transverse collective expansion for the light-light and heavy-light collisions, and find it comparable to what is observed at LHC for the central PbPb case. We argue that significant changes of spectra of various secondaries associated with this phenomenon should be important for the development of the cosmic ray cascades.

  10. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    DOE PAGESBeta

    Abbasi, R.; Takai, H.; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Abou Bakr Othman, M.; Farhang-Boroujeny, B.; Gardner, A.; et al

    2014-08-19

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe themore »design and performance of the TARA transmitter and receiver systems.« less

  11. Ultra-High Energy Cosmic Rays from Young Neutron Star Winds

    E-print Network

    Blasi, P; Olinto, A V

    2000-01-01

    The long-held notion that the highest-energy cosmic rays are of distant extragalactic origin is challenged by observations that events above $\\sim 10^{20}$ eV do not exhibit the expected high-energy cutoff from photopion production off the cosmic microwave background. We suggest that these unexpected ultra-high-energy events are due to iron nuclei accelerated from young strongly magnetized neutron stars through relativistic MHD winds. We find that neutron stars whose initial spin periods are shorter than $\\sim 4 (B_S/10^{13}{\\rm G})^{1/2}$ ms, where $B_S$ is the surface magnetic field, can accelerate iron cosmic rays to greater than $\\sim 10^{20}$ eV. These ions can pass through the remnant of the supernova explosion that produced the neutron star without suffering significant spallation reactions. For plausible models of the Galactic magnetic field, the trajectories of the iron ions curve sufficiently to be consistent with the observed arrival directions of the highest energy events.

  12. Ultra-High-Energy Cosmic Rays from Young Neutron Star Winds.

    PubMed

    Blasi; Epstein; Olinto

    2000-04-20

    The long-held notion that the highest energy cosmic rays are of distant extragalactic origin is challenged by observations that events above approximately 1020 eV do not exhibit the expected high-energy cutoff from photopion production off the cosmic microwave background. We suggest that these unexpected ultra-high-energy events are due to iron nuclei accelerated from young strongly magnetized neutron stars through relativistic MHD winds. We find that neutron stars whose initial spin periods are shorter than approximately 10 ms and whose surface magnetic fields are in the 1012-1014 G range can accelerate iron cosmic rays to greater than approximately 1020 eV. These ions can pass through the remnant of the supernova explosion that produced the neutron star without suffering significant spallation reactions or energy loss. For plausible models of the Galactic magnetic field, the trajectories of the iron ions curve sufficiently to be consistent with the observed, largely isotropic arrival directions of the highest energy events. PMID:10770705

  13. Ultra-High Energy Cosmic Rays from Young Neutron Star Winds

    E-print Network

    P. Blasi; R. I. Epstein; A. V. Olinto

    2000-03-02

    The long-held notion that the highest-energy cosmic rays are of distant extragalactic origin is challenged by observations that events above $\\sim 10^{20}$ eV do not exhibit the expected high-energy cutoff from photopion production off the cosmic microwave background. We suggest that these unexpected ultra-high-energy events are due to iron nuclei accelerated from young strongly magnetized neutron stars through relativistic MHD winds. We find that neutron stars whose initial spin periods are shorter than $\\sim 4 (B_S/10^{13}{\\rm G})^{1/2}$ ms, where $B_S$ is the surface magnetic field, can accelerate iron cosmic rays to greater than $\\sim 10^{20}$ eV. These ions can pass through the remnant of the supernova explosion that produced the neutron star without suffering significant spallation reactions. For plausible models of the Galactic magnetic field, the trajectories of the iron ions curve sufficiently to be consistent with the observed arrival directions of the highest energy events.

  14. Inhomogeneous diffusion model for recent data on high-energy cosmic rays

    E-print Network

    Tomassetti, Nicola

    2015-01-01

    The AMS Collaboration has recently released precision data on cosmic ray (CR) leptons and protons at high energies. Interesting progresses have also been made on the measurement of CR nuclei, such as the boron-to-carbon ratio or the lithium spectrum, up to TeV/nucleon energies. In order to provide a description these data, I consider a diffusion model of CR propagation which allows for latitudinal variations of the CR diffusion properties in the Galactic halo. I discuss the role of high-precision data on light CR nuclei in resolutely testing this model and the key propagation parameters.

  15. Numerical Simulation of the Anomalous Transport of High-Energy Cosmic Rays in Galactic Superbubble

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; Price, E. M.; MeWaldt, R. A.

    2013-01-01

    A continuous-time random-walk (CTRW) model to simulate the transport and acceleration of high-energy cosmic rays in galactic superbubbles has recently been put forward (Barghouty & Schnee 2102). The new model has been developed to simulate and highlight signatures of anomalous transport on particles' evolution and their spectra in a multi-shock, collective acceleration context. The superbubble is idealized as a heterogeneous region of particle sources and sinks bounded by a random surface. This work concentrates on the effects of the bubble's assumed astrophysical characteristics (cf. geometry and roughness) on the particles' spectra.

  16. Lorentz Violation for Photons and Ultra-High Energy Cosmic Rays

    E-print Network

    Matteo Galaverni; Guenter Sigl

    2008-07-02

    Lorentz symmetry breaking at very high energies may lead to photon dispersion relations of the form omega^2=k^2+xi_n k^2(k/M_Pl)^n with new terms suppressed by a power n of the Planck mass M_Pl. We show that first and second order terms of size xi_1 > 10^(-14) and xi_2 cosmic rays above 10^(19) eV that should already have been detected, if corresponding terms for electrons and positrons are significantly smaller. This suggests that Lorentz invariance breakings suppressed up to second order in the Planck scale are unlikely to be phenomenologically viable for photons.

  17. Baryon Production at LHC and Very High Energy Cosmic Ray Spectra

    E-print Network

    Olga I. Piskounova

    2015-01-27

    The spectra of baryons at LHC can explain the features of the proton spectra in cosmic rays (CR). It seems important to study all baryon data that are available from collider experiments in wide range of energies. Transverse momentum spectra of baryons from RHIC ($\\sqrt(s)$=62 and 200 GeV) and from LHC ($\\sqrt(s)$=0.9 and 7 TeV) have been considered. It is seen that the slope of distributions at low $p_T$'s is changing with energy. The QGSM fit of these spectra gives the average transverse momenta which behave as $s^{0.06}$ that is similar to the previously observed behavior of $\\Lambda^0$ hyperon spectra. The change in average transverse momenta that are slowly growing in VHE hadron interactions at CR detectors cannot cause the "knee" in measured cosmic ray proton spectra. In addition, the available data on heavy quark hadron production from LHC-b at $\\sqrt{s}$=7 TeV were also studied. The preliminary dependence of hadron average transverse momenta on their masses at LHC energy is presented. The possible source of cosmic ray antiparticle-to-particle ratios that are growing with energy was analyzed in the framework of QGSM, where the growing ratios are the result of local leading asymmetry between the production spectra of baryons and antibaryons in the kinematical region of proton target fragmentation. In the laboratory system of cosmic ray measurements this spectrum asymmetry will be seen as growing ratio of secondary antiparticle-to-particle spectra until the certain energy of secondaries. This conclusion makes the particle production at the sources of very high energy cosmic protons important, if the interactions with positive target matter would have place in proximity of these sources.

  18. Atmospheric influence on space-based observation of high-energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Falk, Stefanie; JEM-EUSO Collaboration

    2015-08-01

    High-energy extensive air showers developing in the Earth's atmosphere emit faint UV light that can be detected from space. The impact of varying atmospheric conditions on light emission and transmission has been studied in detail for the space-borne ultra high-energy cosmic ray observatory JEM-EUSO. By these studies, the importance of atmospheric scattering and reflection from ground on the fraction of Cherenkov light as well as fluorescence light received by JEM-EUSO is pointed out. For any telescope measuring UV light from an altitude higher than 40 km, the attenuating influence of the ozone layer cannot be disregarded. Based upon air shower simulation, quantitative numbers of ozone attenuation will be presented.

  19. High energy cosmic rays experiments inspired by noncommutative quantum field theory

    E-print Network

    Josip Trampetic

    2012-10-19

    Phenomenological analysis of the covariant theta-exact noncommutative (NC) gauge field theory (GFT), inspired by high energy cosmic rays experiments, is performed in the framework of the inelastic neutrino-nucleon scatterings, plasmon and $Z$-boson decays into neutrino pair, the Big Bang Nucleosynthesis (BBN) and the Reheating Phase After Inflation (RPAI), respectively. Next we have have found neutrino two-point function and shows a closed form decoupling of the hard ultraviolet (UV) divergent term from softened ultraviolet/infrared (UV/IR) mixing term and from the finite terms as well. For a certain choice of the noncommutative parameter theta which preserves unitarity, problematic UV divergent and UV/IR mixing terms vanish. Non-perturbative modifications of the neutrino dispersion relations are assymptotically independent of the scale of noncommutativity in both the low and high energy limits and may allow superluminal propagation.

  20. GZK Photons in the Minimal Ultra High Energy Cosmic Rays Model

    E-print Network

    Graciela Gelmini; Oleg Kalashev; Dmitry V. Semikoz

    2007-02-18

    In a recently proposed model the cosmic rays spectrum at energies above 10^{18} eV can be fitted with a minimal number of unknown parameters assuming that the extragalactic cosmic rays are only protons with a power law source spectrum ~E^{-alpha} and alpha~2.6. Within this minimal model, after fitting the observed HiRes spectrum with four parameters (proton injection spectrum power law index and maximum energy, minimum distance to sources and evolution parameter) we compute the flux of ultra-high energy photons due to photon-pion production, the GZK photons, for several radio background models and average extragalactic magnetic fields with amplitude between 10^{-11} G and 10^{-9} G. We find the photon fraction to be between 10^{-4} and 10^{-3} in cosmic rays at energies above 10^{19} eV. These small fluxes could only be detected in future experiments like Auger North plus South and EUSO.

  1. Production of high-energy gamma rays by cosmic ray interactions in the atmosphere and lunar surface

    SciTech Connect

    Morris, D.J.

    1996-12-01

    The production of gamma rays above 10 MeV by the interaction of cosmic rays in the atmosphere and the lunar surface is simulated using Monte Carlo methods. The calculation incorporates a new model of high-energy nucleon-nucleus interactions based on empirical fits to inclusive cross sections for the production of pions and nucleons. The atmospheric gamma ray flux is calculated as a function of direction, energy, and atmospheric depth. These calculations are compared with observations from balloons and from the SAS 2 satellite. Estimates of the flux of earth albedo electrons produced by cosmic ray interactions are presented. The lunar gamma ray albedo is calculated and compared with an upper limit based on SAS 2 measurements.

  2. CONSTRAINTS ON THE SOURCE OF ULTRA-HIGH-ENERGY COSMIC RAYS USING ANISOTROPY VERSUS CHEMICAL COMPOSITION

    SciTech Connect

    Liu, Ruo-Yu; Wang, Xiang-Yu; Taylor, Andrew M.; Lemoine, Martin; Waxman, Eli

    2013-10-20

    The joint analysis of anisotropy signals and chemical composition of ultra-high-energy cosmic rays offers strong potential for shedding light on the sources of these particles. Following up on an earlier idea, this paper studies the anisotropies produced by protons of energy >E/Z, assuming that anisotropies at energy >E have been produced by nuclei of charge Z, which share the same magnetic rigidity. We calculate the number of secondary protons produced through photodisintegration of the primary heavy nuclei. Making the extreme assumption that the source does not inject any proton, we find that the source(s) responsible for anisotropies such as reported by the Pierre Auger Observatory should lie closer than ?20-30, 80-100, and 180-200 Mpc if the anisotropy signal is mainly composed of oxygen, silicon, and iron nuclei, respectively. A violation of this constraint would otherwise result in the secondary protons forming a more significant anisotropy signal at lower energies. Even if the source were located closer than this distance, it would require an extraordinary metallicity ?> 120, 1600, and 1100 times solar metallicity in the acceleration zone of the source, for oxygen, silicon, and iron, respectively, to ensure that the concomitantly injected protons do not produce a more significant low-energy anisotropy. This offers interesting prospects for constraining the nature and the source of ultra-high-energy cosmic rays with the increase in statistics expected from next-generation detectors.

  3. Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition

    SciTech Connect

    Aloisio, R.; Blasi, P.

    2014-10-01

    We use a kinetic-equation approach to describe the propagation of ultra high energy cosmic ray protons and nuclei and calculate the expected spectra and mass composition at the Earth for different assumptions on the source injection spectra and chemical abundances. When compared with the spectrum, the elongation rate X{sub max}(E) and dispersion ?(X{sub max}) as observed with the Pierre Auger Observatory, several important consequences can be drawn: a) the injection spectra of nuclei must be very hard, ? E{sup -?} with ?? 1- 1.6; b) the maximum energy of nuclei of charge Z in the sources must be ? 5Z× 10{sup 18} eV, thereby not requiring acceleration to extremely high energies; c) the fit to the Auger spectrum can be obtained only at the price of adding an ad hoc light extragalactic component with a steep injection spectrum ? E{sup -2.7}). In this sense, at the ankle E{sub A}? 5× 10{sup 18} eV) all the components are of extragalactic origin, thereby suggesting that the transition from Galactic to extragalactic cosmic rays occurs below the ankle. Interestingly, the additional light extragalactic component postulated above compares well, in terms of spectrum and normalization, with the one recently measured by KASCADE-Grande.

  4. Interactions of High Energy Cosmic Rays with Extragalactic Infrared Radiation Background

    E-print Network

    E. V. Bugaev; P. A. Klimai

    2005-09-14

    We consider the modification of extragalactic cosmic ray spectrum caused by cosmic ray interactions with infrared background photons which are present in the extragalactic space together with relic photons. It is assumed that cosmic ray spectrum at superhigh energies has extragalactic origin and is proton dominated.

  5. Ultra high energy cosmic ray energy spectrum and composition using hybrid analysis with telescope array

    NASA Astrophysics Data System (ADS)

    Allen, Monica Gene

    Cosmic radiation was discovered in 1912. This year, the 100 th anniversary of the discovery, marks not only the major progress that has been made in understanding these particles, but also the remaining questions about them. Questions about their sources, acceleration mechanisms, propagation and composition are still unanswered. There are only two experiments currently running that have the ability to study cosmic rays in the Ultra High Energy (E > 1018.0 eV) regime. The Telescope Array studies Ultra High Energy Cosmic Rays (UHECRs) using a hybrid detector. Fluorescence telescopes measure the longitudinal development of the extensive air shower generated by a primary cosmic ray particle, while scintillator detectors measure the lateral distribution of secondary particles that hit the ground. The Middle Drum (MD) fluorescence telescope consists of 14 refurbished telescopes from the High Resolution Fly's Eye (HiRes) experiment, providing a direct link back to the HiRes experiment and data. The surface array is comprised of 507 Scintillator Detectors (SD) of a similar design as was used by the Akeno Giant Air Shower Array (AGASA), providing a link to that experiment as well. Studying TA hybrid events (events observed by both the FD and SD), makes the analysis presented in this work the lynchpin that connects the HiRes experiment to the AGASA experiment. This uniquely allows for a direct comparison between the two detection types and allows us to answer questions about the differences in the energy spectrum measurements shown by the two previous experiments. Furthermore, the hybrid analysis improves the geometrical reconstruction of the showers significantly. This provides a more accurate measurement of the energy of the primary particle and makes it possible to make an accurate prediction regarding the chemical composition of the cosmic ray particle. Historically, only the HiRes experiment and the Pierre Auger Observatory (PAO) have made significant composition measurements of UHECRs, and they report conflicting measurements. The hybrid composition measurement done in this work can be directly compared to the hybrid PAO result.

  6. A Model for Non High Energy Gamma Ray Bursts and Sources of Ultra High Energy Cosmic Rays

    E-print Network

    Takashi Nakamura

    1998-07-09

    As a progenitor of NHE (Non High Energy) GRBs, we propose a (C+O) star and a neutron star (black hole) close binary system. Since the (C+O) star is tidally locked, a new born pulsar should be a milli second pulsar (MSP). Dynamo will generate a superstrong magnetic field(SSM). The beam of the energy from the super strongly magnetized milli second pulsar can punch a hole in the supernova ejecta . Then the beam of gamma rays flows out of the ejecta. If we observe this beam from the lateral direction, it will be NHE-GRB. In this model the pulsar with the spin period about 1sec should exist in SN1998bw so that the searches for this pulsar in all the wave length are urgent. SSM-MSPs can accelerate protons up to Ultra High Energy. If a few percent of the beam energy of SSM-MSP in NHE-GRB event is in the form of UHECRs, the flux of the observed UHECRs can be explained. Then along the direction of each UHECR, a supernova remnant should be found. It is suggested that NHE-GRB is the progenitor of the soft gamma ray repeater which has also the superstrong magnetic field and is in the supernova remnant.

  7. Ultra high energy cosmic rays and possible signature of black strings

    E-print Network

    R. C. Anjos; C. H. Coimbra-Araújo; Roldao da Rocha; V. de Souza

    2015-10-16

    Ultra high energy cosmic rays (UHECRs) probably originate in extreme conditions in which extra dimension effects might be important. In this paper we calculate the correction in black hole accretion mechanisms due to extra dimension effects in the static and rotating cases. A parametrization of the external Kerr horizons in both cases is presented and analysed. We use previous calculations of upper limits on the UHECR flux to set limits on the UHECR production efficiency of nine sources. The upper limit on the UHECR luminosity calculation is based on GeV-TeV gamma-ray measurements. The total luminosity due to the accretion mechanism is compared to the upper limit on UHECRs. The dependence of the UHECR production efficiency upper limit on black hole mass is also presented and discussed.

  8. ULTRA-HIGH-ENERGY COSMIC RAYS FROM CENTAURUS A: JET INTERACTION WITH GASEOUS SHELLS

    SciTech Connect

    Gopal-Krishna; Biermann, Peter L.; De Souza, Vitor; Wiita, Paul J.

    2010-09-10

    Ultra-high-energy cosmic rays (UHECRs), with energies above {approx}6 x 10{sup 19} eV, seem to show a weak correlation with the distribution of matter relatively near to us in the universe. It has earlier been proposed that UHECRs could be accelerated in either the nucleus or the outer lobes of the nearby radio galaxy Cen A. We show that UHECR production at a spatially intermediate location about 15 kpc northeast from the nucleus, where the jet emerging from the nucleus is observed to strike a large star-forming shell of gas, is a plausible alternative. A relativistic jet is capable of accelerating lower energy heavy seed cosmic rays (CRs) to UHECRs on timescales comparable to the time it takes the jet to pierce the large gaseous cloud. In this model, many CRs arising from a starburst, with a composition enhanced in heavy elements near the knee region around PeV, are boosted to ultra-high energies by the relativistic shock of a newly oriented jet. This model matches the overall spectrum shown by the Auger data and also makes a prediction for the chemical composition as a function of particle energy. We thus predict an observable anisotropy in the composition at high energy in the sense that lighter nuclei should preferentially be seen toward the general direction of Cen A. Taking into consideration the magnetic field models for the Galactic disk and a Galactic magnetic wind, this scenario may resolve the discrepancy between HiRes and Auger results concerning the chemical composition of UHECRs.

  9. New detection technologies for ultra-high energy cosmic rays and neutrinos

    NASA Astrophysics Data System (ADS)

    Böser, Sebastian

    2013-06-01

    Even with an accumulated data set from an integrated six years of lifetime from the Auger experiment, no point sources of charged cosmic rays have be identified at the highest energies. Significantly increased apertures such as promised by the JEMEUSO mission will be required to identify these sources from the cosmic ray signatures themselves. However, in employing water-cherenkov surface detectors as well as fluorescence telescopes, Auger has demonstrated the power provided by the hybrid technology approach. New detection technologies thus provide a valuable tool, in particular for the study of systematic effects. Over the past decade, in particular radio detection of cosmic ray air-showers has become a viable future detection technology to enhance and complement existing air-shower experiments. Following the proof-of-principle provided by the Lopes experiment, this technology is now being pursued in all major air-shower detectors. In the MHz regime, the radio signal is dominated by geomagnetic emission from the electrons deflected in the earth magnetic field, with secondary contributions from a global charge excess. As the majority of the energy in the shower is carried by these electron and the radio signal traverses the atmosphere basically unattenuated, this approach not only promises superior energy resolution but may also provide an independent handle on the longitudinal shower development and hence the primary composition. Theoretical signal predictions provided by detailed Monte-Carlo simulations as well as analytic shower parametrizations are in good agreement with measurements provided by the AERA and Codalema experiments. Recent efforts also include studies of the radio emission in the GHz regime, where the ambient noise is significantly reduced, yet the emission mechanism in this regime has not been firmly established yet. As neutrinos are not deflected in the intergalactic magnetic fields, the detection of neutrino-induced cascades in dense media provides another promising approachfor the identification of the sources of cosmic rays. The low event rates and large required target volumes limit the experimental methods to far-ranging signatures .from the cascade, such as acoustic emission from the quasi-instantaneous energy deposit or Cherenkov emission from the charged particles in the cascade. Searching for optical Cherenkov photons in a cubic-kilometer of Antarctic ice, the IceCube experiment has recently found an excess of high-energy neutrinos in the TeV-PeV range.Yet its effective volume is too small to detect the GZK flux predicted from interaction of the highest-energy cosmic rays with the ambient cosmic microwave background. Seeking to increase the observed target volume, radio observations of the rim of the moon have energy thresholds well beyond the EeV scale and thus are more likely to find interactions of charged cosmic rays than GZK neutrinos. The currently best sensitivity to this flux is provided from searches for GHz radio emission of neutrino-induced cascades in the antarctic ice from the ANITA ballon experiment. While no high-energy neutrinos have been found, a geomagnetic emission component from air-showers

  10. Gamma ray signatures of ultra high energy cosmic ray accelerators: electromagnetic cascade versus synchrotron radiation of secondary electrons

    E-print Network

    Stefano Gabici; Felix A. Aharonian

    2006-10-12

    We discuss the possibility of observing ultra high energy cosmic ray sources inhigh energy gamma rays. Protons propagating away from their accelerators produce secondary electrons during interactions with cosmic microwave background photons. These electrons start an electromagnetic cascade that results in a broad band gamma ray emission. We show that in a magnetized Universe ($B \\gtrsim 10^{-12}$ G) such emission is likely to be too extended to be detected above the diffusebackground. A more promising possibility comes from the detection of synchrotron photons from the extremely energetic secondary electrons. Although this emission is produced in a rather extended region of size $\\sim 10Mpc$, it is expected to be point-like and detectable at GeV energies if the intergalactic magnetic field is at the nanogauss level.

  11. The UCSD high energy X-ray timing experiment cosmic ray particle anticoincidence detector

    NASA Technical Reports Server (NTRS)

    Hink, P. L.; Rothschild, R. E.; Pelling, M. R.; Macdonald, D. R.; Gruber, D. E.

    1991-01-01

    The HEXTE, part of the X-Ray Timing Explorer (XTE), is designed to make high sensitivity temporal and spectral measurements of X-rays with energies between 15 and 250 keV using NaI/CsI phoswich scintillation counters. To achieve the required sensitivity it is necessary to provide anticoincidence of charged cosmic ray particles incident upon the instrument, some of which interact to produce background X-rays. The proposed cosmic ray particle anticoincidence shield detector for HEXTE uses a novel design based on plastic scintillators and wavelength-shifter bars. It consists of five segments, each with a 7 mm thick plastic scintillator, roughly 50 cm x 50 cm in size, coupled to two wavelength-shifter bars viewed by 1/2 inch photomultiplier tubes. These segments are configured into a five-sided, box-like structure around the main detector system. Results of laboratory testing of a model segment, and calculations of the expected performance of the flight segments and particle anticoincidence detector system are presented to demonstrate that the above anticoincidence detector system satisfies its scientific requirements.

  12. Weak doubly special relativity and ultra-high energy cosmic ray experiments

    E-print Network

    Luis Gonzalez-Mestres

    2006-01-26

    Should projects of space experiments on ultra-high energy cosmic rays be supported, whatever AUGER results will turn out to be? We claim that this is indeed the case. It is now widely admitted that models of Lorentz symmetry violation (LSV) at the Planck scale based on power-like extrapolations down to cosmic-ray scales and able to account for a possible absence of the Greisen-Zatsepin-Kuzmin cutoff exist and require the existence of a privileged inertial rest frame, as we proposed in 1997 (paper physics/9704017 and subsequent work). The favoured energy dependence of the LSV parameter will then be quadratic rather than linear. This approach (weak doubly special relativity, WDSR) is different from the version of doubly special relativity defended by several authors, where the laws of Physics are required to be exactly identical in all inertial reference frames (strong doubly special relativity, SDSR). To date, WDSR patterns based on a deformation of special relativity with a privileged (vacuum) rest frame are the only clear and consistent candidate to explain a possible absence of the GZK cutoff invoking deviations from standard relativity. It is also to be emphasized, as in hep-ph/0510361, that the usual hypothesis of a power-like dependence of the LSV effective parameters not being altered by any intermediate energy scale is not the only possible one. Therefore, experiments sensitive to UHCR energies as high as possible become necessary irrespective of AUGER results.

  13. Large doppler shift in radar detection of ultra-high energy cosmic rays.

    SciTech Connect

    Underwood, D. G.; High Energy Physics

    2008-01-01

    Radar detection of cosmic ray air showers has been discussed for 60 years, but never clearly observed. The topic was reexamined by Gorham in 2001 and some serious simulations were done by Takai, who also initiated the Mariachi project utilizing commercial television transmissions as a signal source. The air showers from ultra-high energy cosmic rays are expected to generate a plasma with plasma frequency in the high VHF region. One factor limiting the received signal strength is the short ion recombination time in air at low altitude. However, a major factor which has not been the center of attention so far is the possible large Doppler shifts for non-specular reflection, and the soft transition between specular and diffuse for small objects and short time scales. We discuss recent work on receivers, and simulations of the Doppler shift. These simulations assume a very short ion recombination time in the lower atmosphere, and use an extremely simple mathematical model. A central feature of our simulations is large Doppler shift from non-moving material.

  14. Lorentz Invariance Violation and Chemical Composition of Ultra High Energy Cosmic Rays

    E-print Network

    Andrey Saveliev; Luca Maccione; Guenter Sigl

    2011-03-22

    Motivated by experimental indications of a significant presence of heavy nuclei in the cosmic ray flux at ultra high energies ($\\gtrsim 10^{19} \\eV$), we consider the effects of Planck scale suppressed Lorentz Invariance Violation (LIV) on the propagation of cosmic ray nuclei. In particular we focus on LIV effects on the photodisintegration of nuclei onto the background radiation fields. After a general discussion of the behavior of the relevant quantities, we apply our formalism to a simplified model where the LIV parameters of the various nuclei are assumed to kinematically result from a single LIV parameter for the constituent nucleons, $\\eta$, and we derive constraints on $\\eta$. Assuming a nucleus of a particular species to be actually present at $10^{20}$ eV the following constraints can be placed: $-3\\times10^{-2} \\lesssim \\eta \\lesssim 4$ for $^{56}$Fe, $-2\\times10^{-3} \\lesssim \\eta \\lesssim 3\\times10^{-2}$ for $^{16}$O and $-7\\times10^{-5} \\lesssim \\eta \\lesssim 1\\times10^{-4}$ for $^{4}$He, respectively.

  15. Observing ultra high energy cosmic rays with the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Salazar, I. Humberto; Varela, C. Enrique; Pierre Auger Collaboration

    2013-06-01

    The Pierre Auger Observatory was designed to measure ultra-high energy cosmic rays above 1018eV with high accuracy using a hybrid air shower detection technique. A Surface Detector (SD) with 1600 water-Cherenkov stations on a 1500 m triangular grid covers an area of 3000 km2. The atmosphere above the array is viewed by a Fluorescence Detector (FD) with 24 telescopes at 4 sites in the periphery of the SD. As an enhancement to this baseline design, in order to reach a lower energy threshold below 1017eV, the Collaboration has implemented extensions to the Observatory. The SD extension is AMIGA (Auger Muons and Infill for the Ground Array), an infilled area with detectors at a smaller spacing than in the main array and with buried scintillator counters. The FD is complemented by HEAT (High Elevation Auger Telescopes), with 3 additional telescopes that are tilted upwards to extend the elevation range. A review of the status and the main results from the observatory is presented with the emphasis given to the measurement of energy spectrum above 1018 eV where we observe a suppression for energies larger than 3×1019 eV, chemical composition, arrival directions, the search for photons and neutrinos as primary particles and finally the importance of the extensions of the Auger Observatory due that they allow to study the energy range where the transition from a Galactic to an extra-Galactic origin of cosmic rays may occur.

  16. Magnetic deflections of ultra-high energy cosmic rays from Centaurus A

    NASA Astrophysics Data System (ADS)

    Keivani, Azadeh; Farrar, Glennys R.; Sutherland, Michael

    2015-02-01

    We present the results of a study that simulates trajectories of ultra-high energy cosmic rays from Centaurus A to Earth, for particle rigidities from E/Z=2 EV to 100 EV, i.e., covering the possibility of primary particles as heavy as Fe nuclei with energies exceeding 50 EeV. The Galactic magnetic field is modeled using the recent work of Jansson and Farrar (JF12) which fitted its parameters to match extragalactic Faraday rotation measures and WMAP7 synchrotron emission maps. We include the random component of the GMF using the JF12 3D model for Brand(r?) and explore the impact of different random realizations, coherence length and other features on cosmic ray deflections. Gross aspects of the arrival direction distribution such as mean deflection and the RMS dispersion depend mainly on rigidity and differ relatively little from one realization to another. However different realizations exhibit non-trivial substructure whose specific features vary considerably from one realization to another, especially for lower rigidities. At the lowest rigidity of 2 EV, the distribution is broad enough that it might be compatible with a scenario in which Cen A is the principle source of all UHECRs. No attempt is made here to formulate a robust test of this possibility, although some challenges to such a scenario are noted.

  17. Magnetic diffusion effects on the ultra-high energy cosmic ray spectrum and composition

    SciTech Connect

    Mollerach, Silvia; Roulet, Esteban E-mail: roulet@cab.cnea.gov.ar

    2013-10-01

    We discuss the effects of diffusion of high energy cosmic rays in turbulent extra-galactic magnetic fields. We find an approximate expression for the low energy suppression of the spectrum of the different mass components (with charge Z) in the case in which this suppression happens at energies below ? Z EeV, so that energy losses are dominated by the adiabatic ones. The low energy suppression appears when cosmic rays from the closest sources take a time comparable to the age of the Universe to reach the Earth. This occurs for energies E < Z EeV (B/nG)?(l{sub c}/Mpc)(d{sub s}/70Mpc) in terms of the magnetic field RMS strength B, its coherence length l{sub c} and the typical separation between sources d{sub s}. We apply this to scenarios in which the sources produce a mixed composition and have a relatively low maximum rigidity (E{sub max} ? (2–10)Z EeV), finding that diffusion has a significant effect on the resulting spectrum, the average mass and on its spread, in particular reducing this last one. For reasonable values of B and l{sub c} these effects can help to reproduce the composition trends observed by the Auger Collaboration for source spectra compatible with Fermi acceleration.

  18. Measurement of anisotropy of ultra-high energy cosmic rays by the Telescope Array

    NASA Astrophysics Data System (ADS)

    Tinyakov, P.; Tkachev, I.; Okuda, T.

    2011-09-01

    We study anisotropy of ultra-high energy cosmic ray (UHECR) events collected by the Telescope Array detector in the first 2 years of operation. We find that the self-correlation function of UHECR at energies larger 10 and 40 EeV shows no significant small-scale clustering. The events with energy E>57 EeV do not significantly correlate with the positions of the nearby active galactic nuclei (AGN): of observed 15 events 6 are found within 3.7° from an AGN, while 3.6 are expected for a random distribution (16% chance probability). We also check the event sets with energies E>40 EeV and E>57 EeV for correlations with the large scale structure (LSS) of the Universe. We find that both data sets are compatible with the LSS model at the 95% confidence level.

  19. On the prospects of Ultra-High Energy Cosmic Rays detection by high altitude antennas

    NASA Astrophysics Data System (ADS)

    Motloch, P.; Hollon, N.; Privitera, P.

    2014-02-01

    Radio emission from Ultra-High Energy Cosmic Rays (UHECR) showers detected after specular reflection off the Antarctic ice surface has been recently demonstrated by the ANITA balloon-borne experiment. An antenna observing a large area of ice or water from a mountaintop, a balloon or a satellite may be competitive with more conventional techniques. We present an estimate of the exposure of a high altitude antenna, which provides insight on the prospects of this technique for UHECR detection. We find that a satellite antenna may reach a significantly larger exposure than existing UHECR observatories, but an experimental characterization of the radio reflected signal is required to establish the potential of this approach. A balloon-borne or a mountaintop antenna are found not to be competitive under any circumstances.

  20. The Isotropy Problem of Ultra-High Energy Cosmic Rays: The Effects of Anisotropic Transport

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Eichler, David

    2013-04-01

    Time dependent anisotropic transport of ultra-high energy cosmic rays (UHECRs) from point-like sources in the Galaxy is calculated in various ways. To fully account for the discreteness of UHECR sources in space and time, the Monte Carlo method is used to randomly place sources in the Galaxy and calculate the anisotropy of UHECR flux, given specific realisations of source distribution. We show that reduction in the rate of cross-field transport reduces the anisotropy. However, if the crossfield transport is very small, drift of UHECRs in the Galactic magnetic field (GMF) becomes the dominant contributor to the anisotropy. Test particle simulations further illustrate the effect of drift and verify our analytical calculation. The surprisingly low anisotropy measured by Auger can be interpreted as intermittency of UHECR sources, without invoking a flat source distribution and/or a high source rate. Frequent events that follow star formation, such as hypernovae, imply an anisotropy that exceeds the Auger limit.

  1. The mass composition of ultra-high energy cosmic rays with the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Martraire, D.

    2014-12-01

    Ultra-high energy cosmic rays are the most energetic particles known in nature. The Pierre Auger Observatory was built to study these amazing particles to determine their origin. The study of their mass composition can help to constrain the models concerning their origins and their production mechanisms in the astrophysical sources. To this aim, several methods have been developed to infer the composition using the Auger surface detector array data. The main difficulty is to isolate the muonic component in the signal measured by the surface detector. We present the results of the composition parameters derived from the ground level component and compare them to the predictions for different nuclear masses of the primary particles and hadronic interaction models.

  2. Detection of ultra-high energy cosmic ray showers with a single-pixel fluorescence telescope

    E-print Network

    Fujii, T; Bertaina, M; Casolino, M; Dawson, B; Horvath, P; Hrabovsky, M; Jiang, J; Mandat, D; Matalon, A; Matthews, J N; Motloch, P; Palatka, M; Pech, M; Privitera, P; Schovanek, P; Takizawa, Y; Thomas, S B; Travnicek, P; Yamazaki, K

    2015-01-01

    We present a concept for large-area, low-cost detection of ultra-high energy cosmic rays (UHECRs) with a Fluorescence detector Array of Single-pixel Tele- scopes (FAST), addressing the requirements for the next generation of UHECR experiments. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. We report first results of a FAST prototype installed at the Telescope Array site, consisting of a single 200 mm photomultiplier tube at the focal plane of a 1 m2 Fresnel lens system taken from the prototype of the JEM-EUSO experiment. The FAST prototype took data for 19 nights, demonstrating remarkable operational stability. We detected laser shots at distances of several kilometres as well as 16 highly significant UHECR shower candidates.

  3. Characteristics of cesium iodide for use as a particle discriminator for high energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Kurz, R. J.; Viehmann, W.

    1973-01-01

    The possible use of CsI to discriminate between high energy cosmic ray electrons and interacting protons has been investigated. The pulse-shape properties as a function of ionization density, temperature, and spectral response are presented for thallium-activated CsI and as a function of ionization density for sodium-activated CsI. The results are based on previously published data and on corroborative measurements from the present work. Experimental results on the response of CsI to electron-induced electromagnetic cascades and to interacting hadrons are described. Bibliographies of publications dealing with the properties of CsI and with pulse-shape discrimination techniques are presented.

  4. Japanese-American Cooperative Emulsion Experiment /JACEE/. [high energy cosmic ray studies

    NASA Technical Reports Server (NTRS)

    Huggett, R. W.; Hunter, S. D.; Jones, W. V.; Takahashi, Y.; Ogata, T.; Saito, T.; Holynski, R.; Jurak, A.; Wolter, W.; Parnell, T. A.

    1981-01-01

    The instrumentation and results of long duration balloon flights carried out jointly by U.S. and Japan researchers to examine high energy cosmic rays are reported. Basic detector geometries are 2.5 sq m sr with operation at altitudes with 3-4 g/sq cm pressure, with observations thus far of over 100 hr. Energies from 2-100 TeV are recorded for nucleus-nucleus and hadron-nucleus interactions, and searches are made for new particle or interactions. The detector is an emulsion chamber which comprises doubly-coated nuclear emulsions on 800 micron thick methacryl substrates, X-ray films, etchable detectors, low density spacers, and lead sheets. Segmentation of the instrument into a primary charge module, a target section, a spacer section, and a lead-emulsion calorimeter allows accurate charge measurement for primary nuclei, reliable energy resolution, and a large geometrical factor for collecting high energy events. A primary Ca nucleus of 300 TeV has been observed.

  5. Correlation of ?-ray and high-energy cosmic ray fluxes from the giant lobes of Centaurus A

    SciTech Connect

    Fraija, N.

    2014-03-01

    The spectral energy distribution of giant lobes shows one main peak detected by the Wilkinson Microwave Anisotropy Probe at the low energy of 10{sup –5} eV and a faint ?-ray flux imaged by the Fermi Large Area Telescope at an energy of ?100 MeV. On the other hand, the Pierre Auger Observatory associated some ultra-high-energy cosmic rays with the direction of Centaurus A and IceCube reported 28 neutrino-induced events in a TeV-PeV energy range, although none of them related with this direction. In this work, we describe the spectra for each of the lobes, the main peak with synchrotron radiation, and the high-energy emission with p-p interactions. After obtaining a good description of the main peak, we deduce the magnetic fields, electron densities, and the age of the lobes. Successfully describing the ?-ray emission by p-p interactions and considering thermal particles in the lobes with density in the range 10{sup –10}-10{sup –4} cm{sup –3} as targets, we calculate the number of ultra-high-energy cosmic rays. Although the ?-spectrum is well described with any density in the range, only when 10{sup –4} cm{sup –3} is considered are the expected number of events very similar to that observed by the Pierre Auger Observatory, otherwise we obtain an excessive luminosity. In addition, correlating the ?-ray and neutrino fluxes through p-p interactions, we calculate the number of high-energy neutrinos expected in IceCube. Our analysis indicates that neutrinos above 1 TeV cannot be produced in the lobes of Centaurus A, which is consistent with the results recently published by the IceCube Collaboration.

  6. Perturbations to aquatic photosynthesis due to high-energy cosmic ray induced muon flux in the extragalactic shock model

    E-print Network

    Rodriguez, Lien; Rodriguez, Oscar

    2013-01-01

    We modify a mathematical model of photosynthesis to quantify the perturbations that high energy muons could make on aquatic primary productivity. Then we apply this in the context of the extragalactic shock model, according to which Earth receives an enhanced dose of high-energy cosmic rays when it is at the galactic north. We obtain considerable reduction in the photosynthesis rates, consistent with potential drops in biodiversity.

  7. Energy reconstruction of hadron-initiated showers of ultra-high energy cosmic rays

    E-print Network

    Ros, G; Supanitsky, A D; del Peral, L; Rodríguez-Frías, M D

    2015-01-01

    The current methods to determine the primary energy of ultra-high energy cosmic rays (UHECRs) are different when dealing with hadron or photon primaries. The current experiments combine two different techniques, an array of surface detectors and fluorescence telescopes. The latter allow an almost calorimetric measurement of the primary energy. Thus, hadron-initiated showers detected by both type of detectors are used to calibrate the energy estimator from the surface array (usually the interpolated signal at a certain distance from the shower core S(r0)) with the primary energy. On the other hand, this calibration is not feasible when searching for photon primaries since no high energy photon has been unambiguously detected so far. Therefore, pure Monte Carlo parametrizations are used instead. In this work, we present a new method to determine the primary energy of hadron-induced showers in a hybrid experiment based on a technique previously developed for photon primaries. It consists on a set of calibration ...

  8. Ultra-High Energy Cosmic Ray production in the polar cap regions of black hole magnetospheres

    E-print Network

    A. Neronov; D. Semikoz; I. Tkachev

    2012-04-17

    We develop a model of ultra-high energy cosmic ray (UHECR) production via acceleration in a rotation-induced electric field in vacuum gaps in the magnetospheres of supermassive black holes (BH). We show that if the poloidal magnetic field near the BH horizon is misaligned with the BH rotation axis, charged particles, which initially spiral into the BH hole along the equatorial plane, penetrate into the regions above the BH "polar caps" and are ejected with high energies to infinity. We show that in such a model acceleration of protons near a BH of typical mass 3e8 solar masses is possible only if the magnetic field is almost aligned with the BH rotation axis. We find that the power of anisotropic electromagnetic emission from an UHECR source near a supermassive BH should be at least 10-100 times larger then UHECR power of the source. This implies that if the number of UHECR sources within the 100 Mpc sphere is ~100, the power of electromagnetic emission which accompanies proton acceleration in each source, $10^{42-43}$ erg/s, is comparable to the typical luminosities of active galactic nuclei (AGN) in the local Universe. We also explore the acceleration of heavy nuclei, for which the constraints on the electromagnetic luminosity and on the alignment of magnetic field in the gap are relaxed.

  9. Gamma Ray Bursts: the high energy photon emission, and implications for UHE cosmic rays and neutrinos

    NASA Astrophysics Data System (ADS)

    Mészáros, Peter

    Gamma-ray bursts have been detected at photon energies up to tens of GeV, and there are reasons to believe that the sources emit at least up to TeV energies, via leptonic or/and hadronic mechanisms. I review some recent developments in the GeV photon phenomenology in the light of Fermi observations, as well as recent related theoretical work. I discuss then the acceleration of cosmic rays in GRB, which can extend to GZK energies, and the possible associated photon emission from both synchrotron and inverse Compton, as well as hadronic processes. Photo-meson interactions also produce neutrinos at energies ranging from sub-TeV to EeV, which are targets for experiments such as IceCube, ANITA and KM3NeT.

  10. Proc. 11th Int. Conf. on Cosmic Rays, Budapest 1969 HIGH-ENERGY NEUTRINOS IN THE UTAH APPARATUS*

    E-print Network

    Mu -19 Proc. 11th Int. Conf. on Cosmic Rays, Budapest 1969 HIGH-ENERGY NEUTRINOS IN THE UTAH. OZAKI, R. O. STENERSON University of Utah, Salt Lake City, Utah 84112, U.S.A In about 5000 m2 sr days, 2 neutrino events have been observed in the Utah detector. Redundant information obtained concerning

  11. Design And Development Of An Autonomous Radar Receiver For The Detection Of Ultra High Energy Cosmic Rays

    E-print Network

    Kunwar, Samridha

    2015-05-31

    The detection of ultra-high energy cosmic rays is constrained by their flux, requiring detectors with apertures of hundreds or even thousands of square kilometers and close to one hundred percent duty cycle. The sheer scale that would be required...

  12. Baryon production at LHC energies and very high energy cosmic ray spectra

    NASA Astrophysics Data System (ADS)

    Piskounova, O. I.

    2015-08-01

    The spectra of baryons at LHC can explain the features of CR proton spectra. It seems important to study all baryon data that are available from collider experiments in a wide range of energies. Transverse momentum spectra of baryons from RHIC (?(s) = 62 and 200 GeV) and LHC experiments (?(s) = 0.9 and 7 TeV) have been considered. It is seen that the slope of low pT distributions is changing with energy. The QGSM fit of distributions gives the average transverse momenta which behave approximately as s0.06 that is similar to the previously observed behavior of ? baryon spectra. This slow growing of in hadron interactions of VHE in CR detectors cannot cause the "knee" in experimental proton spectra. In addition, the available data on ?c production from LHCb at ?s = 7 TeV were also studied. The preliminary dependence of hadron average transverse momenta on their masses at the LHC energy is presented. The possible source of cosmic ray antiparticle-to-particle ratios that are growing with energy was also analyzed. The growing ratios are the result of local leading asymmetry for spectra of baryons and antibaryons that are produced in the kinematical region of proton target fragmentation. This asymmetry of baryon spectra, as they are converted into the energy distributions in the laboratory system, seems to result in an increasing ratio of secondary antiparticle-to-particle spectra up to a few hundreds of GeV. This conclusion makes important the particle production at the sources of very high energy cosmic rays where the VHE interactions with positive matter target may take place.

  13. Strangelets in Cosmic Rays

    E-print Network

    Jes Madsen

    2006-12-29

    The properties of strangelets are reviewed and two experiments searching for them in cosmic rays are described. The prospects for strangelets as ultra-high energy cosmic rays beyond the classical GZK-cutoff are discussed.

  14. Nearby low-luminosity gamma-ray bursts as the sources of ultra-high-energy cosmic rays revisited

    NASA Astrophysics Data System (ADS)

    Liu, Ruo-Yu; Wang, Xiang-Yu; Dai, Zi-Gao

    2011-12-01

    Low-luminosity gamma-ray bursts (GRBs) with the luminosity ? 1049 erg s-1 probably constitute a distinct population from the classic high-luminosity GRBs. They are the most luminous objects detected so far within ˜100 Mpc, the horizon distance of ultra-high-energy cosmic rays (UHECRs), so they are considered to be the candidate sources of UHECRs. It was recently argued that the energy production rate in UHECRs is much larger than that in gamma-ray photons of long GRBs measured by the Fermi satellite, which, if true, would challenge the view that GRBs can be the sources of UHECRs. We here suggest that many of the low-luminosity GRBs, due to their low luminosity, cannot trigger the current GRB detectors and hence their contribution to the local gamma-ray energy production rate is missing. We find that the real local energy production rate by low-luminosity GRBs, taking into account the missing part, which constitutes a dominant fraction of the total amount, could be sufficient to account for the flux of UHECRs. Due to the low luminosity, only intermediate-mass or heavy nuclei can be accelerated to ˜1020 eV. We discuss the acceleration and survival of these ultra-high-energy nuclei in low-luminosity GRBs, especially in those missing low-luminosity GRBs. At last, the accompanying diffuse neutrino flux from the whole low-luminosity GRB population is calculated.

  15. High-Energy Cosmic Ray Self-Confinement Close to Extra-Galactic Sources

    NASA Astrophysics Data System (ADS)

    Blasi, Pasquale; Amato, Elena; D'Angelo, Marta

    2015-09-01

    The ultrahigh-energy cosmic rays observed on the Earth are most likely accelerated in extra-Galactic sources. For the typical luminosities invoked for such sources, the electric current associated to the flux of cosmic rays that leave them is large. The associated plasma instabilities create magnetic fluctuations that can efficiently scatter particles. We argue that this phenomenon forces cosmic rays to be self-confined in the source proximity for energies E cosmic rays are confined close to their sources for energies E

  16. BLAZARS AS ULTRA-HIGH-ENERGY COSMIC-RAY SOURCES: IMPLICATIONS FOR TeV GAMMA-RAY OBSERVATIONS

    SciTech Connect

    Murase, Kohta; Dermer, Charles D.; Takami, Hajime; Migliori, Giulia

    2012-04-10

    The spectra of BL Lac objects and Fanaroff-Riley I radio galaxies are commonly explained by the one-zone leptonic synchrotron self-Compton (SSC) model. Spectral modeling of correlated multiwavelength data gives the comoving magnetic field strength, the bulk outflow Lorentz factor, and the emission region size. Assuming the validity of the SSC model, the Hillas condition shows that only in rare cases such sources accelerate protons to much above 10{sup 19} eV, so {approx}> 10{sup 20} eV ultra-high-energy cosmic rays (UHECRs) are likely to be heavy ions if powered by this type of radio-loud active galactic nuclei (AGNs). Survival of nuclei is shown to be possible in TeV BL Lacs and misaligned counterparts with weak photohadronic emissions. Another signature of hadronic production is intergalactic UHECR-induced cascade emission, which is an alternative explanation of the TeV spectra of some extreme non-variable blazars such as 1ES 0229+200 or 1ES 1101-232. We study this kind of cascade signal, taking into account effects of the structured extragalactic magnetic fields in which the sources should be embedded. We demonstrate the importance of cosmic-ray deflections on the {gamma}-ray flux, and show that required absolute cosmic-ray luminosities are larger than the average UHECR luminosity inferred from UHECR observations and can even be comparable to the Eddington luminosity of supermassive black holes. Future TeV {gamma}-ray observations using the Cerenkov Telescope Array and the High Altitude Water Cerenkov detector array can test for UHECR acceleration by observing >25 TeV photons from relatively low redshift sources such as 1ES 0229+200, and {approx}>TeV photons from more distant radio-loud AGNs.

  17. On ultra-high energy cosmic ray acceleration at the termination shock of young pulsar winds

    NASA Astrophysics Data System (ADS)

    Lemoine, Martin; Kotera, Kumiko; Pétri, Jérôme

    2015-07-01

    Pulsar wind nebulae (PWNe) are outstanding accelerators in Nature, in the sense that they accelerate electrons up to the radiation reaction limit. Motivated by this observation, this paper examines the possibility that young pulsar wind nebulae can accelerate ions to ultra-high energies at the termination shock of the pulsar wind. We consider here powerful PWNe, fed by pulsars born with ~ millisecond periods. Assuming that such pulsars exist, at least during a few years after the birth of the neutron star, and that they inject ions into the wind, we find that protons could be accelerated up to energies of the order of the Greisen-Zatsepin-Kuzmin cut-off, for a fiducial rotation period P ~ 1 msec and a pulsar magnetic field Bstar ~ 1013 G, implying a fiducial wind luminosity Lp ~ 1045 erg/s and a spin-down time tsd ~ 3× 107 s. The main limiting factor is set by synchrotron losses in the nebula and by the size of the termination shock; ions with Z>= 1 may therefore be accelerated to even higher energies. We derive an associated neutrino flux produced by interactions in the source region. For a proton-dominated composition, our maximum flux lies slightly below the 5-year sensitivity of IceCube-86 and above the 3-year sensitivity of the projected Askaryan Radio Array. It might thus become detectable in the next decade, depending on the exact level of contribution of these millisecond pulsar wind nebulae to the ultra-high energy cosmic ray flux.

  18. The isotropy problem of sub-ankle ultra high energy cosmic rays

    SciTech Connect

    Kumar, Rahul; Eichler, David

    2014-01-20

    We study the time dependent propagation of sub-ankle ultra high energy cosmic rays (UHECRs) originating from point-like Galactic sources. We show that drift in the Galactic magnetic field (GMF) may play an important role in the propagation of UHECRs and their measured anisotropy, particularly when the transport is anisotropic. To fully account for the discreteness of UHECR sources in space and time, a Monte Carlo method is used to randomly place sources in the Galaxy. The low anisotropy measured by Auger is not generally characteristic of the theoretical models, given that the sources are distributed in proportion to the star formation rate, but it can possibly be understood as (1) intermittency effects due to the discrete nature of the sources or, with extreme parameters, (2) a cancellation of drift current along a current sheet with outward radial diffusive flux. We conclude that it is possible to interpret the Galactic sub-ankle CR flux as being due entirely to intermittent discrete Galactic sources distributed in proportion to star formation, but only with a probability of roughly 35%, of which the spectrum is in accord with observations about 30% of the time. An alternative explanation for the low anisotropy may be that they are mostly extragalactic and/or heavy.

  19. The Isotropy Problem of Sub-ankle Ultra High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Eichler, David

    2014-01-01

    We study the time dependent propagation of sub-ankle ultra high energy cosmic rays (UHECRs) originating from point-like Galactic sources. We show that drift in the Galactic magnetic field (GMF) may play an important role in the propagation of UHECRs and their measured anisotropy, particularly when the transport is anisotropic. To fully account for the discreteness of UHECR sources in space and time, a Monte Carlo method is used to randomly place sources in the Galaxy. The low anisotropy measured by Auger is not generally characteristic of the theoretical models, given that the sources are distributed in proportion to the star formation rate, but it can possibly be understood as (1) intermittency effects due to the discrete nature of the sources or, with extreme parameters, (2) a cancellation of drift current along a current sheet with outward radial diffusive flux. We conclude that it is possible to interpret the Galactic sub-ankle CR flux as being due entirely to intermittent discrete Galactic sources distributed in proportion to star formation, but only with a probability of roughly 35%, of which the spectrum is in accord with observations about 30% of the time. An alternative explanation for the low anisotropy may be that they are mostly extragalactic and/or heavy.

  20. Full sky harmonic analysis hints at large ultra-high energy cosmic ray deflections

    NASA Astrophysics Data System (ADS)

    Tinyakov, P. G.; Urban, F. R.

    2015-03-01

    The full-sky multipole coefficients of the ultra-high energy cosmic ray (UHECR) flux have been measured for the first time by the Pierre Auger and Telescope Array collaborations using a joint data set with E > 10 EeV. We calculate these harmonic coefficients in the model where UHECR are protons and sources trace the local matter distribution, and compare our results with observations. We find that the expected power for low multipoles (dipole and quadrupole, in particular) is sytematically higher than in the data: the observed flux is too isotropic. We then investigate to which degree our predictions are influenced by UHECR deflections in the regular Galactic magnetic field. It turns out that the UHECR power spectrum coefficients C l are quite insensitive to the effects of the Galactic magnetic field, so it is unlikely that the discordance can be reconciled by tuning the Galactic magnetic field model. On the contrary, a sizeable fraction of uniformly distributed flux (representing for instance an admixture of heavy nuclei with considerably larger deflections) can bring simulations and observations to an accord.

  1. The spectrum of high energy cosmic-ray electrons - Results and interpretation

    NASA Technical Reports Server (NTRS)

    Muller, D.; Tang, J.

    1983-01-01

    Results of a measurement of high energy cosmic-ray electrons that was performed with a balloon-borne transition radiation/shower detector telescope are presented. The data cover the energy range from 5 to 300 GeV. The interstellar spectrum below 10 GeV, which is affected by solar modulation, is derived through analysis of the nonthermal galactic radio emission, and extended to lower energies (about 300 MeV). The interstellar differential spectrum is described by a power law dependence on E with an index of -1.4 below 2 GeV, but attaining a slope of -2.6 at 2-10 GeV, and steepening further to almost -3.6 at 30-300 GeV. The features of this spectrum are interpreted in the context of galactic propagation models, assuming that the spectrum at the acceleration site has the form of a single power law. It is concluded that: (1) regions outside the galactic disk contribute to the confinement volume of electrons, (2) the containment time of electrons is of the order 10 to the 7th years and is independent of energy, (3) the spectrum at the acceleration site has a power law exponent equal to -2.65, and (4) a specific mechanism is responsible for the apparent flattening of the electron spectrum below 2 GeV.

  2. On the Possible Association of Ultra High Energy Cosmic Rays with Nearby Active Galaxies

    SciTech Connect

    Moskalenko, Igor V.; Stawarz, Lukasz; Porter, Troy A.; Cheung, Chi C.

    2008-05-14

    Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of cosmic rays (CRs) with energies >57 EeV that suggests a correlation with the positions of active galactic nuclei (AGN) located within {approx}75 Mpc. However, this analysis does not take into account AGN morphology. A detailed study of the sample of AGN whose positions correlate with the CR events shows that most of them are classified as Seyfert 2 and low-ionization nuclear emission-line region (LINER) galaxies which do not differ from other local AGN of the same types. Therefore, the claimed correlation between the CR events observed by the Pierre Auger Observatory and local active galaxies should be considered as resulting from a chance coincidence, if the production of the highest energy CRs is not episodic in nature, but operates in a single object on long ({ge} Myr) timescales. Additionally, most of the selected sources do not show significant jet activity, and hence--in the framework of the jet paradigm--there are no reasons for expecting them to accelerate CRs up to the highest energies, {approx}10{sup 20} eV, at all. If the extragalactic magnetic fields and the sources of these CRs are coupled with matter, it is possible that the deflection angle is larger than expected in the case of a uniform source distribution due to effectively larger fields. A future analysis has to take into account AGN morphology and may yield a correlation with a larger deflection angle and/or more distant sources. We further argue that Cen A alone could be associated with at least 4 events due to its large radio extent, and Cen B can be associated with more than 1 event due to its proximity to the Galactic plane and, correspondingly, the stronger Galactic magnetic field the ultra high energy CRs (UHECRs) encounter during propagation. If the UHECRs associated with these events are indeed accelerated by Cen A and Cen B, their deflection angles may provide information on the structure of the magnetic field in the direction of these putative sources. Future -ray observations (by, e.g., Gamma-Ray Large Area Space Telescope [GLAST], High Energy Stereoscopic System [HESS]) may provide additional clues to the nature of the accelerators of the UHECRs in the local Universe.

  3. Anisotropy expectations for ultra-high-energy cosmic rays with future high-statistics experiments

    NASA Astrophysics Data System (ADS)

    Rouillé d'Orfeuil, B.; Allard, D.; Lachaud, C.; Parizot, E.; Blaksley, C.; Nagataki, S.

    2014-07-01

    Context. Ultra-high-energy cosmic rays (UHECRs) have attracted a lot of attention in astroparticle physics and high-energy astrophysics, due to their challengingly high energies, and to their ability to constrain the physical processes and astrophysical parameters in the most energetic sources of the universe. Despite their very large acceptance, current detectors have failed to detect significant anisotropies in their arrival directions, which had been expected to lead to the long-sought identification of their sources. Some indications about the composition of the UHECRs, which may become heavier at the highest energies, have even called into question the possibility that such a goal could be achieved in the foreseeable future. Aims: We investigate the potential value of a new-generation detector, with an exposure increased by one order of magnitude, to overcome the current situation and make notable progress in detecting anisotropies and thus in the study of UHECRs. We take as an example the expected performances of the JEM-EUSO detector, assuming a uniform full-sky coverage with a total exposure of 300 000 km2 sr yr. Methods: We simulated realistic UHECR sky maps for a wide range of possible astrophysical scenarios allowed by the current constraints, taking the energy losses and photo-dissociation of the UHE protons and nuclei into account, as well as their deflections by intervening magnetic fields. These sky maps, built for both the expected statistics of JEM-EUSO and the current Pierre Auger Observatory statistics, as a reference, were analysed from the point of view of their intrinsic anisotropies, using the two-point correlation function. A statistical study of the resulting anisotropies was performed for each astrophysical scenario, varying the UHECR source composition and spectrum and the source density and exploring a set of five hundred independent realizations for each choice of a parameter set. Results: We find that significant anisotropies are expected to be detected by a next-generation UHECR detector, for essentially all the astrophysical scenarios studied, and give precise, quantitative meaning to this statement. Conclusions: Our results show that a gain of one order of magnitude in the total exposure of UHECR detectors would make a significant difference compared to the existing experiments, and would allow considerable progress in the study of these mysterious particles and their sources.

  4. Diffuse fluxes of cosmic high energy neutrinos

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    Production spectra of high-energy neutrinos from galactic cosmic ray interactions with interstellar gas and extragalactic ultrahigh energy cosmic-ray interactions with microwave black-body photons are presented and discussed. These production processes involve the decay of charged pions and are thus related to the production of cosmic gamma-rays from the decay of neutral pions. Estimates of the neutrino fluxes from various diffuse cosmic sources are then made and the reasons fro significant differences with previous estimates are discussed. Predicted event rates for a DUMAND type detection system are significantly lower than early estimates indicated.

  5. Workshop on Cosmic Ray and High Energy Gamma Ray Experiments for the Space Station Era, Louisiana State University, Baton Rouge, October 17-20, 1984, Proceedings

    NASA Technical Reports Server (NTRS)

    Jones, W. V. (editor); Wefel, J. P. (editor)

    1985-01-01

    The potential of the Space Station as a platform for cosmic-ray and high-energy gamma-ray astronomy is discussed in reviews, reports, and specific proposals. Topics examined include antiparticles and electrons, science facilities and new technology, high-energy nuclear interactions, nuclear composition and energy spectra, Space Shuttle experiments, Space Station facilities and detectors, high-energy gamma rays, and gamma-ray facilities and techniques. Consideration is given to universal-baryon-symmetry testing on the scale of galactic clusters, particle studies in a high-inclination orbit, balloon-borne emulsion-chamber results on ultrarelativistic nucleus-nucleus interactions, ionization states of low-energy cosmic rays, a large gamma-ray telescope for point-source studies above 1 GeV, and the possible existence of stable quark matter.

  6. A new limit on the Ultra-High-Energy Cosmic-Ray flux with the Westerbork Synthesis Radio Telescope

    E-print Network

    S. ter Veen; S. Buitink; H. Falcke; C. W. James; M. Mevius; O. Scholten; K. Singh; B. Stappers; K. D. de Vries

    2010-10-28

    A particle cascade (shower) in a dielectric, for example as initiated by an ultra-high energy cosmic ray, will have an excess of electrons which will emit coherent \\v{C}erenkov radiation, known as the Askaryan effect. In this work we study the case in which such a particle shower occurs in a medium just below its surface. We show, for the first time, that the radiation transmitted through the surface is independent of the depth of the shower below the surface when observed from far away, apart from trivial absorption effects. As a direct application we use the recent results of the NuMoon project, where a limit on the neutrino flux for energies above $10^{22}$\\,eV was set using the Westerbork Synthesis Radio Telescope by measuring pulsed radio emission from the Moon, to set a limit on the flux of ultra-high-energy cosmic rays.

  7. Ultra High Energy Cosmic Ray Puzzle and the Plasma Wakefield Acceleration

    E-print Network

    Feng-Yin Chang; Pisin Chen; Guey-Lin Lin; Robert J. Noble; Kevin Reil; Richard Sydora

    2008-08-04

    Magnetowave induced plasma wakefield acceleration (MPWA) in a relativistic astrophysical outflow has been proposed as a viable mechanism for the acceleration of cosmic particles to ultra high energies. Here we present simulation results that demonstrate the viability of this mechanism. We invoke the high frequency and high speed whistler mode for the driving pulse. The plasma wakefield so induced validates precisely the theoretical prediction. This mechanism is shown capable of accelerating charged particles to ZeV energies in Active Galactic Nuclei (AGN).

  8. The KASCADE-Grande observatory and the composition of very high-energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Arteaga-Velázquez, J. C.; Apel, W. D.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; ?uczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2015-11-01

    KASCADE-Grande is an air-shower observatory devoted to the detection of cosmic rays with energies in the range of 1016 to 1018 eV. This energy region is of particular interest for the cosmic ray astrophysics, since it is the place where some models predict the existence of a transition from galactic to extragalactic origin of cosmic rays and the presence of a break in the flux of its heavy component. The detection of these features requires detailed and simultaneous measurements of the energy and composition of cosmic rays with sufficient statistics. These kinds of studies are possible for the first time in KASCADE-Grande due to the accurate measurements of several air-shower observables, i.e., the number of charged particles, electrons and muons in the shower, using the different detector systems of the observatory. In this contribution, a detailed look into the composition of 1016 — 1018 eV cosmic rays with KASCADE-Grande is presented.

  9. Results from the ANITA search for Ultra-High Energy Neutrinos and Cosmic Rays using the Radio detection technique

    NASA Astrophysics Data System (ADS)

    Saltzberg, David

    2010-02-01

    ANITA is a balloon-borne radio telescope flown on Long Duration Balloons in Antarctica. The payload looks for Ultra-high energy cosmic neutrinos striking the ice via their emission of radio-Cherenkov radiation. I will present the results of our neutrino searches in the data from ANITA's two full flights. In a different polarization, ANITA observes the radio emission of extensive air showers via their radio emission in the atmosphere below the payload. I will present evidence for these events being induced by cosmic rays and discuss their properties. )

  10. New Results on High Energy Cosmic Ray Electrons Observed with Fermi LAT and Their Implications on the Origin of Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2010-01-01

    The Large Area Telescope on-board the Fermi Gamma-Ray Space Telescope has collected more than 10 million cosmic ray electrons with energy above 7 GeV since its science operation on orbit. High energy electrons rapidly lose their energy by synchrotron radiation on Galactic magnetic fields and by inverse Compton scattering on the interstellar radiation field. The typical distance over which a 1 TeV electron loses half its total energy is estimated to be 300-400 pc.This makes them a unique tool for probing nearby Galactic space. Observed spectrum has a harder spectral index than was previously reported and suggests the presence of nearby sources of high energy electrons. One of viable candidates are nearby pulsars, possibly some of recently discovered by Fermi. At the same time the dark matter origin of such sources cannot be ruled out. I will also report our current upper limits on cosmic ray electrons anisotropy which helps to set constraints on their local sources.

  11. Ultra-High Energy Cosmic Rays: Composition, Early Air Shower Interactions, and Xmax Skewness

    NASA Astrophysics Data System (ADS)

    Stapleton, James

    The composition of Ultra-High Energy Cosmic Rays (UHECRs) is still not completely understood, and must be inferred from Extended Air Shower (EAS), particle cascades which they initiate upon entering the atmosphere. The atmospheric depth at which the shower contains the maximum number of particles ( Xmax) is the most composition-sensitive property of the air shower, but its interpretation is hindered by intrinsic statistical fluctuations in EAS development which cause distinct compositions to produce overlapping Xmax distributions as well as our limited knowledge at these energies of hadronic physics which strongly impacts the Xmax distribution's shape. These issues ultimately necessitate a variety of complementary approaches to interpreting UHECR composition from Xmax data. The current work advances these approaches by connecting X max skewness to the uncertainties above. The study of X max has historically focused only on the mean and standard deviation of its distribution, but skewness is shown here to be strongly related to both the statistical fluctuations in EAS development as well as the least-understood hadronic cross-sections in the air shower. This leads into a treatment of the Exponentially-Modified Gaussian (EMG) distribution, whose little-known properties make it very useful for Xmax analysis and for data analysis in general. A powerful method emerges which uses only descriptive statistics in a robust check for energy-dependent changes in UHECR mass or EAS development. The application of these analyses to X max data provides tantalizing clues concerning issues of critical importance, such as the relationship between Xmax and the 'ankle' break in the UHECR energy spectrum, or the inferred properties of the UHECR mass distribution and its strong dependence on hadronic model systematics.

  12. Ultra-high-energy cosmic rays from low-luminosity active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Du?an, Ioana; Caramete, Lauren?iu I.

    2015-03-01

    We investigate the production of ultra-high-energy cosmic ray (UHECR) in relativistic jets from low-luminosity active galactic nuclei (LLAGN). We start by proposing a model for the UHECR contribution from the black holes (BHs) in LLAGN, which present a jet power Pj ?1046 erg s-1. This is in contrast to the opinion that only high-luminosity AGN can accelerate particles to energies ? 50 EeV. We rewrite the equations which describe the synchrotron self-absorbed emission of a non-thermal particle distribution to obtain the observed radio flux density from sources with a flat-spectrum core and its relationship to the jet power. We found that the UHECR flux is dependent on the observed radio flux density, the distance to the AGN, and the BH mass, where the particle acceleration regions can be sustained by the magnetic energy extraction from the BH at the center of the AGN. We use a complete sample of 29 radio sources with a total flux density at 5 GHz greater than 0.5 Jy to make predictions for the maximum particle energy, luminosity, and flux of the UHECRs from nearby AGN. These predictions are then used in a semi-analytical code developed in Mathematica (SAM code) as inputs for the Monte-Carlo simulations to obtain the distribution of the arrival direction at the Earth and the energy spectrum of the UHECRs, taking into account their deflection in the intergalactic magnetic fields. For comparison, we also use the CRPropa code with the same initial conditions as for the SAM code. Importantly, to calculate the energy spectrum we also include the weighting of the UHECR flux per each UHECR source. Next, we compare the energy spectrum of the UHECRs with that obtained by the Pierre Auger Observatory.

  13. Magnetic lensing of extremely high energy cosmic rays in a galactic wind

    E-print Network

    Diego Harari; Silvia Mollerach; Esteban Roulet

    2000-05-24

    We show that in the model of Galactic magnetic wind recently proposed to explain the extremely high energy (EHE) cosmic rays so far observed as originating from a single source (M87 in the Virgo cluster), the magnetic field strongly magnifies the fluxes and produces multiple images of the source. The apparent position on Earth of the principal image moves, for decreasing energies, towards the galactic south. It is typically amplified by an order of magnitude at $E/Z\\sim 2\\times 10^{20}$ eV, but becomes strongly demagnified below $10^{20}$ eV. At energies below $E/Z\\sim 1.3\\times 10^{20}$ eV, all events in the northern galactic hemisphere are due to secondary images, which have huge amplifications ($>10^2$). This model would imply strong asymmetries between the north and south galactic hemispheres, such as a (latitude dependent) upper cut-off value below $2\\times 10^{20}$ eV for CR protons arriving to the south and lower fluxes in the south than in the north above $10^{20}$ eV. The large resulting magnifications reduce the power requirements on the source, but the model needs a significant tunning between the direction to the source and the symmetry axis of the wind. If more modest magnetic field strengths were assumed, a scenario in which the observed EHE events are heavier nuclei whose flux is strongly lensed becomes also plausible and would predict that a transition from a light composition to a heavier one could take place at the highest energies.

  14. A Small Multi-Wire Telescope for High Energy Cosmic Ray Muon Detection

    E-print Network

    Abdullrahnan Maghrabi; Mohammed Al Enizy; A Aldosari; M Almuteri

    2015-12-31

    Different types of ground-based detectors have been developed and deployed around the world to monitor and study CR variations. We have designed, constructed and operated a three layer small (20x20 cm2) multiwire proportional chamber MWPC telescope for cosmic ray muon observations. In this paper, the technical aspects of this detector will be briefly discussed. The abilities of the telescope in detecting high nergy cosmic ray muons (primaries higher than 20 GeV) were established. The telescope performs well in this sense and showed comparable results with a 1 m2 scintillator detector.

  15. A Small Multi-Wire Telescope for High Energy Cosmic Ray Muon Detection

    E-print Network

    Maghrabi, Abdullrahnan; Aldosari, A; Almuteri, M

    2016-01-01

    Different types of ground-based detectors have been developed and deployed around the world to monitor and study CR variations. We have designed, constructed and operated a three layer small (20x20 cm2) multiwire proportional chamber MWPC telescope for cosmic ray muon observations. In this paper, the technical aspects of this detector will be briefly discussed. The abilities of the telescope in detecting high nergy cosmic ray muons (primaries higher than 20 GeV) were established. The telescope performs well in this sense and showed comparable results with a 1 m2 scintillator detector.

  16. Layered water Cherenkov detector for the study of ultra high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Letessier-Selvon, Antoine; Billoir, Pierre; Blanco, Miguel; Mari?, Ioana C.; Settimo, Mariangela

    2014-12-01

    We present a new design for the water Cherenkov detectors that are in use in various cosmic ray observatories. This novel design can provide a significant improvement in the independent measurement of the muonic and electromagnetic component of extensive air showers. From such multi-component data an event by event classification of the primary cosmic ray mass becomes possible. According to popular hadronic interaction models, such as EPOS-LHC or QGSJetII-04, the discriminating power between iron and hydrogen primaries reaches Fisher values of ~ 2 or above for energies in excess of 1019 eV with a detector array layout similar to that of the Pierre Auger Observatory.

  17. On Active Galactic Nuclei as Sources of Ultra-High Energy Cosmic Rays

    E-print Network

    Matthew R. George; Andrew C. Fabian; Wayne H. Baumgartner; Richard F. Mushotzky; Jack Tueller

    2008-05-14

    We measure the correlation between sky coordinates of the Swift BAT catalogue of active galactic nuclei with the arrival directions of the highest energy cosmic rays detected by the Auger Observatory. The statistically complete, hard X-ray catalogue helps to distinguish between AGN and other source candidates that follow the distribution of local large-scale structure. The positions of the full catalogue are marginally uncorrelated with the cosmic ray arrival directions, but when weighted by their hard X-ray flux, AGN within 100 Mpc are correlated at a significance level of 98 per cent. This correlation sharply decreases for sources beyond ~100 Mpc, suggestive of a GZK suppression. We discuss the implications for determining the mechanism that accelerates particles to these extreme energies in excess of 10^19 eV.

  18. High-Energy Cosmic Ray Self-Confinement Close to Extra-Galactic Sources.

    PubMed

    Blasi, Pasquale; Amato, Elena; D'Angelo, Marta

    2015-09-18

    The ultrahigh-energy cosmic rays observed on the Earth are most likely accelerated in extra-Galactic sources. For the typical luminosities invoked for such sources, the electric current associated to the flux of cosmic rays that leave them is large. The associated plasma instabilities create magnetic fluctuations that can efficiently scatter particles. We argue that this phenomenon forces cosmic rays to be self-confined in the source proximity for energies Ecosmic rays are confined close to their sources for energies E

  19. Detection of high energy cosmic rays with the resonant gravitational wave detector NAUTILUS and EXPLORER

    E-print Network

    P. Astone; D. Babusci; M. Bassan; P. Bonifazi; G. Cavallari; E. Coccia; S. D'Antonio; V. Fafone; G. Giordano; C. Ligi; A. Marini; G. Mazzitelli; Y. Minenkov; I. Modena; G. Modestino; A. Moleti; G. V. Pallottino; G. Pizzella; L. Quintieri; A. Rocchi; F. Ronga; R. Terenzi; M. Visco

    2008-06-14

    The cryogenic resonant gravitational wave detectors NAUTILUS and EXPLORER, made of an aluminum alloy bar, can detect cosmic ray showers. At temperatures above 1 K, when the material is in the normal conducting state, the measured signals are in good agreement with the values expected based on the cosmic rays data and on the thermo-acoustic model. When NAUTILUS was operated at the temperature of 0.14 K, in superconductive state, large signals produced by cosmic ray interactions, more energetic than expected, were recorded. The NAUTILUS data in this case are in agreement with the measurements done by a dedicated experiment on a particle beam. The biggest recorded event was in EXPLORER and excited the first longitudinal mode to a vibrational energy of about 670 K, corresponding to about 360 TeV absorbed in the bar. Cosmic rays can be an important background in future acoustic detectors of improved sensitivity. At present, they represent a useful tool to verify the gravitational wave antenna performance.

  20. Galaxy clusters as reservoirs of heavy dark matter and high-energy cosmic rays: constraints from neutrino observations

    SciTech Connect

    Murase, Kohta; Beacom, John F. E-mail: beacom.7@osu.edu

    2013-02-01

    Galaxy Clusters (GCs) are the largest reservoirs of both dark matter and cosmic rays (CRs). Dark matter self-annihilation can lead to a high luminosity in gamma rays and neutrinos, enhanced by a strong degree of clustering in dark matter substructures. Hadronic CR interactions can also lead to a high luminosity in gamma rays and neutrinos, enhanced by the confinement of CRs from cluster accretion/merger shocks and active galactic nuclei. We show that IceCube/KM3Net observations of high-energy neutrinos can probe the nature of GCs and the separate dark matter and CR emission processes, taking into account how the results depend on the still-substantial uncertainties. Neutrino observations are relevant at high energies, especially at ?>10 TeV. Our results should be useful for improving experimental searches for high-energy neutrino emission. Neutrino telescopes are sensitive to extended sources formed by dark matter substructures and CRs distributed over large scales. Recent observations by Fermi and imaging atmospheric Cherenkov telescopes have placed interesting constraints on the gamma-ray emission from GCs. We also provide calculations of the gamma-ray fluxes, taking into account electromagnetic cascades inside GCs, which can be important for injections at sufficiently high energies. This also allows us to extend previous gamma-ray constraints to very high dark matter masses and significant CR injections at very high energies. Using both neutrinos and gamma rays, which can lead to comparable constraints, will allow more complete understandings of GCs. Neutrinos are essential for dark matter annihilation channels like ????{sup +}?{sup ?}, where the neutrino signals are larger than the gamma-ray signals, and for hadronic instead of electronic CRs, because only the first leads to neutrinos. Our results suggest that the multi-messenger observations of GCs will be able to give useful constraints on specific models of dark matter and CRs.

  1. Topics in Particle Astrophysics: Dark Matter, Gamma-Ray Bursts, and the Origin of Ultra-High-Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Calvez, Antoine

    Since the first observation of cosmic rays in the early 1900's, intensive astronomical and cosmological observations, and improvements in particle detectors have generated important discoveries such as the existence of gamma-ray bursts and pulsars; they have also generated puzzling evidence for dark matter and dark energy, and for the existence of particles in the interstellar medium with energy beyond 1020 eV. In this dissertation, I will investigate some of the current theoretical challenges posed by the latest cosmological and astrophysical observations, and attempt to provide a unifying solution to the problems. X-ray and gamma-ray observations can help understand the origin of the electron and positron signals reported by ATIC, PAMELA, PPB-BETS , and Fermi. It remains unclear whether the observed high-energy electrons and positrons are produced by relic particles, or by astrophysical sources. To distinguish between the two possibilities, one can compare the electron population in the local neighborhood with that in Dwarf Spheroidal Galaxies (dSphs), which are not expected to host as many gamma-ray bursts, pulsars, or other astrophysical sources. This can be accomplished using X-ray and gamma-ray observations. Assuming the signal detected by Fermi and ATIC comes from dark matter, we calculate the photon spectrum produced by electrons via inverse Compton scattering with the Cosmic Microwave Background radiation (CMB). Since little is known about the magnetic fields in dwarf spheroidals, we consider the propagation of charged particles with and without diffusion. Extending the analysis of the Fermi collaboration for the Draco dwarf spheroidal galaxy, we find that even in the absence of diffusion, the expected gamma-ray signal lies above the upper limits set by the Fermi telescope, thus favoring astrophysical sources such as gamma-ray bursts and pulsars. Furthermore, if one assumes that a local magnetic field exists in the dwarf spheroidal galaxy, the diffusion of the electrons gives rise to a signal that could also be detectable by future X-ray telescope experiments. Besides being one of the preferred explanation for the high-energy electron and positron excess suggested by ATIC, PAMELA, and Fermi, Gamma-Ray Bursts (GRBs) have also been invoked to explain the 511 keV emission from the galactic bulge. While independent explanations can be responsible for these phenomena, we explore the possibility of their common GRB-related origin, by modeling the GRB distribution and estimating their rates. For an expected long GRB rate in the Milky Way, neither of the two signals is generic; the local electron excess requires a 2% coincidence while the signal from the galactic center requires a 20% coincidence with respect to the timing of the latest GRB. The simultaneous explanation requires a 0.4% coincidence. Considering the large number of statistical "trials" created by multiple searches for new physics, the coincidences of a few per cent cannot be dismissed as unlikely. Alternatively, both phenomena can be explained by GRBs if the galactic rate is higher than expected. We also show that a similar result is difficult to obtain assuming a simplified short GRB distribution. Recent results from the Pierre Auger Observatory ( PAO), showing energy-dependent chemical composition of Ultra-High-Energy Cosmic Rays (UHECRs) with a growing fraction of heavy elements at high energies, suggest a possible non-negligible contribution to the spectrum from galactic sources. We show that in the case of UHECRs produced by gamma-ray bursts, or by rare types of supernova explosions that took place in the Milky Way in the past, the change in composition of the UHECR, spectrum can result from the difference in diffusion times for different species. The anisotropy in the direction of the galactic center is expected to be a few percent on average, but the locations of the most recent/closest bursts can be associated with the possible observed clustering of UHECRs.

  2. Model-dependent estimate on the connection between fast radio bursts and ultra high energy cosmic rays

    SciTech Connect

    Li, Xiang; Zhou, Bei; He, Hao-Ning; Fan, Yi-Zhong; Wei, Da-Ming

    2014-12-10

    The existence of fast radio bursts (FRBs), a new type of extragalatic transient, has recently been established, and quite a few models have been proposed. In this work, we discuss the possible connection between the FRB sources and ultra high energy (>10{sup 18} eV) cosmic rays. We show that in the blitzar model and the model of merging binary neutron stars, which includes the huge energy release of each FRB central engine together with the rather high rate of FRBs, the accelerated EeV cosmic rays may contribute significantly to the observed ones. In other FRB models, including, for example, the merger of double white dwarfs and the energetic magnetar radio flares, no significant EeV cosmic ray is expected. We also suggest that the mergers of double neutron stars, even if they are irrelevant to FRBs, may play a nonignorable role in producing EeV cosmic ray protons if supramassive neutron stars are formed in a sufficient fraction of mergers and the merger rate is ? 10{sup 3} yr{sup –1} Gpc{sup –3}. Such a possibility will be unambiguously tested in the era of gravitational wave astronomy.

  3. High-energy cosmic rays and tests of basic principles of Physics. Looking at the Planck scale and beyond

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mestres, L.

    2014-04-01

    With the present understanding of data, the observed flux suppression for ultra-high energy cosmic rays (UHECR) at energies above 4.1019 eV can be a signature of the Greisen-Zatsepin-Kuzmin (GZK) cutoff or be related to a similar mechanism. But it may also correspond, for instance, to the maximum energies available at the relevant sources. In both cases, violations of special relativity modifying cosmic-ray propagation or acceleration at very high energy can potentially play a role. Other violations of fundamental principles of standard particle physics (quantum mechanics, energy and momentum conservation, vacuum homogeneity and "static" properties, effective space dimensions, quark confinement…) can also be relevant at these energies. In particular, UHECR data would in principle allow to set bounds on Lorentz symmetry violation (LSV) in patterns incorporating a privileged local reference frame (the "vacuum rest frame", VRF). But the precise analysis is far from trivial, and other effects can also be present. The effective parameters can be related to Planckscale physics, or even to physics beyond Planck scale, as well as to the dynamics and effective symmetries of LSV for nucleons, quarks, leptons and the photon. LSV can also be at the origin of GZK-like effects. In the presence of a VRF, and contrary to a "grand unification" view, LSV and other violations of standard principles can modify the internal structure of particles at very high energy and conventional symmetries may cease to be valid at energies close to the Planck scale. We present an updated discussion of these topics, including experimental prospects, new potentialities for high-energy cosmic ray phenomenology and the possible link with unconventional pre-Big Bang scenarios, superbradyon (superluminal preon) patterns… The subject of a possible superluminal propagation of neutrinos at accelerator energies is also dealt with.

  4. Galaxy Clusters as Reservoirs of Heavy Dark Matter and High-Energy Cosmic Rays: Constraints from Neutrino Observations

    E-print Network

    Kohta Murase; John F. Beacom

    2013-01-21

    Galaxy Clusters (GCs) are the largest reservoirs of both dark matter and cosmic rays (CRs). Dark matter self-annihilation can lead to a high luminosity in gamma rays and neutrinos, enhanced by a strong degree of clustering in dark matter substructures. Hadronic CR interactions can also lead to a high luminosity in gamma rays and neutrinos, enhanced by the confinement of CRs from cluster accretion/merger shocks and active galactic nuclei. We show that IceCube/KM3Net observations of high-energy neutrinos can probe the nature of GCs and the separate dark matter and CR emission processes, taking into account how the results depend on the still-substantial uncertainties. Neutrino observations are relevant at high energies, especially at >10 TeV. Our results should be useful for improving experimental searches for high-energy neutrino emission. Neutrino telescopes are sensitive to extended sources formed by dark matter substructures and CRs distributed over large scales. Recent observations by Fermi and imaging atmospheric Cherenkov telescopes have placed interesting constraints on the gamma-ray emission from GCs. We also provide calculations of the gamma-ray fluxes, taking into account electromagnetic cascades inside GCs, which can be important for injections at sufficiently high energies. This also allows us to extend previous gamma-ray constraints to very high dark matter masses and significant CR injections at very high energies. Using both neutrinos and gamma rays, which can lead to comparable constraints, will allow more complete understandings of GCs. Neutrinos are essential for some dark matter annihilation channels, and for hadronic instead of electronic CRs. Our results suggest that the multi-messenger observations of GCs will be able to give useful constraints on specific models of dark matter and CRs. [Abstract abridged.

  5. ROLE OF LINE-OF-SIGHT COSMIC-RAY INTERACTIONS IN FORMING THE SPECTRA OF DISTANT BLAZARS IN TeV GAMMA RAYS AND HIGH-ENERGY NEUTRINOS

    SciTech Connect

    Essey, Warren; Kusenko, Alexander; Kalashev, Oleg; Beacom, John F.

    2011-04-10

    Active galactic nuclei (AGNs) can produce both gamma rays and cosmic rays. The observed high-energy gamma-ray signals from distant blazars may be dominated by secondary gamma rays produced along the line of sight by the interactions of cosmic-ray protons with background photons. This explains the surprisingly low attenuation observed for distant blazars, because the production of secondary gamma rays occurs, on average, much closer to Earth than the distance to the source. Thus, the observed spectrum in the TeV range does not depend on the intrinsic gamma-ray spectrum, while it depends on the output of the source in cosmic rays. We apply this hypothesis to a number of sources and, in every case, we obtain an excellent fit, strengthening the interpretation of the observed spectra as being due to secondary gamma rays. We explore the ramifications of this interpretation for limits on the extragalactic background light and for the production of cosmic rays in AGNs. We also make predictions for the neutrino signals, which can help probe the acceleration of cosmic rays in AGNs.

  6. Radio detection of high-energy cosmic rays with the Auger Engineering Radio Array (PISA 2015)

    E-print Network

    Schröder, Frank G

    2016-01-01

    The Auger Engineering Radio Array (AERA) is an enhancement of the Pierre Auger Observatory in Argentina. Covering about View the $17\\,$km$^2$, AERA is the world-largest antenna array for cosmic-ray observation. It consists of more than 150 antenna stations detecting the radio signal emitted by air showers, i.e., cascades of secondary particles caused by primary cosmic rays hitting the atmosphere. At the beginning, technical goals had been in focus: first of all, the successful demonstration that a large-scale antenna array consisting of autonomous stations is feasible. Moreover, techniques for calibration of the antennas and time calibration of the array have been developed, as well as special software for the data analysis. Meanwhile physics goals come into focus. At the Pierre Auger Observatory air showers are simultaneously detected by several detector systems, in particular water-Cherenkov detectors at the surface, underground muon detectors, and fluorescence telescopes, which enables cross-calibration of...

  7. CRT: A numerical tool for propagating ultra-high energy cosmic rays through Galactic magnetic field models

    NASA Astrophysics Data System (ADS)

    Sutherland, M. S.; Baughman, B. M.; Beatty, J. J.

    2010-11-01

    Deflection of ultra-high energy cosmic rays (UHECRs) by the Galactic magnetic field (GMF) may be sufficiently strong to hinder identification of the UHECR source distribution. A common method for determining the effect of GMF models on source identification efforts is back-tracking cosmic rays. We present the public numerical tool CRT for propagating charged particles through Galactic magnetic field models by numerically integrating the relativistic equation of motion. It is capable of both forward- and back-tracking particles with varying compositions through pre-defined and custom user-created magnetic fields. These particles are injected from various types of sources specified and distributed according to the user. Here, we present a description of some source and magnetic field model implementations, as well as validation of the integration routines.

  8. A new measurement of the flux of the light cosmic-ray nuclei at high energies

    NASA Technical Reports Server (NTRS)

    Buckley, J.; Dwyer, J.; Mueller, D.; Swordy, S.; Tang, K. K.

    1994-01-01

    A new cosmic-ray detector utilizing a ring-imaging Cerenkov counter to determine the energy of light cosmic-ray nuclei was flown on high-altitude balloon from Fort Sumner, NM, in 1991 September. We describe the design and performance of this instrument and discuss the data analysis procedures. The measurement provides a new determination of the absolute flux and differential energy spectrum of the primary cosmic-ray species helium between 40 and 320 GeV/nucleon. The experiment also yields the spectra of carbon and oxygen and some information on the intensities of the secondary nuclei Li, Be, and B. A comparison between our results and previous measurements of heavier nuclei (Z greater than or equal to 4) from HEAO 3 and Spacelab 2 indicates good consistency between these measurements. The data set is compared with the results of a leaky box propagation model. We find good agreement with this model if the abundance of helium relative to oxygen at the source is taken to be 25 +/- 6 and if the source spectrum is given by a power law in energy proportional to E(exp -2.15).

  9. Propagation of ultra-high-energy cosmic ray nuclei in cosmic magnetic fields and implications for anisotropy measurements

    NASA Astrophysics Data System (ADS)

    Takami, Hajime; Inoue, Susumu; Yamamoto, Tokonatsu

    2012-07-01

    Recent results from the Pierre Auger Observatory (PAO) indicate that the composition of ultra-high-energy cosmic rays (UHECRs) with energies above 1019 eV may be dominated by heavy nuclei. An important question is whether the distribution of arrival directions for such UHECR nuclei can exhibit observable anisotropy or positional correlations with their astrophysical source objects despite the expected strong deflections by intervening magnetic fields. For this purpose, we have simulated the propagation of UHECR nuclei including models for both the extragalactic magnetic field (EGMF) and the Galactic magnetic field (GMF). We find that the GMF is particularly crucial for suppressing the anisotropy as well as source correlations. Assuming that only iron nuclei are injected steadily from sources with equal luminosity and spatially distributed according to the observed large scale structure in the local Universe, at the number of events published by the PAO so far (69 events above 5.5 × 1019 eV), the arrival distribution of UHECRs would be consistent with no auto-correlation at 95% confidence if the mean number density of UHECR sources ns ? 10-6 Mpc-3, and consistent with no cross-correlation with sources within 95% errors for ns ? 10-5 Mpc-3. On the other hand, with 1000 events above 5.5 × 1019 eV in the whole sky, next generation experiments can reveal auto-correlation with more than 99% probability even for ns ? 10-3 Mpc-3, and cross-correlation with sources with more than 99% probability for ns ? 10-4 Mpc-3. In addition, we find that the contribution of Centaurus A is required to reproduce the currently observed UHECR excess in the Centaurus region. Secondary protons generated by photodisintegration of primary heavy nuclei during propagation play a crucial role in all cases, and the resulting anisotropy at small angular scales should provide a strong hint of the source location if the maximum energies of the heavy nuclei are sufficiently high.

  10. The Microwave Air Yield Beam Experiment (MAYBE): measurement of GHz radiation for Ultra-High Energy Cosmic Rays detection

    E-print Network

    M. Monasor; M. Bohacova; C. Bonifazi; G. Cataldi; S. Chemerisov; J. R. T. De Mello Neto; P. Facal San Luis; B. Fox; P. W. Gorham; C. Hojvat; N. Hollon; R. Meyhandan; L. C. Reyes; B. Rouille D'Orfeuil; E. M. Santos; J. Pochez; P. Privitera; H. Spinka; V. Verzi; C. Williams; J. Zhou

    2011-08-31

    We present first measurements by MAYBE of microwave emission from an electron beam induced air plasma, performed at the electron Van de Graaff facility of the Argonne National Laboratory. Coherent radio Cherenkov, a major background in a previous beam experiment, is not produced by the 3 MeV beam, which simplifies the interpretation of the data. Radio emission is studied over a wide range of frequencies between 3 and 12 GHz. This measurement provides further insight on microwave emission from extensive air showers as a novel detection technique for Ultra-High Energy Cosmic Rays.

  11. Physical conditions in potential sources of ultra-high-energy cosmic rays: Updated Hillas plot and radiation-loss constraints

    E-print Network

    Ksenia Ptitsyna; Sergey Troitsky

    2010-03-26

    We review basic constraints on the acceleration of ultra-high-energy (UHE) cosmic rays (CRs) in astrophysical sources, namely the geometrical (Hillas) criterion and restrictions from radiation losses in different acceleration regimes. Using the latest available astrophysical data, we redraw the Hillas plot and figure out potential UHECR accelerators. For the acceleration in central engines of active galactic nuclei, we constrain the maximal UHECR energy for a given black-hole mass. Among active galaxies, only the most powerful ones, radio galaxies and blazars, are able to accelerate protons to UHE, though acceleration of heavier nuclei is possible in much more abundant lower-power Seyfert galaxies.

  12. Concept and Analysis of a Satellite for Space-Based Radio Detection of Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Romero-Wolf, Andrew; Gorham, P.; Booth, J.; Chen, P.; Duren, R. M.; Liewer, K.; Nam, J.; Saltzberg, D.; Schoorlemmer, H.; Wissel, S.; Zairfian, P.

    2014-01-01

    We present a concept for on-orbit radio detection of ultra-high energy cosmic rays (UHECRs) that has the potential to provide collection rates of ~100 events per year for energies above 10^20 eV. The synoptic wideband orbiting radio detector (SWORD) mission's high event statistics at these energies combined with the pointing capabilities of a space-borne antenna array could enable charged particle astronomy. The detector concept is based on ANITA's successful detection UHECRs where the geosynchrotron radio signal produced by the extended air shower is reflected off the Earth's surface and detected in flight.

  13. A balloon-borne ionization spectrometer with very large aperture for the detection of high energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Atallah, K.; Modlinger, A.; Schmidt, W. K. H.; Cleghorn, T. F.

    1975-01-01

    A balloon experiment which was used to determine the chemical composition of very high-energy cosmic rays up to and beyond 100 GeV/nucleon is described. The detector had a geometric factor of 1 sq m sr and a total weight on the balloon of 2100 kg. The apparatus consisted of an ionization spectrometer, spark chambers, and plastic scintillation and Cherenkov counters. It was calibrated at CERN up to 24 GeV/c protons and at DESY up to 7 GeV/c electrons. In October 1972 it was flown successfully on a stratospheric balloon.

  14. Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory

    SciTech Connect

    Collaboration: Pierre Auger Collaboration

    2013-05-01

    We derive lower bounds on the density of sources of ultra-high energy cosmic rays from the lack of significant clustering in the arrival directions of the highest energy events detected at the Pierre Auger Observatory. The density of uniformly distributed sources of equal intrinsic intensity was found to be larger than ? (0.06?5) × 10{sup ?4} Mpc{sup ?3} at 95% CL, depending on the magnitude of the magnetic deflections. Similar bounds, in the range (0.2?7) × 10{sup ?4} Mpc{sup ?3}, were obtained for sources following the local matter distribution.

  15. Magnetowave Induced Plasma Wakefield Acceleration for Ultra High Energy Cosmic Rays

    SciTech Connect

    Chang, Feng-Yin; Chen, Pisin; Lin, Guey-Lin; Noble, Robert; Sydora, Richard; /Alberta U.

    2009-10-17

    Magnetowave induced plasma wakefield acceleration (MPWA) in a relativistic astrophysical outflow has been proposed as a viable mechanism for the acceleration of cosmic particles to ultrahigh energies. Here we present simulation results that clearly demonstrate the viability of this mechanism for the first time. We invoke the high frequency and high speed whistler mode for the driving pulse. The plasma wakefield obtained in the simulations compares favorably with our newly developed relativistic theory of the MPWA. We show that, under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over hundreds of plasma skin depths. Invoking active galactic nuclei as the site, we show that MPWA production of ultrahigh energy cosmic rays beyond ZeV (10{sup 21} eV) is possible.

  16. Characteristics of high energy cosmic ray diurnal anisotropy on day-to-day basis

    NASA Astrophysics Data System (ADS)

    Tiwari, C. M.; Tiwari, D. P.

    2008-10-01

    Diurnal variation of cosmic ray intensity for the period of 1989 to 2000 at Kiel, Haleakakla, Rome, Hermanus, Calgary, and Goose Bay neutron monitors has been studied. Frequency histograms are generated for each year by using the daily values of amplitudes and phases. In the present analysis we have derived the yearly mean amplitude and phase of the diurnal variation of cosmic ray intensity. It has been concluded from the analysis that the diurnal amplitude is mostly concentrated in between the amplitude values of 0.1% and 0.4%, whereas the phase of diurnal anisotropy is concentrated in the belt of 100 to 225 degrees. As such, the various characteristics of long-term diurnal variation of cosmic ray intensity for the maxima of solar activity cycle 22 to the next maxima of solar activity cycle 23 have been studied. The minimum amplitudes are apparent for the minimum solar activity periods starting from 1995 and up to 1997 at Kiel, Haleakakla, Rome, Hermanus, Calgary and Goose Bay stations. The diurnal amplitude has been found to have almost recovered to its values observed during 1989 to 1990. It is also seen that the diurnal amplitudes are much larger by a factor of two at high/middle latitude stations as compared to that for low latitude stations, where the amplitudes are even ˜01% or less during 1996. The phase is significantly earlier during 1996 and 1997 with some significant change starting in 1995. As such, competitive is a continuous decreasing trend in the diurnal phase with smaller change at high/middle latitude and significantly much larger change at low latitudes.

  17. Measurement of the ultra high energy cosmic ray energy spectrum with the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Rodriguez, G.

    2014-04-01

    We report a measurement of the cosmic ray energy spectrum based on a large amount of data collected by the Pierre Auger Observatory. This measurement combines data from the fluorescence (FD) and surface (SD) detectors of the Observatory and does not rely on detailed numerical simulation or any assumption about the chemical composition. The energy calibration of the observables, which exploits the correlation of surface detector data with fluorescence measurements in hybrid events, is presented in detail. Besides presenting statistical uncertainties, we address the impact of systematic uncertainties. We also summarize the combined energy spectrum obtained when hybrid data are used to extend the spectrum to lower energies.

  18. Solar panels as air Cherenkov detectors for extremely high energy cosmic rays

    E-print Network

    S. Cecchini; I. D'Antone; L. Degli Esposti; G. Giacomelli; M. Guerra; I. Lax; G. Mandrioli; A. Parretta; A. Sarno; R. Schioppo; M. Sorel; M. Spurio

    2000-02-07

    Increasing interest towards the observation of the highest energy cosmic rays has motivated the development of new detection techniques. The properties of the Cherenkov photon pulse emitted in the atmosphere by these very rare particles indicate low-cost semiconductor detectors as good candidates for their optical read-out. The aim of this paper is to evaluate the viability of solar panels for this purpose. The experimental framework resulting from measurements performed with suitably-designed solar cells and large conventional photovoltaic areas is presented. A discussion on the obtained and achievable sensitivities follows.

  19. High-Energy Cosmic-Ray Antiprotons with the CAPRICE98 experiment

    NASA Astrophysics Data System (ADS)

    Boezio, M.; Ambriola, M.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Bonvicini, V.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C. N.; De Pascale, M. P.; Finetti, N.; Francke, T.; Hansen, P.; Hof, M.; Kremer, J.; Menn, W.; Mitchell, J. W.; Mocchitti, E.; Morselli, A.; Ormes, J. F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Vannuccini, E.; Zampa, N.; WIZARD/CAPRICE Collaboration

    2001-08-01

    Observations of cosmic-ray antiprotons were performed by the balloon-borne experiment CAPRICE98 that was flown on 28-29 May 1998 from Fort Sumner, New Mexico, USA. The experiment used the NMSU-WIZARD/CAPRICE98 balloon-borne magnet spectrometer equipped with a gas Ring Imaging Cherenkov detector, a time-of-flight system, a tracking device consisting of drift chambers and a superconducting magnet and a silicon-tungsten calorimeter. We report on the absolute-antiproton-energy spectrum determined in the kinetic energy region at the top of the atmosphere between 3.2 and 49.1 GeV.

  20. CRT: A Numerical Tool for Propagating Ultra-High Energy Cosmic Rays Through Galactic Magnetic Field Models

    NASA Astrophysics Data System (ADS)

    Sutherland, Michael; Baughman, Brian; Beatty, James

    2011-04-01

    The deflection of ultra high energy cosmic rays (UHECRs) by cosmic magnetic fields, particularly the Galactic magnetic field (GMF), may be sufficiently large to confuse identification of their sources. Here we present a publicly available numerical tool CRT, which can forward- or back-track particles of any type through multiple magnetic field configurations. Trajectories are determined by numerically integrating the relativistic equation of motion. Users may specify magnetic field, source, and particle parameters through an input configuration file. CRT's modular nature allows users to include additional field models and source distributions of their own. The interface is designed to be simple while still allowing the user to manipulate important runtime parameters. Output includes complete simulation information and a full description of each event's initial and final states. The current stage of development (available on the web) will be discussed, as well as plans for future updates.

  1. Origin of the ankle in the ultra-high energy cosmic ray spectrum and of the extragalactic protons below it

    E-print Network

    Farrar, Glennys R; Anchordoqui, Luis A

    2015-01-01

    The sharp change in slope of the ultra-high energy cosmic ray (UHECR) spectrum around 10^{18.6} eV (the ankle), combined with evidence of a light but extragalactic component near and below the ankle which evolves to intermediate composition above, has proved exceedingly challenging to understand theoretically. We show that for a range of source conditions, photo-disintegration of ultra-high energy nuclei in the region surrounding a UHECR accelerator naturally accounts for the observed spectrum and composition of the entire extragalactic component, which dominates above about 10^{17.5} eV. The mechanism has a clear signature in the spectrum and flavors of neutrinos.

  2. Fermi LAT Results and Perspectives in Measurements of High Energy Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2010-01-01

    Real breakthrough during last 1-1.5 years in cosmic ray electrons: ATIC, HESS, Pamela, and finally Fermi-LAT. New quality data have made it possible to start quantitative modeling. With the new data more puzzles than before on CR electrons origin. Need "multi-messenger" campaign: electrons, positrons, gammas, X-ray, radio, neutrino... It is viable that we are dealing with at least two distinct mechanisms of "primary" electron (both signs) production: a softer spectrum of negative electrons, and a harder spectrum of both e(+)+e(-). Exotic (e.g. DM) origin is not ruled out. Upper limits on CR electrons anisotropy are set. Good perspectives to have the Fermi LAT results on proton spectrum and positron fraction.

  3. PeV neutrinos from the propagation of ultra-high energy cosmic rays

    SciTech Connect

    Roulet, Esteban; Mollerach, Silvia; Sigl, Guenter; Vliet, Arjen van E-mail: guenter.sigl@desy.de E-mail: mollerach@cab.cnea.gov.ar

    2013-01-01

    We discuss the possibility that the PeV neutrinos recently observed by IceCube are produced by the interactions of extragalactic cosmic rays during their propagation through the radiation backgrounds. We show that the fluxes resulting from the decays of neutrons produced in the interactions of cosmic ray protons with the CMB background are suppressed (E{sub ?}{sup 2}d?{sub ?}/dE < 10{sup ?10} GeV/cm{sup 2} s sr), with those resulting from the decays of pions produced in the interactions with the UV/optical/IR backgrounds being the dominant ones at PeV energies. The anti-neutrino fluxes produced by the decay of neutrons resulting from the photodisintegration of heavy nuclei with CMB photons are also shown to be quite suppressed (E{sub ?}{sup 2}d?{sub ?}/dE < 10{sup ?11} GeV/cm{sup 2} s sr), while those produced by photo-pion processes with UV/optical/IR backgrounds may be larger, although they are not expected to be above those achievable in the pure proton case. Scenarios with mixed composition and low cutoff rigidities can lead to PeV neutrino fluxes enhanced with respect to those in the pure Fe scenarios. We also discuss the possible impact of the Glashow resonance for the detection of these scenarios, showing that it plays a moderate role.

  4. Probing the origin of cosmic rays with extremely high energy neutrinos using the IceCube Observatory

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Arguelles, C.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Bruijn, R.; Casey, J.; Casier, M.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Clevermann, F.; Coenders, S.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; Day, M.; De Clercq, C.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Eisch, J.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grandmont, D. T.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Jagielski, K.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Kelley, J. L.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kriesten, A.; Krings, K.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Landsman, H.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leute, J.; Lünemann, J.; Macías, O.; Madsen, J.; Maggi, G.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Sheremata, C.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Teši?, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zoll, M.

    2013-12-01

    We have searched for extremely high energy neutrinos using data taken with the IceCube detector between May 2010 and May 2012. Two neutrino-induced particle shower events with energies around 1 PeV were observed, as reported previously. In this work, we investigate whether these events could originate from cosmogenic neutrinos produced in the interactions of ultrahigh energy cosmic rays with ambient photons while propagating through intergalactic space. Exploiting IceCube’s large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out the corresponding models at more than 90% confidence level. The model-independent quasidifferential 90% C.L. upper limit, which amounts to E2??e+??+??=1.2×10-7GeVcm-2s-1sr-1 at 1 EeV, provides the most stringent constraint in the energy range from 10 PeV to 10 EeV. Our observation disfavors strong cosmological evolution of the highest energy cosmic-ray sources such as the Fanaroff-Riley type II class of radio galaxies.

  5. A cosmic ray super high energy multicore family event. 2: Structure and fragmentation characteristics of the jets

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Quarks and gluons are not directly observable, but may be displayed through fragmentation in the form of hadronic jets, the evidence of which was first revealed in cosmic ray interactions before the advent of the modern theory of strong interactions. Experimental results from ISR and SPPS collider rendered the jet phenomena more confident and definite. All the properties of jets observed up to now at ISR and SPPS collider are in agreement with the predictions of QCD. In order to make further test of QCD in still higher energy regions, detailed study of super high energy jet events in cosmic rays is very desirable. The event KO E19 observed in the Mt. Kambala emulsion chamber is an interesting event for such study. The general features of KO E19 is described. Its total visible energy is sigma E sub gamma = 1537 TeV(E sub min = 1.5 TeV) and production height H=(70 + or - 30)m, with a hadron as its primary particle. Besides about forty small clusters, there are five super high energy cores or jets, one lying near the center of the event while the other four surrounding it, having incident directions making small angles with that of the primary particle. Detailed analysis is done on the emulsion plates inserted in the chamber, making full use of their fine granularity, superior in detecting and analyzing jet events, specially their substructures.

  6. A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antici'c, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Bohácová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Filevich, A.; Filipcic, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mi'canovi'c, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.

    2012-04-01

    Observations of cosmic ray arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Véron-Cetty Véron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three methods can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. Using data taken from January 1, 2004 to July 31, 2010 we examined the 20,30,...,110 highest energy events with a corresponding minimum energy threshold of about 49.3 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.

  7. A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory

    SciTech Connect

    Abreu, P.; ,

    2012-01-01

    Observations of cosmic ray arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Veron-Cetty Veron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three methods can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. Using data taken from January 1, 2004 to July 31, 2010 we examined the 20, 30, ..., 110 highest energy events with a corresponding minimum energy threshold of about 51 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.

  8. The importance of muon information on primary mass discrimination of ultra-high energy cosmic rays

    E-print Network

    Supanitsky, D; Medina-Tanco, G; Etchegoyen, A; Allekotte, I; Berisso, M G; De Souza, V; Medina, C; Ortiz, J A; Shellard, R

    2005-01-01

    Several methods can be used to perform statistical inference of primary composition of cosmic rays measured with water Cerenkov detectors as those in use at the Pierre Auger Southern Observatory. In the present work we assess the impact of additional information about the number of muons in the air shower, on the problem of statistical primary mass discrimination. Several tools are studied, including neural networks, principal component analysis and traditional methods in current use in the field. For our case study we use hypothetical plastic scintillators as muon counters, buried at the side and outside the shade of the water Cerenkov tanks. The study is extended to protons and Fe nuclei impinging on an array with two different spacings, 750 and 1500 m and, therefore, suitable to the 1-10 EeV energy range. A prototype of such a detector is under construction.

  9. Tungsten fragmentation in nuclear reactions induced by high-energy cosmic-ray protons

    NASA Astrophysics Data System (ADS)

    Chechenin, N. G.; Chuvilskaya, T. V.; Shirokova, A. A.; Kadmenskii, A. G.

    2015-01-01

    Tungsten fragmentation arising in nuclear reactions induced by cosmic-ray protons in space-vehicle electronics is considered. In modern technologies of integrated circuits featuring a three-dimensional layered architecture, tungsten is frequently used as a material for interlayer conducting connections. Within the preequilibrium model, tungsten-fragmentation features, including the cross sections for the elastic and inelastic scattering of protons of energy between 30 and 240 MeV; the yields of isotopes and isobars; their energy, charge, and mass distributions; and recoil energy spectra, are calculated on the basis of the TALYS and EMPIRE-II-19 codes. It is shown that tungsten fragmentation affects substantially forecasts of failures of space-vehicle electronics.

  10. Astrophysical origin of high-energy cosmic neutrinos

    NASA Astrophysics Data System (ADS)

    Murase, Kohta

    2015-08-01

    The origin of high-energy cosmic neutrinos is a new interesting mystery in astroparticle physics. The present data suggest interesting connection to cosmic-ray and/or gamma-ray sources. We review various scenarios for the cosmic neutrinos, and emphasize the importance of multimessenger approaches to reveal the sources.

  11. MEASUREMENTS OF THE RELATIVE ABUNDANCES OF HIGH-ENERGY COSMIC-RAY NUCLEI IN THE TeV/NUCLEON REGION

    SciTech Connect

    Ahn, H. S.; Ganel, O.; Han, J. H.; Kim, K. C.; Lee, M. H.; Malinin, A.; Allison, P. S.; Beatty, J. J.; Brandt, T. J.; Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S.; Barbier, L.; Childers, J. T.; DuVernois, M. A.; Conklin, N. B.; Coutu, S.; Jeon, J. A.; Lee, J.

    2010-06-01

    We present measurements of the relative abundances of cosmic-ray nuclei in the energy range of 500-3980 GeV/nucleon from the second flight of the Cosmic Ray Energetics And Mass balloon-borne experiment. Particle energy was determined using a sampling tungsten/scintillating-fiber calorimeter, while particle charge was identified precisely with a dual-layer silicon charge detector installed for this flight. The resulting element ratios C/O, N/O, Ne/O, Mg/O, Si/O, and Fe/O at the top of atmosphere are 0.919 {+-} 0.123{sup stat} {+-} 0.030{sup syst}, 0.076 {+-} 0.019{sup stat} {+-} 0.013{sup syst}, 0.115 {+-} 0.031{sup stat} {+-} 0.004{sup syst}, 0.153 {+-} 0.039{sup stat} {+-} 0.005{sup syst}, 0.180 {+-} 0.045{sup stat} {+-} 0.006{sup syst}, and 0.139 {+-} 0.043{sup stat} {+-} 0.005{sup syst}, respectively, which agree with measurements at lower energies. The source abundance of N/O is found to be 0.054 {+-} 0.013{sup stat} {+-} 0.009{sup syst+0.010esc} {sub -0.017}. The cosmic-ray source abundances are compared to local Galactic (LG) abundances as a function of first ionization potential and as a function of condensation temperature. At high energies the trend that the cosmic-ray source abundances at large ionization potential or low condensation temperature are suppressed compared to their LG abundances continues. Therefore, the injection mechanism must be the same at TeV/nucleon energies as at the lower energies measured by HEAO-3, CRN, and TRACER. Furthermore, the cosmic-ray source abundances are compared to a mixture of 80% solar system abundances and 20% massive stellar outflow (MSO) as a function of atomic mass. The good agreement with TIGER measurements at lower energies confirms the existence of a substantial fraction of MSO material required in the {approx}TeV per nucleon region.

  12. Probing The Cosmic History of Light With High-Energy Gamma Rays

    NASA Astrophysics Data System (ADS)

    Hartmann, Dieter

    2016-01-01

    The Cosmic Microwave Background (CMB) holds answers to many questions of moderrn cosmology. The origin of the CMB lies in the early universe, and when it was released during the recombination phase the conditions were not yet right for new sources of light. But the first generation of stars born in a mostly neutral universe quickly re-ionized their surroubding baryonic environments, and dust was produced which allowed reprocessing of some star light into the infrared specral region. Black holes and other compact objects were born and the emissions from their accretion processes and relativistic jetted outflws contributed new light. Today, we observe this evolving radiation field as the Extragalactic Backgroud Light (EBL), ranging from the radio- to the gamma-ray band. The evolution of the diffuse electromagnetic energy content of the universe is the focus of this special session, and I will discuss its importance within the context of modern cosmology. I will emphasize the role of gamma-ray astronomy, which probes the EBL and the CMB through the opacity created by photon-photon pair production.

  13. Radio detection of high-energy cosmic rays at the Pierre Auger Observatory

    SciTech Connect

    Berg, A.M.van den; Collaboration, for the Pierre Auger

    2007-08-01

    The southern Auger Observatory provides an excellent test bed to study the radio detection of extensive air showers as an alternative, cost-effective, and accurate tool for cosmic-ray physics. The data from the radio setup can be correlated with those from the well-calibrated baseline detectors of the Pierre Auger Observatory. Furthermore, human-induced radio noise levels at the southern Auger site are relatively low. We have started an R&D program to test various radio-detection concepts. Our studies will reveal Radio Frequency Interferences (RFI) caused by natural effects such as day-night variations, thunderstorms, and by human-made disturbances. These RFI studies are conducted to optimize detection parameters such as antenna design, frequency interval, antenna spacing and signal processing. The data from our initial setups, which presently consist of typically 3 - 4 antennas, will be used to characterize the shower from radio signals and to optimize the initial concepts. Furthermore, the operation of a large detection array requires autonomous detector stations. The current design is aiming at stations with antennas for two polarizations, solar power, wireless communication, and local trigger logic. The results of this initial phase will provide an important stepping stone for the design of a few tens kilometers square engineering array.

  14. Radio detection of high-energy cosmic rays at the Pierre Auger Observatory

    E-print Network

    A. M. van den Berg; for the Pierre Auger Collaboration

    2007-08-13

    The southern Auger Observatory provides an excellent test bed to study the radio detection of extensive air showers as an alternative, cost-effective, and accurate tool for cosmic-ray physics. The data from the radio setup can be correlated with those from the well-calibrated baseline detectors of the Pierre Auger Observatory. Furthermore, human-induced radio noise levels at the southern Auger site are relatively low. We have started an R&D program to test various radio-detection concepts. Our studies will reveal Radio Frequency Interferences (RFI) caused by natural effects such as day-night variations, thunderstorms, and by human-made disturbances. These RFI studies are conducted to optimise detection parameters such as antenna design, frequency interval, antenna spacing and signal processing. The data from our initial setups, which presently consist of typically 3 - 4 antennas, will be used to characterise the shower from radio signals and to optimise the initial concepts. Furthermore, the operation of a large detection array requires autonomous detector stations. The current design is aiming at stations with antennas for two polarisations, solar power, wireless communication, and local trigger logic. The results of this initial phase will provide an important stepping stone for the design of a few tens kilometers square engineering array

  15. Arrival Distribution of Ultra-High Energy Cosmic Rays Prospects for the Future

    E-print Network

    Yoshiguchi, H; Sato, K; Yoshiguchi, Hiroyuki; Nagataki, Shigehiro; Sato, Katsuhiko

    2003-01-01

    We predict the arrival distribution of UHECRs above $4 \\times 10^{19}$ eV with the event number expected by future experiments in the next few years. We perform event simulations with the source model which is adopted in our recent study and can explain the current AGASA observation. At first, we calculate the harmonic amplitude and the two point correlation function for the simulated event sets. We find that significant anisotropy on large angle scale will be observed when $\\sim 10^3$ cosmic rays above $4 \\times 10^{19}$ eV are detected by future experiments. The statistics of the two point correlation function will also increase. The angle scale at which the events have strong correlation with each other corresponds to deflection angle of UHECR in propagating in the EGMF, which in turn can be determined by the future observations. We further investigate the relation between the number of events clustered at a direction and the distance of their sources. Despite the limited amount of data, we find that the C...

  16. Abundances and energy spectra of high energy heavy cosmic-ray nuclei

    SciTech Connect

    Barthelmy, S.D.

    1985-01-01

    We have measured the relative abundances of the cosmic rays in the iron group region at energies from a few GeV/amu to approximately 70 GeV/amu. This is done using a balloon-borne instrument consisting of gas ionization chambers, a plastic scintillator, a plastic Cherenkov counter, and a CO/sub 2/ gas Cherenkov counter. The instrument was flown from Palestine, Texas in the fall of 1982 for a total exposure of 62 m/sup 2/-ster-hr at an average atmospheric depth of 4 g/cm/sup 2/. The elemental charge was determined for a combination of the scintillator and plastic Cherenkov detector. Results are reported on the /sub 22/Ti//sub 26/Fe, /sub 24/Cr//sub 26/Fe, /sub 20/Ca//sub 26/Fe, and /sub 28/Ni//sub 28/Fe abundance ratios from 2 to 70 GeV/amu. Within this work results on the previously unused method of relativistic rise in gas ionization chambers is detailed as well as results on the return to nonsaturation of plastic scintillators.

  17. Germ cell mutagenesis in medaka fish after exposures to high-energy cosmic ray nuclei: A human model

    NASA Astrophysics Data System (ADS)

    Shimada, Atsuko; Shima, Akihiro; Nojima, Kumie; Seino, Yo; Setlow, Richard B.

    2005-04-01

    Astronauts beyond the Earth's orbit are exposed to high-energy cosmic-ray nuclei with high values of linear energy transfer (LET), resulting in much more biological damage than from x-rays or -rays and may result in mutations and cancer induction. The relative biological effectiveness of these nuclei depends on the LET, rising to as high as 50 at LET values of 100-200 keV/µm. An endpoint of concern is germ cell mutations passed on to offspring, arising from exposure to these nuclei. A vertebrate model for germ cell mutation is Medaka fish (Oryzias latipes). We exposed wild type males to doses of 1 GeV per nucleon Fe nuclei or to 290 MeV per nucleon C nuclei. They were mated to females with recessive mutations at five-color loci. The transparent embryos from >100 days of mating (representing exposed sperm, spermatids, or spermatogonia) were observed so as to detect dominant lethal mutations and total color mutations, even though the embryos might not hatch. The relative number of mutant embryos as a function of dose were compared with those induced by -rays. The relative biological effectiveness values for dominant lethal mutations and total color mutations for exposed sperm and spermatids were 1.3-2.1 for exposure to C nuclei and 1.5-3.0 for exposure to Fe nuclei. (The spermatogonial data were uncertain.) These low values, and the negligible number of viable mutations, compared with those for mutations in somatic cells and for neoplastic transformation, indicate that germ cell mutations arising from exposures to cosmic ray nuclei are not a significant hazard to astronauts. astronaut hazards | linear energy transfer | relative biological effect

  18. On the influence of galactic magnetic fields on the arrival direction distribution of ultra-high-energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Kim, Hang Bae

    2013-07-01

    We study the influence of galactic magnetic field (GMF) on both the correlation between ultra-high-energy cosmic rays (UHECRs) and active galactic nuclei (AGNs) and the clustering of UHECRs in the direction of Centaurus A (Cen A), both of which are observed in the arrival direction distribution of 69 UHECRs with energy E ? 55 EeV detected by the Pierre Auger Observatory. If UHECRs are dominated by protons, the correlation and the clustering are not affected significantly. However, if UHECRs are dominated by iron nuclei, the influence of the GMF becomes significant, and the correlation and the clustering may be fake due to the GMF while the arrival direction distribution outside of the GMF is compatible with the isotropy.

  19. High Energy Gamma Rays

    E-print Network

    R. Mukherjee

    2000-09-22

    This article reviews the present status of high energy gamma-ray astronomy at energies above 30 MeV. Observations in the past decade using both space- and ground-based experiments have been primarily responsible for giving a tremendous boost to our knowledge of the high energy Universe. High energy gamma-rays have been detected from a wide range of Galactic and extragalactic astrophysical sources, such as gamma-ray bursters, pulsars, and active galaxies. These observations have established high energy gamma-ray astronomy as a vital and exciting field, that has a bright future. This review summarizes the experimental techniques, observations and results obtained with recent experiments, and concludes with a short description of future prospects.

  20. Origin of the high energy cosmic neutrino background.

    PubMed

    Dado, Shlomo; Dar, Arnon

    2014-11-01

    The diffuse background of very high energy extraterrestrial neutrinos recently discovered with IceCube is compatible with that expected from cosmic ray interactions in the Galactic interstellar medium plus that expected from hadronic interactions near the source and in the intergalactic medium of the cosmic rays which have been accelerated by the jets that produce gamma ray bursts. PMID:25415894

  1. Fermi LAT Observation of Diffuse Gamma-Rays Produced through Interactions Between Local Interstellar Matter and High Energy Cosmic Rays

    SciTech Connect

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T.H.; /more authors..

    2012-03-30

    Observations by the Large Area Telescope (LAT) on the Fermi mission of diffuse {gamma}-rays in a mid-latitude region in the third quadrant (Galactic longitude l from 200{sup o} to 260{sup o} and latitude |b| from 22{sup o} to 60{sup o}) are reported. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of {gamma}-ray point sources and inverse Compton scattering are estimated and subtracted. The residual {gamma}-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV. The measured integrated {gamma}-ray emissivity is (1.63 {+-} 0.05) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} and (0.66 {+-} 0.02) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} above 100 MeV and above 300 MeV, respectively, with an additional systematic error of {approx}10%. The differential emissivity from 100 MeV to 10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. The results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within {approx}10%.

  2. Peculiar high energy cosmic ray stratospheric event reveals a heavy primary origin particle above the knee region of the cosmic ray spectrum

    SciTech Connect

    Kopenkin, V.; Fujimoto, Y.

    2005-01-15

    We wish to put forward an explanation for a peculiar cosmic ray event with energy {sigma}E{sub {gamma}}{>=}2x10{sup 15} eV detected in 1975 by the balloon borne emulsion chamber experiment performed in the stratosphere, at the altitude {>=}30 km above sea level. For almost 30 years the event has been described as unusual, invoking new exotic mechanisms or models. In our opinion there is no need for an extraordinary explanation. Contrary to the widespread belief, the event gives us an example of 'unrecognized standard physics'. At the same time this event revealed a variety of features which are of considerable interest for cosmic rays, nuclear physics, and astrophysics. Here we show that the observed family is most likely to be a result of a heavy nucleus interaction with an air nucleus. In this case a primary particle would originally have been in the energy region above 'the knee' of the cosmic ray spectrum.

  3. Cosmic ray research Public lecture

    E-print Network

    Cosmic ray research Public lecture Serendipity, colorful scientists and the birth of sub energy cosmic rays in Argentina 2 p.m., Wednesday, October 6, 2010 128 Jabara Hall Watkins Visiting powerful, high-energy cosmic rays that periodically bombard Earth. The project includes more than 450

  4. Effects of the galactic magnetic field on observed properties of ultra-high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Keivani, Azadeh

    2012-04-01

    We present the results of propagating ultra-high energy protons and iron nuclei through several models of the galactic magnetic field (GMF) using the CRT code. Particles are injected from the locations of nearby active galactic nuclei (AGN) in the VCV catalog. We analyze the correlations of the observed arrival directions with the AGN directions and study differences of the energy spectrum observed at earth from that injected at the AGN.

  5. Effects of the galactic magnetic field on observed properties of ultra-high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Keivani, Azadeh

    2011-04-01

    We present the results of propagating ultra high energy protons and iron nuclei through several models of the galactic magnetic field (GMF) using the CRT code. In this analysis, the particles have been injected from the locations of active galactic nuclei (AGN) in the VCV catalog. We analyze the correlations of the observed arrival directions with the AGN directions and study differences of the energy spectrum observed at earth from that injected at the AGN.

  6. Solar panels as air Cherenkov detectors for extremely high energy cosmic rays

    E-print Network

    Cecchini, S; Esposti, L D; Giacomelli, G; Guerra, M; Lax, I; Mandrioli, G; Parretta, A; Sarno, A; Schioppo, R; Sorel, M; Spurio, M

    2000-01-01

    Increasing interest towards the observation of the highest energy cosmic rayshas motivated the development of new detection techniques. The properties ofthe Cherenkov photon pulse emitted in the atmosphere by these very rareparticles indicate low-cost semiconductor detectors as good candidates fortheir optical read-out. The aim of this paper is to evaluate the viability of solar panels for thispurpose. The experimental framework resulting from measurements performed withsuitably-designed solar cells and large conventional photovoltaic areas ispresented. A discussion on the obtained and achievable sensitivities follows.

  7. Study of dispersion of mass distribution of ultra-high energy cosmic rays using a surface array of muon and electromagnetic detectors

    NASA Astrophysics Data System (ADS)

    Vícha, Jakub; Trávní?ek, Petr; Nosek, Dalibor; Ebr, Jan

    2015-09-01

    We consider a hypothetical observatory of ultra-high energy cosmic rays consisting of two surface detector arrays that measure independently electromagnetic and muon signals induced by air showers. Using the constant intensity cut method, sets of events ordered according to each of both signal sizes are compared giving the number of matched events. Based on its dependence on the zenith angle, a parameter sensitive to the dispersion of the distribution of the logarithmic mass of cosmic rays is introduced. The results obtained using two post-LHC models of hadronic interactions are very similar and indicate a weak dependence on details of these interactions.

  8. Relieving the Tension between Dark Matter Production of High-energy Cosmic Antiparticles and FERMI/LAT Constraint on Isotropic Diffuse Gamma-ray Background

    NASA Astrophysics Data System (ADS)

    Alekseev, V. V.; Belotsky, K. M.; Bogomolov, Yu. V.; Budaev, R. I.; Dunaeva, O. A.; Kirillov, A. A.; Kuznetsov, A. V.; Laletin, M. N.; Lukyanov, A. D.; Malakhov, V. V.; Mayorov, A. G.; Mayorova, M. A.; Mosichkin, A. F.; Okrugin, A. A.; Rodenko, S. A.; Shitova, A. M.

    The dark matter explanation of both cosmic ray positron and antiproton excesses, seen by PAMELA and recently confirmed by AMS-02, inevitably faces the contradiction with the latest FERMI/LAT data on isotropic diffuse gamma-ray background (IGRB). Here we discuss a possible solution to this problem, based on the accumulation of self-interacting dark matter component in the Galactic disk. For the same purpose, the mechanism of high-energy antiparticle production in the collisions of high-energy particles with matter can also be suggested.

  9. Monte Carlo calculations of high energy nucleon meson cascades and applications to galactic cosmic ray transport

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Alsmiller, R. G., Jr.; Chandler, K. C.

    1972-01-01

    Results obtained using a recently developed calculational method for determining the nucleon-meson cascade induced in thick materials by high-energy nucleons and charged pions are presented. The calculational method uses the intranuclear-cascade-evaporation model to treat nonelastic collisions by particles with energies approximately or smaller than GeV and an extrapolation model at higher energies. The following configurations are considered: (1) 19.2-GeV/c protons incident on iron; (2) 30.3-GeV/c protons incident on iron; (3) solar and galactic protons incident on the moon, and (4) galactic protons incident on tissue. For the first three configurations, experimental results are available and comparisons between the experimental and calculated results are given.

  10. The Lateral Trigger Probability function for the Ultra-High Energy Cosmic Ray showers detected by the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Anti?i?, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Bohá?ová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; Del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filip?i?, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mi?anovi?, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; P?kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.

    2011-12-01

    In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 1017 and 1019 eV and zenith angles up to 65°. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data using events simultaneously observed by the fluorescence and the surface detector of the Pierre Auger Observatory (hybrid events). We validate the Monte Carlo results showing how LTP functions from data are in good agreement with simulations.

  11. Sensitivity of cosmic-ray experiments to ultra-high-energy photons: reconstruction of the spectrum and limits on the superheavy dark matter

    E-print Network

    O. E. Kalashev; G. I. Rubtsov; S. V. Troitsky

    2009-11-19

    We estimate the sensitivity of various experiments detecting ultra-high-energy cosmic rays to primary photons with energies above 10^19 eV. We demonstrate that the energy of a primary photon may be significantly (up to a factor of ~ 10) under- or overestimated for particular primary energies and arrival directions. We consider distortion of the reconstructed cosmic-ray spectrum for the photonic component. As an example, we use these results to constrain the parameter space of models of superheavy dark matter by means of both the observed spectra and available limits on the photon content. We find that a significant contribution of ultra-high-energy particles (photons and protons) from decays of superheavy dark matter is allowed by all these constraints.

  12. Development of a Galactic Magnetic Field Model and its application in identifying sources of Ultra-High-Energy Cosmic Rays in Northern Sky

    NASA Astrophysics Data System (ADS)

    Davoudifar, Pantea; Rowshan Tabari, Keihanak

    2015-09-01

    New physical conditions were applied to our previous Galactic Magnetic Field model. The relative motion of a Galactic source were also considered. We simulated the propagation of Ultra-High-Energy particles under the influence of Galactic Magnetic Field. In this research the particles were originated from millisecond pulsars located in the northern sky. Considering the relative motion of Galactic sources for a proper time interval, sample test images of millisecond pulsars were produced using cosmic rays of energies ranged in 1018 - 1019, 1019 - 1020, and 1020 - 1021 eV. The results were compared with our previous ones. For each part of the sky considering the structure of Galactic Magnetic Field, the source location and its relative motion to the observer, one may use these images as a guide to find possible sources of the Ultra-High-Energy Cosmic Ray’ events. Consequently, a possible method of identifying the sources of these particles were introduced. Some physical limits were discussed.

  13. On the origin of high-energy cosmic neutrinos

    NASA Astrophysics Data System (ADS)

    Murase, Kohta

    2015-07-01

    Recently, the IceCube collaboration made a big announcement of the first discovery of high-energy cosmic neutrinos. Their origin is a new interesting mystery in astroparticle physics, but the present data may give us hints of connection to cosmic-ray and/or gamma-ray sources. We will look over possible scenarios for the cosmic neutrino signal, and emphasize the importance of multimessenger approaches in order to identify the PeV neutrino sources and get crucial clues to the cosmic-ray origin. We also discuss some possibilities to study neutrino properties and probe new physics.

  14. High-energy X-Ray Detection of G359.89-0.08 (Sgr A-E): Magnetic Flux Tube Emission Powered by Cosmic Rays?

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; Hailey, Charles J.; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Gotthelf, Eric V.; Harrison, Fiona A.; Mori, Kaya; Nynka, Melania; Stern, Daniel; Tomsick, John A.; Zhang, William W.

    2014-03-01

    We report the first detection of high-energy X-ray (E > 10 keV) emission from the Galactic center non-thermal filament G359.89-0.08 (Sgr A-E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to ~50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index ? ? 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is FX = (2.0 ± 0.1) × 10-12 erg cm-2 s-1, corresponding to an unabsorbed X-ray luminosity LX = (2.6 ± 0.8) × 1034 erg s-1 assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A-E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to ~100 kyr) with low surface brightness and radii up to ~30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.

  15. High-Energy X-Ray Detection of G359.89-0.08 (SGR A-E): Magnetic Flux Tube Emission Powered by Cosmic Rays?

    NASA Technical Reports Server (NTRS)

    Zhang, Shuo; Hailey, Charles J.; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Gotthelf, Eric V.; Harrison, Fiona A.; Mori, Kaya; Nynka, Melania; Stern, Daniel; Tomsick, John A; Zhang, Will

    2014-01-01

    We report the first detection of high-energy X-ray (E (is) greater than 10 keV) emission from the Galactic center non-thermal filament G359.89-0.08 (Sgr A-E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to approximately 50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index gamma approximately equals 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is F(sub X) = (2.0 +/- 0.1) × 10(exp -12)erg cm(-2) s(-1) , corresponding to an unabsorbed X-ray luminosity L(sub X) = (2.6+/-0.8)×10(exp 34) erg s(-1) assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A-E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to (is) approximately 100 kyr) with low surface brightness and radii up to (is) approximately 30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.

  16. High-energy X-ray detection of G359.89–0.08 (SGR A–E): Magnetic flux tube emission powered by cosmic rays?

    SciTech Connect

    Zhang, Shuo; Hailey, Charles J.; Gotthelf, Eric V.; Mori, Kaya; Nynka, Melania; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Tomsick, John A.; Christensen, Finn E.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.

    2014-03-20

    We report the first detection of high-energy X-ray (E > 10 keV) emission from the Galactic center non-thermal filament G359.89–0.08 (Sgr A–E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to ?50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index ? ? 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is F{sub X} = (2.0 ± 0.1) × 10{sup –12} erg cm{sup –2} s{sup –1}, corresponding to an unabsorbed X-ray luminosity L{sub X} = (2.6 ± 0.8) × 10{sup 34} erg s{sup –1} assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A–E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to ?100 kyr) with low surface brightness and radii up to ?30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.

  17. ANALYSIS OF LARGE-SCALE ANISOTROPY OF ULTRA-HIGH ENERGY COSMIC RAYS IN HiRes DATA

    SciTech Connect

    Abbasi, R. U.; Abu-Zayyad, T.; Allen, M.; Archbold, G.; Belov, K.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Findlay, J.; Gray, R. C.; Hanlon, W. F.; Amann, J. F.; Hoffman, C. M.; Finley, C. B.

    2010-04-10

    Stereo data collected by the HiRes experiment over a six-year period are examined for large-scale anisotropy related to the inhomogeneous distribution of matter in the nearby universe. We consider the generic case of small cosmic-ray deflections and a large number of sources tracing the matter distribution. In this matter tracer model the expected cosmic-ray flux depends essentially on a single free parameter, the typical deflection angle {theta} {sub s}. We find that the HiRes data with threshold energies of 40 EeV and 57 EeV are incompatible with the matter tracer model at a 95% confidence level unless {theta} {sub s} > 10 deg. and are compatible with an isotropic flux. The data set above 10 EeV is compatible with both the matter tracer model and an isotropic flux.

  18. The NUCLEON space experiment for direct high energy cosmic rays investigation in TeV-PeV energy range

    NASA Astrophysics Data System (ADS)

    Atkin, E.; Bulatov, V.; Dorokhov, V.; Gorbunov, N.; Filippov, S.; Grebenyuk, V.; Karmanov, D.; Kovalev, I.; Kudryashov, I.; Merkin, M.; Pakhomov, A.; Podorozhny, D.; Polkov, D.; Porokhovoy, S.; Shumikhin, V.; Sveshnikova, L.; Tkachenko, A.; Tkachev, L.; Turundaevskiy, A.; Vasiliev, O.; Voronin, A.

    2015-01-01

    The NUCLEON satellite experiment is designed to investigate directly, above the atmosphere, the energy spectra of cosmic-ray nuclei and the chemical composition from 100 GeV to 1000 TeV as well as the cosmic-ray electron spectrum from 20 GeV to 3 TeV. NUCLEON is planned to be launched in 2014. This mission is aimed at clarifying the essential details of cosmic-ray origin in this energy interval: number and types of sources, identification of actual nearby sources, and the investigation of the mechanisms responsible for the knee. Specific features of the NUCLEON instrument are relatively small thickness and small weight. A special method of energy determination by the silicon tracker was developed for this case. In this paper we describe a design of the instrument and the results of accelerator beam tests in terms of charge and energy resolution. The overall evidences of the capability of the apparatus to achieve the declared aims are also presented.

  19. Perspective of monochromatic gamma-ray line detection with the High Energy cosmic-Radiation Detection (HERD) facility onboard China's Space Station

    E-print Network

    Xiaoyuan Huang; Anna S. Lamperstorfer; Yue-Lin Sming Tsai; Ming Xu; Qiang Yuan; Jin Chang; Yong-Wei Dong; Bing-Liang Hu; Jun-Guang Lü; Le Wang; Bo-Bing Wu; Shuang-Nan Zhang

    2015-09-09

    HERD is the High Energy cosmic-Radiation Detection instrument proposed to operate onboard China's space station in the 2020s. It is designed to detect energetic cosmic ray nuclei, leptons and photons with a high energy resolution ($\\sim1\\%$ for electrons and photons and $20\\%$ for nuclei) and a large geometry factor ($>3\\, m^2sr$ for electrons and diffuse photons and $>2\\, m^2sr$ for nuclei). In this work we discuss the capability of HERD to detect monochromatic $\\gamma$-ray lines, based on simulations of the detector performance. It is shown that HERD will be one of the most sensitive instruments for monochromatic $\\gamma$-ray searches at energies between $\\sim10$ to a few hundred GeV. Above hundreds of GeV, Cherenkov telescopes will be more sensitive due to their large effective area. As a specific example, we show that a good portion of the parameter space of a supersymmetric dark matter model can be probed with HERD.

  20. Perspective of monochromatic gamma-ray line detection with the High Energy cosmic-Radiation Detection (HERD) facility onboard China's Space Station

    E-print Network

    Huang, Xiaoyuan; Tsai, Yue-Lin Sming; Xu, Ming; Yuan, Qiang; Chang, Jin; Dong, Yong-Wei; Hu, Bing-Liang; Lü, Jun-Guang; Wang, Le; Wu, Bo-Bing; Zhang, Shuang-Nan

    2015-01-01

    HERD is the High Energy cosmic-Radiation Detection instrument proposed to operate onboard China's space station in the 2020s. It is designed to detect energetic cosmic ray nuclei, leptons and photons with a high energy resolution ($\\sim1\\%$ for electrons and photons and $20\\%$ for nuclei) and a large geometry factor ($>3\\, m^2sr$ for electrons and diffuse photons and $>2\\, m^2sr$ for nuclei). In this work we discuss the capability of HERD to detect monochromatic $\\gamma$-ray lines, based on simulations of the detector performance. It is shown that HERD will be one of the most sensitive instruments for monochromatic $\\gamma$-ray searches at energies between $\\sim10$ to a few hundred GeV. Above hundreds of GeV, Cherenkov telescopes will be more sensitive due to their large effective area. As a specific example, we show that a good portion of the parameter space of a supersymmetric dark matter model can be probed with HERD.

  1. Ionization of galactic cosmic rays and high-energy particles in the ionosphere and atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Vellinov, P. I.; Mateev, L. N.

    This paper presents a new model for the ionization of cosmic rays in the atmosphere of Mars, based on an engineering model for the Martian atmosphere developed by Moroz et al. (1988). Based on the theoretical model, a computer program was developed in TURBO-PASCAL. The q(h) profiles (where q is the rate of electron production at a height h) at the minimum and the maximum of solar activity calculated for summer in the northern Martian atmosphere, and for winter in the southern hemisphere are presented.

  2. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  3. Constraints on dark matter models from a Fermi LAT search for high-energy cosmic-ray electrons from the Sun

    E-print Network

    The Fermi LAT Collaboration

    2011-07-21

    During its first year of data taking, the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope has collected a large sample of high-energy cosmic-ray electrons and positrons (CREs). We present the results of a directional analysis of the CRE events, in which we searched for a flux excess correlated with the direction of the Sun. Two different and complementary analysis approaches were implemented, and neither yielded evidence of a significant CRE flux excess from the Sun. We derive upper limits on the CRE flux from the Sun's direction, and use these bounds to constrain two classes of dark matter models which predict a solar CRE flux: (1) models in which dark matter annihilates to CREs via a light intermediate state, and (2) inelastic dark matter models in which dark matter annihilates to CREs.

  4. Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Anti?i?, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Bohá?ová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filip?i?, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Aüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mi?anovi?, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; P?kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.

    2011-06-01

    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > Eth = 5.5 × 1019 eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > Eth are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above Eth/Z (for illustrative values of Z = 6,13,26). If the anisotropies above Eth are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.

  5. North-south asymmetry for high-energy cosmic-ray electrons measured with the PAMELA experiment

    SciTech Connect

    Karelin, A. V.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bonechi, L.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Galper, A. M.; Danilchenko, I. A.; Donato, C. De; Santis, C. De; and others

    2013-08-15

    The north-south asymmetry for cosmic-ray particles was measured with one instrument of the PAMELA satellite-borne experiment in the period June 2006-May 2009. The analysis has been performed by two independent methods: by comparing the count rates in regions with identical geomagnetic conditions and by comparing the experimental distribution of particle directions with the simulated distribution that would be in the case of an isotropic particle flux. The dependences of the asymmetry on energy release in the PAMELA calorimeter and on time have been constructed. The asymmetry (N{sub n} - N{sub s})/(N{sub n} + N{sub s}) is 0.06 {+-} 0.004 at the threshold energy release in the calorimeter and gradually decreases with increasing energy release. The observed effect is shown to be produced by electrons in the energy range 10-100 GeV.

  6. Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    DOE PAGESBeta

    Abreu, P

    2011-06-17

    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > Eth = 5.5 x 1019 eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > Eth are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above Eth/Z (for illustrativemore »values of Z = 6,13,26). If the anisotropies above Eth are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.« less

  7. Diffuse fluxes of cosmic high-energy neutrinos

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1979-01-01

    Production spectra of high-energy neutrinos from galactic cosmic-ray interactions with interstellar gas and extragalactic ultrahigh-energy cosmic-ray interactions with microwave blackbody photons are presented and discussed. These production processes involve the decay of charged pions and are thus related to the production of cosmic gamma rays from the decay of neutral pions. Estimates of the neutrino fluxes from various diffuse cosmic sources are then made, and the reasons for significant differences with previous estimates are discussed. Small predicted event rates for a DUMAND (deep underwater muon and neutrino detector) type detection system, combined with a possible significant flux of prompt neutrinos from the atmosphere above 50 TeV, may make the study of diffuse extraterrestrial neutrinos more difficult than previously thought.

  8. Cosmic Rays from Cosmic Strings with Condensates

    E-print Network

    Tanmay Vachaspati

    2009-11-24

    We re-visit the production of cosmic rays by cusps on cosmic strings. If a scalar field (``Higgs'') has a linear interaction with the string world-sheet, such as would occur if there is a bosonic condensate on the string, cusps on string loops emit narrow beams of very high energy Higgses which then decay to give a flux of ultra high energy cosmic rays. The ultra-high energy flux and the gamma to proton ratio agree with observations if the string scale is $\\sim 10^{13}$ GeV. The diffuse gamma ray and proton fluxes are well below current bounds. Strings that are {\\it lighter} and have linear interactions with scalars produce an excess of direct and diffuse cosmic rays and are ruled out by observations, while heavier strings ($\\sim 10^{15}$ GeV) are constrained by their gravitational signatures. This leaves a narrow window of parameter space for the existence of cosmic strings with bosonic condensates.

  9. Infinite efficiency of collisional Penrose process: Can over-spinning Kerr geometry be the source of ultra-high-energy cosmic rays and neutrinos ?

    E-print Network

    Mandar Patil; Tomohiro Harada

    2015-10-28

    The origin of the ultra-high-energy particles we receive on the Earth from the outer space such as EeV cosmic rays and PeV neutrinos remains an enigma. All mechanisms known to us currently make use of electromagnetic interaction to accelerate charged particles. In this paper we propose a mechanism exclusively based on gravity rather than electromagnetic interaction. We show that it is possible to generate ultra-high-energy particles starting from particles with moderate energies using the collisional Penrose process in an overspinning Kerr spacetime transcending the Kerr bound only by an infinitesimal amount, i.e., with the Kerr parameter $a=M(1+\\epsilon)$, where we take the limit $\\epsilon \\rightarrow 0^+$. We consider two massive particles starting from rest at infinity that collide at $r=M$ with divergent center-of-mass energy and produce two massless particles. We show that massless particles produced in the collision can escape to infinity with the ultra-high energies exploiting the collisional Penrose process with the divergent efficiency $\\eta \\sim {1}/{\\sqrt{\\epsilon}} \\rightarrow \\infty$. Assuming the isotropic emission of massless particles in the center-of-mass frame of the colliding particles, we show that half of the particles created in the collisions escape to infinity with the divergent energies. To a distant observer, ultra-high-energy particles appear to originate from a bright spot which is at the angular location $\\xi \\sim {2M}/{r_{obs}}$ with respect to the singularity on the side which is rotating towards the observer. We show that the anisotropy in emission in the center-of-mass frame, which is dictated by the differential cross-section of underlying particle physics process, leaves a district signature on the spectrum of ultra-high-energy massless particles. Thus, it provides a unique probe into fundamental particle physics.

  10. Cosmic Necklaces and Ultrahigh Energy Cosmic Rays

    SciTech Connect

    Berezinsky, V.; Vilenkin, A.

    1997-12-01

    Cosmic necklaces are hybrid topological defects consisting of monopoles and strings, with two strings attached to each monopole. We argue that the cosmological evolution of necklaces may significantly differ from that of cosmic strings. The typical velocity of necklaces can be much smaller than the speed of light, and the characteristic scale of the network much smaller than the horizon. We estimate the flux of high-energy protons produced by monopole annihilation in the decaying closed loops. For some reasonable values of the parameters it is comparable to the observed flux of ultrahigh-energy cosmic rays. {copyright} {ital 1997} {ital The American Physical Society}

  11. Infinite efficiency of collisional Penrose process: Can over-spinning Kerr geometry be the source of ultra-high-energy cosmic rays and neutrinos ?

    E-print Network

    Patil, Mandar

    2015-01-01

    The origin of the ultra-high-energy particles we receive on the Earth from the outer space such as EeV cosmic rays and PeV neutrinos remains an enigma. All mechanisms known to us currently make use of electromagnetic interaction to accelerate charged particles. In this paper we propose a mechanism exclusively based on gravity rather than electromagnetic interaction. We show that it is possible to generate ultra-high-energy particles starting from particles with moderate energies using the collisional Penrose process in an overspinning Kerr spacetime transcending the Kerr bound only by an infinitesimal amount, i.e., with the Kerr parameter $a=M(1+\\epsilon)$, where we take the limit $\\epsilon \\rightarrow 0^+$. We consider two massive particles starting from rest at infinity that collide at $r=M$ with divergent center-of-mass energy and produce two massless particles. We show that massless particles produced in the collision can escape to infinity with the ultra-high energies exploiting the collisional Penrose p...

  12. High Energy Radiation from Gamma Ray Bursts

    E-print Network

    Charles D. Dermer; James Chiang

    1999-12-08

    Gamma-ray burst (GRB) engines are probed most intimately during the prompt gamma-ray luminous phase when the expanding blast wave is closest to the explosion center. Using GRBs 990123 and 940217 as guides, we briefly review observations of high-energy emission from GRBs and summarize some problems in GRB physics. \\gamma\\gamma transparency arguments imply relativistic beaming. The parameters that go into the external shock model are stated, and we show numerical simulation results of gamma-ray light curves from relativistic blast waves with different amounts of baryon loading. A distinct component due to the synchrotron self-Compton process produces significant emission at GeV and TeV energies. Predictions for spectral and temporal evolution at these energies are presented for a blast wave expanding into uniform surroundings. Observations of the slow decay of GeV-TeV radiation provide evidence for ultra-high energy cosmic ray acceleration in GRBs.

  13. Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    SciTech Connect

    Abreu, P

    2011-06-17

    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > Eth = 5.5 x 1019 eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > Eth are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above Eth/Z (for illustrative values of Z = 6,13,26). If the anisotropies above Eth are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.

  14. Estimating Ultra-High Energy Cosmic Ray Data as seen from the JEM-EUSO Fluorescence Detector for the planned space based JEM-EUSO detector

    NASA Astrophysics Data System (ADS)

    Fenn, Jeremy; Wiencke, Lawrence

    2014-03-01

    Ultra-high energy cosmic rays (UHECRs) are subatomic particles with energies above 1018 eV. UHECRs are of interest because they are the highest energy particles known to exist. Their source(s), compositions, and the acceleration mechanisms to produce them with energies beyond 1020 eV remain unknown. The Pierre Auger Observatory, located in Argentina, is the world's largest UHECR observatory. It is one of the few a hybrid detectors in the world that combines surface (SD) and fluorescence (FD) detectors. The hybrid detection system is advantageous as it provides a more accurate reconstruction of the incoming cosmic ray's energy and trajectory as it travels through the atmosphere. However, even with the advantage of a hybrid detector, the Pierre Auger has limitations being a ground based observatory. The next generation in UHECR detection is the planned JEM-EUSO mission. The JEM-EUSO mission will consist of a fluorescence detector telescope attached to the International Space Station (ISS). The JEM-EUSO detector is expected to receive an exposure level to UHECRs many times that of the Pierre Auger Observatory by viewing a much larger volume of the atmosphere. In this presentation, I will discuss how data from specific UHECRs collected by the Pierre Auger Observatory is analyzed and altered to estimate what their signatures would look like from space at the planned JEM-EUSO detector. Research advisor

  15. A 100,000 pulse height analyzer for use in High Energy Cosmic Ray Experiments (HECRE) on high altitude balloon flights

    NASA Technical Reports Server (NTRS)

    Cancro, C. A.; Garrahan, N. M.; Mcgowan, R. G.

    1971-01-01

    A description is given of a wide dynamic range pulse height analyzer system developed for use on High Energy Cosmic Ray Experiment (HECRE) Balloon Flights. A wide dynamic range of 100,000 is obtained by extending the range of a basic 1024 channel analyzer through the use of multiple ranges and range selection. The system described here contains four 100,000 pulse height analyzers. Each 100,000 pulse height analyzer consists of a group of cordwood welded modules mounted and interconnected on a printed circuit card. Four of these card assemblies, the required clock drive circuitry (discrete components mounted and interconnected on a separate card) and three input-output connectors are interconnected and mounted on the system board.

  16. Detecting ultra-high energy cosmic rays from space with unprecedented acceptance: objectives and design of the JEM-EUSO mission

    NASA Astrophysics Data System (ADS)

    Casolino, M.; Adams, J. H.; Bertaina, M. E.; Christl, M. J.; Ebisuzaki, T.; Gorodetzky, P.; Hachisu, Y.; Kajino, F.; Kawasaki, Y.; Medina-Tanco, G.; Miyamoto, H.; Ohomori, H.; Parizot, E.; Park, I.; Picozza, P.; Sakaki, N.; Santangelo, A.; Shinozaki, K.; Takizawa, Y.; Tsuno, K.; JEM-EUSO Collaboration

    2011-10-01

    The Extreme Universe Space Observatory on the Japanese Experiment Module (JEM-EUSO) of the International Space Station (ISS) is the first mission that will study from space Ultra High-Energy Cosmic Rays (UHECR). JEM-EUSO will observe Extensive Air Showers (EAS) produced by UHECRs traversing the Earth's atmosphere from above. For each event, the detector will make accurate measurements of the energy, arrival direction and nature of the primary particle using a target volume far greater than what is achievable from ground. The corresponding increase in statistics will help to clarify the origin and sources of UHECRs as well as the environment traversed during production and propagation. Possibly this will bring new light onto particle physics mechanisms operating at energies well beyond those achievable by man-made accelerators. The spectrum of scientific goals of the JEM-EUSO mission includes as exploratory objectives the detection of high-energy gamma rays and neutrinos, the study of cosmic magnetic fields, and tests of relativity and quantum gravity effects at extreme energies. In parallel JEM-EUSO will systematically perform observation of the surface of the Earth in the infra-red and ultra-violet ranges, studying also atmospheric phenomena (Transient Luminous Effects). The apparatus is a 2 t detector using Fresnel-based optics to focus the UV-light from EAS on a focal surface composed of about 6 000~multianode photomultipliers for a total of ~3 · 105 channels. A multi-layer parallel architecture has been devised to handle the data flow and select valid triggers, reducing it to a rate compatible with downlink constraints. Each processing level filters the event with increasingly complex algorithms using ASICs, FPGAs and DSPs in this order to reject spurious triggers and reduce the data rate.

  17. HIGH-ENERGY X-RAY DETECTION OF G359.89–0.08 (SGR A–E): MAGNETIC FLUX TUBE EMISSION POWERED BY COSMIC RAYS?

    E-print Network

    Zhang, Shuo

    We report the first detection of high-energy X-ray (E > 10 keV) emission from the Galactic center non-thermal filament G359.89–0.08 (Sgr A–E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The ...

  18. The Origin of Cosmic Rays

    SciTech Connect

    Blasi, Pasquale

    2008-02-20

    Cosmic Rays reach the Earth from space with energies of up to more than 1020 eV, carrying information on the most powerful particle accelerators that Nature has been able to assemble. Understanding where and how cosmic rays originate has required almost one century of investigations, and, although the last word is not written yet, recent observations and theory seem now to fit together to provide us with a global picture of the origin of cosmic rays of unprecedented clarity. Here we will describe what we learned from recent observations of astrophysical sources (such as supernova remnants and active galaxies) and we will illustrate what these observations tell us about the physics of particle acceleration and transport. We will also discuss the 'end' of the Galactic cosmic ray spectrum, which bridges out attention towards the so called ultra high energy cosmic rays (UHECRs). At {approx}1020 eV the gyration scale of cosmic rays in cosmic magnetic fields becomes large enough to allow us to point back to their sources, thereby allowing us to perform 'cosmic ray astronomy', as confirmed by the recent results obtained with the Pierre Auger Observatory. We will discuss the implications of these observations for the understanding of UHECRs, as well as some questions which will likely remain unanswered and will be the target of the next generation of cosmic ray experiments.

  19. The Origin of Cosmic Rays

    SciTech Connect

    Blasi, Pasquale

    2008-02-20

    Cosmic Rays reach the Earth from space with energies of up to more than 1020 eV, carrying information on the most powerful particle accelerators that Nature has been able to assemble. Understanding where and how cosmic rays originate has required almost one century of investigations, and, although the last word is not written yet, recent observations and theory seem now to fit together to provide us with a global picture of the origin of cosmic rays of unprecedented clarity. Here we will describe what we learned from recent observations of astrophysical sources (such as supernova remnants and active galaxies) and we will illustrate what these observations tell us about the physics of particle acceleration and transport. We will also discuss the “end” of the Galactic cosmic ray spectrum, which bridges out attention towards the so called ultra high energy cosmic rays (UHECRs). At ~1020 eV the gyration scale of cosmic rays in cosmic magnetic fields becomes large enough to allow us to point back to their sources, thereby allowing us to perform “cosmic ray astronomy”, as confirmed by the recent results obtained with the Pierre Auger Observatory. We will discuss the implications of these observations for the understanding of UHECRs, as well as some questions which will likely remain unanswered and will be the target of the next generation of cosmic ray experiments.

  20. The Origin of Cosmic Rays

    ScienceCinema

    Blasi, Pasquale [INAF/Arcetri-Italy and Fermilab, Italy

    2010-01-08

    Cosmic Rays reach the Earth from space with energies of up to more than 1020 eV, carrying information on the most powerful particle accelerators that Nature has been able to assemble. Understanding where and how cosmic rays originate has required almost one century of investigations, and, although the last word is not written yet, recent observations and theory seem now to fit together to provide us with a global picture of the origin of cosmic rays of unprecedented clarity. Here we will describe what we learned from recent observations of astrophysical sources (such as supernova remnants and active galaxies) and we will illustrate what these observations tell us about the physics of particle acceleration and transport. We will also discuss the ?end? of the Galactic cosmic ray spectrum, which bridges out attention towards the so called ultra high energy cosmic rays (UHECRs). At ~1020 eV the gyration scale of cosmic rays in cosmic magnetic fields becomes large enough to allow us to point back to their sources, thereby allowing us to perform ?cosmic ray astronomy?, as confirmed by the recent results obtained with the Pierre Auger Observatory. We will discuss the implications of these observations for the understanding of UHECRs, as well as some questions which will likely remain unanswered and will be the target of the next generation of cosmic ray experiments.

  1. Ultrahigh Energy Cosmic Rays Detection

    SciTech Connect

    Aramo, Carla

    2005-10-12

    The paper describes methods used for the detection of cosmic rays with energies above 1018 eV (UHECR, UltraHigh Energy Cosmic Rays). It had been anticipated there would be a cutoff in the energy spectrum of primary cosmic rays around 3{center_dot}1019 eV induced by their interaction with the 2.7 deg. K primordial photons. This has become known as the GZK cutoff. However, several showers have been detected with estimated primary energy exceeding this limit.

  2. Dual Phase Cosmic Rays

    E-print Network

    Richard Shurtleff

    2007-12-30

    A calculation based on flat spacetime symmetries shows how there can be two quantum phases. For one, extreme phase change determines a conventional classical trajectory and four-momentum, i.e. mass times four-velocity. The other phase occurs in an effective particle state, with the effective energy and momentum being the rate of change of the phase with respect to time and distance. A cosmic ray proton moves along a classical trajectory, but exists in an effective particle state with an effective energy that depends on the local gravitational potential. Assumptions are made so that a cosmic ray proton in an ultra-high energy state detected near the Earth was in a much less energetic state in interstellar space. A 300 EeV proton incident on the Earth was a 2 PeV proton in interstellar space. The model predicts such protons are in states with even more energy near the Sun than when near the Earth.

  3. Introduction to Cosmic Rays

    E-print Network

    Peter Biermann; Guenter Sigl

    2002-02-22

    Energetic particles, traditionally called Cosmic Rays, were discovered nearly a hundred years ago, and their origin is still uncertain. Their main constituents are the normal nuclei as in the standard cosmic abundances of matter, with some enhancements for the heavier elements; there are also electrons, positrons and anti-protons, but no anti-nuclei. Today we also have information on isotopic abundances, which show some anomalies, as compared with the interstellar medium. The known spectrum extends over energies from a few hundred MeV to 3*10^{20} eV and shows few clear spectral signatures: There is a small spectral break near 5*10^{15} eV, the "knee", where the spectrum turns down; there is another spectral break near 3*10^{18} eV, the "ankle", where the spectrum turns up again. Up to the ankle the cosmic rays are usually interpreted as originating from Galactic supernova explosions; however, we do not know what the origin of the knee is. The particles beyond the ankle have to be extragalactic, it is usually assumed, because the Larmor radii in the Galactic magnetic field are too large; this argument could be overcome if those particles were very heavy nuclei as Fe, an idea which appears to be inconsistent, however, with the airshower data immediately above the energy of the ankle. Due to interaction with the cosmic microwave background there is a strong cut-off expected near 5*10^{19} eV, which is, however, not seen; The high energy cosmic rays beyond this "GZK-cutoff" (after its discoverers Greisen, Zatsepin and Kuzmin) are the challenge to interpret. We will describe the various approaches to understand the origin and physics of cosmic rays (abridged).

  4. Color Glass Condensate in Brane Models or Don't Ultra High Energy Cosmic Rays Probe $10^{15}eV$ Scale ?

    E-print Network

    Houri Ziaeepour

    2006-03-16

    In a previous work hep-ph/0203165 we have studied propagation of relativistic particles in the bulk for some of most popular brane models. Constraints have been put on the parameter space of these models by calculating the time delay due to propagation in the bulk of particles created during the interaction of Ultra High Energy Cosmic Rays with protons in the terrestrial atmosphere. The question was however raised that probability of hard processes in which bulk modes can be produced is small and consequently, the tiny flux of UHECRs can not constrain brane models. Here we use Color Glass Condensate (CGC) model to show that effects of extra dimensions are visible not only in hard processes when the incoming particle hits a massive Kaluza-Klein mode but also through the modification of soft/semi-hard parton distribution. At classical level, for an observer in the CM frame of UHECR and atmospheric hadrons, color charge sources are contracted to a thin sheet with a width inversely proportional to the energy of the ultra energetic cosmic ray hadron and consequently they can see an extra dimension with comparable size. Due to QCD interaction a short life swarm of partons is produced in front of the sheet and its partons can penetrate to the extra-dimension bulk. This reduces the effective density of partons on the brane or in a classical view creates a delay in the arrival of the most energetic particles if they are reflected back due to the warping of the bulk. In CGC approximation the density of swarm at different distance from the classical sheet can be related and therefore it is possible (at least formally) to determine the relative fraction of partons in the bulk and on the brane at different scales. Results of this work are also relevant to the test of brane models in hadron colliders like LHC.

  5. A Simplified Model for the Acceleration of Cosmic Ray Particles

    ERIC Educational Resources Information Center

    Gron, Oyvind

    2010-01-01

    Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…

  6. Charge composition of high energy heavy primary cosmic ray nuclei. Ph.D. Thesis - Catholic Univ. of Am.

    NASA Technical Reports Server (NTRS)

    Price, R. D.

    1974-01-01

    A detailed study of the charge composition of primary cosmic radiation for about 5000 charged nuclei from neon to iron with energies greater than 1.16 GeV/nucleon is presented. Values are obtained after corrections were made for detector dependences, atmospheric attenuation, and solar modulation. New values of 38.5, 32.4, 23.7, and 16.8 g/sq cm for the attenuation mean free paths in air for the same charge groups are presented.

  7. Computational Modeling of the Class I Low-Mass Protostar Elias 29 Applying Optical Constants of Ices Processed By High Energy Cosmic Ray Analogs

    NASA Astrophysics Data System (ADS)

    Rocha, W. R. M.; Pilling, S.

    2015-04-01

    We present a study of the effects of high energy cosmic rays (CRs) over the astrophysical ices, observed toward the embedded class I protostar Elias 29, by using computational modeling and laboratory data. Its spectrum was observed with the Infrared Space Observatory (ISO) covering 2.3-190 ?m. The modeling employed the three-dimensional Monte Carlo radiative transfer code RADMC-3D and laboratory data of bombarded ice grains by CR analogs and unprocessed ices (not bombarded). We are assuming that Elias 29 has a self-irradiated disk with inclination i = 60.°0, surrounded by an envelope with a bipolar cavity. The results show that absorption features toward Elias 29 are better reproduced by assuming a combination between unprocessed astrophysical ices at low temperature (H2O, CO, CO2) and bombarded ices (H2O:CO2) by high energy CRs. Evidences of the ice processing around Elias 29 can be observed by the good fitting around 5.5-8.0 ?m, by polar and apolar ice segregation in 15.15-15.25 ?m, and by the presence of the CH4 and HCOOH ices. Given that non-nitrogen compounds were employed in this work, we assume that absorption around 5.5-8.0 ?m should not be associated with the NH4+ ion (see the 2003 work of Shutte & Khanna ), but more probably with aliphatic ethers (e.g., R1-OCH2-R2), CH3CHO, and related species. The results obtained in this paper are important because they show that the environment around protostars is better modeled considering processed samples and, consequently, demonstrate the chemical evolution of the astrophysical ices.

  8. The Heliosphere and Galactic Cosmic Rays - Duration: 39 seconds.

    NASA Video Gallery

    The heliosphere deflects galactic cosmic rays from entering the system. Galactic cosmic rays are a very high energy form of particle radiation that are extremely difficult to shield against and are...

  9. Cosmic rays: 1912-2012

    NASA Astrophysics Data System (ADS)

    Israel, Martin H.

    2012-09-01

    One hundred years ago, using balloon flights up to 5 kilometers altitude, Victor Hess demonstrated that the intensity of penetrating ionizing radiation increased with altitude, indicating that Earth is exposed to high-energy radiation from space [Hess, 1912]. Since that observation, these “cosmic rays” have enabled discoveries basic to elementary particle physics and astrophysics. This discovery earned Hess the 1936 Nobel Prize in Physics, shared with Carl Anderson, who discovered the positron among the secondary cosmic rays near the ground [Anderson, 1933]. Then, the only known ionizing radiation with range in air more than about 30 centimeters was the ? ray (electromagnetic radiation with energy above about 100 kiloelectron volts), so the radiation from space was assumed to be ? rays and was called “cosmic rays.” That name has stuck, although the “cosmic rays” studied today are not actually rays but particles. Indeed, ? rays do impinge on Earth, and ? ray astronomy is a burgeoning area of astrophysics, but the term “cosmic rays” continues to apply to the charged particles that make up the bulk of the incident ionizing radiation.

  10. CORRELATIONS OF THE ARRIVAL DIRECTIONS OF ULTRA-HIGH ENERGY COSMIC RAYS WITH EXTRAGALACTIC OBJECTS AS OBSERVED BY THE TELESCOPE ARRAY EXPERIMENT

    SciTech Connect

    Abu-Zayyad, T.; Allen, M.; Anderson, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Hanlon, W.; Aida, R.; Azuma, R.; Fukuda, T.; Cheon, B. G.; Cho, E. J.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, H.; Fujii, T.; Fukushima, M.; and others

    2013-11-10

    We search for correlations between the positions of extragalactic objects and the arrival directions of ultra-high energy cosmic rays (UHECRs) with primary energy E ? 40 EeV as observed by the surface detector array of the Telescope Array (TA) experiment during the first 40 months of operation. We examine several public astronomical object catalogs, including the Veron-Cetty and Veron catalog of active galactic nuclei. We count the number of TA events correlated with objects in each catalog as a function of three parameters: the maximum angular separation between a TA event and an object, the minimum energy of the events, and the maximum redshift of the objects. We determine the combination of these parameters that maximizes the correlations, and we calculate the probability of having the same levels of correlations from an isotropic distribution of UHECR arrival directions. No statistically significant correlations are found when penalties for scanning over the above parameters and for searching in several catalogs are taken into account.

  11. Study of Ultra-High Energy Cosmic Ray composition using Telescope Array's Middle Drum detector and surface array in hybrid mode

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-04-01

    Previous measurements of the composition of Ultra-High Energy Cosmic Rays (UHECRs) made by the High Resolution Fly's Eye (HiRes) and Pierre Auger Observatory (PAO) are seemingly contradictory, but utilize different detection methods, as HiRes was a stereo detector and PAO is a hybrid detector. The five year Telescope Array (TA) Middle Drum hybrid composition measurement is similar in some, but not all, respects in methodology to PAO, and good agreement is evident between data and a light, largely protonic, composition when comparing the measurements to predictions obtained with the QGSJetII-03 and QGSJet-01c models. These models are also in agreement with previous HiRes stereo measurements, confirming the equivalence of the stereo and hybrid methods. The data is incompatible with a pure iron composition, for all models examined, over the available range of energies. The elongation rate and mean values of Xmax are in good agreement with Pierre Auger Observatory data. This analysis is presented using two methods: data cuts using simple geometrical variables and a new pattern recognition technique.

  12. Cosmic-ray detectors on the Moon

    NASA Technical Reports Server (NTRS)

    Linsley, John

    1988-01-01

    The state of cosmic ray physics is reviewed. It is concluded that the nonexistent lunar magnetic field, the low lunar radiation background, and the lack of an atmosphere on the Moon provide an excellent environment for the study of high energy primary cosmic rays.

  13. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  14. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  15. Ultra-high energy cosmic rays: 40 years retrospective of continuous observations at the Yakutsk array: Part 1. Cosmic ray spectrum in the energy range 1015-1018 eV and its interpretation

    NASA Astrophysics Data System (ADS)

    Knurenko, Stanislav; Petrov, Igor; Petrov, Zim; Sleptsov, Ivan

    2015-08-01

    The experimental data on the cosmic ray energy spectrum obtained from the Small Cherenkov Array in Yakutsk on the measurement of Cherenkov radiation in showers with energy 1015-1018 eV are discussed. The data were obtained by means of continuous array operation since 1994. The all particle spectrum in this energy region was found to have a complex shape and cannot be described by a simple exponential function with a single slope indicator, g. After the first kink at energy 3 · 1015 eV (knee), the spectrum becomes steeper at ?? = 0.4 up to energy <2 · 1016 eV, then part of the spectrum becomes flat to >8 · 1016 eV, the slope of the spectrum is 2.92 ± 0.03 and then again changes slope by ?? = 0.32 ± 0.05 from about ˜2· 1017 eV. The second kink in the spectrum observed at the Yakutsk EAS array at ˜2·1017 eV, or also called second knee, is a significant result for space astrophysics of ultra-high cosmic rays. In this paper we discuss possible scenarios for spectrum formation of cosmic rays by galactic sources to energies <1017 eV, mainly supernovae remnants (SNR) and Metagalactic origins in the energy range 1017-1018 eV. Most likely, that measurement of the second knee is related with the transitional region, galactic to extragalactic origin of cosmic rays.

  16. Stable quark matter in cosmic rays?

    E-print Network

    Jes Madsen

    2005-12-20

    Stable lumps of quark matter may be present in cosmic rays at a flux level, which can be detected by high precision cosmic ray experiments sensitive to anomalous "nuclei" with high mass-to-charge ratio. The properties of these lumps, called strangelets, are described, and so is the production and propagation of strangelets in cosmic rays. Two experiments underway which are sensitive to a strangelet flux in the predicted range are briefly described. Finally it is summarized how strangelets circumvent the acceleration problem encountered by conventional candidates for ultra-high energy cosmic rays and move the Greisen-Zatsepin-Kuzmin cutoff to energies well above the observed maximum energies.

  17. Cosmic rays and hadronic interactions

    NASA Astrophysics Data System (ADS)

    Lipari, Paolo

    2015-08-01

    The study of cosmic rays, and more in general of the "high energy universe" is at the moment a vibrant field that, thanks to the observations by several innovative detectors for relativistic charged particles, gamma-rays, and neutrinos continue to generate surprising and exciting results. The progress in the field is rapid but many fundamental problems remain open. There is an intimate relation between the study of the high energy universe and the study of the properties of hadronic interactions. High energy cosmic rays can only be studied detecting the showers they generate in the atmosphere, and for the interpretation of the data one needs an accurate modeling of the collisions between hadrons. Also the study of cosmic rays inside their sources and in the Galaxy requires a precise description of hadronic interactions. A program of experimental studies at the LHC and at lower energy, designed to address the most pressing problems, could significantly reduce the existing uncertainties and is very desirable. Such an experimental program would also have a strong intrinsic scientific interest, allowing the broadening and deepening of our understanding of Quantum Chromo Dynamics in the non-perturbative regime, the least understood sector of the Standard Model of particle physics. It should also be noted that the cosmic ray spectrum extends to particles with energy E ˜ 1020 eV, or a nucleon-nucleon c.m. energy ?s ? 430 TeV, 30 times higher than the current LHC energy. Cosmic ray experiments therefore offer the possibility to perform studies on the properties of hadronic interactions that are impossible at accelerators.

  18. Cosmic Ray Astronomy

    E-print Network

    Paul Sommers; Stefan Westerhoff

    2008-02-09

    Cosmic ray astronomy attempts to identify and study the sources of ultrahigh energy cosmic rays. It is unique in its reliance on charged particles as the information carriers. While no discrete source of ultrahigh energy cosmic rays has been identified so far, a new generation of detectors is acquiring the huge exposure that is needed at the highest energies, where deflection by magnetic fields is minimized and the background from distant sources is eliminated by pion photoproduction. In this paper, we summarize the status of cosmic ray astronomy, describing the detectors and the analysis techniques.

  19. Radio detection of ultra-high energy cosmic neutrinos

    NASA Astrophysics Data System (ADS)

    Vieregg, Abigail G.

    2015-07-01

    Ultra-high energy (UHE) neutrino astronomy constitutes a new window of observation onto the UHE universe. The detection and characterization of astrophysical neutrinos at the highest energies (E> 1018 eV) would reveal the sources of high-energy cosmic rays, the highest energy particles ever seen, and would constrain the evolution of such sources over time. UHE neutrino astrophysics also allows us to probe weak interaction couplings at energies much greater than those available at particle colliders. One promising way of detecting the highest energy neutrinos is through the radio emission created when they interact in a large volume of dielectric, such as ice. Here I discuss current results and future efforts to instrument large volumes of detector material with radio antennas to detect, point back, and characterize the energy of UHE astrophysical neutrinos.

  20. Cosmic Rays above the Knee

    E-print Network

    Michael Unger

    2008-12-15

    An overview on the present observational status and phenomenological understanding of cosmic rays above 10^16 eV is given. Above these energies the cosmic ray flux is expected to be gradually dominated by an extra-galactic component. In order to investigate the nature of this transition, current experimental activities focus on the measurement of the cosmic ray flux and composition at the 'ankle' or 'dip' feature at several EeV. At the ultra high energy end of the spectrum, the flux suppression above 50 EeV is now well established by the measurements of HiRes and the Pierre Auger Observatory and we may enter the era of charged particle astronomy.

  1. High Energy Electron and Gamma - Ray Detection with ATIC

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon borne ionization calorimeter is well suited to record and identify high energy cosmic ray electrons, and at very high energies gamma-ray photons as well. We have simulated the performance of the instrument, and compare the simulations with actual high energy electron exposures at the CERN accelerator. Simulations and measurements do not compare exactly, in detail, but overall the simulations have predicted actual measured behavior quite well. ATIC has had its first 16 day balloon flight at the turn of the year over Antarctica, and first results obtained using the analysis methods derived from simulations and calibrations will be reported.

  2. OBSERVATIONS OF HIGH-ENERGY COSMIC-RAY ELECTRONS FROM 30 GeV TO 3 TeV WITH EMULSION CHAMBERS

    SciTech Connect

    Kobayashi, T.; Komori, Y.; Yoshida, K.; Yanagisawa, K.; Nishimura, J.; Yamagami, T.; Saito, Y.; Tateyama, N.; Yuda, T.; Wilkes, R. J. E-mail: komori-y@kuhs.ac.jp E-mail: nisimura@icrr.u-tokyo.ac.jp E-mail: yuda@icrr.u-tokyo.ac.jp

    2012-12-01

    We have performed a series of cosmic-ray electron observations using balloon-borne emulsion chambers since 1968. While we previously reported the results from subsets of the exposures, the final results of the total exposures up to 2001 are presented here. Our successive experiments have yielded a total exposure of 8.19 m{sup 2} sr day at altitudes of 4.0-9.4 g cm{sup -2}. The performance of the emulsion chambers was examined by accelerator beam tests and Monte Carlo simulations, and the on-board calibrations were carried out by using the flight data. In this work, we present the cosmic-ray electron spectrum in the energy range from 30 GeV to 3 TeV at the top of the atmosphere, which is well represented by a power-law function with an index of -3.28 {+-} 0.10. The observed data can also be interpreted in terms of diffusive propagation models. The evidence of cosmic-ray electrons up to 3 TeV suggests the existence of cosmic-ray electron sources at distances within {approx}1 kpc and times within {approx}1 Multiplication-Sign 10{sup 5} yr ago.

  3. Cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1973-01-01

    The isotopic composition of cosmic rays is studied in order to develop the relationship between cosmic rays and stellar processes. Cross section and model calculations are reported on isotopes of H, He, Be, Al and Fe. Satellite instrument measuring techniques separate only the isotopes of the lighter elements.

  4. The NuSTAR Extragalactic Survey: A First Sensitive Look at the High-Energy Cosmic X-Ray Background Population

    NASA Technical Reports Server (NTRS)

    Alexander, D. M.; Stern, D.; DelMoro, A.; Lansbury, G. B.; Assef, R. J.; Aird, J.; Ajello, M.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Christensen, F. E.; Civano, F.; Cosmastri, A.; Craig, W. W.; Elvis, M.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Luo, B.; Madsen, K. K.; Alexander, D. M.; Zhang, W. W.; Eisenhardt, P. R. M.

    2013-01-01

    We report on the first 10 identifications of sources serendipitously detected by the Nuclear Spectroscopic Telescope Array (NuSTAR) to provide the first sensitive census of the cosmic X-ray background source population at approximately greater than 10 keV. We find that these NuSTAR-detected sources are approximately 100 times fainter than those previously detected at approximately greater than 10 keV and have a broad range in redshift and luminosity (z = 0.020-2.923 and L(sub 10-40 keV) approximately equals 4 × 10(exp 41) - 5 × 10(exp 45) erg per second; the median redshift and luminosity are z approximately equal to 0.7 and L(sub 10-40 keV) approximately equal to 3 × 10(exp 44) erg per second, respectively. We characterize these sources on the basis of broad-band approximately equal to 0.5 - 32 keV spectroscopy, optical spectroscopy, and broad-band ultraviolet-to-mid-infrared spectral energy distribution analyses. We find that the dominant source population is quasars with L(sub 10-40 keV) greater than 10(exp 44) erg per second, of which approximately 50% are obscured with N(sub H) approximately greater than 10(exp 22) per square centimeters. However, none of the 10 NuSTAR sources are Compton thick (N(sub H) approximately greater than 10(exp 24) per square centimeters) and we place a 90% confidence upper limit on the fraction of Compton-thick quasars (L(sub 10-40 keV) greater than 10(exp 44) erg per second) selected at approximately greater than 10 keV of approximately less than 33% over the redshift range z = 0.5 - 1.1. We jointly fitted the rest-frame approximately equal to 10-40 keV data for all of the non-beamed sources with L(sub 10-40 keV) greater than 10(exp 43) erg per second to constrain the average strength of reflection; we find R less than 1.4 for gamma = 1.8, broadly consistent with that found for local active galactic nuclei (AGNs) observed at approximately greater than 10 keV. We also constrain the host-galaxy masses and find a median stellar mass of approximately 10(exp 11) solar mass, a factor approximately 5 times higher than the median stellar mass of nearby high-energy selected AGNs, which may be at least partially driven by the order of magnitude higher X-ray luminosities of the NuSTAR sources. Within the low source-statistic limitations of our study, our results suggest that the overall properties of the NuSTAR sources are broadly similar to those of nearby high-energy selected AGNs but scaled up in luminosity and mass.

  5. Evidences of high energy protons with energies beyond 0.4 GeV in the solar particle spectrum as responsible for the cosmic rays solar diurnal anisotropy

    E-print Network

    C. E. Navia; C. R. A. Augusto; M. B. Robba; K. H. Tsui

    2007-06-26

    Analysis on the daily variations of cosmic ray muons with $E_{\\mu}\\geq 0.2 GeV$ based on the data of two directional muon telescopes at sea level and with a rigidity of response to cosmic proton spectrum above 0.4 GV is presented. The analysis covers two months of observations and in 60% of days, abrupt transitions between a low to a high muon intensity and vice-verse is observed, the period of high muon intensity is from $\\sim 8.0h$ up to $\\sim 19.0h$ (local time) and coincides with the period when the interplanetary magnetic field (IMF) lines overtake the Earth. This behavior strongly suggest that the high muon intensity is due to a contribution of solar protons (ions) on the muon intensity produced by the galactic cosmic rays, responsible for the low muon intensity. This implies that the solar particle spectrum extends to energies beyond 1 GeV. We show that this picture can explain the solar daily variation origin, and it is a most accurate scenario than the assumption of corotating galactic cosmic ray with the IMF lines, specially in the high rigidity region. Obtained results are consistent with the data reported in others papers. Some aspects on the sensitivity of our muon telescopes are also presented.

  6. A new population of very high energy gamma-ray sources in the Milky Way

    E-print Network

    F. A. Aharonian

    2005-04-18

    Very high energy gamma-rays probe the long-standing mystery of the origin of cosmic rays. Produced in the interactions of accelerated particles in astrophysical objects, they can be used to image cosmic particle accelerators. A first sensitive survey of the inner part of the Milky Way with the High Energy Stereoscopic System (H.E.S.S.) reveals a population of eight previously unknown firmly detected sources of very high energy gamma-rays. At least two have no known radio or X-ray counterpart and may be representative of a new class of `dark' nucleonic cosmic ray sources.

  7. Cosmic-ray astrochemistry.

    PubMed

    Indriolo, Nick; McCall, Benjamin J

    2013-10-01

    Gas-phase chemistry in the interstellar medium is driven by fast ion-molecule reactions. This, of course, demands a mechanism for ionization, and cosmic rays are the ideal candidate as they can operate throughout the majority of both diffuse and dense interstellar clouds. Aside from driving interstellar chemistry via ionization, cosmic rays also interact with the interstellar medium in ways that heat the ambient gas, produce gamma rays, and produce light element isotopes. In this paper we review the observables generated by cosmic-ray interactions with the interstellar medium, focusing primarily on the relevance to astrochemistry. PMID:23812538

  8. Ultra-high energy cosmic rays detected by Auger and AGASA. Corrections for galactic magnetic field deflections, source populations, and arguments for multiple components

    NASA Astrophysics Data System (ADS)

    Nagar, N. M.; Matulich, J.

    2010-11-01

    Context. The origin and composition of ultra-high energy cosmic rays (UHECRs) remain unclear. Possible sources include active galactic nuclei - selected by various criteria - and extragalactic magnetars. Aims: We aim to improve constraints on the source population(s) and compositions of UHECRs by accounting for UHECR deflections within existing Galactic magnetic field models (GMFs). Methods: We used Monte Carlo simulations for UHECRs detected by the Pierre Auger Observatory and AGASA, to determine the UHECR trajectories within the Galaxy and their outside-the-Galaxy arrival directions. The simulations, which used UHECR compositions from protons to iron and seven models of the ordered GMF, accounted for uncertainties in the GMF and a turbulent magnetic field component. Trajectories and outside-the-Galaxy arrival directions were compared with Galactic and extragalactic sources. Results: For a given proton or light UHECR, the multiple potential outside-the-Galaxy arrival directions within a given GMF model are not very different, allowing meaningful constraints on source populations. Our previous claim of a correlation between a subset of UHECRs and nearby extended radiogalaxies remains valid, even strengthened, within several GMF models. Both the nearest radiogalaxy Cen A, and the nearest radio-extended BL Lac, CGCG 413-019, are potential sources of multiple UHECRs. The correlation appears to be linked to the extended radio source rather than a tracer of an underlying matter distribution. Several UHECRs have trajectories that pass close to the Galactic plane, some passing close to Galactic magnetars and/or microquasars. For heavier UHECRs, the multiple potential outside-the-Galaxy arrival directions of any given UHECR are highly scattered but still allow meaningful constraints. It is possible, but unlikely, that all UHECRs originate in the nearby radiogalaxy Cen A. Conclusions: Nearby radiogalaxies remain a strong potential source of a significant subset of UHECRs. For light UHECRs, about a third of UHECRs can be “matched” to nearby galaxies with extended radio jets. The remaining UHECRs could also be explained as originating in extended radiogalaxies if one has at least one of: a large UHECR mean free path, a high cluster and/or intergalactic magnetic field, and a heavy composition for two-thirds of the detected UHECRs. If extended radiogalaxies are, or trace, UHECR sources, the most consistent models for the ordered GMF are the BS-S and BS-A models; the GMF models of Sun and collaborators are acceptable if a dipole component is added. Figures 2, 4 and 5 are only available in electronic form at http://www.aanda.org

  9. Is the ultra-high energy cosmic-ray excess observed by the telescope array correlated with IceCube neutrinos?

    SciTech Connect

    Fang, Ke; Fujii, Toshihiro; Linden, Tim; Olinto, Angela V.

    2014-10-20

    The Telescope Array (TA) has observed a statistically significant excess in cosmic rays with energies above 57 EeV in a region of approximately 1150 deg{sup 2} centered on coordinates R.A. = 146.7, decl. = 43.2. We note that the location of this excess correlates with 2 of the 28 extraterrestrial neutrinos recently observed by IceCube. The overlap between the two IceCube neutrinos and the TA excess is statistically significant at the 2? level. Furthermore, the spectrum and intensity of the IceCube neutrinos is consistent with a single source which would also produce the TA excess. Finally, we discuss possible source classes with the correct characteristics to explain the cosmic-ray and neutrino fluxes with a single source.

  10. Search for Point Sources of Ultra-High Energy Cosmic Rays Above 40 EeV Using a Maximum Likelihood Ratio Test

    E-print Network

    The High Resolution Fly's Eye Collaboration; G. R. Farrar

    2004-12-23

    We present the results of a search for cosmic ray point sources at energies above 40 EeV in the combined data sets recorded by the AGASA and HiRes stereo experiments. The analysis is based on a maximum likelihood ratio test using the probability density function for each event rather than requiring an a priori choice of a fixed angular bin size. No statistically significant clustering of events consistent with a point source is found.

  11. Cosmic Ray Physics with ACORDE at LHC

    E-print Network

    C. Pagliarone; A. Fernandez-Tellez

    2007-09-19

    The use of large underground high-energy physics experiments, for comic ray studies, have been used, in the past, at CERN, in order to measure, precisely, the inclusive cosmic ray flux in the energy range from 2x10^10 - 2x10^12 eV. ACORDE, ALICE Cosmic Rays DEtector, will act as Level 0 cosmic ray trigger and, together with other ALICE apparatus, will provide precise information on cosmic rays with primary energies around 10^15 - 10^17 eV. This paper reviews the main detector features, the present status, commissioning and integration with other apparatus. Finally, we discuss the ACORDE-ALICE cosmic ray physics program.

  12. Cosmic rays and hadronic interactions

    SciTech Connect

    Lipari, Paolo

    2013-03-25

    The cosmic ray spectrum extends to particles with energy E{approx} 10{sup 20} eV, that corresponds (assuming that the primary particle is a proton) to a nucleon-nucleon c.m. energy {radical}(s) Asymptotically-Equal-To 430TeV, 50 times higher than the current LHC energy. These very high energy particles can be studied via the observation of the showers they generate in the atmosphere. The interpretation of the data requires therefore the modeling of hadronic interactions in an energy range beyond what can be studied in accelerator experiments. The theoretical problem of estimating the relevant properties of hadronic interactions in this energy range is therefore of central importance for the interpretation of the cosmic ray data. Viceversa, it is in principle possible to obtain information about hadronic interactions from the cosmic ray observations, but this program has to confront the fact that the (freely available) cosmic ray beam has an unknown energy spectrum and an unknown mass composition.

  13. Cosmic Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The cosmic ray division participation in the cooperative agreement was activated in the second year. The scientific goals will be analysis of cosmic ray data from the Japanese-American Cooperative Emulsion Experiments (JACEE). Measurements of primary cosmic rays in the JACEE emulsion chambers will be made to derive for each detected particle the deposited energy in the chamber and the primary charge (atomic number). The data will be corrected to the primary flux above the atmosphere, and the composition and energy spectra will be derived. The spectra of the individual elements will be interpreted in context with the supernova shock and other models of cosmic ray acceleration. Additional information is contained in the original extended abstract.

  14. Cosmic ray propagation in the local superbubble

    NASA Technical Reports Server (NTRS)

    Steitmatter, R. E.; Balasubrahmanyan, V. K.; Protheroe, R. J.; Ormes, J. F.

    1984-01-01

    It is suggested that a ring of HI gas lying in the galactic plane is part of a supershell which formed some 3 x to the 7th power years ago. The consequences of a closed magnetic supershell for cosmic ray propagation are examined and it is concluded that there is no evidence which precludes the production and trapping of cosmic rays in such a region. A consequence of superbubble confinement is that the mean age of cosmic rays would be independent of energy. This can be tested by high energy observations of the isotopic composition of Be.

  15. The intergalactic propagation of ultrahigh energy cosmic ray nuclei

    SciTech Connect

    Hooper, Dan; Sarkar, Subir; Taylor, Andrew M.; /Oxford U.

    2006-08-01

    We investigate the propagation of ultra-high energy cosmic ray nuclei (A = 1-56) from cosmologically distant sources through the cosmic radiation backgrounds. Various models for the injected composition and spectrum and of the cosmic infrared background are studied using updated photodisintegration cross-sections. The observational data on the spectrum and the composition of ultra-high energy cosmic rays are jointly consistent with a model where all of the injected primary cosmic rays are iron nuclei (or a mixture of heavy and light nuclei).

  16. Research in particles and fields. [cosmic rays, gamma rays, and cosmic plasma

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Buffington, A.; Davis, L., Jr.; Prince, T. A.; Vogt, R. E.

    1984-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are reviewed. Energetic particle and photon detector systems flown on spacecraft and balloons were used to carry out the investigations. Specific instruments mentioned are: the high energy isotope spectrometer telescope, the electron/isotope spectrometer, the heavy isotope spectrometer telescope, and magnetometers. Solar flares, planetary magnetospheres, element abundance, the isotopic composition of low energy cosmic rays, and heavy nuclei are among the topics receiving research attention.

  17. On the determination of the cosmic infrared background radiation from the high-energy spectrum of extragalactic gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Slavin, Jonathan

    1994-01-01

    In a recent paper Stecker, De Jager, & Salamon have suggested using the observed approximately MeV to TeV spectra of extragalactic gamma-ray sources as probes of the local density of the cosmic infrared background radiation (CIBR) and have subsequently claimed a first possible measurement of the CIBR from the analysis of the gamma-ray spectrum of Mrk 421 (De Jager, Stecker, & Salamon). The CIBR from normal galaxies consists of two components: a stellar emission component (CIBRs), and a thermal dust emission component (CIBRd). Photons with energies in the approximately 0.1-2 TeV range interact primarily with the CIBRs, whereas interactions with CIBRd dominate the absorption of photons in the approximately 2-100 TeV energy range. SDS 92 and DSS94 considered only the interaction of the gamma-rays with the dust emission component of the CIBR. We present here an improved analysis of the absorption of extragalactic TeV gamma rays by the CIBR, taking the dual nature of its origin into account. Applying the analysis to the observed gamma-ray spectrum of Mrk 421, a BL Lac object at z = 0.031, we find agreement with DSS94 tentative evidence for absorption by the CINRs. Our analysis therefore limits the detection of the CIBR to the approximately 15-40 micron wavelength regime which, considering the uncertainties in the highest energy (greater than 4 TeV) data and ion the possibility of absorption inside the source, many turn out to be an upper limit on its energy density. At shorter wavelengths (lambda approximately = 1-15 microns), where the gamma-ray interactions are dominated by the CIBRs, our analysis definitely yields only an upper limit on the energy density of the CIBR. In contrast, DSS94 have claimed a possible first measurement of the CIBR over the entire 1-120 micron wavelength region. The upper limit on the CIBRs and tentative detection of the CIBRd are consistent with normal galaxies contributing most of the energy to the CIBR, and constrain the contribution of some exotic sources. With careful modeling of infrared foreground emissions, these constraints on the CIBR are above the values measurable by the DIRBE experiment on board the Cosmic Background Explorer (COBE) satellite.

  18. Cosmic ray recipes

    E-print Network

    Franco Ferrari; Ewa Szuszkiewicz

    2006-01-08

    Cosmic rays represent one of the most fascinating research themes in modern astronomy and physics. After almost a century since their discovery, a huge amount of scientific literature has been written on this topic and it is not always easy to extract from it the necessary information for somebody who approaches the subject for the first time. This has been the main motivation for preparing this article, which is a concise and self-contained review for whoever is interested in studying cosmic rays. The priority has been given here to well established facts, which are not at risk to get obsolete in a few years due to the fast progress of the research in this field. Also many data are presented, which are useful to characterize the doses of ionizing radiation delivered to organisms living on the Earth due to cosmic rays. The technical terms which are often encountered in the scientific literature are explained in a separate appendix.

  19. Investigation of primary cosmic rays at the Moon's surface

    SciTech Connect

    Kalmykov, N. N. Konstantinov, A. A.; Muhamedshin, R. A.; Podorozhniy, D. M.; Sveshnikova, L. G.; Turundaevskiy, A. N.; Tkachev, L. G.; Chubenko, A. P.; Vasilyev, O. A.

    2013-01-15

    The possibility of experimentally studying primary cosmic rays at the Moon's surface is considered. A mathematical simulations of showers initiated in the lunar regolith by high-energy particles of primary cosmic rays is performed. It is shown that such particles can in principle be recorded by simultaneously detecting three components of backscattered radiation (secondary neutrons, gamma rays, and radio emission).

  20. Large scale distribution of ultra high energy cosmic rays detected at the Pierre Auger Observatory with zenith angles up to 80$^\\circ$

    E-print Network

    ,

    2014-01-01

    We present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between $60^\\circ$ and $80^\\circ$. We perform two Rayleigh analyses, one in the right ascension and one in the azimuth angle distributions, that are sensitive to modulations in right ascension and declination, respectively. The largest departure from isotropy appears in the $E > 8$ EeV energy bin, with an amplitude for the first harmonic in right ascension $r_1^\\alpha =(4.4 \\pm 1.0){\\times}10^{-2}$, that has a chance probability $P(\\ge r_1^\\alpha)=6.4{\\times}10^{-5}$, reinforcing the hint previously reported with vertical events alone.

  1. Large Scale Distribution of Ultra High Energy Cosmic Rays Detected at the Pierre Auger Observatory with Zenith Angles up to 80°

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, M.; Bleve, C.; Blümer, H.; Bohá?ová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filip?i?, A.; Fox, B. D.; Fratu, O.; Freire, M. M.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mari?, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mi?anovi?, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; P?kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.

    2015-04-01

    We present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60° and 80°. We perform two Rayleigh analyses, one in the right ascension and one in the azimuth angle distributions, that are sensitive to modulations in right ascension and declination, respectively. The largest departure from isotropy appears in the E\\gt 8 EeV energy bin, with an amplitude for the first harmonic in right ascension r1? =(4.4+/- 1.0)× {{10}-2}, that has a chance probability P(?slant r1? )=6.4× {{10}-5}, reinforcing the hint previously reported with vertical events alone.

  2. Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Blasi, Pasquale

    2015-12-01

    The multi-facet nature of the origin of cosmic rays is such that some of the problems currently met in our path to describing available data are due to oversimplified models of CR acceleration and transport, and others to lack of knowledge of the physical processes at work in certain conditions. On the other hand, the phenomenology of cosmic rays, as arising from better observations, is getting so rich that it makes sense to try to distinguish the problems that derive from too simple views of Nature and those that are challenging the very foundations of the existing paradigms. Here I will briefly discuss some of these issues.

  3. High-energy emission in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Matz, S. M.; Forrest, D. J.; Vestrand, W. T.; Chupp, E. L.; Share, G. H.; Rieger, E.

    1985-01-01

    Between February 1980 and August 1983 the Gamma-Ray Spectrometer on the Solar Maximum Mission Satellite (SMM) detected 72 events identified as being of cosmic origin. These events are an essentially unbiased subset of all gamma-ray bursts. The measured spectra of these events show that high energy (greater than 1 MeV) emission is a common and energetically important feature. There is no evidence for a general high-energy cut-off or a distribution of cut-offs below about 6 MeV. These observations imply a limit on the preferential beaming of high energy emission. This constraint, combined with the assumption of isotropic low energy emission, implies that the typical magnetic field strength at burst radiation sites is less than 1 x 10 to the 12th gauss.

  4. Galactic cosmic rays and nucleosynthesis

    SciTech Connect

    Kiener, Juergen

    2010-03-01

    The nucleosynthesis of the light elements Li, Be and B by galactic cosmic rays is presented. Observations of cosmic rays and the nuclear reactions responsible for Li, Be and B nucleosynthesis are described, followed by some words on propagation. At the end, some open questions concerning galactic cosmic rays are discussed.

  5. Catching Cosmic Rays with a DSLR

    ERIC Educational Resources Information Center

    Sibbernsen, Kendra

    2010-01-01

    Cosmic rays are high-energy particles from outer space that continually strike the Earth's atmosphere and produce cascades of secondary particles, which reach the surface of the Earth, mainly in the form of muons. These particles can be detected with scintillator detectors, Geiger counters, cloud chambers, and also can be recorded with commonly…

  6. A Cerenkov-delta E-Cerenkov detector for high energy cosmic ray isotopes and an accelerator study of Ar-40 and Fe-56 fragmentation. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lau, K. H.

    1985-01-01

    A high energy cosmic ray detector--the High Energy Isotope Spectrometer Telescope (HEIST) is described. It is a large area (0.25 m(swp 2) SR) balloon borne isotope spectrometer designed to make high resolution measurements of isotopes in the element range from neon to nickel (10 Z 28) at energies of about 2 GeV/nucleon. HEIST determines the mass of individual nuclei by measuring both the change in the Lorentz factor (delta gamma) that results from traversing the NaI stack, and the energy loss (delta E) in the stack. Since the total energy of an isotope is given by E = (gamma M), the mass M can be determined by M = delta E/delta, gamma. The instrument is designed to achieve a typical mass resolution of 0.2 amu. The isotopic composition of the fragments from the breakup of high energy An-40 and Fe-56 nuclei are measured experimentally. Isotope yields are compared with calculated yields based on semi-empirical cross-section formulae.

  7. Galactic Cosmic Rays: From Earth to Sources

    NASA Technical Reports Server (NTRS)

    Brandt, Theresa J.

    2012-01-01

    For nearly 100 years we have known that cosmic rays come from outer space, yet proof of their origin, as well as a comprehensive understanding of their acceleration, remains elusive. Direct detection of high energy (up to 10(exp 15)eV), charged nuclei with experiments such as the balloon-born, antarctic Trans-Iron Galactic Element Recorder (TIGER) have provided insight into these mysteries through measurements of cosmic ray abundances. The abundance of these rare elements with respect to certain intrinsic properties suggests that cosmic rays include a component of massive star ejecta. Supernovae and their remnants (SNe & SNRs), often occurring at the end of a massive star's life or in an environment including massive star material, are one of the most likely candidates for sources accelerating galactic comic ray nuclei up to the requisite high energies. The Fermi Gamma-ray Space Telescope Large Area Detector (Fermi LAT) has improved our understanding of such sources by widening the window of observable energies and thus into potential sources' energetic processes. In combination with multiwavelength observations, we are now better able to constrain particle populations (often hadron-dominated at GeV energies) and environmental conditions, such as the magnetic field strength. The SNR CTB 37A is one such source which could contribute to the observed galactic cosmic rays. By assembling populations of SNRs, we will be able to more definitively define their contribution to the observed galactic cosmic rays, as well as better understand SNRs themselves. Such multimessenger studies will thus illuminate the long-standing cosmic ray mysteries, shedding light on potential sources, acceleration mechanisms, and cosmic ray propagation.

  8. JUPITER AS A GIANT COSMIC RAY DETECTOR

    SciTech Connect

    Rimmer, P. B.; Stark, C. R.; Helling, Ch.

    2014-06-01

    We explore the feasibility of using the atmosphere of Jupiter to detect ultra-high-energy cosmic rays (UHECRs). The large surface area of Jupiter allows us to probe cosmic rays of higher energies than previously accessible. Cosmic ray extensive air showers in Jupiter's atmosphere could in principle be detected by the Large Area Telescope (LAT) on the Fermi observatory. In order to be observed, these air showers would need to be oriented toward the Earth, and would need to occur sufficiently high in the atmosphere that the gamma rays can penetrate. We demonstrate that, under these assumptions, Jupiter provides an effective cosmic ray ''detector'' area of 3.3 × 10{sup 7} km{sup 2}. We predict that Fermi-LAT should be able to detect events of energy >10{sup 21} eV with fluence 10{sup –7} erg cm{sup –2} at a rate of about one per month. The observed number of air showers may provide an indirect measure of the flux of cosmic rays ? 10{sup 20} eV. Extensive air showers also produce a synchrotron signature that may be measurable by Atacama Large Millimeter/submillimeter Array (ALMA). Simultaneous observations of Jupiter with ALMA and Fermi-LAT could be used to provide broad constraints on the energies of the initiating cosmic rays.

  9. INTERACTING COSMIC RAYS WITH MOLECULAR CLOUDS: A BREMSSTRAHLUNG ORIGIN OF DIFFUSE HIGH-ENERGY EMISSION FROM THE INNER 2 Degree-Sign Multiplication-Sign 1 Degree-Sign OF THE GALACTIC CENTER

    SciTech Connect

    Yusef-Zadeh, F.; Roberts, D. A.; Royster, M.; Hewitt, J. W.; Wardle, M.; Tatischeff, V.; Uchiyama, H.; Nobukawa, M.; Tsuru, T. G.; Heinke, C.

    2013-01-01

    The high-energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray, and {gamma}-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using the Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of {approx}GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas. The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of Fe I 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra, and the H.E.S.S. observatories. The inferred physical quantities from modeling multiwavelength emission in the context of bremsstrahlung emission from the inner {approx}300 Multiplication-Sign 120 pc of the Galactic center are constrained to have the cosmic-ray ionization rate {approx}1-10 Multiplication-Sign 10{sup -15} s{sup -1}, molecular gas heating rate elevating the gas temperature to 75-200 K, fractional ionization of molecular gas 10{sup -6}-10{sup -5}, large-scale magnetic field 10-20 {mu}G, the density of diffuse and dense molecular gas {approx}100 and {approx}10{sup 3} cm{sup -3} over 300 pc and 50 pc path lengths, and the variability of Fe I K{alpha} 6.4 keV line emission on yearly timescales. Important implications of our study are that GeV electrons emitting in radio can explain the GeV {gamma}-rays detected by Fermi and that the cosmic-ray irradiation model, like the model of the X-ray irradiation triggered by past activity of Sgr A*, can also explain the origin of the variable 6.4 keV emission from Galactic center molecular clouds.

  10. Muon Charge Ratio of Ultrahigh Energy Cosmic Rays

    E-print Network

    Bo-Qiang Ma

    2008-08-19

    The muon charge ratio of ultrahigh energy cosmic rays may provide information to detect the composition of the primary cosmic rays. We propose to extract the charge information of high energy muons in very inclined extensive air showers by analyzing their relative lateral positions in the shower transverse plane.

  11. Highest-Energy Cosmic Rays and Hilbertian Repulsive Effect

    E-print Network

    Angelo Loinger; Tiziana Marsico

    2007-12-22

    We point out that an important portion of the high energy of the cosmic rays from extragalactic sources can be attributed to a Hilbertian repulsive effect, which is a consequence of Einstein equations without cosmological term.

  12. Cosmic Rays: "A Thin Rain of Charged Particles."

    ERIC Educational Resources Information Center

    Friedlander, Michael

    1990-01-01

    Discussed are balloons and electroscopes, understanding cosmic rays, cosmic ray paths, isotopes and cosmic-ray travel, sources of cosmic rays, and accelerating cosmic rays. Some of the history of the discovery and study of cosmic rays is presented. (CW)

  13. Cosmic rays: direct measurements

    E-print Network

    Maestro, Paolo

    2015-01-01

    This paper is based on the rapporteur talk given at the 34$^{th}$ International Cosmic Ray Conference (ICRC), on August 6$^{th}$, 2015. The purpose of the talk and paper is to provide a summary of the most recent results from balloon-borne and space-based experiments presented at the conference, and give an overview of the future missions and developments foreseen in this field.

  14. Cosmic Rays in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  15. Cosmic ray albedo gamma rays from the quiet sun

    NASA Technical Reports Server (NTRS)

    Seckel, D.; Stanev, T.; Gaisser, T. K.

    1992-01-01

    We estimate the flux of gamma-rays that result from collisions of high energy galactic cosmic rays with the solar atmosphere. An important aspect of our model is the propagation of cosmic rays through the magnetic fields of the inner solar systems. We use diffusion to model propagation down to the bottom of the corona. Below the corona we trace particle orbits through the photospheric fields to determine the location of cosmic ray interactions in the solar atmosphere and evolve the resultant cascades. For our nominal choice of parameters, we predict an integrated flux of gamma rays (at 1 AU) of F(E(sub gamma) greater than 100 MeV) approximately = 5 x 10(exp -8)/sq cm sec. This can be an order of magnitude above the galactic background and should be observable by the Energetic Gamma Ray experiment telescope (EGRET).

  16. Cosmic ray acceleration in young supernova remnants

    NASA Astrophysics Data System (ADS)

    Schure, K. M.; Bell, A. R.

    2013-10-01

    We investigate the appearance of magnetic field amplification resulting from a cosmic ray escape current in the context of supernova remnant shock waves. The current is inversely proportional to the maximum energy of cosmic rays, and is a strong function of the shock velocity. Depending on the evolution of the shock wave, which is drastically different for different circumstellar environments, the maximum energy of cosmic rays as required to generate enough current to trigger the non-resonant hybrid instability that confines the cosmic rays follows a different evolution and reaches different values. We find that the best candidates to accelerate cosmic rays to ˜ few PeV energies are young remnants in a dense environment, such as a red supergiant wind, as may be applicable to Cassiopeia A. We also find that for a typical background magnetic field strength of 5 ?G the instability is quenched in about 1000 years, making SN1006 just at the border of candidates for cosmic ray acceleration to high energies.

  17. Strangelets accelerated by pulsars in galactic cosmic rays

    E-print Network

    K. S. Cheng; V. V. Usov

    2006-11-20

    It is shown that nuggets of strange quark matter may be extracted from the surface of pulsars and accelerated by strong electric fields to high energies if pulsars are strange stars with the crusts, comprised of nuggets embedded in a uniform electron background. Such high energy nuggets called usually strangelets give an observable contribution into galactic cosmic rays and may be detected by the upcoming cosmic ray experiment Alpha Magnetic Spectrometer AMS-02 on the International Space Station.

  18. Relativistic heavy cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Fernandez, J. I.; Israel, M. H.; Klarmann, J.; Binns, W. R.

    1972-01-01

    During three balloon flights of a 1 sq m sr ionization chamber/Cerenkov counter detector system, measurements were made of the atmospheric attenuation, flux, and charge composition of cosmic ray nuclei with 16 is less than or = Z is less than or = 30 and rigidity greater than 4.5 GV. The attenuation mean free path in air of VH (20 less than or = Z less than or = 30) nuclei is found to be 19.7 + or - 1.6 g/sq cm, a value somewhat greater than the best previous measurement. The attenuation mean free path of iron is found to be 15.6 + or - 2.2 g/sq cm, consistent with predictions of geometric cross-section formulae. An absolute flux of VH nuclei 10 to 20% higher than earlier experiments at similar geomagnetic cutoff and level of solar activity was measured. The relative abundances of even-charged nuclei are found to be in good agreement with results of other recent high resolution counter experiments. The observed cosmic ray chemical composition implies relative abundances at the cosmic ray source of Ca/Fe = 0.12 + or - 0.04 and S/Fe = 0.14 + or - 0.05.

  19. The isotopic composition of cosmic ray calcium

    NASA Technical Reports Server (NTRS)

    Krombel, K. E.; Wiedenbeck, M. E.

    1985-01-01

    Data from the high energy cosmic ray experiment on the international sun earth explorer 3 (ISEE-3) spacecraft have been used to study the isotopic composition of cosmic ray calcium at an energy of approx. 260 MeV/amu. The arriving calcium is found to consist of (32 + or - 6)%. A propagation model consistent with both the light and the subiron secondary element abundances was used for the interpretation of the observed calcium composition. The measured 42Ca+43Ca+44Ca abundance is consistent with the calculated secondary production, while the 40Ca abundance implies a source ratio of 40Ca/Fe = (7.0 + or - 1.7)%.

  20. The High Energy cosmic-Radiation Detection (HERD) Facility onboard China's Future Space Station

    NASA Astrophysics Data System (ADS)

    Wu, Bobing

    2015-08-01

    The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads of the cosmic lighthouse program onboard China's Space Station, which is planned for operation starting around 2020 for about 10 years. The main scientific objectives of HERD are indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs)from five sides except the bottom. CALO is made of about 10^4 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV, 20% for protons from 100 GeV to 1 PeV; 2) electron/proton separation power better than 10^5 ; effective geometrical factors of > 3 m^2 sr for electron and diffuse gamma-rays, > 2 m^2 sr for cosmic ray nuclei. The prototype of about 1/40 of HERD calorimeter is under construction. A beam test in CERN with the prototype is approved and will be carried out in Nov. 2015.

  1. Matter-antimatter asymmetry in the Universe from high energy comic rays.

    NASA Astrophysics Data System (ADS)

    Masperi, L.

    1999-06-01

    The author describes different mechanisms to generate the matter-antimatter asymmetry observed in the Universe with particular emphasis on those based on cosmic strings. It is remarked that the latter might also be the origin of the very high-energy cosmic rays.

  2. Cosmic rays and space weather

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.

    2003-04-01

    It is well known that in periods of great FEP (Flare Energetic Particle), fluxes can be so big that memory of computers and other electronics in space may be destroyed, satellites and spacecrafts became dead (each year insurance companies paid more than 500,000,000 dollars for these failures). In these periods is necessary to switch off some part of electronics for short time to protect computer memories. These periods are also dangerous for astronauts on space-ships, and passengers and crew in commercial jets (especially during S5 radiation storms according to classification of NOAA). The problem is how to forecast exactly these dangerous phenomena. We show that exact forecast can be made by using high-energy particles (about 5-10 GeV/nucleon and higher) which transportation from the Sun is characterized by much bigger diffusion coefficient than for small and middle energy particles. Therefore high energy particles came from the Sun much more early (8-20 minutes after acceleration and escaping into solar wind) than main part of smaller energy particles caused dangerous situation for electronics and people health (about 30-60 minutes later). We describe here principles and experience of automatically working programs "FEP-Search-1 min", "FEP-Search-2 min","FEP-Search-5 min", developed and checked in the Emilio Segre' Observatory of Israel Cosmic Ray Center (2025 m above sea level, cut-off rigidity 10.8 GV). The second step is automatically determination of flare energetic particle spectrum, and then automatically determination of diffusion coefficient in the interplanetary space, time of ejection and energy spectrum of FEP in source; forecasting of expected FEP flux and radiation hazard for space-probes in space, satellites in the magnetosphere, jets and various objects in the atmosphere and on the ground. We will describe also the theory and experience of high energy cosmic ray using for forecasting of major geomagnetic storms accompanied by Forbush-effects (what influenced very much on communications, working of navigation systems, satellites and high-level technology systems in space and, the atmosphere, and on the ground). The review and original part will contain following parts: 1. Introduction (cosmic rays as object and instrument of space weather monitoring and forecasting). 2. On-line search of the start of great Flare Energetic Particle (FEP) events, automatically formation of Alerts, estimation of probability of false alerts and probability of missing alerts (realized in Israel Cosmic Ray Center and Emilio Segre’ Observatory). 3. On-line determination of flare energetic particle spectrum by the method of coupling functions. 4. Automatically determination of diffusion coefficient in the interplanetary space, time of ejection and energy spectrum of FEP in source; forecasting of expected FEP flux and radiation hazard for space-probes in space, satellites in the magnetosphere, jets and various objects in the atmosphere, and on the ground in dependence of cut-off rigidity. 5. Cosmic ray using for forecasting of major geomagnetic storms accompanied by Forbush-effects.

  3. Title of dissertation: A SEARCH FOR BURSTS OF VERY HIGH ENERGY GAMMA RAYS

    E-print Network

    California at Santa Cruz, University of

    ABSTRACT Title of dissertation: A SEARCH FOR BURSTS OF VERY HIGH ENERGY GAMMA RAYS WITH MILAGRO by cosmic gamma rays of energies E 100 GeV . The effective area of Milagro peaks at energies E 10 Te though the search was optimized primarily for detecting the emission from Gamma-Ray Bursts (GRBs

  4. Research Concerning Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Grady, Maxwell; Cunningham, John; Kuhlmann, Steve; Spinka, Hal; Underwood, Dave; Hammergren, Mark

    2010-02-01

    Throughout my academic career at Loyola I have carried out research with the Loyola University Cosmic Event Detection System concerning the possibility of detection of ultra high energy cosmic rays (UHECRs) based on radio meteor scattering methods. This research was furthered through summer internships and research fellowships at Adler Planetarium Chicago and Stony Brook University in New York. At Adler Planetarium we used a helium balloon carrying a Geiger counter and other equipment to record the cosmic ray flux at various points in the atmosphere. The results clearly show the flux depends on the atmospheric density. At Stony Brook University I studied their advanced system for detecting cosmic rays in similar manner to radio meteor scattering principles. Research there focused on detection algorithms and also on the possibility of utilizing Digital Tv (DTv) signals for further research. Through the research a solid understanding of cosmic rays was formed including topics such as origins and energy scales of cosmic rays, both of which pose unanswered questions. )

  5. Panel Discussion Vi: Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Kisselev, Alexander; Arqueros, Fernando; Gast, Henning; Solovov, Vladimir

    2015-06-01

    Questions to discuss: * What is the origin of the GZK-like suppression of the cosmic ray (CR) flux? Is it due to energy loss during propagation or due to reaching maximum energy achievable in a source? * Are the data on mass composition of ultra-high energy CRs consistent with a hypothesis that primary particles are 100% proton? Or an admixture of heavy nuclei is also allowed? * Does the deficit of muons in LHC-tuned MC simulations mean that current hadronic interaction models must be seriously corrected? * Does the anomalous positron fraction (PF) approach a stable asymptotic value or a sharp cutoff at higher energies is possible? * Do we observe annihilation of a dark matter or nearby pulsar contribution? Will anisotropy in an arrival direction of CR leptons rule out a dark matter interpretation of PF? * Is low-mass WIMP region completely excluded by the data?

  6. High Energy Gamma Rays from Protons Hitting Compact Objects

    E-print Network

    J. Barbieri; G. Chapline

    2008-06-09

    In a previous paper the spectrum of positrons produced by matter initially at rest falling onto a massive compact object was calculated. In this paper this calculation is generalized to obtain both the spectrum of in-flight positron annihilation and pi0 decay gamma rays produced when protons with a cosmic ray-like spectrum hit the surface. The resulting pi0 decay gamma ray spectrum reflects the high energy proton energy spectrum, and is largely independent of the mass of the compact object. One notable prediction for all compact objects is a dip in the spectrum below 70 MeV. As applied to the 10^6 solar mass massive compact object near to the center of our galaxy, our theory shows promise for explaining the gamma rays coming from the galactic center as observed by both the Compton satellite and HESS ground based array.

  7. Cosmic Rays and Climate Change

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Laken, B. A.; Sloan, T.; Wolfendale, A. W.

    2010-09-01

    A survey is made of the evidence for and against the hypothesis that cosmic rays affect cloud cover and thereby surface temperature. The analysis is made for the troposphere in the main and it includes correlations of cloud cover with cosmic ray intensity, Forbush decreases, cosmic ray short period increases and eleven year changes; also included are the electrical effects associated with cosmic rays. A complementary study comprises a search for extra cloud cover associated with terrestrial radon emissions, the Chernobyl accident and nuclear bomb tests. It is concluded that the best estimate of the fraction of (low) cloud cover attributable to a 2% change in cosmic ray intensity is about 0.02%. Insofar as the maximum change in average cosmic ray intensity over the last 50 years is about 0.2%, no more than 0.01% of cloud cover change in this period can have been caused by cosmic rays; their contribution to Global Warming is thus considered to be negligible. Not surprisingly, we find that the effect of cosmic rays on stratospheric cloud is bigger, by a factor of at least ten. In both the troposphere and the stratosphere the cosmic ray effects at the Poles are bigger than average.

  8. Cosmic-ray diffusion in magnetized turbulence

    E-print Network

    Tautz, R C

    2015-01-01

    The problem of cosmic-ray scattering in the turbulent electromagnetic fields of the interstellar medium and the solar wind is of great importance due to the variety of applications of the resulting diffusion coefficients. Examples are diffusive shock acceleration, cosmic-ray observations, and, in the solar system, the propagation of coronal mass ejections. In recent years, it was found that the simple diffusive motion that had been assumed for decades is often in disagreement both with numerical and observational results. Here, an overview is given of the interaction processes of cosmic rays and turbulent electromagnetic fields. First, the formation of turbulent fields due to plasma instabilities is treated, where especially the non-linear behavior of the resulting unstable wave modes is discussed. Second, the analytical and the numerical side of high-energy particle propagation will be reviewed by presenting non-linear analytical theories and Monte-Carlo simulations. For the example of the solar wind, the im...

  9. The high energy cosmic-radiation detection (HERD) facility onboard China's Space Station

    NASA Astrophysics Data System (ADS)

    Zhang, S. N.; Adriani, O.; Albergo, S.; Ambrosi, G.; An, Q.; Bao, T. W.; Battiston, R.; Bi, X. J.; Cao, Z.; Chai, J. Y.; Chang, J.; Chen, G. M.; Chen, Y.; Cui, X. H.; Dai, Z. G.; D'Alessandro, R.; Dong, Y. W.; Fan, Y. Z.; Feng, C. Q.; Feng, H.; Feng, Z. Y.; Gao, X. H.; Gargano, F.; Giglietto, N.; Gou, Q. B.; Guo, Y. Q.; Hu, B. L.; Hu, H. B.; He, H. H.; Huang, G. S.; Huang, J.; Huang, Y. F.; Li, H.; Li, L.; Li, Y. G.; Li, Z.; Liang, E. W.; Liu, H.; Liu, J. B.; Liu, J. T.; Liu, S. B.; Liu, S. M.; Liu, X.; Lu, J. G.; Mazziotta, M. N.; Mori, N.; Orsi, S.; Pearce, M.; Pohl, M.; Quan, Z.; Ryde, F.; Shi, H. L.; Spillantini, P.; Su, M.; Sun, J. C.; Sun, X. L.; Tang, Z. C.; Walter, R.; Wang, J. C.; Wang, J. M.; Wang, L.; Wang, R. J.; Wang, X. L.; Wang, X. Y.; Wang, Z. G.; Wei, D. M.; Wu, B. B.; Wu, J.; Wu, X.; Wu, X. F.; Xia, J. Q.; Xiao, H. L.; Xu, H. H.; Xu, M.; Xu, Z. Z.; Yan, H. R.; Yin, P. F.; Yu, Y. W.; Yuan, Q.; Zha, M.; Zhang, L.; Zhang, L.; Zhang, L. Y.; Zhang, Y.; Zhang, Y. J.; Zhang, Y. L.; Zhao, Z. G.

    2014-07-01

    The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads of the cosmic lighthouse program onboard China's Space Station, which is planned for operation starting around 2020 for about 10 years. The main scientific objectives of HERD are indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs) from five sides except the bottom. CALO is made of about 104 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. The top STK microstrips of seven X-Y layers are sandwiched with tungsten converters to make precise directional measurements of incoming electrons and gamma-rays. In the baseline design, each of the four side SKTs is made of only three layers microstrips. All STKs will also be used for measuring the charge and incoming directions of cosmic rays, as well as identifying back scattered tracks. With this design, HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV, 20% for protons from 100 GeV to 1 PeV; electron/proton separation power better than 10-5; effective geometrical factors of >3 m2sr for electron and diffuse gamma-rays, >2 m2sr for cosmic ray nuclei. R and D is under way for reading out the LYSO signals with optical fiber coupled to image intensified CCD and the prototype of one layer of CALO.

  10. Muon acceleration in cosmic-ray sources

    SciTech Connect

    Klein, Spencer R.; Mikkelsen, Rune E.; Becker Tjus, Julia

    2013-12-20

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup –1}. At gradients above 1.6 keV cm{sup –1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  11. Jupiter as a Giant Cosmic Ray Detector

    E-print Network

    Rimmer, Paul B; Helling, Christiane

    2014-01-01

    We explore the feasibility of using the atmosphere of Jupiter to detect Ultra-High-Energy Cosmic Rays (UHECR's). The large surface area of Jupiter allows us to probe cosmic rays of higher energies than previously accessible. Cosmic ray extensive air showers in Jupiter's atmosphere could in principle be detected by the Large Area Telescope (LAT) on the Fermi observatory. In order to be observed, these air showers would need to be oriented toward the Earth, and would need to occur sufficiently high in the atmosphere that the gamma rays can penetrate. We demonstrate that, under these assumptions, Jupiter provides an effective cosmic ray "detector" area of $3.3 \\times 10^7$ km$^2$. We predict that Fermi-LAT should be able to detect events of energy $>10^{21}$ eV with fluence $10^{-7}$ erg cm$^{-2}$ at a rate of about one per month. The observed number of air showers may provide an indirect measure of the flux of cosmic rays $\\gtrsim 10^{20}$ eV. Extensive air showers also produce a synchrotron signature that may ...

  12. The FORTE VHF instrument as a high-energy cosmic ray Nikolai G. Lehtinen, Peter W. Gorham,a Abram R. Jacobson and Robert A. Roussel-Dupreb

    E-print Network

    Lehtinen, Nikolai G.

    of 30 to 300 MHz with a polarization-selective antenna. We investigate possible RF signatures of ultra the high-energy particles in the shower. The FORTE database consists of over 4 million recorded events event is left that requires further investigation. Keywords: FORTE satellite, radio detection of ultra

  13. Antiprotons in cosmic rays

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.; Streitmatter, R. E.

    1987-01-01

    Recent experimental observations and results are discussed. It was found that the approximately 50 antiprotons collected in balloon experiments to date have generated considerable theoretical interest. Clearly, confirmatory experiments and measurements over an extended energy range are required before definite conclusions are drawn. Antiproton measurements have a bearing on astrophysical problems ranging from cosmic ray propagation to issues of cosmological import. The next generation of balloon experiments and the Particle Astrophysics Magnet Facility being discussed for operation on NASA's space station should provide data and insights of highest interest.

  14. Discovery of Very-High-Energy Gamma-Rays from the Galactic Centre Ridge

    E-print Network

    The H. E. S. S. Collaboration; :; F. A. Aharonian

    2006-03-01

    The origin of Galactic cosmic rays (with energies up to 10^15 eV) remains unclear, though it is widely believed that they originate in the shock waves of expanding supernova remnants. Currently the best way to investigate their acceleration and propagation is by observing the gamma-rays produced when cosmic rays interact with interstellar gas. Here we report observations of an extended region of very high energy (VHE, >100 GeV) gamma-ray emission correlated spatially with a complex of giant molecular clouds in the central 200 pc of the Milky Way. The hardness of the gamma-ray spectrum and the conditions in those molecular clouds indicate that the cosmic rays giving rise to the gamma-rays are likely to be protons and nuclei rather than electrons. The energy associated with the cosmic rays could have come from a single supernova explosion around 10,000 years ago.

  15. EXTRAGALACTIC VERY HIGH ENERGY GAMMA-RAY BACKGROUND

    SciTech Connect

    Neronov, A.; Semikoz, D. V.

    2012-09-20

    We study the origin of the extragalactic diffuse gamma-ray background using the data from the Fermi telescope. To estimate the background level, we count photons at high Galactic latitudes |b| > 60 Degree-Sign . Subtracting photons associated with known sources and the residual cosmic-ray and Galactic diffuse backgrounds, we estimate the extragalactic gamma-ray background (EGB) flux. We find that the spectrum of EGB in the very high energy band above 30 GeV follows the stacked spectrum of BL Lac objects. Large Area Telescope data reveal the positive (1 + z) {sup k}, 1 < k < 4 cosmological evolution of the BL Lac source population consistent with that of their parent population, Fanaroff-Riley type I radio galaxies. We show that EGB at E > 30 GeV could be completely explained by emission from unresolved BL Lac objects if k {approx_equal} 3.

  16. Cosmic rays and tests of fundamental principles

    E-print Network

    Luis Gonzalez-Mestres

    2011-09-22

    It is now widely acknowledged that cosmic rays experiments can test possible new physics directly generated at the Planck scale or at some other fundamental scale. By studying particle properties at energies far beyond the reach of any man-made accelerator, they can yield unique checks of basic principles. A well-known example is provided by possible tests of special relativity at the highest cosmic-ray energies. But other essential ingredients of standard theories can in principle be tested: quantum mechanics, uncertainty principle, energy and momentum conservation, effective space-time dimensions, hamiltonian and lagrangian formalisms, postulates of cosmology, vacuum dynamics and particle propagation, quark and gluon confinement, elementariness of particles... Standard particle physics or string-like patterns may have a composite origin able to manifest itself through specific cosmic-ray signatures. Ultra-high energy cosmic rays, but also cosmic rays at lower energies, are probes of both "conventional" and new Physics. Status, prospects, new ideas, and open questions in the field are discussed. The Post Scriptum shows that several basic features of modern cosmology naturally appear in a SU(2) spinorial description of space-time without any need for matter, relativity or standard gravitation. New possible effects related to the spinorial space-time structure can also be foreseen. Similarly, the existence of spin-1/2 particles can be naturally related to physics beyond Planck scale and to a possible pre-Big Bang era.

  17. High Energy Cosmic Neutrinos Astronomy: The ANTARES Project

    E-print Network

    S. Basa

    1999-04-16

    Neutrinos may offer a unique opportunity to explore the far Universe at high energy. The ANTARES collaboration aims at building a large undersea neutrino detector able to observe astrophysical sources (AGNs, X-ray binary systems, ...) and to study particle physics topics (neutrino oscillation, ...). After a description of the research opportunities of such a detector, a status report of the experiment will be made.

  18. Superbubbles and Local Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Streitmatter, Robert E.; Jones, Frank C.

    2005-01-01

    We consider the possibility that distinctive features of the local cosmic ray spectra and composition are influenced by the Solar system being embedded within the cavity of an ancient superbubble. Shifts in the measured cosmic ray composition between 10(exp 11) and 10(exp 20) eV as well as the "knee" and "second knee" may be understood in this picture.

  19. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2009-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The existing models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  20. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2010-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The exising models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  1. Cosmic Rays and Experiment CZELTA

    SciTech Connect

    Smolek, Karel; Nyklicek, Michal

    2007-11-26

    This paper gives a review of the physics of cosmic rays with emphasis on the methods of detection and study. A summary is given of the Czech project CZELTA which is part of a multinational program to study cosmic rays with energies above 10{sup 14} eV.

  2. Flux limits for high energy cosmic photinos from underground experiments

    NASA Astrophysics Data System (ADS)

    Fayet, P.

    1989-03-01

    Underground experiments, which detect the interactions of atmospheric neutrinos, could also be sensitive to photinos. Using data from the Fréjus and Kamiokande detectors we give upper limits on the possible flux of high-energy relativistic photinos incident on the Earth, as functions of the squark or selectron masses. These limits improve considerably the existing ones, by four to nine orders of magnitude or more, especially for very energetic photinos. Although not yet very constraining, they may be used to eliminate the possibility that high-energy cosmic photinos could contribute significantly to the energy density of the Universe. Laboratoire Propre du Centre National de la Recherche Scientifique, associé à l'École Normale Supérieure et à l'Université de Paris-Sud.

  3. Cosmic Ray Positrons from Cosmic Strings

    E-print Network

    Robert Brandenberger; Yi-Fu Cai; Wei Xue; Xinmin Zhang

    2009-01-25

    We study the spectrum of cosmic ray positrons produced by a scaling distribution of non-superconducting cosmic strings. In this scenario, the positrons are produced from the jets which form from the cosmic string cusp annihilation process. The spectral shape is a robust feature of our scenario, and is in good agreement with the results from the recent PAMELA and ATIC experiments. In particular, the model predicts a sharp upper cutoff in the spectrum, and a flux which rises as the upper cutoff is approached. The energy at which the flux peaks is determined by the initial jet energy. The amplitude of the flux can be adjusted by changing the cosmic string tension and also depends on the cusp annihilation efficiency.

  4. Single particle effects, Biostack, and risk evaluation - Studies on the radiation risk from Galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Curtis, Stanley B.

    1993-01-01

    The possible health risks posed by Galactic cosmic rays, especially the possible heightened cancer risk, are examined. The results of the Biostack studies of the biological effects of high-energy cosmic rays are discussed. The biological mechanisms involved in possible harm due to cosmic rays are considered.

  5. Optimal signal time for the directional reconstruction of Cosmic Rays using radio

    E-print Network

    van Suijlekom, Walter

    Optimal signal time for the directional reconstruction of Cosmic Rays using radio detection Observatory's goal is to determine the nature and origin of ultra high energy cosmic rays. To reconstruct the direction of the cosmic ray, one of the most important parameters is the arrival time of the shower

  6. Supernova Remnants, Cosmic Rays, and GLAST

    SciTech Connect

    Reynolds, Steve

    2006-02-13

    The shock waves of supernova remnants (SNRs) are the traditional sources of Galactic cosmic rays, at least up to about 3000 TeV (the 'knee' energy in the cosmic-ray spectrum). In the last decade or so, X-ray observations have confirmed in a few SNRs the presence of synchrotron-X-ray-emitting electrons with energies of order 100 TeV. TeV photons from SNRs have been observed with ground-based air Cerenkov telescopes as well, but it is still unclear whether they are due to hadronic processes (inelastic p-p scattering of cosmic-ray protons from thermal gas, with secondary neutral pions decaying to gamma rays), or to leptonic processes (inverse-Compton upscattering of cosmic microwave background photons, or bremsstrahlung). The spatial structure of synchrotron X-rays as observed with the Chandra X-ray Observatory suggests the remarkable possibility that magnetic fields are amplified by orders of magnitude in strong shock waves. The electron spectra inferred from X-rays reach 100 TeV, but at that energy are cutting off steeply, well below the 'knee' energy. Are the cutoff processes due only to radiative losses so that ion spectra might continue unsteepened? Can we confirm the presence of energetic ions in SNRs at all? Are typical SNRs capable of supplying the pool of Galactic cosmic rays? Is strong magnetic-field amplification a property of strong astrophysical shocks in general? These major questions require the next generation of observational tools. I shall outline the theoretical and observational framework of particle acceleration to high energies in SNRs, and shall describe how GLAST will advance this field.

  7. Supernova Remnants, Cosmic Rays, and GLAST

    SciTech Connect

    Reynolds, Steve

    2006-02-13

    The shock waves of supernova remnants (SNRs) are the traditional sources of Galactic cosmic rays, at least up to about 3000 TeV (the "knee" energy in the cosmic-ray spectrum). In the last decade or so, X-ray observations have confirmed in a few SNRs the presence of synchrotron-X-ray-emitting electrons with energies of order 100 TeV. TeV photons from SNRs have been observed with ground-based air Cerenkov telescopes as well, but it is still unclear whether they are due to hadronic processes (inelastic p-p scattering of cosmic-ray protons from thermal gas, with secondary neutral pions decaying to gamma rays), or to leptonic processes (inverse-Compton upscattering of cosmic microwave background photons, or bremsstrahlung). The spatial structure of synchrotron X-rays as observed with the Chandra X-ray Observatory suggests the remarkable possibility that magnetic fields are amplified by orders of magnitude in strong shock waves. The electron spectra inferred from X-rays reach 100 TeV, but at that energy are cutting off steeply, well below the "knee" energy. Are the cutoff processes due only to radiative losses so that ion spectra might continue unsteepened? Can we confirm the presence of energetic ions in SNRs at all? Are typical SNRs capable of supplying the pool of Galactic cosmic rays? Is strong magnetic-field amplification a property of strong astrophysical shocks in general? These major questions require the next generation of observational tools. I shall outline the theoretical and observational framework of particle acceleration to high energies in SNRs, and shall describe how GLAST will advance this field.

  8. Cosmic-ray acceleration in supernova shocks

    E-print Network

    Vincent Tatischeff

    2008-07-25

    Galactic cosmic rays are widely believed to be accelerated in expanding shock waves initiated by supernova explosions. The theory of diffusive shock acceleration of cosmic rays is now well established, but two fundamental questions remain partly unanswered: what is the acceleration efficiency, i.e. the fraction of the total supernova energy converted to cosmic-ray energy, and what is the maximum kinetic energy achieved by particles accelerated in supernova explosions? Recent observations of supernova remnants, in X-rays with the Chandra and XMM-Newton satellites and in very-high-energy gamma rays with several ground-based atmospheric Cerenkov telescopes, have provided new pieces of information concerning these two questions. After a review of these observations and their current interpretations, I show that complementary information on the diffusive shock acceleration process can be obtained by studying the radio emission from extragalactic supernovae. As an illustration, a nonlinear model of diffusive shock acceleration is applied to the radio light curves of the supernova SN 1993J, which exploded in the nearby galaxy M81. The results of the model suggest that most of the Galactic cosmic rays may be accelerated during the early phase of interaction between the supernova ejecta and the wind lost from the progenitor star.

  9. High Energy Neutrinos from Gamma Ray Bursts

    E-print Network

    Charles D. Dermer; Armen Atoyan

    2003-07-09

    We treat high-energy neutrino production in GRBs. Detailed calculations of photomeson neutrino production are presented for the collapsar model, where internal nonthermal synchrotron radiation is the primary target photon field, and the supranova model, where external pulsar-wind synchrotron radiation provides important additional target photons. Detection of > 10 TeV neutrinos from GRBs with Doppler factors > 200, inferred from gamma-ray observations, would support the supranova model. Detection of powerful bursts at fluence levels > 3x10^{-4} erg/cm^2 offer a realistic prospect for detection of muon neutrinos.

  10. Hadronic Cross sections: from cyclotrons to colliders to cosmic rays

    E-print Network

    Martin M. Block

    2010-09-02

    We present evidence for the saturation of the Froissart bound at high energy for {\\em all hadronic} total cross sections at high energies, and use this to unify $pp$ (and $\\bar p p$) total cross sections over the energy range from cyclotrons to colliders to ultra-high energy cosmic rays, an energy span from $\\sqrt s = 4$ GeV to 80 TeV.

  11. Gamma-Rays from Grazing Incidence Cosmic Rays in the Earth's Atmosphere

    E-print Network

    Andrew Ulmer

    1994-04-13

    Interactions of grazing incidence, ultra high energy cosmic rays with the earth's atmosphere may provide a new method of studying energetic cosmic rays with gamma-ray satellites. It is found that these cosmic ray interactions may produce gamma-rays on millisecond time scales which may be detectable by satellites. An extremely low gamma-ray background for transient gamma-ray events and a large area of interaction, the earth's surface, make the scheme plausible. The effective cross section of detection of interactions for cosmic rays above 10^20 eV is found to be more than two orders of magnitude higher than earth based detection techniques. This method may eventually offer an efficient way of probing this region of the cosmic ray energy spectrum where events are scarce. In this paper, a conceptual model is presented for the production of short bursts of gamma-rays based on these grazing incidence encounters with the earth's atmosphere.

  12. Gamma rays from grazing incidence cosmic rays in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Ulmer, Andrew

    1994-01-01

    Interactions of grazing incidence, ultra high-energy cosmic rays with the earth's atmosphere may provide a new method of studying energetic cosmic rays with gamma-ray satellites. It is found that these cosmic ray interactions may produce gamma-rays on millisecond timescales which may be detectable by satellites. An extremely low gamma-ray background for transient gamma-ray events and a large area of interaction, the earth's surface, make the scheme plausible. The effective cross section of detection of interactions for cosmic rays above 10(exp 20) eV is found to be more than two orders of magnitude higher than Earth-based detection techniques. This method may eventually offer an efficient way of probing this region of the cosmic-ray energy spectrum where events are scarce. In this paper, a conceptual model is presented for the production of short bursts of gamma-rays based on these grazing incidence encounters with the Earth's atmosphere.

  13. SOLAR SYSTEM OBJECTS AS COSMIC RAYS DETECTORS

    SciTech Connect

    Privitera, P.; Motloch, P.

    2014-08-10

    In a recent Letter, Jupiter is presented as an efficient detector for Ultra-High Energy Cosmic Rays (UHECRs), through measurement by an Earth-orbiting satellite of gamma rays from UHECRs showers produced in Jupiter's atmosphere. We show that this result is incorrect, due to erroneous assumptions on the angular distribution of shower particles. We evaluated other solar system objects as potential targets for UHECRs detection, and found that the proposed technique is either not viable or not competitive with traditional ground-based UHECRs detectors.

  14. ASPIRE - Cloud Chambers as an Introduction to Cosmic Ray Observation

    NASA Astrophysics Data System (ADS)

    Callahan, Julie; Matthews, John; Jui, Charles

    2012-03-01

    ASPIRE is the K12 - Education & Public Outreach program for the Telescope Array ultra-high energy cosmic ray research project in Utah. The Telescope Array experiment studies ultra-high energy cosmic rays with an array of ˜500 surface scintillator detectors and three fluorescence telescope stations observing over 300 square miles in the West Desert of Utah. Telescope Array is a collaboration of international institutions from the United States, Japan, Korea, Russia and Belgium. Cloud chambers are an inexpensive and easy demonstration to visually observe evidence of charged particles and cosmic ray activity both for informal events as well as for K12 classroom activities. Join us in building a cloud chamber and observe cosmic rays with these table-top demonstrations. A brief overview of the Telescope Array project in Millard County, Utah will also be presented.

  15. Cosmic rays are on the air Studying the properties of radio signals from cosmic-ray

    E-print Network

    van Suijlekom, Walter

    Cosmic rays are on the air Studying the properties of radio signals from cosmic-ray induced air showers #12;#12;Cosmic rays are on the air Studying the properties of radio signals from cosmic-ray;#12;Contents 1 Introduction 1 1.1 Discovery of cosmic rays . . . . . . . . . . . . . . . . . . . . . . . 1 1

  16. High-energy cosmic neutrinos from spine-sheath BL Lac jets

    NASA Astrophysics Data System (ADS)

    Tavecchio, F.; Ghisellini, G.

    2015-08-01

    We recently proposed that structured (spine-sheath) jets associated with BL Lac objects could offer a suitable environment for the production of the extragalactic high-energy (E > 100 TeV) neutrino recently revealed by IceCube. Our previous analysis was limited to low-power BL Lac objects. We extend our preliminary study to the entire BL Lac population, assuming that the entire diffuse emission is accounted for by these sources. The neutrino output from a single source depends on a relatively large number of parameters. However, for several of them we have constraints coming from observations and previous application of the structured jet model to blazar and radiogalaxy emission. The observed neutrino spectrum then fixes the remaining free parameters. We assume that the power of cosmic rays as well as the radiative luminosity of the sheath depends linearly on the jet power. In turn, we assume that the latter is well traced by the ?-ray luminosity. We exploit the BL Lac ?-ray luminosity function and its cosmic evolution as recently inferred from Fermi-LAT data to derive the expected neutrino cumulative intensity from the entire BL Lac population. When considering only the low-power BL Lacs, a large cosmic ray power for each source is required to account for the neutrino flux. Instead, if BL Lacs of all powers produce neutrinos, the power demand decreases, and the required cosmic ray power becomes of the same order of the radiative jet power. In our scheme, the maximum energy of cosmic rays is constrained to be ? few PeV by the lack of events above few PeV. Although such a value is obtained through a fine-tuning with the data, we show that it could be possibly related to the equilibrium between cooling and acceleration processes for high-energy cosmic rays. We also discuss the prospects for the direct association of IceCube events with BL Lacs, providing an estimate of the expected counts for the most promising sources.

  17. Cosmic Rays and Global Warming

    E-print Network

    T. Sloan; A W Wolfendale

    2007-06-28

    It has been claimed by others that observed temporal correlations of terrestrial cloud cover with `the cosmic ray intensity' are causal. The possibility arises, therefore, of a connection between cosmic rays and Global Warming. If true, the implications would be very great. We have examined this claim to look for evidence to corroborate it. So far we have not found any and so our tentative conclusions are to doubt it. Such correlations as appear are more likely to be due to the small variations in solar irradiance, which, of course, correlate with cosmic rays. We estimate that less than 15% of the 11-year cycle warming variations are due to cosmic rays and less than 2% of the warming over the last 35 years is due to this cause.

  18. PREFACE: 24th European Cosmic Ray Symposium (ECRS)

    NASA Astrophysics Data System (ADS)

    2015-08-01

    The 24th European Cosmic Ray Symposium (ECRS) took place in Kiel, Germany, at the Christian-Albrechts-Universität zu Kiel from September 1 - 5, 2014, The first symposium was held in 1968 in Lodz, Poland (high energy, extensive air showers and astrophysical aspects) and in Bern (solar and heliospheric phenomena) and the two "strands" joined together in 1976 with the meeting in Leeds. The 24th ECRS covered a wide range of scientific issues divided into the following topics: HECR-I Primary cosmic rays I (experiments) HECR-II Primary cosmic rays II (theory) MN Cosmic ray muons and neutrinos GR GeV and TeV gamma astronomy SH Energetic particles in the heliosphere (solar and anomalous CRs and GCR modulation) GEO Cosmic rays and geophysics (energetic particles in the atmosphere and magnetosphere of the Earth) INS Future Instrumentation DM Dark Matter The organizers are very grateful to the Deutsche Forschungs Gemeinschaft for supporting the symposium.

  19. High energy gamma ray results from the second small astronomy satellite

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Oegelman, H.; Oezel, M. F.; Tuemer, T.

    1974-01-01

    A high energy (35 MeV) gamma ray telescope employing a thirty-two level magnetic core spark chamber system was flown on SAS 2. The high energy galactic gamma radiation is observed to dominate over the general diffuse radiation along the entire galactic plane, and when examined in detail, the longitudinal and latitudinal distribution seem generally correlated with galactic structural features, particularly with arm segments. The general high energy gamma radiation from the galactic plane, explained on the basis of its angular distribution and magnitude, probably results primarily from cosmic ray interactions with interstellar matter.

  20. Very high energy gamma ray astrophysics

    SciTech Connect

    Lamb, R.C.; Lewis, D.A.

    1992-02-01

    The second reflector (project GRANITE) is on schedule. At present (January 1992) it and the 10 m reflector are obtaining stereoscopic views of gamma-ray air showers from the Crab Nebula which verify the expected performance of the twin reflector telescopes. With the additional improvements of the upgrade (a pending DOE proposal) the twin reflectors should reach a limiting intensity of 1% that of the Crab. The astonishing early results from the EGRET detector aboard the Compton Gamma Ray Observatory indicate that distant quasars (powered by supermassive black holes) are active at GeV energies. The Whipple instruments are poised to see if such behavior continues above 100 GeV, as well as perform sensitive observations of previously reported GeV (Geminga) and TeV (Hercules X-1, etc.) sources. In addition to observing sources and identifying their location in the sky to one arcminute, experiments are planned to search for WIMPS in the mass range 0.1 to 1 TeV, and to determine the abundance of anti-protons in the cosmic rays. The successful performance of the stereoscopic reflectors demonstrates the feasibility of the concept of arrays of Cherenkov receivers. Design studies for a much larger array (CASITA) are just beginning.

  1. Detectors for Cosmic Rays on Ground and in Space

    SciTech Connect

    Tajima, Hiroyasu; /SLAC

    2007-09-10

    The origin of the cosmic rays has been a great mystery since they were discovered by Victor Hess in 1912. AGASA's observation of ultra-high-energy cosmic-rays (UHECR) possibly beyond the GZK (Greisen, Zatsepin and Kuzmin) cutoff stimulated the field in great deal. In addition, Kamiokande's detection of neutrinos from SN1987A and the H.E.S.S.'s detection of TeV gamma-rays from supernova remnants demonstrated the viability of neutrino and TeV gamma-ray astronomy for cosmic-ray research. A new generation of currently-operating or soon-to-be-operating detectors for charged particles, gamma-rays and neutrinos from cosmos will get us even closer to understanding the nature and origin of cosmic rays. Detectors for UHECRs, gamma rays and neutrinos are of particular importance in order to study the origins of cosmic rays since these particles are free from the deflection due to magnetic fields. Detectors for antiparticles and gamma rays would be useful to detect cosmic rays originated from the decay of the dark matter in the Universe. I will review these cosmic-ray detectors with particular attention on the differences of ground-based, balloon-borne and satellite-borne detectors.

  2. Nineteenth International Cosmic Ray Conference. HE Sessions, Volume 6

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (compiler)

    1985-01-01

    Papers contributed to the 19th International Cosmic Ray Conference which address high energy interactions and related phenomena are compiled. Particular topic areas include cross sections; particle production; nuclei and nuclear matter; nucleus-nucleus collisions; gamma ray and hadron spectra; C-jets, a-jets, and super families; and emulsion chamber simulations.

  3. Quantum Black Holes from Cosmic Rays

    E-print Network

    Xavier Calmet; Lauretiu Ioan Caramete; Octavian Micu

    2012-11-19

    We investigate the possibility for cosmic ray experiments to discover non-thermal small black holes with masses in the TeV range. Such black holes would result due to the impact between ultra high energy cosmic rays or neutrinos with nuclei from the upper atmosphere and decay instantaneously. They could be produced copiously if the Planck scale is in the few TeV region. As their masses are close to the Planck scale, these holes would typically decay into two particles emitted back-to-back. Depending on the angles between the emitted particles with respect to the center of mass direction of motion, it is possible for the simultaneous showers to be measured by the detectors.

  4. Cosmic Ray Electron Science with GLAST

    NASA Technical Reports Server (NTRS)

    Ormes, J. F.; Moiseev, Alexander

    2007-01-01

    Cosmic ray electrons at high energy carry information about their sources, their definition in local magnetic fields and their interactions with the photon fields through which they travel. The spectrum of the particles is affected by inverse Compton losses and synchrotron losses, the rates of which are proportional to the square of the particle's energy making the spectra very steep. However, GLAST will be able to make unique and very high statistics measurements of electrons from approx. 20 to approx. 700 GeV that will allow us to search for anisotropies in anival direction and spectral features associated with some dark matter candidates. Complementary information on electrons of still higher energy will be required to see effects of possible individual cosmic ray sources.

  5. Gamma Ray Signatures from Ordinary Cosmic Strings

    E-print Network

    Jane H. MacGibbon; Robert H. Brandenberger

    1992-06-19

    We calculate the flux of ultra high energy photons from individual ordinary (i.e. non-superconducting) cosmic strings and compare the results with the sensitivity of current and proposed TeV and EeV telescopes. Our calculations give only upper limits for the gamma ray flux, since the source of the photons, jets from particle production at cusps, may be weakened by back reaction effects. For the usual cosmic distribution of strings, the predicted bursts from strings with the value of mass per unit length associated with galaxy formation or light strings may just be detectable. A diffuse gamma ray background from light strings may also be seen by the Fly's Eye detector at above $7 \\times 10^{10}$ GeV.

  6. Significance of medium energy gamma ray astronomy in the study of cosmic rays

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Cheung, C. Y.

    1975-01-01

    Medium energy (about 10 to 30 MeV) gamma ray astronomy provides information on the product of the galactic electron cosmic ray intensity and the galactic matter to which the electrons are dynamically coupled by the magnetic field. Because high energy (greater than 100 MeV) gamma ray astronomy provides analogous information for the nucleonic cosmic rays and the relevant matter, a comparison between high energy and medium energy gamma ray intensities provides a direct ratio of the cosmic ray electrons and nucleons throughout the galaxy. A calculation of gamma ray production by electron bremsstrahlung shows that: bremsstrahlung energy loss is probably not negligible over the lifetime of the electrons in the galaxy; and the approximate bremsstrahlung calculation often used previously overestimates the gamma ray intensity by about a factor of two. As a specific example, expected medium energy gamma ray intensities are calculated for the speral arm model.

  7. Cosmic ray propagation with CRPropa 3

    NASA Astrophysics Data System (ADS)

    Alves Batista, R.; Erdmann, M.; Evoli, C.; Kampert, K.-H.; Kuempel, D.; Mueller, G.; Sigl, G.; Van Vliet, A.; Walz, D.; Winchen, T.

    2015-05-01

    Solving the question of the origin of ultra-high energy cosmic rays (UHECRs) requires the development of detailed simulation tools in order to interpret the experimental data and draw conclusions on the UHECR universe. CRPropa is a public Monte Carlo code for the galactic and extragalactic propagation of cosmic ray nuclei above ? 1017 eV, as well as their photon and neutrino secondaries. In this contribution the new algorithms and features of CRPropa 3, the next major release, are presented. CRPropa 3 introduces time-dependent scenarios to include cosmic evolution in the presence of cosmic ray deflections in magnetic fields. The usage of high resolution magnetic fields is facilitated by shared memory parallelism, modulated fields and fields with heterogeneous resolution. Galactic propagation is enabled through the implementation of galactic magnetic field models, as well as an efficient forward propagation technique through transformation matrices. To make use of the large Python ecosystem in astrophysics CRPropa 3 can be steered and extended in Python.

  8. Cosmic Rays X. The cosmic ray knee and beyond: Diffusive acceleration at oblique shocks

    E-print Network

    A. Meli; P. L. Biermann

    2006-05-05

    Our purpose is to evaluate the rate of the maximum energy and the acceleration rate that cosmic rays acquire in the non-relativistic diffusive shock acceleration as it could apply during their lifetime in various astrophysical sites, where highly oblique shocks exist. We examine numerically (using Monte Carlo simulations) the effect of the diffusion coefficients on the energy gain and the acceleration rate, by testing the role between the obliquity of the magnetic field to the shock normal, and the significance of both perpendicular cross-field diffusion and parallel diffusion coefficients to the acceleration rate. We find (and justify previous analytical work - Jokipii 1987) that in highly oblique shocks the smaller the perpendicular diffusion gets compared to the parallel diffusion coefficient values, the greater the energy gain of the cosmic rays to be obtained. An explanation of the cosmic ray spectrum in high energies, between $10^{15}$eV and about $10^{18}$eV is claimed, as we estimate the upper limit of energy that cosmic rays could gain in plausible astrophysical regimes; interpreted by the scenario of cosmic rays which are injected by three different kind of sources, (a) supernovae which explode into the interstellar medium, (b) Red Supergiants, and (c) Wolf-Rayet stars, where the two latter explode into their pre-supernovae winds.

  9. Educational cosmic-ray experiments with Geiger counters

    NASA Astrophysics Data System (ADS)

    Blanco, F.; Fichera, F.; La Rocca, P.; Librizzi, F.; Parasole, O.; Riggi, F.

    2006-05-01

    Experiments concerning the physics of cosmic rays offer to high-school teachers and students a relatively easy approach to the field of research in high energy physics. The detection of cosmic rays does not necessarily require the use of sophisticated equipment, and various properties of the cosmic radiation can be observed and analysed even by the use of a single Geiger counter. Nevertheless, the variety of such kind of experiments and the results obtained are limited because of the inclusive nature of these measurements. A significant improvement may be obtained when two or more Geiger counters are operated in coincidence. In this paper we discuss the potential of performing educational cosmic ray experiments with Geiger counters. In order to show also the educational value of coincidence techniques, preliminary results of cosmic ray experiments carried out by the use of a simple coincidence circuit are briefly discussed.

  10. Cosmic X-ray Sources.

    PubMed

    Bowyer, S; Byram, E T; Chubb, T A; Friedman, H

    1965-01-22

    Eight new sources of cosmic x-rays were detected by two Aerobee surveys in 1964. One source, from Sagittarius, is close to the galactic center, and the other, from Ophiuchus, may coincide with Kepler's 1604 supernova. All the x-ray sources are fairly close to the galactic plane. PMID:17832788

  11. An Absence of Neutrinos Associated with Cosmic Ray Acceleration in Gamma-Ray Bursts

    E-print Network

    Abbasi, R; Abu-Zayyad, T; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Alba, J L Bazo; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Besson, D Bertrand D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Brown, A M; Buitink, S; Caballero-Mora, K S; Carson, M; Casier, M; Chirkin, D; Christy, B; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; Silva, A H Cruz; D'Agostino, M V; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Degner, T; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dierckxsens, M; Dreyer, J; Dumm, J P; Dunkman, M; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Góra, D; Grant, D; Griesel, T; Groß, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Han, K; Hanson, K; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, B; Homeier, A; Hoshina, K; Huelsnitz, W; Hül?, J -P; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Johansson, H; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, S; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lünemann, J; Madsen, J; Marotta, A; Maruyama, R; Mase, K; Matis, H S; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Nowicki, S C; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Heros, C Pérez de los; Piegsa, A; Pieloth, D; Posselt, J; Price, P B; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rizzo, A; Rodrigues, J P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Schmidt, T; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Smith, M W E; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Stüer, M; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Zoll, M

    2012-01-01

    Gamma-Ray Bursts (GRBs) have been proposed as a leading candidate for acceleration of ultra high-energy cosmic rays, which would be accompanied by emission of TeV neutrinos produced in proton-photon interactions during acceleration in the GRB fireball. Two analyses using data from two years of the IceCube detector produced no evidence for this neutrino emission, placing strong constraints on models of neutrino and cosmic-ray production in these sources.

  12. Cosmic-Ray Accelerators in Milky Way studied with the Fermi Gamma-ray Space Telescope

    SciTech Connect

    Kamae, Tuneyoshi; /SLAC /KIPAC, Menlo Park

    2012-05-04

    High-energy gamma-ray astrophysics is now situated at a confluence of particle physics, plasma physics and traditional astrophysics. Fermi Gamma-ray Space Telescope (FGST) and upgraded Imaging Atmospheric Cherenkov Telescopes (IACTs) have been invigorating this interdisciplinary area of research. Among many new developments, I focus on two types of cosmic accelerators in the Milky-Way galaxy (pulsar, pulsar wind nebula, and supernova remnants) and explain discoveries related to cosmic-ray acceleration.

  13. The origin of cosmic rays

    E-print Network

    Biermann, P L

    1995-01-01

    The search for the origin of cosmic rays is a quest of almost a hundred years. A recent theoretical proposal gives quantitative predictions, which can be tested with data. Specifically, it has been suggested, that all cosmic rays can be attributed to just three source sites: i) supernova explosions into the interstellar medium, ii) supernova explosions into a stellar wind, and iii) powerful radiogalaxies. The cosmic rays from any extragalactic source suffer from interaction with the microwave background, leading to the Greisen-Zatsepin-Kuzmin cutoff. While the particle energies, the spectrum and the chemical composition of cosmic rays over the energy range from about GeV to about 100 EeV can be interpreted in the theory, there are exciting measurements now: New measurements show that there are cosmic ray events beyond the Greisen-Zatsepin-Kuzmin cutoff. We discuss here possible sources, and specifically ask whether powerful radiogalaxies are suitable candidates. The basic concepts used here are the minimal hy...

  14. The origin of cosmic rays

    E-print Network

    Peter L. Biermann

    1995-01-04

    The search for the origin of cosmic rays is a quest of almost a hundred years. A recent theoretical proposal gives quantitative predictions, which can be tested with data. Specifically, it has been suggested, that all cosmic rays can be attributed to just three source sites: i) supernova explosions into the interstellar medium, ii) supernova explosions into a stellar wind, and iii) powerful radiogalaxies. The cosmic rays from any extragalactic source suffer from interaction with the microwave background, leading to the Greisen-Zatsepin-Kuzmin cutoff. While the particle energies, the spectrum and the chemical composition of cosmic rays over the energy range from about GeV to about 100 EeV can be interpreted in the theory, there are exciting measurements now: New measurements show that there are cosmic ray events beyond the Greisen-Zatsepin-Kuzmin cutoff. We discuss here possible sources, and specifically ask whether powerful radiogalaxies are suitable candidates. The basic concepts used here are the minimal hypothesis that the intergalactic magnetic field is given by the galaxy distribution, and the observation that radio galaxies also cluster like galaxies.

  15. Gravity, Cosmic Rays and the LHC

    E-print Network

    Richard Shurtleff

    2008-01-20

    The high energy proton beams expected when the Large Hadron Collider (LHC) comes online should provide a pass/fail test for a gravity-related explanation of ultrahigh energy cosmic rays. The model predicts that particles have two kinds energies, equal for null gravitational potentials and, in the potential at the Earth, differing significantly above one TeV. If correct, a 7 TeV trajectory energy proton at the LHC would deliver a 23.5 TeV particle state energy in a collision.

  16. Cosmic Rays and Global Warming

    SciTech Connect

    Sloan, T.; Wolfendale, A. W.

    2008-01-24

    Some workers have claimed that the observed temporal correlations of (low level) terrestrial cloud cover with the cosmic ray intensity changes, due to solar modulation, are causal. The possibility arises, therefore, of a connection between cosmic rays and Global Warming. If true, the implications would be very great. We have examined this claim in some detail. So far, we have not found any evidence in support and so our conclusions are to doubt it. From the absence of corroborative evidence we estimate that less than 15% at the 95% confidence level, of the 11-year cycle warming variations are due to cosmic rays and less than 2% of the warming over the last 43 years is due to this cause. The origin of the correlation itself is probably the cycle of solar irradiance although there is, as yet, no certainty.

  17. The microphysics and macrophysics of cosmic rays

    SciTech Connect

    Zweibel, Ellen G.

    2013-05-15

    This review paper commemorates a century of cosmic ray research, with emphasis on the plasma physics aspects. Cosmic rays comprise only ?10{sup ?9} of interstellar particles by number, but collectively their energy density is about equal to that of the thermal particles. They are confined by the Galactic magnetic field and well scattered by small scale magnetic fluctuations, which couple them to the local rest frame of the thermal fluid. Scattering isotropizes the cosmic rays and allows them to exchange momentum and energy with the background medium. I will review a theory for how the fluctuations which scatter the cosmic rays can be generated by the cosmic rays themselves through a microinstability excited by their streaming. A quasilinear treatment of the cosmic ray–wave interaction then leads to a fluid model of cosmic rays with both advection and diffusion by the background medium and momentum and energy deposition by the cosmic rays. This fluid model admits cosmic ray modified shocks, large scale cosmic ray driven instabilities, cosmic ray heating of the thermal gas, and cosmic ray driven galactic winds. If the fluctuations were extrinsic turbulence driven by some other mechanism, the cosmic ray background coupling would be entirely different. Which picture holds depends largely on the nature of turbulence in the background medium.

  18. WMAP, Planck, cosmic rays and unconventional cosmologies

    E-print Network

    Luis Gonzalez-Mestres

    2011-10-27

    The claim by Gurzadyan et al. that the cosmological sky is a weakly random one where "the random perturbation is a minor component of mostly regular signal" has given rise to a series of useful exchanges. The possibility that the Cosmic Microwave Background radiation (CMB) data present trends in this direction would have strong implications for unconventional cosmologies. Similarly, data on ultra-high energy cosmic rays may contain signatures from new Physics generated beyond the Planck scale. It therefore seems legitimate, from a phenomenological point of view, to consider pre-Big Bang cosmologies as well as patterns where standard particles would not be the ultimate constituents of matter and the presently admitted principles of Physics would not necessarily be the fundamental ones. We discuss here prospects for some noncyclic, nonstandard cosmologies.

  19. Scintillator Cosmic Ray Super Telescope

    NASA Astrophysics Data System (ADS)

    González, L. X.; Valdés-Galicia, J. F.; Matsubara, Y.; Nagai, Y.; Itow, Y.; Sako, T.; López, D.; Mitsuka, G.; Munakata, K.; Kato, C.; Yasue, S.; Kosai, M.; Tsurusashi, M.; Nakamo, Y.; Shibata, S.; Takamaru, H.; Kojima, H.; Tsuchiya, H.; Watanabe, K.; Koi, T.; Fragoso, E.; Hurtado, A.; Musalem, O.

    2013-04-01

    The Scintillator Cosmic Ray Super Telescope (SciCRST) is a new experiment to detect solar neutrons, and also it is expected to work as a muon and cosmic ray detector. The SciCRST consist of 14,848 plastic scintillator bars, and it will be installed at the top of Sierra Negra volcano, Mexico, 4580 m.a.s.l. We use a prototype, called as miniSciBar, to test the hardware and software of the final experiment. In this paper, we present the status and details of the experiment, and results of the prototype.

  20. Fun Times with Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Who would have thought cosmic rays could be so hip? Although discovered 90 years ago on death-defying manned balloon flights hip even by twenty-first-century extremesport standards cosmic rays quickly lost popularity as way-cool telescopes were finding way-too-cool phenomena across the electromagnetic spectrum. Yet cosmic rays are back in vogue, boasting their own set of superlatives. Scientists are tracking them down with new resolve from the Arctic to Antarctica and even on the high western plains of Argentina. Theorists, too, now see cosmic rays as harbingers of funky physics. Cosmic rays are atomic and subatomic particles - the fastest moving bits of matter in the universe and the only sample of matter we have from outside the solar system (with the exception of interstellar dust grains). Lower-energy cosmic rays come from the Sun. Mid-energy particles come from stellar explosions - either spewed directly from the star like shrapnel, or perhaps accelerated to nearly the speed of light by shock waves. The highest-energy cosmic rays, whose unequivocal existence remains one of astronomy's greatest mysteries, clock in at a staggering 10(exp 19) to 10(exp 22) electron volts. This is the energy carried in a baseball pitch; seeing as how there are as many atomic particles in a baseball as there are baseballs in the Moon, that s one powerful toss. No simple stellar explosion could produce them. At a recent conference in Albuquerque, scientists presented the first observational evidence of a possible origin for the highest-energy variety. A team led by Elihu Boldt at NASA s Goddard Space Flight Center found that five of these very rare cosmic rays (there are only a few dozen confirmed events) come from the direction of four 'retired' quasar host galaxies just above the arm of the Big Dipper, all visible with backyard telescopes: NGC 3610, NGC 3613, NGC 4589, and NGC 5322. These galaxies are billions of years past their glory days as the brightest beacons in the universe. Yet they still harbor central, supermassive black holes, which could generate energetic particles if they are spinning.

  1. Gamma ray bursts and extreme energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Scarsi, Livio

    1998-06-01

    Extreme Energy Cosmic Ray particles (EECR) with E>1020 eV arriving on Earth with very low flux (~1 particle/Km2-1000yr) require for their investigation very large detecting areas, exceeding values of 1000 km2 sr. Projects with these dimensions are now being proposed: Ground Arrays (``Auger'' with 2×3500 km2 sr) or exploiting the Earth Atmosphere as seen from space (``AIR WATCH'' and OWL,'' with effective area reaching 1 million km2 sr). In this last case, by using as a target the 1013 tons of air viewed, also the high energy neutrino flux can be investigated conveniently. Gamma Rays Bursts are suggested as a possible source for EECR and the associated High Energy neutrino flux.

  2. Evaluation of Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Heiblim, Samuel; Malott, Christopher

    2009-01-01

    Models of the galactic cosmic ray spectra have been tested by comparing their predictions to an evaluated database containing more than 380 measured cosmic ray spectra extending from 1960 to the present.

  3. Cosmic-Ray Signatures of Dark Matter Decay

    E-print Network

    David Tran

    2009-11-12

    In light of recent observations of an anomalous excess of high-energy positrons and electrons by the PAMELA and Fermi LAT experiments, we investigate exotic cosmic-ray signatures in scenarios with unstable dark matter that decays with an extremely long lifetime. We identify decay modes capable of explaining the observed anomalies and mention constraints arising from measurements of antiprotons and gamma rays. We also discuss complementary tests by measurements of anisotropies in diffuse gamma rays which should be accessible to Fermi.

  4. Frontiers of Cosmic Ray Science 205 Long-Term Variations of Cosmic Rays and Terrestrial

    E-print Network

    Usoskin, Ilya G.

    Frontiers of Cosmic Ray Science 205 Long-Term Variations of Cosmic Rays and Terrestrial Environmentth International Cosmic Ray Conference (August 2003, Tsukuba, Japan): SH 3.4 "Long-term variations," SH 3.5 "Long-term variation of cosmic rays studied by cosmogenic nuclides," SH 3.6 "Terrestrial

  5. The Physics & Astrophysics of Cosmic Rays

    E-print Network

    Wurtele, Jonathan

    The Physics & Astrophysics of Cosmic Rays Peng Oh (UC Santa Barbara) ! Eliot Quataert (UC Berkeley) ! Mayacamas 2015 #12;What are Cosmic Rays? A non-thermal population of relativistic particles that pervade the solar system, galaxies, clusters and intergalactic space Why you Should Care about Cosmic Rays

  6. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.

    1992-01-01

    Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.

  7. Nineteenth International Cosmic Ray Conference. HE Sessions, Volume 8

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. The present volume contains papers addressing high energy interactions and related phenomena. Specific topic areas include muons, neutrinos, magnetic monopoles, nucleon decay, searches for new particles, and acoustic and thermoluminescence detection techniques.

  8. Cosmic ray nuclei of energy 50 GeV/NUC

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Streitmatter, R. E.; Ormes, J. F.

    1985-01-01

    Preliminary results from the High Energy Gas Cerenkov Spectrometer indicate that the sub-iron to iron ratio increases beyond 100 GeV/nucleon. This surprising finding is examined in light of various models for the origin and propagation of galactic cosmic rays.

  9. The Cosmic Ray Electron Excess

    NASA Technical Reports Server (NTRS)

    Chang, J.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Christl, M.; Ganel, O.; Guzik, T. G.; Isbert, J.; Kim, K. C.; Kuznetsov, E. N.; Panasyuk, M. I.; Panov, A. D.; Schmidt, W. K. H.; Seo, E. S.; Sokolskaya, N. V.; Watts, J. W.; Wefel, J. P.; Wu, J.; Zatsepin, V. I.

    2008-01-01

    This slide presentation reviews the possible sources for the apparent excess of Cosmic Ray Electrons. The presentation reviews the Advanced Thin Ionization Calorimeter (ATIC) instrument, the various parts, how cosmic ray electrons are measured, and shows graphs that review the results of the ATIC instrument measurement. A review of Cosmic Ray Electrons models is explored, along with the source candidates. Scenarios for the excess are reviewed: Supernova remnants (SNR) Pulsar Wind nebulae, or Microquasars. Each of these has some problem that mitigates the argument. The last possibility discussed is Dark Matter. The Anti-Matter Exploration and Light-nuclei Astrophysics (PAMELA) mission is to search for evidence of annihilations of dark matter particles, to search for anti-nuclei, to test cosmic-ray propagation models, and to measure electron and positron spectra. There are slides explaining the results of Pamela and how to compare these with those of the ATIC experiment. Dark matter annihilation is then reviewed, which represent two types of dark matter: Neutralinos, and kaluza-Kline (KK) particles, which are next explained. The future astrophysical measurements, those from GLAST LAT, the Alpha Magnetic Spectrometer (AMS), and HEPCAT are reviewed, in light of assisting in finding an explanation for the observed excess. Also the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) could help by revealing if there are extra dimensions.

  10. Monopole, astrophysics and cosmic ray observatory at Gran Sasso

    NASA Technical Reports Server (NTRS)

    Demarzo, C.; Enriquez, O.; Giglietto, N.; Posa, F.; Attolini, M.; Baldetti, F.; Giacomelli, G.; Grianti, F.; Margiotta, A.; Serra, P.

    1985-01-01

    A new large area detector, MACRO was approved for installation at the Gran Sasso Laboratory in Italy. The detector will be dedicated to the study of naturally penetrating radiation deep underground. It is designed with the general philosophy of covering the largest possible area with a detector having both sufficient built-in redundancy and use of complementary techniques to study very rare phenomena. The detector capabilities will include monopole investigations significantly below the Parker bound; astrophysics studies of very high energy gamma ray and neutrino point sources; cosmic ray measurements of single and multimuons; and the general observation of rare new forms of matter in the cosmic rays.

  11. Dynamics of cosmic rays in cooling flows

    NASA Astrophysics Data System (ADS)

    Boehringer, Hans; Morfill, Gregor E.

    Galaxies presumably are sources of cosmic rays due to supernovae or active nuclei. In the centre of clusters of galaxies with high gas densities, where cosmic rays cannot easily escape, the cosmic rays may have an influence on the dynamics of the cluster gas. The authors have investigated the cosmic ray-gas interaction by means of steady models with spherical symmetry. It was found that the cosmic ray pressure may become comparable to the gas pressure in the halo region around a central galaxy with a cooling flow. Rayleigh Taylor instabilities might develop there and set the scale for inhomogeneities leading to filaments or star formation regions.

  12. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1992-01-01

    This final report covers the period 1 January 1985 - 31 March 1992. It is divided into the following sections: the soft x-ray background; proportional counter and filter calibrations; sounding rocket flight preparations; new sounding rocket payload: x-ray calorimeter; and theoretical studies. Staff, publications, conference proceedings, invited talks, contributed talks, colloquia and seminars, public service lectures, and Ph. D. theses are listed.

  13. An absence of neutrinos associated with cosmic-ray acceleration in ?-ray bursts

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Degner, T.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hül?, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Piegsa, A.; Pieloth, D.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rizzo, A.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Smith, M. W. E.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration

    2012-04-01

    Very energetic astrophysical events are required to accelerate cosmic rays to above 1018electronvolts. GRBs (?-ray bursts) have been proposed as possible candidate sources. In the GRB `fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and ?-rays. Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux. Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions. This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 1018electronvolts or that the efficiency of neutrino production is much lower than has been predicted.

  14. An absence of neutrinos associated with cosmic-ray acceleration in ?-ray bursts.

    PubMed

    2012-04-19

    Very energetic astrophysical events are required to accelerate cosmic rays to above 10(18)?electronvolts. GRBs (?-ray bursts) have been proposed as possible candidate sources. In the GRB 'fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and ?-rays. Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux. Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions. This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 10(18)?electronvolts or that the efficiency of neutrino production is much lower than has been predicted. PMID:22517161

  15. Cosmic rays, ?-rays, and neutrinos in the starburst nuclei of Arp 220

    NASA Astrophysics Data System (ADS)

    Yoast-Hull, Tova M.; Gallagher, John. S.; Zweibel, Ellen G.

    2015-10-01

    The cores of Arp 220, the closest ultraluminous infrared starburst galaxy, provide an opportunity to study interactions of cosmic rays under extreme conditions. In this paper, we model the populations of cosmic rays produced by supernovae in the central molecular zones of both starburst nuclei. We find that ˜65-100 per cent of cosmic rays are absorbed in these regions due to their huge molecular gas contents, and thus, the nuclei of Arp 220 nearly complete proton calorimeters. As the cosmic ray protons collide with the interstellar medium, they produce secondary electrons that are also contained within the system and radiate synchrotron emission. Using results from ?2 tests between the model and the observed radio spectral energy distribution, we predict the emergent ?-ray and high-energy neutrino spectra and find the magnetic field to be at milligauss levels. Because of the extremely intense far-infrared radiation fields, the ?-ray spectrum steepens significantly at TeV energies due to ?-? absorption.

  16. Ionization and heating by X-rays and cosmic rays

    NASA Astrophysics Data System (ADS)

    Güdel, Manuel

    2015-09-01

    High-energy radiation from the central T Tauri and protostars plays an important role in shaping protoplanetary disks and influences their evolution. Such radiation, in particular X-rays and extreme-ultraviolet (EUV) radiation, is predominantly generated in unstable stellar magnetic fields (e.g., the stellar corona), but also in accretion hot spots. Even jets may produce X-ray emission. Cosmic rays, i.e., high-energy particles either from the interstellar space or from the star itself, are of crucial importance. Both highenergy photons and particles ionize disk gas and lead to heating. Ionization and heating subsequently drive chemical networks, and the products of these processes are accessible through observations of molecular line emission. Furthermore, ionization supports the magnetorotational instability and therefore drives disk accretion, while heating of the disk surface layers induces photoevaporative flows. Both processes are crucial for the dispersal of protoplanetary disks and therefore critical for the time scales of planet formation. This chapter introduces the basic physics of ionization and heating starting from a quantum mechanical viewpoint, then discusses relevant processes in astrophysical gases and their applications to protoplanetary disks, and finally summarizes some properties of the most important high-energy sources for protoplanetary disks. 14th Lecture from Summer School "Protoplanetary Disks: Theory and Modelling Meet Observations"

  17. Origin and propagation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Cesarsky, Catherine J.; Ormes, Jonathan F.

    1987-01-01

    The study of systematic trends in elemental abundances is important for unfolding the nuclear and/or atomic effects that should govern the shaping of source abundances and in constraining the parameters of cosmic ray acceleration models. In principle, much can be learned about the large-scale distributions of cosmic rays in the galaxy from all-sky gamma ray surveys such as COS-B and SAS-2. Because of the uncertainties in the matter distribution which come from the inability to measure the abundance of molecular hydrogen, the results are somewhat controversial. The leaky-box model accounts for a surprising amount of the data on heavy nuclei. However, a growing body of data indicates that the simple picture may have to be abandoned in favor of more complex models which contain additional parameters. Future experiments on the Spacelab and space station will hopefully be made of the spectra of individual nuclei at high energy. Antiprotons must be studied in the background free environment above the atmosphere with much higher reliability and presion to obtain spectral information.

  18. Origin and propagation of galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Cesarsky, Catherine J.; Ormes, Jonathan F.

    1987-06-01

    The study of systematic trends in elemental abundances is important for unfolding the nuclear and/or atomic effects that should govern the shaping of source abundances and in constraining the parameters of cosmic ray acceleration models. In principle, much can be learned about the large-scale distributions of cosmic rays in the galaxy from all-sky gamma ray surveys such as COS-B and SAS-2. Because of the uncertainties in the matter distribution which come from the inability to measure the abundance of molecular hydrogen, the results are somewhat controversial. The leaky-box model accounts for a surprising amount of the data on heavy nuclei. However, a growing body of data indicates that the simple picture may have to be abandoned in favor of more complex models which contain additional parameters. Future experiments on the Spacelab and space station will hopefully be made of the spectra of individual nuclei at high energy. Antiprotons must be studied in the background free environment above the atmosphere with much higher reliability and precision to obtain spectral information.

  19. Very High Energy Gamma Ray Observations with the MAGIC

    E-print Network

    California at Santa Cruz, University of

    Very High Energy Gamma Ray Observations with the MAGIC Telescope (a biased selection) Nepomuk Otte Berlin The MAGIC site #12;8A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

  20. Cosmogenic gamma rays and the composition of cosmic rays

    SciTech Connect

    Ahlers, Markus; Salvado, Jordi

    2011-10-15

    We discuss the prospects of detecting the sources of ultrahigh energy (UHE) cosmic ray (CR) nuclei via their emission of cosmogenic {gamma} rays in the GeV to TeV energy range. These {gamma} rays result from electromagnetic cascades initiated by high energy photons, electrons, and positrons that are emitted by CRs during their propagation in the cosmic radiation background and are independent of the simultaneous emission of {gamma} rays in the vicinity of the source. The corresponding production power by UHE CR nuclei (with mass number A and charge Z) is dominated by pion photo production ({proportional_to}A) and Bethe-Heitler pair production ({proportional_to}Z{sup 2}). We show that the cosmogenic {gamma}-ray signal from a single steady UHE CR source is typically more robust with respect to variations of the source composition and injection spectrum than the accompanying signal of cosmogenic neutrinos. We study the diffuse emission from the sum of extragalactic CR sources as well as the point-source emission of the closest sources.

  1. A New View of the High Energy Gamma-Ray Sky with the Ferrni Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2009-01-01

    Following its launch in June 2008, high energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have opened a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, supernova remnants and the origin of cosmic rays, and searches for hypothetical new phenomena such as super symmetric dark matter annihilations. In this talk I will describe the current status of the Fermi observatory and review the science highlights from the first year of observations.

  2. Characterising CCDs with cosmic rays

    DOE PAGESBeta

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurementmore »technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.« less

  3. Characterising CCDs with cosmic rays

    NASA Astrophysics Data System (ADS)

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-01

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. Furthermore, the small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurement technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.

  4. Characterising CCDs with cosmic rays

    SciTech Connect

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurement technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.

  5. Concerning the Nature of the Cosmic Ray Power Law Exponents

    E-print Network

    A. Widom; J. Swain; Y. N. Srivastava

    2015-02-07

    We have recently shown that the cosmic ray energy distributions as detected on earthbound, low flying balloon or high flying satellite detectors can be computed by employing the heats of evaporation of high energy particles from astrophysical sources. In this manner, the experimentally well known power law exponents of the cosmic ray energy distribution have been theoretically computed as 2.701178 for the case of ideal Bose statistics, 3.000000 for the case of ideal Boltzmann statistics and 3.151374 for the case of ideal Fermi statistics. By "ideal" we mean virtually zero mass (i.e. ultra-relativistic) and noninteracting. These results are in excellent agreement with the experimental indices of 2.7 with a shift to 3.1 at the high energy ~ PeV "knee" in the energy distribution. Our purpose here is to discuss the nature of cosmic ray power law exponents obtained by employing conventional thermal quantum field theoretical models such as quantum chromodynamics to the cosmic ray sources in a thermodynamic scheme wherein gamma and zeta function regulation is employed. The key reason for the surprising accuracy of the ideal boson and ideal fermion cases resides in the asymptotic freedom or equivalently the Feynman "parton" structure of the ultra-high energy tails of spectral functions.

  6. The origin of galactic cosmic rays

    E-print Network

    Joerg R. Hoerandel

    2007-10-29

    The origin of galactic cosmic rays is one of the most interesting unsolved problems in astroparticle physics. Experimentally, the problem is attacked by a multi-disciplinary effort, namely by direct measurements of cosmic rays above the atmosphere, by air shower observations, and by the detection of TeV $\\gamma$ rays. Recent experimental results are presented and their implications on the contemporary understanding of the origin of galactic cosmic rays are discussed.

  7. On the feasibility of RADAR detection of high-energy cosmic neutrinos

    E-print Network

    de Vries, Krijn D; Meures, Thomas; O'Murchadha, Aongus

    2015-01-01

    We discuss the radar detection technique as a probe for high-energy cosmic neutrino induced particle cascades in a dense medium like ice. With the recent detection of high-energy cosmic neutrinos by the IceCube neutrino observatory the window to neutrino astronomy has been opened. We discuss a new technique to detect cosmic neutrinos at even higher energies than those covered by IceCube, but with an energy threshold below the currently operating Askaryan radio detectors. A calculation for the radar return power, as well as first experimental results will be presented.

  8. Nineteenth International Cosmic Ray Conference. Conference Papers: Invited Rapporteur, Highlight, Miscellaneous, Volume 9

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (compiler)

    1986-01-01

    Invited talks, rapporteur talks, and highlight talks are included. Topics of the invited and highlight talks include astrophysical jets, gamma-ray line astronomy, cosmic rays and gamma rays in astrophysics, the early universe, elementary particle physics, solar flares and acceleration of energetic particles, cosmogenic nuclei, extragalactic astronomy, composition of solar flare particles, very high energy gamma ray sources, gamma-ray bursts, shock acceleration in the solar wind, cosmic rays in deep underground detectors, spectrum of cosmic rays at 10 to the 19th power eV, and nucleus-nucleus interactions.

  9. High Energy Vision: Processing X-rays

    E-print Network

    DePasquale, Joseph; Edmonds, Peter

    2015-01-01

    Astronomy is by nature a visual science. The high quality imagery produced by the world's observatories can be a key to effectively engaging with the public and helping to inspire the next generation of scientists. Creating compelling astronomical imagery can, however, be particularly challenging in the non-optical wavelength regimes. In the case of X-ray astronomy, where the amount of light available to create an image is severely limited, it is necessary to employ sophisticated image processing algorithms to translate light beyond human vision into imagery that is aesthetically pleasing while still being scientifically accurate. This paper provides a brief overview of the history of X-ray astronomy leading to the deployment of NASA's Chandra X-ray Observatory, followed by an examination of the specific challenges posed by processing X-ray imagery. The authors then explore image processing techniques used to mitigate such processing challenges in order to create effective public imagery for X-ray astronomy. ...

  10. Size distributions of air showers accompanied with high energy gamma ray bundles observed at Mt. Chacaltaya

    NASA Technical Reports Server (NTRS)

    Matano, T.; Machida, M.; Tsuchima, I.; Kawasumi, N.; Honda, K.; Hashimoto, K.; Martinic, N.; Zapata, J.; Navia, C. E.; Aquirre, C.

    1985-01-01

    Size distributions of air showers accompanied with bundle of high energy gamma rays and/or large size bursts under emulsion chambers, to study the composition of primary cosmic rays and also characteristics of high energy nuclear interaction. Air showers initiated by particles with a large cross section of interaction may develop from narrow region of the atmosphere near the top. Starting levels of air showers by particles with smaller cross section fluctuate in wider region of the atmosphere. Air showers of extremely small size accompanied with bundle of gamma rays may be ones initiated by protons at lower level after penetrating deep atmosphere without interaction. It is determined that the relative size distribution according to the total energy of bundle of gamma rays and the total burst size observed under 15 cm lead absorber.

  11. The EGRET high energy gamma ray telescope

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Bertsch, D. L.; Fichtel, C. E.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (GRO) is sensitive in the energy range from about 20 MeV to about 30,000 MeV. Electron-positron pair production by incident gamma photons is utilized as the detection mechanism. The pair production occurs in tantalum foils interleaved with the layers of a digital spark chamber system; the spark chamber records the tracks of the electron and positron, allowing the reconstruction of the arrival direction of the gamma ray. If there is no signal from the charged particle anticoincidence detector which surrounds the upper part of the detector, the spark chamber array is triggered by two hodoscopes of plastic scintillators. A time of flight requirement is included to reject events moving backward through the telescope. The energy of the gamma ray is primarily determined by absorption of the energies of the electron and positron in a 20 cm deep NaI(Tl) scintillator.

  12. High energy particle astronomy.

    NASA Technical Reports Server (NTRS)

    Buffington, A.; Muller, R. A.; Smith, L. H.; Smoot, G. F.

    1972-01-01

    Discussion of techniques currently used in high energy particle astronomy for measuring charged and neutral cosmic rays and their isotope and momentum distribution. Derived from methods developed for accelerator experiments in particle physics, these techniques help perform important particle astronomy experiments pertaining to nuclear cosmic ray and gamma ray research, electron and position probes, and antimatter searches.

  13. The high energy X-ray universe

    PubMed Central

    Giacconi, Riccardo

    2010-01-01

    Since its beginning in the early 1960s, the field of X-ray astronomy has exploded, experiencing a ten-billion-fold increase in sensitivity, which brought it on par with the most advanced facilities at all wavelengths. I will briefly describe the revolutionary first discoveries prior to the launch of the Chandra and XMM-Newton X-ray observatories, present some of the current achievements, and offer some thoughts about the future of this field. PMID:20404148

  14. The isotopic composition of cosmic-ray beryllium and its implication for the cosmic ray's age

    NASA Technical Reports Server (NTRS)

    Lukasiak, A.; Ferrando, P.; Mcdonald, F. B.; Webber, W. R.

    1994-01-01

    We report a new measurement of the cosmic-ray isotopic composition of beryllium in the low-energy range from 35 to 113 MeV per nucleon. This measurement was made using the High Energy Telescope of the CRS experiment on the Voyager 1 and 2 spacecraft during the time period from 1977 to 1991. In this overall time period of 14 years the average solar modulation level was about 500 MV. The cosmic-ray beryllium isotopes were completely separated with an average mass resolution sigma of 0.185 amu. The isotope fractions of Be-7, Be-9, and Be-10 obtained are 52.4 +/- 2.9%, 43.3 +/- 3.7%, and 4.3 +/- 1.5%, respectively. The measured cosmic-ray abundances of Be-7 and Be-9 are found to be in agreement with calculations based on standard Leaky-Box model for the interstellar propagation of cosmic-ray nuclei using the recent cross sections of the New Mexico-Saclay collaboration. From our observed ratio Be-10/Be = 4.3 +/- 1.5% we deduce an average interstellar density of about 0.28 (+0.14, -0.11) atoms/cu cm, and acosmic-ray lifetime for escape of 27 (+19, -9) x 10(exp 6) years. The surviving fraction of Be-10 is found to be 0.19 +/- 0.07. Modifications to the conclusions of the Leaky-Box model when a diffusion + convection halo model for propagation is used are also considered.

  15. Gamma rays and the origin of Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    de Ona Wilhelmi, Emma

    2015-08-01

    Cosmic rays (CRs) are highly energetic nuclei (plus a small fraction of electrons) which fill the Galaxy and carry on average as much energy per unit volume as the energy density of starlight, the interstellar magnetic fields, or the kinetic energy density of interstellar gas. The CR spectrum extends as a featureless power-law up to ~2 PeV (the 'knee') and it is believed to be the result of acceleration of those CRs in Galactic Sources and later diffusion and convection in galactic magnetic fields. Those energetic CRs can interact with the surrounding medium via proton-proton collision resulting in secondary gamma-ray photons, observed from 100 MeV to a few tens of TeV. The results obtained by the current Cherenkov telescopes and gamma-ray satellites with the support of X-ray observations have discovered and identified more than 50 Galactic gamma-ray sources. Among them, the number of Supernova remnants (SNRs) and very-high-energy hard-spectrum sources (natural candidates to originate CRs) are steadily increasing. We expect to increase by a factor 10 at least this population of source with the future CTA experiment. I will review our current knowledge of Galactic gamma-ray sources and their connection with energetic CRs and the scientific prospects for CTA in this field. Those observations, together with a strong multi-wavelenght support from radio to hard X-rays, will finally allow us to establish the origin of the Galactic CRs.

  16. Cosmic rays and terrestrial life: A brief review

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra; Melott, Adrian L.

    2014-01-01

    “The investigation into the possible effects of cosmic rays on living organisms will also offer great interest.” - Victor F. Hess, Nobel Lecture, December 12, 1936 High-energy radiation bursts are commonplace in our Universe. From nearby solar flares to distant gamma ray bursts, a variety of physical processes accelerate charged particles to a wide range of energies, which subsequently reach the Earth. Such particles contribute to a number of physical processes occurring in the Earth system. A large fraction of the energy of charged particles gets deposited in the atmosphere, ionizing it, causing changes in its chemistry and affecting the global electric circuit. Remaining secondary particles contribute to the background dose of cosmic rays on the surface and parts of the subsurface region. Life has evolved over the past ?3 billion years in presence of this background radiation, which itself has varied considerably during the period [1-3]. As demonstrated by the Miller-Urey experiment, lightning plays a very important role in the formation of complex organic molecules, which are the building blocks of more complex structures forming life. There is growing evidence of increase in the lightning rate with increasing flux of charged particles. Is there a connection between enhanced rate of cosmic rays and the origin of life? Cosmic ray secondaries are also known to damage DNA and cause mutations, leading to cancer and other diseases. It is now possible to compute radiation doses from secondary particles, in particular muons and neutrons. Have the variations in cosmic ray flux affected the evolution of life on earth? We describe the mechanisms of cosmic rays affecting terrestrial life and review the potential implications of the variation of high-energy astrophysical radiation on the history of life on earth.

  17. Cloud chamber visualization of primary cosmic rays

    SciTech Connect

    Earl, James A.

    2013-02-07

    From 1948 until 1963, cloud chambers were carried to the top of the atmosphere by balloons. From these flights, which were begun by Edward P. Ney at the University of Minnesota, came the following results: discovery of heavy cosmic ray nuclei, development of scintillation and cherenkov detectors, discovery of cosmic ray electrons, and studies of solar proton events. The history of that era is illustrated here by cloud chamber photographs of primary cosmic rays.

  18. Cosmic Ray Acceleration in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Blasi, P.

    2011-06-01

    We review the main observational and theoretical facts about acceleration of Galactic cosmic rays in supernova remnants, discussing the arguments in favor and against a connection between cosmic rays and supernova remnants, the so-called supernova remnant paradigm for the origin of Galactic cosmic rays. Recent developments in the modeling of the mechanism of diffusive shock acceleration are discussed, with emphasis on the role of 1) magnetic field amplification, 2) acceleration of nuclei heavier than hydrogen, 3) presence of neutrals in the circumstellar environment. The status of the supernova-cosmic ray connection in the time of Fermi-LAT and Cherenkov telescopes is also discussed.

  19. Propagation of cosmic rays in the galaxy

    NASA Technical Reports Server (NTRS)

    Daniel, R. R.; Stephens, S. A.

    1974-01-01

    The characteristics of a model for analyzing the propagation of cosmic rays are discussed. The requirements for analyzing the relevant observational data on cosmic rays are defines as: (1) the chemical and isotopic composition of cosmic rays as a function of energy, (2) the flux and energy spectrum of the individual nucleonic components, (3) the flux and energy spectrum of the electronic component, (4) the cosmic ray prehistory, and (5) the degree of isotropy in their arrival directions as a function of energy. It is stated that the model which has been able to bring to pass the greatest measure of success is the galactic confinement model.

  20. A hysteresis effect in cosmic ray modulation

    NASA Technical Reports Server (NTRS)

    Verschell, H. J.; Mendell, R. B.; Korff, S. A.

    1974-01-01

    The rigidity dependence is investigated in the modulation of cosmic ray protons and alphas at intermediate (2-13 Gv) rigidities during the declines and recoveries of the cosmic ray flux near cosmic ray minimum. The results include the finding that sudden changes in the modulation of the primary cosmic rays are initiated by large solar particle outflow and begin as type I Forbush decreases. Typically, the modulation spectrum becomes flatter at intermediate rigidity below 13 Gv and steeper at rigidities above 13 Gv during early recovery.

  1. ANTARES proposal: Towards a large scale high energy cosmic neutrino undersea detector

    E-print Network

    ANTARES collaboration

    1997-07-11

    The ANTARES collaboration propose to observe High Energy Cosmic Neutrinos using a Deep Sea Cherenkov detector. The sky survey with high energy neutrinos is complementary to the observations with photons. It is expected that this will shed a new light on the understanding of the origin of cosmics rays, on galactic and extra galactic sources. In this document, we will elaborate on the potential interest of such a study for Astrophysicists and Particle Physicists. For Oceanologists participating in the collaboration, the main goal is a long term measurement of environmental parameters in the deep sea. We propose to explore the possibility of a km-scale detector to be installed in a deep site in the Mediterranean sea, for which a broad collaboration will be needed. A variety of technical problems have to be solved. Strong constraints coming from the deep sea environment and the lack of accessibility, require sea science engineering expertise. For items such as detector deployment in deep water, data transmission through optical cables, corrosion, bio-fouling of optical modules, positioning, we have found technical support from collaborators and partners which have experience in this field (COM, CSTN, CTME, IFREMER, France Telecom Cables, INSU-CNRS...). We will test the sea engineering part of a detector including test deployments close to the Toulon coast (France) where technical support is available and where several sites at depths down to 2500 m are easily accessible. During the same time, issues connected to the accomplishment of a large scale detector and the selection of an optimum site will be addressed. We propose to build and install a demonstrator (a fully equipped 3-dimensional test array) the design of which can be extended to a km^3 scale detector. We plan to reach this goal within the next 2 years.

  2. Cosmic ray diffusion: Report of the Workshop in Cosmic Ray Diffusion Theory

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.; Jones, F. C.

    1975-01-01

    A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory.

  3. Lunar monitoring outpost of cosmic rays

    NASA Astrophysics Data System (ADS)

    Panasyuk, Mikhail; Kalmykov, Nikolai; Turundaevskiy, Andrey; Chubenko, Alexander; Podorozhny, Dmitry; Mukhamedshin, Rauf; Sveshnikova, Lubov; Tkachev, Leonid; Konstantinov, Andrey

    The basic purpose of the planned NEUTRONIUM-100 experiment considers expansion of the direct measurements of cosmic rays spectra and anisotropy to the energy range of ~1017 eV with element-by-element resolution of the nuclear component. These measurements will make it possible to solve the problem of the “knee” of the spectrum and to make choice between the existing models of the cosmic rays origin and propagation. The proposed innovative method of energy measurements is based on the simultaneous detection of different components of back scattered radiation generated by showers produced by the primary particle in the regolyth (neutrons, gamma rays and radio waves). A multi-module system disposed on the Moon's surface is proposed for particles registration. Each module consists of a radio antenna, contiguous to the regolyth, scintillation detectors with gadolinium admixture and silicon charge detectors. Scintillation detectors record electrons and gamma-rays of back scattered radiation and delayed neutrons. The area of the experimental facility will be at least ~100 m2, suitable for upgrading. Average density of the detecting equipment is evaluated as 10-20 g/m2. Taking into account the weight of the equipment delivered from the Earth will be about 10 tons it is possible to compose an eqperimental facility with geometric factor of 150-300 m2sr. The Moon provides unique conditions for this experiment due to presence of the absorbing material and absence of atmosphere. The experiment will allow expansion of the measurements up to ~1017 eV with element-by-element resolution of the nuclear component. Currently direct measurements reach energy range of up to ~1015 eV, and Auger shower method does not provide information about the primary particle's charge. It is expected that ~15 particles with energy >1017 eV will be detected by the proposed experimental equipment per year. It will provide an opportunity to solve the problems of the current high-energy astrophysics.

  4. Accretion Disks and Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Fowler, Ken

    2014-10-01

    We model accretion disks as Faraday disks with current and mass flows perpendicular to 2D mean field flux surfaces. We model jets produced by accretion disks as weakly-unstable current flows. We model cosmic ray acceleration arising from jet kink modes producing a runaway ion beam that finally accelerates itself by cyclotron resonance. All of these processes can be unified by an Ohm's Law in which Spitzer resistivity is replaced by a generalized hyper-resisitivity, ultimately yielding several predictions in rough agreement with observations.

  5. Cosmic Rays and the Search for a Lorentz Invariance Violation

    E-print Network

    Wolfgang Bietenholz

    2008-11-18

    This is an introductory review about the on-going search for a signal of Lorentz Invariance Violation (LIV) in cosmic rays. We first summarise basic aspects of cosmic rays, focusing on rays of ultra high energy (UHECRs). We discuss the Greisen-Zatsepin-Kuz'min (GZK) energy cutoff for cosmic protons, which is predicted due to photopion production in the Cosmic Microwave Background (CMB). This is a process of modest energy in the proton rest frame. It can be investigated to a high precision in the laboratory, if Lorentz transformations apply even at factors $\\gamma \\sim O(10^{11})$. For heavier nuclei the energy attenuation is even faster due to photo-disintegration, again if this process is Lorentz invariant. Hence the viability of Lorentz symmetry up to tremendous gamma-factors - far beyond accelerator tests - is a central issue. Next we comment on conceptual aspects of Lorentz Invariance and the possibility of its spontaneous breaking. This could lead to slightly particle dependent ``Maximal Attainable Velocities''. We discuss their effect in decays, Cerenkov radiation, the GZK cutoff and neutrino oscillation in cosmic rays. We also review the search for LIV in cosmic gamma-rays. For multi TeV gamma-rays we possibly encounter another puzzle related to the transparency of the CMB, similar to the GZK cutoff. The photons emitted in a Gamma Ray Burst occur at lower energies, but their very long path provides access to information not far from the Planck scale. No LIV has been observed so far. However, even extremely tiny LIV effects could change the predictions for cosmic ray physics drastically. An Appendix is devoted to the recent hypothesis by the Pierre Auger Collaboration, which identifies nearby Active Galactic Nuclei - or objects next to them - as probable UHECR sources.

  6. Solar cosmic ray bursts and solar neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Basilevakaya, G. A.; Nikolsky, S. I.; Stozhkov, Y. I.; Charakhchyan, T. N.

    1985-01-01

    The neutrino flux detected in the C1-Ar experiment seems to respond to the powerful solar cosmic ray bursts. The ground-based detectors, the balloons and the satellites detect about 50% of the bursts of soalr cosmic ray generated on the Sun's visible side. As a rule, such bursts originate from the Western side of the visible solar disk. Since the solar cosmic ray bursts are in opposite phase withthe 11-year galactic cosmic ray cycle which also seems to be reflected by neutrino experiment. The neutrino generation in the bursts will flatten the possible 11-year behavior of the AR-37 production rate, Q, in the Cl-Ar experiment. The detection of solar-flare-generated gamma-quanta with energies above tens of Mev is indicative of the generation of high-energy particles which in turn may produce neutrinos. Thus, the increased Q during the runs, when the flare-generated high energy gamma-quanta have been registered, may be regarded as additional evidence for neutrino geneation in the solar flare processes.

  7. Solar cosmic ray bursts and solar neutrino fluxes

    NASA Astrophysics Data System (ADS)

    Basilevakaya, G. A.; Nikolsky, S. I.; Stozhkov, Y. I.; Charakhchyan, T. N.

    1985-08-01

    The neutrino flux detected in the C1-Ar experiment seems to respond to the powerful solar cosmic ray bursts. The ground-based detectors, the balloons and the satellites detect about 50% of the bursts of soalr cosmic ray generated on the Sun's visible side. As a rule, such bursts originate from the Western side of the visible solar disk. Since the solar cosmic ray bursts are in opposite phase withthe 11-year galactic cosmic ray cycle which also seems to be reflected by neutrino experiment. The neutrino generation in the bursts will flatten the possible 11-year behavior of the AR-37 production rate, Q, in the Cl-Ar experiment. The detection of solar-flare-generated gamma-quanta with energies above tens of Mev is indicative of the generation of high-energy particles which in turn may produce neutrinos. Thus, the increased Q during the runs, when the flare-generated high energy gamma-quanta have been registered, may be regarded as additional evidence for neutrino geneation in the solar flare processes.

  8. High-energy cosmic neutrino puzzle: a review

    NASA Astrophysics Data System (ADS)

    Ahlers, Markus; Halzen, Francis

    2015-12-01

    We appraise the status of high-energy neutrino astronomy and summarize the observations that define the ‘IceCube puzzle.’ The observations are closing in on the source candidates that may contribute to the observation. We highlight the potential of multi-messenger analysis to assist in the identification of the sources. We also give a brief overview of future search strategies that include the realistic possibility of constructing a next-generation detector larger by one order of magnitude in volume.

  9. The very-high-energy gamma-ray sky.

    PubMed

    Aharonian, Felix

    2007-01-01

    Over the past few years, very-high-energy gamma-ray astronomy has emerged as a truly observational discipline, with many detected sources representing different galactic and extragalactic source populations-supernova remnants, pulsar wind nebulae, giant molecular clouds, star formation regions, compact binary systems, and active galactic nuclei. It is expected that observations with the next generation of stereoscopic arrays of imaging atmospheric Cherenkov telescopes over a very broad energy range from 10(10) to 10(15) electron volts will dramatically increase the number of very-high-energy gamma-ray sources, thus having a huge impact on the development of astrophysics, cosmology, and particle astrophysics. PMID:17204642

  10. High energy X-ray spectrum of Her X-1

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Crannell, C. J.; Dolan, J. F.; Frost, K. J.; Orwig, L. E.; Maurer, G. S.; Cutler, E. P.

    1978-01-01

    Line features in the high-energy X-ray spectrum of Her X-1 are attributed to an approximately 1% change in detector gain. The spectrum was obtained by a high-energy X-ray detector aboard OSO-8. The time-averaged spectrum of Her X-1 for the period August 31-Sept. 6, 1977 is presented; the count-rate spectrum was corrected for an average change in gain of 0.7%. The best fit power-law is reported.

  11. CHEMICAL COMPOSITION AND MAXIMUM ENERGY OF GALACTIC COSMIC RAYS

    SciTech Connect

    Shibata, M.; Katayose, Y.; Huang, J.; Chen, D.

    2010-06-20

    A model of the cosmic-ray energy spectrum is proposed that assumes various acceleration limits at multiple sources. The model describes the broken power-law energy spectrum of cosmic rays by superposition of multiple sources; a diffusive shock acceleration mechanism plays an essential role. The maximum energy of galactic cosmic rays is discussed based on a comparison of experimental data with calculations done using the proposed model. The model can describe the energy spectrum at very high energies of up to several times 10{sup 18} eV, but the observed highest-energy cosmic rays deviate from the model predictions, indicating a different origin, such as an extragalactic source. This model describes the steepening of the power index at the so-called knee. However, it was found that additional assumptions are needed to explain the sharpness of the knee. Two possible explanations for the structure of the knee are discussed in terms of nearby source(s) and the hard energy spectrum suggested by nonlinear effects of cosmic-ray acceleration mechanisms.

  12. Simulation of Cosmic Ray neutrinos Interactions in Water

    E-print Network

    T. Sloan

    2006-10-09

    The program CORSIKA, usually used to simulate extensive cosmic ray air showers, has been adapted to a water medium in order to study the acoustic detection of ultra high energy neutrinos. Showers in water from incident protons and from neutrinos have been generated and their properties are described. The results obtained from CORSIKA are compared to those from other available simulation programs such as Geant4.

  13. Radiographic Images Produced by Cosmic-Ray Muons

    NASA Astrophysics Data System (ADS)

    Alfaro, Rubén

    2006-09-01

    An application of high energy physics instrumentation is to look for structure or different densities (materials) hidden in a matrix (tons) of material. By tracing muons produced by primary Cosmic Rays, it has been possible to generate a kind of radiographs which shows the inner structure of dense containers, monuments or mountains. In this paper I review the basics principles of such techniques with emphasis in the Sun Pyramid project, carried out by IFUNAM in collaboration with Instituto Nacioanal de Antropologia e Historia.

  14. Composition of primary cosmic rays near the knee

    NASA Technical Reports Server (NTRS)

    Acharya, B. S.; Rao, M. V. S.; Sivaprasad, K.; Sreekantan, B. V.

    1985-01-01

    The size dependence of high energy muons and the size spectrum obtained in the air shower experiment suggest that the mean mass of cosmic rays remains nearly constant at approx 15 up to 5 x 1000,000 GeV and becomes one beyond. The composition model in which nuclei are removed spectrum steepens at 6.7 x 10 power GeV due to leakage from the galaxy, which explains the data which are consistent with data from other experiments.

  15. IceCube and the Discovery of High-Energy Cosmic Neutrinos

    NASA Astrophysics Data System (ADS)

    Halzen, Francis

    2014-08-01

    The IceCube project has transformed one cubic kilometer of natural Antarctic ice into a neutrino detector. The instrument detects 100,000 neutrinos per year in the GeV to PeV energy range. Among those, we have recently isolated a flux of high-energy cosmic neutrinos. I will discuss the instrument, the analysis of the data, and the significance of the discovery of cosmic neutrinos.

  16. PeV neutrinos from intergalactic interactions of cosmic rays emitted by active galactic nuclei

    E-print Network

    Oleg E. Kalashev; Alexander Kusenko; Warren Essey

    2013-07-03

    The observed very high energy spectra of distant blazars are well described by secondary gamma rays produced in line-of-sight interactions of cosmic rays with background photons. In the absence of the cosmic-ray contribution, one would not expect to observe very hard spectra from distant sources, but the cosmic ray interactions generate very high energy gamma rays relatively close to the observer, and they are not attenuated significantly. The same interactions of cosmic rays are expected to produce a flux of neutrinos with energies peaked around 1 PeV. We show that the diffuse isotropic neutrino background from many distant sources can be consistent with the neutrino events recently detected by the IceCube experiment. We also find that the flux from any individual nearby source is insufficient to account for these events. The narrow spectrum around 1 PeV implies that some active galactic nuclei can accelerate protons to EeV energies.

  17. PeV neutrinos from intergalactic interactions of cosmic rays emitted by active galactic nuclei.

    PubMed

    Kalashev, Oleg E; Kusenko, Alexander; Essey, Warren

    2013-07-26

    The observed very high energy spectra of distant blazars are well described by secondary gamma rays produced in line-of-sight interactions of cosmic rays with background photons. In the absence of the cosmic-ray contribution, one would not expect to observe very hard spectra from distant sources, but the cosmic ray interactions generate very high energy gamma rays relatively close to the observer, and they are not attenuated significantly. The same interactions of cosmic rays are expected to produce a flux of neutrinos with energies peaked around 1 PeV. We show that the diffuse isotropic neutrino background from many distant sources can be consistent with the neutrino events recently detected by the IceCube experiment. We also find that the flux from any individual nearby source is insufficient to account for these events. The narrow spectrum around 1 PeV implies that some active galactic nuclei can accelerate protons to EeV energies. PMID:23931348

  18. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1989-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. The activities are divided into sections and described, followed by a bibliography. The astrophysical aspects of cosmic rays, gamma rays, and of the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  19. Future instrumentation in cosmic ray research

    NASA Astrophysics Data System (ADS)

    Yashin, I. I.

    2015-08-01

    This paper is based on a rapporteur talk given at the 24th European Cosmic Ray Symposium (Kiel, Germany, September 1 - 5, 2014). The object of the talk and paper is a summary based on oral talks and posters presented in the frame of the session “Future instrumentation in cosmic ray research (INS)”.

  20. The Tunka detector complex: from cosmic-ray to gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Budnev, N.; Astapov, I.; Barbashina, N.; Bogdanov, A.; Bogorodskii, D.; Boreyko, V.; Büker, M.; Brückner, M.; Chiavassa, A.; Chvalaev, O.; Gress, O.; Gress, T.; Dyachok, A.; Epimakhov, S.; Gafatov, A.; Gorbunov, N.; Grebenyuk, V.; Grinuk, A.; Haungs, A.; Hiller, R.; Horns, D.; Huege, T.; Ivanova, A.; Kalinin, A.; Karpov, N.; Kalmykov, N.; Kazarina, Y.; Kindin, V.; Kirichkov, N.; Kiryuhin, S.; Kleifges, M.; Kokoulin, R.; Komponiest, K.; Konstantinov, A.; Konstantinov, E.; Korobchenko, A.; Korosteleva, E.; Kostunin, D.; Kozhin, V.; Krömer, O.; Kunnas, M.; Kuzmichev, L.; Lenok, V.; Lubsandorzhiev, B.; Lubsandorzhiev, N.; Mirgazov, R.; Mirzoyan, R.; Monkhoev, R.; Nachtigall, R.; Pakhorukov, A.; Panasyuk, M.; Pankov, L.; Petrukhin, A.; Platonov, V.; Poleschuk, V.; Popova, E.; Porelli, A.; Prosin, V.; Ptuskin, V.; Rubtsov, G.; Rühle, C.; Samoliga, V.; Satunin, P.; Savinov, V.; Saunkin, A.; Schröder, F.; Semeney, Yu; Shaibonov (junior, B.; Silaev, A.; Silaev (junior, A.; Skurikhin, A.; Slucka, V.; Spiering, C.; Sveshnikova, L.; Tabolenko, V.; Tkachenko, A.; Tkachev, L.; Tluczykont, M.; Voronin, D.; Wischnewski, R.; Zagorodnikov, A.; Zurbanov, V.; Yashin, I.

    2015-08-01

    TAIGA stands for “Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy” and is a project to build a complex, hybrid detector system for ground-based gamma- ray astronomy from a few TeV to several PeV, and for cosmic-ray studies from 100 TeV to 1 EeV. TAIGA will search for ”PeVatrons” (ultra-high energy gamma-ray sources) and measure the composition and spectrum of cosmic rays in the knee region (100 TeV - 10 PeV) with good energy resolution and high statistics. TAIGA will include Tunka-HiSCORE (an array of wide-angle air Cherenkov stations), an array of Imaging Atmospheric Cherenkov Telescopes, an array of particle detectors, both on the surface and underground, and the TUNKA-133 air Cherenkov array.

  1. Fermi LAT Observations of Cosmic-Ray Electrons

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2011-01-01

    Designed as a gamma-ray instrument, the LAT is a capable detector of high energy cosmic ray electrons. The LAT is composed of a 4x4 array of identical towers. Each tower has a Tracker and a Calorimeter module. Entire LAT is covered by segmented Anti-Coincidence Detector (ACD). The electron data analysis is based on that developed for photons. The main challenge is to identify and separate electrons from all other charged species, mainly CR protons (for gamma-ray analysis this is provided by the Anti-Coincidence Detector)

  2. High-energy cosmic neutrino puzzle: a review.

    PubMed

    Ahlers, Markus; Halzen, Francis

    2015-12-01

    We appraise the status of high-energy neutrino astronomy and summarize the observations that define the 'IceCube puzzle.' The observations are closing in on the source candidates that may contribute to the observation. We highlight the potential of multi-messenger analysis to assist in the identification of the sources. We also give a brief overview of future search strategies that include the realistic possibility of constructing a next-generation detector larger by one order of magnitude in volume. PMID:26510451

  3. Treatment of foods with high-energy X rays

    NASA Astrophysics Data System (ADS)

    Cleland, M. R.; Meissner, J.; Herer, A. S.; Beers, E. W.

    2001-07-01

    The treatment of foods with ionizing energy in the form of gamma rays, accelerated electrons, and X rays can produce beneficial effects, such as inhibiting the sprouting in potatoes, onions, and garlic, controlling insects in fruits, vegetables, and grains, inhibiting the growth of fungi, pasteurizing fresh meat, poultry, and seafood, and sterilizing spices and food additives. After many years of research, these processes have been approved by regulatory authorities in many countries and commercial applications have been increasing. High-energy X rays are especially useful for treating large packages of food. The most attractive features are product penetration, absorbed dose uniformity, high utilization efficiency and short processing time. The ability to energize the X-ray source only when needed enhances the safety and convenience of this technique. The availability of high-energy, high-power electron accelerators, which can be used as X-ray generators, makes it feasible to process large quantities of food economically. Several industrial accelerator facilities already have X-ray conversion equipment and several more will soon be built with product conveying systems designed to take advantage of the unique characteristics of high-energy X rays. These concepts will be reviewed briefly in this paper.

  4. Cosmic ray production curves below reworking zones

    NASA Astrophysics Data System (ADS)

    Blanford, G. E.

    A method is presented for calculating cosmic ray production profiles below reworking zones. The method uses an input reworking depth determined from data such as signatures in the depth profile of ferromagnetic resonance intensity and input cosmic ray production profiles for an undisturbed surface. Reworking histories are simulated using Monte Carlo techniques, and depth profiles are used to determine cosmic ray exposure age limits with a specified probability. It is shown that the track density profiles predict cosmic ray exposure ages in lunar cores that are consistent with values determined by other methods. Results applied to neutron fluence and spallation rare gases eliminate the use of reworking depth as an adjustable parameter and give cosmic ray exposure ages that are compatible with each other.

  5. Cosmic Ray-Air Shower Measurement from Space

    NASA Technical Reports Server (NTRS)

    Takahashi, Yoshiyuki

    1997-01-01

    A feasibility study has been initiated to observe from space the highest energy cosmic rays above 1021 eV. A satellite observatory concept, the Maximum-energy Auger (Air)-Shower Satellite (MASS), is recently renamed as the Orbital Wide-angle Collector (OWL) by taking its unique feature of using a very wide field-of-view (FOV) optics. A huge array of imaging devices (about 10(exp 6) pixels) is required to detect and record fluorescent light profiles of cosmic ray cascades in the atmosphere. The FOV of MASS could extend to as large as about 60 in. diameter, which views (500 - 1000 km) of earth's surface and more than 300 - 1000 cosmic ray events per year could be observed above 1020 eV. From far above the atmosphere, the MASS/OWL satellite should be capable of observing events at all angles including near horizontal tracks, and would have considerable aperture for high energy photon and neutrino observation. With a large aperture and the spatial and temporal resolution, MASS could determine the energy spectrum, the mass composition, and arrival anisotropy of cosmic rays from 1020 eV to 1022 eV; a region hitherto not explored by ground-based detectors such as the Fly's Eye and air-shower arrays. MASS/OWL's ability to identify cosmic neutrinos and gamma rays may help providing evidence for the theory which attributes the above cut-off cosmic ray flux to the decay of topological defects. Very wide FOV optics system of MASS/OWL with a large array of imaging devices is applicable to observe other atmospheric phenomena including upper atmospheric lightning. The wide FOV MASS optics being developed can also improve ground-based gamma-ray observatories by allowing simultaneous observation of many gamma ray sources located at different constellations.

  6. Mon. Not. R. Astron. Soc. 421, 12091214 (2012) doi:10.1111/j.1365-2966.2011.20385.x Nearby supernova remnants and the cosmic ray spectral hardening

    E-print Network

    Hörandel, Jörg R.

    2012-01-01

    supernova remnants and the cosmic ray spectral hardening at high energies Satyendra Thoudam and J¨org R. H of cosmic rays from the supernova remnants, we explain the apparent observed property that the hardening hardening does not persist beyond (20­30) TeV energies. Key words: cosmic rays ­ ISM: supernova remnants. 1

  7. X-ray Production By Cosmic Muons

    SciTech Connect

    Mrdja, D.; Bikit, I.; Veskovic, M.; Forkapic, S.; Anicin, I.

    2007-04-23

    Muons have a small cross section for interactions and high energy, so they are very penetrating and give the significant contribution to the gamma spectra of Ge detectors, even in deep underground laboratories. One of the muon interaction effects with material is X-rays production. Having in mind that gold is often used as a detectors component, in this paper the production of X-rays in gold sample is analyzed by using an coincidence system based on plastic scintillation detector and Ge detector. The Au disc-shaped sample with mass of 40.6 g, radius 3.34 cm and 0.06 cm thickness was inside 12 cm thick lead shield of extended range HPGe detector. The plastic detector of 0.5 x 0.5 x 0.05 m dimensions was placed above the lead shield at the distance of 32 cm from detector endcap. The producing rate of K{alpha} rays per Au mass unit from coincidence gamma spectrum is determined as R {approx_equal}7.1 x 10-4 g-1s-1. Taking in account the measured muon flux of {phi}=54 s-1m-2, the muon cross section {sigma}K{alpha}{approx_equal} 43 Barn, for Au K{alpha} X-rays production is calculated. Also, the cross sections of X-ray production by cosmic muons in lead and tungsten are measured. Unexpectedly, the results obtained did not reveal Z dependence in the Z= 74-82 region.

  8. SLAC Cosmic Ray Telescope Facility

    SciTech Connect

    Va'vra, J.

    2010-02-15

    SLAC does not have a test beam for the HEP detector development at present. We have therefore created a cosmic ray telescope (CRT) facility, which is presently being used to test the FDIRC prototype. We have used it in the past to debug this prototype with the original SLAC electronics before going to the ESA test beam. Presently, it is used to test a new waveform digitizing electronics developed by the University of Hawaii, and we are also planning to incorporate the new Orsay TDC/ADC electronics. As a next step, we plan to put in a full size DIRC bar box with a new focusing optics, and test it together with a final SuberB electronics. The CRT is located in building 121 at SLAC. We anticipate more users to join in the future. This purpose of this note is to provide an introductory manual for newcomers.

  9. Pointlike gamma ray sources as signatures of distant accelerators of ultrahigh energy cosmic rays.

    PubMed

    Gabici, Stefano; Aharonian, Felix A

    2005-12-16

    We discuss the possibility of observing distant accelerators of ultrahigh energy cosmic rays in synchrotron gamma rays. Protons propagating away from their acceleration sites produce extremely energetic electrons during photopion interactions with cosmic microwave background photons. If the accelerator is embedded in a magnetized region, these electrons will emit high energy synchrotron radiation. The resulting synchrotron source is expected to be pointlike, steady, and detectable in the GeV-TeV energy range if the magnetic field is at the nanoGauss level. PMID:16384444

  10. High Energy Gamma Ray Lines from Solar Flares

    NASA Technical Reports Server (NTRS)

    Crannell, Carol Jo

    2000-01-01

    A number of nuclear states have been identified as possible candidates for producing high-energy gamma-ray line emission in solar flares. For one high-energy line, resulting from the decay of C-12 (15.11 MeV), the excitation cross sections and branching radios have been studied extensively. In a solar flare, the ratio of the flux of 15. 11 -MeV gamma rays to the flux of 4.44-MeV gamma rays depends critically on the spectral index of the flare-accelerated protons. Prospects for being able to determine that spectral index using results from HESSI observations together with the analytic results of Crannell, Crannell, and Ramaty (1979) will be presented.

  11. Status of cosmic-ray antideuteron searches

    E-print Network

    P. von Doetinchem; T. Aramaki; S. Boggs; S. Bufalino; L. Dal; F. Donato; N. Fornengo; H. Fuke; M. Grefe; C. Hailey; B. Hamilton; A. Ibarra; J. Mitchell; I. Mognet; R. A. Ong; R. Pereira; K. Perez; A. Putze; A. Raklev; P. Salati; M. Sasaki; G. Tarle; A. Urbano; A. Vittino; S. Wild; W. Xue; K. Yoshimura

    2015-07-09

    The precise measurement of cosmic-ray antiparticles serves as important means for identifying the nature of dark matter. Recent years showed that identifying the nature of dark matter with cosmic-ray positrons and higher energy antiprotons is difficult, and has lead to a significantly increased interest in cosmic-ray antideuteron searches. Antideuterons may also be generated in dark matter annihilations or decays, offering a potential breakthrough in unexplored phase space for dark matter. Low-energy antideuterons are an important approach because the flux from dark matter interactions exceeds the background flux by more than two orders of magnitude in the low-energy range for a wide variety of models. This review is based on the "dbar14 - dedicated cosmic-ray antideuteron workshop", which brought together theorists and experimentalists in the field to discuss the current status, perspectives, and challenges for cosmic-ray antideuteron searches and discusses the motivation for antideuteron searches, the theoretical and experimental uncertainties of antideuteron production and propagation in our Galaxy, as well as give an experimental cosmic-ray antideuteron search status update. This report is a condensed summary of the article "Review of the theoretical and experimental status of dark matter identification with cosmic-ray antideuteron" (arXiv:1505.07785).

  12. Development of cosmic ray simulation program: Earth cosmic ray shower (ECRS)

    NASA Astrophysics Data System (ADS)

    Hakmana Witharana, Sampath

    ECRS is a program for the detailed simulation of extensive air shower initiated by high energy cosmic ray particles. In this dissertation work, a Geant4 based ECRS simulation was designed and developed to study secondary cosmic ray particle showers in the full range of Earth's atmosphere. A proper atmospheric air density and geomagnetic field are implemented in order to correctly simulate the charged particles interactions in the Earth's atmosphere. The initial simulation was done for the Atlanta (33.46° N , 84.25° W) region. Four different types of primary proton energies (10^9 , 10^10 , 10^11 and 10 12 eV) were considered to determine the secondary particle distribution at the Earth's surface. The geomagnetic field and atmospheric air density have considerable effects on the muon particle distribution at the Earth's surface. The muon charge ratio at the Earth's surface was studied with ECRS simulation for two different geomagnetic locations: Atlanta, Georgia, USA and Lynn Lake, Manitoba, Canada. The simulation results are shown in excellent agreement with the data from NMSU-WIZARD/CAPRICE and BESS experiments at Lynn Lake. At low momentum, ground level muon charge ratios show latitude dependent geomagnetic effects for both Atlanta and Lynn Lake from the simulation. The simulated charge ratio is 1.20 ± 0.05 (without geomagnetic field), 1.12 ± 0.05 (with geomagnetic field) for Atlanta and 1.22 ± 0.04 (with geomagnetic field) for Lynn Lake. These types of studies are very important for analyzing secondary cosmic ray muon flux distribution at the Earth's surface and can be used to study the atmospheric neutrino oscillations.

  13. Very high energy gamma rays from the Crab nebula and pulsar

    SciTech Connect

    Kwok, P.W.

    1989-01-01

    This project is to search for very high energy (VHE) (10(exp 11) to 10(exp 14)eV) gamma rays from the Crab nebula and pulsar using the atmospheric Cherenkov imaging technique. The technique uses an array of 37 photomultiplier tubes to record the images of the Cherenkov light pulses generated by energetic particles in the air showers initiated by VHE gamma rays or charged cosmic rays. Gamma ray like events are selected from numerous cosmic ray events based on the predicted properties of the image, such as the size, shape, and orientation with respect to the axis of the detector. A steady weak flux of VHE gamma rays from the Crab is detected at high statistical significance (9 sigma), which is not usually achieved in VHE gamma ray astronomy. No strong evidence of pulsed emission is found when the same data is folded at the Crab pulsar's radio ephemeris. The angular resolution of the technique cannot separate the emission coming from the nebula from that from the pulsar. Although it is generally believed that the unpulsed emission is coming from the nebula, there may be an unpulsed component coming at only a couple of light cylinder radii away from the pulsar too. Using the outer gap model of pulsar, the spectrum is derived and is found to be compatible with the observations.

  14. Cosmic ray transport in astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Schlickeiser, R.

    2015-09-01

    Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, the heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.

  15. Ground-based detectors in very-high-energy gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    de Naurois, Mathieu; Mazin, Daniel

    2015-08-01

    Following the discovery of the cosmic rays by Victor Hess in 1912, more than 70 years and numerous technological developments were needed before an unambiguous detection of the first very-high-energy gamma-ray source in 1989 was made. Since this discovery, the field on very-high-energy gamma-ray astronomy experienced a true revolution: a second, then a third generation of instruments were built, observing the atmospheric cascades from the ground, either through the atmospheric Cherenkov light they comprise, or via the direct detection of the charged particles they carry. Present arrays, 100 times more sensitive than the pioneering experiments, have detected a large number of astrophysical sources of various types, thus opening a new window on the non-thermal Universe. New, even more sensitive instruments are currently being built; these will allow us to explore further this fascinating domain. In this article we describe the detection techniques, the history of the field and the prospects for the future of ground-based very-high-energy gamma-ray astronomy. xml:lang="fr"

  16. Consistency of cosmic-ray source abudances with explosive nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Kozlovsky, B.; Ramaty, R.

    1973-01-01

    A model was examined in which the cosmic ray abundances of elements from C to Fe are consistent with explosive nucleosynthesis. The observed abundance of cosmic rays near the earth, cosmic ray source abundance, and solar system abundance are discussed along with the ratios of cosmic ray sources to the solar system abundances.

  17. Superdiffusion of cosmic rays: Implications for cosmic ray acceleration

    SciTech Connect

    Lazarian, A.; Yan, Huirong

    2014-03-20

    Diffusion of cosmic rays (CRs) is the key process for understanding their propagation and acceleration. We employ the description of spatial separation of magnetic field lines in magnetohydrodynamic turbulence in Lazarian and Vishniac to quantify the divergence of the magnetic field on scales less than the injection scale of turbulence and show that this divergence induces superdiffusion of CR in the direction perpendicular to the mean magnetic field. The perpendicular displacement squared increases, not as the distance x along the magnetic field, which is the case for a regular diffusion, but as the x {sup 3} for freely streaming CRs. The dependence changes to x {sup 3/2} for the CRs propagating diffusively along the magnetic field. In the latter case, we show that it is important to distinguish the perpendicular displacement with respect to the mean field and to the local magnetic field. We consider how superdiffusion changes the acceleration of CRs in shocks and show how it decreases efficiency of the CRs acceleration in perpendicular shocks. We also demonstrate that in the case when the small-scale magnetic field is generated in the pre-shock region, an efficient acceleration can take place for the CRs streaming without collisions along the magnetic loops.

  18. The Galactic cosmic-ray Sun shadow observed by HAWC

    E-print Network

    Enriquez, O

    2015-01-01

    The magnetic field of the Solar corona is difficult to measure directly. However, indirect observations of the solar corona are possible using the deficit in flux of cosmic rays coming from the direction of the Sun. Low-energy cosmic rays (~GeV) are deflected by the inner magnetic field of the Sun and the interplanetary magnetic field frozen into the solar wind. In contrast, high-energy cosmic rays (~TeV and above) are absorbed in the Sun's photosphere producing a shadow in the Sun's nominal position viewed from Earth. Several ground-based instruments have observed the effects of the heliospheric magnetic field on the size of the sun shadow and its position. The High-Altitude Water Cherenkov Observatory (HAWC) is an air shower array located in the central region of Mexico that observes TeV cosmic rays at a rate of about 15 kHz. in this work, we present preliminary images of the sun shadow from data collected by HAWC during 2013 and 2014 for different energy ranges.

  19. Cosmic ray backgrounds for dark matter indirect detection

    E-print Network

    Mertsch, Philipp

    2010-01-01

    Recently, dark matter indirect searches have gained a lot of attention, mostly due to the possibility of recent anomalies in cosmic rays and microwave sky maps being due to the annihilation or decay of dark matter. In this thesis, we argue however that these signals are plagued by irreducible astrophysical backgrounds and show how plausible conventional physics can mimic the alleged dark matter signals. In particular, we consider the possibility that the rise in the positron fraction observed by the PAMELA satellite is due to the production through (hadronic) cosmic ray spallation and subsequent acceleration of positrons, in the same sources as the primary cosmic rays. We present a new analytical estimate of the range of possible fluctuations in the high energy electron flux due to the discreteness of plausible cosmic ray sources. Fitting our result for the total electron-positron flux measured by the Fermi satellite allows us to fix the only free parameter of the model and make an independent prediction for ...

  20. Search for Galactic cosmic ray sources: The multimessenger approach

    NASA Astrophysics Data System (ADS)

    Becker Tjus, Julia

    2015-12-01

    The search for the sources of high-energy cosmic rays (CRs) has made significant progress the past decade. By including multimessenger methods, the general picture of the presence of a Galactic component at low energies and an extragalactic one at the highest energies has been strengthened. Yet, unambiguous proof of the exact origins of CRs is missing. In this review, the current scientific status on Galactic CR sources from theory and experimental data is summarized. In particular, the focus of this review lies on the search for photon and neutrino signals from the Galaxy and their theoretical interpretation in the context of the quest for the origin of high-energy cosmic rays. The use of multiwavelength data, from radio to TeV energies, as well as the option of coincident observations of different wavelength bands in order to pin-point the sources of Galactic CRs are discussed. Finally, the objectives for the field of astroparticles to reach the goal of unambiguously identifying Galactic cosmic ray sources within the next decades are presented.

  1. Cosmic-Ray Transport and Anisotropies

    NASA Astrophysics Data System (ADS)

    Biermann, Peter L.; Becker Tjus, Julia; Seo, Eun-Suk; Mandelartz, Matthias

    2013-05-01

    We show that the large-scale cosmic-ray anisotropy at ~10 TeV can be explained by a modified Compton-Getting effect in the magnetized flow field of old supernova remnants. Cosmic rays arrive isotropically to the flow field and are then carried along with the flow to produce a large-scale anisotropy in the arrival direction. This approach suggests an optimum energy scale for detecting the anisotropy. Two key assumptions are that propagation is based on turbulence following a Kolmogorov law and that cosmic-ray interactions are dominated by transport via cosmic-ray-excited magnetic irregularities through the stellar wind of an exploding star and its shock shell. A prediction is that the amplitude is smaller at lower energies due to incomplete sampling of the velocity field and also smaller at larger energies due to smearing.

  2. Cosmic ray antimatter and baryon symmetric cosmology

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1982-01-01

    The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic-ray antiprotons, including the new low-energy measurement of Buffington, et al. We conclude that the cosmic-ray antiproton data may be evidence for antimatter galaxies and baryon symmetric cosmology. The present bar P data are consistent with a primary extragalactic component having /p=/equiv 1+/- 3.2/0.7x10 = to the -4 independent of energy. We propose that the primary extragalactic cosmic ray antiprotons are most likely from active galaxies and that expected disintegration of bar alpha/alpha ban alpha/alpha. We further predict a value for ban alpha/alpha =/equiv 10 to the -5, within range of future cosmic ray detectors.

  3. COSMIC-RAY TRANSPORT AND ANISOTROPIES

    SciTech Connect

    Biermann, Peter L.; Becker Tjus, Julia; Mandelartz, Matthias; Seo, Eun-Suk

    2013-05-10

    We show that the large-scale cosmic-ray anisotropy at {approx}10 TeV can be explained by a modified Compton-Getting effect in the magnetized flow field of old supernova remnants. Cosmic rays arrive isotropically to the flow field and are then carried along with the flow to produce a large-scale anisotropy in the arrival direction. This approach suggests an optimum energy scale for detecting the anisotropy. Two key assumptions are that propagation is based on turbulence following a Kolmogorov law and that cosmic-ray interactions are dominated by transport via cosmic-ray-excited magnetic irregularities through the stellar wind of an exploding star and its shock shell. A prediction is that the amplitude is smaller at lower energies due to incomplete sampling of the velocity field and also smaller at larger energies due to smearing.

  4. The origin of the spectral intensities of cosmic-ray positrons

    SciTech Connect

    Cowsik, R.; Burch, B.; Madziwa-Nussinov, T.

    2014-05-10

    We present a straightforward model of cosmic-ray propagation in the Galaxy that can account for the observed cosmic-ray positrons entirely as secondary products of cosmic-ray interactions with the interstellar medium. In addition to accounting for the observed energy dependence of the ratio of positrons to total electrons, this model can accommodate both the observed energy dependence of secondary to primary nuclei, like boron/carbon, and the observed bounds on the anisotropy of cosmic rays. This model also predicts the energy dependence of the positron fraction at energies higher than those measured to date, with the ratio rising to ?0.7 at very high energies. The model presented in this paper arises as a natural extension of the widely used current models and allows one to include the spatial and temporal discreteness of the sources of cosmic rays.

  5. A study of cosmic-ray reacceleration in the interstellar space.

    NASA Astrophysics Data System (ADS)

    Li, Zhang; Yu, Chuan-Zan

    1991-04-01

    Starting from the cosmic-ray transport equation which contains acceleration in energy space, the mathematical expressions for high energy primary spectra and secondary to primary nuclei ratios in the leaky box model are derived. The study shows that cosmic-ray reacceleration in the interstellar space could be taking place and there is no need to consider the difference between the space distributions of secondary and primary nuclei.

  6. Shock-Wave and Plasma-Pinch Mechanisms of Galactic Cosmic-Ray Production

    SciTech Connect

    Trubnikov, B.A.

    2005-07-01

    Based on recent discoveries, we show that it is appropriate to complement the standard shock-wave model for the production of galactic cosmic rays by a plasma-pinch model. The latter describes well the production of high-energy cosmic rays, yields a simple formula for their intensity, and allows the threshold pattern of the knee-type kink in the secondary particle spectrum and a number of unusual phenomena observed above the threshold to be explained.

  7. 28th International Cosmic Ray Conference 3851 A 2D stochastic simulation of galactic cosmic rays transport

    E-print Network

    Usoskin, Ilya G.

    28th International Cosmic Ray Conference 3851 A 2D stochastic simulation of galactic cosmic rays, Russia. Abstract We present a new code to numerically simulate the transport of galactic cosmic rays Galactic cosmic rays suffer from modulation in the heliosphere. Basic modulation mechanisms are diffusion

  8. The Milky Way in Very High Energy Gamma-Ray Light

    E-print Network

    Adelaide, University of

    The Milky Way in Very High Energy Gamma-Ray Light 2511 Gamma-Ray Light: What is it? Detecting Very High Energy Gamma-Rays with the H.E.S.S. Gamma-Ray Telescopes The Milky Way in Very High Energy Gamma://home.arcor-online.de/axel.mellinger/ The H.E.S.S. Telescopes have imaged parts of the Milky Way in very high energy gamma-ray light

  9. Apollo 17 lunar surface cosmic ray detector

    NASA Technical Reports Server (NTRS)

    Walker, R. M.

    1974-01-01

    The objectives and selected data are presented for the Apollo 17 Lunar Surface Cosmic Ray Experiment (LSCRE) for the purpose of introducing an analysis of three of the separate detectors contained within in LSCRE package. The mica detector for measuring heavy solar wind, and the lexan stack and glass detectors for measuring energetic particles in space are discussed in terms of their deployment, exposure time, calibration, and data yield. Relevant articles on solar particles, interplanetary ions, and cosmic ray nuclei are also included.

  10. Longevity and Highest-Energy Cosmic Rays

    E-print Network

    Paul H. Frampton; Bettina Keszthelyi; Y. Jack Ng

    1997-09-10

    It is proposed that the highest energy $\\sim 10^{20}$eV cosmic ray primaries are protons, decay products of a long-lived progenitor which has propagated from typically $\\sim 100$Mpc. Such a scenario can occur in e.g. SU(15) grand unification and in some preon models, but is more generic; if true, these unusual cosmic rays provide a window into new physics.

  11. IceCube and the Discovery of High-Energy Cosmic Neutrinos

    NASA Astrophysics Data System (ADS)

    Halzen, Francis

    2015-04-01

    The IceCube project has transformed one cubic kilometer of natural Antarctic ice into a neutrino detector. The instrument detects 100,000 neutrinos per year in the GeV to PeV energy range. Among those, we have recently isolated a flux of high-energy cosmic neutrinos. I will discuss the instrument, the analysis of the data, and the significance of the discovery of cosmic neutrinos. The observed neutrino flux implies that a significant fraction of the energy in the non-thermal universe, powered by the gravitational energy of compact objects from neutron stars to supermassive black holes, is generated in hadronic accelerators.

  12. Cosmic ray produced isotopes in terrestrial systems.

    NASA Astrophysics Data System (ADS)

    Lal, D.

    1998-12-01

    Continuing improvements in the sensitivity of measurement of cosmic ray produced isotopes in environmental samples have progressively broadened the scope of their applications to characterise and quantify a wide variety of processes in Earth and planetary sciences. In this article, the author concentrates on the new developments in the field of nuclear geophysics, based on isotopic changes produced by cosmic rays in the terrestrial systems. This field, which is best described as cosmic ray geophysics, has roots with the discovery of cosmogenic 14C on the Earth by Willard Libby in 1948, and grew rapidly at first, but slowed down during the '60s and '70s. In the '80s, there was a renaissance in cosmic ray produced isotope studies, thanks mainly to the developments of the accelerator mass spectrometry technique capable of measuring minute amounts of radioactivity in terrestrial samples. This technological advance has considerably enhanced the applications of cosmic ray produced isotopes and today one finds them being used to address diverse problems in Earth and planetary sciences. The author discusses the present scope of the field of cosmic ray geophysics with an emphasis on geomorphology. It is stressed that this is the decade in which this field, which has been studied passionately by geographers, geomorphologists and geochemists for more than five decades, has at its service nuclear methods to introduce numeric time controls in the range of centuries to millions of years.

  13. COSMIC-RAY HELIUM HARDENING

    SciTech Connect

    Ohira, Yutaka; Ioka, Kunihito

    2011-03-01

    Recent observations by the CREAM and ATIC-2 experiments suggest that (1) the spectrum of cosmic-ray (CR) helium is harder than that of CR protons below the knee energy, 10{sup 15}eV, and (2) all CR spectra become hard at {approx}>10{sup 11}eV nucleon{sup -1}. We propose a new idea, that higher energy CRs are generated in a more helium-rich region, to explain the hardening without introducing different sources for CR helium. The helium-to-proton ratio at {approx}100 TeV exceeds the Big Bang abundance Y = 0.25 by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in a chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium if CRs escape from the supernova remnant shock in an energy-dependent way. We provide a simple analytical spectrum that also fits well the hardening due to the decreasing Mach number in the hot superbubble with {approx}10{sup 6} K. Our model predicts hard and concave spectra for heavier CR elements.

  14. Very high energy gamma ray extension of GRO observations

    NASA Technical Reports Server (NTRS)

    Weekes, Trevor C.

    1992-01-01

    This has been an exiciting year for high energy gamma-ray astronomy, both from space and from ground-based observatories. It has been a particularly active period for the Whipple Observatory gamma-ray group. In phase 1 of the Compton Gamma Ray Observatory (GRO), there has not been too much opportunity for overlapping observations with the Energetic Gamma Ray Experiment Telescope (EGRET) and the other GRO telescopes; however, significant progress was made in the development of data analysis techniques and in improving the sensitivity of the technique which will have direct application in correlative observations in phase 2. Progress made during the period 1 Jul. 1991 - 31 Dec. 1991 is presented.

  15. Measuring the ultra-high energy comic ray flux with the Telescope Array Middle Drum detector

    NASA Astrophysics Data System (ADS)

    Sonley, Thomas

    2009-10-01

    The Telescope Array (TA) Experiment, located 200 kilometers southwest of Salt Lake City, Utah, is the largest Ultra-High Energy cosmic ray detector in the northern hemisphere. TA is a follow up to the High Resolution Fly's Eye (HiRes) and AGASA experiments, and seeks to gain insight into cosmic ray acceleration by measuring the flux of cosmic rays with energies over 10^18 eV. The detector consists of 507 scintillator counters distributed in a square grid with 1.2 km spacing. Three fluorescence detector stations sit on the corners of a 30 km equilateral triangle overlooking the array of surface detectors, and provide full hybrid coverage with the scintillator array above 10 EeV. Telescope Array underwent commissioning in 2007 and began routine data collection operations at the beginning of 2008. One of the three fluorescence stations, the Middle Drum (MD) site, is instrumented with detectors previously used at the HiRes-1 site. The inclusion of the MD site makes possible a direct comparison between the fluorescence energy scales and spectra between TA and HiRes. We will present a progress report on the analysis of the TA data collected by the MD site.

  16. Studies of low energy cosmic rays - The anomalous component

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Cummings, A. C.; Stone, E. C.

    1983-01-01

    Data from the cosmic ray subsystem on the Voyager spacecraft is used to measure the spectra of He, C, N, O, and Ne with about 4-124 MeV/nuc (for O) near 1 AU. By subtracting both a low-energy solar/interplanetary component and the high-energy galactic component the energy spectra of the anomalous cosmic-ray species He, N, O, and Ne have been determined. It is suggested that the shapes of these spectra carry information about the charge state of the particles and the rigidity dependence of the diffusion coefficient. For similar power-law source spectra at the boundary of the modulation region, the location of features in the energy spectra indicates that the anomalous particles are singly ionized.

  17. KCDC — The KASCADE Cosmic-ray Data Centre

    NASA Astrophysics Data System (ADS)

    Haungs, A.; Blumer, J.; Fuchs, B.; Kang, D.; Schoo, S.; Wochele, D.; Wochele, J.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K. H.; Klages, H. O.; Link, K.; ?uczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Zabierowski, J.

    2015-08-01

    KCDC, the ‘KASCADE Cosmic-ray Data Centre’, is a web portal, where data of astroparticle physics experiments will be made available for the interested public. The KASCADE experiment, financed by public money, was a large-area detector for the measurement of high-energy cosmic rays via the detection of air showers. KASCADE and its extension KASCADE-Grande stopped finally the active data acquisition of all its components including the radio EAS experiment LOPES end of 2012 after more than 20 years of data taking. In a first release, with KCDC we provide to the public the measured and reconstructed parameters of more than 160 million air showers. In addition, KCDC provides the conceptional design, how the data can be treated and processed so that they are also usable outside the community of experts in the research field. Detailed educational examples make a use also possible for high-school students and early stage researchers.

  18. Ankle phenomenon in the cosmic ray energy spectrum

    E-print Network

    Yukio Tomozawa

    2012-08-22

    The author has suggested that the knee phenomenon in the cosmic ray energy spectrum at 3 PeV can be explained as a split between a radiation-dominated expansion and a matter-dominated expansion of an expanding heat bath. The model proposed in 1985, in fact, predicted that high energy cosmic rays are emitted from AGN, massive black holes, in agreement with recent data from the Pierre Auger Observatory. Similarly, the ankle phenomenon at 3 EeV is shown to be explained by a split between inflational expansion and ordinary material expansion of the expanding heat bath, not unlike that in the expansion of the universe. All the spectral indicies in the respective regions of the energy spectra agree with the theoretical calculation from the respective expansion rates.

  19. Primary Cosmic Rays Composition: Simulations and Detector Design

    SciTech Connect

    Supanitsky, D.; Etchegoyen, A.; Medina, C.; Medina-Tanco, G.; Gomez Berisso, M.

    2007-02-12

    The Pierre Auger Observatory is a hybrid detector system for the detection of very high energy cosmic rays. A most difficult and important problem in these studies is the determination of the primary cosmic ray composition for which muon content in air showers appears to be one of the best parameters to discriminate between different composition types.Although the Pierre Auger surface detectors, which consist of water Cherenkov tanks, are sensitive to muon content they are not able to measure the number of muons directly. In this work we study using simulations the information that can be gained by adding muon detectors to the Auger surface detectors. We consider muon counters with two alternative areas.

  20. Study of high-energy particle acceleration in Tycho with gamma-ray observations

    E-print Network

    Park, Nahee

    2015-01-01

    Gamma-ray emission from supernova remnants (SNRs) can provide a unique window to observe the cosmic-ray acceleration believed to take place in these objects. Tycho is an especially good target for investigating hadronic cosmic-ray acceleration and interactions because it is a young type Ia SNR that is well studied in other wavelengths, and it is located in a relatively clean environment. Several different theoretical models have been advanced to explain the broadband spectral energy emission of Tycho from radio to the gamma-ray emission detected by the Fermi-LAT in the GeV and by VERITAS in the TeV. We will present an update on the high-energy gamma-ray studies of Tycho with $\\sim150$ hours of VERITAS and $\\sim77$ months of the Fermi-LAT observations, which represents about a factor of two increase in exposure over previously published data. VERITAS data also include exposure with an upgraded camera, which made it possible to extend the TeV measurements toward lower energy, thanks to its improved low energy s...

  1. Neutrino diagnostics of ultrahigh energy cosmic ray protons

    SciTech Connect

    Ahlers, Markus; Sarkar, Subir; Anchordoqui, Luis A.

    2009-04-15

    The energy at which cosmic rays from extra-galactic sources begin to dominate over those from galactic sources is an important open question in astroparticle physics. A natural candidate is the energy at the 'ankle' in the approximately power-law energy spectrum which is indicative of a crossover from a falling galactic component to a flatter extra-galactic component. The transition can occur without such flattening but this requires some degree of conspiracy of the spectral shapes and normalizations of the two components. Nevertheless, it has been argued that extra-galactic sources of cosmic ray protons that undergo interactions on the CMB can reproduce the energy spectrum below the ankle if the crossover energy is as low as the 'second knee' in the spectrum. This low crossover model is constrained by direct measurements by the Pierre Auger Observatory, which indicate a heavier composition at these energies. We demonstrate that upper limits on the cosmic diffuse neutrino flux provide a complementary constraint on the proton fraction in ultra-high energy extra-galactic cosmic rays and forthcoming data from IceCube will provide a definitive test of this model.

  2. Contributions to the 19th International Cosmic Ray Conference

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Various aspects of cosmic radiation, its measurements and their patterns are presented. Measurement techniques and variations in solar cosmic ray patterns and calculations of elemental abundances are reviewed.

  3. High Energy Gamma-Ray Emission From Blazars: EGRET Observations

    E-print Network

    R. Mukherjee

    1999-01-17

    We will present a summary of the observations of blazars by the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO). EGRET has detected high energy gamma-ray emission at energies greater than 100 MeV from more that 50 blazars. These sources show inferred isotropic luminosities as large as $3\\times 10^{49}$ ergs s$^{-1}$. One of the most remarkable characteristics of the EGRET observations is that the gamma-ray luminosity often dominates the bolometric power of the blazar. A few of the blazars are seen to exhibit variability on very short time-scales of one day or less. The combination of high luminosities and time variations seen in the gamma-ray data indicate that gamma-rays are an important component of the relativistic jet thought to characterize blazars. Currently most models for blazars involve a beaming scenario. In leptonic models, where electrons are the primary accelerated particles, gamma-ray emission is believed to be due to inverse Compton scattering of low energy photons, although opinions differ as to the source of the soft photons. Hardronic models involve secondary production or photomeson production followed by pair cascades, and predict associated neutrino production.

  4. High-Energy Diffraction-Enhanced X-ray Imaging

    SciTech Connect

    Yoneyama, Akio; Ueda, Kazuhiro; Takeda, Tohoru; Yamazaki, Takanori; Hyodo, Kazuyuki

    2010-06-23

    In order to apply the diffraction-enhanced X-ray imaging (DEI) method for much wider variety of samples, we have developed the high-energy DEI system. The energy of X-ray was increased up to 70 keV to achieve high permeability for heavy elements. The diffraction of Si(440) was used to keep large field of view. Demonstrative observation of an electrical cable was performed using the X-ray emitted from the vertical wiggler. The obtained images visualized not only the core and ground wire made of copper but also the isolator and outer jacket made of polymer clearly. The comparison of images obtained by the DEI and the absorption-contrast imaging showed that the sensitivity of DEI is about 10 times higher than that of the absorption method for light elements, and 3 times for heavy elements.

  5. A large detector for cosmic ray abundance and energy measurements

    NASA Astrophysics Data System (ADS)

    Alsop, C.

    A large aperture, balloon borne cosmic ray detector was designed to measure the energy spectra of individual cosmic ray species with Z greater than 8 in the energy range 0.3GeV/N to 400GeV/N. The energy dependence of the abundance spectrum extending up to such high energies will provide valuable data for determining the nature of the origin and propagation of cosmic rays in the Galaxy. The properties of cosmic ray nuclei and the interpretation of the energy dependence of the abundance spectrum are discussed. The design and response of the BUGS IV cosmic ray detector are described. The measurement techniques used are gas scintillation, gas proportional scintillation and Cerenkov radiation from both gases and solids. The light collection properties of the detector and several experimental investigations of the light collection efficiency of the drift chamber region are described. The expected signals from the gas scintillation and gas Cerenkov emissions are predicted and the choice of a suitable scintillating gas mixture for minimizing the uncertainty in the charge and energy measurements is considered. The theoretical aspects of electron drift and diffusion in gases and several experimental investigations on the electron drift in the BUGS IV drift chamber are given. Also some preliminary results from a uniform field drift chamber are included which demonstrate the sensitivity of the electron drift velocity in inert gas mixtures to water vapor contamination. The expected overall performance of BUGS IV and the results of an experimental simulation of the parachute landing of the detector are given.

  6. Astrophysics of Galactic Charged Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Castellina, Antonella; Donato, Fiorenza

    A review is given of the main properties of the charged component of galactic cosmic rays, particles detected at Earth with an energy spanning from tens of MeV up to about 1019 eV. After a short introduction to the topic and a historical overview, the properties of cosmic rays are discussed with respect to different energy ranges. The origin and the propagation of nuclei in the Galaxy are dealt with from a theoretical point of view. The mechanisms leading to the acceleration of nuclei by supernova remnants and to their subsequent diffusion through the inhomogeneities of the galactic magnetic field are discussed, and some clue is given on the predictions and observations of fluxes of antimatter, both from astrophysical sources and from dark matter annihilation in the galactic halo.The experimental techniques and instrumentations employed for the detection of cosmic rays at Earth are described. Direct methods are viable up to ? 1014 eV, by means of experiments flown on balloons or satellites, while above that energy, due to their very low flux, cosmic rays can be studied only indirectly by exploiting the particle cascades they produce in the atmosphere.The possible physical interpretation of the peculiar features observed in the energy spectrum of galactic cosmic rays, and in particular the so-called "knee" at about 4 ×1015 eV, is discussed. A section is devoted to the region between about 1018 and 1019 eV, which is believed to host the transition between galactic and extragalactic cosmic rays. The conclusion gives some perspectives on the cosmic ray astrophysics field. Thanks to a wealth of different experiments, this research area is living a very flourishing era. The activity is exciting both from the theoretical and the instrumental sides, and its interconnection with astronomy, astrophysics, and particle physics experiences nonstop growth.

  7. Implications of a possible clustering of highest-energy?cosmic?rays

    PubMed Central

    Sigl, Günter; Schramm, David N.; Lee, Sangjin; Hill, Christopher T.

    1997-01-01

    Recently, a possible clustering of a subset of observed ultra-high energy cosmic rays above ?40 EeV (4 × 1019 eV) in pairs near the supergalactic plane was reported. We show that a confirmation of this effect would provide information on the origin and nature of these events and, in case of charged primaries, imply interesting constraints on the extragalactic magnetic field. Possible implications for the most common models of ultra-high energy cosmic ray production in the literature are discussed. PMID:11038576

  8. Positron fraction in cosmic rays and models of cosmic-ray propagation

    SciTech Connect

    Cowsik, R.; Burch, B.

    2010-07-15

    The positron fraction observed by PAMELA and other experiments up to {approx}100 GeV is analyzed in terms of models of cosmic-ray propagation. It is shown that generically we expect the positron fraction to reach {approx}0.6 at energies of several TeV, and its energy dependence bears an intimate but subtle connection with that of the boron to carbon ratio in cosmic rays. The observed positron fraction can be fit in a model that assumes a significant fraction of the boron below {approx}10 GeV is generated through spallation of cosmic-ray nuclei in a cocoonlike region surrounding the sources, and the positrons of energy higher than a few GeV are almost exclusively generated through cosmic-ray interactions in the general interstellar medium. Such a model is consistent with the bounds on cosmic-ray anisotropies and other observations.

  9. Cosmic-Ray Events as Background in Imaging Atmospheric Cherenkov Telescopes

    E-print Network

    Gernot Maier; Johannes Knapp

    2007-04-26

    The dominant background for observations of gamma-rays in the energy region above 50 GeV with Imaging Atmospheric Cherenkov telescopes are cosmic-ray events. The images of most of the cosmic ray showers look significantly different from those of gamma-rays and are therefore easily discriminated. However, a small fraction of events seems to be indistinguishable from gamma-rays. This constitutes an irreducible background to the observation of high-energy gamma-ray sources, and limits the sensitivity achievable with a given instrument. Here, a Monte Carlo study of gamma-like cosmic-ray events is presented. The nature of gamma-like cosmic-ray events, the shower particles that are responsible for the gamma-like appearance, and the dependence of these results on the choice of the hadronic interaction model are investigated. Most of the gamma-like cosmic ray events are characterised by the production of high-energy pi0's early in the shower development which dump most of the shower energy into electromagnetic sub-showers. Also Cherenkov light from single muons can mimic gamma-rays in close-by pairs of telescopes. Differences of up to 25% in the collection area for gamma-like proton showers between QGSJet/FLUKA and Sibyll/FLUKA simulations have been found.

  10. THE INTERACTION OF COSMIC RAYS WITH DIFFUSE CLOUDS

    SciTech Connect

    Everett, John E.; Zweibel, Ellen G.

    2011-10-01

    We study the change in cosmic-ray pressure, the change in cosmic-ray density, and the level of cosmic-ray-induced heating via Alfven-wave damping when cosmic rays move from a hot ionized plasma to a cool cloud embedded in that plasma. The general analysis method outlined here can apply to diffuse clouds in either the ionized interstellar medium or in galactic winds. We introduce a general-purpose model of cosmic-ray diffusion building upon the hydrodynamic approximation for cosmic rays (from McKenzie and Voelk and Breitschwerdt and collaborators). Our improved method self-consistently derives the cosmic-ray flux and diffusivity under the assumption that the streaming instability is the dominant mechanism for setting the cosmic-ray flux and diffusion. We find that, as expected, cosmic rays do not couple to gas within cool clouds (cosmic rays exert no forces inside of cool clouds), that the cosmic-ray density does not increase within clouds (it may decrease slightly in general, and decrease by an order of magnitude in some cases), and that cosmic-ray heating (via Alfven-wave damping and not collisional effects as for {approx}10 MeV cosmic rays) is only important under the conditions of relatively strong (10 {mu}G) magnetic fields or high cosmic-ray pressure ({approx}10{sup -11} erg cm{sup -3}).

  11. Molecular Clouds as Cosmic-Ray Barometers

    E-print Network

    Casanova, S; Fukui, Y; Gabici, S; Jones, D I; Kawamura, A; Onishi, T; Rowell, G; Torii, K; Yamamoto, H

    2009-01-01

    It is generally assumed that the flux of cosmic-rays observed at the top of the Earth's atmosphere is representative of the flux in the Galaxy at large. The advent of high sensitivity, high resolution gamma-ray detectors, together with a knowledge of the distribution of the atomic hydrogen and especially of the molecular hydrogen in the Galaxy on sub-degree scales, as provided by the NANTEN survey, creates a unique opportunity to explore the flux of cosmic rays in the Galaxy. We present a methodology which aims to provide a test bed for current and future gamma-ray observatories to explore the cosmic ray flux at various positions in our Galaxy. In particular, for a distribution of molecular clouds and local cosmic ray density as measured at the Earth, we estimate the expected GeV to TeV gamma-ray signal, which can then be compared with observations. An observed gamma-ray flux less than predicted would imply a CR density in specific regions of the Galaxy less than that observed at Earth, and vice versa. The me...

  12. Gamma Ray Astronomy and the Origin of Galactic Cosmic Rays

    E-print Network

    Stefano Gabici

    2008-11-05

    Diffusive shock acceleration operating at expanding supernova remnant shells is by far the most popular model for the origin of galactic cosmic rays. Despite the general consensus received by this model, an unambiguous and conclusive proof of the supernova remnant hypothesis is still missing. In this context, the recent developments in gamma ray astronomy provide us with precious insights into the problem of the origin of galactic cosmic rays, since production of gamma rays is expected both during the acceleration of cosmic rays at supernova remnant shocks and during their subsequent propagation in the interstellar medium. In particular, the recent detection of a number of supernova remnants at TeV energies nicely fits with the model, but it still does not constitute a conclusive proof of it, mainly due to the difficulty of disentangling the hadronic and leptonic contributions to the observed gamma ray emission. In this paper, the most relevant cosmic-ray-related results of gamma ray astronomy are briefly summarized, and the foreseeable contribution of future gamma ray observations to the final solution of the problem of cosmic ray origin is discussed.

  13. High energy gamma-ray emission from Gamma-Ray Bursts -- before GLAST

    E-print Network

    Yi-Zhong Fan; Tsvi Piran

    2009-05-06

    Gamma-ray bursts (GRBs) are short and intense emission of soft gamma-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high energy gamma-ray emission (>20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high energy emission from GRBs. Special attention is given to the expected high energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

  14. A Tale of Cosmic Rays Narrated in ? Rays by Fermi

    NASA Astrophysics Data System (ADS)

    Tibaldo, Luigi

    2014-10-01

    Because cosmic rays are charged particles scrambled by magnetic fields, combining direct measurements with other observations is crucial to understanding their origin and propagation. As energetic particles traverse matter and electromagnetic fields, they leave marks in the form of neutral interaction products. Among those, ? rays trace interactions of nuclei that inelastically collide with interstellar gas, as well as of leptons that undergo Bremsstrahlung and inverse-Compton scattering. Data collected by the Fermi large area telescope (LAT) are therefore telling us the story of cosmic rays along their journey from sources through their home galaxies. Supernova remnants emerge as a notable ?-ray source population, and older remnants interacting with interstellar matter finally show strong evidence of the presence of accelerated nuclei. Yet the maximum energy attained by shock accelerators is poorly constrained by observations. Cygnus X, a massive star-forming region established by the LAT as housing cosmic-ray sources, provides a test case to study the impact of wind-driven turbulence on the early propagation. Interstellar emission resulting from the large-scale propagation of cosmic rays in the Milky Way is revealed in unprecedented detail that challenges some of the simple assumptions used for the modeling. Moreover, the cosmic-ray induced ?-ray luminosities of galaxies-scale quasi-linearly with their massive-star formation rates: the overall normalization of that relation below the calorimetric limit suggests that for most systems, a substantial fraction of energy in cosmic rays escapes into the intergalactic medium. The nuclear production models and the distribution of target gas and radiation fields, not determined precisely enough yet, are key to exploiting the full potential of ?-ray data. Nevertheless, data being collected by Fermi and complementary multiwavelength/multimessenger observations are bringing us ever closer to solving the cosmic-ray mystery.

  15. Irradiated ISM: Discriminating between Cosmic Rays and X-rays

    E-print Network

    R. Meijerink; M. Spaans; F. P. Israel

    2006-09-07

    The ISM of active galaxy centers is exposed to a combination of cosmic ray, FUV and X-ray radiation. We apply PDR models to this ISM with both `normal' and highly elevated (5\\times 10^{-15}s^-1) cosmic-ray rates and compare the results to those obtained for XDRs. Our existing PDR-XDR code is used to construct models over a 10^3-10^5 cm^-3 density range and for 0.16-160 erg s^-1 cm^-2 impingent fluxes. We obtain larger high J (J>10) CO ratios in PDRs when we use the highly elevated cosmic ray rate, but these are always exceeded by the corresponding XDR ratios. The [CI] 609 mum/13CO(2-1) line ratio is boosted by a factor of a few in PDRs with n~10^3 cm^-3 exposed to a high cosmic ray rate. At higher densities ratios become identical irrespective of cosmic ray flux, while XDRs always show elevated [CI] emission per CO column. The HCN/CO and HCN/HCO+ line ratios, combined with high J CO emission lines, are good diagnostics to distinguish between PDRs under either low or high cosmic ray irradiation conditions, and XDRs. Hence, the HIFI instrument on Herschel, which can detect these CO lines, will be crucial in the study of active galaxies.

  16. The origin of cosmic rays at all energies

    E-print Network

    Arnon Dar

    2006-01-16

    There is mounting evidence from observations of long duration gamma ray bursts (GRBs), supernova remnants (SNR) and the supernova (SN) explosion 1987A, that SN explosions eject highly relativistic bipolar jets of plasmoids (cannonballs) of ordinary matter. Here we use the remarkably successful cannonball (CB) model of GRBs to show that bipolar jets from Galactic SN explosions can produce the bulk of the Galactic cosmic rays at energies below the ankle, while the CRs which escape into the intergalactic space or are deposited there directly by jets from SNe in external galaxies can produce the observed cosmic ray flux with energies above the ankle. The model predict well all the observed properties of cosmic rays: their intensity, their spectrum including their elemental knees and ankle, their composition and the distribution of their arrival directions. At energies above the CR ankle, the Galactic magnetic fields can no longer delay the free escape of such ultra high energy CRs (UHECRs) from the Galaxy. The UHECRs, which are injected into the intergalactic medium (IGM) by the SN jets from our Galaxy and all the other galaxies and are isotropized there by the IGM magnetic fields, dominate the flux of UHECRs. Almost all the extragalactic UHECRs heavier than helium photo-disintegrate in collisions with the far infrared (FIR), microwave and radio background radiations. The CR protons and He nuclei however suffer a Greisen-Zatsepin-Kuzmin (GZK) cutoff due to pion photo-production in collisions with the FIR, microwave and radio background photons.

  17. Cosmic ray research in India: 1912-2012

    NASA Astrophysics Data System (ADS)

    Tonwar, Suresh C.

    2013-02-01

    The progress of research in cosmic rays in India over the last 100 years is reviewed, starting with the pioneering work of Debendra Mohan Bose and Homi Bhabha. Experimental research in cosmic rays in India received a big push with the establishment of the Tata Institute of Fundamental Research by Homi Bhabha in Bombay in 1945, the Physical Research Laboratory by Vikram Sarabhai in Ahemedabad in 1947 and the setting up of a cosmic ray research group by Piara Singh Gill at the Aligarh Muslim University in Aligarh in 1949. Studies on high energy interactions by B.V. Sreekantan and colleagues and on muons and neutrinos deep underground in KGF mines by M.G.K. Menon and coworkers were the highlights of the research work in India in 1950's and 60's. In 1970's and 80's, important advances were made in India in several areas, for example, search for proton decay in KGF mines by M.G.K. Menon et al, search for TeV cosmic gamma-ray sources at Ooty and Pachmari by P.V. Ramanamurthy and colleagues, search for PeV cosmic gamma ray sources by S.C. Tonwar et al at Ooty and by M.V.S. Rao and coworkers at KGF. In 1990's, Sreekantan and Tonwar initiated the GRAPES-3 project at Ooty to determine the composition of cosmic ray flux around the 'knee' in the primary energy spectrum at PeV energies using a large muon detector and a compact air shower array. Another major effort to search for TeV gamma-ray sources was initiated by H. Razdan and C.L. Bhat, initially at Gulmarg in Kashmir in the 1980's, leading to successful observations with a stereoscopic imaging atmospheric Cherenkov telescope at Mount Abu in early 2000. In recent years the Pachmari group and the Mount Abu group have joined together to install a sophisticated system of atmospheric Cherenkov detectors at Hanle in the Ladakh region at an altitude of 4200 m to continue studies on VHE sources of cosmic gammarays.

  18. Gamma-ray emitting supernova remnants as the origin of Galactic cosmic rays?

    E-print Network

    Tjus, Julia Becker; Kroll, Mike; Nierstenhöfer, Nils

    2015-01-01

    The origin of cosmic rays is one of the long-standing mysteries in physics and astrophysics. Simple arguments suggest that a scenario of supernova remnants (SNRs) in the Milky Way as the dominant sources for the cosmic ray population below the knee could work: in a generic calculation, it can be shown that these objects can provide the energy budget necessary to explain the observed flux of cosmic rays. However, this argument is based on the assumption that all sources behave in the same way, i.e.\\ they all have the same energy budget, spectral behavior and maximum energy. In this paper, we investigate if a realistic population of SNRs is capable of producing the cosmic ray flux as it is observed below the knee. We use 21 SNRs that are well-studied from radio wavelengths up to gamma-ray energies. It could be shown previously (Mandelartz & Becker Tjus 2015) that the high-energy bump in the energy spectrum of these 21 sources can be dominated by hadronic emission. Here, gamma-rays are produced via $\\pi^{0}-...

  19. Cosmic Rays, Gamma-Rays, & Neutrinos in the Starburst Nuclei of Arp 220

    E-print Network

    Yoast-Hull, Tova M; Zweibel, Ellen G

    2015-01-01

    The cores of Arp 220, the closest ultra-luminous infrared starburst galaxy, provide an opportunity to study interactions of cosmic rays under extreme conditions. In this paper, we model the populations of cosmic rays produced by supernovae in the central molecular zones of both starburst nuclei. We find that ~65 - 100% of cosmic rays are absorbed in these regions due to their huge molecular gas contents, and thus, the nuclei of Arp 220 nearly complete proton calorimeters. As the cosmic ray protons collide with the interstellar medium, they produce secondary electrons that are also contained within the system and radiate synchrotron emission. Using results from chi-squared tests between the model and the observed radio spectral energy distribution, we predict the emergent gamma-ray and high-energy neutrino spectra and find the magnetic field to be at milligauss levels. Because of the extremely intense far-infrared radiation fields, the gamma-ray spectrum steepens significantly at TeV energies due to gamma-gamm...

  20. Cosmic Ray Interactions in Shielding Materials

    SciTech Connect

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-09-08

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.