Science.gov

Sample records for high-energy proton accelerator

  1. Laser-Produced and Accelerated High Energy Protons

    NASA Astrophysics Data System (ADS)

    Cowan, Thomas

    2005-04-01

    Ultra-low emittance, multi-MeV proton beams have recently been produced by the interaction of high-intensity short-pulse lasers with thin metallic foils [1]. The acceleration process proceeds in two steps. First the laser ponderomotively accelerates huge, MA currents of ˜MeV electrons which propagate through the foil and form a dense relativistic electron sheath on the non-irradiated rear surface. This sheath produces an electrostatic field >10^12 V/m that ionizes the surface atoms almost instantaneously, forming a ˜1 nm thick ion layer which, together with the electron sheath, resembles a virtual cathode. The ions are accelerated initially normal to the foil surface, followed by a diverging plasma expansion phase driven by the electron plasma pressure. By structuring the rear surface of the foil, we have succeeded to produce modulations in the transverse phase space of the ions, which resemble fiducial ``beamlets'' within the envelope of the expanding plasma. This allows one to image the initial accelerating sheath, and map the plasma expansion of the beam envelope, to fully reconstruct the transverse phase space. We find that for protons of 10 MeV, the normalized transverse rms emittance is less than 0.004 π mm.mrad [1], i.e. 100-fold better than typical RF accelerators and at substantially higher ion currents exceeding 10 kA. Recent results will be reported on stripping the electrons while maintaining the low emittance from experiments at the LULI 100 TW laser, and theoretical estimates of the lowest emittance which can be expected based on ion heating mechanisms during the initial sheath formation and ion acceleration processes, will be presented. [1] T.E. Cowan, J. Fuchs, H. Ruhl et al., Phys. Rev. Lett. 92, 204801 (2004).

  2. Radiation Shielding at High-Energy Electron and Proton Accelerators

    SciTech Connect

    Rokni, Sayed H.; Cossairt, J.Donald; Liu, James C.; /SLAC

    2007-12-10

    The goal of accelerator shielding design is to protect the workers, general public, and the environment against unnecessary prompt radiation from accelerator operations. Additionally, shielding at accelerators may also be used to reduce the unwanted background in experimental detectors, to protect equipment against radiation damage, and to protect workers from potential exposure to the induced radioactivity in the machine components. The shielding design for prompt radiation hazards is the main subject of this chapter.

  3. Hole-boring radiation pressure acceleration as a basis for producing high-energy proton bunches

    NASA Astrophysics Data System (ADS)

    Robinson, A. P. L.; Trines, R. M. G. M.; Dover, N. P.; Najmudin, Z.

    2012-11-01

    The production of high-energy protons by the ‘hole-boring’ radiation pressure acceleration (HB-RPA) mechanism of laser-driven ion acceleration is examined in the case where the plasma has a density less than a0nc in 2D. Previously this was examined in 1D (Robinson 2011 Phys. Plasmas 18 056701) and was motivated by previous predictions of the non-linear criterion for an ultra-intense laser pulse to penetrate a dense plasma. By reducing the density well below a0nc the proton energies achieved increases considerably, thus leading to proton energies >100 MeV at laser intensities close to current capabilities. The results show that good quality proton beams with proton energies >100 MeV can be obtained via HB-RPA using targets with densities in the range 12-20nc and laser intensities in the range 5 × 1021-3 × 1022 W cm-2.

  4. Microstructured snow targets for high energy quasi-monoenergetic proton acceleration

    NASA Astrophysics Data System (ADS)

    Schleifer, E.; Nahum, E.; Eisenmann, S.; Botton, M.; Baspaly, A.; Pomerantz, I.; Abricht, F.; Branzel, J.; Priebe, G.; Steinke, S.; Andreev, A.; Schnuerer, M.; Sandner, W.; Gordon, D.; Sprangle, P.; Ledingham, K. W. D.; Zigler, A.

    2013-05-01

    Compact size sources of high energy protons (50-200MeV) are expected to be key technology in a wide range of scientific applications 1-8. One promising approach is the Target Normal Sheath Acceleration (TNSA) scheme 9,10, holding record level of 67MeV protons generated by a peta-Watt laser 11. In general, laser intensity exceeding 1018 W/cm2 is required to produce MeV level protons. Another approach is the Break-Out Afterburner (BOA) scheme which is a more efficient acceleration scheme but requires an extremely clean pulse with contrast ratio of above 10-10. Increasing the energy of the accelerated protons using modest energy laser sources is a very attractive task nowadays. Recently, nano-scale targets were used to accelerate ions 12,13 but no significant enhancement of the accelerated proton energy was measured. Here we report on the generation of up to 20MeV by a modest (5TW) laser system interacting with a microstructured snow target deposited on a Sapphire substrate. This scheme relax also the requirement of high contrast ratio between the pulse and the pre-pulse, where the latter produces the highly structured plasma essential for the interaction process. The plasma near the tip of the snow target is subject to locally enhanced laser intensity with high spatial gradients, and enhanced charge separation is obtained. Electrostatic fields of extremely high intensities are produced, and protons are accelerated to MeV-level energies. PIC simulations of this targets reproduce the experimentally measured energy scaling and predict the generation of 150 MeV protons from laser power of 100TW laser system18.

  5. Shielding Benchmark Experiments Through Concrete and Iron with High-Energy Proton and Heavy Ion Accelerators

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Sasaki, M.; Nunomiya, T.; Nakao, N.; Kim, E.; Kurosawa, T.; Taniguchi, S.; Iwase, H.; Uwamino, Y.; Shibata, T.; Ito, S.; Fukumura, A.; Perry, D. R.; Wright, P.

    The deep penetration of neutrons through thick shield has become a very serious problem in the shielding design of high-energy, high-intensity accelerator facility. In the design calculation, the Monte Carlo transport calculation through thick shields has large statistical errors and the basic nuclear data and model used in the existing Monte Carlo codes are not well evaluated because of very few experimental data. It is therefore strongly needed to do the deep penetration experiment as shielding benchmark for investigating the calculation accuracy. Under this circumference, we performed the following two shielding experiments through concrete and iron, one with a 800 MeV proton accelerator of the Rutherford Appleton Laboratory (RAL), England and the other with a high energy heavy iron accelerator of the National Institute of Radiological Sciences (NIRS), Japan. Here these two shielding benchmark experiments are outlined.

  6. Temporal relationship between high-energy proton acceleration and magnetic field changes during solar flares

    NASA Astrophysics Data System (ADS)

    Kurt, Victoria; Yushkov, Boris

    Understanding of the association of the magnetic field evolution in the corona and the temporal evolution of electromagnetic emissions produced by the accelerated particles during a solar flare can provide information about the nature of the energy-release process and its location. Recent high-spatial-resolution observations in HXR, UV and radio emissions allow one to study in detail a structure of two-ribbon flare site. According to these observations, the flare process can be divided into two different intervals with different temporal evolution of morphological structure: loop contraction during impulsive phase and subsequent loop expansion. Оn the other hand, the appearance of high-energy protons (with energy >300 MeV - an energy threshold of the pion production) in the solar atmosphere can be revealed from an emerging pion-decay component of high-energy gamma-ray emission. The present work is based on comparison of measurements of high-energy gamma-rays performed with the SONG detector onboard the CORONAS-F mission and reported observations of magnetic field evolution, such as HXR foot points (FP) separation and flare shear temporal behavior, or motion of UV/radio loops. We reliably identified the pion-decay component of gamma-ray emission in the course of five events attended with suitable spatial observations, namely, 2001 August 25, 2002 August 24, 2003 October 28, 2003 October 29, and 2005 January 20, and determined its onset time. We found that in these events the pion-decay emission occurred when the distance between conjugated foot-points of flare loops ceased to decrease and began to increase, i.e. changed from shrinkage to expansion. This result leads to the conclusion that the most efficient proton acceleration up to >300 MeV coincided in time with the radical reconfiguration of the magnetic field in the flare site. Earlier we found that the pion-decay emission onset in the 2003 October 28 flare was close to the time of maximum change rate of the

  7. Dynamics of high-energy proton beam acceleration and focusing from hemisphere-cone targets by high-intensity lasers.

    PubMed

    Qiao, B; Foord, M E; Wei, M S; Stephens, R B; Key, M H; McLean, H; Patel, P K; Beg, F N

    2013-01-01

    Acceleration and focusing of high-energy proton beams from fast-ignition (FI) -related hemisphere-cone assembled targets have been numerically studied by hybrid particle-in-cell simulations and compared with those from planar-foil and open-hemisphere targets. The whole physical process including the laser-plasma interaction has been self-consistently modeled for 15 ps, at which time the protons reach asymptotic motion. It is found that the achievable focus of proton beams is limited by the thermal pressure gradients in the co-moving hot electrons, which induce a transverse defocusing electric field that bends proton trajectories near the axis. For the advanced hemisphere-cone target, the flow of hot electrons along the cone wall induces a local transverse focusing sheath field, resulting in a clear enhancement in proton focusing; however, it leads to a significant loss of longitudinal sheath potential, reducing the total conversion efficiency from laser to protons. PMID:23410447

  8. Isochoric heating of matter by laser-accelerated high-energy protons

    NASA Astrophysics Data System (ADS)

    Antici, P.; Fuchs, J.; Atzeni, S.; Benuzzi, A.; Brambrink, E.; Esposito, M.; Koenig, M.; Ravasio, A.; Schreiber, J.; Schiavi, A.; Audebert, P.

    2006-06-01

    We describe an experiment on isochoric heating of matter by intense laser-accelerated protons. The experiment was performed using the LULI 100 TW facility with 15-20 J on target energy and > 1019 W.cm - 2 maximum focused intensity. Focusing the laser on a 10 micron thick Au foil, we accelerated forward a laminar proton beam with a maximum energy of 16 MeV. This proton beam irradiated and heated a secondary target positioned after a variable vacuum gap. The heating was diagnosed by 1D and 2D time-resolved measurements of the optical self-emission of the heated target rear-surface. Detailed results as a function of the Z and the thickness of the secondary target as well as analysis, including a full modelling of the target heating with a 2D hydro-code (DUED) coupled to a proton energy deposition code, were obtained. We have also studied the efficiency of heating as a function of the primary target topology, i.e. either flat, which results in a diverging proton beam, or curved, which has the ability of focusing partly the proton beam.

  9. Laser-Foil Acceleration of High-Energy Protons in Small-Scale Plasma Gradients

    SciTech Connect

    Fuchs, J.; Audebert, P.; Cecchetti, C. A.; Borghesi, M.; Romagnani, L.; Grismayer, T.; Mora, P.; D'Humieres, E.; Sentoku, Y.; Antici, P.; Atzeni, S.; Schiavi, A.; Pipahl, A.; Toncian, T.; Willi, O.

    2007-07-06

    Proton beams laser accelerated from thin foils are studied for various plasma gradients on the foil rear surface. The beam maximum energy and spectral slope reduce with the gradient scale length, in good agreement with numerical simulations. The results also show that the jxB mechanism determines the temperature of the electrons driving the ion expansion. Future ion-driven fast ignition of fusion targets will use multikilojoule petawatt laser pulses, the leading part of which will induce target preheat. Estimates based on the data show that this modifies by less than 10% the ion beam parameters.

  10. Laser-foil acceleration of high-energy protons in small-scale plasma gradients.

    PubMed

    Fuchs, J; Cecchetti, C A; Borghesi, M; Grismayer, T; d'Humières, E; Antici, P; Atzeni, S; Mora, P; Pipahl, A; Romagnani, L; Schiavi, A; Sentoku, Y; Toncian, T; Audebert, P; Willi, O

    2007-07-01

    Proton beams laser accelerated from thin foils are studied for various plasma gradients on the foil rear surface. The beam maximum energy and spectral slope reduce with the gradient scale length, in good agreement with numerical simulations. The results also show that the jxB mechanism determines the temperature of the electrons driving the ion expansion. Future ion-driven fast ignition of fusion targets will use multikilojoule petawatt laser pulses, the leading part of which will induce target preheat. Estimates based on the data show that this modifies by less than 10% the ion beam parameters. PMID:17678159

  11. Isochoric heating of matter by laser-accelerated high-energy protons

    NASA Astrophysics Data System (ADS)

    Fuchs, Julien; Mancic, Ana; Robiche, Jerome; Antici, Patrizio; Lancia, Livia; Audebert, Patrick; Combis, Patrick; Renaudin, Patrick; Kimura, Tomoaki; Kodama, Ryosuke; Nakatsutsumi, Motoaki

    2008-04-01

    Producing matter at a high temperature (1-25 eV) and solid density is of prime interest for fundamental plasma physics or ICF. The use of laser-based high energy proton beams to achieve such state of matter is interesting since they are short (< 1 ps) and they deposit their energy volumetrically; thus can heat, before they expand, much thicker samples than allowed using laser-heating. We performed, using two intense short pulses of the LULI 100 TW facility, experiments to characterize the achieved state of matter, coupled to a detailed hydro-modeling. A laser-generated proton beam irradiated and heated a secondary target positioned after a vacuum gap. Three diagnostics were used: (i) 1D time-resolved optical self-emission of the heated target rear-surface at two wavelengths, (ii) time-resolved interferometry of a chirped probe beam reflecting off the heated target rear-surface, (iii) x-ray absorption spectroscopy through the heated target using a laser-produced backlighter detecting its Kα-edge softening.

  12. High energy plasma accelerators

    SciTech Connect

    Tajima, T.

    1985-05-01

    Colinear intense laser beams ..omega../sub 0/, kappa/sub 0/ and ..omega../sub 1/, kappa/sub 1/ shone on a plasma with frequency separation equal to the electron plasma frequency ..omega../sub pe/ are capable of creating a coherent large longitudinal electric field E/sub L/ = mc ..omega../sub pe//e of the order of 1GeV/cm for a plasma density of 10/sup 18/ cm/sup -3/ through the laser beat excitation of plasma oscillations. Accompanying favorable and deleterious physical effects using this process for a high energy beat-wave accelerator are discussed: the longitudinal dephasing, pump depletion, the transverse laser diffraction, plasma turbulence effects, self-steepening, self-focusing, etc. The basic equation, the driven nonlinear Schroedinger equation, is derived to describe this system. Advanced accelerator concepts to overcome some of these problems are proposed, including the plasma fiber accelerator of various variations. An advanced laser architecture suitable for the beat-wave accelerator is suggested. Accelerator physics issues such as the luminosity are discussed. Applications of the present process to the current drive in a plasma and to the excitation of collective oscillations within nuclei are also discussed.

  13. Characterization of warm dense matter produced by laser-accelerated high-energy protons

    NASA Astrophysics Data System (ADS)

    Nakatsutsumi, M.; Fuchs, J.; Mancic, A.; Robiche, J.; Renaudin, P.; Combis, P.; Dorchies, F.; Harmand, M.; Maynard, G.; Vassaux, J.; Mora, P.; Antici, P.; Fourmaux, S.; Audebert, P.

    2008-11-01

    Producing warm dense plasmas (WDM: solid density, few eV ˜ few 10s eV) is of interest for fundamental plasma physics or ICF. Laser-produced proton heating is of interest since they are short (<1ps) and deposit their energy volumetrically. Experiments were performed using the LULI 100 TW facility to create and characterize WDM. We used, (i) 2D time-resolved optical self-emission of the heated target, (ii) surface expansion velocity measurement through phase measurements of a reflecting probe beam, and (iii) x-ray absorption spectroscopy. We showed that we could produce quasi-uniform heating of solids, as suited for e.g. EoS measurements. Time-resolved solid-liquid-plasma transition has been measured, as well as energy-loss of MeV protons in warm dense plasmas.

  14. High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets

    SciTech Connect

    Brenner, C. M.; Robinson, A. P. L.; Markey, K.; Scott, R. H. H.; Lancaster, K. L.; Musgrave, I. O.; Spindloe, C.; Winstone, T.; Wyatt, D.; Neely, D.; Gray, R. J.; McKenna, P.; Rosinski, M.; Badziak, J.; Wolowski, J.; Deppert, O.; Batani, D.; Davies, J. R.; Hassan, S. M.; Tatarakis, M.; and others

    2014-02-24

    An all-optical approach to laser-proton acceleration enhancement is investigated using the simplest of target designs to demonstrate application-relevant levels of energy conversion efficiency between laser and protons. Controlled deposition of laser energy, in the form of a double-pulse temporal envelope, is investigated in combination with thin foil targets in which recirculation of laser-accelerated electrons can lead to optimal conditions for coupling laser drive energy into the proton beam. This approach is shown to deliver a substantial enhancement in the coupling of laser energy to 5–30 MeV protons, compared to single pulse irradiation, reaching a record high 15% conversion efficiency with a temporal separation of 1 ps between the two pulses and a 5 μm-thick Au foil. A 1D simulation code is used to support and explain the origin of the observation of an optimum pulse separation of ∼1 ps.

  15. HIGH ENERGY PARTICLE ACCELERATOR

    DOEpatents

    Courant, E.D.; Livingston, M.S.; Snyder, H.S.

    1959-04-14

    An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.

  16. On the retention of high-energy protons and nuclei with charges Z or equal to 2 in large solar flares after the process of their acceleration

    NASA Technical Reports Server (NTRS)

    Volodichev, N. N.; Kuzhevsky, B. M.; Nechaev, O. Y.; Savenko, I. A.

    1985-01-01

    Data which suggest that the protons with energies of up to several GeV should be retained on the Sun after the process of their acceleration are presented. The protons are on the average retained for 15 min, irrespectively of the solar flare heliolatitude and of the accelerated particle energy ranging from 100 MeV to several GeV. It is suggested that the particles are retained in a magnetic trap formed in a solar active region. No Z or = 2 nuclei of solar origin during large solar flares. The absence of the 500 MeV/nucleon nuclei with Z or = 2 may be due to their retention in the magnetic trap which also retains the high-energy protons. During the trapping time the approx. 500 MeV/nucleon nuclei with Z or = 2 may escape due to nuclear interactions and ionization loss.

  17. Do you want to build such a machine? : Designing a high energy proton accelerator for Argonne National Laboratory.

    SciTech Connect

    Paris, E.

    2004-04-05

    Argonne National Laboratory's efforts toward researching, proposing and then building a high-energy proton accelerator have been discussed in a handful of studies. In the main, these have concentrated on the intense maneuvering amongst politicians, universities, government agencies, outside corporations, and laboratory officials to obtain (or block) approval and/or funds or to establish who would have control over budgets and research programs. These ''top-down'' studies are very important but they can also serve to divorce such proceedings from the individuals actually involved in the ground-level research which physically served to create theories, designs, machines, and experiments. This can lead to a skewed picture, on the one hand, of a lack of effect that so-called scientific and technological factors exert and, on the other hand, of the apparent separation of the so-called social or political from the concrete practice of doing physics. An exception to this approach can be found in the proceedings of a conference on ''History of the ZGS'' held at Argonne at the time of the Zero Gradient Synchrotron's decommissioning in 1979. These accounts insert the individuals quite literally as they are, for the most part, personal reminiscences of those who took part in these efforts on the ground level. As such, they are invaluable raw material for historical inquiry but generally lack the rigor and perspective expected in a finished historical work. The session on ''Constructing Cold War Physics'' at the 2002 annual History of Science Society Meeting served to highlight new approaches circulating towards history of science and technology in the post-WWII period, especially in the 1950s. There is new attention towards the effects of training large numbers of scientists and engineers as well as the caution not to equate ''national security'' with military preparedness, but rather more broadly--at certain points--with the explicit ''struggle for the hearts and minds of

  18. High energy protons generation by two sequential laser pulses

    SciTech Connect

    Wang, Xiaofeng; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Xu, Jiancai; Yi, Longqing; Shi, Yin

    2015-04-15

    The sequential proton acceleration by two laser pulses of relativistic intensity is proposed to produce high energy protons. In the scheme, a relativistic super-Gaussian (SG) laser pulse followed by a Laguerre-Gaussian (LG) pulse irradiates dense plasma attached by underdense plasma. A proton beam is produced from the target and accelerated in the radiation pressure regime by the short SG pulse and then trapped and re-accelerated in a special bubble driven by the LG pulse in the underdense plasma. The advantages of radiation pressure acceleration and LG transverse structure are combined to achieve the effective trapping and acceleration of protons. In a two-dimensional particle-in-cell simulation, protons of 6.7 GeV are obtained from a 2 × 10{sup 22 }W/cm{sup 2} SG laser pulse and a LG pulse at a lower peak intensity.

  19. New accelerators in high-energy physics

    SciTech Connect

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting.

  20. Proton Therapy - Accelerating Protons to Save Lives

    SciTech Connect

    Keppel, Cynthia

    2011-10-25

    In 1946, physicist Robert Wilson first suggested that protons could be used as a form of radiation therapy in the treatment of cancer because of the sharp drop-off that occurs on the distal edge of the radiation dose. Research soon confirmed that high-energy protons were particularly suitable for treating tumors near critical structures, such as the heart and spinal column. The precision with which protons can be delivered means that more radiation can be deposited into the tumor while the surrounding healthy tissue receives substantially less or, in some cases, no radiation. Since these times, particle accelerators have continuously been used in cancer therapy and today new facilities specifically designed for proton therapy are being built in many countries. Proton therapy has been hailed as a revolutionary cancer treatment, with higher cure rates and fewer side effects than traditional X-ray photon radiation therapy. Proton therapy is the modality of choice for treating certain small tumors of the eye, head or neck. Because it exposes less of the tissue surrounding a tumor to the dosage, proton therapy lowers the risk of secondary cancers later in life - especially important for young children. To date, over 80,000 patients worldwide have been treated with protons. Currently, there are nine proton radiation therapy facilities operating in the United States, one at the Hampton University Proton Therapy Institute. An overview of the treatment technology and this new center will be presented.

  1. Acceleration of polarized proton at the AGS

    SciTech Connect

    Lee, Y Y

    1980-01-01

    The unexpected importance of high energy spin effects and the success of the ZGS in correcting many intrinsic and imperfection depolarizing resonances led us to attempt to accelerate polarized protons in the AGS. A collaborative effort is underway by the groups in Argonne, Michigan, Rice, Yale and Brookhaven to improve and modify the AGS to accelerate polarized protons. With the appropriate funding the first polarized proton acceleration at the AGS should be possible by 1983.

  2. The evolution of high energy accelerators

    SciTech Connect

    Courant, E.D.

    1989-10-01

    In this lecture I would like to trace how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to gigantic projects being hotly debated in Congress as well as in the scientific community.

  3. ACCELERATION FOR A HIGH ENERGY MUON COLLIDER

    SciTech Connect

    BERG,J.S

    2000-04-07

    The authors describe a method for designing the acceleration systems for a muon collider, with particular application and examples for a high energy muon collider. This paper primarily concentrates on design considerations coming from longitudinal motion, but some transverse issues are briefly discussed.

  4. Proton-proton and proton-antiproton elastic scattering at high energies: Theory, phenomenology, and experiment

    SciTech Connect

    Wu, Tai Tsun.

    1990-01-01

    This is a brief review of the progress in the understanding, during the past twenty years, of hadronic elastic scattering near the forward direction at high energies. On the basis of quantum gauge field theories, the Pomeron is found to be a branch cut above 1. Using the physical picture that this result implies, phenomenology for proton-proton and antiproton-proton elastic scattering is constructed. Two noteworthy features are that, at high energies, both the total cross section and the ratio of the integrated elastic cross section to the total cross section to the total cross section are increasing functions of the center-of-mass energy. Detailed predictions are given for the elastic differential cross sections, Coulomb interference and the ratios of the real to imaginary parts of the forward amplitudes. These predictions have been extensively and accurately confirmed by experiments, and have also been given both for future experiments on existing accelerators and for experiments on future accelerators. 14 refs., 2 figs.

  5. Proton-proton and proton-antiproton elastic scattering at high energies: Theory, phenomenology, and experiment

    SciTech Connect

    Wu, Tai Tsun

    1990-12-31

    This is a brief review of the progress in the understanding, during the past twenty years, of hadronic elastic scattering near the forward direction at high energies. On the basis of quantum gauge field theories, the Pomeron is found to be a branch cut above 1. Using the physical picture that this result implies, phenomenology for proton-proton and antiproton-proton elastic scattering is constructed. Two noteworthy features are that, at high energies, both the total cross section and the ratio of the integrated elastic cross section to the total cross section to the total cross section are increasing functions of the center-of-mass energy. Detailed predictions are given for the elastic differential cross sections, Coulomb interference and the ratios of the real to imaginary parts of the forward amplitudes. These predictions have been extensively and accurately confirmed by experiments, and have also been given both for future experiments on existing accelerators and for experiments on future accelerators. 14 refs., 2 figs.

  6. Designing high energy accelerators under DOE's New Culture'' for environment and safety: An example, the Fermilab 150 GeV Main Injector proton synchrotron

    SciTech Connect

    Fowler, W.B.

    1991-05-01

    Fermilab has initiated a design for a new Main Injector (150 GeV proton synchrotron) to take the place of the current Main Ring accelerator. New Culture'' environmental and safety questions are having to be addressed. The paper will detail the necessary steps that have to be taken in order to obtain the permits which control the start of construction. Obviously these depend on site-specific circumstances, however some steps are universally applicable. In the example, floodplains and wetlands are affected and therefore the National Environmental Policy Act (NEPA) compliance is a significant issue. The important feature is to reduce the relevant regulations to a concise set of easily understandable requirements. The effort required and the associated time line will be presented so that other new accelerator proposals can benefit from the experience gained from this example.

  7. The evolution of high energy accelerators

    SciTech Connect

    Courant, E.D.

    1994-08-01

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet.

  8. Power Supplies for High Energy Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  9. Power Supplies for High Energy Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Dey, Pranab Kumar

    2015-05-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  10. Process in high energy heavy ion acceleration

    NASA Astrophysics Data System (ADS)

    Dinev, D.

    2009-03-01

    A review of processes that occur in high energy heavy ion acceleration by synchrotrons and colliders and that are essential for the accelerator performance is presented. Interactions of ions with the residual gas molecules/atoms and with stripping foils that deliberately intercept the ion trajectories are described in details. These interactions limit both the beam intensity and the beam quality. The processes of electron loss and capture lie at the root of heavy ion charge exchange injection. The review pays special attention to the ion induced vacuum pressure instability which is one of the main factors limiting the beam intensity. The intrabeam scattering phenomena which restricts the average luminosity of ion colliders is discussed. Some processes in nuclear interactions of ultra-relativistic heavy ions that could be dangerous for the performance of ion colliders are represented in the last chapter.

  11. Operational Radiation Protection in High-Energy Physics Accelerators

    SciTech Connect

    Rokni, S.H.; Fasso, A.; Liu, J.C.; /SLAC

    2012-04-03

    An overview of operational radiation protection (RP) policies and practices at high-energy electron and proton accelerators used for physics research is presented. The different radiation fields and hazards typical of these facilities are described, as well as access control and radiation control systems. The implementation of an operational RP programme is illustrated, covering area and personnel classification and monitoring, radiation surveys, radiological environmental protection, management of induced radioactivity, radiological work planning and control, management of radioactive materials and wastes, facility dismantling and decommissioning, instrumentation and training.

  12. Berkeley Proton Linear Accelerator

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  13. Proton acceleration in neutron star magnetospheres

    NASA Technical Reports Server (NTRS)

    Smith, I. A.; Katz, J. I.; Diamond, P. H.

    1992-01-01

    To explain the emission of TeV and PeV gamma rays from accreting X-ray binary sources, protons must be accelerated to several times the gamma-ray energy. It is shown here that at certain times, the plasma in the accretion column of the neutron star may form a deep enough pool that the top portion becomes unstable to convective motions in spite of the strong magnetic field. The resulting turbulence produces fluctuations in the strength of the magnetic field that travel up the accretion column, taking energy out to the region of the energetic protons. The protons resonantly absorb this energy and are accelerated to high energies. Including the synchrotron radiation losses of the protons, it is shown that they can be accelerated to energies that are high enough to explain the gamma-ray observations.

  14. PRaVDA: High Energy Physics towards proton Computed Tomography

    NASA Astrophysics Data System (ADS)

    Price, T.

    2016-07-01

    Proton radiotherapy is an increasingly popular modality for treating cancers of the head and neck, and in paediatrics. To maximise the potential of proton radiotherapy it is essential to know the distribution, and more importantly the proton stopping powers, of the body tissues between the proton beam and the tumour. A stopping power map could be measured directly, and uncertainties in the treatment vastly reduce, if the patient was imaged with protons instead of conventional x-rays. Here we outline the application of technologies developed for High Energy Physics to provide clinical-quality proton Computed Tomography, in so reducing range uncertainties and enhancing the treatment of cancer.

  15. "Espresso" Acceleration of Ultra-high-energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Caprioli, Damiano

    2015-10-01

    We propose that ultra-high-energy (UHE) cosmic rays (CRs) above 1018 eV are produced in relativistic jets of powerful active galactic nuclei via an original mechanism, which we dub “espresso” acceleration: “seed” galactic CRs with energies ≲1017 eV that penetrate the jet sideways receive a “one-shot” boost of a factor of ∼Γ2 in energy, where Γ is the Lorentz factor of the relativistic flow. For typical jet parameters, a few percent of the CRs in the host galaxy can undergo this process, and powerful blazars with Γ ≳ 30 may accelerate UHECRs up to more than 1020 eV. The chemical composition of espresso-accelerated UHECRs is determined by that at the Galactic CR knee and is expected to be proton-dominated at 1018 eV and increasingly heavy at higher energies, in agreement with recent observations made at the Pierre Auger Observatory.

  16. Relations Between Microwave Bursts and Near-Earth High-Energy Proton Enhancements and Their Origin

    NASA Astrophysics Data System (ADS)

    Grechnev, V. V.; Kiselev, V. I.; Meshalkina, N. S.; Chertok, I. M.

    2015-10-01

    We further study the relations between parameters of bursts at 35 GHz recorded with the Nobeyama Radio Polarimeters during 25 years and solar proton events (Grechnev et al. in Publ. Astron. Soc. Japan 65, S4, 2013a). Here we address the relations between the microwave fluences at 35 GHz and near-Earth proton fluences above 100 MeV to find information on their sources and evaluate their diagnostic potential. The correlation between the microwave and proton fluences is pronouncedly higher than between their peak fluxes. This probably reflects a dependence of the total number of protons on the duration of the acceleration process. In events with strong flares, the correlation coefficients of high-energy proton fluences with microwave and soft X-ray fluences are higher than those with the speeds of coronal mass ejections. The results indicate a statistically larger contribution of flare processes to high-energy proton fluxes. Acceleration by shock waves seems to be less important at high energies in events associated with strong flares, although its contribution is probable and possibly prevails in weaker events. The probability of a detectable proton enhancement was found to directly depend on the peak flux, duration, and fluence of the 35 GHz burst, while the role of the Big Flare Syndrome might have been overestimated previously. Empirical diagnostic relations are proposed.

  17. Fission foil detector calibrations with high energy protons

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    Fission foil detectors (FFD's) are passive devices composed of heavy metal foils in contact with muscovite mica films. The heavy metal nuclei have significant cross sections for fission when irradiated with neutrons and protons. Each isotope is characterized by threshold energies for the fission reactions and particular energy-dependent cross sections. In the FFD's, fission fragments produced by the reactions are emitted from the foils and create latent particle tracks in the adjacent mica films. When the films are processed surface tracks are formed which can be optically counted. The track densities are indications of the fluences and spectra of neutrons and/or protons. In the past, detection efficiencies have been calculated using the low energy neutron calibrated dosimeters and published fission cross sections for neutrons and protons. The problem is that the addition of a large kinetic energy to the (n,nucleus) or (p,nucleus) reaction could increase the energies and ranges of emitted fission fragments and increase the detector sensitivity as compared with lower energy neutron calibrations. High energy calibrations are the only method of resolving the uncertainties in detector efficiencies. At high energies, either proton or neutron calibrations are sufficient since the cross section data show that the proton and neutron fission cross sections are approximately equal. High energy proton beams have been utilized (1.8 and 4.9 GeV, 80 and 140 MeV) for measuring the tracks of fission fragments emitted backward and forward.

  18. Measurement of high energy resolution inelastic proton scattering at and close to zero degrees

    NASA Astrophysics Data System (ADS)

    Tamii, A.; Fujita, Y.; Matsubara, H.; Adachi, T.; Carter, J.; Dozono, M.; Fujita, H.; Fujita, K.; Hashimoto, H.; Hatanaka, K.; Itahashi, T.; Itoh, M.; Kawabata, T.; Nakanishi, K.; Ninomiya, S.; Perez-Cerdan, A. B.; Popescu, L.; Rubio, B.; Saito, T.; Sakaguchi, H.; Sakemi, Y.; Sasamoto, Y.; Shimbara, Y.; Shimizu, Y.; Smit, F. D.; Tameshige, Y.; Yosoi, M.; Zenhiro, J.

    2009-07-01

    Measurements of inelastic proton scattering with high energy resolution at forward scattering angles including 0∘ are described. High-resolution halo-free beams were accelerated by the cyclotron complex at the Research Center for Nuclear Physics. Instrumental background events were minimized using the high-quality beam. The remaining instrumental background events were eliminated by applying a background subtraction method. As a result, clean spectra were obtained even for a heavy target nucleus such as Pb208. A high energy resolution of 20 keV (FWHM) and a scattering angle resolution of ±0.6∘ were achieved at an incident proton energy of 295 MeV.

  19. Accelerated Hematopoietic Toxicity by High Energy 56Fe Radiation

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Trani, Daniela; Doiron, Kathryn; Rotolo, Jimmy A.; Kallakury, Bhaskar V. S.; Kolesnick, Richard; Cole, Michael F.; Fornace, Albert J.

    2013-01-01

    Purpose There is little information on the relative toxicity of highly charged (Z) high-energy (HZE) radiation in animal models compared to γ or x-rays, and the general assumption based on in vitro studies has been that acute toxicity is substantially greater. Methods C57BL/6J mice were irradiated with 56Fe ions (1 GeV/nucleon), and acute (within 30 d) toxicity compared to that of γ rays or protons (1 GeV). To assess relative hematopoietic and gastrointestinal toxicity, the effects of 56Fe ions were compared to γ rays using complete blood count (CBC), bone marrow granulocyte-macrophage colony forming unit (GM-CFU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis in bone marrow, and intestinal crypt survival. Results Although onset was more rapid, 56Fe ions were only slightly more toxic than γ rays or protons with lethal dose (LD)50/30 (a radiation dose at which 50% lethality occurs at 30-day) values of 5.8, 7.25, and 6.8 Gy respectively with relative biologic effectiveness for 56Fe ions of 1.25 and 1.06 for protons. Conclusions 56Fe radiation caused accelerated and more severe hematopoietic toxicity. Early mortality correlated with more profound leukopenia and subsequent sepsis. Results indicate that there is selective enhanced toxicity to bone marrow progenitor cells, which are typically resistant to γ rays, and bone marrow stem cells, because intestinal crypt cells did not show increased HZE toxicity. PMID:22077279

  20. Shock Acceleration of Solar Energetic Protons: The First 10 Minutes

    NASA Technical Reports Server (NTRS)

    Ng, Chee K.; Reames, Donald V.

    2008-01-01

    Proton acceleration at a parallel coronal shock is modeled with self-consistent Alfven wave excitation and shock transmission. 18 - 50 keV seed protons at 0.1% of plasma proton density are accelerated in 10 minutes to a power-law intensity spectrum rolling over at 300 MeV by a 2500km s-1 shock traveling outward from 3.5 solar radius, for typical coronal conditions and low ambient wave intensities. Interaction of high-energy protons of large pitch-angles with Alfven waves amplified by low-energy protons of small pitch angles is key to rapid acceleration. Shock acceleration is not significantly retarded by sunward streaming protons interacting with downstream waves. There is no significant second-order Fermi acceleration.

  1. Present and future high-energy accelerators for neutrino experiments

    SciTech Connect

    Kourbanis, I.; /Fermilab

    2007-06-01

    There is an active neutrino program making use of the high-energy (larger than 50 GeV) accelerators both in USA at Fermilab with NuMI and at CERN in Europe with CNGS. In this paper we will review the prospects for high intensity high energy beams in those two locations during the next decade.

  2. ACCELERATING HIGH-ENERGY PULSAR RADIATION CODES

    SciTech Connect

    Venter, C.; De Jager, O. C.

    2010-12-20

    Curvature radiation (CR) is believed to be a dominant mechanism for creating gamma-ray emission from pulsars and is emitted by relativistic particles that are constrained to move along curved magnetic field lines. Additionally, synchrotron radiation (SR) is expected to be radiated by both relativistic primaries (involving cyclotron resonant absorption of radio photons and re-emission of SR photons), or secondary electron-positron pairs (created by magnetic or photon-photon pair production processes involving CR gamma rays in the pulsar magnetosphere). When calculating these high-energy spectra, especially in the context of pulsar population studies where several millions of CR and SR spectra have to be generated, it is profitable to consider approximations that would save computational time without sacrificing too much accuracy. This paper focuses on one such approximation technique, and we show that one may gain significantly in computational speed while preserving the accuracy of the spectral results.

  3. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    collider and neutrino factory - summary of working group 2 / J. Galambos, R. Garoby and S. Geer -- Prospects for a very high power CW SRF linac / R. A. Rimmer -- Indian accelerator program for ADS applications / V. C. Sahni and P. Singh -- Ion accelerator activities at VECC (particularly, operating at low temperature) / R. K. Bhandari -- Chinese efforts in high intensity proton accelerators / S. Fu, J. Wang and S. Fang -- ADSR activity in the UK / R. J. Barlow -- ADS development in Japan / K. Kikuchi -- Project-X, SRF, and very large power stations / C. M. Ankenbrandt, R. P. Johnson and M. Popovic -- Power production and ADS / R. Raja -- Experimental neutron source facility based on accelerator driven system / Y. Gohar -- Transmutation mission / W. S. Yang -- Safety performance and issues / J. E. Cahalan -- Spallation target design for accelerator-driven systems / Y. Gohar -- Design considerations for accelerator transmutation of waste system / W. S. Yang -- Japan ADS program / T. Sasa -- Overview of members states' and IAEA activities in the field of Accelerator Driven Systems (ADS) / A. Stanculescu -- Linac for ADS applications - accelerator technologies / R. W. Garnett and R. L. Sheffield -- SRF linacs and accelerator driven sub-critical systems - summary working groups 3 & 4 / J. Delayen -- Production of Actinium-225 via high energy proton induced spallation of Thorium-232 / J. Harvey ... [et al.] -- Search for the electric dipole moment of Radium-225 / R. J. Holt, Z.-T. Lu and R. Mueller -- SRF linac and material science and medicine - summary of working group 5 / J. Nolen, E. Pitcher and H. Kirk.

  4. High-energy protons from submicron-sized targets

    SciTech Connect

    Bychenkov, V. Yu.; Govras, E. A.; Brantov, A. V.; Popov, K. I.

    2012-07-11

    Improving of intensity contrast ratio of intense short laser pulses is making it possible to use submicron-sized targets, both spherical and plane, in the interest of proton acceleration for different applications. The way of improving of the ion beam quality is utilization of targets with two ion species - heavy ions (majority) and light ions, e.g. protons, (minority). Two different approaches, analytical theory and particle-in-cell simulations (PIC) are presented for studying the characteristics of laser-triggered ions due to the Coulomb-like mechanism of particle acceleration from submicron-sized targets. The comparative analysis of explosions of heterogeneous (layered) and homogeneously mixed targets for production of best quality ion bunches has been performed. We also found the regime of anisotropic proton acceleration from spherical targets with light and heavy ions relevant to the experiments with submicron-diameter droplets from water spray target irradiated by an ultrashort intense laser pulse.

  5. Accelerator physics and technology challenges of very high energy hadron colliders

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir D.

    2015-08-01

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton-proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  6. Measurements of the proton-air cross section with high energy cosmic ray experiments

    NASA Astrophysics Data System (ADS)

    Abbasi, Rasha

    2016-07-01

    Detecting Ultra High Energy Cosmic Rays (UHECRs) enables us to measure the proton-air inelastic cross section σinel p-air at energies that we are unable to access with particle accelerators. The proton-proton cross section σp-p is subsequently inferred from the proton-air cross section at these energies. UHECR experiments have been reportingon the proton-air inelastic cross section starting with the Fly's Eye in 1984 at √s =30 TeV and ending with the most recent result of the Telescope Array experiment at √s = 95 TeV in 2015. In this proceeding, I will summarize the most recent experimental results on the σinel p-air measurements from the UHECR experiments.

  7. High-Intensity Proton Accelerator

    SciTech Connect

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  8. Investigation of high-energy-proton effects in aluminum

    SciTech Connect

    Czajkowski, C.J.; Snead, C.L. Jr.; Todosow, M.

    1997-12-01

    Specimens of 1100 aluminum were exposed to several fluences of 23.5-GeV protons at the Brookhaven Alternating Gradient Synchrotron. Although this energy is above those currently being proposed for spallation-neutron applications, the results can be viewed as indicative of trends and other microstructural evolution with fluence that take place with high-energy proton exposures such as those associated with an increasing ratio of gas generation to dpa. TEM investigation showed significantly larger bubble size and lower density of bubbles compared with lower-energy proton results. Additional testing showed that the tensile strength increased with fluence as expected, but the microhardness decreased, a result for which an intepretation is still under investigation.

  9. About multiple scattering of high energy protons in crystal deflectors

    NASA Astrophysics Data System (ADS)

    Taratin, A. M.; Scandale, W.

    2015-07-01

    The process of multiple scattering of high energy protons in a silicon crystal at its amorphous orientation was studied by simulation of proton trajectories in the model of binary collisions and by a straight simulation of the sequences of proton collisions with atoms when their impact parameters are randomly and uniformly distributed on the symmetry cell for a given crystallography direction. The value of the RMS deflection of multiple scattering obtained by the simulation is in a good agreement with the experiment and more than 15% larger than it follows from the Moliere theory. The obtained RMS deflection used in the Gaussian approach of multiple scattering well describes dechanneling of protons in the frame of the planar potential model. Different number of proton collisions with atoms occurs along the same crystal length for different crystal orientations. However, the change of the collision number is compensated by the corresponding change of the mean square deflection in a single collision. Therefore, multiple scattering is the same for different crystal orientations. The generator of multiple scattering for amorphous crystal orientations was proposed.

  10. Interaction of High-Energy Proton Beam with a Thin Target and Multiplicities of Neutron

    SciTech Connect

    Demirkol, I.; Tatar, M.; Safak, M. S.; Arasoglu, A.; Tel, E.

    2007-04-23

    An important ingredient in the performance of accelerator driven systems for energy production, waste transmutation and other applications are the number of spallation neutrons produced per incident proton. The neutron multiplicities, angular and energy distributions are usually calculated using simulation codes. We have presented multiplicities of the neutrons emitted in the interaction of a high-energy proton (1500 MeV) with a thin target Pb, Bi. In this study we have used the code ISABEL to calculate multiplicities of the neutron emitted. The results obtained have been compared with the available data.

  11. High-energy accelerator for beams of heavy ions

    DOEpatents

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  12. Si film separation obtained by high energy proton implantation

    SciTech Connect

    Braley, C.; Mazen, F.; Papon, A.-M.; Rieutord, F.; Charvet, A.-M.; Ntsoenzok, E.

    2012-11-06

    High energy protons implantation in the 1-1.5 MeV range can be used to detach free-standing thin silicon films with thickness between 15 and 30 {mu}m. Recently, we showed that Si orientation has a strong effect on the layer separation threshold fluence and efficiency. While complete delamination of (111)Si films is achieved, (100)Si films separation is more challenging due to blistering phenomena or partial separation of the implanted layer. In this work, we study the fracture mechanism in (100) and (111)Si after high energy implantation in order to understand the origin of such a behavior. We notably point out that fracture precursor defects, i.e. the platelets, preferentially form on (111) planes, as a consequence of the low strain level in the damaged region in our implantation conditions. Fracture therefore propagates easily in (111)Si, while it requires higher fluence to overcome unfavorable precursors orientation and propagate in (100)Si.

  13. Proton Acceleration at Oblique Shocks

    NASA Astrophysics Data System (ADS)

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-01

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  14. PROTON ACCELERATION AT OBLIQUE SHOCKS

    SciTech Connect

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-20

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  15. Reinventing the Accelerator for the High Energy Frontier

    ScienceCinema

    Rosenzweig, James [UCLA, Los Angeles, California, United States

    2009-09-01

    The history of discovery in high-energy physics has been intimately connected with progress in methods of accelerating particles for the past 75 years. This remains true today, as the post-LHC era in particle physics will require significant innovation and investment in a superconducting linear collider. The choice of the linear collider as the next-generation discovery machine, and the selection of superconducting technology has rather suddenly thrown promising competing techniques -- such as very large hadron colliders, muon colliders, and high-field, high frequency linear colliders -- into the background. We discuss the state of such conventional options, and the likelihood of their eventual success. We then follow with a much longer view: a survey of a new, burgeoning frontier in high energy accelerators, where intense lasers, charged particle beams, and plasmas are all combined in a cross-disciplinary effort to reinvent the accelerator from its fundamental principles on up.

  16. ACCELERATING POLARIZED PROTONS TO 250 GEV

    SciTech Connect

    BAI,M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; ET AL.

    2007-06-25

    The Relativistic Heavy Ion Collider (RHIC) as the first high energy polarized proton collider was designed t o provide polarized proton collisions a t a maximum beam energy of 250 GeV. I t has been providing collisions a t a beam energy of 100 Gel' since 2001. Equipped with two full Siberian snakes in each ring, polarization is preserved during the acceleration from injection to 100 GeV with careful control of the betatron tunes and the vertical orbit distortions. However, the intrinsic spin resonances beyond 100 GeV are about a factor of two stronger than those below 100 GeV? making it important t o examine the impact of these strong intrinsic spin resonances on polarization survival and the tolerance for vertical orbit distortions. Polarized protons were accelerated t o the record energy of 250 GeV in RHIC with a polarization of 46% measured a t top energy in 2006. The polarization measurement as a function of beam energy also shows some polarization loss around 136 GeV, the first strong intrinsic resonance above 100 GeV. This paper presents the results and discusses the sensitivity of the polarization survival t o orbit distortions.

  17. Accelerator physics and technology challenges of very high energy hadron colliders

    DOE PAGESBeta

    Shiltsev, Vladimir D.

    2015-08-20

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton–proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This article briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  18. High Energy Density Physics and Exotic Acceleration Schemes

    SciTech Connect

    Cowan, T.; Colby, E.; /SLAC

    2005-09-27

    The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to

  19. Yang-Mills Theories at High Energy Accelerators

    NASA Astrophysics Data System (ADS)

    Sterman, George

    I will begin with a brief review of the triumph of Yang-Mills theory at particle accelerators, a development that began some years after their historic paper. This story reached a culmination, or at least local extremum, with the discovery at the Large Hadron Collider of a Higgs-like scalar boson in 2012. The talk then proceeds to a slightly more technical level, discussing how we derive predictions from the gauge field theories of the Standard Model and its extensions for use at high energy accelerators.

  20. Yang-Mills theories at high energy accelerators

    NASA Astrophysics Data System (ADS)

    Sterman, George

    2016-03-01

    I will begin with a brief review of the triumph of Yang-Mills theory at particle accelerators, a development that began some years after their historic paper. This story reached a culmination, or at least local extremum, with the discovery at the Large Hadron Collider of a Higgs-like scalar boson in 2012. The talk then proceeds to a slightly more technical level, discussing how we derive predictions from the gauge field theories of the Standard Model and its extensions for use at high energy accelerators.

  1. Photonic Band Gap resonators for high energy accelerators

    SciTech Connect

    Schultz, S.; Smith, D.R.; Kroll, N. |

    1993-12-31

    We have proposed that a new type of microwave resonator, based on Photonic Band Gap (PBG) structures, may be particularly useful for high energy accelerators. We provide an explanation of the PBG concept and present data which illustrate some of the special properties associated with such structures. Further evaluation of the utility of PBG resonators requires laboratory testing of model structures at cryogenic temperatures, and at high fields. We provide a brief discussion of our test program, which is currently in progress.

  2. Future Accelerator Challenges in Support of High-Energy Physics

    SciTech Connect

    Zisman, Michael S.; Zisman, M.S.

    2008-05-03

    Historically, progress in high-energy physics has largely been determined by development of more capable particle accelerators. This trend continues today with the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking ahead, there are two scientific areas ripe for further exploration--the energy frontier and the precision frontier. To explore the energy frontier, two approaches toward multi-TeV beams are being studied, an electron-positron linear collider based on a novel two-beam powering system (CLIC), and a Muon Collider. Work on the precision frontier involves accelerators with very high intensity, including a Super-BFactory and a muon-based Neutrino Factory. Without question, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. The challenges of the new generation of accelerators, and how these can be accommodated in the accelerator design, are described. To reap their scientific benefits, all of these frontier accelerators will require sophisticated instrumentation to characterize the beam and control it with unprecedented precision.

  3. Hardness assurance for proton direct ionization-induced SEEs using a high-energy proton beam

    SciTech Connect

    Dodds, Nathaniel Anson; Schwank, James R.; Shaneyfelt, Marty R.; Dodd, Paul E.; Doyle, Barney Lee; Trinczek, M.; Blackmore, E. W.; Rodbell, K. P.; Reed, R. A.; Pellish, J. A.; LaBel, K. A.; Marshall, P. W.; Swanson, Scot E.; Vizkelethy, Gyorgy; Van Deusen, Stuart B.; Sexton, Frederick W.; Martinez, Marino J.; Gordon, M. S.

    2014-11-06

    The low-energy proton energy spectra of all shielded space environments have the same shape. This shape is easily reproduced in the laboratory by degrading a high-energy proton beam, producing a high-fidelity test environment. We use this test environment to dramatically simplify rate prediction for proton direct ionization effects, allowing the work to be done at high-energy proton facilities, on encapsulated parts, without knowledge of the IC design, and with little or no computer simulations required. Proton direct ionization (PDI) is predicted to significantly contribute to the total error rate under the conditions investigated. Scaling effects are discussed using data from 65-nm, 45-nm, and 32-nm SOI SRAMs. These data also show that grazing-angle protons will dominate the PDI-induced error rate due to their higher effective LET, so PDI hardness assurance methods must account for angular effects to be conservative. As a result, we show that this angular dependence can be exploited to quickly assess whether an IC is susceptible to PDI.

  4. Hardness assurance for proton direct ionization-induced SEEs using a high-energy proton beam

    DOE PAGESBeta

    Dodds, Nathaniel Anson; Schwank, James R.; Shaneyfelt, Marty R.; Dodd, Paul E.; Doyle, Barney Lee; Trinczek, M.; Blackmore, E. W.; Rodbell, K. P.; Reed, R. A.; Pellish, J. A.; et al

    2014-11-06

    The low-energy proton energy spectra of all shielded space environments have the same shape. This shape is easily reproduced in the laboratory by degrading a high-energy proton beam, producing a high-fidelity test environment. We use this test environment to dramatically simplify rate prediction for proton direct ionization effects, allowing the work to be done at high-energy proton facilities, on encapsulated parts, without knowledge of the IC design, and with little or no computer simulations required. Proton direct ionization (PDI) is predicted to significantly contribute to the total error rate under the conditions investigated. Scaling effects are discussed using data frommore » 65-nm, 45-nm, and 32-nm SOI SRAMs. These data also show that grazing-angle protons will dominate the PDI-induced error rate due to their higher effective LET, so PDI hardness assurance methods must account for angular effects to be conservative. As a result, we show that this angular dependence can be exploited to quickly assess whether an IC is susceptible to PDI.« less

  5. Cascaded proton acceleration by collisionless electrostatic shock

    SciTech Connect

    Xu, T. J.; Shen, B. F. E-mail: zhxm@siom.ac.cn; Zhang, X. M. E-mail: zhxm@siom.ac.cn; Yi, L. Q.; Wang, W. P.; Zhang, L. G.; Xu, J. C.; Zhao, X. Y.; Shi, Y.; Liu, C.; Pei, Z. K.

    2015-07-15

    A new scheme for proton acceleration by cascaded collisionless electrostatic shock (CES) is proposed. By irradiating a foil target with a moderate high-intensity laser beam, a stable CES field can be induced, which is employed as the accelerating field for the booster stage of proton acceleration. The mechanism is studied through simulations and theoretical analysis, showing that a 55 MeV seed proton beam can be further accelerated to 265 MeV while keeping a good energy spread. This scheme offers a feasible approach to produce proton beams with energy of hundreds of MeV by existing available high-intensity laser facilities.

  6. An introduction to the physics of high energy accelerators

    SciTech Connect

    Edwards, D.A.; Syphers, J.J.

    1993-01-01

    This book is an outgrowth of a course given by the authors at various universities and particle accelerator schools. It starts from the basic physics principles governing particle motion inside an accelerator, and leads to a full description of the complicated phenomena and analytical tools encountered in the design and operation of a working accelerator. The book covers acceleration and longitudinal beam dynamics, transverse motion and nonlinear perturbations, intensity dependent effects, emittance preservation methods and synchrotron radiation. These subjects encompass the core concerns of a high energy synchrotron. The authors apparently do not assume the reader has much previous knowledge about accelerator physics. Hence, they take great care to introduce the physical phenomena encountered and the concepts used to describe them. The mathematical formulae and derivations are deliberately kept at a level suitable for beginners. After mastering this course, any interested reader will not find it difficult to follow subjects of more current interests. Useful homework problems are provided at the end of each chapter. Many of the problems are based on actual activities associated with the design and operation of existing accelerators.

  7. Neutron dose per fluence and weighting factors for use at high energy accelerators

    SciTech Connect

    Cossairt, J.Donald; Vaziri, Kamran; /Fermilab

    2008-07-01

    In June 2007, the United States Department of Energy incorporated revised values of neutron weighting factors into its occupational radiation protection Regulation 10 CFR Part 835 as part of updating its radiation dosimetry system. This has led to a reassessment of neutron radiation fields at high energy proton accelerators such as those at the Fermi National Accelerator Laboratory (Fermilab). Values of dose per fluence factors appropriate for accelerator radiation fields calculated elsewhere are collated and radiation weighting factors compared. The results of this revision to the dosimetric system are applied to americium-beryllium neutron energy spectra commonly used for instrument calibrations. A set of typical accelerator neutron energy spectra previously measured at Fermilab are reassessed in light of the new dosimetry system. The implications of this revision are found to be of moderate significance.

  8. Proton-Proton On Shell Optical Potential at High Energies and the Hollowness Effect

    NASA Astrophysics Data System (ADS)

    Arriola, Enrique Ruiz; Broniowski, Wojciech

    2016-04-01

    We analyze the usefulness of the optical potential as suggested by the double spectral Mandelstam representation at very high energies, such as in the proton-proton scattering at ISR and the LHC. Its particular meaning regarding the interpretation of the scattering data up to the maximum available measured energies is discussed. Our analysis reconstructs 3D dynamics from the effective transverse 2D impact parameter representation and suggests that besides the onset of gray nucleons at the LHC there appears an inelasticity depletion (hollowness) which precludes convolution models at the attometer scale.

  9. Proton-Proton On Shell Optical Potential at High Energies and the Hollowness Effect

    NASA Astrophysics Data System (ADS)

    Arriola, Enrique Ruiz; Broniowski, Wojciech

    2016-07-01

    We analyze the usefulness of the optical potential as suggested by the double spectral Mandelstam representation at very high energies, such as in the proton-proton scattering at ISR and the LHC. Its particular meaning regarding the interpretation of the scattering data up to the maximum available measured energies is discussed. Our analysis reconstructs 3D dynamics from the effective transverse 2D impact parameter representation and suggests that besides the onset of gray nucleons at the LHC there appears an inelasticity depletion (hollowness) which precludes convolution models at the attometer scale.

  10. CGC/saturation approach for high energy soft interactions: v2 in proton-proton collisions

    NASA Astrophysics Data System (ADS)

    Gotsman, E.; Levin, E.; Maor, U.; Tapia, S.

    2016-04-01

    In this paper we continue our program to construct a model for high energy soft interactions, based on the CGC/saturation approach. We demonstrate that in our model, which describes diffractive physics as well as multiparticle production at high energy, the density variation mechanism leads to the value of v2 , which is about 60%-70% of the measured v2 . Bearing in mind that in the CGC/saturation approach there are two other mechanisms present, Bose enhancement in the wave function and local anisotropy, we believe that the azimuthal long range rapidity correlations in proton-proton collisions stem from the CGC/saturation physics, and not from quark-gluon plasma production.

  11. High energy neutrinos from astrophysical accelerators of cosmic ray nuclei

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Hooper, Dan; Sarkar, Subir; Taylor, Andrew M.

    2008-02-01

    Ongoing experimental efforts to detect cosmic sources of high energy neutrinos are guided by the expectation that astrophysical accelerators of cosmic ray protons would also generate neutrinos through interactions with ambient matter and/or photons. However, there will be a reduction in the predicted neutrino flux if cosmic ray sources accelerate not only protons but also significant numbers of heavier nuclei, as is indicated by recent air shower data. We consider plausible extragalactic sources such as active galactic nuclei, gamma ray bursts and starburst galaxies and demand consistency with the observed cosmic ray composition and energy spectrum at Earth after allowing for propagation through intergalactic radiation fields. This allows us to calculate the expected neutrino fluxes from the sources, normalized to the observed cosmic ray spectrum. We find that the likely signals are still within reach of next generation neutrino telescopes such as IceCube.PACS95.85.Ry98.70.Rz98.54.Cm98.54.EpReferencesFor a review, see:F.HalzenD.HooperRep. Prog. Phys.6520021025A.AchterbergIceCube CollaborationPhys. Rev. Lett.972006221101A.AchterbergIceCube CollaborationAstropart. Phys.262006282arXiv:astro-ph/0611063arXiv:astro-ph/0702265V.NiessANTARES CollaborationAIP Conf. Proc.8672006217I.KravchenkoPhys. Rev. D732006082002S.W.BarwickANITA CollaborationPhys. Rev. Lett.962006171101V.Van ElewyckPierre Auger CollaborationAIP Conf. Proc.8092006187For a survey of possible sources and event rates in km3 detectors see e.g.,W.BednarekG.F.BurgioT.MontaruliNew Astron. Rev.4920051M.D.KistlerJ.F.BeacomPhys. Rev. D742006063007A. Kappes, J. Hinton, C. Stegmann, F.A. Aharonian, arXiv:astro-ph/0607286.A.LevinsonE.WaxmanPhys. Rev. Lett.872001171101C.DistefanoD.GuettaE.WaxmanA.LevinsonAstrophys. J.5752002378F.A.AharonianL.A.AnchordoquiD.KhangulyanT.MontaruliJ. Phys. Conf. Ser.392006408J.Alvarez-MunizF.HalzenAstrophys. J.5762002L33F.VissaniAstropart. Phys.262006310F.W

  12. Application of Plasma Waveguides to High Energy Accelerators

    SciTech Connect

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We

  13. Compact Proton Accelerator for Cancer Therapy

    SciTech Connect

    Chen, Y; Paul, A C

    2007-06-12

    An investigation is being made into the feasibility of making a compact proton dielectric wall (DWA) accelerator for medical radiation treatment based on the high gradient insulation (HGI) technology. A small plasma device is used for the proton source. Using only electric focusing fields for transporting and focusing the beam on the patient, the compact DWA proton accelerator m system can deliver wide and independent variable ranges of beam currents, energies and spot sizes.

  14. Laser acceleration of low emittance, high energy ions and applications

    NASA Astrophysics Data System (ADS)

    Fuchs, Julien; Audebert, Patrick; Borghesi, Marco; Pépin, Henri; Willi, Oswald

    2009-03-01

    Laser-accelerated ion sources have exceptional properties, i.e. high brightness and high spectral cut-off (56 MeV at present), high directionality and laminarity (at least 100-fold better than conventional accelerators beams), short burst duration (ps). Thanks to these properties, these sources open new opportunities for applications. Among these, we have already explored their use for proton radiography of fields in plasmas and for warm dense matter generation. These sources could also stimulate development of compact ion accelerators or be used for medical applications. To extend the range of applications, ion energy and conversion efficiency must however be increased. Two strategies for doing so using present-day lasers have been successfully explored in LULI experiments. In view of applications, it is also essential to control (i.e. collimate and energy select) these beams. For this purpose, we have developed an ultra-fast laser-triggered micro-lens providing tuneable control of the beam divergence as well as energy selection. To cite this article: J. Fuchs et al., C. R. Physique 10 (2009).

  15. String black holes as particle accelerators to arbitrarily high energy

    NASA Astrophysics Data System (ADS)

    Pradhan, Parthapratim

    2014-07-01

    We show that an extremal Gibbons-Maeda-Garfinkle-Horowitz-Strominger black hole may act as a particle accelerator with arbitrarily high energy when two uncharged particles falling freely from rest to infinity on the near horizon. We show that the center of mass energy of collision is independent of the extreme fine tuning of the angular momentum of the colliding particles. We further show that the center of mass energy of collisions of particles at the ISCO ( r ISCO ) or at the photon orbit ( r ph ) or at the marginally bound circular orbit ( r mb ) i.e. at r≡ r ISCO = r ph = r mb =2 M could be arbitrarily large for the aforementioned space-time, which is quite different from the Schwarzschild and the Reissner-Nordstrøm space-time. For non-extremal GMGHS space-time the CM energy is finite and depends upon the asymptotic value of the dilation field ( ϕ 0).

  16. Laboratory laser acceleration and high energy astrophysics: {gamma}-ray bursts and cosmic rays

    SciTech Connect

    Tajima, T.; Takahashi, Y.

    1998-08-20

    Recent experimental progress in laser acceleration of charged particles (electrons) and its associated processes has shown that intense electromagnetic pulses can promptly accelerate charged particles to high energies and that their energy spectrum is quite hard. On the other hand some of the high energy astrophysical phenomena such as extremely high energy cosmic rays and energetic components of {gamma}-ray bursts cry for new physical mechanisms for promptly accelerating particles to high energies. The authors suggest that the basic physics involved in laser acceleration experiments sheds light on some of the underlying mechanisms and their energy spectral characteristics of the promptly accelerated particles in these high energy astrophysical phenomena.

  17. High-energy proton imaging for biomedical applications

    PubMed Central

    Prall, M.; Durante, M.; Berger, T.; Przybyla, B.; Graeff, C.; Lang, P. M.; LaTessa, C.; Shestov, L.; Simoniello, P.; Danly, C.; Mariam, F.; Merrill, F.; Nedrow, P.; Wilde, C.; Varentsov, D.

    2016-01-01

    The charged particle community is looking for techniques exploiting proton interactions instead of X-ray absorption for creating images of human tissue. Due to multiple Coulomb scattering inside the measured object it has shown to be highly non-trivial to achieve sufficient spatial resolution. We present imaging of biological tissue with a proton microscope. This device relies on magnetic optics, distinguishing it from most published proton imaging methods. For these methods reducing the data acquisition time to a clinically acceptable level has turned out to be challenging. In a proton microscope, data acquisition and processing are much simpler. This device even allows imaging in real time. The primary medical application will be image guidance in proton radiosurgery. Proton images demonstrating the potential for this application are presented. Tomographic reconstructions are included to raise awareness of the possibility of high-resolution proton tomography using magneto-optics. PMID:27282667

  18. High-energy proton imaging for biomedical applications

    DOE PAGESBeta

    Prall, Matthias; Durante, Marco; Berger, Thomas; Przybyla, B.; Graeff, C.; Lang, Phillipp M.; LaTessa, Ciara; Shestov, Less; Simoniello, P.; Danly, Christopher R.; et al

    2016-06-10

    The charged particle community is looking for techniques exploiting proton interactions instead of X-ray absorption for creating images of human tissue. Due to multiple Coulomb scattering inside the measured object it has shown to be highly non-trivial to achieve sufficient spatial resolution. We present imaging of biological tissue with a proton microscope. This device relies on magnetic optics, distinguishing it from most published proton imaging methods. For these methods reducing the data acquisition time to a clinically acceptable level has turned out to be challenging. In a proton microscope, data acquisition and processing are much simpler. This device even allowsmore » imaging in real time. The primary medical application will be image guidance in proton radiosurgery. Proton images demonstrating the potential for this application are presented. As a result, tomographic reconstructions are included to raise awareness of the possibility of high-resolution proton tomography using magneto-optics.« less

  19. High-energy proton imaging for biomedical applications

    NASA Astrophysics Data System (ADS)

    Prall, M.; Durante, M.; Berger, T.; Przybyla, B.; Graeff, C.; Lang, P. M.; Latessa, C.; Shestov, L.; Simoniello, P.; Danly, C.; Mariam, F.; Merrill, F.; Nedrow, P.; Wilde, C.; Varentsov, D.

    2016-06-01

    The charged particle community is looking for techniques exploiting proton interactions instead of X-ray absorption for creating images of human tissue. Due to multiple Coulomb scattering inside the measured object it has shown to be highly non-trivial to achieve sufficient spatial resolution. We present imaging of biological tissue with a proton microscope. This device relies on magnetic optics, distinguishing it from most published proton imaging methods. For these methods reducing the data acquisition time to a clinically acceptable level has turned out to be challenging. In a proton microscope, data acquisition and processing are much simpler. This device even allows imaging in real time. The primary medical application will be image guidance in proton radiosurgery. Proton images demonstrating the potential for this application are presented. Tomographic reconstructions are included to raise awareness of the possibility of high-resolution proton tomography using magneto-optics.

  20. High-energy proton imaging for biomedical applications.

    PubMed

    Prall, M; Durante, M; Berger, T; Przybyla, B; Graeff, C; Lang, P M; LaTessa, C; Shestov, L; Simoniello, P; Danly, C; Mariam, F; Merrill, F; Nedrow, P; Wilde, C; Varentsov, D

    2016-01-01

    The charged particle community is looking for techniques exploiting proton interactions instead of X-ray absorption for creating images of human tissue. Due to multiple Coulomb scattering inside the measured object it has shown to be highly non-trivial to achieve sufficient spatial resolution. We present imaging of biological tissue with a proton microscope. This device relies on magnetic optics, distinguishing it from most published proton imaging methods. For these methods reducing the data acquisition time to a clinically acceptable level has turned out to be challenging. In a proton microscope, data acquisition and processing are much simpler. This device even allows imaging in real time. The primary medical application will be image guidance in proton radiosurgery. Proton images demonstrating the potential for this application are presented. Tomographic reconstructions are included to raise awareness of the possibility of high-resolution proton tomography using magneto-optics. PMID:27282667

  1. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    NASA Astrophysics Data System (ADS)

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  2. On ultra-high energy cosmic ray acceleration at the termination shock of young pulsar winds

    NASA Astrophysics Data System (ADS)

    Lemoine, Martin; Kotera, Kumiko; Pétri, Jérôme

    2015-07-01

    Pulsar wind nebulae (PWNe) are outstanding accelerators in Nature, in the sense that they accelerate electrons up to the radiation reaction limit. Motivated by this observation, this paper examines the possibility that young pulsar wind nebulae can accelerate ions to ultra-high energies at the termination shock of the pulsar wind. We consider here powerful PWNe, fed by pulsars born with ~ millisecond periods. Assuming that such pulsars exist, at least during a few years after the birth of the neutron star, and that they inject ions into the wind, we find that protons could be accelerated up to energies of the order of the Greisen-Zatsepin-Kuzmin cut-off, for a fiducial rotation period P ~ 1 msec and a pulsar magnetic field Bstar ~ 1013 G, implying a fiducial wind luminosity Lp ~ 1045 erg/s and a spin-down time tsd ~ 3× 107 s. The main limiting factor is set by synchrotron losses in the nebula and by the size of the termination shock; ions with Z>= 1 may therefore be accelerated to even higher energies. We derive an associated neutrino flux produced by interactions in the source region. For a proton-dominated composition, our maximum flux lies slightly below the 5-year sensitivity of IceCube-86 and above the 3-year sensitivity of the projected Askaryan Radio Array. It might thus become detectable in the next decade, depending on the exact level of contribution of these millisecond pulsar wind nebulae to the ultra-high energy cosmic ray flux.

  3. Intense tera-hertz laser driven proton acceleration in plasmas

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Tibai, Z.; Hebling, J.

    2016-06-01

    We investigate the acceleration of a proton beam driven by intense tera-hertz (THz) laser field from a near critical density hydrogen plasma. Two-dimension-in-space and three-dimension-in-velocity particle-in-cell simulation results show that a relatively long wavelength and an intense THz laser can be employed for proton acceleration to high energies from near critical density plasmas. We adopt here the electromagnetic field in a long wavelength (0.33 THz) regime in contrast to the optical and/or near infrared wavelength regime, which offers distinct advantages due to their long wavelength ( λ = 350 μ m ), such as the λ 2 scaling of the electron ponderomotive energy. Simulation study delineates the evolution of THz laser field in a near critical plasma reflecting the enhancement in the electric field of laser, which can be of high relevance for staged or post ion acceleration.

  4. Acceleration of polarized protons in circular accelerators

    SciTech Connect

    Courant, E.D.; Ruth, R.D.

    1980-09-12

    The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

  5. Resource Letter AFHEP-1: Accelerators for the Future of High-Energy Physics

    NASA Astrophysics Data System (ADS)

    Barletta, William A.

    2012-02-01

    This Resource Letter provides a guide to literature concerning the development of accelerators for the future of high-energy physics. Research articles, books, and Internet resources are cited for the following topics: motivation for future accelerators, present accelerators for high-energy physics, possible future machine, and laboratory and collaboration websites.

  6. EGRET High Energy Capability and Multiwavelength Flare Studies and Solar Flare Proton Spectra

    NASA Technical Reports Server (NTRS)

    Chupp, Edward L.

    1997-01-01

    UNH was assigned the responsibility to use their accelerator neutron measurements to verify the TASC response function and to modify the TASC fitting program to include a high energy neutron contribution. Direct accelerator-based measurements by UNH of the energy-dependent efficiencies for detecting neutrons with energies from 36 to 720 MeV in NaI were compared with Monte Carlo TASC calculations. The calculated TASC efficiencies are somewhat lower (by about 20%) than the accelerator results in the energy range 70-300 MeV. The measured energy-loss spectrum for 207 MeV neutron interactions in NaI were compared with the Monte Carlo response for 200 MeV neutrons in the TASC indicating good agreement. Based on this agreement, the simulation was considered to be sufficiently accurate to generate a neutron response library to be used by UNH in modifying the TASC fitting program to include a neutron component in the flare spectrum modeling. TASC energy-loss data on the 1991 June 11 flare was transferred to UNH. Also included appendix: Gamma-rays and neutrons as a probe of flare proton spectra: the solar flare of 11 June 1991.

  7. A New High-Current Proton Accelerator

    SciTech Connect

    Cleland, M. R.; Galloway, R. A.; DeSanto, L.; Jongen, Y.

    2009-03-10

    A high-current (>20 mA) dc proton accelerator is being developed for applications such as boron neutron capture therapy (BNCT) and the detection of explosive materials by nuclear resonance absorption (NRA) of gamma radiation. The high-voltage dc accelerator (adjustable between 1.4 and 2.8 MeV) will be a single-ended industrial Dynamitron registered system equipped with a compact high-current, microwave-driven proton source. A magnetic mass analyzer inserted between the ion source and the acceleration tube will select the protons and reject heavier ions. A sorption pump near the ion source will minimize the flow of neutral hydrogen gas into the acceleration tube. For BNCT, a lithium target for generating epithermal neutrons is being developed that will be capable of dissipating the high power (>40 kW) of the proton beam. For NRA, special targets will be used to generate gamma rays with suitable energies for exciting nuclides typically present in explosive materials. Proton accelerators with such high-current and high-power capabilities in this energy range have not been developed previously.

  8. A New High-Current Proton Accelerator

    NASA Astrophysics Data System (ADS)

    Cleland, M. R.; Galloway, R. A.; DeSanto, L.; Jongen, Y.

    2009-03-01

    A high-current (>20 mA) dc proton accelerator is being developed for applications such as boron neutron capture therapy (BNCT) and the detection of explosive materials by nuclear resonance absorption (NRA) of gamma radiation. The high-voltage dc accelerator (adjustable between 1.4 and 2.8 MeV) will be a single-ended industrial Dynamitron® system equipped with a compact high-current, microwave-driven proton source. A magnetic mass analyzer inserted between the ion source and the acceleration tube will select the protons and reject heavier ions. A sorption pump near the ion source will minimize the flow of neutral hydrogen gas into the acceleration tube. For BNCT, a lithium target for generating epithermal neutrons is being developed that will be capable of dissipating the high power (>40 kW) of the proton beam. For NRA, special targets will be used to generate gamma rays with suitable energies for exciting nuclides typically present in explosive materials. Proton accelerators with such high-current and high-power capabilities in this energy range have not been developed previously.

  9. EGRET High Energy Capability and Multiwavelength Flare Studies and Solar Flare Proton Spectra

    NASA Technical Reports Server (NTRS)

    Chupp, Edward L.

    1998-01-01

    The accomplishments of the participation in the Compton Gamma Ray Observatory Guest investigator program is summarized in this report. The work involved the study of Energetic Gamma Ray Experiment Telescope (EGRET)/Total Absorption Shower Counter(TASC) flare data. The specific accomplishments were the use of the accelerator neutron measurements obtained at the University of New Hampshire to verify the TASC response function and to modify the TASC fitting program to include a high energy neutron contribution, and to determine a high energy neutron contribution to the emissions from the 1991 June 11, solar flare. The next step in the analysis of this event was doing fits to the TASC energy-loss spectra as a function of time. A significant hardening of the solar proton spectrum over time was found for the flare. Further data was obtained from the Yohkoh HXT time histories and images for the 1991 October 27 flare. The results to date demonstrate that the TASC spectral analysis contributes crucial information on the particle spectrum interacting at the Sun. The report includes a paper accepted for publication, a draft of a paper to be delivered at the 26th International Cosmic Ray Conference and an abstract of a paper to be presented at the Meeting of the American Physical Society.

  10. Internal spin structure of the proton from high energy polarized e-p scattering

    SciTech Connect

    Hughes, V.W.; Baum, G.; Bergstroem, M.R.

    1981-02-01

    A review is given of experimental knowledge of the spin dependent structure functions of the proton, which is based on inclusive high energy scattering of longitudinal polarized electrons by longitudinally polarized protons in both the deep inelastic and resonance regions, and includes preliminary results from our most recent SLAC experiment. Implications for scaling, sum rules, models of proton structure, and the hyperfine structure interval in hydrogen are given. Possible future directions of research are indicated.

  11. POLARIZED PROTON ACCELERATION IN AGS AND RHIC.

    SciTech Connect

    ROSER,T.

    2007-09-10

    As the first hadron accelerator and collider consisting of two independent superconducting rings RHIC has operated with a wide range of beam energies and particle species including polarized proton beams. The acceleration of polarized beams in both the injector and the collider rings is complicated by numerous depolarizing spin resonances. Partial and full Siberian snakes have made it possible to overcome the depolarization and beam polarizations of up to 65% have been reached at 100 GeV in RHIC.

  12. Status of BINP proton tandem accelerator

    NASA Astrophysics Data System (ADS)

    Burdakov, A.; Davydenko, V.; Dolgushin, V.; Dranichnikov, A.; Ivanov, A.; Farrell, J. P.; Khilchenko, A.; Kobets, V.; Konstantinov, S.; Krivenko, A.; Kudryavtsev, A.; Tiunov, M.; Savkin, V.; Shirokov, V.; Sorokin, I.

    2007-08-01

    The status of a unique 2.0 MeV, 10 mA proton tandem accelerator with vacuum insulation is presented. The accelerator is intended to be used in facilities generating resonant gamma rays for explosives detection and epithermal neutrons for boron neutron-capture therapy of brain tumors. A magnetically coupled DC voltage multiplier derived from an industrial ELV-type electron accelerator is used as a high voltage source for the accelerator. A dc high current negative ion source has been developed for injection into the tandem. In the tandem accelerator there is set of nested potential electrodes with openings which form a channel for accelerating the negative hydrogen ion beam and subsequently accelerating the proton beam after stripping in the gas target. The electrodes are connected to a high voltage feedthrough insulator to which required potentials are applied from the high voltage power supply by means of a resistor voltage divider. In the paper the first experimental results obtained with the vacuum insulated tandem accelerator are also given.

  13. CHALLENGES FACING HIGH POWER PROTON ACCELERATORS

    SciTech Connect

    Plum, Michael A

    2013-01-01

    This presentation will provide an overview of the challenges of high power proton accelerators such as SNS, J-PARC, etc., and what we have learned from recent experiences. Beam loss mechanisms and methods to mitigate beam loss will also be discussed.

  14. Proton Structure in High-Energy High-Multiplicity p-p Collisions

    NASA Astrophysics Data System (ADS)

    Głazek, Stanisław D.; Kubiczek, Patryk

    2016-06-01

    A few-body proton image, expected to be derivable from QCD in the renormalization group procedure for effective particles, is used within the Monte Carlo Glauber model to calculate the anisotropy coefficients in the initial collision-state of matter in high-energy high-multiplicity proton-proton interaction events. We estimate the ridge-like correlations in the final hadronic state by assuming their proportionality to the initial collision-state anisotropy. In our estimates, some distinct few-body proton structures appear capable of accounting for the magnitude of p-p ridge effect, with potentially discernible differences in dependence on multiplicity.

  15. Rf cavity primer for cyclic proton accelerators

    NASA Astrophysics Data System (ADS)

    Griffin, J. E.

    1988-04-01

    The electrical and mechanical properities of particle accelerator rf cavities are described in a manner which will be useful to physics and engineering graduates entering the accelerator field. The discussion is limited to proton (or antiproton) synchrotron accelerators or storage rings operating roughly in the range of 20 to 200 MHz. The very high gradient, fixed frequency UHF or microwave devices appropriate for electron machines and the somewhat lower frequency and broader bandwidth devices required for heavy ion accelerators are discussed extensively in other papers in this series. While it is common practice to employ field calculation programs such as SUPERFISH, URMEL, or MAFIA as design aids in the development of rf cavities, we attempt here to elucidate various of the design parameters commonly dealt with in proton machines through the use of simple standing wave coaxial resonator expressions. In so doing, we treat only standing wave structures. Although low-impedance, moderately broad pass-band travelling wave accelerating systems are used in the CERN SPS, such systems are more commonly found in linacs, and they have not been used widely in large cyclic accelerators. Two appendices providing useful supporting material regarding relativistic particle dynamics and synchrotron motion in cyclic accelerators are added to supplement the text.

  16. COMPACT PROTON INJECTOR AND FIRST ACCELERATOR SYSTEM TEST FOR COMPACT PROTON DIELECTRIC WALL CANCER THERAPY ACCELERATOR

    SciTech Connect

    Chen, Y; Guethlein, G; Caporaso, G; Sampayan, S; Blackfield, D; Cook, E; Falabella, S; Harris, J; Hawkins, S; Nelson, S; Poole, B; Richardson, R; Watson, J; Weir, J; Pearson, D

    2009-04-23

    A compact proton accelerator for cancer treatment is being developed by using the high-gradient dielectric insulator wall (DWA) technology [1-4]. We are testing all the essential DWA components, including a compact proton source, on the First Article System Test (FAST). The configuration and progress on the injector and FAST will be presented.

  17. APPARATUS FOR CONTROL OF HIGH-ENERGY ACCELERATORS

    DOEpatents

    Heard, H.G.

    1961-10-24

    A particle beam positioning control for a synchrotron or the like is described. The control includes means for selectively impressing a sinusoidal perturbation upon the rising voltage utilized to sweep the frequency of the f-m oscillator which is conventionally coupled to the accelerating electrode of a synchrotron. The perturbation produces a variation in the normal rate of change of frequency of the accelerating voltage applied to the accelerating electrode, resulting in an expansion or contraction of the particle beam orbit diameter during the perturbation. The beam may thus be controlled such that a portion strikes a target positioned close to the expanded or contracted orbit diameter and returns to the original orbit for further acceleration to the final energy. (AEC)

  18. Designing of electrode for high energy charged particle acceleration

    NASA Astrophysics Data System (ADS)

    Das, Basanta Kumar; Shyam, A.

    2010-02-01

    Vacuum insulation plays an important role in charged particle acceleration. We are making one compact size neutron generator in our lab. For this purpose the deuterium ions are formed in a penning ion source and extracted along the axis of the electrode arrangement. For neutron generation from D-T reaction, the deuterium ions are to be accelerated up to ~ 100KeV to the tritium target. After extraction of the ions from the ion source, the ions pass through the acceleration electrode. For high acceleration voltage, selecting the shape of the electrode is important. The plane geometry leads to high electric field at the edge whereas a curved geometry reduces this effect. The study of the physical processes at the electrode surface due to ion interaction is crucial. In this presentation, we will present the designing of the electrode for our purpose and discuss the issues related to the physical process at the surface of the electrode

  19. Ion Desorption Stability in Superconducting High Energy Physics Proton Colliders

    SciTech Connect

    Turner, W.C.

    1995-05-29

    In this paper we extend our previous analysis of cold beam tube vacuum in a superconducting proton collider to include ion desorption in addition to thermal desorption and synchrotron radiation induced photodesorption. The new ion desorption terms introduce the possibility of vacuum instability. This is similar to the classical room temperature case but now modified by the inclusion of ion desorption coefficients for cryosorbed (physisorbed) molecules which can greatly exceed the coefficients for tightly bound molecules. The sojourn time concept for physisorbed H{sub 2} is generalized to include photodesorption and ion desorption as well as the usually considered thermal desorption. The ion desorption rate is density dependent and divergent so at the onset of instability the sojourn time goes to zero. Experimental data are used to evaluate the H{sub 2} sojourn time for the conditions of the Large Hadron Collider (LHC) and the situation is found to be stable. The sojourn time is dominated by photodesorption for surface density s(H{sub 2}) less than a monolayer and by thermal deposition for s(H{sub 2}) greater than a monolayer. For a few percent of a monolayer, characteristic of a beam screen, the photodesorption rate exceeds ion desorption rate by more than two orders of magnitude. The photodesorption rate corresponds to a sojourn time of approximately 100 sec. The paper next turns to the evaluation of stability margins and inclusion of gases heavier than H{sub 2} (CO, CO{sub 2} and CH{sub 4}), where ion desorption introduces coupling between molecular species. Stability conditions are worked out for a simple cold beam tube, a cold beam tube pumped from the ends and a cold beam tube with a co-axial perforated beam screen. In each case a simple inequality for stability of a single component is replaced by a determinant that must be greater than zero for a gas mixture. The connection with the general theory of feedback stability is made and it is shown that the gains

  20. Electron injector for compact staged high energy accelerator

    NASA Astrophysics Data System (ADS)

    Audet, T. L.; Desforges, F. G.; Maitrallain, A.; Dufrénoy, S. Dobosz; Bougeard, M.; Maynard, G.; Lee, P.; Hansson, M.; Aurand, B.; Persson, A.; González, I. Gallardo; Monot, P.; Wahlström, C.-G.; Lundh, O.; Cros, B.

    2016-09-01

    An electron injector for multi-stage laser wakefield experiments is presented. It consists of a variable length gas cell of small longitudinal dimension (⩽ 10 mm). The gas filling process in this cell was characterized both experimentally and with fluid simulation. Electron acceleration experiments were performed at two different laser facilities. Results show low divergence and low pointing fluctuation electron bunches suitable for transport to a second stage, and a peaked energy distribution suitable for injection into the second stage wakefield accelerator.

  1. On the possibility for precision measurements of differential cross sections for elastic proton-proton scattering at the Protvino accelerator

    NASA Astrophysics Data System (ADS)

    Denisov, S. P.; Kozelov, A. V.; Petrov, V. A.

    2016-03-01

    Elastic-scattering data were analyzed, and it was concluded on the basis of this analysis that precisionmeasurements of differential cross sections for elastic proton-proton scattering at the accelerator of the Institute for High Energy Physics (IHEP, Protvino, Russia) over a broad momentum-transfer range are of importance and topical interest. The layout of the respective experimental facility detecting the scattered particle and recoil proton and possessing a high momentum-transfer resolution was examined along with the equipment constituting this facility. The facility in question is able to record up to a billion events of elastic proton-proton scattering per IHEP accelerator run (20 days). Other lines of physics research with this facility are briefly discussed.

  2. Laser-plasma accelerators-based high energy radiation femtochemistry and spatio-temporal radiation biomedicine

    NASA Astrophysics Data System (ADS)

    Gauduel, Y. A.; Lundh, O.; Martin, M. T.; Malka, V.

    2012-06-01

    The innovating advent of powerful TW laser sources (~1019 W cm-z) and laser-plasma interactions providing ultra-short relativistic particle beams (electron, proton) in the MeV domain open exciting opportunities for the simultaneous development of high energy radiation femtochemistry (HERF) and ultrafast radiation biomedicine. Femtolysis experiments (Femtosecond radiolysis) of aqueous targets performed with relativistic electron bunches of 2.5-15 MeV give new insights on transient physicochemical events that take place in the prethermal regime of confined ionization tracks. Femtolysis studies emphasize the pre-eminence of ultra-fast quantum effects in the temporal range 10-14 - 10-11 s. The most promising advances of HERF concern the quantification of ultrafast sub-nanometric biomolecular damages (bond weakening and bond breaking) in the radial direction of a relativistic particle beam. Combining ultra-short relativistic particle beams and near-infrared spectroscopic configurations, laser-plasma accelerators based high energy radiation femtochemistry foreshadows the development of real-time radiation chemistry in the prethermal regime of nascent ionisation clusters. These physico-chemical advances would be very useful for future developments in biochemically relevant environments (DNA, proteins) and in more complex biological systems such as living cells. The first investigation of single and multiple irradiation shots performed at high energy level (90 MeV) and very high dose rate, typically 1013 Gy s-1, demonstrates that measurable assessments of immediate and reversible DNA damage can be explored at single cell level. Ultrafast in vivo irradiations would permit the development of bio-nanodosimetry on the time scale of molecular motions, i.e. angstrom or sub-angstrom displacements and open new perspectives in the emerging domain of ultrafast radiation biomedicine such as pulsed radiotherapy.

  3. Proton shock acceleration using a high contrast high intensity laser

    NASA Astrophysics Data System (ADS)

    Gauthier, Maxence; Roedel, Christian; Kim, Jongjin; Aurand, Bastian; Curry, Chandra; Goede, Sebastian; Propp, Adrienne; Goyon, Clement; Pak, Art; Kerr, Shaun; Ramakrishna, Bhuvanesh; Ruby, John; William, Jackson; Glenzer, Siegfried

    2015-11-01

    Laser-driven proton acceleration is a field of intense research due to the interesting characteristics of this novel particle source including high brightness, high maximum energy, high laminarity, and short duration. Although the ion beam characteristics are promising for many future applications, such as in the medical field or hybrid accelerators, the ion beam generated using TNSA, the acceleration mechanism commonly achieved, still need to be significantly improved. Several new alternative mechanisms have been proposed such as collisionless shock acceleration (CSA) in order to produce a mono-energetic ion beam favorable for those applications. We report the first results of an experiment performed with the TITAN laser system (JLF, LLNL) dedicated to the study of CSA using a high intensity (5x1019W/cm2) high contrast ps laser pulse focused on 55 μm thick CH and CD targets. We show that the proton spectrum generated during the interaction exhibits high-energy mono-energetic features along the laser axis, characteristic of a shock mechanism.

  4. DESIGN CRITERIA OF A PROTON FFAG ACCELERATOR.

    SciTech Connect

    RUGGIERO, A.G.

    2004-10-13

    There are two major issues that are to be confronted in the design of a Fixed-Field Alternating-Gradient (FFAG) accelerator, namely: (1) the stability of motion over the large momentum range needed for the beam acceleration, and (2) the compactness of the trajectories over the same momentum range to limit the dimensions of the magnets. There are a numbers of rules that need to be followed to resolve these issues. In particular, the magnet arrangement in the accelerator lattice and the distribution of the bending and focusing fields are to be set properly in accordance with these rules. In this report they describe four of these rules that ought to be applied for the optimum design of a FFAG accelerator, especially in the case of proton beams.

  5. Production of Actinium-225 via High Energy Proton Induced Spallation of Thorium-232

    SciTech Connect

    Harvey, James T.; Nolen, Jerry; Vandergrift, George; Gomes, Itacil; Kroc, Tom; Horwitz, Phil; McAlister, Dan; Bowers, Del; Sullivan, Vivian; Greene, John

    2011-12-30

    The science of cancer research is currently expanding its use of alpha particle emitting radioisotopes. Coupled with the discovery and proliferation of molecular species that seek out and attach to tumors, new therapy and diagnostics are being developed to enhance the treatment of cancer and other diseases. This latest technology is commonly referred to as Alpha Immunotherapy (AIT). Actinium-225/Bismuth-213 is a parent/daughter alpha-emitting radioisotope pair that is highly sought after because of the potential for treating numerous diseases and its ability to be chemically compatible with many known and widely used carrier molecules (such as monoclonal antibodies and proteins/peptides). Unfortunately, the worldwide supply of actinium-225 is limited to about 1,000mCi annually and most of that is currently spoken for, thus limiting the ability of this radioisotope pair to enter into research and subsequently clinical trials. The route proposed herein utilizes high energy protons to produce actinium-225 via spallation of a thorium-232 target. As part of previous R and D efforts carried out at Argonne National Laboratory recently in support of the proposed US FRIB facility, it was shown that a very effective production mechanism for actinium-225 is spallation of thorium-232 by high energy proton beams. The base-line simulation for the production rate of actinium-225 by this reaction mechanism is 8E12 atoms per second at 200 MeV proton beam energy with 50 g/cm2 thorium target and 100 kW beam power. An irradiation of one actinium-225 half-life (10 days) produces {approx}100 Ci of actinium-225. For a given beam current the reaction cross section increases slightly with energy to about 400 MeV and then decreases slightly for beam energies in the several GeV regime. The object of this effort is to refine the simulations at proton beam energies of 400 MeV and above up to about 8 GeV. Once completed, the simulations will be experimentally verified using 400 MeV and 8 Ge

  6. Compact accelerator concept for proton therapy

    NASA Astrophysics Data System (ADS)

    Caporaso, G. J.; Sampayan, S.; Chen, Y.-J.; Harris, J.; Hawkins, S.; Holmes, C.; Krogh, M.; Nelson, S.; Nunnally, W.; Paul, A.; Poole, B.; Rhodes, M.; Sanders, D.; Selenes, K.; Sullivan, J.; Wang, L.; Watson, J.

    2007-08-01

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is being developed as a compact flash X-ray radiography source. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be presented.

  7. COMPACT ACCELERATOR CONCEPT FOR PROTON THERAPY

    SciTech Connect

    Caporaso, G; Sampayan, S; Chen, Y; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2006-08-18

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is being developed as a compact flash x-ray radiography source. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be presented.

  8. Single event upset and charge collection measurements using high energy protons and neutrons

    SciTech Connect

    Normand, E.; Oberg, D.L.; Wert, J.L.; Ness, J.D.; Majewski, P.P. ); Wender, S.; Gavron, A. )

    1994-12-01

    RAMs, microcontrollers and surface barrier detectors were exposed to beams of high energy protons and neutrons to measure the induced number of upsets as well as energy deposition. The WNR facility at Los Alamos provided a neutron spectrum similar to that of the atmospheric neutrons. Its effect on devices was compared to that of protons with energies of 200, 400, 500, and 800 MeV. Measurements indicate that SEU cross sections for 400 MeV protons are similar to those induced by the atmospheric neutron spectrum.

  9. Response of a tungsten powder target to an incident high energy proton beam

    NASA Astrophysics Data System (ADS)

    Caretta, O.; Davenne, T.; Densham, C.; Fitton, M.; Loveridge, P.; O'Dell, J.; Charitonidis, N.; Efthymiopoulos, I.; Fabich, A.; Rivkin, L.

    2014-10-01

    The experiment described in this paper is the first study of the response of a static tungsten powder sample to an impinging high energy proton beam pulse. The experiment was carried out at the HiRadMat facility at CERN. Observations include high speed videos of a proton beam induced perturbation of the powder sample as well as data from a laser Doppler vibrometer measuring the oscillations of the powder container. A comparison with a previous analogous experiment which studied a proton beam interaction with mercury is made.

  10. Stochastic acceleration of solar flare protons

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1978-01-01

    The acceleration of solar flare protons is considered by cyclotron damping of intense Alfven wave turbulence in a magnetic trap. The energy diffusion coefficient is computed for a near-isotropic distribution of super-Alfvenic protons and a steady-state solution for the particle spectrum is found for both transit-time and diffusive losses out of the ends of the trap. The acceleration time to a characteristic energy approximately 20 Mev/nucl can be as short as 10 sec. On the basis of phenomenological arguments an omega/2 frequency dependence for the Alfven wave spectrum is inferred. The correlation time of the turbulence lies in the range .0005 less than tau/corr less than .05s.

  11. Polarization measurement of laser-accelerated protons

    SciTech Connect

    Raab, Natascha; Engels, Ralf; Engin, Ilhan; Greven, Patrick; Holler, Astrid; Lehrach, Andreas; Maier, Rudolf; Büscher, Markus; Cerchez, Mirela; Swantusch, Marco; Toncian, Monika; Toncian, Toma; Willi, Oswald; Gibbon, Paul; Karmakar, Anupam

    2014-02-15

    We report on the successful use of a laser-driven few-MeV proton source to measure the differential cross section of a hadronic scattering reaction as well as on the measurement and simulation study of polarization observables of the laser-accelerated charged particle beams. These investigations were carried out with thin foil targets, illuminated by 100 TW laser pulses at the Arcturus laser facility; the polarization measurement is based on the spin dependence of hadronic proton scattering off nuclei in a Silicon target. We find proton beam polarizations consistent with zero magnitude which indicates that for these particular laser-target parameters the particle spins are not aligned by the strong magnetic fields inside the laser-generated plasmas.

  12. Flare vs. Shock Acceleration of >100 MeV Protons in Large Solar Particle Events

    NASA Astrophysics Data System (ADS)

    Cliver, Edward W.

    2016-05-01

    Recently several studies have presented correlative evidence for a significant-to-dominant role for a flare-resident process in the acceleration of high-energy protons in large solar particle events. In one of these investigations, a high correlation between >100 MeV proton fluence and 35 GHz radio fluence is obtained by omitting large proton events associated with relatively weak flares; these outlying events are attributed to proton acceleration by shock waves driven by coronal mass ejections (CMEs). We argue that the strong CMEs and associated shocks observed for proton events on the main sequence of the scatter plot are equally likely to accelerate high-energy protons. In addition, we examine ratios of 0.5 MeV electron to >100 MeV proton intensities in large SEP events, associated with both well-connected and poorly-connected solar eruptions, to show that scaled-up versions of the small flares associated with classical impulsive SEP events are not significant accelerators of >100 MeV protons.

  13. Summary Report of Working Group 3: High Energy Density Physics and Exotic Acceleration Schemes

    SciTech Connect

    Shvets, Gennady; Schoessow, Paul

    2006-11-27

    This report summarizes presented results and discussions in the Working Group 3 at the Twelfth Advanced Accelerator Concepts Workshop in 2006. Presentations on varied topics, such as laser proton acceleration, novel radiation sources, active medium accelerators, and many others, are reviewed, and the status and future directions of research in these areas are summarized.

  14. Biological Effects of Particles with Very High Energy Deposition on Mammalian Cells Utilizing the Brookhaven Tandem Van de Graaff Accelerator

    NASA Technical Reports Server (NTRS)

    Saha, Janapriya; Cucinotta, Francis A.; Wang, Minli

    2013-01-01

    High LET radiation from GCR (Galactic Cosmic Rays) consisting mainly of high charge and energy (HZE) nuclei and secondary protons and neutrons, and secondaries from protons in SPE (Solar Particle Event) pose a major health risk to astronauts due to induction of DNA damage and oxidative stress. Experiments with high energy particles mimicking the space environment for estimation of radiation risk are being performed at NASA Space Radiation Laboratory at BNL. Experiments with low energy particles comparing to high energy particles of similar LET are of interest for investigation of the role of track structure on biological effects. For this purpose, we report results utilizing the Tandem Van de Graaff accelerator at BNL. The primary objective of our studies is to elucidate the influence of high vs low energy deposition on track structure, delta ray contribution and resulting biological responses. These low energy ions are of special relevance as these energies may occur following absorption through the spacecraft and shielding materials in human tissues and nuclear fragments produced in tissues by high energy protons and neutrons. This study will help to verify the efficiency of these low energy particles and better understand how various cell types respond to them.

  15. Kerr black holes as particle accelerators to arbitrarily high energy.

    PubMed

    Bañados, Máximo; Silk, Joseph; West, Stephen M

    2009-09-11

    We show that intermediate mass black holes conjectured to be the early precursors of supermassive black holes and surrounded by relic cold dark matter density spikes can act as particle accelerators with collisions, in principle, at arbitrarily high center-of-mass energies in the case of Kerr black holes. While the ejecta from such interactions will be highly redshifted, we may anticipate the possibility of a unique probe of Planck-scale physics. PMID:19792361

  16. Results on damage induced by high-energy protons in LYSO calorimeter crystals

    NASA Astrophysics Data System (ADS)

    Dissertori, G.; Luckey, D.; Nessi-Tedaldi, F.; Pauss, F.; Quittnat, M.; Wallny, R.; Glaser, M.

    2014-05-01

    Lutetium-Yttrium Orthosilicate doped with Cerium (LYSO), as a bright scintillating crystal, is a candidate for calorimetry applications in strong ionising-radiation fields and large high-energy hadron fluences are expected at the CERN Large Hadron Collider after the planned High-Luminosity upgrade. There, proton-proton collisions will produce fast hadron fluences up to ~ 5 ×1014cm-2 in the large-rapidity regions of the calorimeters. The performance of LYSO has been investigated, after exposure to different fluences of 24 GeV c-1 protons. Measured changes in optical transmission as a function of proton fluence are presented, and the evolution over time due to spontaneous recovery at room temperature is studied. The activation of materials will also be an issue in the described environment. Studies of the ambient dose induced by LYSO and its evolution with time, in comparison with other scintillating crystals, have also been performed through measurements and FLUKA simulations.

  17. A Nuclear Interaction Model for Understanding Results of Single Event Testing with High Energy Protons

    NASA Technical Reports Server (NTRS)

    Culpepper, William X.; ONeill, Pat; Nicholson, Leonard L.

    2000-01-01

    An internuclear cascade and evaporation model has been adapted to estimate the LET spectrum generated during testing with 200 MeV protons. The model-generated heavy ion LET spectrum is compared to the heavy ion LET spectrum seen on orbit. This comparison is the basis for predicting single event failure rates from heavy ions using results from a single proton test. Of equal importance, this spectra comparison also establishes an estimate of the risk of encountering a failure mode on orbit that was not detected during proton testing. Verification of the general results of the model is presented based on experiments, individual part test results, and flight data. Acceptance of this model and its estimate of remaining risk opens the hardware verification philosophy to the consideration of radiation testing with high energy protons at the board and box level instead of the more standard method of individual part testing with low energy heavy ions.

  18. Possibilities of polarized protons in Sp anti p S and other high energy hadron colliders

    SciTech Connect

    Courant, E.D.

    1984-01-01

    The requirements for collisions with polarized protons in hadron colliders above 200 GeV are listed and briefly discussed. Particular attention is given to the use of the ''Siberan snake'' to eliminate depolarizing resonances, which occur when the spin precession frequency equals a frequency contained in the spectrum of the field seen by the beam. The Siberian snake is a device which makes the spin precession frequency essentially constant by using spin rotators, which precess the spin by 180/sup 0/ about either the longitudinal or transverse horizontal axis. It is concluded that operation with polarized protons should be possible at all the high energy hadron colliders. (LEW)

  19. High energy proton irradiation induced pinning centers in Bi-2212 and Bi-2223 superconductors

    SciTech Connect

    Willis, J.O.; Safar, H.; Cho, J.H.

    1995-12-01

    Bi-2212 single crystals and Bi-2223/Ag-sheathed tapes were irradiated with high energy protons. TEM images reveal the production of randomly oriented (splayed) columnar defects with an amorphous core of {approximately}10 nm diameter caused by the fissioning of Bi nuclei. The critical current density J{sub c} and irreversibility line both substantially increased with the proton dose for both crystals and tapes, especially for the magnetic field parallel to the c axis. An irradiated tape had a J{sub c} value {approximately}100 times greater than that of an unirradiated one at 1 T and 75 K.

  20. Centrality-dependent forward J/ψ production in high energy proton-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Ducloué, B.; Lappi, T.; Mäntysaari, H.

    2016-03-01

    Forward J/ψ production and suppression in high energy proton-nucleus collisions can be an important probe of gluon saturation. In an earlier work we studied this process in the Color Glass Condensate framework and showed that using the Glauber approach to extrapolate the dipole cross section of a proton to a nucleus leads to results closer to experimental data than previous calculations in this framework. Here we investigate the centrality dependence of the nuclear suppression in this model and show a comparison of our results with recent LHC data.

  1. INSTRUMENTS AND METHODS OF INVESTIGATION: High-energy electron accelerators for industrial applications

    NASA Astrophysics Data System (ADS)

    Salimov, Rustam A.

    2000-02-01

    The principle of operation and the design of main parts of high-energy industrial electron accelerators are described. Accelerators based on high-voltage dc rectifiers are very efficient, compact and characterized by a high degree of unification of their main units. In total, more than 70 accelerators have been manufactured at the G I Budker Institute of Nuclear Physics, with over 20 of them for export.

  2. Production of high energy and low flux protons using 2D(3He,p)4He for space detector calibrations

    NASA Astrophysics Data System (ADS)

    Wang, Y. Q.; Burward-Hoy, J. M.; Tesmer, J. R.

    2014-08-01

    In this report, we want to demonstrate that besides the conventional use for elemental analysis and depth profiling by ion beam analysis (IBA), particles generated through ion-solid interactions in IBA may find other novel and important applications. Specifically, we use Rutherford backscattered and nuclear reaction produced high energy proton particles to calibrate an energetic particle subsystem (called ZEP) of the Space and Atmospheric Burst Reporting System (SABRS) at Los Alamos National Laboratory (LANL). To simulate low radiation flux in the space, we have devised an experiment that uses an ultrathin (∼51.8 nm) self-support gold foil to scatter a proton beam from a 3 MV Tandem accelerator into the ZEP subsystem. Direct backscattering from the thin gold foil produces proton particles with tunable energies of 0.2-6.0 MeV and desired counting rates of <10 kHz. To extend the proton particle energy beyond the Tandem's limit of 6 MeV, a high Q-value nuclear reaction, 2D + 3He → p + 4He + 18.352 MeV, was used. This reaction allows us to obtain as high as 25.6 MeV proton particles on our 3 MV tandem accelerator, more than 4 times as high as the accelerator's maximum proton beam energy, and has greatly extended our proton energy range for this calibration activity. Preliminary ZEP subsystem calibration results are presented.

  3. High-energy proton radiation damage of high-purity germanium detectors

    NASA Technical Reports Server (NTRS)

    Pehl, R. H.; Varnell, L. S.; Metzger, A. E.

    1978-01-01

    Quantitative studies of radiation damage in high-purity germanium gamma-ray detectors due to high-energy charged particles have been carried out; two 1.0 cm thick planar detectors were irradiated by 6 GeV/c protons. Under proton bombardment, degradation in the energy resolution was found to begin below 7 x 10 to the 7th protons/sq cm and increased proportionately in both detectors until the experiment was terminated at a total flux of 5.7 x 10 to the 8th protons/sq cm, equivalent to about a six year exposure to cosmic-ray protons in space. At the end of the irradiation, the FWHM resolution measured at 1332 keV stood at 8.5 and 13.6 keV, with both detectors of only marginal utility as a spectrometer due to the severe tailing caused by charge trapping. Annealing these detectors after proton damage was found to be much easier than after neutron damage.

  4. Laser-driven high-energy proton beam with homogeneous spatial profile from a nanosphere target

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Kim, I. J.; Psikal, J.; Kaufman, J.; Mocek, T.; Choi, I. W.; Stolcova, L.; Proska, J.; Choukourov, A.; Melnichuk, I.; Klimo, O.; Limpouch, J.; Sung, J. H.; Lee, S. K.; Korn, G.; Jeong, T. M.

    2015-07-01

    A high-energy, high-yield proton beam with a good homogeneous profile has been generated from a nanosphere target irradiated by a short (30-fs), intense (7 ×1020 W /cm2 ) laser pulse. A maximum proton energy of 30 MeV has been observed with a high proton number of 7 ×1010 in the energy range 5-30 MeV. A homogeneous spatial profile with a uniformity (standard deviation from an average value within 85% beam area) of 15% is observed with the nanosphere dielectric target. Particle-in-cell simulations show the enhancement of proton cutoff energy and proton number with the nanosphere target and reveal that the homogeneous beam profile is related with a broadened angular distribution of hot electrons, which is initiated by the nanosphere structure. The homogeneous spatial properties obtained with the nanosphere target will be advantageous in developing laser-driven proton sources for practical applications in which high-quality beams are required.

  5. ABSOLUTE MEASUREMENT OF THE POLARIZATION OF HIGH ENERGY PROTON BEAMS AT RHIC

    SciTech Connect

    MAKDISI,Y.; BRAVAR, A. BUNCE, G. GILL, R.; HUANG, H.; ET AL.

    2007-06-25

    The spin physics program at the Relativistic Heavy Ion Collider (RHIC) requires knowledge of the beam polarization to better than 5%. Such a goal is made the more difficult by the lack of knowledge of the analyzing power of high energy nuclear physics processes. To overcome this, a polarized hydrogen jet target was constructed and installed at one intersection region in RHIC where it intersects both beams and utilizes the precise knowledge of the jet atomic hydrogen beam polarization to measure the analyzing power in proton-proton elastic scattering in the Nuclear Coulomb Interference (CNI) region at the prescribed RHIC proton beam energy. The reverse reaction is used to assess the absolute beam polarization. Simultaneous measurements taken with fast high statistics polarimeters that measure the p-Carbon elastic scattering process also in the CNI region use the jet results to calibrate the latter.

  6. Innermost Van Allen Radiation Belt for High Energy Protons at Saturn

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2008-01-01

    The high energy proton radiation belts of Saturn are energetically dominated by the source from cosmic ray albedo neutron decay (CRAND), trapping of protons from beta decay of neutrons emitted from galactic cosmic ray nuclear interactions with the main rings. These belts were originally discovered in wide gaps between the A-ring, Janus/Epimetheus, Mimas, and Enceladus. The narrow F and G rings significant affected the CRAND protons but did not produce total depletion. Voyager 2 measurements subsequently revealed an outermost CRAND proton belt beyond Enceladus. Although the source rate is small, the trapping times limited by radial magnetospheric diffusion are very long, about ten years at peak measured flux inwards of the G ring, so large fluxes can accumulate unless otherwise limited in the trapping region by neutral gas, dust, and ring body interactions. One proposed final extension of the Cassini Orbiter mission would place perikrone in a 3000-km gap between the inner D ring and the upper atmosphere of Saturn. Experience with CRAND in the Earth's inner Van Allen proton belt suggests that a similar innermost belt might be found in this comparably wide region at Saturn. Radial dependence of magnetospheric diffusion, proximity to the ring neutron source, and northward magnetic offset of Saturn's magnetic equator from the ring plane could potentially produce peak fluxes several orders of magnitude higher than previously measured outside the main rings. Even brief passes through such an intense environment of highly penetrating protons would be a significant concern for spacecraft operations and science observations. Actual fluxes are limited by losses in Saturn's exospheric gas and in a dust environment likely comparable to that of the known CRAND proton belts. The first numerical model of this unexplored radiation belt is presented to determine limits on peak magnitude and radial profile of the proton flux distribution.

  7. Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices.

    PubMed

    Schollmeier, M; Becker, S; Geissel, M; Flippo, K A; Blazević, A; Gaillard, S A; Gautier, D C; Grüner, F; Harres, K; Kimmel, M; Nürnberg, F; Rambo, P; Schramm, U; Schreiber, J; Schütrumpf, J; Schwarz, J; Tahir, N A; Atherton, B; Habs, D; Hegelich, B M; Roth, M

    2008-08-01

    This Letter demonstrates the transporting and focusing of laser-accelerated 14 MeV protons by permanent magnet miniature quadrupole lenses providing field gradients of up to 500 T/m. The approach is highly reproducible and predictable, leading to a focal spot of (286 x 173) microm full width at half maximum 50 cm behind the source. It decouples the relativistic laser-proton acceleration from the beam transport, paving the way to optimize both separately. The collimation and the subsequent energy selection obtained are perfectly applicable for upcoming high-energy, high-repetition rate laser systems. PMID:18764401

  8. The Quest for Spinning Glue in High-Energy Polarized Proton-Proton Collisions at RHIC

    SciTech Connect

    Surrow, Bernd

    2007-10-26

    The STAR experiment at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) is carrying out a spin physics program colliding transverse or longitudinal polarized proton beams at {radical}(s) = 200-500 GeV to gain a deeper insight into the spin structure and dynamics of the proton. These studies provide fundamental tests of Quantum Chromodynamics (QCD).One of the main objectives of the STAR spin physics program is the determination of the polarized gluon distribution function through a measurement of the longitudinal double-spin asymmetry, A{sub LL}, for various processes. Recent results will be shown on the measurement of A{sub LL} for inclusive jet production, neutral pion production and charged pion production at {radical}(s) = 200 GeV.

  9. Report of the Subpanel on Accelerator Research and Development of the High Energy Physics Advisory Panel

    SciTech Connect

    Not Available

    1980-06-01

    Accelerator R and D in the US High Energy Physics (HEP) program is reviewed. As a result of this study, some shift in priority, particularly as regards long-range accelerator R and D, is suggested to best serve the future needs of the US HEP program. Some specific new directions for the US R and D effort are set forth. 18 figures, 5 tables. (RWR)

  10. Regolith Biological Shield for a Lunar Outpost from High Energy Solar Protons

    SciTech Connect

    Pham, Tai T.; El-Genk, Mohamed S.

    2008-01-21

    Beyond Earth atmosphere, natural space radiation from Galactic Cosmic Rays and Solar Energetic Protons (SEPs) represents a significant hazard to both manned and robotic missions. For lunar settlements, protecting astronauts from SEPs is a key safety issue that needs to be addressed by identifying appropriate shielding materials. This paper investigates the interaction of SEPs with the lunar regolith, and quantifies the effectiveness of the regolith as a biological shield for a human habitat, compared to aluminum, presently the standard shielding material. Also calculated is the shielding thickness to reduce the dose in the habitat to those recommended by International Radiation Protection Committee and by NASA for operation on the international space station. The present calculations are for the most energetic solar event of February 1956, which included high energy protons up to 1000 MeV. Results show that the lunar regolith is as effective as aluminum for shielding lunar outposts. A large thickness of the regolith ({approx}30 g/cm{sup 2}) would be needed to reduce the dose in the habitat from high energy protons below the 30 days flight crew limit of 25 Rem (or 250 mSv) and significantly more shielding would be needed ({approx}150 g/cm{sup 2}) to reduce the dose down to the limit for radiation workers of 5 Rem (or 50 mSv)

  11. Regolith Biological Shield for a Lunar Outpost from High Energy Solar Protons

    NASA Astrophysics Data System (ADS)

    Pham, Tai T.; El-Genk, Mohamed S.

    2008-01-01

    Beyond Earth atmosphere, natural space radiation from Galactic Cosmic Rays and Solar Energetic Protons (SEPs) represents a significant hazard to both manned and robotic missions. For lunar settlements, protecting astronauts from SEPs is a key safety issue that needs to be addressed by identifying appropriate shielding materials. This paper investigates the interaction of SEPs with the lunar regolith, and quantifies the effectiveness of the regolith as a biological shield for a human habitat, compared to aluminum, presently the standard shielding material. Also calculated is the shielding thickness to reduce the dose in the habitat to those recommended by International Radiation Protection Committee and by NASA for operation on the international space station. The present calculations are for the most energetic solar event of February 1956, which included high energy protons up to 1000 MeV. Results show that the lunar regolith is as effective as aluminum for shielding lunar outposts. A large thickness of the regolith (~30 g/cm2) would be needed to reduce the dose in the habitat from high energy protons below the 30 days flight crew limit of 25 Rem (or 250 mSv) and significantly more shielding would be needed (~150 g/cm2) to reduce the dose down to the limit for radiation workers of 5 Rem (or 50 mSv).

  12. Spin-spin correlations in proton-proton collisions at high energy and threshold enhancements

    SciTech Connect

    de Teramond, G.F.

    1988-05-01

    The striking effects in the spin structure observed in elastic proton collisions and the Nuclear Transparency phenomenon recently discovered at BNL are described in terms of heavy quark threshold enhancements. The deviations from scaling laws and the broadening of the angular distributions at resonance are also consistent with the introduction of new degrees of freedom in the pp system. This implies new s-channel physics. Predictions are given for the spin effects in pp collisions near 18.5 GeV/c at large p/sub T//sup 2/ where new measurements are planned. 9 refs., 4 figs.

  13. Enhancement of proton acceleration field in laser double-layer target interaction

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Kong, Q.; Kawata, S.; Izumiyama, T.; Li, X. F.; Yu, Q.; Wang, P. X.; Ma, Y. Y.

    2013-07-01

    A mechanism is proposed to enhance a proton acceleration field in laser plasma interaction. A double-layer plasma with different densities is illuminated by an intense short pulse. Electrons are accelerated to a high energy in the first layer by the wakefield. The electrons accelerated by the laser wakefield induce the enhanced target normal sheath (TNSA) and breakout afterburner (BOA) accelerations through the second layer. The maximum proton energy reaches about 1 GeV, and the total charge with an energy higher than 100 MeV is about several tens of μC/μm. Both the acceleration gradient and laser energy transfer efficiency are higher than those in single-target-based TNSA or BOA. The model has been verified by 2.5D-PIC simulations.

  14. Enhancement of proton acceleration field in laser double-layer target interaction

    SciTech Connect

    Gu, Y. J.; Kong, Q.; Li, X. F.; Yu, Q.; Wang, P. X.; Kawata, S.; Izumiyama, T.; Ma, Y. Y.

    2013-07-15

    A mechanism is proposed to enhance a proton acceleration field in laser plasma interaction. A double-layer plasma with different densities is illuminated by an intense short pulse. Electrons are accelerated to a high energy in the first layer by the wakefield. The electrons accelerated by the laser wakefield induce the enhanced target normal sheath (TNSA) and breakout afterburner (BOA) accelerations through the second layer. The maximum proton energy reaches about 1 GeV, and the total charge with an energy higher than 100 MeV is about several tens of μC/μm. Both the acceleration gradient and laser energy transfer efficiency are higher than those in single-target-based TNSA or BOA. The model has been verified by 2.5D-PIC simulations.

  15. Shielding for High-Energy Electron Accelerator Installations. National Bureau of Standards Handbook 97.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC.

    Recommendations for radiation shielding, protection, and measurement are presented. This handbook is an extension of previous recommendations for protection against radiation from--(1) high energy and power electron accelerators, (2) food processing equipment, and (3) general sterilization equipment. The new recommendations are concerned with…

  16. Production and supply of radioisotopes with high-energy particle accelerators current status and future directions

    SciTech Connect

    Srivastava, S.C.; Mausner, L.F.

    1994-03-01

    Although the production of radioisotopes in reactors or in low to medium energy cyclotrons appears to be relatively well established, especially for those isotopes that are routinely used and have a commercial market, certain isotopes can either be made only in high-energy particle accelerators or their production is more cost effective when made this way. These facilities are extremely expensive to build and operate, and isotope production is, in general, either not cost-effective or is in conflict with their primary mandate or missions which involve physics research. Isotope production using high-energy accelerators in the US, therefore, has been only an intermittent and parasitic activity. However, since a number of isotopes produced at higher energies are emerging as being potentially useful for medical and other applications, there is a renewed concern about their availability in a continuous and reliable fashion. In the US, in particular, the various aspects of the prediction and availability of radioisotopes from high-energy accelerators are presently undergoing a detailed scrutiny and review by various scientific and professional organizations as well as the Government. A number of new factors has complicated the supply/demand equation. These include considerations of cost versus needs, reliability factors, mission orientation, research and educational components, and commercial viability. This paper will focus on the present status and projected needs of radioisotope production with high-energy accelerators in the US, and will compare and examine the existing infrastructure in other countries for this purpose.

  17. High Energy Accelerator and Colliding Beam User Group: Progress report, March 1, 1988--February 28, 1989

    SciTech Connect

    Not Available

    1988-09-01

    This report discusses work carried out by the High Energy Accelerator and Colliding Beam User Group at the University of Maryland. Particular topics discussed are: OPAL experiment at LEP; deep inelastic muon interactions; B physics with the CLEO detector at CESR; further results from JADE; and search for ''small'' violation of the Pauli principle. (LSP)

  18. High energy proton-proton elastic scattering at the Large Hadron Collider and nucleon structure

    NASA Astrophysics Data System (ADS)

    Luddy, Richard Joseph

    To gain insight into the structure of the nucleon, we pursue the development of the phenomenological model of Islam et al. (IIFS model) for high energy elastic pp and p¯p scattering. We determine the energy dependence of the parameters of the IIFS model using the available elastic differential cross section data from SPS Collider and Tevatron and the known asymptotic behavior of sigmatot (s) and rho(s) from dispersion relation calculations and more recent analyses of Cudell et al. (COMPETE Collaboration). Next, we incorporate a high energy elastic valence quark-quark scattering amplitude into the model based on BFKL pomeron to describe small impact parameter (large | t|) pp collisions. Finally, we predict the pp elastic differential cross section at the unprecedented c.m. energy of s = 14.0 TeV at the Large Hadron Collider (LHC). This prediction assumes crucial significance---because of an approved experiment at LHC: TOTal and Elastic Measurement (TOTEM). The TOTEM group plans to measure pp elastic dsigma/dt at 14.0 TeV all the way from momentum transfer |t| = 0 to |t| ≃ 10 GeV 2. Their measurement will stringently test not only the diffraction and o-exchange descriptions of the original IIFS model, but also the additional valence quark-quark scattering contribution that we find to be dominant for large |t|. Successful quantitative verification of the predicted dsigma/dt will mean that our picture of the nucleon with an outer cloud of qq¯ condensed ground state, an inner core of topological baryonic charge, and a still smaller core of massless valence quarks provides a realistic description of nucleon structure.

  19. Measurements of high-energy radiation generation from laser-wakefield accelerated electron beams

    SciTech Connect

    Schumaker, W. Vargas, M.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Maksimchuk, A.; Nees, J.; Yanovsky, V.; Thomas, A. G. R.; Krushelnick, K.; Sarri, G.; Dromey, B.; Zepf, M.

    2014-05-15

    Using high-energy (∼0.5 GeV) electron beams generated by laser wakefield acceleration (LWFA), bremsstrahlung radiation was created by interacting these beams with various solid targets. Secondary processes generate high-energy electrons, positrons, and neutrons, which can be measured shot-to-shot using magnetic spectrometers, short half-life activation, and Compton scattering. Presented here are proof-of-principle results from a high-resolution, high-energy gamma-ray spectrometer capable of single-shot operation, and high repetition rate activation diagnostics. We describe the techniques used in these measurements and their potential applications in diagnosing LWFA electron beams and measuring high-energy radiation from laser-plasma interactions.

  20. Accelerating protons to therapeutic energies with ultraintense, ultraclean, and ultrashort laser pulses

    SciTech Connect

    Bulanov, Stepan S.; Brantov, Andrei; Bychenkov, Valery Yu.; Chvykov, Vladimir; Kalinchenko, Galina; Matsuoka, Takeshi; Rousseau, Pascal; Reed, Stephen; Yanovsky, Victor; Krushelnick, Karl; Litzenberg, Dale William; Maksimchuk, Anatoly

    2008-05-15

    Proton acceleration by high-intensity laser pulses from ultrathin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10{sup -11} achieved on the Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 10{sup 22} W/cm{sup 2} that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-in-cell (PIC) computer simulations of proton acceleration in the directed Coulomb explosion regime from ultrathin double-layer (heavy ions/light ions) foils of different thicknesses were performed under the anticipated experimental conditions for the Hercules laser with pulse energies from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.8 {mu}m (FWHM). In this regime heavy ions expand predominantly in the direction of laser pulse propagation enhancing the longitudinal charge separation electric field that accelerates light ions. The dependence of the maximum proton energy on the foil thickness has been found and the laser pulse characteristics have been matched with the thickness of the target to ensure the most efficient acceleration. Moreover, the proton spectrum demonstrates a peaked structure at high energies, which is required for radiation therapy. Two-dimensional PIC simulations show that a 150-500 TW laser pulse is able to accelerate protons up to 100-220 MeV energies.

  1. Accelerating protons to therapeutic energies with ultraintense, ultraclean, and ultrashort laser pulses

    PubMed Central

    Bulanov, Stepan S.; Brantov, Andrei; Bychenkov, Valery Yu.; Chvykov, Vladimir; Kalinchenko, Galina; Matsuoka, Takeshi; Rousseau, Pascal; Reed, Stephen; Yanovsky, Victor; Krushelnick, Karl; Litzenberg, Dale William; Maksimchuk, Anatoly

    2008-01-01

    Proton acceleration by high-intensity laser pulses from ultrathin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10−11 achieved on the Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 1022 W∕cm2 that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-in-cell (PIC) computer simulations of proton acceleration in the directed Coulomb explosion regime from ultrathin double-layer (heavy ions∕light ions) foils of different thicknesses were performed under the anticipated experimental conditions for the Hercules laser with pulse energies from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.8 μm (FWHM). In this regime heavy ions expand predominantly in the direction of laser pulse propagation enhancing the longitudinal charge separation electric field that accelerates light ions. The dependence of the maximum proton energy on the foil thickness has been found and the laser pulse characteristics have been matched with the thickness of the target to ensure the most efficient acceleration. Moreover, the proton spectrum demonstrates a peaked structure at high energies, which is required for radiation therapy. Two-dimensional PIC simulations show that a 150–500 TW laser pulse is able to accelerate protons up to 100–220 MeV energies. PMID:18561651

  2. Optimum angle-cut of collimator for dense objects in high-energy proton radiography

    NASA Astrophysics Data System (ADS)

    Hai-Bo, Xu; Na, Zheng

    2016-02-01

    The use of minus identity lenses with an angle-cut collimator can achieve high contrast images in high-energy proton radiography. This article presents the principles of choosing the angle-cut aperture of the collimator for different energies and objects. Numerical simulation using the Monte Carlo code Geant4 has been implemented to investigate the entire radiography for the French test object. The optimum angle-cut apertures of the collimators are also obtained for different energies. Supported by NSAF (11176001) and Science and Technology Developing Foundation of China Academy of Engineering Physics (2012A0202006)

  3. Development of an abort gap monitor for high-energy proton rings

    SciTech Connect

    Beche, Jean-Francois; Byrd, John; De Santis, Stefano; Denes, Peter; Placidi, Massimo; Turner, William; Zolotorev, Max

    2004-05-03

    The fill pattern in proton synchrotrons usually features an empty gap, longer than the abort kicker raise time, for machine protection. This gap is referred to as the ''abort gap'' and any particles, which may accumulate in it due to injection errors and diffusion between RF buckets, would be lost inside the ring, rather than in the beam dump, during the kicker firing. In large proton rings, due to the high energies involved, it is vital to monitor the build up of charges in the abort gap with a high sensitivity. We present a study of an abort gap monitor based on a photomultiplier with a gated microchannel plate, which would allow for detecting low charge densities by monitoring the synchrotron radiation emitted. We show results of beam test experiments at the Advanced Light Source using a Hamamatsu 5916U MCP-PMT and compare them to the specifications for the Large Hadron Collider

  4. Particle Simulations of a Linear Dielectric Wall Proton Accelerator

    SciTech Connect

    Poole, B R; Blackfield, D T; Nelson, S D

    2007-06-12

    The dielectric wall accelerator (DWA) is a compact induction accelerator structure that incorporates the accelerating mechanism, pulse forming structure, and switch structure into an integrated module. The DWA consists of stacked stripline Blumlein assemblies, which can provide accelerating gradients in excess of 100 MeV/meter. Blumleins are switched sequentially according to a prescribed acceleration schedule to maintain synchronism with the proton bunch as it accelerates. A finite difference time domain code (FDTD) is used to determine the applied acceleration field to the proton bunch. Particle simulations are used to model the injector as well as the accelerator stack to determine the proton bunch energy distribution, both longitudinal and transverse dynamic focusing, and emittance growth associated with various DWA configurations.

  5. Requirements of a proton beam accelerator for an accelerator-driven reactor

    SciTech Connect

    Takahashi, H.; Zhao, Y.; Tsoupas, N.; An, Y.; Yamazaki, Y.

    1997-12-31

    When the authors first proposed an accelerator-driven reactor, the concept was opposed by physicists who had earlier used the accelerator for their physics experiments. This opposition arose because they had nuisance experiences in that the accelerator was not reliable, and very often disrupted their work as the accelerator shut down due to electric tripping. This paper discusses the requirements for the proton beam accelerator. It addresses how to solve the tripping problem and how to shape the proton beam.

  6. Study of the effects of high-energy proton beams on escherichia coli

    NASA Astrophysics Data System (ADS)

    Park, Jeong Chan; Jung, Myung-Hwan

    2015-10-01

    Antibiotic-resistant bacterial infection is one of the most serious risks to public health care today. However, discouragingly, the development of new antibiotics has progressed little over the last decade. There is an urgent need for alternative approaches to treat antibiotic-resistant bacteria. Novel methods, which include photothermal therapy based on gold nano-materials and ionizing radiation such as X-rays and gamma rays, have been reported. Studies of the effects of high-energy proton radiation on bacteria have mainly focused on Bacillus species and its spores. The effect of proton beams on Escherichia coli (E. coli) has been limitedly reported. Escherichia coli is an important biological tool to obtain metabolic and genetic information and is a common model microorganism for studying toxicity and antimicrobial activity. In addition, E. coli is a common bacterium in the intestinal tract of mammals. In this research, the morphological and the physiological changes of E. coli after proton irradiation were investigated. Diluted solutions of cells were used for proton beam radiation. LB agar plates were used to count the number of colonies formed. The growth profile of the cells was monitored by using the optical density at 600 nm. The morphology of the irradiated cells was observed with an optical microscope. A microarray analysis was performed to examine the gene expression changes between irradiated samples and control samples without irradiation. E coli cells have observed to be elongated after proton irradiation with doses ranging from 13 to 93 Gy. Twenty-two were up-regulated more than twofold in proton-irradiated samples (93 Gy) compared with unexposed one.

  7. Detecting cavitation in mercury exposed to a high-energy pulsed proton beam.

    PubMed

    Manzi, Nicholas J; Chitnis, Parag V; Holt, R Glynn; Roy, Ronald A; Cleveland, Robin O; Riemer, Bernie; Wendel, Mark

    2010-04-01

    The Oak Ridge National Laboratory Spallation Neutron Source employs a high-energy pulsed proton beam incident on a mercury target to generate short bursts of neutrons. Absorption of the proton beam produces rapid heating of the mercury, resulting in the formation of acoustic shock waves and the nucleation of cavitation bubbles. The subsequent collapse of these cavitation bubbles promote erosion of the steel target walls. Preliminary measurements using two passive cavitation detectors (megahertz-frequency focused and unfocused piezoelectric transducers) installed in a mercury test target to monitor cavitation generated by proton beams with charges ranging from 0.041 to 4.1 muC will be reported on. Cavitation was initially detected for a beam charge of 0.082 muC by the presence of an acoustic emission approximately 250 mus after arrival of the incident proton beam. This emission was consistent with an inertial cavitation collapse of a bubble with an estimated maximum bubble radius of 0.19 mm, based on collapse time. The peak pressure in the mercury for the initiation of cavitation was predicted to be 0.6 MPa. For a beam charge of 0.41 muC and higher, the lifetimes of the bubbles exceeded the reverberation time of the chamber ( approximately 300 mus), and distinct windows of cavitation activity were detected, a phenomenon that likely resulted from the interaction of the reverberation in the chamber and the cavitation bubbles. PMID:20370004

  8. Detecting cavitation in mercury exposed to a high-energy pulsed proton beam

    SciTech Connect

    Manzi, Nicholas J; Chitnis, Parag V; Holt, Ray G; Roy, Ronald A; Cleveland, Robin O; Riemer, Bernie; Wendel, Mark W

    2010-01-01

    The Oak Ridge National Laboratory Spallation Neutron Source employs a high-energy pulsed proton beam incident on a mercury target to generate short bursts of neutrons. Absorption of the proton beam produces rapid heating of the mercury, resulting in the formation of acoustic shock waves and the nucleation of cavitation bubbles. The subsequent collapse of these cavitation bubbles promote erosion of the steel target walls. Preliminary measurements using two passive cavitation detectors (megahertz-frequency focused and unfocused piezoelectric transducers) installed in a mercury test target to monitor cavitation generated by proton beams with charges ranging from 0.041 to 4.1 C will be reported on. Cavitation was initially detected for a beam charge of 0.082 C by the presence of an acoustic emission approximately 250 s after arrival of the incident proton beam. This emission was consistent with an inertial cavitation collapse of a bubble with an estimated maximum bubble radius of 0.19 mm, based on collapse time. The peak pressure in the mercury for the initiation of cavitation was predicted to be 0.6 MPa. For a beam charge of 0.41 C and higher, the lifetimes of the bubbles exceeded the reverberation time of the chamber (~300 s), and distinct windows of cavitation activity were detected, a phenomenon that likely resulted from the interaction of the reverberation in the chamber and the cavitation bubbles.

  9. High energy neutrinos from primary cosmic rays accelerated in the cores of active galaxies

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Done, C.; Salamon, M. H.; Sommers, P.

    1991-01-01

    The spectra and high-energy neutrino fluxes are calculated from photomeson production in active galactic nuclei (AGN) such as quasars and Seyfert galaxies using recent UV and X-ray observations to define the photon fields and an accretion-disk shock-acceleration model for producing ultrahigh-energy cosmic rays in the AGN. Collectively AGN should produce the dominant isotropic neutrino background between 10 exp 4 and 10 exp 10 GeV. Measurement of this background could be critical in determining the energy-generation mechanism, evolution, and distribution of AGN. High-energy background spectra and spectra from bright AGN such as NGC4151 and 3C273 are predicted which should be observable with present detectors. High energy AGN nus should produce a sphere of stellar disruption around their cores which could explain their observed broad-line emission regions.

  10. Raman distributed temperature measurement at CERN high energy accelerator mixed field radiation test facility (CHARM)

    NASA Astrophysics Data System (ADS)

    Toccafondo, Iacopo; Nannipieri, Tiziano; Signorini, Alessandro; Guillermain, Elisa; Kuhnhenn, Jochen; Brugger, Markus; Di Pasquale, Fabrizio

    2015-09-01

    In this paper we present a validation of distributed Raman temperature sensing (RDTS) at the CERN high energy accelerator mixed field radiation test facility (CHARM), newly developed in order to qualify electronics for the challenging radiation environment of accelerators and connected high energy physics experiments. By investigating the effect of wavelength dependent radiation induced absorption (RIA) on the Raman Stokes and anti-Stokes light components in radiation tolerant Ge-doped multi-mode (MM) graded-index optical fibers, we demonstrate that Raman DTS used in loop configuration is robust to harsh environments in which the fiber is exposed to a mixed radiation field. The temperature profiles measured on commercial Ge-doped optical fibers is fully reliable and therefore, can be used to correct the RIA temperature dependence in distributed radiation sensing systems based on P-doped optical fibers.

  11. Laser-induced generation of ultraintense proton beams for high energy-density science

    SciTech Connect

    Badziak, J.; Jablonski, S.; Parys, P.; Rosinski, M.; Suchanska, R.; Wolowski, J.; Antici, P.; Fuchs, J.; Mancic, A.; Szydlowski, A.

    2008-06-24

    Basic properties of high-current high-intensity ion beam generation using laser-induced skin-layer ponderomotive acceleration (SLPA) are discussed. The results of a recent experiment, in which 0.35-ps laser pulse of intensity up to 2x10{sup 19} W/cm{sup 2} irradiated a thin (1-3 {mu}m) PS (plastic) or Au/PS target (PS covered by 0.1-0.2 {mu}m Au front layer), are presented. It is shown that multi-MA proton beams of current densities >1 TA/cm{sup 2} and intensities > 10{sup 18} W/cm{sup 2} at the source can be produced when the laser-target interaction conditions approach the SLPA requirements. The proton beam parameters as well as the laser-protons energy conversion efficiency substantially depend on the target structure and can be significantly increased with the use of a double-layer Au/PS target. A prospect for the application of SLPA-driven proton beams in ICF fast ignition research is outlined.

  12. Disk-accreting magnetic neutron stars as high-energy particle accelerators

    NASA Technical Reports Server (NTRS)

    Hamilton, Russell J.; Lamb, Frederick K.; Miller, M. Coleman

    1994-01-01

    Interaction of an accretion disk with the magnetic field of a neutron star produces large electromotive forces, which drive large conduction currents in the disk-magnetosphere-star circuit. Here we argue that such large conduction currents will cause microscopic and macroscopic instabilities in the magnetosphere. If the minimum plasma density in the magnetosphere is relatively low is less than or aproximately 10(exp 9)/cu cm, current-driven micro-instabilities may cause relativistic double layers to form, producing voltage differences in excess of 10(exp 12) V and accelerating charged particles to very high energies. If instead the plasma density is higher (is greater than or approximately = 10(exp 9)/cu cm, twisting of the stellar magnetic field is likely to cause magnetic field reconnection. This reconnection will be relativistic, accelerating plasma in the magnetosphere to relativistic speeds and a small fraction of particles to very high energies. Interaction of these high-energy particles with X-rays, gamma-rays, and accreting plasma may produce detectable high-energy radiation.

  13. High-Energy Ions from Near-Critical Density Plasmas via Magnetic Vortex Acceleration

    SciTech Connect

    Nakamura, Tatsufumi; Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki

    2010-09-24

    Ultraintense laser pulses propagating in near-critical density plasmas generate magnetic dipole vortex structures. In the region of decreasing plasma density, the vortex expands both in forward and lateral directions. The magnetic field pressure pushes electrons and ions to form a density jump along the vortex axis and induces a longitudinal electric field. This structure moves together with the expanding dipole vortex. The background ions located ahead of the electric field are accelerated to high energies. The energy scaling of ions generated by this magnetic vortex acceleration mechanism is derived and corroborated using particle-in-cell simulations.

  14. Rare isotope accelerator project in Korea and its application to high energy density sciences

    NASA Astrophysics Data System (ADS)

    Chung, M.; Chung, Y. S.; Kim, S. K.; Lee, B. J.; Hoffmann, D. H. H.

    2014-01-01

    As a national science project, the Korean government has recently established the Institute for Basic Science (IBS) with the goal of conducting world-class research in basic sciences. One of the core facilities for the IBS will be the rare isotope accelerator which can produce high-intensity rare isotope beams to investigate the fundamental properties of nature, and also to support a broad research program in material sciences, medical and biosciences, and future nuclear energy technologies. The construction of the accelerator is scheduled to be completed by approximately 2017. The design of the accelerator complex is optimized to deliver high average beam current on targets, and to maximize the production of rare isotope beams through the simultaneous use of Isotope Separation On-Line (ISOL) and In-Flight Fragmentation (IFF) methods. The proposed accelerator is, however, not optimal for high energy density science, which usually requires very high peak currents on the target. In this study, we present possible beam-plasma experiments that can be done within the scope of the current accelerator design, and we also investigate possible future extension paths that may enable high energy density science with intense pulsed heavy ion beams.

  15. Laser Acceleration of Monoenergetic Protons Trapped in Moving Double Layer

    SciTech Connect

    Liu, C. S.; Tripathi, V. K.; Shao, X.

    2008-10-15

    We present analytic theory of monoenergetic protons acceleration by short pulse laser irradiation on a thin foil with specific thickness suggested by Yan et al. in simulations. The laser ponderomotive force pushes the electrons forward, leaving ions behind until the space charge field balances the ponderomotive force at distance {delta}. For the optimal target thickness D = {delta}>c/{omega}{sub p}, the electron sheath piled up at the rear surface of width skin depth moves into vacuum, carrying with it the protons contained in the sheath. These protons are trapped by the self field of the electron sheath and are collectively accelerated as a double layer by the laser ponderomotive force. We present here the analytic expression for the energy of the accelerated protons as a function of time, laser intensity, wavelength, and plasma density. For example, proton energy can reach {approx_equal}200 MeV at a = 5, and pulse length 90 fs.

  16. Three-hadron angular correlations in high-energy proton-proton and nucleus-nucleus collisions from perturbative QCD

    SciTech Connect

    Ayala, Alejandro; Ortiz, Antonio; Paic, Guy; Jalilian-Marian, Jamal; Magnin, J.; Tejeda-Yeomans, Maria Elena

    2011-08-15

    We study three-hadron azimuthal angular correlations in high-energy proton-proton and central nucleus-nucleus collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider at midrapidity. We use the leading-order parton matrix elements for 2{yields}3 processes and include the effect of parton energy loss in the quark-gluon plasma using the modified fragmentation function approach. For the case when the produced hadrons have either the same or not too different momenta, we observe two away-side peaks at 2{pi}/3 and 4{pi}/3. We consider the dependence of the angular correlations on energy loss parameters that have been used in studies of single inclusive hadron production at RHIC. Our results on the angular dependence of the cross section agree well with preliminary data by the PHENIX Collaboration. We comment on the possible contribution of 2{yields}3 processes to dihadron angular correlations and how a comparison of the two processes may help characterize the plasma further.

  17. Workshop on acceleration of polarized protons: summary report

    SciTech Connect

    Lee, Y.Y.; Terwilliger, K.M.

    1982-01-01

    The workshop sessions concentrated on polarized protons in circular accelerators and storage rings. Topics such as polarized electrons were discussed only when the subject was relevant to proton phenomena. Of major interest was the possible applicability of the new idea of spin matching for crossing depolarizing resonances. On the experimental side, some remarkable new data were presented by the SATURNE II Group. They have successfully crossed both intrinsic and imperfection depolarizing resonances by the spin flip method with minimal depolarization-the first group to do so. They also obtained some results which apparently cannot be explained with our present understanding of spin phenomena. The workshop concluded that more experimental measurements are needed to understand the physics and that such studies would be very important for the future acceleration of polarized protons at KEK and the AGS. The workshop included status reports from the four laboratories which have programs of polarized particle acceleration--or approved projects to accelerate polarized protons.

  18. A prediction model for bipolar RAMs in a high energy ion/proton environment

    NASA Technical Reports Server (NTRS)

    Myers, D. K.; Price, W. E.; Nichols, D. K.

    1981-01-01

    A model has been developed which predicts the relative susceptibility of bipolar RAMs to heavy ion and proton upset. During the course of evaluating this model, physical and electrical variations were also evaluated indicating that the minimum internal signal level is the primary upset susceptibility indicator. Unfortunately, all of the physical and electrical variations expected during a normal product development cycle are in direct opposition to improved high-energy particle upset tolerance. Hence, a trade-off between highly susceptible, low power (medium speed) devices must be made against the less susceptible, higher power (high speed) equivalent device, taking into account the systems trade-off with respect to system power, software, error correction procedures and/or circuit redundancy.

  19. Production of qq pairs in proton-nucleus collisions at high energies

    SciTech Connect

    Kovchegov, Yuri V.; Tuchin, Kirill

    2006-09-01

    We calculate production of quark-antiquark pairs in high energy proton-nucleus collisions both in the quasiclassical approximation of McLerran-Venugopalan model and including quantum small-x evolution. The resulting production cross section is explicitly expressed in terms of Glauber-Mueller multiple rescatterings in the classical case and in terms of dipole-nucleus scattering amplitude in the quantum evolution case. We generalize the result of [K. Tuchin, Phys. Lett. B 593, 66 (2004).] beyond the aligned jet configurations. We expand on the earlier results of Blaizot, Gelis and Venugopalan [J. P. Blaizot, F. Gelis, and R. Venugopalan, Nucl. Phys. A743, 57 (2004).] by deriving quark production cross section including quantum evolution corrections in rapidity intervals both between the quarks and the target and between the quarks and the projectile.

  20. Production of qq¯ pairs in proton-nucleus collisions at high energies

    NASA Astrophysics Data System (ADS)

    Kovchegov, Yuri V.; Tuchin, Kirill

    2006-09-01

    We calculate production of quark-antiquark pairs in high energy proton-nucleus collisions both in the quasiclassical approximation of McLerran-Venugopalan model and including quantum small-x evolution. The resulting production cross section is explicitly expressed in terms of Glauber-Mueller multiple rescatterings in the classical case and in terms of dipole-nucleus scattering amplitude in the quantum evolution case. We generalize the result of [K. Tuchin, Phys. Lett. B 593, 66 (2004).PYLBAJ0370-269310.1016/j.physletb.2004.04.057] beyond the aligned jet configurations. We expand on the earlier results of Blaizot, Gelis and Venugopalan [J. P. Blaizot, F. Gelis, and R. Venugopalan, Nucl. Phys. A743, 57 (2004).] by deriving quark production cross section including quantum evolution corrections in rapidity intervals both between the quarks and the target and between the quarks and the projectile.

  1. Status Of The Dielectric Wall Accelerator For Proton Therapy

    SciTech Connect

    Caporaso, George J.; Chen Yujiuan; Watson, James A.; Blackfield, Don T.; Nelson, Scott D.; Poole, Brian R.; Stanley, Joel R.; Sullivan, James S.

    2011-06-01

    The Dielectric Wall Accelerator (DWA) offers the potential to produce a high gradient linear accelerator for proton therapy and other applications. The current status of the DWA for proton therapy will be reviewed. Recent progress in SiC photoconductive switch development will be presented. There are serious beam transport challenges in the DWA arising from short pulse excitation of the wall. Solutions to these transport difficulties will be discussed.

  2. Intestinal microbiota reduces genotoxic endpoints induced by high-energy protons.

    PubMed

    Maier, Irene; Berry, David M; Schiestl, Robert H

    2014-01-01

    Ionizing space radiation causes oxidative DNA damage and triggers oxidative stress responses, and compromised DNA repair mechanisms can lead to increased risk of carcinogenesis. Young adult mice with developed innate and adaptive immune systems that harbored either a conventional intestinal microbiota (CM) or an intestinal microbiota with a restricted microbial composition (RM) were irradiated with a total dose of 1 Gy delivered by high-energy protons (2.5 GeV/n, LET = 0.2-2 keV/μm) or silicon or iron ions (850 MeV/n, LET ≈ 50 keV/μm and 1 GeV/n, LET = 150 keV/μm, respectively). Six hours after whole-body irradiation, acute chromosomal DNA lesions were observed for RM mice but not CM mice. High-throughput rRNA gene sequencing of intestinal mucosal bacteria showed that Barnesiella intestinihominis and unclassified Bacterodiales were significantly more abundant in male RM mice than CM mice, and phylotype densities changed in irradiated mice. In addition, Helicobacter hepaticus and Bacteroides stercoris were higher in CM than RM mice. Elevated levels of persistently phosphorylated γ-H2AX were observed in RM mice exposed to high-energy protons compared to nonirradiated RM mice, and they also were associated with a decrease of the antioxidant glutathione in peripheral blood measured at four weeks after irradiation. After radiation exposure, CM mice showed lower levels of γ-H2AX phosphorylation than RM mice and an increase in specific RM-associated phylotypes, indicating a down-regulating force on DNA repair by differentially abundant phylotypes in RM versus a radiation-sensitive complex CM. PMID:24397477

  3. Experimental stand for studying the impact of laser-accelerated protons on biological objects

    NASA Astrophysics Data System (ADS)

    Burdonov, K. F.; Eremeev, A. A.; Ignatova, N. I.; Osmanov, R. R.; Sladkov, A. D.; Soloviev, A. A.; Starodubtsev, M. V.; Ginzburg, V. N.; Kuz'min, A. A.; Maslennikova, A. V.; Revet, G.; Sergeev, A. M.; Fuchs, J.; Khazanov, E. A.; Chen, S.; Shaykin, A. A.; Shaikin, I. A.; Yakovlev, I. V.

    2016-04-01

    An original experimental stand is presented, aimed at studying the impact of high-energy protons, produced by the laser-plasma interaction at a petawatt power level, on biological objects. In the course of pilot experiments with the energy of laser-accelerated protons up to 25 MeV, the possibility is demonstrated of transferring doses up to 10 Gy to the object of study in a single shot with the magnetic separation of protons from parasitic X-ray radiation and fast electrons. The technique of irradiating the cell culture HeLa Kyoto and measuring the fraction of survived cells is developed. The ways of optimising the parameters of proton beams and the suitable methods of their separation with respect to energy and transporting to the studied living objects are discussed. The construction of the stand is intended for the improvement of laser technologies for hadron therapy of malignant neoplasms.

  4. Investigation of efficient shock acceleration of ions using high energy lasers in low density targets

    NASA Astrophysics Data System (ADS)

    Antici, P.; Gauthier, M.; D'Humieres, E.; Albertazzi, B.; Beaucourt, C.; Böker, J.; Chen, S.; Dervieux, V.; Feugeas, J. L.; Glesser, M.; Levy, A.; Nicolai, P.; Romagnani, L.; Tikhonchuk, V.; Pepin, H.; Fuchs, J.

    2012-10-01

    Intense research is being conducted on sources of laser-accelerated ions and their applications that have the potential of becoming novel particle sources. In most experiments, a high intensity and short laser pulse interacts with a solid density target. It was recently shown that a promising way to accelerate ions to higher energies and in a collimated beam is to use under-dense or near-critical density targets instead of solid ones. In these conditions, simulations have revealed that protons are predicted to be accelerated by a collisionless shock mechanism that significantly increases their energy. We present recent experiments performed on the 100 TW LULI laser (France) and the TITAN facility at LLNL, USA. The near critical density plasma was prepared by exploding thin solid foils by a long laser pulse. The plasma density profile was controlled by varying the target thickness and the delay between the long and the short laser pulse. When exploding the target, we obtained proton energies that are comparable if not higher than what was obtained under similar laser conditions, but with solid targets which make them a promising candidate for an efficient proton source.

  5. On the threshold of proton acceleration in solar flares

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, L. I.

    1995-01-01

    Based on the reconnection theory of a flare and on recent observational and statistical findings, the problem of the initial acceleration of solar cosmic rays (SCR) is discussed. Simple estimates of the electric fields required to start the electron acceleration are obtained and the problem of proton ionization losses for overcoming the Coulomb barrier is considered. We take into account also the possible differences between proton and electron spectra from the very beginning of the acceleration process. Special attention is paid to the distribution functions of solar flare events in various parameters (peak fluxes and/or energy fluences in X-ray and radio wave bursts, in proton and electron emissions, etc.). It is shown that the distribution functions allow the interpretation of some scale and time flare parameters in terms of expected threshold effects. However, these functions are still insuffienet to evaluate the relative share of different emissions in the global energy budget of a flare. In this context, a more promising approach is to derive the direct ratio between the number of accelerated protons, Np, and total flare energy, Wf, within the frame of a certain acceleration model. It is argued that an absolute threshold for proton production (in Hudson's formulation) does not exist. Meanwhile, the flux and threshold energy of accelerated protons overcoming the Coulomb loss maximum, in fact, may depend heavily on the global output of flare energy.

  6. The Rhodotron, a new high-energy, high-power, CW electron accelerator

    NASA Astrophysics Data System (ADS)

    Jongen, Y.; Abs, M.; Capdevila, J. M.; Defrise, D.; Genin, F.; NGuyen, A.

    1994-05-01

    Over the last years, a new kind of industrial electron accelerator has been conjointly developed by the French Atomic Energy Agency (CEA) and IBA (Ion Beam Applications) in Belgium. This accelerator, called the Rhodotron, is a recirculating accelerator, operated in CW. It uses low frequencies (metric waves), that make possible the generation of continuous high-energy high-power beams. The construction of the first industrial model of the Rhodotron began in January 1992. It is a 10 MeV, 100 kW beam power unit, with an additional beam exit at 5 MeV. A target is also being developed in order to allow an efficient conversion of the electrons into X-rays. The different subsystems of this machine are now being assembled and tested. The first beam tests are scheduled for the autumn of 1993. A complete report presenting the state of development of this prototype is included in this paper.

  7. Monte Carlo approach for hadron azimuthal correlations in high energy proton and nuclear collisions

    NASA Astrophysics Data System (ADS)

    Ayala, Alejandro; Dominguez, Isabel; Jalilian-Marian, Jamal; Magnin, J.; Tejeda-Yeomans, Maria Elena

    2012-09-01

    We use a Monte Carlo approach to study hadron azimuthal angular correlations in high-energy proton-proton and central nucleus-nucleus collisions at the BNL Relativistic Heavy Ion Collider energies at midrapidity. We build a hadron event generator that incorporates the production of 2→2 and 2→3 parton processes and their evolution into hadron states. For nucleus-nucleus collisions we include the effect of parton energy loss in the quark-gluon plasma using a modified fragmentation function approach. In the presence of the medium, for the case when three partons are produced in the hard scattering, we analyze the Monte Carlo sample in parton and hadron momentum bins to reconstruct the angular correlations. We characterize this sample by the number of partons that are able to hadronize by fragmentation within the selected bins. In the nuclear environment the model allows hadronization by fragmentation only for partons with momentum above a threshold pTthresh=2.4 GeV. We argue that one should treat properly the effect of those partons with momentum below the threshold, because their interaction with the medium may lead to showers of low-momentum hadrons along the direction of motion of the original partons as the medium becomes diluted.

  8. Resistivity changes in superconducting-cavity-grade Nb following high-energy proton irradiation

    SciTech Connect

    Snead, C.L. Jr.; Hanson, A.; Greene, G.A.

    1997-12-01

    Niobium superconducting rf cavities are proposed for use in the proton LINAC accelerators for spallation-neutron applications. Because of accidental beam loss and continual halo losses along the accelerator path, concern for the degradation of the superconducting properties of the cavities with accumulating damage arises. Residual-resistivity-ratio (RRR) specimens of Nb, with a range of initial RRR`s were irradiated at room temperature with protons at energies from 200 to 2000 MeV. Four-probe resistance measurements were made at room temperature and at 4.2 K both prior to and after irradiation. Nonlinear increases in resistivity simulate expected behavior in cavity material after extended irradiation, followed by periodic anneals to room temperature: For RRR = 316 material, irradiations to (2 - 3) x 10{sup 15} p/cm{sup 2} produce degradations up to the 10% level, a change that is deemed operationally acceptable. Without. periodic warming to room temperature, the accumulated damage energy would be up to a factor of ten greater, resulting in unacceptable degradations. Likewise, should higher-RRR material be used, for the same damage energy imparted, relatively larger percentage changes in the RRR will result.

  9. Laser Radiation Pressure Accelerator for Quasi-Monoenergetic Proton Generation and Its Medical Implications

    NASA Astrophysics Data System (ADS)

    Liu, C. S.; Shao, X.; Liu, T. C.; Su, J. J.; He, M. Q.; Eliasson, B.; Tripathi, V. K.; Dudnikova, G.; Sagdeev, R. Z.; Wilks, S.; Chen, C. D.; Sheng, Z. M.

    Laser radiation pressure acceleration (RPA) of ultrathin foils of subwavelength thickness provides an efficient means of quasi-monoenergetic proton generation. With an optimal foil thickness, the ponderomotive force of the intense short-pulse laser beam pushes the electrons to the edge of the foil, while balancing the electric field due to charge separation. The electron and proton layers form a self-organized plasma double layer and are accelerated by the radiation pressure of the laser, the so-called light sail. However, the Rayleigh-Taylor instability can limit the acceleration and broaden the energy of the proton beam. Two-dimensional particle-in-cell (PIC) simulations have shown that the formation of finger-like structures due to the nonlinear evolution of the Rayleigh-Taylor instability limits the acceleration and leads to a leakage of radiation through the target by self-induced transparency. We here review the physics of quasi-monoenergetic proton generation by RPA and recent advances in the studies of energy scaling of RPA, and discuss the RPA of multi-ion and gas targets. The scheme for generating quasi-monoenergetic protons with RPA has the potential of leading to table-top accelerators as sources for producing monoenergetic 50-250 MeV protons. We also discuss potential medical implications, such as particle therapy for cancer treatment, using quasi-monoenergetic proton beams generated from RPA. Compact monoenergetic ion sources also have applications in many other areas such as high-energy particle physics, space electronics radiation testing, and fast ignition in laser fusion.

  10. Intergalactic Magnetic Field and Arrival Direction of Ultra-High-Energy Protons

    NASA Astrophysics Data System (ADS)

    Ryu, Dongsu; Das, Santabrata; Kang, Hyesung

    2010-02-01

    We studied how the intergalactic magnetic field (IGMF) affects the propagation of super-Greisen-Zatsepin-Kuz'min (GZK) protons that originate from extragalactic sources within the local GZK sphere. To this end, we set up hypothetical sources of ultra-high-energy cosmic rays (UHECRs), virtual observers, and the magnetized cosmic web in a model universe constructed from cosmological structure formation simulations. We then arranged a set of reference objects mimicking active galactic nuclei (AGNs) in the local universe, with which correlations of simulated UHECR events are analyzed. With our model IGMF, the deflection angle between the arrival direction of super-GZK protons and the sky position of their actual sources is quite large with a mean value of langθrang ~ 15° and a median value of \\tilde{θ}˜ 7°-10°. On the other hand, the separation angle between the arrival direction and the sky position of nearest reference objects is substantially smaller with langSrang ~ 3fdg5-4°, which is similar to the mean angular distance in the sky to nearest neighbors among the reference objects. This is a direct consequence of our model that the sources, observers, reference objects, and the IGMF all trace the matter distribution of the universe. The result implies that extragalactic objects lying closest to the arrival direction of UHECRs are not necessarily their actual sources. With our model for the distribution of reference objects, the fraction of super-GZK proton events, whose closest AGNs are true sources, is less than 1/3. We discussed implications of our findings for correlation studies of real UHECR events.

  11. Polarized proton acceleration at the Brookhaven AGS

    SciTech Connect

    Ahrens, L.A.

    1986-01-01

    At the conclusion of polarized proton commissioning in February 1986, protons with an average polarization of 45%, momentum of 21.7 GeV/c, and intensity of 2 x 10/sup 10/ protons per pulse, were extracted to an external polarimeter at the Brookhaven AGS. In order to maintain this polarization, five intrinsic and nearly forty imperfection depolarizing resonances had to be corrected. An apparent interaction between imperfection and intrinsic resonances occurring at very nearly the same energy was observed and the correction of imperfection resonances using ''beat'' magnetic harmonics discovered in the previous AGS commissioning run was further confirmed.

  12. Transmission calculation by empirical numerical model and Monte Carlo simulation in high energy proton radiography of thick objects

    NASA Astrophysics Data System (ADS)

    Zheng, Na; Xu, Hai-Bo

    2015-10-01

    An empirical numerical model that includes nuclear absorption, multiple Coulomb scattering and energy loss is presented for the calculation of transmission through thick objects in high energy proton radiography. In this numerical model the angular distributions are treated as Gaussians in the laboratory frame. A Monte Carlo program based on the Geant4 toolkit was developed and used for high energy proton radiography experiment simulations and verification of the empirical numerical model. The two models are used to calculate the transmission fraction of carbon and lead step-wedges in proton radiography at 24 GeV/c, and to calculate radial transmission of the French Test Object in proton radiography at 24 GeV/c with different angular cuts. It is shown that the results of the two models agree with each other, and an analysis of the slight differences is given. Supported by NSAF (11176001) and Science and Technology Developing Foundation of China Academy of Engineering Physics (2012A0202006)

  13. Proton shock acceleration in laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Marti, M.; Davies, J.; Fonseca, R. A.; Silva, L. O.; Fahlen, J.; Ren, C.; Tsung, F.; Mori, W. B.

    2003-10-01

    The formation of strong, high Mach number (2--3), electrostatic shocks by laser pulses incident on overdense plasma slabs is observed in 1 and 2-dimensional particle-in-cell simulations, for a wide range of intensities, pulse durations, target thicknesses and densities. The shocks propagate undisturbed across the plasma, accelerating the ions (protons). For dimensionless field strength parameter a_0=16 (Iλ^2 ≈ 3 × 10^20 W cm-2 μm^2, where I is intensity and λ wavelength) the highest energy protons are accelerated by the shock. A plateau in the ion spectrum provides a direct signature for shock acceleration.

  14. Present Status of the TAC Proton Accelerator Proposal

    SciTech Connect

    Akkus, B.; Bilgin, P. S.; Caliskan, A.; Yilmaz, M.; Sultansoy, S.

    2007-04-23

    Recently, conceptual design of the Turkic Accelerator Center (TAC) proposal was completed. The main goal of this proposal is a charm factory that consist of a linac-ring type electron-positron collider. In addition, synchrotron radiation from the positron ring, free electron laser from the electron linac and a GeV energy proton accelerator are proposed. The Project related with this proposal has been accepted by the Turkish State Planning Committee. It is planned that the Tecnical Design Repotr of the TAC will have been written in the next three years. In this study we consider main parameters of the TAC proton accelerator, secondary beams and their applications.

  15. Dosimetric characteristics of four PTW microDiamond detectors in high-energy proton beams

    NASA Astrophysics Data System (ADS)

    Marsolat, F.; De Marzi, L.; Patriarca, A.; Nauraye, C.; Moignier, C.; Pomorski, M.; Moignau, F.; Heinrich, S.; Tromson, D.; Mazal, A.

    2016-09-01

    Small diamond detectors are useful for the dosimetry of high-energy proton beams. However, linear energy transfer (LET) dependence has been observed in the literature with such solid state detectors. A novel synthetic diamond detector has recently become commercially available from the manufacturer PTW-Freiburg (PTW microDiamond type 60019). This study was designed to thoroughly characterize four microDiamond detectors in clinical proton beams, in order to investigate their response and their reproducibility in high LET regions. Very good dosimetric characteristics were observed for two of them, with good stability of their response (deviation less than 0.4% after a pre-irradiation dose of approximately 12 Gy), good repeatability (coefficient of variation of 0.06%) and a sensitivity of approximately 0.85 nC Gy‑1. A negligible dose rate dependence was also observed for these two microDiamonds with a deviation of the sensitivity less than 0.7% with respect to the one measured at the reference dose rate of 2.17 Gy min‑1, in the investigated dose rate range from 1.01 Gy min‑1 to 5.52 Gy min‑1. Lateral dose profile measurements showed the high spatial resolution of the microDiamond oriented with its stem perpendicular to the beam axis and with its small sensitive thickness of about 1 μm in the scanning profile direction. Finally, no significant LET dependence was found with these two diamond dosimeters in comparison to a reference ionization chamber (model IBA PPC05). These good results were in accordance to the literature. However, this study showed also a non reproducibility between the devices in terms of stability, sensitivity and LET dependence, since the two other microDiamonds characterized in this work showed different dosimetric characteristics making them not suitable for proton beam dosimetry with a maximum difference of the peak-to-plateau ratio of 6.7% relative to the reference ionization chamber in a clinical 138 MeV proton beam.

  16. Dosimetric characteristics of four PTW microDiamond detectors in high-energy proton beams.

    PubMed

    Marsolat, F; De Marzi, L; Patriarca, A; Nauraye, C; Moignier, C; Pomorski, M; Moignau, F; Heinrich, S; Tromson, D; Mazal, A

    2016-09-01

    Small diamond detectors are useful for the dosimetry of high-energy proton beams. However, linear energy transfer (LET) dependence has been observed in the literature with such solid state detectors. A novel synthetic diamond detector has recently become commercially available from the manufacturer PTW-Freiburg (PTW microDiamond type 60019). This study was designed to thoroughly characterize four microDiamond detectors in clinical proton beams, in order to investigate their response and their reproducibility in high LET regions. Very good dosimetric characteristics were observed for two of them, with good stability of their response (deviation less than 0.4% after a pre-irradiation dose of approximately 12 Gy), good repeatability (coefficient of variation of 0.06%) and a sensitivity of approximately 0.85 nC Gy(-1). A negligible dose rate dependence was also observed for these two microDiamonds with a deviation of the sensitivity less than 0.7% with respect to the one measured at the reference dose rate of 2.17 Gy min(-1), in the investigated dose rate range from 1.01 Gy min(-1) to 5.52 Gy min(-1). Lateral dose profile measurements showed the high spatial resolution of the microDiamond oriented with its stem perpendicular to the beam axis and with its small sensitive thickness of about 1 μm in the scanning profile direction. Finally, no significant LET dependence was found with these two diamond dosimeters in comparison to a reference ionization chamber (model IBA PPC05). These good results were in accordance to the literature. However, this study showed also a non reproducibility between the devices in terms of stability, sensitivity and LET dependence, since the two other microDiamonds characterized in this work showed different dosimetric characteristics making them not suitable for proton beam dosimetry with a maximum difference of the peak-to-plateau ratio of 6.7% relative to the reference ionization chamber in a clinical 138 MeV proton beam. PMID:27499356

  17. Load management strategy for Particle-In-Cell simulations in high energy particle acceleration

    NASA Astrophysics Data System (ADS)

    Beck, A.; Frederiksen, J. T.; Dérouillat, J.

    2016-09-01

    In the wake of the intense effort made for the experimental CILEX project, numerical simulation campaigns have been carried out in order to finalize the design of the facility and to identify optimal laser and plasma parameters. These simulations bring, of course, important insight into the fundamental physics at play. As a by-product, they also characterize the quality of our theoretical and numerical models. In this paper, we compare the results given by different codes and point out algorithmic limitations both in terms of physical accuracy and computational performances. These limitations are illustrated in the context of electron laser wakefield acceleration (LWFA). The main limitation we identify in state-of-the-art Particle-In-Cell (PIC) codes is computational load imbalance. We propose an innovative algorithm to deal with this specific issue as well as milestones towards a modern, accurate high-performance PIC code for high energy particle acceleration.

  18. High-energy Laser-accelerated Electron Beams for Long-range Interrogation

    SciTech Connect

    Cunningham, Nathaniel J.; Banerjee, Sudeep; Ramanathan, Vidya; Powers, Nathan; Chandler-Smith, Nate; Umstadter, Donald; Vane, Randy; Schultz, David; Beene, James; Pozzi, Sara; Clarke, Shaun

    2009-03-10

    We are studying the use of 0.1-1.0 GeV laser-accelerated electron beams as active interrogation probes for long-standoff radiography or nuclear activation of concealed special nuclear material. Use of beams in this energy range is largely unexplored, but such beams could provide notable advantages over lower-energy beams and x-rays. High-energy laser-accelerated electrons exhibit large penetration range through air and solids, and low beam divergence for both direct beams and secondary Bremsstrahlung x-rays. We present laboratory measurements of radiography and activation, using the high-power Diodes laser system at the University of Nebraska, as well as MCNP and GEANT Monte Carlo simulation results used to aid experiment design and interpretation.

  19. High-Energy Laser-Accelerated Electron Beams for Long-Range Interrogation

    SciTech Connect

    Cummingham, N. J.; Banerjee, Sudeep; Ramanathan, Vidya; Powell, Nathan; Chandler-Smith, Nate; Vane, C Randy; Schultz, David Robert; Pozzi, Sara; Clarke, Shaun; Beene, James R; Umstadter, Donald

    2009-01-01

    We are studying the use of 0.1 1.0 GeV laser-accelerated electron beams as active interrogation probes for long-standoff radiography or nuclear activation of concealed special nuclear material. Use of beams in this energy range is largely unexplored, but such beams could provide notable advantages over lower-energy beams and x-rays. High-energy laser-accelerated electrons exhibit large penetration range through air and solids, and low beam divergence for both direct beams and secondary Bremsstrahlung x-rays. We present laboratory measurements of radiography and activation, using the high-power Diodes laser system at the University of Nebraska, as well as MCNP and GEANT Monte Carlo simulation results used to aid experiment design and interpretation.

  20. Production of ACTINIUM-225 via High Energy Proton Induced Spallation of THORIUM-232

    NASA Astrophysics Data System (ADS)

    Harvey, James; Nolen, Jerry A.; Kroc, Thomas; Gomes, Itacil; Horwitz, E. Philip.; McAlister, Daniel R.

    2010-06-01

    The science of cancer research is currently expanding its use of alpha particle emitting radioisotopes. Coupled with the discovery and proliferation of molecular species that seek out and attach to tumors, new therapy and diagnostics are being developed to enhance the treatment of cancer and other diseases. This latest technology is commonly referred to as Alpha Immunotherapy (AIT). Actinium-225/Bismuth-213 is a parent/daughter alpha-emitting radioisotope pair that is highly sought after because of the potential for treating numerous diseases and its ability to be chemically compatible with many known and widely used carrier molecules (such as monoclonal antibodies and proteins/peptides). The object of this effort is to refine the simulations for producing actinium-225 at proton beam energies of 400 MeV and above up to about 8 GeV. Once completed, the simulations will be experimentally verified using 400 MeV and 8 GeV protons available at Fermi National Accelerator Laboratory. Targets will be processed at Argonne National Laboratory to separate and purify the actinium-225 that will subsequently be transferred to NorthStar laboratory facilities for product quality testing and comparison to the product quality of ORNL produced actinium-225, which is currently the industry standard. The test irradiations at FNAL will produce 1-20 mCi per day which is more than sufficient for quantitative evaluation of the proposed production process.

  1. Effects of high energy protons on the E771 silicon microstrip detector

    NASA Astrophysics Data System (ADS)

    Alexopoulos, T.; Antoniazzi, L.; Arenton, M.; Ballagh, C.; Bingham, H.; Blankman, A.; Block, M.; Boden, A.; Borodin, S.; Budagov, J.; Cao, Z. L.; Cataldi, G.; Chen, T. Y.; Clark, K.; Cline, D.; Conetti, S.; Cooper, M.; Corti, G.; Cox, B.; Creti, P.; Dukes, E.; Durandet, C.; Elia, V.; Erwin, A.; Fortney, L.; Golovatyuk, S.; Gorini, E.; Grancagnolo, F.; Haire, M.; Hanlet, P.; He, M.; Introzzi, G.; Jenkins, M.; Jennings, J.; Judd, D.; Kaeding, T.; Kononenko, W.; Kowald, W.; lanza, A.; Lau, K.; Liguori, G.; Lys, J.; Mazur, P.; McManus, A.; Misawa, S.; Mo, G.; Murphy, T.; Nelson, K.; Newcomer, M.; Panareo, M.; Ramachandran, S.; Recagni, M.; Rhoades, J.; Segal, J.; Selove, W.; Smith, R.; Spiegel, L.; Sun, J.; Tokar, S.; Torre, P.; Trischuk, J.; Trojak, T.; Tsyganov, E.; Turnbull, L.; VanBerg, R.; Wagoner, D.; Wang, C.; Wang, H. C.; Wei, C.; Yang, W.; Yao, N.; Zhang, N.; Zhang, S. N.; Zou, B.

    1993-01-01

    A silicon strip detector (SSD) system for use in very high rate experiments has been operated in Experiment E771 (Cox, 1989) at the Fermi National Accelerator laboratory. The detector electronics were designed (Swoboda, 1990; Bowden, 1990; Zimmerman, 1989; Christian, 1991) to meet the specific needs of Fermilab experiment E771 using ASIC chip sets where commercial circuits were not suitable. The electronics for the SSD were designed to operate at rates up to 60 Mhz and were operated at interaction rates up to 10 7 interaction/sec (beam rates of 2 × 10 8 proton/sec). In addition to being very fast, the detector for the 1991 run was very compact with 10000 channels of active detector in a volume fo 5cm × 5cm × 10cm. An expansion of the system to 16000 channels is planned for the next Fermilab fixed target run. The strip pitch ranged from 25 μ m in the center of the detector near the target to 100 μ m pitch at the most downstream, outer edges of the detector. The readout is a latch design with pipelined readout and appears to have single strip efficiencies of ≈ 75% even in the presence of a high radiation dose (∽ 10 14 protons/cm 2) and high leakage currents(≈ 1 nA/strip). The detector and associated amplifier electronics has presently been operated at 17° C and is designed to operate as low as 8° C.

  2. Extended Acceleration in Slot Gaps and Pulsar High-Energy Emission

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Muslimov, Alex G.; Harding, Alice K.

    2003-01-01

    We revise the physics of primary electron acceleration in the "slot gap" (SG) above the pulsar polar caps (PCs), a regime originally proposed by Arons and Scharlemann (1979) in their electrodynamic model of pulsar PCs. We employ the standard definition of the SG as a pair-free space between the last open field lines and the boundary of the pair plasma column which is expected to develop above the bulk of the PC. The rationale for our revision is that the proper treatment of primary acceleration within the pulsar SGs should take into account the effect of the narrow geometry of the gap on the electrodynamics within the gap and also to include the effect of inertial frame dragging on the particle acceleration. We show that the accelerating electric field within the gap, being significantly boosted by the effect of frame dragging, becomes reduced because of the gap geometry by a factor proportional to the square of the SG width. The combination of the effects of frame dragging and geometrical screening in the gap region naturally gives rise to a regime of extended acceleration, that is not limited to favorably curved field lines as in earlier models, and the possibility of multiple-pair production by curvature photons at very high altitudes, up to several stellar radii. We present our estimates of the characteristic SG thickness across the PC, energetics of primaries accelerated within the gap, high-energy bolometric luminosities emitted from the high altitudes in the gaps, and maximum heating luminosities produced by positrons returning from the elevated pair fronts. The estimated theoretical high-energy luminosities are in good agreement with the corresponding empirical relationships for gamma-ray pulsars. We illustrate the results of our modeling of the pair cascades and gamma-ray emission from the high altitudes in the SG for the Crab pulsar. The combination of the frame-dragging field and high-altitude SG emission enables both acceleration at the smaller

  3. Hybrid proton acceleration scheme using relativistic intense laser light

    SciTech Connect

    Andreev, A. A.; Platonov, K. Yu.; Schnuerer, M.; Prasad, R.; Ter-Avetisyan, S.

    2013-03-15

    Ion acceleration phenomena at relativistic intense laser interaction with thin foil targets are studied to find an efficient laser-target interaction concept at the conditions, where neither the ponderomotive pressure of the laser light nor the hot electron pressure is negligible. Particle in cell simulations and the analytical model are allowing to predict optimum laser-target parameters and suggesting a significant increase of proton energy if a hybrid proton acceleration scheme is used. In the proposed scenario, the laser polarisation is changed during the acceleration process: First with circularly polarised laser light the target is accelerated as a whole by the ponderamotive pressure, and then with linearly polarised laser light the electrons are heated which additionally increases the accelerating field. The calculations are in good agreement with experimental findings.

  4. Numerical studies of electron acceleration behind self-modulating proton beam in plasma with a density gradient

    NASA Astrophysics Data System (ADS)

    Petrenko, A.; Lotov, K.; Sosedkin, A.

    2016-09-01

    Presently available high-energy proton beams in circular accelerators carry enough momentum to accelerate high-intensity electron and positron beams to the TeV energy scale over several hundred meters of the plasma with a density of about 1015cm-3. However, the plasma wavelength at this density is 100-1000 times shorter than the typical longitudinal size of the high-energy proton beam. Therefore the self-modulation instability (SMI) of a long (~10 cm) proton beam in the plasma should be used to create the train of micro-bunches which would then drive the plasma wake resonantly. Changing the plasma density profile offers a simple way to control the development of the SMI and the acceleration of particles during this process. We present simulations of the possible use of a plasma density gradient as a way to control the acceleration of the electron beam during the development of the SMI of a 400 GeV proton beam in a 10 m long plasma. This work is done in the context of the AWAKE project-the proof-of-principle experiment on proton driven plasma wakefield acceleration at CERN.

  5. Quarkonium production in high energy proton-nucleus collisions: CGC meets NRQCD

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Ma, Yan-Qing; Venugopalan, Raju

    2014-01-01

    We study the production of heavy quarkonium states in high energy proton-nucleus collisions. Following earlier work of Blaizot, Fujii, Gelis, and Venugopalan, we systematically include both small x evolution and multiple scattering effects on heavy quark pair production within the Color Glass Condensate (CGC) framework. We obtain for the first time expressions in the Non-Relativistic QCD (NRQCD) factorization formalism for heavy quarkonium differential cross sections as a function of transverse momentum and rapidity. We observe that the production of color singlet heavy quark pairs is sensitive to both "quadrupole" and "dipole" Wilson line correlators, whose energy evolution is described by the Balitsky-JIMWLK equations. In contrast, the color octet channel is sensitive to dipole correlators alone. In a quasi-classical approximation, our results for the color singlet channel reduce to those of Dominguez et al. [1]. We compare our results to those obtained combining the CGC with the color evaporation model and point to qualitative differences in the two approaches.

  6. Ratio of aerosol and gases of radioactive chlorine and particle size distribution of aerosol formed by high-energy proton irradiation.

    PubMed

    Yokoyama, S; Sato, K; Manabe, K; Noguchi, H; Kaneko, H; Oki, Y; Iida, T; Tanaka, Su

    2007-01-01

    To estimate internal doses due to the inhalation of radionuclides produced by the nuclear spallation of the air nuclei in high-energy proton accelerator facilities, the physicochemical properties of radionuclides are very important. Thus, the ratio of aerosol and gases of 38Cl and 39Cl formed by irradiating argon gas-added air with a 48 MeV proton beam has been measured. Radionuclides of 38Cl and 39Cl exist as aerosol, acid gas and non-acid gas. The percentages of activity of 38Cl and 39Cl aerosols are about 80%. The number size distributions of non-radioactive aerosol were characterised by two peaks with diameters of 10-20 nm and larger than 20 nm. As a result predicted by a simple surface model, it was found that the activity size distribution of 38Cl aerosols can be regarded as that having a single peak at 120 nm. PMID:18033760

  7. Proton linear accelerators: A theoretical and historical introduction

    SciTech Connect

    Lapostolle, P.M.

    1989-07-01

    From the beginning, the development of linear accelerators has followed a number of different directions. This report surveys the basic ideas and general principles of such machines, pointing out the problems that have led to the various improvements, with the hope that it may also aid further progress. After a brief historical survey, the principal aspects of accelerator theory are covered in some detail: phase stability, focusing, radio-frequency accelerating structures, the detailed calculation of particle dynamics, and space-charge effects at high intensities. These developments apply essentially to proton and ion accelerators, and only the last chapter deals with a few aspects relative to electrons. 134 refs.

  8. Proton Injector for CW-Mode Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sherman, Joseph D.; Swenson, Donald; Guy, Frank; Love, Cody; Starling, Joel; Willis, Carl

    2009-03-01

    Numerous applications exist for CW linear accelerators with final energies in the 0.5 to 4.0 MeV proton energy range. Typical proton current at the linac output energy is 20 mA. An important subsystem for the accelerator facility is a reliable dc mode proton injector. We present here design and laboratory results for a dc, 25-keV, 30-mA proton injector. The proton source is a 2.45-GHz microwave hydrogen ion source which operates with an 875-G axial magnetic field. Low emittance, high proton fraction (>85%), beams have been demonstrated from this source. The injector uses a novel dual-solenoid magnet for matching the injector beam into a radio frequency quadrupole (RFQ) linear accelerator. Recently, a dc ion-source development program has given up to 30 mA beam current. The dual solenoid is a compact and simple design utilizing tape-wound, edge-cooled coils. The low-energy beam transport design as well as 25-keV beam matching calculations to an RFQ will also be presented.

  9. TAC Proton Accelerator Facility: The Status and Road Map

    SciTech Connect

    Algin, E.; Akkus, B.; Caliskan, A.; Yilmaz, M.; Sahin, L.

    2011-06-28

    Proton Accelerator (PA) Project is at a stage of development, working towards a Technical Design Report under the roof of a larger-scale Turkish Accelerator Center (TAC) Project. The project is supported by the Turkish State Planning Organization. The PA facility will be constructed in a series of stages including a 3 MeV test stand, a 55 MeV linac which can be extended to 100+ MeV, and then a full 1-3 GeV proton synchrotron or superconducting linac. In this article, science applications, overview, and current status of the PA Project will be given.

  10. Plasma wakefield acceleration with a modulated proton bunch

    SciTech Connect

    Caldwell, A.; Lotov, K. V.

    2011-10-15

    The plasma wakefield amplitudes which could be achieved via the modulation of a long proton bunch are investigated. We find that in the limit of long bunches compared to the plasma wavelength, the strength of the accelerating fields is directly proportional to the number of particles in the drive bunch and inversely proportional to the square of the transverse bunch size. The scaling laws were tested and verified in detailed simulations using parameters of existing proton accelerators, and large electric fields were achieved, reaching 1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found in this case.

  11. ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS.

    SciTech Connect

    WEI,J.; MACEK,R.J.

    2002-04-14

    One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures.

  12. A brief history of high power RF proton linear accelerators

    SciTech Connect

    Browne, J.C.

    1996-12-31

    The first mention of linear acceleration was in a paper by G. Ising in 1924 in which he postulated the acceleration of positive ions induced by spark discharges which produced electric fields in gaps between a series of {open_quotes}drift tubes{close_quotes}. Ising apparently was not able to demonstrate his concept, most likely due to the limited state of electronic devices. Ising`s work was followed by a seminal paper by R. Wideroe in 1928 in which he demonstrated the first linear accelerator. Wideroe was able to accelerate sodium or potassium ions to 50 keV of energy using drift tubes connected alternately to high frequency waves and to ground. Nuclear physics during this period was interested in accelerating protons, deuterons, electrons and alpha particles and not heavy ions like sodium or potassium. To accelerate the light ions required much higher frequencies than available at that time. So linear accelerators were not pursued heavily at that time. Research continued during the 1930s but the development of high frequency RF tubes for radar applications in World War 2 opened the potential for RF linear accelerators after the war. The Berkeley laboratory of E. 0. Lawrence under the leadership of Luis Alvarez developed a new linear proton accelerator concept that utilized drift tubes that required a full RF period to pass through as compared to the earlier concepts. This development resulted in the historic Berkeley 32 MeV proton linear accelerator which incorporated the {open_quotes}Alvarez drift tube{close_quotes} as the basic acceleration scheme using surplus 200 MHz radar components.

  13. Biological Effectiveness of Accelerated Protons for Chromosome Exchanges

    PubMed Central

    George, Kerry A.; Hada, Megumi; Cucinotta, Francis A.

    2015-01-01

    We have investigated chromosome exchanges induced in human cells by seven different energies of protons (5–2500 MeV) with LET values ranging from 0.2 to 8 keV/μm. Human lymphocytes were irradiated in vitro and chromosome damage was assessed using three-color fluorescence in situ hybridization chromosome painting in chemically condensed chromosomes collected during the first cell division post irradiation. The relative biological effectiveness (RBE) was calculated from the initial slope of the dose–response curve for chromosome exchanges with respect to low dose and low dose-rate γ-rays (denoted as RBEmax), and relative to acute doses of γ-rays (denoted as RBEγAcute). The linear dose–response term was similar for all energies of protons, suggesting that the decrease in LET with increasing proton energy was balanced by the increase in dose from the production of nuclear secondaries. Secondary particles increase slowly above energies of a few hundred megaelectronvolts. Additional studies of 50 g/cm2 aluminum shielded high-energy proton beams showed minor differences compared to the unshielded protons and lower RBE values found for shielded in comparison to unshielded beams of 2 or 2.5 GeV. All energies of protons produced a much higher percentage of complex-type chromosome exchanges when compared to acute doses of γ-rays. The implications of these results for space radiation protection and proton therapy are discussed. PMID:26539409

  14. Enhancing proton acceleration by using composite targets

    SciTech Connect

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-07-10

    Efficient laser ion acceleration requires high laser intensities, which can only be obtained by tightly focusing laser radiation. In the radiation pressure acceleration regime, where the tightly focused laser driver leads to the appearance of the fundamental limit for the maximum attainable ion energy, this limit corresponds to the laser pulse group velocity as well as to another limit connected with the transverse expansion of the accelerated foil and consequent onset of the foil transparency. These limits can be relaxed by using composite targets, consisting of a thin foil followed by a near critical density slab. Such targets provide guiding of a laser pulse inside a self-generated channel and background electrons, being snowplowed by the pulse, compensate for the transverse expansion. The use of composite targets results in a significant increase in maximum ion energy, compared to a single foil target case.

  15. Coronal shock acceleration and heliospheric transport of solar energetic protons

    NASA Astrophysics Data System (ADS)

    Kozarev, Kamen Asenov

    Solar flares and coronal mass ejections (CME) in the Sun's atmosphere produce highly energetic charged particles during violent bursts of activity. Protons, the most numerous and important species of these solar energetic particles (SEP), accelerate and propagate throughout the heliosphere, probing the interplanetary transport conditions. They also present a significant radiation hazard to space operations. Nevertheless, SEP acceleration in the low corona is currently not well constrained and poorly understood. In this dissertation, I examine off-limb extreme ultraviolet (EUV) wave dynamics between 1.3 and 2.0 solar radii in the corona, and I show that the EUV signatures are consistent with CME-driven shocks. Therefore, such shocks may form very low in the corona. I also develop a data-driven model for estimating the maximum energy to which protons may be accelerated in coronal shocks. I apply it to an observed shock and show that it may accelerate protons up to tens of MeV during its fast coronal passage, consistent with in-situ observations. To explore further coronal SEP acceleration by CME-driven shocks, I modify a global, 3D numerical model for interplanetary SEP transport for the coronal conditions, and adapt it to incorporate results from a realistic magnetohydrodynamic coronal and CME model. Furthermore, I apply a diffusive shock acceleration model, which explicitly treats proton energization at traveling shocks, to an MHD simulation of a real CME event. I find that the source population becomes strongly accelerated. In addition, I simulate the proton transport between the Sun and Earth, and find that the modeled fluxes are consistent with particle observations near Earth. Results suggest that CME-driven shocks in the corona may be the primary source of SEPs in solar storms. In addition, conditions along coronal shock fronts vary greatly, influencing the amount of acceleration. Finally, I model the global proton transport between Earth and 5 AU during a

  16. Detailed parametrization of neutrino and gamma-ray energy spectra from high energy proton-proton interactions

    NASA Astrophysics Data System (ADS)

    Supanitsky, A. D.

    2016-02-01

    Gamma rays and neutrinos are produced as a result of proton-proton interactions that occur in different astrophysical contexts. The detection of these two types of messengers is of great importance for the study of different physical phenomena, related to nonthermal processes, taking place in different astrophysical scenarios. Therefore, the knowledge of the energy spectrum of these two types of particles, as a function of the incident proton energy, is essential for the interpretation of the observational data. In this paper, parametrizations of the energy spectra of gamma rays and neutrinos, originated in proton-proton collisions, are presented. The energy range of the incident protons considered extends from 102 to 108 GeV . The parametrizations are based on Monte Carlo simulations of proton-proton interactions performed with the hadronic interaction models QGSJET-II-04 and EPOS-LHC, which have recently been updated with the data taken by the Large Hadron Collider.

  17. Simulation on buildup of electron cloud in a proton circular accelerator

    NASA Astrophysics Data System (ADS)

    Li, Kai-Wei; Liu, Yu-Dong

    2015-10-01

    Electron cloud interaction with high energy positive beams are believed responsible for various undesirable effects such as vacuum degradation, collective beam instability and even beam loss in high power proton circular accelerators. An important uncertainty in predicting electron cloud instability lies in the detailed processes of the generation and accumulation of the electron cloud. The simulation on the build-up of electron cloud is necessary to further studies on beam instability caused by electron clouds. The China Spallation Neutron Source (CSNS) is an intense proton accelerator facility now being built, whose accelerator complex includes two main parts: an H-linac and a rapid cycling synchrotron (RCS). The RCS accumulates the 80 MeV proton beam and accelerates it to 1.6 GeV with a repetition rate of 25 Hz. During beam injection with lower energy, the emerging electron cloud may cause serious instability and beam loss on the vacuum pipe. A simulation code has been developed to simulate the build-up, distribution and density of electron cloud in CSNS/RCS. Supported by National Natural Science Foundation of China (11275221, 11175193)

  18. Solid hydrogen target for laser driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Perin, J. P.; Garcia, S.; Chatain, D.; Margarone, D.

    2015-05-01

    The development of very high power lasers opens up new horizons in various fields, such as laser plasma acceleration in Physics and innovative approaches for proton therapy in Medicine. Laser driven proton acceleration is commonly based on the so-called Target Normal Sheath Acceleration (TNSA) mechanisms: a high power laser is focused onto a solid target (thin metallic or plastic foil) and interact with matter at very high intensity, thus generating a plasma; as a consequence "hot" electrons are produced and move into the forward direction through the target. Protons are generated at the target rear side, electrons try to escape from the target and an ultra-strong quasi-electrostatic field (~1TV/m) is generated. Such a field can accelerate protons with a wide energy spectrum (1-200 MeV) in a few tens of micrometers. The proton beam characteristics depend on the laser parameters and on the target geometry and nature. This technique has been validated experimentally in several high power laser facilities by accelerating protons coming from hydrogenated contaminant (mainly water) at the rear of metallic target, however, several research groups are investigating the possibility to perform experiments by using "pure" hydrogen targets. In this context, the low temperature laboratory at CEA-Grenoble has developed a cryostat able to continuously produce a thin hydrogen ribbon (from 40 to 100 microns thick). A new extrusion concept, without any moving part has been carried out, using only the thermodynamic properties of the fluid. First results and perspectives are presented in this paper.

  19. Accelerating slow excited state proton transfer.

    PubMed

    Stewart, David J; Concepcion, Javier J; Brennaman, M Kyle; Binstead, Robert A; Meyer, Thomas J

    2013-01-15

    Visible light excitation of the ligand-bridged assembly [(bpy)(2)Ru(a)(II)(L)Ru(b)(II)(bpy)(OH(2))(4+)] (bpy is 2,2'-bipyridine; L is the bridging ligand, 4-phen-tpy) results in emission from the lowest energy, bridge-based metal-to-ligand charge transfer excited state (L(-•))Ru(b)(III)-OH(2) with an excited-state lifetime of 13 ± 1 ns. Near-diffusion-controlled quenching of the emission occurs with added HPO(4)(2-) and partial quenching by added acetate anion (OAc(-)) in buffered solutions with pH control. A Stern-Volmer analysis of quenching by OAc(-) gave a quenching rate constant of k(q) = 4.1 × 10(8) M(-1) • s(-1) and an estimated pK(a)* value of ~5 ± 1 for the [(bpy)(2)Ru(a)(II)(L(•-))Ru(b)(III)(bpy)(OH(2))(4+)]* excited state. Following proton loss and rapid excited-state decay to give [(bpy)(2)Ru(a)(II)(L)Ru(b)(II)(bpy)(OH)(3+)] in a H(2)PO(4)(-)/HPO(4)(2-) buffer, back proton transfer occurs from H(2)PO(4)(-) to give [(bpy)(2)Ru(a)(II)(L)Ru(b)(bpy)(OH(2))(4+)] with k(PT,2) = 4.4 × 10(8) M(-1) • s(-1). From the intercept of a plot of k(obs) vs. [H(2)PO(4)(-)], k = 2.1 × 10(6) s(-1) for reprotonation by water providing a dramatic illustration of kinetically limiting, slow proton transfer for acids and bases with pK(a) values intermediate between pK(a)(H(3)O(+)) = -1.74 and pK(a)(H(2)O) = 15.7. PMID:23277551

  20. Proton acceleration from short pulse lasers interacting with ultrathin foil

    NASA Astrophysics Data System (ADS)

    Petrov, George; McGuffey, Christopher; Thomas, Alec; Krushelnick, Karl; Beg, Farhat

    2015-11-01

    Two-dimensional particle-in-cell simulations using 50 nm Si3N4 and DLC foils are compared to published experimental data of proton acceleration from ultra-thin foils (<1 μm) irradiated by short pulse lasers (30-50 fs), and some underlying physics issues pertinent to proton acceleration have been addressed. 2D particle-in-cell simulations show that the maximum proton energy scales as I2/3, stronger than Target Normal Sheath Acceleration for thick foils (>1 μm), which is typically between I1/3 and I1/2. Published experimental data were found to depend primarily on the laser energy and scale as E2/3. The different scaling laws for thick (>1 μm) and ultra-thin (<1 μm) foils are explained qualitatively as transitioning from Target Normal Sheath Acceleration to more advanced acceleration schemes such as Radiation-Induced Transparency and Radiation Pressure Acceleration regimes. This work was performed with the support of the Air Force Office of Scientific Research under grant FA9550-14-1-0282.

  1. Rapid acceleration of protons upstream of earthward propagating dipolarization fronts

    PubMed Central

    Ukhorskiy, AY; Sitnov, MI; Merkin, VG; Artemyev, AV

    2013-01-01

    [1] Transport and acceleration of ions in the magnetotail largely occurs in the form of discrete impulsive events associated with a steep increase of the tail magnetic field normal to the neutral plane (Bz), which are referred to as dipolarization fronts. The goal of this paper is to investigate how protons initially located upstream of earthward moving fronts are accelerated at their encounter. According to our analytical analysis and simplified two-dimensional test-particle simulations of equatorially mirroring particles, there are two regimes of proton acceleration: trapping and quasi-trapping, which are realized depending on whether the front is preceded by a negative depletion in Bz. We then use three-dimensional test-particle simulations to investigate how these acceleration processes operate in a realistic magnetotail geometry. For this purpose we construct an analytical model of the front which is superimposed onto the ambient field of the magnetotail. According to our numerical simulations, both trapping and quasi-trapping can produce rapid acceleration of protons by more than an order of magnitude. In the case of trapping, the acceleration levels depend on the amount of time particles stay in phase with the front which is controlled by the magnetic field curvature ahead of the front and the front width. Quasi-trapping does not cause particle scattering out of the equatorial plane. Energization levels in this case are limited by the number of encounters particles have with the front before they get magnetized behind it. PMID:26167430

  2. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-09-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  3. The slingshot effect: A possible new laser-driven high energy acceleration mechanism for electrons

    SciTech Connect

    Fiore, Gaetano; Fedele, Renato; Angelis, Umberto de

    2014-11-15

    We show that under appropriate conditions the impact of a very short and intense laser pulse onto a plasma causes the expulsion of surface electrons with high energy in the direction opposite to the one of the propagations of the pulse. This is due to the combined effects of the ponderomotive force and the huge longitudinal field arising from charge separation (“slingshot effect”). The effect should also be present with other states of matter, provided the pulse is sufficiently intense to locally cause complete ionization. An experimental test seems to be feasible and, if confirmed, would provide a new extraction and acceleration mechanism for electrons, alternative to traditional radio-frequency-based or laser-wake-field ones.

  4. Mount Aragats as a stable electron accelerator for atmospheric high-energy physics research

    NASA Astrophysics Data System (ADS)

    Chilingarian, Ashot; Hovsepyan, Gagik; Mnatsakanyan, Eduard

    2016-03-01

    Observation of the numerous thunderstorm ground enhancements (TGEs), i.e., enhanced fluxes of electrons, gamma rays, and neutrons detected by particle detectors located on the Earth's surface and related to the strong thunderstorms above it, helped to establish a new scientific topic—high-energy physics in the atmosphere. Relativistic runaway electron avalanches (RREAs) are believed to be a central engine initiating high-energy processes in thunderstorm atmospheres. RREAs observed on Mount Aragats in Armenia during the strongest thunderstorms and simultaneous measurements of TGE electron and gamma-ray energy spectra proved that RREAs are a robust and realistic mechanism for electron acceleration. TGE research facilitates investigations of the long-standing lightning initiation problem. For the last 5 years we were experimenting with the "beams" of "electron accelerators" operating in the thunderclouds above the Aragats research station. Thunderstorms are very frequent above Aragats, peaking in May-June, and almost all of them are accompanied with enhanced particle fluxes. The station is located on a plateau at an altitude 3200 asl near a large lake. Numerous particle detectors and field meters are located in three experimental halls as well as outdoors; the facilities are operated all year round. All relevant information is being gathered, including data on particle fluxes, fields, lightning occurrences, and meteorological conditions. By the example of the huge thunderstorm that took place at Mount Aragats on August 28, 2015, we show that simultaneous detection of all the relevant data allowed us to reveal the temporal pattern of the storm development and to investigate the atmospheric discharges and particle fluxes.

  5. Radiation protection challenges in the management of radioactive waste from high-energy accelerators.

    PubMed

    Ulrici, Luisa; Algoet, Yvon; Bruno, Luca; Magistris, Matteo

    2015-04-01

    The European Laboratory for Particle Physics (CERN) has operated high-energy accelerators for fundamental physics research for nearly 60 y. The side-product of this activity is the radioactive waste, which is mainly generated as a result of preventive and corrective maintenance, upgrading activities and the dismantling of experiments or accelerator facilities. Prior to treatment and disposal, it is common practice to temporarily store radioactive waste on CERN's premises and it is a legal requirement that these storage facilities are safe and secure. Waste treatment typically includes sorting, segregation, volume and size reduction and packaging, which will depend on the type of component, its chemical composition, residual activity and possible surface contamination. At CERN, these activities are performed in a dedicated waste treatment centre under the supervision of the Radiation Protection Group. This paper gives an overview of the radiation protection challenges in the conception of a temporary storage and treatment centre for radioactive waste in an accelerator facility, based on the experience gained at CERN. The CERN approach consists of the classification of waste items into 'families' with similar radiological and physical-chemical properties. This classification allows the use of specific, family-dependent techniques for radiological characterisation and treatment, which are simultaneously efficient and compliant with best practices in radiation protection. The storage was planned on the basis of radiological and other possible hazards such as toxicity, pollution and fire load. Examples are given of technical choices for the treatment and radiological characterisation of selected waste families, which could be of interest to other accelerator facilities. PMID:25377753

  6. Klystron based high power rf system for proton accelerator

    SciTech Connect

    Pande, Manjiri; Shrotriya, Sandip; Sharma, Sonal; Patel, Niranjan; Handu, Verander E-mail: manjiri08@gmail.com

    2011-07-01

    As a part of ADS program a proton accelerator (20 MeV, 30 mA) and its high power RF systems (HPRF) are being developed in BARC. This paper explains design details of this klystron based HPRF system. (author)

  7. Comparative Studies of Hard X-Ray Spectral Evolution in Solar Flares with High-Energy Proton Events Observed at Earth

    NASA Astrophysics Data System (ADS)

    Kiplinger, Alan L.

    1995-11-01

    correctly predicted associations of 22 out of 23 SESC events, for a 96% success rate, while 700 out of 708 flares were projected to be correct rejections with no associated proton events. The data suggest that progressive hardening is a diagnostic of high-energy particle acceleration of electrons and of protons and that it is not a manifestation of the "big flare syndrome" which asserts that the largest flares are associated with many or most known phenomena. There also appears to be an approximate relationship between the timescales (FWHM) of progressively hardening X-ray peaks and the cube of the interplanetary peak proton fluxes. The strong associations of particular hard X-ray characteristics and interplanetary proton events are of interest both on physical grounds and because the techniques employed can be directly adapted into a practical means of predicting which events are most likely to be associated with large interplanetary proton events that pose threats to humans in space and to spacecraft.

  8. High-efficiency deflection of high energy protons due to channeling along the <110> axis of a bent silicon crystal

    NASA Astrophysics Data System (ADS)

    Scandale, W.; Arduini, G.; Butcher, M.; Cerutti, F.; Garattini, M.; Gilardoni, S.; Lechner, A.; Masi, A.; Mirarchi, D.; Montesano, S.; Redaelli, S.; Rossi, R.; Smirnov, G.; Breton, D.; Burmistrov, L.; Chaumat, V.; Dubos, S.; Maalmi, J.; Puill, V.; Stocchi, A.; Bagli, E.; Bandiera, L.; Germogli, G.; Guidi, V.; Mazzolari, A.; Dabagov, S.; Murtas, F.; Addesa, F.; Cavoto, G.; Iacoangeli, F.; Galluccio, F.; Afonin, A. G.; Chesnokov, Yu. A.; Durum, A. A.; Maisheev, V. A.; Sandomirskiy, Yu. E.; Yanovich, A. A.; Kovalenko, A. D.; Taratin, A. M.; Denisov, A. S.; Gavrikov, Yu. A.; Ivanov, Yu. M.; Lapina, L. P.; Malyarenko, L. G.; Skorobogatov, V. V.; James, T.; Hall, G.; Pesaresi, M.; Raymond, M.

    2016-09-01

    A deflection efficiency of about 61% was observed for 400 GeV/c protons due to channeling, most strongly along the <110> axis of a bent silicon crystal. It is comparable with the deflection efficiency in planar channeling and considerably larger than in the case of the <111> axis. The measured probability of inelastic nuclear interactions of protons in channeling along the <110> axis is only about 10% of its amorphous level whereas in channeling along the (110) planes it is about 25%. High efficiency deflection and small beam losses make this axial orientation of a silicon crystal a useful tool for the beam steering of high energy charged particles.

  9. Acceleration of electrons by the wake field of proton bunches

    SciTech Connect

    Ruggiero, A.G.

    1986-01-01

    This paper discusses a novel idea to accelerate low-intensity bunches of electrons (or positrons) by the wake field of intense proton bunches travelling along the axis of a cylindrical rf structure. Accelerating gradients in excess of 100 MeV/m and large ''transformer ratios'', which allow for acceleration of electrons to energies in the TeV range, are calculated. A possible application of the method is an electron-positron linear collider with luminosity of 10/sup 33/ cm/sup -2/ s/sup -1/. The relatively low cost and power consumption of the method is emphasized.

  10. Canted-Cosine-Theta Superconducting Accelerator Magnets for High Energy Physics and Ion Beam Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Brouwer, Lucas Nathan

    Advances in superconducting magnet technology have historically enabled the construction of new, higher energy hadron colliders. Looking forward to the needs of a potential future collider, a significant increase in magnet field and performance is required. Such a task requires an open mind to the investigation of new design concepts for high field magnets. Part I of this thesis will present an investigation of the Canted-Cosine-Theta (CCT) design for high field Nb3Sn magnets. New analytic and finite element methods for analysis of CCT magnets will be given, along with a discussion on optimization of the design for high field. The design, fabrication, and successful test of the 2.5 T NbTi dipole CCT1 will be presented as a proof-of-principle step towards a high field Nb3Sn magnet. Finally, the design and initial steps in the fabrication of the 16 T Nb3Sn dipole CCT2 will be described. Part II of this thesis will investigate the CCT concept extended to a curved magnet for use in an ion beam therapy gantry. The introduction of superconducting technology in this field shows promise to reduce the weight and cost of gantries, as well as open the door to new beam optics solutions with high energy acceptance. An analytic approach developed for modeling curved CCT magnets will be presented, followed by a design study of a superconducting magnet for a proton therapy gantry. Finally, a new magnet concept called the "Alternating Gradient CCT" (AG-CCT) will be introduced. This concept will be shown to be a practical magnet solution for achieving the alternating quadrupole fields desired for an achromatic gantry, allowing for the consideration of treatment with minimal field changes in the superconducting magnets. The primary motivation of this thesis is to share new developments for Canted-Cosine-Theta superconducting magnets, with the hope this design will improve technology for high energy physics and ion beam cancer therapy.

  11. Effective generation of the spread-out-Bragg peak from the laser accelerated proton beams using a carbon-proton mixed target.

    PubMed

    Yoo, Seung Hoon; Cho, Ilsung; Cho, Sungho; Song, Yongkeun; Jung, Won-Gyun; Kim, Dae-Hyun; Shin, Dongho; Lee, Se Byeong; Pae, Ki-Hong; Park, Sung Yong

    2014-12-01

    Conventional laser accelerated proton beam has broad energy spectra. It is not suitable for clinical use directly, so it is necessary for employing energy selection system. However, in the conventional laser accelerated proton system, the intensity of the proton beams in the low energy regime is higher than that in the high energy regime. Thus, to generate spread-out-Bragg peak (SOBP), stronger weighting value to the higher energy proton beams is needed and weaker weighting value to the lower energy proton beams is needed, which results in the wide range of weighting values. The purpose of this research is to investigate a method for efficient generating of the SOBP with varying magnetic field in the energy selection system using a carbon-proton mixture target. Energy spectrum of the laser accelerated proton beams was acquired using Particle-In-Cell simulations. The Geant4 Monte Carlo simulation toolkit was implemented for energy selection, particle transportation, and dosimetric property measurement. The energy selection collimator hole size of the energy selection system was changed from 1 to 5 mm in order to investigate the effect of hole size on the dosimetric properties for Bragg peak and SOBP. To generate SOBP, magnetic field in the energy selection system was changed during beam irradiation with each beam weighting factor. In this study, our results suggest that carbon-proton mixture target based laser accelerated proton beams can generate quasi-monoenergetic energy distribution and result in the efficient generation of SOBP. A further research is needed to optimize SOBP according to each range and modulated width using an optimized weighting algorithm. PMID:25154880

  12. Lattice design and beam dynamics studies of the high energy beam transport line in the RAON heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Jin, Hyunchang; Jang, Ji-Ho; Jang, Hyojae; Jeon, Dong-O.

    2015-12-01

    In RAON heavy ion accelerator, beams generated by superconducting electron cyclotron resonance ion source (ECR-IS) or Isotope Separation On-Line (ISOL) system are accelerated by lower energy superconducting linac and high energy superconducting linac. The accelerated beams are used in the high energy experimental hall which includes bio-medical and muon-SR facilities, after passing through the high energy beam transport lines. At the targets of those two facilities, the stable and small beams meeting the requirements rigorously are required in the transverse plane. Therefore the beams must be safely sent to the targets and simultaneously satisfy the two requirements, the achromatic condition and the mid-plane symmetric condition, of the targets. For this reason, the lattice design of the high energy beam transport lines in which the long deflecting sections are included is considered as a significant issue in the RAON accelerator. In this paper, we will describe the calculated beam optics satisfying the conditions and present the result of particle tracking simulations with the designed lattice of the high energy beam transport lines in the RAON accelerator. Also, the orbit distortion caused by the machine imperfections and the orbit correction with correctors will be discussed.

  13. A high brightness proton injector for the Tandetron accelerator at Jožef Stefan Institute

    NASA Astrophysics Data System (ADS)

    Pelicon, Primož; Podaru, Nicolae C.; Vavpetič, Primož; Jeromel, Luka; Ogrinc Potocnik, Nina; Ondračka, Simon; Gottdang, Andreas; Mous, Dirk J. M.

    2014-08-01

    Jožef Stefan Institute recently commissioned a high brightness H- ion beam injection system for its existing tandem accelerator facility. Custom developed by High Voltage Engineering Europa, the multicusp ion source has been tuned to deliver at the entrance of the Tandetron™ accelerator H- ion beams with a measured brightness of 17.1 A m-2 rad-2 eV-1 at 170 μA, equivalent to an energy normalized beam emittance of 0.767 π mm mrad MeV1/2. Upgrading the accelerator facility with the new injection system provides two main advantages. First, the high brightness of the new ion source enables the reduction of object slit aperture and the reduction of acceptance angle at the nuclear microprobe, resulting in a reduced beam size at selected beam intensity, which significantly improves the probe resolution for micro-PIXE applications. Secondly, the upgrade strongly enhances the accelerator up-time since H and He beams are produced by independent ion sources, introducing a constant availability of 3He beam for fusion-related research with NRA. The ion beam particle losses and ion beam emittance growth imply that the aforementioned beam brightness is reduced by transport through the ion optical system. To obtain quantitative information on the available brightness at the high-energy side of the accelerator, the proton beam brightness is determined in the nuclear microprobe beamline. Based on the experience obtained during the first months of operation for micro-PIXE applications, further necessary steps are indicated to obtain optimal coupling of the new ion source with the accelerator to increase the normalized high-energy proton beam brightness at the JSI microprobe, currently at 14 A m-2 rad-2 eV-1, with the output current at 18% of its available maximum.

  14. First measurements of laser-accelerated proton induced luminescence

    SciTech Connect

    Floquet, V.; Ceccotti, T.; Dobosz Dufrenoy, S.; Bonnaud, G.; Monot, P.; Martin, Ph.; Gremillet, L.

    2012-09-15

    We present our first results about laser-accelerated proton induced luminescence in solids. In the first part, we describe the optimization of the proton source as a function of the target thickness as well as the laser pulse duration and energy. Due to the ultra high contrast ratio of our laser beam, we succeeded in using targets ranging from the micron scale down to nanometers thickness. The two optimal thicknesses we put in evidence are in good agreement with numerical simulations. Laser pulse duration shows a small influence on proton maximum energy, whereas the latter turns out to vary almost linearly as a function of laser energy. Thanks to this optimisation work, we have been able to acquire images of the proton energy deposition in a solid scintillator.

  15. Application of ILC superconducting cavities for acceleration of protons

    SciTech Connect

    Ostroumov, P.N.; Aseev, V.N.; Gonin, I.V.; Rusnak, B.; /LLNL, Livermore

    2007-10-01

    Beam acceleration in the International Linear Collider (ILC) will be provided by 9-cell 1300 MHz superconducting (SC) cavities. The cavities are designed for effective acceleration of charged particles moving with the speed of light and are operated on {pi}-mode to provide maximum accelerating gradient. Significant R&D effort has been devoted to develop ILC SC technology and its RF system which resulted excellent performance of ILC cavities. Therefore, the proposed 8-GeV proton driver in Fermilab is based on ILC cavities above {approx}1.2 GeV. The efficiency of proton beam acceleration by ILC cavities drops fast for lower velocities and it was proposed to develop squeezed ILC-type (S-ILC) cavities operating at 1300 MHz and designed for {beta}{sub G} = 0.81, geometrical beta, to accelerate protons or H{sup -} from {approx}420 MeV to 1.2 GeV. This paper discusses the possibility of avoiding the development of new {beta}{sub G} = 0.81 cavities by operating ILC cavities on 8/9{pi}-mode of standing wave oscillations.

  16. Acceleration of High Energy Cosmic Rays in the Nonlinear Shock Precursor

    NASA Astrophysics Data System (ADS)

    Derzhinsky, F.; Diamond, P. H.; Malkov, M. A.

    2006-10-01

    The problem of understanding acceleration of very energetic cosmic rays to energies above the 'knee' in the spectrum at 10^15-10^16eV remains one of the great challenges in modern physics. Recently, we have proposed a new approach to understanding high energy acceleration, based on exploiting scattering of cosmic rays by inhomogenities in the compressive nonlinear shock precursor, rather than by scattering across the main shock, as is conventionally assumed. We extend that theory by proposing a mechanism for the generation of mesoscale magnetic fields (krg<1, where rg is the cosmic ray gyroradius). The mechanism is the decay or modulational instability of resonantly generated Alfven waves scattering off ambient density perturbations in the precursors. Such perturbations can be produced by Drury instability. This mechanism leads to the generation of longer wavelength Alfven waves, thus enabling the confinement of higher energy particles. A simplified version of the theory, cast in the form of a Fokker-Planck equation for the Alfven population, will also be presented. This process also limits field generation on rg scales.

  17. Accelerating piston action and plasma heating in high-energy density laser plasma interactions

    NASA Astrophysics Data System (ADS)

    Levy, M. C.; Wilks, S. C.; Baring, M. G.

    2013-03-01

    In the field of high-energy density physics (HEDP), lasers in both the nanosecond and picosecond regimes can drive conditions in the laboratory relevant to a broad range of astrophysical phenomena, including gamma-ray burst afterglows and supernova remnants. In the short-pulse regime, the strong light pressure (>Gbar) associated ultraintense lasers of intensity I > 1018 W/cm2 plays a central role in many HEDP applications. Yet, the behavior of this nonlinear pressure mechanism is not well-understood at late time in the laser-plasma interaction. In this paper, a more realistic treatment of the laser pressure 'hole boring' process is developed through analytical modeling and particle-in-cell simulations. A simple Liouville code capturing the phase space evolution of ponderomotively-driven ions is employed to distill effects related to plasma heating and ion bulk acceleration. Taking into account these effects, our results show that the evolution of the laser-target system encompasses ponderomotive expansion, equipartition, and quasi-isothermal expansion epochs. These results have implications for light piston-driven ion acceleration scenarios, and astrophysical applications where the efficiencies of converting incident Poynting flux into bulk plasma flow and plasma heat are key unknown parameters.

  18. Luminescent tracks of high-energy photoemitted electrons accelerated by plasmonic fields

    NASA Astrophysics Data System (ADS)

    Di Vece, Marcel; Giannakoudakis, Giorgos; Bjørkøy, Astrid; Tang, Wingjohn

    2015-12-01

    The emission of an electron from a metal nanostructure under illumination and its subsequent acceleration in a plasmonic field forms a platform to extend these phenomena to deposited nanoparticles, which can be studied by state-of-the-art confocal microscopy combined with femtosecond optical excitation. The emitted and accelerated electrons leave defect tracks in the immersion oil, which can be revealed by thermoluminescence. These photographic tracks are read out with the confocal microscope and have a maximum length of about 80 μm, which corresponds to a kinetic energy of about 100 keV. This energy is consistent with the energy provided by the intense laser pulse combined with plasmonic local field enhancement. The results are discussed within the context of the rescattering model by which electrons acquire more energy. The visualization of electron tracks originating from plasmonic field enhancement around a gold nanoparticle opens a new way to study with confocal microscopy both the plasmonic properties of metal nano objects as well as high energy electron interaction with matter.

  19. Emittance measurements from the LLUMC proton accelerator

    NASA Astrophysics Data System (ADS)

    Coutrakon, G.; Gillespie, G. H.; Hubbard, J.; Sanders, E.

    2005-12-01

    A new method of calculating beam emittances at the extraction point of a particle accelerator is presented. The technique uses the optimization programs NPSOL and MINOS developed at Stanford University in order to determine the initial values of beam size, divergence and correlation parameters (i.e. beam sigma matrix, σij) that best fit measured beam parameters. These σij elements are then used to compute the Twiss parameters α, β, and the phase space area, ε, of the beam at the extraction point. Beam size measurements in X and Y throughout the transport line were input to the optimizer along with the magnetic elements of bends, quads, and drifts. The σij parameters were optimized at the accelerator's extraction point by finding the best agreement between these measured beam sizes and those predicted by TRANSPORT. This expands upon a previous study in which a "trial and error" technique was used instead of the optimizer software, and which yielded similar results. The Particle Beam Optics Laboratory (PBO Lab™) program used for this paper integrates particle beam optics and other codes into a single intuitive graphically-based computing environment. This new software provides a seamless interface between the NPSOL and MINOS optimizer and TRANSPORT calculations. The results of these emittance searches are presented here for the eight clinical energies between 70 and 250 MeV currently being used at LLUMC.

  20. Niobium cavity development for the high-energy linac of the rare isotope accelerator

    SciTech Connect

    D. Barni; C. Pagani; P. Pierini; C. Compton; T. Grimm; W. Hartung; H. Podlech; R. York; G. Ciovati; P. Kneisel

    2001-08-01

    The Rare Isotope Accelerator (RIA) is being designed to supply an intense beam of exotic isotopes for nuclear physics research [1]. Superconducting cavities are to be used to accelerate the CW beam of heavy ions to 400 MeV per nucleon, with a beam power of up to 400 kW. Because of the varying velocity of the ion beam along the linac, a number of different types of superconducting structures are needed. The RIA linac will accelerate heavy ions over the same velocity range as the proton linac for the Spallation Neutron Source (SNS). It was decided to use the 6-cell axisymmetric 805 MHz cavities and cryostats of SNS for the downstream portion of the RIA linac, thereby saving the non-recurring development and engineering costs. For additional cost saving, it was decided to extend the SNS multi-cell axisymmetric cavity design to lower velocity, {beta} = v/c = 0.4, using the same cryostats and RF systems. Axisymmetric cavities will thus constitute about three-quarters of RIA's total accelerating voltage, and most of that voltage will be provided by cavities already developed for SNS. The axisymmetric cavities will accelerate the RIA beam from {beta} = 0.4 to {beta} = 0.72. This velocity range can be efficiently covered with two different types of 6-cell cavities, one with a geometric {beta}, {beta}{sub g}, of 0.47, and the other with a {beta}{sub g} of 0.61. The {beta}{sub g} = 0.61 cavity will be of the existing SNS design; some {beta}{sub g} = 0.81 SNS cavities may also be desired at the end of the RIA linac for acceleration of light ions above 400 MeV per nucleon. Prototypes for both {beta}{sub g} = 0.61 and {beta}{sub g} = 0.81 have been fabricated and tested [2]. The {beta}{sub g} = 0.47 cavity is the focus of the present work. The reduction in {beta}{sub g} to 0.47 results in less favourable electromagnetic and mechanical properties, and opens up the possibility of multipacting, but several groups have already designed and prototyped cavities in this range. These

  1. Acceleration of Ultra-Low Emittance Proton and Ion Beams with High Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Cowan, Thomas E.

    2002-11-01

    Intense beams of several MeV protons and ions, generated by the interaction of high-intensity short pulse lasers with thin foils, have been observed by many researchers in recent years.(S.P. Hatchett et al., Phys. Plasmas 7, 2076 (2000); T.E. Cowan et al., Nucl. Inst. Meth. A 455, 130 (2000); R.A. Snavely et al., Phys. Rev. Lett. 85, 2945 (2000); S.C. Wilks et al., Phys. Plasmas 8, 532 (2000); E. Clark et al., Phys. Rev. Lett. 84, 670 (2000).) In experiments performed at the 100 TW LULI laser, we have succeeded to control the ion acceleration process to produce ultra high quality proton beams, whose transverse emittance is <0.006 π mm-mrad (rms-normalized), a factor of 100 lower than is typical of conventional RF linear accelerators. Within the envelope of the entire beam, we could focus individual proton beamlets to 100 nm spatial scales. This required control of the laser-plasma interaction, of the transport of MA currents of relativistic electrons through the target substrate, and of the surface topology and source material layering on the target foil rear-surface.(M. Roth et al., Phys. Rev. ST Accel. Beams 5, 061002 (2002).) By varying the source material, we also accelerated light ion beams, such as He-like fluorine, to over 5 MeV/nucleon.(M. Hegelich et al., Phys. Rev. Lett. 89, 085002 (2002).) From PIC simulations we understand the highest-energy and lowest-divergence proton acceleration as a transient laser-driven virtual cathode effect occurring at the target rear-surface. We have also confirmed the acceleration of ions from the front surface (A. Maksimchuk et al., Phys. Rev. Lett. 84, 4108 (2000).), which we find exhibits an intense low-energy component, but only a tenuous high-energy component, in agreement with PIC simulations. This work was performed with corporate support of General Atomics.

  2. Using high-energy proton fluence to improve risk prediction for consequences of solar particle events

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee Y.; Hayat, Matthew J.; Feiveson, Alan H.; Cucinotta, Francis A.

    2009-12-01

    The potential for exposure to large solar particle events (SPEs) with high energy levels is a major concern during interplanetary transfer and extra-vehicular activities (EVAs) on the lunar and Mars surface. Previously, we have used data from the last 5 solar cycles to estimate percentiles of dose to a typical blood-forming organ (BFO) for a hypothetical astronaut in a nominally shielded spacecraft during a 120-d lunar mission. As part of this process, we made use of complete energy spectra for 34 large historical SPEs to calculate what the BFO mGy-Eq dose would have been in the above lunar scenario for each SPE. From these calculated doses, we then developed a prediction model for BFO dose based solely on an assumed value of integrated fluence above 30 MeV ( Φ30) for an otherwise unspecified future SPE. In this study, we reasoned that since BFO dose is determined more by protons with higher energies than by those with lower energies, more accurate BFO dose prediction models could be developed using integrated fluence above 60 ( Φ60) and above 100 MeV ( Φ100) as predictors instead of Φ30. However to calculate the unconditional probability of a BFO dose exceeding a pre-specified limit ("BFO dose risk"), one must also take into account the distribution of the predictor ( Φ30,Φ60, or Φ100), as estimated from historical SPEs. But Φ60 and Φ100 have more variability, and less available historical information on which to estimate their distributions over many SPE occurrences, than does Φ30. Therefore, when estimating BFO dose risk there is a tradeoff between increased BFO dose prediction at a given energy threshold and decreased accuracy of models for describing the distribution of that threshold over future SPEs as the threshold increases. Even when taking the second of these two factors into account, we still arrived at the conclusion that overall prediction improves as the energy level threshold increases from 30 to 60 to 100 MeV. These results can be applied

  3. The non-orthogonal fixed beam arrangement for the second proton therapy facility at the National Accelerator Center

    NASA Astrophysics Data System (ADS)

    Schreuder, A. N.; Jones, D. T. L.; Conradie, J. L.; Fourie, D. T.; Botha, A. H.; Müller, A.; Smit, H. A.; O'Ryan, A.; Vernimmen, F. J. A.; Wilson, J.; Stannard, C. E.

    1999-06-01

    The medical user group at the National Accelerator Center (NAC) is currently unable to treat all eligible patients with high energy protons. Developing a second proton treatment room is desirable since the 200 MeV proton beam from the NAC separated sector cyclotron is currently under-utilized during proton therapy sessions. During the patient positioning phase in one treatment room, the beam could be used for therapy in a second room. The second proton therapy treatment room at the NAC will be equipped with two non-orthogonal beam lines, one horizontal and one at 30 degrees to the vertical. The two beams will have a common isocentre. This beam arrangement together with a versatile patient positioning system (commercial robot arm) will provide the radiation oncologist with a diversity of possible beam arrangements and offers a reasonable cost-effective alternative to an isocentric gantry.

  4. The non-orthogonal fixed beam arrangement for the second proton therapy facility at the National Accelerator Center

    SciTech Connect

    Schreuder, A. N.; Jones, D. T. L.; Conradie, J. L.; Fourie, D. T.; Botha, A. H.; Mueller, A.; Smit, H. A.; O'Ryan, A.; Vernimmen, F. J. A.; Wilson, J.; Stannard, C. E.

    1999-06-10

    The medical user group at the National Accelerator Center (NAC) is currently unable to treat all eligible patients with high energy protons. Developing a second proton treatment room is desirable since the 200 MeV proton beam from the NAC separated sector cyclotron is currently under-utilized during proton therapy sessions. During the patient positioning phase in one treatment room, the beam could be used for therapy in a second room. The second proton therapy treatment room at the NAC will be equipped with two non-orthogonal beam lines, one horizontal and one at 30 degrees to the vertical. The two beams will have a common isocentre. This beam arrangement together with a versatile patient positioning system (commercial robot arm) will provide the radiation oncologist with a diversity of possible beam arrangements and offers a reasonable cost-effective alternative to an isocentric gantry.

  5. Contributions from Ultraviolet Spectroscopy to the Prediction of High-energy Proton Hazards from CME Shocks

    NASA Astrophysics Data System (ADS)

    Lin, J.; Raymond, J. C.; Cranmer, S. R.; Kohl, J. L.

    2004-05-01

    A significant potential hazard to astronauts and their equipment in interplanetary space is the relativistic proton flux produced by coronal mass ejections (CMEs) and solar flares. The longest-duration phase of solar energetic particle (SEP) activity is believed to come from the CME shock as it propagates through the extended corona and heliosphere. Ultraviolet spectroscopy by SOHO has revealed a means for: (1) detecting and characterizing CME shocks in the corona, and (2) determining the plasma conditions in the pre-CME corona which are needed to understand the formation and evolution of shocks. Such remote sensing - combined with models of SEP acceleration and transport - can be used to predict the strength, duration, and production sites of the radiation. This poster describes the specific means by which ultraviolet spectroscopy and other remote-sensing data can be used to determine the inputs and boundary conditions for individual events (such as the October-November 2003 storms) in existing SEP model codes. We also discuss an additional potential source of SEP radiation associated with electric fields in the current sheets that form in flare regions in the wake of CME. Both observations and model calculations show that the reconnection-induced electric field can reach a maximum strength of a few V/cm within tens of minutes after the onset of the eruption, then decreases gradually over several hours. SEPs produced in these regions may account for X-rays and γ -rays observed prior to the formation of CME shocks. Ultraviolet spectroscopy has been shown to provide constraints on the plasma properties in all of the above CME features. This work is supported by NASA under grant NAG5-12865 to the Smithsonian Astrophysical Observatory, by Agenzia Spaziale Italiana, and by the Swiss contribution to ESA's PRODEX program.

  6. Monoenergetic proton backlighter for measuring E and B fields and for radiographing implosions and high-energy density plasmas (invited)

    SciTech Connect

    Li, C. K.; Seguin, F. H.; Frenje, J. A.; Rygg, J. R.; Petrasso, R. D.; Town, R. P. J.; Amendt, P. A.; Hatchett, S. P.; Landen, O. L.; Mackinnon, A. J.; Patel, P. K.; Smalyuk, V. A.; Knauer, J. P.; Sangster, T. C.; Stoeckl, C.

    2006-10-15

    A novel monoenergetic proton backlighter source and matched imaging detector have been utilized on the OMEGA laser system to study electric (E) and magnetic (B) fields generated by laser-plasma interactions and will be utilized in the future to radiograph implosions and high-energy density (HED) plasmas. The backlighter consists of an imploding glass microballoon with D {sup 3}He fuel, producing 14.7 MeV D {sup 3}He protons and 3 MeV DD protons that are then passed through a mesh that divides the protons into beamlets. For quantitative study of E+B field structure, monoenergetic protons have several unique advantages compared to the broad energy spectrum used in previous experiments. Recent experiments have been performed with a single laser beam (intensity of {approx}10{sup 14} W/cm{sup 2}) interacting with a CH foil, and B fields of {approx}0.5 MG and E fields of {approx}1.5x10{sup 8} V/m have been measured using proton deflectometry. LASNEX simulations are being used to interpret these experiments. Additional information will also be presented on the application of this technique to measuring E and B fields associated with Hohlraums and directly driven implosions, to radiographically mapping the areal density ({rho}R) distribution in imploded capsules, and to radiographing HED plasmas.

  7. Laser Proton acceleration from mass limited silicon foils

    NASA Astrophysics Data System (ADS)

    Zeil, K.; Kraft, S.; Richter, T.; Metzkes, J.; Bussmann, M.; Schramm, U.; Sauerbrey, R.; Cowan, T. E.; Fuchs, J.; Buffechoux, S.

    2009-11-01

    We present recent studies on laser proton acceleration experiments using mass limited silicon targets. Small micro machined silicon foils with 2 μm thickness and 20x20 μm2 to 100x100μm2 size mounted on very tiny stalks were shot with the 100 TW LULI Laser (long pulse 150 fs) and with the new 150 TW DRACO Laser facility (short pulse 30 fs) of the Research Centre Dresden-Rossendorf. The experiments were carried out using high contrast levels. Proton spectra have been measured with magnetic spectrometers and radio chromic film stacks.

  8. Optimizing laser-driven proton acceleration from overdense targets

    PubMed Central

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range. PMID:27435449

  9. Optimizing laser-driven proton acceleration from overdense targets

    NASA Astrophysics Data System (ADS)

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-07-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range.

  10. Optimizing laser-driven proton acceleration from overdense targets.

    PubMed

    Stockem Novo, A; Kaluza, M C; Fonseca, R A; Silva, L O

    2016-01-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range. PMID:27435449

  11. A STUDY OF POLARIZED PROTON ACCELERATION IN J-PARC.

    SciTech Connect

    LUCCIO, A.U.; BAI, M.; ROSER, T.

    2006-10-02

    We have studied the feasibility of polarized proton acceleration in rhe J-PARC accelerator facility, consisting of a 400 MeV linac, a 3 GeV rapid cycling synchrotron (RCS) and a 50 GeV synchrotron (MR). We show how the polarization of the beam can be preserved using an rf dipole in the RCS and two superconductive partial helical Siberian snakes in the MR. The lattice of the MR will be modified with the addition of quadrupoles to compensate for the focusing properties of the snakes.

  12. A Study of Polarized Proton Acceleration in J-PARC

    SciTech Connect

    Luccio, A. U.; Bai, M.; Roser, T.; Molodojentsev, A.; Ohmori, C.; Sato, H.; Hatanaka, K.

    2007-06-13

    We have studied the feasibility of polarized proton acceleration in rhe J-PARC accelerator facility, consisting of a 400 MeV linac, a 3 GeV rapid cycling synchrotron (RCS) and a 50 GeV synchrotron (MR). We show how the polarization of the beam can be preserved using an rf dipole in the RCS and two superconductve partial helical Siberian snakes in the MR. The lattice of the MR will be modified with the addition of quadrupoles to compensate for the focusing properties of the snakes.

  13. Proton Shock Acceleration in Laser-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Silva, Luís O.; Marti, Michael; Davies, Jonathan R.; Fonseca, Ricardo A.; Ren, Chuang; Tsung, Frank S.; Mori, Warren B.

    2004-01-01

    The formation of strong, high Mach number (2 3), electrostatic shocks by laser pulses incident on overdense plasma slabs is observed in one- and two-dimensional particle-in-cell simulations, for a wide range of intensities, pulse durations, target thicknesses, and densities. The shocks propagate undisturbed across the plasma, accelerating the ions (protons). For a dimensionless field strength parameter a0=16 (Iλ2≈3×1020 W cm-2 μm2, where I is the intensity and λ the wavelength), and target thicknesses of a few microns, the shock is responsible for the highest energy protons. A plateau in the ion spectrum provides a direct signature for shock acceleration.

  14. Remarkable new results for high-energy protons and electrons in the inner Van Allen belt regions

    NASA Astrophysics Data System (ADS)

    Baker, Daniel N.

    2016-04-01

    Early observations indicated that the Earth's Van Allen radiation belts could be separated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies showed that electrons of moderate energy (less than about one megaelectronvolt) often populate both zones, with a deep 'slot' region largely devoid of particles between them. The two-belt radiation structure was explained as arising from strong electron interactions with plasmaspheric hiss just inside the plasmapause boundary with the inner edge of the outer radiation zone corresponding to the minimum plasmapause location.. Recent Van Allen Probes observations have revealed an unexpected radiation belt morphology, especially at ultrarelativistic kinetic energies (more than several megaelectronvolts). The data show an exceedingly sharp inner boundary for the ultrarelativistic electrons right at L=2.8. Additional, concurrently measured data reveal that this barrier to inward electron radial transport is likely due to scattering by powerful human electromagnetic transmitter (VLF) wave fields. We show that weak, but persistent, wave-particle pitch angle scattering deep inside the Earth's plasmasphere due to manmade signals can act to create an almost impenetrable barrier through which the most energetic Van Allen belt electrons cannot migrate. Inside of this distance, the Van Allen Probes data show that high energy (20 -100 MeV) protons have a double belt structure with a stable peak of flux at L~1.5 and a much more variable belt peaking at L~2.3.

  15. Energy enhancement of proton acceleration in combinational radiation pressure and bubble by optimizing plasma density

    SciTech Connect

    Bake, Muhammad Ali; Xie Baisong; Shan Zhang; Hong Xueren; Wang Hongyu

    2012-08-15

    The combinational laser radiation pressure and plasma bubble fields to accelerate protons are researched through theoretical analysis and numerical simulations. The dephasing length of the accelerated protons bunch in the front of the bubble and the density gradient effect of background plasma on the accelerating phase are analyzed in detail theoretically. The radiation damping effect on the accelerated protons energy is also considered. And it is demonstrated by two-dimensional particle-in-cell simulations that the protons bunch energy can be increased by using the background plasma with negative density gradient. However, radiation damping makes the maximal energy of the accelerated protons a little reduction.

  16. The effect of stochastic re-acceleration on the energy spectrum of shock-accelerated protons

    SciTech Connect

    Afanasiev, Alexandr; Vainio, Rami; Kocharov, Leon

    2014-07-20

    The energy spectra of particles in gradual solar energetic particle (SEP) events do not always have a power-law form attributed to the diffusive shock acceleration mechanism. In particular, the observed spectra in major SEP events can take the form of a broken (double) power law. In this paper, we study the effect of a process that can modify the power-law spectral form produced by the diffusive shock acceleration: the stochastic re-acceleration of energetic protons by enhanced Alfvénic turbulence in the downstream region of a shock wave. There are arguments suggesting that this process can be important when the shock propagates in the corona. We consider a coronal magnetic loop traversed by a shock and perform Monte Carlo simulations of interactions of shock-accelerated protons with Alfvén waves in the loop. The wave-particle interactions are treated self-consistently, so the finiteness of the available turbulent energy is taken into account. The initial energy spectrum of particles is taken to be a power law. The simulations reveal that the stochastic re-acceleration leads either to the formation of a spectrum that is described in a wide energy range by a power law (although the resulting power-law index is different from the initial one) or to a broken power-law spectrum. The resulting spectral form is determined by the ratio of the energy density of shock-accelerated protons to the wave energy density in the shock's downstream region.

  17. A longitudinal bunch rotation and acceleration scheme for a short bunch and high energy spread muon beam

    NASA Astrophysics Data System (ADS)

    Scrivens, R.

    2000-08-01

    A neutrino factory for νμ would require a high-power proton beam bombarding a target to produce pions that decay to muons which can be accelerated. Such a proton driver could be realized with a high-power linac, which could produce short bunches in the interaction point. If the bunch structure could be maintained to the input of a linear accelerator, the re-bunching of muons would be avoided. A preliminary design of the longitidinal beam dynamics for the acceleration of short muon bunches with a large-energy spread will be presented. Muons bunches are assumed at the linac input to consist of a phase space occupying a region from 200-400 MeV with a bunch length of 24 ps. They are captured and accelerated to 1 GeV with a resulting bunch length of 100 ps. Seventy five percent of the muons are transported within these limits.

  18. Shock-wave proton acceleration from a hydrogen gas jet

    NASA Astrophysics Data System (ADS)

    Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly

    2013-04-01

    Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.

  19. LiF TLD-100 as a Dosimeter in High Energy Proton Beam Therapy-Can It Yield Accurate Results?

    SciTech Connect

    Zullo, John R. Kudchadker, Rajat J.; Zhu, X. Ronald; Sahoo, Narayan; Gillin, Michael T.

    2010-04-01

    In the region of high-dose gradients at the end of the proton range, the stopping power ratio of the protons undergoes significant changes, allowing for a broad spectrum of proton energies to be deposited within a relatively small volume. Because of the potential linear energy transfer dependence of LiF TLD-100 (thermolumescent dosimeter), dose measurements made in the distal fall-off region of a proton beam may be less accurate than those made in regions of low-dose gradients. The purpose of this study is to determine the accuracy and precision of dose measured using TLD-100 for a pristine Bragg peak, particularly in the distal fall-off region. All measurements were made along the central axis of an unmodulated 200-MeV proton beam from a Probeat passive beam-scattering proton accelerator (Hitachi, Ltd., Tokyo, Japan) at varying depths along the Bragg peak. Measurements were made using TLD-100 powder flat packs, placed in a virtual water slab phantom. The measurements were repeated using a parallel plate ionization chamber. The dose measurements using TLD-100 in a proton beam were accurate to within {+-}5.0% of the expected dose, previously seen in our past photon and electron measurements. The ionization chamber and the TLD relative dose measurements agreed well with each other. Absolute dose measurements using TLD agreed with ionization chamber measurements to within {+-} 3.0 cGy, for an exposure of 100 cGy. In our study, the differences in the dose measured by the ionization chamber and those measured by TLD-100 were minimal, indicating that the accuracy and precision of measurements made in the distal fall-off region of a pristine Bragg peak is within the expected range. Thus, the rapid change in stopping power ratios at the end of the range should not affect such measurements, and TLD-100 may be used with confidence as an in vivo dosimeter for proton beam therapy.

  20. Rainbow effect in channeling of high energy protons through single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Petrović, S.; Borka, D.; Nešković, N.

    2005-05-01

    We studied theoretically the angular distributions and the rainbows in the case of 1 GeV protons channeled in the ropes of (10, 10) single-wall carbon nanotubes. It was assumed that the transverse cross section of a rope could be described via a (two-dimensional) hexagonal superlattice with one nanotube per lattice point. The rope length was varied between 2.4 and 7.2 μm, corresponding to the reduced rope lengths associated with the transverse proton motion close to the centers of the regions in between three neighboring nanotubes, Λb, between 0.17 and 0.50, respectively. The angular distributions of channeled protons were generated by the computer simulation method using the numerical solution of the proton equations of motion in the transverse plane. We used the Molière's expression for the interaction potential of the proton and a carbon atom. The rainbow lines were determined numerically too. We showed that they ensured the full explanation of the angular distributions. The effect of zero-degree focusing of channeled ions for the reduced rope length Λb = 0.50 was also observed, indicating the existence of the rainbow cycles in the evolution of the angular distribution. We noted a strong influence of the rainbow effect on the effect of zero-degree focusing.

  1. Baseline measures for net-proton distributions in high energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Netrakanti, P. K.; Luo, X. F.; Mishra, D. K.; Mohanty, B.; Mohanty, A.; Xu, N.

    2016-03-01

    We report a systematic comparison of the recently measured cumulants of the net-proton distributions for 0-5% central Au + Au collisions in the first phase of the Beam Energy Scan (BES) Program at the Relativistic Heavy Collider facility to various kinds of possible baseline measures. These baseline measures correspond to an assumption that the proton and anti-proton distributions follow Poisson statistics, Binomial statistics, obtained from a transport model calculation and from a hadron resonance gas model. The higher order cumulant net-proton data for the center of mass energies (√{sNN}) of 19.6 and 27 GeV are observed to deviate from most of the baseline measures studied. The deviations are predominantly due to the difference in shape of the proton distributions between data and those obtained in the baseline measures. We also present a detailed study on the relevance of the independent production approach as a baseline for comparison with the measurements at various beam energies. Our studies point to the need of either more detailed baseline models for the experimental measurements or a description via QCD calculations in order to extract the exact physics process that leads to deviation of the data from the baselines presented.

  2. Neutron-induced electronic failures around a high-energy linear accelerator

    SciTech Connect

    Kry, Stephen F.; Johnson, Jennifer L.; White, R. Allen; Howell, Rebecca M.; Kudchadker, Rajat J.; Gillin, Michael T.

    2011-01-15

    Purpose: After a new in-vault CT-on-rails system repeatedly malfunctioned following use of a high-energy radiotherapy beam, we investigated the presence and impact of neutron radiation on this electronic system, as well as neutron shielding options. Methods: We first determined the CT scanner's failure rate as a function of the number of 18 MV monitor units (MUs) delivered. We then re-examined the failure rate with both 2.7-cm-thick and 7.6-cm-thick borated polyethylene (BPE) covering the linac head for neutron shielding. To further examine shielding options, as well as to explore which neutrons were relevant to the scanner failure, Monte Carlo simulations were used to calculate the neutron fluence and spectrum in the bore of the CT scanner. Simulations included BPE covering the CT scanner itself as well as covering the linac head. Results: We found that the CT scanner had a 57% chance of failure after the delivery of 200 MUs. While the addition of neutron shielding to the accelerator head reduced this risk of failure, the benefit was minimal and even 7.6 cm of BPE was still associated with a 29% chance of failure after the delivery of 200 MU. This shielding benefit was achieved regardless of whether the linac head or CT scanner was shielded. Additionally, it was determined that fast neutrons were primarily responsible for the electronic failures. Conclusions: As illustrated by the CT-on-rails system in the current study, physicists should be aware that electronic systems may be highly sensitive to neutron radiation. Medical physicists should therefore monitor electronic systems that have not been evaluated for potential neutron sensitivity. This is particularly relevant as electronics are increasingly common in the therapy vault and newer electronic systems may exhibit increased sensitivity.

  3. Beam optics of the 2 MeV proton injection line at the LLUMC proton accelerator

    NASA Astrophysics Data System (ADS)

    Coutrakon, G.; Hubbard, J.; Sanders, E.

    2005-12-01

    Simulations of the beam optics of the LLUMC proton accelerator injection line have been modeled using the computer codes Parmila [Los Alamos Nat'l Lab, Internal Report LA-UR-98-4478, Los Alamos Accelerator Code Group, Los Alamos, NM] and Trace 3D [Distributed by AccelSoft Inc, P.O. Box 2813. Del Mar, CA 92014, United States]. These simulations give reasonable agreement with the known accelerator dispersion, beam energy spread and optimal debuncher setting. The purpose of this paper is to understand the beam losses and show where improvements can be made, if required, in the future. It has previously been found [G. Coutrakon et al., J. Med. Phys. 20 (11) (1994) 1691] that most intensity losses in the synchrotron can be ascribed to the narrow energy acceptance of the synchrotron. While the present intensity of the accelerator is quite adequate for patient treatments, future plans to treat larger fields will make higher intensity more desirable. A simulation has been performed which adds a second debuncher, or energy compactor, which shows a reduction in energy spread by a factor of two yielding a factor of two increase in the available intensity. The present intensity of 2.5 × 1010 protons per pulse with 34% of the injected intensity captured in the ring can possibly be improved to 5 × 1010 protons per pulse by capturing 68% of the injected beam intensity. These results are discussed in this paper.

  4. J/ψ production and suppression in high-energy proton-nucleus collisions

    DOE PAGESBeta

    Ma, Yan -Qing; Venugopalan, Raju; Zhang, Hong -Fei

    2015-10-02

    In this study, we apply a color glass condensate+nonrelativistic QCD (CGC+NRQCD) framework to compute J/ψ production in deuteron-nucleus collisions at RHIC and proton-nucleus collisions at the LHC. Our results match smoothly at high p⊥ to a next-to-leading order perturbative QCD+NRQCD computation. Excellent agreement is obtained for p⊥ spectra at the RHIC and LHC for central and forward rapidities, as well as for the normalized ratio RpA of these results to spectra in proton-proton collisions. In particular, we observe that the RpA data are strongly bounded by our computations of the same for each of the individual NRQCD channels; this resultmore » provides strong evidence that our description is robust against uncertainties in initial conditions and hadronization mechanisms.« less

  5. J/ψ production and suppression in high-energy proton-nucleus collisions

    SciTech Connect

    Ma, Yan -Qing; Venugopalan, Raju; Zhang, Hong -Fei

    2015-10-02

    In this study, we apply a color glass condensate+nonrelativistic QCD (CGC+NRQCD) framework to compute J/ψ production in deuteron-nucleus collisions at RHIC and proton-nucleus collisions at the LHC. Our results match smoothly at high p⊥ to a next-to-leading order perturbative QCD+NRQCD computation. Excellent agreement is obtained for p⊥ spectra at the RHIC and LHC for central and forward rapidities, as well as for the normalized ratio RpA of these results to spectra in proton-proton collisions. In particular, we observe that the RpA data are strongly bounded by our computations of the same for each of the individual NRQCD channels; this result provides strong evidence that our description is robust against uncertainties in initial conditions and hadronization mechanisms.

  6. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Sancho, J. Blanco; Shutov, A.; Schmidt, R.; Piriz, A. R.

    2012-05-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%-20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect). It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS), to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle energy in the SPS beam is 440

  7. Water corrosion measurements on tungsten irradiated with high energy protons and spallation neutrons

    NASA Astrophysics Data System (ADS)

    Maloy, Stuart A.; Scott Lillard, R.; Sommer, Walter F.; Butt, Darryl P.; Gac, Frank D.; Willcutt, Gordon J.; Louthan, McIntyre R.

    2012-12-01

    A detailed analysis was performed on the degradation of a tungsten target under water cooling while being exposed to a 761 MeV proton beam at an average current of 0.867 mA to a maximum fluence of 1.3 × 1021 protons/cm2. The target consisted of 3 mm diameter tungsten rods arranged in bundles and cooled with deionized water flowing over their length. Degradation of the tungsten was measured through analyzing water resistivity, tungsten concentration in water samples that were taken during irradiation and through dimensional measurements on the rods after irradiation. Chemical analysis of irradiated water samples showed W concentrations up to 35 μg/ml. Gamma analysis showed increases in concentrations of many isotopes including W-178, Lu-171, Tm-167, Tm-166, Yb-169 and Hf-175. Dimensional measurements performed after irradiation on the W rods revealed a decrease in diameter as a function of position that followed closely the Gaussian proton beam profile along the rod length and indicated a definite beam-effect. A general decrease in diameter, especially on the coolant-water entrance point where turbulent flow was likely, also suggests a chemically and mechanically-driven corrosion effect. A method to estimate the apparent corrosion rate based on proton fluence is presented and application of this method estimates the material loss rate at about 1.9 W atoms/incident proton. From this result, the corrosion rate of tungsten in a 761 MeV, 0.867 mA proton beam was calculated to be 0.073 cm/full power year. of irradiation.

  8. Multiple collision effects on the antiproton production by high energy proton (100 GeV - 1000 GeV)

    SciTech Connect

    Takahashi, Hiroshi; Powell, J.

    1987-01-01

    Antiproton production rates which take into account multiple collision are calculated using a simple model. Methods to reduce capture of the produced antiprotons by the target are discussed, including geometry of target and the use of a high intensity laser. Antiproton production increases substantially above 150 GeV proton incident energy. The yield increases almost linearly with incident energy, alleviating space charge problems in the high current accelerator that produces large amounts of antiprotons.

  9. High-energy proton irradiation of C57Bl6 mice under hindlimb unloading

    NASA Astrophysics Data System (ADS)

    Mendonca, Marc; Todd, Paul; Orschell, Christie; Chin-Sinex, Helen; Farr, Jonathan; Klein, Susan; Sokol, Paul

    2012-07-01

    Solar proton events (SPEs) pose substantial risk for crewmembers on deep space missions. It has been shown that low gravity and ionizing radiation both produce transient anemia and immunodeficiencies. We utilized the C57Bl/6 based hindlimb suspension model to investigate the consequences of hindlimb-unloading induced immune suppression on the sensitivity to whole body irradiation with modulated 208 MeV protons. Eight-week old C57Bl/6 female mice were conditioned by hindlimb-unloading. Serial CBC and hematocrit assays by HEMAVET were accumulated for the hindlimb-unloaded mice and parallel control animals subjected to identical conditions without unloading. One week of hindlimb-unloading resulted in a persistent, statistically significant 10% reduction in RBC count and a persistent, statistically significant 35% drop in lymphocyte count. This inhibition is consistent with published observations of low Earth orbit flown mice and with crewmember blood analyses. In our experiments the cell count suppression was sustained for the entire six-week period of observation and persisted for at least 7 days beyond the period of active hindlimb-unloading. C57Bl/6 mice were also irradiated with 208 MeV Spread Out Bragg Peak (SOBP) protons at the Midwest Proton Radiotherapy Institute at the Indiana University Cyclotron Facility. We found that at 8.5 Gy hindlimb-unloaded mice were significantly more radiation sensitive with 35 lethalities out of 51 mice versus 15 out of 45 control (non-suspended) mice within 30 days of receiving 8.5 Gy of SOBP protons (p =0.001). Both control and hindlimb-unloaded stocktickerCBC analyses of 8.5 Gy proton irradiated and control mice by HEMAVET demonstrated severe reductions in WBC counts (Lymphocytes and PMNs) by day 2 post-irradiation, followed a week to ten days later by reductions in platelets, and then reductions in RBCs about 2 weeks post-irradiation. Recovery of all blood components commenced by three weeks post-irradiation. CBC analyses of 8

  10. ELECTRON AND PROTON ACCELERATION DURING THE FIRST GROUND LEVEL ENHANCEMENT EVENT OF SOLAR CYCLE 24

    SciTech Connect

    Li, C.; Sun, L. P.; Firoz, Kazi A.; Miroshnichenko, L. I.

    2013-06-10

    High-energy particles were recorded by near-Earth spacecraft and ground-based neutron monitors (NMs) on 2012 May 17. This event was the first ground level enhancement (GLE) of solar cycle 24. In this study, we try to identify the acceleration source(s) of solar energetic particles by combining in situ particle measurements from the WIND/3DP, GOES 13, and solar cosmic rays registered by several NMs, as well as remote-sensing solar observations from SDO/AIA, SOHO/LASCO, and RHESSI. We derive the interplanetary magnetic field (IMF) path length (1.25 {+-} 0.05 AU) and solar particle release time (01:29 {+-} 00:01 UT) of the first arriving electrons by using their velocity dispersion and taking into account contamination effects. We found that the electron impulsive injection phase, indicated by the dramatic change in the spectral index, is consistent with flare non-thermal emission and type III radio bursts. Based on the potential field source surface concept, modeling of the open-field lines rooted in the active region has been performed to provide escape channels for flare-accelerated electrons. Meanwhile, relativistic protons are found to be released {approx}10 minutes later than the electrons, assuming their scatter-free travel along the same IMF path length. Combining multi-wavelength imaging data of the prominence eruption and coronal mass ejection (CME), we obtain evidence that GLE protons, with an estimated kinetic energy of {approx}1.12 GeV, are probably accelerated by the CME-driven shock when it travels to {approx}3.07 solar radii. The time-of-maximum spectrum of protons is typical for shock wave acceleration.