Science.gov

Sample records for high-frequency recoil spectrometer

  1. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, A.R.; Gruen, D.M.; Lamich, G.J.

    1994-09-13

    A time-of-flight direct recoil and ion scattering spectrometer beam line is disclosed. The beam line includes an ion source which injects ions into pulse deflection regions and separated by a drift space. A final optics stage includes an ion lens and deflection plate assembly. The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions. 23 figs.

  2. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Lamich, George J.

    1994-01-01

    A time of flight direct recoil and ion scattering spectrometer beam line (10). The beam line (10) includes an ion source (12) which injects ions into pulse deflection regions (14) and (16) separated by a drift space (18). A final optics stage includes an ion lens and deflection plate assembly (22). The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions (14) and (16).

  3. Calibration of a compact magnetic proton recoil neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfu; Ouyang, Xiaoping; Zhang, Xianpeng; Ruan, Jinlu; Zhang, Guoguang; Zhang, Xiaodong; Qiu, Suizheng; Chen, Liang; Liu, Jinliang; Song, Jiwen; Liu, Linyue; Yang, Shaohua

    2016-04-01

    Magnetic proton recoil (MPR) neutron spectrometer is considered as a powerful instrument to measure deuterium-tritium (DT) neutron spectrum, as it is currently used in inertial confinement fusion facilities and large Tokamak devices. The energy resolution (ER) and neutron detection efficiency (NDE) are the two most important parameters to characterize a neutron spectrometer. In this work, the ER calibration for the MPR spectrometer was performed by using the HI-13 tandem accelerator at China Institute of Atomic Energy (CIAE), and the NDE calibration was performed by using the neutron generator at CIAE. The specific calibration techniques used in this work and the associated accuracies were discussed in details in this paper. The calibration results were presented along with Monte Carlo simulation results.

  4. A telescope proton recoil spectrometer for fast neutron beam-lines

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Rebai, M.; Tardocchi, M.; Croci, G.; Nocente, M.; Ansell, S.; Frost, C. D.; Gorini, G.

    2015-07-01

    Fast neutron measurements were performed on the VESUVIO beam-line at the ISIS spallation source using a new telescope proton recoil spectrometer. Neutrons interact on a plastic target. Proton production is mainly due to elastic scattering on hydrogen nuclei and secondly due to interaction with carbon nuclei. Recoil protons are measured by a proton spectrometer, which uses in coincidence a 2.54 cm thick YAP scintillator and a 500μm thick silicon detector, measuring the full proton recoil energy and the partial deposited energy in transmission, respectively. Recoil proton spectroscopy measurements (up to Ep = 60MeV) have been interpreted by using Monte Carlo simulations of the beam-line. This instrument is of particular interest for the characterization of the ChipIr beam-line at ISIS, which was designed to feature an atmospheric-like neutron spectrum for the irradiation of micro-electronics.

  5. Development of the RAON Recoil Spectrometer (KOBRA) and Its Applications for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Moon, Jun Young; Park, Junesic; Cheoul Yun, Chong; Kwon, Young Kwan; Komatsubara, Tetsuro; Hashimoto, Takashi; Tshoo, Kyoungho; Lee, Kwangbok; Jung, In-IL; Kim, Yong Hak; Kim, Yong-Kyun

    KOBRA (KOrea Broad acceptance Recoil spectrometer and Apparatus), a new generation recoil spectrometer, has been designed at the Korean heavy-ion accelerator facility, so called RAON. It will allow many nuclear scientists to explore so-far hard but very interesting questions relevant to low-energy nuclear physics. Especially, in nuclear astrophysics where the unstable, short-lived nuclei are usually involved and the high background rejection power is required, its high performance will come into significantly important role. As a particular case to see its capability, in this article, calculational results of 12C(α, γ)16O reaction which was studied with the COSY-INFINITY is presented.

  6. A Spectrometer for Dynamic Nuclear Polarization and Electron Paramagnetic Resonance at High Frequencies

    NASA Astrophysics Data System (ADS)

    Becerra, L. R.; Gerfen, G. J.; Bellew, B. F.; Bryant, J. A.; Hall, D. A.; Inati, S. J.; Weber, R. T.; Un, S.; Prisner, T. F.; McDermott, A. E.; Fishbein, K. W.; Kreischer, K. E.; Temkin, R. J.; Singel, D. J.; Griffin, R. G.

    A high-frequency dynamic nuclear polarization (DNP)/electron paramagnetic resonance spectrometer operating at 211 MHz for 1H and 140 GHz for g= 2 paramagnetic centers (5 T static field) is described. The salient feature of the instrument is a cyclotron-resonance maser (gyrotron) which generates high-frequency, high-power microwave radiation. This gyrotron, which under conventional operation produces millisecond pulses at kilowatt powers, has been adapted to operate at ˜100 W for 1 to 20 s pulses and in the continuous wave mode at the 10 W power level. Experiments combining DNP with magic-angle spinning (MAS) nuclear magnetic resonance were performed on samples consisting of 2% by weight of the free radical BDPA doped into polystyrene. Room-temperature DNP enhancement factors of 10 for 1H and 40 for 13C were obtained in the NMR-MAS spectra. Static DNP NMR has also been performed on samples containing nitroxides dissolved in water:glycerol solvent mixtures. Enhancements of approximately 200 have been obtained for low-temperature (14 K) 1H NMR. A pulsed/CW EPR spectrometer operating at 140 GHz has been developed in conjunction with the DNP spectrometer. Microwave sources include Gunn-diode oscillators which provide low-power (20 mW) radiation, and the gyrotron, which has been used to deliver higher power levels in pulsed experiments. Results using this spectrometer are presented for continuous-wave and echo-detected EPR, electron spin-echo-envelope modulation (ESEEM), and Fourier-transform EPR.

  7. Recoil spectrometer for the detection of single atoms

    SciTech Connect

    Ghiorso, A.

    1987-04-01

    A much improved version of our gas-filled spectrometer for heavy-ion-induced fusion reactions is described. This instrument (SASSY II) is of the type D-Q-D wherein the dipoles are made with strong vertically-focussing gradients. The problems associated with experiments with cross sections in the picobarn range are discussed. In such experiments, it is necessary to identify single atoms with a high degree of confidence.

  8. Neutron spectrometer based on a proton telescope with electronic collimation of recoil protons

    NASA Astrophysics Data System (ADS)

    Milkov, V. M.; Panteleev, Ts. Ts.; Bogdzel, A.; Shvetsov, V. N.; Kutuzov, S.; Borzakov, S. B.; Sedyshev, P. V.

    2012-11-01

    A prototype of a neutron spectrometer based on a gas proportional counter with recoil-proton registration is created at the Frank Laboratory of Neutron Physics at the Joint Institute for Nuclear Research (FLNP JINR) in Dubna. The spectrometer is developed to measure the kinetic energy of protons scattered elastically at small angles that are produced by ( n, p) reaction in an environment containing hydrogen. The elaborated prototype consists of two cylindrical proportional counters used as cathodes. They are placed in a gas environment with a common centrally situated anode wire. Studies on the characteristics of the neutron spectrometer were conducted using 252Cf and 239Pu-Be radioisotope neutron sources. Measurements were made with monoenergetic neutrons produced by the 7Li( p, n)7Be reaction when a thin lithium target was bombarded with a proton beam from an EG-5 electrostatic accelerator, as well as with neutrons from the reaction D( d, n) 3He with a gas deuterium target.

  9. Development of a compact magnetic proton recoil spectrometer for measurement of deuterium-tritium neutrons

    SciTech Connect

    Zhang, Jianfu Ouyang, Xiaoping; Zhang, Xianpeng; Qiu, Suizheng; Zhang, Guoguang; Ruan, Jinlu; Zhang, Xiaodong; Yang, Shaohua; Song, Jiwen; Liu, Linyue; Li, Hongyun

    2015-12-15

    A new compact magnetic proton recoil (MPR) neutron spectrometer has been designed for precise measurement of deuterium-tritium (DT) neutrons. This design is presented emphasizing the magnetic analyzing system, which is based on a compact quadrupole-dipole (QD) electromagnet. The focal plane detector (FPD) is also discussed with respect to application for the next step. The characteristics of the MPR spectrometer were calculated by using Monte Carlo simulation. A preliminary experiment was performed to test the magnetic analyzing system and the proton images of the FPD. Since the QD electromagnet design allows for a larger foil thickness and solid angle to be utilized, the MPR spectrometer defined in this paper can achieve neutron detection efficiency more than 5 × 10{sup −7} at an energy resolution of 1.5% for measuring DT neutrons.

  10. Development of a compact magnetic proton recoil spectrometer for measurement of deuterium-tritium neutrons.

    PubMed

    Zhang, Jianfu; Ouyang, Xiaoping; Qiu, Suizheng; Zhang, Guoguang; Ruan, Jinlu; Zhang, Xiaodong; Zhang, Xianpeng; Yang, Shaohua; Song, Jiwen; Liu, Linyue; Li, Hongyun

    2015-12-01

    A new compact magnetic proton recoil (MPR) neutron spectrometer has been designed for precise measurement of deuterium-tritium (DT) neutrons. This design is presented emphasizing the magnetic analyzing system, which is based on a compact quadrupole-dipole (QD) electromagnet. The focal plane detector (FPD) is also discussed with respect to application for the next step. The characteristics of the MPR spectrometer were calculated by using Monte Carlo simulation. A preliminary experiment was performed to test the magnetic analyzing system and the proton images of the FPD. Since the QD electromagnet design allows for a larger foil thickness and solid angle to be utilized, the MPR spectrometer defined in this paper can achieve neutron detection efficiency more than 5 × 10(-7) at an energy resolution of 1.5% for measuring DT neutrons. PMID:26724081

  11. Development of a compact magnetic proton recoil spectrometer for measurement of deuterium-tritium neutrons

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfu; Ouyang, Xiaoping; Qiu, Suizheng; Zhang, Guoguang; Ruan, Jinlu; Zhang, Xiaodong; Zhang, Xianpeng; Yang, Shaohua; Song, Jiwen; Liu, Linyue; Li, Hongyun

    2015-12-01

    A new compact magnetic proton recoil (MPR) neutron spectrometer has been designed for precise measurement of deuterium-tritium (DT) neutrons. This design is presented emphasizing the magnetic analyzing system, which is based on a compact quadrupole-dipole (QD) electromagnet. The focal plane detector (FPD) is also discussed with respect to application for the next step. The characteristics of the MPR spectrometer were calculated by using Monte Carlo simulation. A preliminary experiment was performed to test the magnetic analyzing system and the proton images of the FPD. Since the QD electromagnet design allows for a larger foil thickness and solid angle to be utilized, the MPR spectrometer defined in this paper can achieve neutron detection efficiency more than 5 × 10-7 at an energy resolution of 1.5% for measuring DT neutrons.

  12. First measurements of the absolute neutron spectrum using the Magnetic Recoil Spectrometer (MRS) at the NIF

    NASA Astrophysics Data System (ADS)

    Frenje, J.; Casey, D.; Li, C.; Seguin, F.; Petrasso, R.; Bionta, R.; Cerjan, C.; Eckart, M.; Haan, S.; Hatchett, S.; Khater, H.; Landen, O.; MacKinnon, A.; Moran, M.; Rygg, J.; Kilkenny, J.; Glebov, V.; Sangster, T.; Meyerhofer, D.; Magoon, J.; Fletcher, K.; Leeper, R.

    2010-11-01

    Proper assembly of capsule mass, as manifested through evolution of fuel areal density (ρR), is fundamentally important for achieving hot-spot ignition planned at the National Ignition Facility (NIF). Experimental information about ρR and ρR asymmetries, Ti and yield is therefore essential for understanding how this assembly occurs. To obtain this information, a neutron spectrometer, called the Magnetic-Recoil Spectrometer (MRS) has been implemented on the NIF. Its primary objective is to measure the absolute neutron spectrum in the range 5 to 30 MeV, from which ρR, Ti and yield can be directly inferred for both low-yield tritium-hydrogen-deuterium (THD) and high-yield DT implosions. In this talk, the results from the first measurements of the absolute neutron spectrum produced in exploding pusher and THD implosions will be presented. This work was supported in part by the U.S. DOE, LLNL and LLE.

  13. Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF

    SciTech Connect

    Mackinnon, A; Casey, D; Frenje, J A; Johnson, M G; Seguin, F H; Li, C K; Petrasso, R D; Glebov, V Y; Katz, J; Knauer, J; Meyerhofer, D; Sangster, T; Bionta, R; Bleuel, D; Hachett, S P; Hartouni, E; Lepape, S; Mckernan, M; Moran, M; Yeamans, C

    2012-05-03

    A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  14. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF.

    PubMed

    Casey, D T; Frenje, J A; Johnson, M Gatu; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Magoon, J; Meyerhofer, D D; Sangster, T C; Shoup, M; Ulreich, J; Ashabranner, R C; Bionta, R M; Carpenter, A C; Felker, B; Khater, H Y; LePape, S; MacKinnon, A; McKernan, M A; Moran, M; Rygg, J R; Yeoman, M F; Zacharias, R; Leeper, R J; Fletcher, K; Farrell, M; Jasion, D; Kilkenny, J; Paguio, R

    2013-04-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF. PMID:23635195

  15. Gain stabilization control system of the upgraded magnetic proton recoil neutron spectrometer at JET

    SciTech Connect

    Sjoestrand, Henrik; Sunden, E. Andersson; Conroy, S.; Ericsson, G.; Johnson, M. Gatu; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Ronchi, E.; Weiszflog, M.; Gorini, G.; Tardocchi, M.; Popovichev, S. [EURATOM Collaboration: JET EFDA Contributors

    2009-06-15

    Burning plasma experiments such as ITER and DEMO require diagnostics capable of withstanding the harsh environment generated by the intense neutron flux and to maintain stable operating conditions for times longer than present day systems. For these reasons, advanced control and monitoring (CM) systems will be necessary for the reliable operation of diagnostics. This paper describes the CM system of the upgraded magnetic proton recoil neutron spectrometer installed at the Joint European Torus focusing in particular on a technique for the stabilization of the gain of the photomultipliers coupled to the neutron detectors. The results presented here show that this technique provides good results over long time scales. The technique is of general interest for all diagnostics that employ scintillators coupled to photomultiplier tubes.

  16. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Séguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J.; Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A.; McKernan, M. A.; Moran, M.; Rygg, J. R.; Yeoman, M. F.; Zacharias, R.; Leeper, R. J.; Fletcher, K.; Farrell, M.; Jasion, D.; Kilkenny, J.; Paguio, R.

    2013-04-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  17. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    SciTech Connect

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J.; Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A.; McKernan, M. A.; Moran, M.; Rygg, J. R.; Yeoman, M. F.; Zacharias, R.; Leeper, R. J.; Fletcher, K.; Farrell, M.; Jasion, D.; Kilkenny, J.; Paguio, R.

    2013-04-18

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, iontemperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  18. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    DOE PAGESBeta

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; et al

    2013-04-18

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, iontemperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describesmore » ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.« less

  19. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    SciTech Connect

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J.; Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A.; and others

    2013-04-15

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  20. First measurements of the absolute neutron spectrum using the magnetic recoil spectrometer at OMEGA (invited).

    PubMed

    Frenje, J A; Casey, D T; Li, C K; Rygg, J R; Séguin, F H; Petrasso, R D; Glebov, V Yu; Meyerhofer, D D; Sangster, T C; Hatchett, S; Haan, S; Cerjan, C; Landen, O; Moran, M; Song, P; Wilson, D C; Leeper, R J

    2008-10-01

    A neutron spectrometer, called a magnetic recoil spectrometer (MRS), has been built and implemented at the OMEGA laser facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] for absolute measurements of the neutron spectrum in the range of 6-30 MeV, from which fuel areal density (rhoR), ion temperature (T(i)), and yield (Y(n)) can be determined. The results from the first MRS measurements of the absolute neutron spectrum are presented. In addition, measuring rhoR at the National Ignition Facility (NIF) [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] will be essential for assessing implosion performance during all stages of development from surrogate implosions to cryogenic fizzles to ignited implosions. To accomplish this, we are also developing an MRS for the NIF. As much of the research and development and instrument optimization of the MRS at OMEGA are directly applicable to the MRS at the NIF, a description of the design and characterization of the MRS on the NIF is discussed as well. PMID:19044488

  1. First measurements of the absolute neutron spectrum using the magnetic recoil spectrometer at OMEGA (invited)

    SciTech Connect

    Frenje, J. A.; Casey, D. T.; Li, C. K.; Rygg, J. R.; Seguin, F. H.; Petrasso, R. D.; Yu Glebov, V.; Meyerhofer, D. D.; Sangster, T. C.; Hatchett, S.; Haan, S.; Cerjan, C.; Landen, O.; Moran, M.; Song, P.; Wilson, D. C.; Leeper, R. J.

    2008-10-15

    A neutron spectrometer, called a magnetic recoil spectrometer (MRS), has been built and implemented at the OMEGA laser facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] for absolute measurements of the neutron spectrum in the range of 6-30 MeV, from which fuel areal density ({rho}R), ion temperature (T{sub i}), and yield (Y{sub n}) can be determined. The results from the first MRS measurements of the absolute neutron spectrum are presented. In addition, measuring {rho}R at the National Ignition Facility (NIF) [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] will be essential for assessing implosion performance during all stages of development from surrogate implosions to cryogenic fizzles to ignited implosions. To accomplish this, we are also developing an MRS for the NIF. As much of the research and development and instrument optimization of the MRS at OMEGA are directly applicable to the MRS at the NIF, a description of the design and characterization of the MRS on the NIF is discussed as well.

  2. A recoil ion momentum spectrometer for molecular and atomic fragmentation studies.

    PubMed

    Khan, Arnab; Tribedi, Lokesh C; Misra, Deepankar

    2015-04-01

    We report the development and performance studies of a newly built recoil ion momentum spectrometer for the study of atomic and molecular fragmentation dynamics in gas phase upon the impact of charged particles and photons. The present design is a two-stage Wiley-McLaren type spectrometer which satisfies both time and velocity focusing conditions and is capable of measuring singly charged ionic fragments up-to 13 eV in all directions. An electrostatic lens has been introduced in order to achieve velocity imaging. Effects of the lens on time-of-flight as well as on the position have been investigated in detail, both, by simulation and in experiment. We have used 120 keV proton beam on molecular nitrogen gas target. Complete momentum distributions and kinetic energy release distributions have been derived from the measured position and time-of-flight spectra. Along with this, the kinetic energy release spectra of fragmentation of doubly ionized nitrogen molecule upon various projectile impacts are presented. PMID:25933839

  3. Detection Efficiency of a ToF Spectrometer from Heavy-Ion Elastic Recoil Detection

    SciTech Connect

    Barbara, E. de; Marti, G. V.; Capurro, O. A.; Fimiani, L.; Mingolla, M. G.; Negri, A. E.; Arazi, A.; Figueira, J. M.; Pacheco, A. J.; Martinez Heimann, D.; Carnelli, P. F. F.; Fernandez Niello, J. O.

    2010-08-04

    The detection efficiency of a time-of-flight system based on two micro-channel plates (MCP) time zero detectors plus a conventional silicon surface barrier detector was obtained from heavy ion elastic recoil measurements (this ToF spectrometer is mainly devoted to measurements of total fusion cross section of weakly bound projectiles on different mass-targets systems). In this work we have used beams of {sup 7}Li, {sup 16}O, {sup 32}S and {sup 35}Cl to study the mass region of interest for its application to measurements fusion cross sections in the {sup 6,7}Li+{sup 27}Al systems at energies around and above the Coulomb barrier (0.8V{sub B{<=}}E{<=}2.0V{sub B}). As the efficiency of a ToF spectrometer is strongly dependent on the energy and mass of the detected particles, we have covered a wide range of the scattered particle energies with a high degree of accuracy at the lowest energies. The different experimental efficiency curves obtained in that way were compared with theoretical electronic stopping power curves on carbon foils and were applied.

  4. A recoil ion momentum spectrometer for molecular and atomic fragmentation studies

    SciTech Connect

    Khan, Arnab; Tribedi, Lokesh C.; Misra, Deepankar

    2015-04-15

    We report the development and performance studies of a newly built recoil ion momentum spectrometer for the study of atomic and molecular fragmentation dynamics in gas phase upon the impact of charged particles and photons. The present design is a two-stage Wiley-McLaren type spectrometer which satisfies both time and velocity focusing conditions and is capable of measuring singly charged ionic fragments up-to 13 eV in all directions. An electrostatic lens has been introduced in order to achieve velocity imaging. Effects of the lens on time-of-flight as well as on the position have been investigated in detail, both, by simulation and in experiment. We have used 120 keV proton beam on molecular nitrogen gas target. Complete momentum distributions and kinetic energy release distributions have been derived from the measured position and time-of-flight spectra. Along with this, the kinetic energy release spectra of fragmentation of doubly ionized nitrogen molecule upon various projectile impacts are presented.

  5. A stretch/compress scheme for a high temporal resolution detector for the magnetic recoil spectrometer time (MRSt)

    DOE PAGESBeta

    Hilsabeck, T. J.; Frenje, J. A.; Hares, J. D.; Wink, C. W.

    2016-08-02

    Here we present a time-resolved detector concept for the magnetic recoil spectrometer for time-resolved measurements of the NIF neutron spectrum. The measurement is challenging due to the time spreading of the recoil protons (or deuterons) as they transit an energy dispersing magnet system. Ions arrive at the focal plane of the magnetic spectrometer over an interval of tens of nanoseconds. We seek to measure the time-resolved neutron spectrum with 20 ps precision by manipulating an electron signal derived from the ions. A stretch-compress scheme is employed to remove transit time skewing while simultaneously reducing the bandwidth requirements for signal recording.more » Simulation results are presented along with design concepts for structures capable of establishing the required electromagnetic fields.« less

  6. In situ high-frequency UV-Vis spectrometer probes for investigating runoff processes and end member stability.

    NASA Astrophysics Data System (ADS)

    Schwab, Michael; Weiler, Markus; Pfister, Laurent; Klaus, Julian

    2014-05-01

    In recent years, several limitations as to the application of end member mixing analysis with isotope and geochemical tracers have been revealed: unstable end member solutions, inputs varying in space and time, and unrealistic mixing assumptions. In addition, the necessary high-frequency sampling using conventional methods is time and resources consuming, and hence most sampling rates are not suitable for capturing the response times of the majority of observed headwater catchments. However, high-frequency observations are considered fundamental for gaining new insights into hydrological systems. In our study, we have used two portable, in situ, high-frequency UV-Vis spectrometers (spectro::lyser; scan Messtechnik GmbH) to investigate the variability of several signatures in streamflow and end member stability. The spectro::lyser measures TOC, DOC, nitrate and the light absorption spectrum from 220 to 720 nm with 2.5 nm increment. The Weierbach catchment (0.45 km2) in the Attert basin (297 km2) in Luxemburg is a small headwater research catchment (operated by the CRP Gabriel Lippmann), which is completely forested and underlain by schist bedrock. The catchment is equipped with a dense network of hydrological instruments and for this study, the outlet of the Weierbach catchment was equipped with one spectro::lyser, permanently sensing stream water at a 15 minutes time step over several months. Hydrometric and meteorologic data was compared with the high-frequency spectro::lyser time series of TOC, DOC, nitrate and the light absorption spectrum, to get a first insight into the behaviour of the catchment under different environmental conditions. As a preliminary step for a successful end member mixing analysis, the stability of rainfall, soil water, and groundwater was tested with one spectro::lyser, both temporally and spatially. Thereby, we focused on the investigation of changes and patterns of the light absorption spectrum of the different end members and the

  7. First high-statistics and high-resolution recoil-ion data from the WITCH retardation spectrometer

    NASA Astrophysics Data System (ADS)

    Finlay, P.; Breitenfeldt, M.; Porobić, T.; Wursten, E.; Ban, G.; Beck, M.; Couratin, C.; Fabian, X.; Fléchard, X.; Friedag, P.; Glück, F.; Herlert, A.; Knecht, A.; Kozlov, V. Y.; Liénard, E.; Soti, G.; Tandecki, M.; Traykov, E.; Van Gorp, S.; Weinheimer, Ch.; Zákoucký, D.; Severijns, N.

    2016-07-01

    The first high-statistics and high-resolution data set for the integrated recoil-ion energy spectrum following the β^+ decay of 35Ar has been collected with the WITCH retardation spectrometer located at CERN-ISOLDE. Over 25 million recoil-ion events were recorded on a large-area multichannel plate (MCP) detector with a time-stamp precision of 2ns and position resolution of 0.1mm due to the newly upgraded data acquisition based on the LPC Caen FASTER protocol. The number of recoil ions was measured for more than 15 different settings of the retardation potential, complemented by dedicated background and half-life measurements. Previously unidentified systematic effects, including an energy-dependent efficiency of the main MCP and a radiation-induced time-dependent background, have been identified and incorporated into the analysis. However, further understanding and treatment of the radiation-induced background requires additional dedicated measurements and remains the current limiting factor in extracting a beta-neutrino angular correlation coefficient for 35Ar decay using the WITCH spectrometer.

  8. Improvements in Fabrication of Elastic Scattering Foils Used to Measure Neutron Yield by the Magnetic Recoil Spectrometer

    DOE PAGESBeta

    Reynolds, H. G.; Schoff, M. E.; Farrell, M. P.; Gatu Johnson, M.; Bionta, R. M.; Frenje, J. A.

    2016-08-01

    The magnetic recoil spectrometer uses a deuterated polyethylene polymer (CD2) foil to measure neutron yield in inertial confinement fusion experiments. Higher neutron yields in recent experiments have resulted in primary signal saturation in the detector CR-39 foils, necessitating the fabrication of thinner CD2 foils than established methods could provide. A novel method of fabricating deuterated polymer foils is described. The resulting foils are thinner, smoother, and more uniform in thickness than the foils produced by previous methods. Here, these new foils have successfully been deployed at the National Ignition Facility, enabling higher neutron yield measurements than previous foils, with nomore » primary signal saturation.« less

  9. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

    DOE PAGESBeta

    Frenje, J. A.; Hilsabeck, T. J.; Wink, C. W.; Bell, P.; Bionta, R.; Cerjan, C.; Gatu Johnson, M.; Kilkenny, J. D.; Li, C. K.; Séguin, F. H.; et al

    2016-08-02

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (Ti), yield (Yn), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with amore » time resolution of ~20 ps and energy resolution of ~100 keV for total neutron yields above ~1016. Lastly, at lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ~20 ps.« less

  10. Monte Carlo Simulation of the DRAGON Recoil Mass Spectrometer End Detectors

    NASA Astrophysics Data System (ADS)

    Veloce, Laurelle; Fallis, J.; Ruiz, C.; Reeve, S.

    2010-11-01

    DRAGON (Detector of Recoils And Gammas Of Nuclear reactions), located at TRIUMF in Vancouver, BC, is designed to study radiative capture reactions relevant in astrophysical nucleosynthesis processes. These types of reactions help us understand the production of heavy elements in the Universe. An accelerated beam of a given isotope is sent through a gas target where the reactions take place. Magnetic and electrostatic dipoles separate the recoils from the original beam particles, selecting particles according to charge and mass. The products of the nuclear reactions are then detected at the end of DRAGON by heavy ion detectors, which constitute two micro channel plate (MCP) detectors for time of flight measurements, used in conjunction with a Double Sided Silicon Strip Detector (DSSSD) or an ionization chamber (IC). The DSSSD gives information on number of counts, total energy deposited, and position while the IC measures the number of counts and the energy deposited as the particle travels through the chamber. In order to determine which set up is ideal for a given reaction and energy range, we have developed a Monte Carlo simulation of these end detectors. The program simulates both recoil and beam particles, and takes into account effects such as straggling and pulse height defect. Reaction kinematics in the gas target are also considered. Comparisons to recent experimental data will be discussed.

  11. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF.

    PubMed

    Casey, D T; Frenje, J A; Gatu Johnson, M; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Knauer, J P; Meyerhofer, D D; Sangster, T C; Bionta, R M; Bleuel, D L; Döppner, T; Glenzer, S; Hartouni, E; Hatchett, S P; Le Pape, S; Ma, T; MacKinnon, A; McKernan, M A; Moran, M; Moses, E; Park, H-S; Ralph, J; Remington, B A; Smalyuk, V; Yeamans, C B; Kline, J; Kyrala, G; Chandler, G A; Leeper, R J; Ruiz, C L; Cooper, G W; Nelson, A J; Fletcher, K; Kilkenny, J; Farrell, M; Jasion, D; Paguio, R

    2012-10-01

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF. PMID:23126915

  12. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF

    SciTech Connect

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Knauer, J. P.; Meyerhofer, D. D.; Sangster, T. C.; Bionta, R. M.; Bleuel, D. L.; Doeppner, T.; Glenzer, S.; Hartouni, E.; Hatchett, S. P.; Le Pape, S.; Ma, T.; MacKinnon, A.; and others

    2012-10-15

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  13. Use of the ECL-CAMAC trigger processor system for recoil missing mass triggers at the Tagged Photon Spectrometer at Fermilab

    SciTech Connect

    Martin, J.; Bracker, S.; Hartner, G.; Appel, J.; Nash, T.

    1981-05-01

    A trigger processor in operation since May 1980 at the Tagged Photon Spectrometer at Fermilab will be described. The processor, based on the Fermilab ECL-CAMAC system, allows fast selection of high mass diffractive events from the total hadronic cross section. Data from a recoil detector, consisting of 3 wire chambers and 4 layers of scintillator concentric about a 1.5 m liquid hydrogen target, is digitized and presented to the processor within 3 sec. From the chamber data are found the vertices and angles of all recoiling tracks.

  14. Real time high frequency monitoring of water quality in river streams using a UV-visible spectrometer: interest, limits and consequences for monitoring strategies

    NASA Astrophysics Data System (ADS)

    Faucheux, Mikaël; Fovet, Ophélie; Gruau, Gérard; Jaffrézic, Anne; Petitjean, Patrice; Gascuel-Odoux, Chantal; Ruiz, Laurent

    2013-04-01

    Stream water chemistry is highly variable in space and time, therefore high frequency water quality measurement methods are likely to lead to conceptual advances in the hydrological sciences. Sub-daily data on water quality improve the characterization of pollutant sources and pathways during flood events as well as during long-term periods [1]. However, real time, high frequency monitoring devices needs to be properly calibrated and validated in real streams. This study analyses data from in situ monitoring of a stream water quality. During two hydrological years (2010-11, 2011-12), a submersible UV-visible spectrometer (Scan Spectrolyser) was used for surface water quality measurement at the outlet of a headwater catchment located at Kervidy-Naizin, Western France (AgrHys long-term hydrological observatory, http://www.inra.fr/ore_agrhys/). The spectrometer is reagentless and equipped with an auto-cleaning system. It allows real time, in situ and high frequency (20 min) measurements and uses a multiwavelengt spectral (200-750 nm) for simultaneous measurement of nitrate, dissolved organic carbon (DOC) and total suspended solids (TSS). A global calibration based on a PLS (Partial Least Squares) regression is provided by the manufacturer as default configuration of the UV-visible spectrometer. We carried out a local calibration of the spectrometer based on nitrates and DOC concentrations analysed in the laboratory from daily manual sampling and sub-daily automatic sampling of flood events. TSS results are compared with 15 min turbidity records from a continuous turdidimeter (Ponsel). The results show a good correlation between laboratory data and spectrometer data both during basis flows periods and flood events. However, the local calibration gives better results than the global one. Nutrient fluxes estimates based on high and different low frequency time series (daily to monthly) are compared to discuss the implication for environmental monitoring strategies. Such

  15. Measurements of fission yields in the heavy region at the recoil ass spectrometer lohengrin

    NASA Astrophysics Data System (ADS)

    Bail, A.; Serot, O.; Mathieu, L.; Litaize, O.; Materna, T.; Köster, U.; Faust, H.; Letourneau, A.; Panebianco, S.; Dupont, E.; Michel-Sendis, F.

    2009-10-01

    In spite of the huge amount of fission yield data available in different libraries, more accurate values are still needed for nuclear energy applications and to improve our understanding of the fission process. Thus measurements of fission yields were performed at the mass spectrometer Lohengrin at the Institut Laue-Langevin in Grenoble, France. The mass separator Lohengrin is situated at the research reactor of the institute and permits the placement of an actinide layer in a high thermal neutron flux. It separates fragments according to their atomic mass, kinetic energy and ionic charge state by the action of magnetic and electric fields. Coupled to a high resolution ionization chamber the experiment was used to investigate the mass and isotopic yields in the light mass region. Almost all fission yields of isotopes from Th to Cf have been measured at Lohengrin with this method. It has been extended in this work to the heavy mass region for the reactions 235U(nth,f), 239Pu(nth,f), and 241Pu(nth,f). For these higher masses an isotopic separation is no longer possible. So, a new method was undertaken with the reaction 239Pu(nth,f) to determine the isotopic yields by γ spectrometry. The results are presented in this paper.

  16. A high-frequency electron paramagnetic resonance spectrometer for multi-dimensional, multi-frequency, and multi-phase pulsed measurements

    SciTech Connect

    Cho, F. H.; Stepanov, V.; Takahashi, S.

    2014-07-15

    We describe instrumentation for a high-frequency electron paramagnetic resonance (EPR) and pulsed electron-electron double resonance (PELDOR) spectroscopy. The instrumentation is operated in the frequency range of 107−120 GHz and 215−240 GHz and in the magnetic field range of 0−12.1 T. The spectrometer consisting of a high-frequency high-power solid-state source, a quasioptical system, a phase-sensitive detection system, a cryogenic-free superconducting magnet, and a {sup 4}He cryostat enables multi-frequency continuous-wave EPR spectroscopy as well as pulsed EPR measurements with a few hundred nanosecond pulses. Here we discuss the details of the design and the pulsed EPR sensitivity of the instrumentation. We also present performance of the instrumentation in unique experiments including PELDOR spectroscopy to probe correlations in an insulating electronic spin system and application of dynamical decoupling techniques to extend spin coherence of electron spins in an insulating solid-state system.

  17. High-resolution measurements of the DT neutron spectrum using new CD foils in the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    DOE PAGESBeta

    Gatu Johnson, M.; Frenje, J. A.; Bionta, R. M.; Casey, D. T.; Eckart, M. J.; Farrell, M. P.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Hoppe, M.; et al

    2016-08-09

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. Here, this paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ~200 keV FWHM.

  18. FieldSpec: A field portable mass spectrometer prototype for high frequency measurements of δ (2) H and δ (18) O ratios in water

    NASA Astrophysics Data System (ADS)

    López Días, Veneranda; Quang Hoang, Hung; Martínez-Carreras, Núria; Barnich, François; Wirtz, Tom; Pfister, Laurent; McDonnell, Jeffrey

    2016-04-01

    Hydrological studies relying on stable water isotopes to better understand water sources, flowpaths and transit times are currently limited by the coarse temporal resolution of sampling and analysis protocols. At present, two kinds of lab-based instruments are used : (i) the standard isotope ratio mass spectrometers (IRMS) [1] and (ii) the laser-based instruments [2, 3]. In both cases, samples need to be collected in the field and then transferred to the laboratory for the water isotopic ratio measurements (even further complex sample preparation is required for the IRMS). Hence, past and ongoing research targets the development of field deployable instruments for measuring stable water isotopes at high temporal frequencies. While recent studies have demonstrated that laser-based instruments may be taken to the field [4, 5], their size and power consumption still restrict their use to sites equipped with mains power or generators. Here, we present progress on the development of a field portable mass spectrometer (FieldSpec) for direct high frequency measurements of δ2H and δ18O ratios in water. The FieldSpec instrument is based upon the use of a double focusing magnetic sector mass spectrometer in combination with an electron impact ion source and a membrane dual inlet system. The instrument directly collects liquid water samples in the field, which are then converted into water vapour before being injected into the mass spectrometer for the stable isotope analysis. δ2H and δ18O are derived from the measured mass spectra. All the components are arranged in a vacuum case having a suit case type dimension with portable electronics and battery. Proof-of-concept experiments have been carried out to characterize the instrument. The results show that the FieldSpec instrument has good linearity (R2 = 0.99). The reproducibility of the instrument ranges between 1 and 4 ‰ for δ2H and between 0.1 and 0.4 ‰ for δ18O isotopic ratio measurements. A measurement

  19. Measurements of fuel and ablator ρR in Symmetry-Capsule implosions with the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Gatu Johnson, M.; Frenje, J. A.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.; Bionta, R. M.; Casey, D. T.; Caggiano, J. A.; Hatarik, R.; Khater, H. Y.; Sayre, D. B.; Knauer, J. P.; Sangster, T. C.; Herrmann, H. W.; Kilkenny, J. D.

    2014-11-01

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility (NIF) measures the neutron spectrum in the energy range of 4-20 MeV. This paper describes MRS measurements of DT-fuel and CH-ablator ρR in DT gas-filled symmetry-capsule implosions at the NIF. DT-fuel ρR's of 80-140 mg/cm2 and CH-ablator ρR's of 400-680 mg/cm2 are inferred from MRS data. The measurements were facilitated by an improved correction of neutron-induced background in the low-energy part of the MRS spectrum. This work demonstrates the accurate utilization of the complete MRS-measured neutron spectrum for diagnosing NIF DT implosions.

  20. The coincidence counting technique for orders of magnitude background reduction in data obtained with the magnetic recoil spectrometer at OMEGA and the NIF.

    PubMed

    Casey, D T; Frenje, J A; Séguin, F H; Li, C K; Rosenberg, M J; Rinderknecht, H; Manuel, M J-E; Gatu Johnson, M; Schaeffer, J C; Frankel, R; Sinenian, N; Childs, R A; Petrasso, R D; Glebov, V Yu; Sangster, T C; Burke, M; Roberts, S

    2011-07-01

    A magnetic recoil spectrometer (MRS) has been built and successfully used at OMEGA for measurements of down-scattered neutrons (DS-n), from which an areal density in both warm-capsule and cryogenic-DT implosions have been inferred. Another MRS is currently being commissioned on the National Ignition Facility (NIF) for diagnosing low-yield tritium-hydrogen-deuterium implosions and high-yield DT implosions. As CR-39 detectors are used in the MRS, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). The coincidence counting technique was developed to reduce these types of background tracks to the required level for the DS-n measurements at OMEGA and the NIF. Using this technique, it has been demonstrated that the number of background tracks is reduced by a couple of orders of magnitude, which exceeds the requirement for the DS-n measurements at both facilities. PMID:21806180

  1. The coincidence counting technique for orders of magnitude background reduction in data obtained with the magnetic recoil spectrometer at OMEGA and the NIF

    SciTech Connect

    Casey, D. T.; Frenje, J. A.; Seguin, F. H.; Li, C. K.; Rosenberg, M. J.; Rinderknecht, H.; Manuel, M. J.-E.; Gatu Johnson, M.; Schaeffer, J. C.; Frankel, R.; Sinenian, N.; Childs, R. A.; Petrasso, R. D.; Glebov, V. Yu.; Sangster, T. C.; Burke, M.; Roberts, S.

    2011-07-15

    A magnetic recoil spectrometer (MRS) has been built and successfully used at OMEGA for measurements of down-scattered neutrons (DS-n), from which an areal density in both warm-capsule and cryogenic-DT implosions have been inferred. Another MRS is currently being commissioned on the National Ignition Facility (NIF) for diagnosing low-yield tritium-hydrogen-deuterium implosions and high-yield DT implosions. As CR-39 detectors are used in the MRS, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). The coincidence counting technique was developed to reduce these types of background tracks to the required level for the DS-n measurements at OMEGA and the NIF. Using this technique, it has been demonstrated that the number of background tracks is reduced by a couple of orders of magnitude, which exceeds the requirement for the DS-n measurements at both facilities.

  2. Measurements of fuel and ablator ρR in Symmetry-Capsule implosions with the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility.

    PubMed

    Gatu Johnson, M; Frenje, J A; Li, C K; Séguin, F H; Petrasso, R D; Bionta, R M; Casey, D T; Caggiano, J A; Hatarik, R; Khater, H Y; Sayre, D B; Knauer, J P; Sangster, T C; Herrmann, H W; Kilkenny, J D

    2014-11-01

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility (NIF) measures the neutron spectrum in the energy range of 4-20 MeV. This paper describes MRS measurements of DT-fuel and CH-ablator ρR in DT gas-filled symmetry-capsule implosions at the NIF. DT-fuel ρR's of 80-140 mg/cm(2) and CH-ablator ρR's of 400-680 mg/cm(2) are inferred from MRS data. The measurements were facilitated by an improved correction of neutron-induced background in the low-energy part of the MRS spectrum. This work demonstrates the accurate utilization of the complete MRS-measured neutron spectrum for diagnosing NIF DT implosions. PMID:25430283

  3. Measurements of fuel and ablator ρR in Symmetry-Capsule implosions with the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    SciTech Connect

    Gatu Johnson, M. Frenje, J. A.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.; Bionta, R. M.; Casey, D. T.; Caggiano, J. A.; Hatarik, R.; Khater, H. Y.; Sayre, D. B.; Knauer, J. P.; Sangster, T. C.; Herrmann, H. W.; Kilkenny, J. D.

    2014-11-15

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility (NIF) measures the neutron spectrum in the energy range of 4–20 MeV. This paper describes MRS measurements of DT-fuel and CH-ablator ρR in DT gas-filled symmetry-capsule implosions at the NIF. DT-fuel ρR's of 80–140 mg/cm{sup 2} and CH-ablator ρR's of 400–680 mg/cm{sup 2} are inferred from MRS data. The measurements were facilitated by an improved correction of neutron-induced background in the low-energy part of the MRS spectrum. This work demonstrates the accurate utilization of the complete MRS-measured neutron spectrum for diagnosing NIF DT implosions.

  4. A novel double-focusing time-of-flight mass spectrometer for absolute recoil ion cross sections measurements.

    PubMed

    Sigaud, L; de Jesus, V L B; Ferreira, Natalia; Montenegro, E C

    2016-08-01

    In this work, the inclusion of an Einzel-like lens inside the time-of-flight drift tube of a standard mass spectrometer coupled to a gas cell-to study ionization of atoms and molecules by electron impact-is described. Both this lens and a conical collimator are responsible for further focalization of the ions and charged molecular fragments inside the spectrometer, allowing a much better resolution at the time-of-flight spectra, leading to a separation of a single mass-to-charge unit up to 100 a.m.u. The procedure to obtain the overall absolute efficiency of the spectrometer and micro-channel plate detector is also discussed. PMID:27587105

  5. The HERMES Recoil Detector

    SciTech Connect

    Kaiser, R.

    2006-07-11

    The HERMES Collaboration is installing a new Recoil Detector to upgrade the spectrometer for measurements of hard exclusive electron/positron scattering reactions, in particular deeply virtual Compton scattering. These measurements will provide access to generalised parton distributions and hence to the localisation of quarks inside hadrons and to their orbital angular momentum. The HERMES Recoil Detector consists of three active components: a silicon detector surrounding the target cell inside the beam vacuum, a scintillating fibre tracker and a photon detector consisting of three layers of tungsten/scintillator. All three detectors are located inside a solenoidal magnetic field of 1 Tesla. The Recoil Detector was extensively tested with cosmic muons over the summer of 2005 and is being installed in the winter of 2005/6 for data taking until summer 2007.

  6. Investigation of neutron-induced background in Magnetic-Recoil-Spectrometer CR-39 data using a DT neutron source and MCNP simulations

    NASA Astrophysics Data System (ADS)

    Milanese, Lucio M.; Frenje, Johan; Gatu Johnson, Maria; Lahmann, Brandon; Sio, Hong; Petrasso, Richard

    2015-11-01

    The Magnetic Recoil neutron Spectrometers (MRS) installed on the OMEGA laser facility and the National Ignition Facility (NIF) are routinely used to measure neutron yield, areal density and ion temperatures from DT implosions. The observed background in the lower-energy part of MRS spectra is significantly higher than expected from analysis of neutron-induced background data obtained in stand-alone CR-39 experiments at OMEGA. A possible explanation relates to the scattering of neutrons in the MRS housing vessel, which is not accounted for in current modeling. To test experimentally the impact of individual vessel components on the observed background, parts of the MRS housing have been mocked up and CR-39 data have been collected employing a DT neutron source. The experimental results are contrasted to MCNP simulations to improve our understanding of the mechanism behind the enhanced neutron background. The results will be used to correct measured spectra from OMEGA and the NIF to allow detailed analysis of lower energy data. This work was supported in part by NLUF, US DOE, and LLE.

  7. High Frequency Design Considerations for the Large Detector Number and Small Form Factor Dual Electron Spectrometer of the Fast Plasma Investigation on NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Kujawski, Joseph T.; Gliese, Ulrik B.; Cao, N. T.; Zeuch, M. A.; White, D.; Chornay, D. J; Lobell, J. V.; Avanov, L. A.; Barrie, A. C.; Mariano, A. J.; Tucker, C. J.; Piepgrass, B.; Auletti, C.; Weidner, S.; Jacques, A. D.; Pollock, C. J.

    2015-01-01

    Each half of the Dual Electron Spectrometer (DES) of the Fast Plasma Investigation (FPI) on NASA's Magnetospheric MultiScale (MMS) mission utilizes a microchannel plate Chevron stack feeding 16 separate detection channels each with a dedicated anode and amplifier/discriminator chip. The desire to detect events on a single channel with a temporal spacing of 100 ns and a fixed dead-time drove our decision to use an amplifier/discriminator with a very fast (GHz class) front end. Since the inherent frequency response of each pulse in the output of the DES microchannel plate system also has frequency components above a GHz, this produced a number of design constraints not normally expected in electronic systems operating at peak speeds of 10 MHz. Additional constraints are imposed by the geometry of the instrument requiring all 16 channels along with each anode and amplifier/discriminator to be packaged in a relatively small space. We developed an electrical model for board level interactions between the detector channels to allow us to design a board topology which gave us the best detection sensitivity and lowest channel to channel crosstalk. The amplifier/discriminator output was designed to prevent the outputs from one channel from producing triggers on the inputs of other channels. A number of Radio Frequency design techniques were then applied to prevent signals from other subsystems (e.g. the high voltage power supply, command and data handling board, and Ultraviolet stimulation for the MCP) from generating false events. These techniques enabled us to operate the board at its highest sensitivity when operated in isolation and at very high sensitivity when placed into the overall system.

  8. Light response of YAP:Ce and LaBr3:Ce scintillators to 4-30 MeV protons for applications to Telescope Proton Recoil neutron spectrometers

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Cremona, A.; Nocente, M.; Rebai, M.; Rigamonti, D.; Tardocchi, M.; Croci, G.; Ericsson, G.; Fazzi, A.; Hjalmarsson, A.; Mazzocco, M.; Strano, E.; Gorini, G.

    2016-06-01

    The light response of two thin inorganic scintillators based on YAP:Ce and LaBr3:Ce crystals has been measured with protons in the 4-8 MeV energy range at the Uppsala tandem accelerator and in the 8-26 MeV energy range at the Legnaro tandem accelerator. The crystals have been calibrated in situ with 137Cs and 60Co γ-ray sources. The relative light yields of protons with respect to gammas have been measured and are here reported to be (96±2)% and (80±2)% for YAP:Ce and LaBr3:Ce, respectively. The results open up to the development of a Telescope Proton Recoil spectrometer based on either of the two crystals as alternative to a silicon based spectrometer for applications to high neutron fluxes.

  9. [High frequency ultrasound].

    PubMed

    Sattler, E

    2015-07-01

    Diagnostic ultrasound has become a standard procedure in clinical dermatology. Devices with intermediate high frequencies of 7.5-15 MHz are used in dermato-oncology for the staging and postoperative care of skin tumor patients and in angiology for improved vessel diagnostics. In contrast, the high frequency ultrasound systems with 20-100 MHz probes offer a much higher resolution, yet with a lower penetration depth of about 1 cm. The main indications are the preoperative measurements of tumor thickness in malignant melanoma and other skin tumors and the assessment of inflammatory and soft tissue diseases, offering information on the course of these dermatoses and allowing therapy monitoring. This article gives an overview on technical principles, devices, mode of examination, influencing factors, interpretation of the images, indications but also limitations of this technique. PMID:25636803

  10. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  11. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  12. High frequency electromagnetic tomography

    SciTech Connect

    Daily, W.; Ramirez, A.; Ueng, T.; Latorre, R.

    1989-09-01

    An experiment was conducted in G Tunnel at the Nevada Test Site to evaluate high frequency electromagnetic tomography as a candidate for in situ monitoring of hydrology in the near field of a heater placed in densely welded tuff. Tomographs of 200 MHz electromagnetic permittivity were made for several planes between boreholes. Data were taken before the heater was turned on, during heating and during cooldown of the rockmass. This data is interpreted to yield maps of changes in water content of the rockmass as a function of time. This interpretation is based on laboratory measurement of electromagnetic permittivity as a function of water content for densely welded tuff. 8 refs., 6 figs.

  13. High-frequency ventilation.

    PubMed

    Crawford, M R

    1986-08-01

    Over the last six years high-frequency ventilation has been extensively evaluated both in the clinical and laboratory settings. It is now no longer the great mystery it once was, and it is now no longer believed (as many had hoped), that it will solve all the problems associated with mechanical pulmonary ventilation. Although the technique is safe and appears to cause no harm even in the long term, it has not yet been shown to offer any major advantages over conventional mechanical ventilation. PMID:3530042

  14. Forward fitting of experimental data from a NE213 neutron detector installed with the magnetic proton recoil upgraded spectrometer at JET

    SciTech Connect

    Binda, F. Ericsson, G.; Eriksson, J.; Hellesen, C.; Conroy, S.; Sundén, E. Andersson; Collaboration: JET-EFDA Team

    2014-11-15

    In this paper, we present the results obtained from the data analysis of neutron spectra measured with a NE213 liquid scintillator at JET. We calculated the neutron response matrix of the instrument combining MCNPX simulations, a generic proton light output function measured with another detector and the fit of data from ohmic pulses. For the analysis, we selected a set of pulses with neutral beam injection heating (NBI) only and we applied a forward fitting procedure of modeled spectral components to extract the fraction of thermal neutron emission. The results showed the same trend of the ones obtained with the dedicated spectrometer TOFOR, even though the values from the NE213 analysis were systematically higher. This discrepancy is probably due to the different lines of sight of the two spectrometers (tangential for the NE213, vertical for TOFOR). The uncertainties on the thermal fraction estimates were from 4 to 7 times higher than the ones from the TOFOR analysis.

  15. Mobile, outdoor continuous-flow isotope-ratio mass spectrometer system for automated high-frequency 13C- and 18O-CO2 analysis for Keeling plot applications.

    PubMed

    Schnyder, Hans; Schäufele, Rudi; Wenzel, Richard

    2004-01-01

    thousand (+/-0.07 per thousand SE). Useful Keeling regressions (r2 > 0.9, average r2 = 0.96) also resulted from data collected over 1-h intervals of the 12-h long twilight and dark period. These indicated that 13C content of ecosystem respiration was approx. constant near -27.6 per thousand. The precision of the present system is similar to that of current techniques used in ecosystem studies which employ flask sampling and a laboratory-based CF-IRMS. Sampling (and measurement) frequency is greatly increased relative to systems based on flask sampling, and sampling time (0.025 s per sample) is decreased. These features increase the probability for sampling the entire CO2 range which occurs in a given time window. The system obviates sample storage problems, greatly minimises handling needs, and allows extended campaigns of high frequency sampling and analysis with minimal attendance. PMID:15543546

  16. High-frequency ECG

    NASA Technical Reports Server (NTRS)

    Tragardh, Elin; Schlegel, Todd T.

    2006-01-01

    The standard ECG is by convention limited to 0.05-150 Hz, but higher frequencies are also present in the ECG signal. With high-resolution technology, it is possible to record and analyze these higher frequencies. The highest amplitudes of the high-frequency components are found within the QRS complex. In past years, the term "high frequency", "high fidelity", and "wideband electrocardiography" have been used by several investigators to refer to the process of recording ECGs with an extended bandwidth of up to 1000 Hz. Several investigators have tried to analyze HF-QRS with the hope that additional features seen in the QRS complex would provide information enhancing the diagnostic value of the ECG. The development of computerized ECG-recording devices that made it possible to record ECG signals with high resolution in both time and amplitude, as well as better possibilities to store and process the signals digitally, offered new methods for analysis. Different techniques to extract the HF-QRS have been described. Several bandwidths and filter types have been applied for the extraction as well as different signal-averaging techniques for noise reduction. There is no standard method for acquiring and quantifying HF-QRS. The physiological mechanisms underlying HF-QRS are still not fully understood. One theory is that HF-QRS are related to the conduction velocity and the fragmentation of the depolarization wave in the myocardium. In a three-dimensional model of the ventricles with a fractal conduction system it was shown that high numbers of splitting branches are associated with HF-QRS. In this experiment, it was also shown that the changes seen in HF-QRS in patients with myocardial ischemia might be due to the slowing of the conduction velocity in the region of ischemia. This mechanism has been tested by Watanabe et al by infusing sodium channel blockers into the left anterior descending artery in dogs. In their study, 60 unipolar ECGs were recorded from the entire

  17. A magnetic recoil spectrometer (MRS) for ρR_fuel and Ti measurements of warm, fizzle and ignited implosions at OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Frenje, J. A.; Petrasso, R. D.; Li, C. K.; Séguin, F. H.; Deciantis, J. L.; Kurebayashi, S.; Rygg, J. R.; Glebov, V. Yu.; Meyerhofer, D. D.; Sangster, T. C.; Soures, J. M.; Hatchett, S. P.; Hann, S. W.; Schmid, G. J.; Landen, O. L.; Izumi, N.

    2003-10-01

    A method for determining ρR_fuel of cryogenic deuterium-tritium plasmas involves measurement of the energy spectrum of elastically-scattered, primary neutrons. A spectrometer has been designed for doing this at OMEGA and the NIF, using scattered neutrons in the energy range 7-10 MeV to determine ρR_fuel and primary neutrons to measure T_i. The instrument utilizes a magnet and a conversion foil for production of charged particles. A large dynamic range (>10^6) will allow operation at yields as low as 10^12. This will allow ρR_fuel and Ti measurements of warm and cryogenic DT targets at OMEGA, and fizzle and ignited cryogenic DT targets at the NIF. This work was supported in part by the US DoE (contract W-7405-ENG-48 with LLNL, grant DE-FG03-99DP00300 and Cooperative Agreement DE-FC03-92SF19460), LLE (subcontract P0410025G), and LLNL (subcontract B313975).

  18. The SAGE spectrometer

    NASA Astrophysics Data System (ADS)

    Pakarinen, J.; Papadakis, P.; Sorri, J.; Herzberg, R.-D.; Greenlees, P. T.; Butler, P. A.; Coleman-Smith, P. J.; Cox, D. M.; Cresswell, J. R.; Jones, P.; Julin, R.; Konki, J.; Lazarus, I. H.; Letts, S. C.; Mistry, A.; Page, R. D.; Parr, E.; Pucknell, V. F. E.; Rahkila, P.; Sampson, J.; Sandzelius, M.; Seddon, D. A.; Simpson, J.; Thornhill, J.; Wells, D.

    2014-03-01

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of -rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and -rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyväskylä and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method.

  19. FAST NEUTRON SPECTROMETER

    DOEpatents

    Davis, F.J.; Hurst, G.S.; Reinhardt, P.W.

    1959-08-18

    An improved proton recoil spectrometer for determining the energy spectrum of a fast neutron beam is described. Instead of discriminating against and thereby"throwing away" the many recoil protons other than those traveling parallel to the neutron beam axis as do conventional spectrometers, this device utilizes protons scattered over a very wide solid angle. An ovoidal gas-filled recoil chamber is coated on the inside with a scintillator. The ovoidal shape of the sensitive portion of the wall defining the chamber conforms to the envelope of the range of the proton recoils from the radiator disposed within the chamber. A photomultiplier monitors the output of the scintillator, and a counter counts the pulses caused by protons of energy just sufficient to reach the scintillator.

  20. High-Frequency Gated Oscillator

    NASA Technical Reports Server (NTRS)

    Berard, C. A.

    1982-01-01

    New gated oscillator generates bursts of high-frequency sine waves, square waves, and triangular waves in response to control signals. Each burst starts at zero phase, with tight tolerances on signal amplitude and frequency. Frequencies in megahertz range are made possible by using high-speed comparators and high-speed flip-flop as fast-response threshold detector.

  1. High frequency integrated MOS filters

    NASA Technical Reports Server (NTRS)

    Peterson, C.

    1990-01-01

    Several techniques exist for implementing integrated MOS filters. These techniques fit into the general categories of sampled and tuned continuous-time filters. Advantages and limitations of each approach are discussed. This paper focuses primarily on the high frequency capabilities of MOS integrated filters.

  2. The HERMES recoil detector

    NASA Astrophysics Data System (ADS)

    Airapetian, A.; Aschenauer, E. C.; Belostotski, S.; Borisenko, A.; Bowles, J.; Brodski, I.; Bryzgalov, V.; Burns, J.; Capitani, G. P.; Carassiti, V.; Ciullo, G.; Clarkson, A.; Contalbrigo, M.; De Leo, R.; De Sanctis, E.; Diefenthaler, M.; Di Nezza, P.; Düren, M.; Ehrenfried, M.; Guler, H.; Gregor, I. M.; Hartig, M.; Hill, G.; Hoek, M.; Holler, Y.; Hristova, I.; Jo, H. S.; Kaiser, R.; Keri, T.; Kisselev, A.; Krause, B.; Krauss, B.; Lagamba, L.; Lehmann, I.; Lenisa, P.; Lu, S.; Lu, X.-G.; Lumsden, S.; Mahon, D.; Martinez de la Ossa, A.; Murray, M.; Mussgiller, A.; Nowak, W.-D.; Naryshkin, Y.; Osborne, A.; Pappalardo, L. L.; Perez-Benito, R.; Petrov, A.; Pickert, N.; Prahl, V.; Protopopescu, D.; Reinecke, M.; Riedl, C.; Rith, K.; Rosner, G.; Rubacek, L.; Ryckbosch, D.; Salomatin, Y.; Schnell, G.; Seitz, B.; Shearer, C.; Shutov, V.; Statera, M.; Steijger, J. J. M.; Stenzel, H.; Stewart, J.; Stinzing, F.; Trzcinski, A.; Tytgat, M.; Vandenbroucke, A.; Van Haarlem, Y.; Van Hulse, C.; Varanda, M.; Veretennikov, D.; Vilardi, I.; Vikhrov, V.; Vogel, C.; Yaschenko, S.; Ye, Z.; Yu, W.; Zeiler, D.; Zihlmann, B.

    2013-05-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with a field strength of 1T. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  3. Elastic recoil detection

    NASA Astrophysics Data System (ADS)

    Bik, W. M. A.; Habraken, F. H. P. M.

    1993-07-01

    In elastic recoil detection (ERD) one determines the yield and energy of particles ejected out of the surface region of samples under MeV ion bombardment. By application of this surface and thin film analysis technique one can obtain quantitative information concerning the depth distribution of light elements in a sample to be analysed. The quantitativity and the depth resolving power are based on knowledge of the recoil cross section and the stopping power of high-energy ions in matter. This paper reviews the fundamentals of this technique and the various experimental methods for recoil identification. Furthermore, important features for material analysis, such as detection limits, depth resolution and elemental range are discussed. Some emphasis is put on the conversion of the spectral contribution of the elements to atomic concentrations in the films for several representative cases. Throughout the review numerous examples are given to illustrate the features of ERD and to demonstrate empirically the accuracy of the quantification method.

  4. High acceptance recoil polarimeter

    SciTech Connect

    The HARP Collaboration

    1992-12-05

    In order to detect neutrons and protons in the 50 to 600 MeV energy range and measure their polarization, an efficient, low-noise, self-calibrating device is being designed. This detector, known as the High Acceptance Recoil Polarimeter (HARP), is based on the recoil principle of proton detection from np[r arrow]n[prime]p[prime] or pp[r arrow]p[prime]p[prime] scattering (detected particles are underlined) which intrinsically yields polarization information on the incoming particle. HARP will be commissioned to carry out experiments in 1994.

  5. Mobile high frequency vibrator system

    SciTech Connect

    Fair, D.W.; Buller, P.L.

    1985-01-08

    A carrier mounted seismic vibrator system that is primarily adapted for generation of high force, high frequency seismic energy into an earth medium. The apparatus includes first and second vibrators as supported by first and second lift systems disposed in tandem juxtaposition generally centrally in said vehicle, and the lift systems are designed to maintain equal hold-down force on the vibrator coupling baseplates without exceeding the weight of the carrier vehicle. The juxtaposed vibrators are then energized in synchronized relationship to propagate increased amounts of higher frequency seismic energy into an earth medium.

  6. High frequency power distribution system

    NASA Technical Reports Server (NTRS)

    Patel, Mikund R.

    1986-01-01

    The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

  7. High frequency dynamic nuclear polarization.

    PubMed

    Ni, Qing Zhe; Daviso, Eugenio; Can, Thach V; Markhasin, Evgeny; Jawla, Sudheer K; Swager, Timothy M; Temkin, Richard J; Herzfeld, Judith; Griffin, Robert G

    2013-09-17

    During the three decades 1980-2010, magic angle spinning (MAS) NMR developed into the method of choice to examine many chemical, physical, and biological problems. In particular, a variety of dipolar recoupling methods to measure distances and torsion angles can now constrain molecular structures to high resolution. However, applications are often limited by the low sensitivity of the experiments, due in large part to the necessity of observing spectra of low-γ nuclei such as the I = 1/2 species (13)C or (15)N. The difficulty is still greater when quadrupolar nuclei, such as (17)O or (27)Al, are involved. This problem has stimulated efforts to increase the sensitivity of MAS experiments. A particularly powerful approach is dynamic nuclear polarization (DNP) which takes advantage of the higher equilibrium polarization of electrons (which conventionally manifests in the great sensitivity advantage of EPR over NMR). In DNP, the sample is doped with a stable paramagnetic polarizing agent and irradiated with microwaves to transfer the high polarization in the electron spin reservoir to the nuclei of interest. The idea was first explored by Overhauser and Slichter in 1953. However, these experiments were carried out on static samples, at magnetic fields that are low by current standards. To be implemented in contemporary MAS NMR experiments, DNP requires microwave sources operating in the subterahertz regime, roughly 150-660 GHz, and cryogenic MAS probes. In addition, improvements were required in the polarizing agents, because the high concentrations of conventional radicals that are required to produce significant enhancements compromise spectral resolution. In the last two decades, scientific and technical advances have addressed these problems and brought DNP to the point where it is achieving wide applicability. These advances include the development of high frequency gyrotron microwave sources operating in the subterahertz frequency range. In addition, low

  8. High Frequency Dynamic Nuclear Polarization

    PubMed Central

    Ni, Qing Zhe; Daviso, Eugenio; Can, Thach V.; Markhasin, Evgeny; Jawla, Sudheer K.; Swager, Timothy M.; Temkin, Richard J.; Herzfeld, Judith; Griffin, Robert G.

    2013-01-01

    Conspectus During the three decades 1980–2010, magic angle spinning (MAS) NMR developed into the method of choice to examine many chemical, physical and biological problems. In particular, a variety of dipolar recoupling methods to measure distances and torsion angles can now constrain molecular structures to high resolution. However, applications are often limited by the low sensitivity of the experiments, due in large part to the necessity of observing spectra of low-γ nuclei such as the I = ½ species 13C or 15N. The difficulty is still greater when quadrupolar nuclei, like 17O or 27Al, are involved. This problem has stimulated efforts to increase the sensitivity of MAS experiments. A particularly powerful approach is dynamic nuclear polarization (DNP) which takes advantage of the higher equilibrium polarization of electrons (which conventionally manifests in the great sensitivity advantage of EPR over NMR). In DNP, the sample is doped with a stable paramagnetic polarizing agent and irradiated with microwaves to transfer the high polarization in the electron spin reservoir to the nuclei of interest. The idea was first explored by Overhauser and Slichter in 1953. However, these experiments were carried out on static samples, at magnetic fields that are low by current standards. To be implemented in contemporary MAS NMR experiments, DNP requires microwave sources operating in the subterahertz regime — roughly 150–660 GHz — and cryogenic MAS probes. In addition, improvements were required in the polarizing agents, because the high concentrations of conventional radicals that are required to produce significant enhancements compromise spectral resolution. In the last two decades scientific and technical advances have addressed these problems and brought DNP to the point where it is achieving wide applicability. These advances include the development of high frequency gyrotron microwave sources operating in the subterahertz frequency range. In addition, low

  9. Special Aspects in Designing High - Frequency Betatron

    NASA Astrophysics Data System (ADS)

    Filimonov, A. A.; Kasyanov, S. V.; Kasyanov, V. A.

    2016-01-01

    The article is devoted to designing the high - frequency betatron. In high - frequency betatron most important problem is overheating of the elements of the body radiator unit. In an article some directions of solving this problem are shown.

  10. High-Frequency Inductor Materials

    NASA Astrophysics Data System (ADS)

    Varga, L. K.

    2014-01-01

    The Finemet-type nanocrystalline alloy represents an advanced soft-magnetic metal-metal-type nanocomposite with an eddy-current-determined high- frequency limit. A survey of different heat treatments under tensile stress is presented to tailor the hysteresis loop by induced transversal anisotropy. The flattened loop having reduced effective permeability enhances the eddy- current limit in the MHz region; For example, continuous stress annealing in a tubular furnace of 1 m length at 650°C, pulling the ribbon with a velocity of 4 m/min under a tensile stress of 200 MPa, results in a wound core having a permeability of 120 and a frequency limit of 10 MHz. Careful annealing preserves the static coercivity below 10 A/m. The power loss at 0.1 T and 100 kHz is only 82 mW/cm3, which is an order of magnitude lower then the values obtained for Sendust™ cores in similar conditions.

  11. High frequency-heated air turbojet

    NASA Technical Reports Server (NTRS)

    Miron, J. H. D.

    1986-01-01

    A description is given of a method to heat air coming from a turbojet compressor to a temperature necessary to produce required expansion without requiring fuel. This is done by high frequency heating, which heats the walls corresponding to the combustion chamber in existing jets, by mounting high frequency coils in them. The current transformer and high frequency generator to be used are discussed.

  12. Pressurized high frequency thermoacoustic engines

    NASA Astrophysics Data System (ADS)

    Webb, Nicholas D.

    Acoustic heat engines show much promise for converting waste heat to electricity. Since most applications require high power levels, high frequency thermoacoustic engines can reach such performance by operating with a pressurized working gas. Results on a 3 kHz prime mover, consisting of a quarter-wave resonator and a random stack material between two heat exchangers, show that the acoustic power from such a device is raised substantially as the working gas is pressurized. At pressures up to approximately 10 bar, the increase in acoustic power is approximately linear to the increase in pressure, and thus is an effective way to increase the power output of thermoacoustic engines. Since the heat input was not changed during the experiments, the increases in acoustic power translate directly to increases in engine efficiency which is calculated as the output acoustic power divided by the input heat power. In most experiments run in this study, the engine efficiency increased by a factor of at least 4 as the pressure was increased from 2 bar up to about 10 bar. Further increases in pressure lead to acoustic power saturation and eventual attenuation. This is most likely due to a combination of several factors including the shrinking thermal penetration depth, and the fact that the losses increase faster with pressure in a random stack material than in traditional parallel plates. Pressurization also leads to a lower DeltaT for onset of oscillations in the range of 10 bar of mean pressure, potentially opening up even more heat sources that can power a thermoacoustic engine. Results from another 3 kHz engine, one that was pressurized itself as opposed to being placed in a pressurized chamber, are also presented. The configuration of this engine solves the problem of how to simultaneously pressurize the engine and inject heat into the hot heat exchanger. It was also noted that the geometry of the resonator cavity in the quarter wavelength pressurized engine plays an

  13. Interpreting Recoil for Undergraduate Students

    ERIC Educational Resources Information Center

    Elsayed, Tarek A.

    2012-01-01

    The phenomenon of recoil is usually explained to students in the context of Newton's third law. Typically, when a projectile is fired, the recoil of the launch mechanism is interpreted as a reaction to the ejection of the smaller projectile. The same phenomenon is also interpreted in the context of the conservation of linear momentum, which is…

  14. Further insight into gravitational recoil

    SciTech Connect

    Lousto, Carlos O.; Zlochower, Yosef

    2008-02-15

    We test the accuracy of our recently proposed empirical formula to model the recoil velocity imparted to the merger remnant of spinning, unequal-mass black-hole binaries. We study three families of black-hole binary configurations, all with mass ratio q=3/8 (to nearly maximize the unequal-mass contribution to the kick) and spins aligned (or counter-aligned) with the orbital angular momentum, two with spin configurations chosen to minimize the spin-induced tangential and radial accelerations of the trajectories, respectively, and a third family where the trajectories are significantly altered by spin-orbit coupling. We find good agreement between the measured and predicted recoil velocities for the first two families, and reasonable agreement for the third. We also reexamine our original generic binary configuration that led to the discovery of extremely large spin-driven recoil velocities and inspired our empirical formula, and find rough agreement between the predicted and measured recoil speeds.

  15. High frequency oscillations in the intact brain

    PubMed Central

    Buzsáki, György; da Silva, Fernando Lopes

    2016-01-01

    High frequency oscillations (HFOs) constitute a novel trend in neurophysiology that is fascinating neuroscientists in general, and epileptologists in particular. But what are HFOs? What is the frequency range of HFOs? Are there different types of HFOs, physiological and pathological? How are HFOs generated? Can HFOs represent temporal codes for cognitive processes? These questions are pressing and this symposium volume attempts to give constructive answers. As a prelude to this exciting discussion, we summarize the physiological high frequency patterns in the intact brain, concentrating mainly on hippocampal patterns, where the mechanisms of high frequency oscillations are perhaps best understood. PMID:22449727

  16. Real-time, high frequency QRS electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2006-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as RAZs. RAZs are displayed as go, no-go signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  17. Overview of the Advanced High Frequency Branch

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.

  18. High frequency testing of rubber mounts.

    PubMed

    Vahdati, Nader; Saunders, L Ken Lauderbaugh

    2002-04-01

    Rubber and fluid-filled rubber engine mounts are commonly used in automotive and aerospace applications to provide reduced cabin noise and vibration, and/or motion accommodations. In certain applications, the rubber mount may operate at frequencies as high as 5000 Hz. Therefore, dynamic stiffness of the mount needs to be known in this frequency range. Commercial high frequency test machines are practically nonexistent, and the best high frequency test machine on the market is only capable of frequencies as high as 1000 Hz. In this paper, a high frequency test machine is described that allows test engineers to study the high frequency performance of rubber mounts at frequencies up to 5000 Hz. PMID:12071247

  19. Proton recoil spectroscopy 400 meters from a fission neutron source

    SciTech Connect

    Stanka, M.B.

    1994-12-31

    Neutron kerma and spectrum measurements have been made at the US Army Pulse Radiation Facility (APRF) to 400m in an air-over-ground geometry from a fission neutron source and have been compared to Monte Carlo transport calculations. The neutron spectra measurements were made using a rotating neutron spectrometer. This spectrometer consists of four spherical proton-recoil detectors mounted on a common rotating base. Detector radius, gas composition, and pressure have been varied to allow sensitivity over a neutron range of 50 keV to 4.5 MeV. Neutron kerma was determined by using the Kerr soft-tissue kerma factors. Measured neutron kerma agreed with the calculated neutron kerma to within 5%. Comparisons with other neutron spectrometers such as NE213 and Bonner Spheres are presented and agreement between the different spectrometers is better than 20%.

  20. Recoil Separators for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Blackmon, J. C.

    2004-10-01

    Hydrogen and helium capture reactions are important in many astrophysical environments. Measurements in inverse kinematics using recoil separators have demonstrated a particularly sensitive technique for studying low-yield capture reactions.(M. S. Smith, C. E. Rolfs, and C. A. Barnes, Nucl. Instrum. Meth. Phys. Res. A306) (1991) 233. This approach allows a low background rate to be achieved with a high detection efficiency (about 50%) for the particles of interest using a device with only modest acceptance. Recoil separators using a variety of ion-optic configurations have been installed at numerous accelerator facilities in the past decade and have been used to measure, for example, alpha capture reactions using stable beams(D. Rogalla et al.), Eur. Phys. J. 6 (1999) 471. and proton capture reactions using radioactive ion beams.(S. Bishop et al.), Phys. Rev. Lett. 90 (2003) 162501. Measurements in inverse kinematics are the only viable means for studying reactions on short-lived nuclei that are crucial for understanding stellar explosions, and a recoil separator optimized for the measurement of capture reactions with radioactive ion beams figures prominently into the design of the low energy experimental area at the Rare Isotope Accelerator (RIA). The operational requirements for such a device will be outlined, and recoil separator designs and characteristics will be presented.

  1. High frequency pressure oscillator for microcryocoolers.

    PubMed

    Vanapalli, S; ter Brake, H J M; Jansen, H V; Zhao, Y; Holland, H J; Burger, J F; Elwenspoek, M C

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80 K, delivering a cooling power of 10 mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5 MPa and compression volume of about 22.6 mm(3) when operating the actuator with a peak-to-peak sinusoidal voltage of 100 V at a frequency of 1 kHz. The electrical power input was 2.73 W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers. PMID:18447548

  2. Transponder System for High-Frequency Ranging

    NASA Technical Reports Server (NTRS)

    Lichtenberg, C. L.; Shores, P. W.; Kobayashi, H. S.

    1986-01-01

    Transponder system uses phase difference between transmitted and reflected high-frequency radio waves to measure distance to target. To suppress spurious measurements of reflections from objects near target at transmitted frequency and its harmonics, transponder at target generates return signal at half transmitted frequency. System useful in such applications as surveying, docking of ships, and short-range navigation.

  3. Psychophysical tuning curves at very high frequencies

    NASA Astrophysics Data System (ADS)

    Yasin, Ifat; Plack, Christopher J.

    2005-10-01

    For most normal-hearing listeners, absolute thresholds increase rapidly above about 16 kHz. One hypothesis is that the high-frequency limit of the hearing-threshold curve is imposed by the transmission characteristics of the middle ear, which attenuates the sound input [Masterton et al., J. Acoust. Soc. Am. 45, 966-985 (1969)]. An alternative hypothesis is that the high-frequency limit of hearing is imposed by the tonotopicity of the cochlea [Ruggero and Temchin, Proc. Nat. Acad. Sci. U.S.A. 99, 13206-13210 (2002)]. The aim of this study was to test these hypotheses. Forward-masked psychophysical tuning curves (PTCs) were derived for signal frequencies of 12-17.5 kHz. For the highest signal frequencies, the high-frequency slopes of some PTCs were steeper than the slope of the hearing-threshold curve. The results also show that the human auditory system displays frequency selectivity for characteristic frequencies (CFs) as high as 17 kHz, above the frequency at which absolute thresholds begin to increase rapidly. The findings suggest that, for CFs up to 17 kHz, the high-frequency limitation in humans is imposed in part by the middle-ear attenuation, and not by the tonotopicity of the cochlea.

  4. A gas ionisation detector in the axial (Bragg) geometry used for the time-of-flight elastic recoil detection analysis

    SciTech Connect

    Siketić, Zdravko; Skukan, Natko; Bogdanović Radović, Iva

    2015-08-15

    In this paper, time-of-flight elastic recoil detection analysis spectrometer with a newly constructed gas ionization detector for energy detection is presented. The detector is designed in the axial (Bragg) geometry with a 3 × 3 array of 50 nm thick Si{sub 3}N{sub 4} membranes as an entrance window. 40 mbar isobutane gas was sufficient to stop a 30 MeV primary iodine beam as well as all recoils in the detector volume. Spectrometer and detector performances were determined showing significant improvement in the mass and energy resolution, respectively, comparing to the spectrometer with a standard silicon particle detector for an energy measurement.

  5. Further insights into the proton spin with the new HERMES Recoil Detector

    SciTech Connect

    Vilardi, I.

    2007-11-19

    The HERMES experiment, installed in the 27.5 GeV HERA lepton ring at DESY/Hamburg, is used to study the spin structure of the nucleon. To get information about the orbital angular momentum L{sub q} of quarks, exclusive DIS reactions are investigated. The HERMES Collaboration installed a new Recoil Detector to upgrade the existing spectrometer to improve the study of hard exclusive processes, detecting recoil protons with low momentum. Deeply Virtual Compton Scattering is the main process to be studied. The HERMES Recoil Detector consists of three subcomponents inside a superconducting magnet that provides a longitudinal superconducting magnetic field of 1 Tesla. The Recoil Detector was installed in January 2006 and commissioning started in February. First results from the detector will be presented.

  6. High-current, high-frequency capacitors

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1983-01-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  7. Turbulence in unsteady flow at high frequencies

    NASA Technical Reports Server (NTRS)

    Kuhn, Gary D.

    1990-01-01

    Turbulent flows subjected to oscillations of the mean flow were simulated using a large-eddy simulation computer code for flow in a channel. The objective of the simulations was to provide better understanding of the effects of time-dependent disturbances on the turbulence of a boundary layer and of the underlying physical phenomena regarding the basic interaction between the turbulence and external disturbances. The results confirmed that turbulence is sensitive to certain ranges of frequencies of disturbances. However, no direct connection was found between the frequency of imposed disturbances and the characteristic 'burst' frequency of turbulence. New insight into the nature of turbulence at high frequencies was found. Viscous phenomena near solid walls were found to be the dominant influence for high-frequency perturbations.

  8. Apparatus for measuring high frequency currents

    NASA Technical Reports Server (NTRS)

    Hagmann, Mark J. (Inventor); Sutton, John F. (Inventor)

    2003-01-01

    An apparatus for measuring high frequency currents includes a non-ferrous core current probe that is coupled to a wide-band transimpedance amplifier. The current probe has a secondary winding with a winding resistance that is substantially smaller than the reactance of the winding. The sensitivity of the current probe is substantially flat over a wide band of frequencies. The apparatus is particularly useful for measuring exposure of humans to radio frequency currents.

  9. [High-frequency oscillatory ventilation in neonates].

    PubMed

    2002-09-01

    High-frequency oscillatory ventilation (HFOV) may be considered as an alternative in the management of severe neonatal respiratory failure requiring mechanical ventilation. In patients with diffuse pulmonary disease, HFOV can applied as a rescue therapy with a high lung volume strategy to obtain adequate alveolar recruitment. We review the mechanisms of gas exchange, as well as the indications, monitoring and special features of the use HVOF in the neonatal period. PMID:12199947

  10. Extremely high frequency RF effects on electronics.

    SciTech Connect

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  11. Ionospheric modifications in high frequency heating experiments

    SciTech Connect

    Kuo, Spencer P.

    2015-01-15

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  12. High-frequency Rayleigh-wave method

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  13. The recoil proton polarization in. pi. p elastic scattering

    SciTech Connect

    Seftor, C.J.

    1988-09-01

    The polarization of the recoil proton for ..pi../sup +/p and ..pi../sup -/p elastic scattering has been measured for various angles at 547 MeV/c and 625 MeV/c by a collaboration involving The George Washington University; the University of California, Los Angeles; and Abilene Christian University. The experiment was performed at the P/sup 3/ East experimental area of the Los Alamos Meson Physics Facility. Beam intensities varied from 0.4 to 1.0 x 10/sup 7/ ..pi../sup -/'s/sec and from 3.0 to 10.0 x 10/sup 7/ ..pi../sup +/'s/sec. The beam spot size at the target was 1 cm in the horizontal direction by 2.5 cm in the vertical direction. A liquid-hydrogen target was used in a flask 5.7 cm in diameter and 10 cm high. The scattered pion and recoil proton were detected in coincidence using the Large Acceptance Spectrometer (LAS) to detect and momentum analyze the pions and the JANUS recoil proton polarimeter to detect and measure the polarization of the protons. Results from this experiment are compared with previous measurements of the polarization, with analyzing power data previously taken by this group, and to partial-wave analysis predictions. 12 refs., 53 figs., 18 tabs.

  14. High frequency ultrasonic mitigation of microbial corrosion

    NASA Astrophysics Data System (ADS)

    Almahamedh, Hussain H.; Meegan, G. Douglas; Mishra, Brajendra; Olson, David L.; Spear, John R.

    2012-05-01

    Microbiologically Influenced Corrosion (MIC) is a major problem in oil industry facilities, and considerable effort has been spent to mitigate this costly issue. More environmentally benign methods are under consideration as alternatives to biocides, among which are ultrasonic techniques. In this study, a high frequency ultrasonic technique (HFUT) was used as a mitigation method for MIC. The killing percentages of the HFUT were higher than 99.8 percent and their corrosivity on steel was reduced by more than 50 percent. The practice and result will be discussed.

  15. The LASI high-frequency ellipticity system

    SciTech Connect

    Sternberg, B.K.; Poulton, M.M.

    1995-12-31

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  16. Inviscid fluid in high frequency excitation field

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1984-01-01

    The influence of high frequency excitations (HFE) on a fluid is investigated. The response to these excitations is decomposed in two parts: 'slow' motion, which practically remains unchanged during the vanishingly small period tau, and 'fast' motion whose value during this period is negligible in terms of displacements, but is essential in terms of the kinetic energy. After such a decomposition the 'slow' and 'fast' motions become nonlinearly coupled by the corresponding governing equations. This coupling leads to an 'effective' potential energy which imparts some 'elastic' properties to the fluid and stabilizes laminar flows.

  17. The LASI high-frequency ellipticity system

    SciTech Connect

    Sternberg, B.K.; Poulton, M.M.

    1995-10-01

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  18. Inverter design for high frequency power distribution

    NASA Technical Reports Server (NTRS)

    King, R. J.

    1985-01-01

    A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.

  19. High Frequency Plasma Generators for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Divergilio, W. F.; Goede, H.; Fosnight, V. V.

    1981-01-01

    The results of a one year program to experimentally adapt two new types of high frequency plasma generators to Argon ion thrusters and to analytically study a third high frequency source concept are presented. Conventional 30 cm two grid ion extraction was utilized or proposed for all three sources. The two plasma generating methods selected for experimental study were a radio frequency induction (RFI) source, operating at about 1 MHz, and an electron cyclotron heated (ECH) plasma source operating at about 5 GHz. Both sources utilize multi-linecusp permanent magnet configurations for plasma confinement. The plasma characteristics, plasma loading of the rf antenna, and the rf frequency dependence of source efficiency and antenna circuit efficiency are described for the RFI Multi-cusp source. In a series of tests of this source at Lewis Research Center, minimum discharge losses of 220+/-10 eV/ion were obtained with propellant utilization of .45 at a beam current of 3 amperes. Possible improvement modifications are discussed.

  20. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Dolan, James T.; Kirkpatrick, Douglas A.; Leng, Yongzhang

    2000-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  1. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Dymond, Jr., Lauren E.; Gitsevich, Aleksandr; Grimm, William G.; Kipling, Kent; Kirkpatrick, Douglas A.; Ola, Samuel A.; Simpson, James E.; Trimble, William C.; Tsai, Peter; Turner, Brian P.

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

  2. Noise temperature in graphene at high frequencies

    NASA Astrophysics Data System (ADS)

    Rengel, Raúl; Iglesias, José M.; Pascual, Elena; Martín, María J.

    2016-07-01

    A numerical method for obtaining the frequency-dependent noise temperature in monolayer graphene is presented. From the mobility and diffusion coefficient values provided by Monte Carlo simulation, the noise temperature in graphene is studied up to the THz range, considering also the influence of different substrate types. The influence of the applied electric field is investigated: the noise temperature is found to increase with the applied field, dropping down at high frequencies (in the sub-THz range). The results show that the low-frequency value of the noise temperature in graphene on a substrate tends to be reduced as compared to the case of suspended graphene due to the important effect of remote polar phonon interactions, thus indicating a reduced emitted noise power; however, at very high frequencies the influence of the substrate tends to be significantly reduced, and the differences between the suspended and on-substrate cases tend to be minimized. The values obtained are comparable to those observed in GaAs and semiconductor nitrides.

  3. Angular Momentum Ejection and Recoil*

    NASA Astrophysics Data System (ADS)

    Ohia, O.; Coppi, B.

    2009-11-01

    The spontaneous rotation phenomenon observed in axisymmetric magnetically confined plasmas has been explained by the ``accretion theory'' [1] that considers the plasma angular momentum as gained from its interaction with the magnetic field and the surrounding material wall. The ejection of angular momentum to the wall, and the consequent recoil are attributed to modes excited at the edge while the transport of the (recoil) angular momentum from the edge toward the center is attributed to a different kind of mode. The toroidal phase velocity of the edge mode, to which the sign of the ejected angular momentum is related, is considered to change its direction in the transition from the H-regime to the L-regime. For the latter case, edge modes with phase velocity in the direction of vdi are driven by the temperature gradient of a cold ion population at the edge and damped on the ``hot'' ion population. The ``balanced'' double interaction [2] of the mode with the two populations, corresponding to a condition of marginal stability, leads to ejection of hot ions and loss of angular momentum in the direction of vdi while the cold population acquires angular momentum in the opposite direction. In the H-regime resistive ballooning modes with phase velocities in the direction of vde are viewed as the best candidates for the excited edge modes. *Sponsored in part by the U.S. DOE. [1] B. Coppi, Nucl. Fusion 42, 1 (2002) [2] B. Coppi and F. Pegoraro, Nucl. Fusion 17, 969 (1977)

  4. Plasma effects in high frequency radiative transfer

    SciTech Connect

    Alonso, C.T.

    1981-02-08

    This paper is intended as a survey of collective plasma processes which can affect the transfer of high frequency radiation in a hot dense plasma. We are rapidly approaching an era when this subject will become important in the laboratory. For pedagogical reasons we have chosen to examine plasma processes by relating them to a particular reference plasma which will consist of fully ionized carbon at a temperature kT=1 KeV (10/sup 70/K) and an electron density N = 3 x 10/sup 23/cm/sup -3/, (which corresponds to a mass density rho = 1 gm/cm/sup 3/ and an ion density N/sub i/ = 5 x 10/sup 22/ cm/sup -3/). We will consider the transport in such a plasma of photons ranging from 1 eV to 1 KeV in energy. Such photons will probably be frequently used as diagnostic probes of hot dense laboratory plasmas.

  5. Inline high frequency ultrasonic particle sizer

    NASA Astrophysics Data System (ADS)

    Lefebvre, F.; Petit, J.; Nassar, G.; Debreyne, P.; Delaplace, G.; Nongaillard, B.

    2013-07-01

    This paper reports the development of a new method of particle sizing in a liquid. This method uses high frequency focused ultrasounds to detect particles crossing the focal zone of an ultrasonic sensor and to determine their size distribution by processing the reflected echoes. The major advantage of this technique compared to optical sizing methods is its ability to measure the size of particles suspended in an opaque liquid without any dedicated sample preparation. Validations of ultrasonic measurements were achieved on suspensions of polymethyl methacrylate beads in a size range extending from a few micrometer to several hundred micrometer with a temporal resolution of 1 s. The inline detection of aggregate formation was also demonstrated.

  6. High frequency electromagnetic response of the moon

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Schwartz, K.

    1971-01-01

    It is shown that the contribution of higher harmonics to the lunar transfer functions for the tangential components of the surface magnetic field is significant at frequencies greater than 0.01 Hz. The inclusion of the higher harmonics shows that there are two distinct transfer functions corresponding to the components of the tangential surface magnetic field perpendicular and parallel to the direction of the wave vector of the external disturbance forcing the lunar induction. The dependences of these transfer functions on frequency and location are determined. The effects of the higher harmonics can: (1) account for a hitherto unexplained feature in the Apollo 12-Explorer 35 transfer functions, namely the rolloff at high frequencies; and (2) offer a possible explanation for the frequency dependence of the difference between the transfer functions for the two orthogonal components of the surface magnetic field. The harmonic response of a simple current layer model of the moon is derived.

  7. High-frequency resonant-tunneling oscillators

    NASA Technical Reports Server (NTRS)

    Brown, E. R.; Parker, C. D.; Calawa, A. R.; Manfra, M. J.; Chen, C. L.

    1991-01-01

    Advances in high-frequency resonant-tunneling-diode (RTD) oscillators are described. Oscillations up to a frequency of 420 GHz have been achieved in the GaAs/AlAs system. Recent results obtained with In0.53Ga0.47As/AlAs and InAs/AlSb RTDs show a greatly increased power density and indicate the potential for fundamental oscillations up to about 1 THz. These results are consistent with a lumped-element equivalent circuit model of the RTD. The model shows that the maximum oscillation frequency of the GaAs/AlAs RTDs is limited primarily by series resistance, and that the power density is limited by low peak-to-valley current ratio.

  8. 1987 calibration of the TFTR neutron spectrometers

    SciTech Connect

    Barnes, C.W.; Strachan, J.D.; Princeton Univ., NJ . Plasma Physics Lab.)

    1989-12-01

    The {sup 3}He neutron spectrometer used for measuring ion temperatures and the NE213 proton recoil spectrometer used for triton burnup measurements were absolutely calibrated with DT and DD neutron generators placed inside the TFTR vacuum vessel. The details of the detector response and calibration are presented. Comparisons are made to the neutron source strengths measured from other calibrated systems. 23 refs., 19 figs., 6 tabs.

  9. A recoil separator for nuclear astrophysics SECAR

    NASA Astrophysics Data System (ADS)

    Berg, G. P. A.; Bardayan, D. W.; Blackmon, J. C.; Chipps, K. A.; Couder, M.; Greife, U.; Hager, U.; Montes, F.; Rehm, K. E.; Schatz, H.; Smith, M. S.; Wiescher, M.; Wrede, C.; Zeller, A.

    2016-06-01

    A recoil separator SECAR has been designed to study radiative capture reactions relevant for the astrophysical rp-process in inverse kinematics for the Facility for Rare Isotope Beams (FRIB). We describe the design, layout, and ion optics of the recoil separator and present the status of the project.

  10. Plant Responses to High Frequency Electromagnetic Fields.

    PubMed

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  11. Aerodynamics of high frequency flapping wings

    NASA Astrophysics Data System (ADS)

    Hu, Zheng; Roll, Jesse; Cheng, Bo; Deng, Xinyan

    2010-11-01

    We investigated the aerodynamic performance of high frequency flapping wings using a 2.5 gram robotic insect mechanism developed in our lab. The mechanism flaps up to 65Hz with a pair of man-made wing mounted with 10cm wingtip-to-wingtip span. The mean aerodynamic lift force was measured by a lever platform, and the flow velocity and vorticity were measured using a stereo DPIV system in the frontal, parasagittal, and horizontal planes. Both near field (leading edge vortex) and far field flow (induced flow) were measured with instantaneous and phase-averaged results. Systematic experiments were performed on the man-made wings, cicada and hawk moth wings due to their similar size, frequency and Reynolds number. For insect wings, we used both dry and freshly-cut wings. The aerodynamic force increase with flapping frequency and the man-made wing generates more than 4 grams of lift at 35Hz with 3 volt input. Here we present the experimental results and the major differences in their aerodynamic performances.

  12. High frequency, high power capacitor development

    NASA Technical Reports Server (NTRS)

    White, C. W.; Hoffman, P. S.

    1983-01-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  13. A high frequency electromagnetic impedance imaging system

    SciTech Connect

    Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex

    2003-01-15

    Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systems for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.

  14. Plant Responses to High Frequency Electromagnetic Fields

    PubMed Central

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  15. A High Frequency Model of Cascade Noise

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    1998-01-01

    Closed form asymptotic expressions for computing high frequency noise generated by an annular cascade in an infinite duct containing a uniform flow are presented. There are two new elements in this work. First, the annular duct mode representation does not rely on the often-used Bessel function expansion resulting in simpler expressions for both the radial eigenvalues and eigenfunctions of the duct. In particular, the new representation provides an explicit approximate formula for the radial eigenvalues obviating the need for solutions of the transcendental annular duct eigenvalue equation. Also, the radial eigenfunctions are represented in terms of exponentials eliminating the numerical problems associated with generating the Bessel functions on a computer. The second new element is the construction of an unsteady response model for an annular cascade. The new construction satisfies the boundary conditions on both the cascade and duct walls simultaneously adding a new level of realism to the noise calculations. Preliminary results which demonstrate the effectiveness of the new elements are presented. A discussion of the utility of the asymptotic formulas for calculating cascade discrete tone as well as broadband noise is also included.

  16. High-frequency graphene voltage amplifier.

    PubMed

    Han, Shu-Jen; Jenkins, Keith A; Valdes Garcia, Alberto; Franklin, Aaron D; Bol, Ageeth A; Haensch, Wilfried

    2011-09-14

    While graphene transistors have proven capable of delivering gigahertz-range cutoff frequencies, applying the devices to RF circuits has been largely hindered by the lack of current saturation in the zero band gap graphene. Herein, the first high-frequency voltage amplifier is demonstrated using large-area chemical vapor deposition grown graphene. The graphene field-effect transistor (GFET) has a 6-finger gate design with gate length of 500 nm. The graphene common-source amplifier exhibits ∼5 dB low frequency gain with the 3 dB bandwidth greater than 6 GHz. This first AC voltage gain demonstration of a GFET is attributed to the clear current saturation in the device, which is enabled by an ultrathin gate dielectric (4 nm HfO(2)) of the embedded gate structures. The device also shows extrinsic transconductance of 1.2 mS/μm at 1 V drain bias, the highest for graphene FETs using large-scale graphene reported to date. PMID:21805988

  17. High-Frequency Observations of Blazars

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.; Marchenko-Jorstad, S. G.; Mattox, J. R.; Wehrle, A. E.; Aller, M. F.

    2000-01-01

    We report on the results of high-frequency VLBA observations of 42 gamma-ray bright blazars monitored at 22 and 43 GHz between 1993.9 and 1997.6. In 1997 the observations included polarization-sensitive imaging. The cores of gamma-ray blazars are only weakly polarized, with EVPAs (electric-vector position angles) usually within 40 deg of the local direction of the jet. The EVPAs of the jet components are usually within 20 deg of the local jet direction. The apparent speeds of the gamma-ray bright blazars are considerably faster than in the general population of bright compact radio sources. Two X-ray flares (observed with RXTE) of the quasar PKS 1510-089 appear to be related to radio flares, but with the radio leading the X-ray variations by about 2 weeks. This can be explained either by synchrotron self-Compton emission in a component whose variations are limited by light travel time or by the Mirror Compton model.

  18. High-frequency plasma-heating apparatus

    DOEpatents

    Brambilla, Marco; Lallia, Pascal

    1978-01-01

    An array of adjacent wave guides feed high-frequency energy into a vacuum chamber in which a toroidal plasma is confined by a magnetic field, the wave guide array being located between two toroidal current windings. Waves are excited in the wave guide at a frequency substantially equal to the lower frequency hybrid wave of the plasma and a substantially equal phase shift is provided from one guide to the next between the waves therein. For plasmas of low peripheral density gradient, the guides are excited in the TE.sub.01 mode and the output electric field is parallel to the direction of the toroidal magnetic field. For exciting waves in plasmas of high peripheral density gradient, the guides are excited in the TM.sub.01 mode and the magnetic field at the wave guide outlets is parallel to the direction of the toroidal magnetic field. The wave excited at the outlet of the wave guide array is a progressive wave propagating in the direction opposite to that of the toroidal current and is, therefore, not absorbed by so-called "runaway" electrons.

  19. High frequency stimulation can block axonal conduction.

    PubMed

    Jensen, Alicia L; Durand, Dominique M

    2009-11-01

    High frequency stimulation (HFS) is used to control abnormal neuronal activity associated with movement, seizure, and psychiatric disorders. Yet, the mechanisms of its therapeutic action are not known. Although experimental results have shown that HFS suppresses somatic activity, other data has suggested that HFS could generate excitation of axons. Moreover it is unclear what effect the stimulation has on tissue surrounding the stimulation electrode. Electrophysiological and computational modeling literature suggests that HFS can drive axons at the stimulus frequency. Therefore, we tested the hypothesis that unlike cell bodies, axons are driven by pulse train HFS. This hypothesis was tested in fibers of the hippocampus both in-vivo and in-vitro. Our results indicate that although electrical stimulation could activate and drive axons at low frequencies (0.5-25 Hz), as the stimulus frequency increased, electrical stimulation failed to continuously excite axonal activity. Fiber tracts were unable to follow extracellular pulse trains above 50 Hz in-vitro and above 125 Hz in-vivo. The number of cycles required for failure was frequency dependent but independent of stimulus amplitude. A novel in-vitro preparation was developed, in which, the alveus was isolated from the remainder of the hippocampus slice. The isolated fiber tract was unable to follow pulse trains above 75 Hz. Reversible conduction block occurred at much higher stimulus amplitudes, with pulse train HFS (>150 Hz) preventing propagation through the site of stimulation. This study shows that pulse train HFS affects axonal activity by: (1) disrupting HFS evoked excitation leading to partial conduction block of activity through the site of HFS; and (2) generating complete conduction block of secondary evoked activity, as HFS amplitude is increased. These results are relevant for the interpretation of the effects of HFS for the control of abnormal neural activity such as epilepsy and Parkinson's disease. PMID

  20. High frequency homogenization for structural mechanics

    NASA Astrophysics Data System (ADS)

    Nolde, E.; Craster, R. V.; Kaplunov, J.

    2011-03-01

    We consider a net created from elastic strings as a model structure to investigate the propagation of waves through semi-discrete media. We are particularly interested in the development of continuum models, valid at high frequencies, when the wavelength and each cell of the net are of similar order. Net structures are chosen as these form a general two-dimensional example, encapsulating the essential physics involved in the two-dimensional excitation of a lattice structure whilst retaining the simplicity of dealing with elastic strings. Homogenization techniques are developed here for wavelengths commensurate with the cellular scale. Unlike previous theories, these techniques are not limited to low frequency or static regimes, and lead to effective continuum equations valid on a macroscale with the details of the cellular structure encapsulated only through integrated quantities. The asymptotic procedure is based upon a two-scale approach and the physical observation that there are frequencies that give standing waves, periodic with the period or double-period of the cell. A specific example of a net created by a lattice of elastic strings is constructed, the theory is general and not reliant upon the net being infinite, none the less the infinite net is a useful special case for which Bloch theory can be applied. This special case is explored in detail allowing for verification of the theory, and highlights the importance of degenerate cases; the specific example of a square net is treated in detail. An additional illustration of the versatility of the method is the response to point forcing which provides a stringent test of the homogenized equations; an exact Green's function for the net is deduced and compared to the asymptotics.

  1. Performance of annular high frequency thermoacoustic engines

    NASA Astrophysics Data System (ADS)

    Rodriguez, Ivan A.

    This thesis presents studies of the behavior of miniature annular thermoacoustic prime movers and the imaging of the complex sound fields using PIV inside the small acoustic wave guides when driven by a temperature gradient. Thermoacoustic engines operating in the standing wave mode are limited in their acoustic efficiency by a high degree of irreversibility that is inherent in how they work. Better performance can be achieved by using traveling waves in the thermoacoustic devices. This has led to the development of an annular high frequency thermoacoustic prime mover consisting of a regenerator, which is a random stack in-between a hot and cold heat exchanger, inside an annular waveguide. Miniature devices were developed and studied with operating frequencies in the range of 2-4 kHz. This corresponds to an average ring circumference of 11 cm for the 3 kHz device, the resonator bore being 6 mm. A similar device of 11 mm bore, length of 18 cm was also investigated; its resonant frequency was 2 kHz. Sound intensities as high as 166.8 dB were generated with limited heat input. Sound power was extracted from the annular structure by an impedance-matching side arm. The nature of the acoustic wave generated by heat was investigated using a high speed PIV instrument. Although the acoustic device appears symmetric, its performance is characterized by a broken symmetry and by perturbations that exist in its structure. Effects of these are observed in the PIV imaging; images show axial and radial components. Moreover, PIV studies show effects of streaming and instabilities which affect the devices' acoustic efficiency. The acoustic efficiency is high, being of 40% of Carnot. This type of device shows much promise as a high efficiency energy converter; it can be reduced in size for microcircuit applications.

  2. High frequency of tumours in Mulibrey nanism.

    PubMed

    Karlberg, Niklas; Karlberg, Susann; Karikoski, Riitta; Mikkola, Sakari; Lipsanen-Nyman, Marita; Jalanko, Hannu

    2009-06-01

    Mulibrey nanism (MUL) is a monogenic disorder with prenatal-onset growth failure, typical clinical characteristics, cardiopathy and tendency for a metabolic syndrome. It is caused by recessive mutations in the TRIM37 gene encoding for the peroxisomal TRIM37 protein with ubiquitin-ligase activity. In this work, the frequency and pathology of malignant and benign tumours were analysed in a national cohort of 89 Finnish MUL patients aged 0.7-76 years. The subjects had a clinical and radiological evaluation, and histological and immunohistocemical analyses on specimens obtained from biopsy, surgery or autopsy, were performed. The results show that the MUL patients have disturbed architecture with ectopic tissues and a high frequency of both benign and malignant tumours detectable in several internal organs. A total of 210 tumorous lesions were detected in 66/89 patients (74%). Fifteen malignancies occurred in 13 patients (15%), seven of them in the kidney (five Wilms' tumours), three in the thyroid gland, two gynaecological cancers, one gastrointestinal carcinoid tumour, one neuropituitary Langerhans cell histiocytosis and one case of acute lymphoblastic leukaemia (ALL). Tumours detected by radiology in the liver and other organs mainly comprised strongly dilated blood vessels (peliosis), vascularized cysts and nodular lesions. The lesions showed strong expression of the endothelial cell markers CD34 and CD31 as well as the myocyte marker alpha-smooth muscle actin (alpha-SMA). Our findings show that MUL is associated with frequent malignant tumours and benign adenomatous and vascular lesions, as well as disturbed organ development. PMID:19334051

  3. Gas powered fluid gun with recoil mitigation

    DOEpatents

    Grubelich, Mark C.; Yonas, Gerold

    2016-03-01

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  4. Gas powered fluid gun with recoil mitigation

    DOEpatents

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  5. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  6. Transport of Radioactive Material by Alpha Recoil

    SciTech Connect

    Icenhour, A.S.

    2005-05-19

    The movement of high-specific-activity radioactive particles (i.e., alpha recoil) has been observed and studied since the early 1900s. These studies have been motivated by concerns about containment of radioactivity and the protection of human health. Additionally, studies have investigated the potential advantage of alpha recoil to effect separations of various isotopes. This report provides a review of the observations and results of a number of the studies.

  7. The WITCH experiment: Acquiring the first recoil ion spectrum

    NASA Astrophysics Data System (ADS)

    Kozlov, V. Yu.; Beck, M.; Coeck, S.; Delahaye, P.; Friedag, P.; Herbane, M.; Herlert, A.; Kraev, I. S.; Tandecki, M.; Van Gorp, S.; Wauters, F.; Weinheimer, Ch.; Wenander, F.; Zákoucký, D.; Severijns, N.

    2008-10-01

    The standard model of the electroweak interaction describes β-decay in the well-known V-A form. Nevertheless, the most general Hamiltonian of a β-decay includes also other possible interaction types, e.g. scalar (S) and tensor (T) contributions, which are not fully ruled out yet experimentally. The WITCH experiment aims to study a possible admixture of these exotic interaction types in nuclear β-decay by a precise measurement of the shape of the recoil ion energy spectrum. The experimental set-up couples a double Penning trap system and a retardation spectrometer. The set-up is installed in ISOLDE/CERN and was recently shown to be fully operational. The current status of the experiment is presented together with the data acquired during the 2006 campaign, showing the first recoil ion energy spectrum obtained. The data taking procedure and corresponding data acquisition system are described in more detail. Several further technical improvements are briefly reviewed.

  8. A Measurement of the Recoil Polarization of Electroproduced {Lambda}(1116)

    SciTech Connect

    Simeon McAleer

    2002-01-01

    The CEBAF Large Acceptance Spectrometer at the Thomas Jefferson National Laboratory was used to study the reaction e + p {yields} e{prime} + K{sup +} + {Lambda}(1116) for events where {Lambda}(1116) subsequently decayed via the channel {Lambda}(1116) {yields} p + {pi}{sup -}. Data were taken at incident electron beam energies of 2.5, 4.0, and 4.2 GeV during the 1999 E1C run period. They hyperon production spectra span the Q{sup 2} range from 0.5 to 2.8 GeV{sup 2} and nearly the entire range in the center of mass angles. The proton angular distribution in the {Lambda}(1116) rest frame is used to deduce the recoil polarization of the hyperon, and the W and cos {theta}{sub cm}{sup K+} dependence of the recoil polarization will be presented. The data show sizeable negative polarizations for the {Lambda}(1116) as a function of both cos {theta}{sub cm}{sup K+} and W.

  9. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, E.S.; Campbell, D.V.

    1997-04-29

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer. 22 figs.

  10. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, Eric S.; Campbell, David V.

    1997-01-01

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer.

  11. Reversible tobramycin-induced bilateral high-frequency vestibular toxicity.

    PubMed

    Walsh, R M; Bath, A P; Bance, M L

    2000-01-01

    We report an unusual case of tobramycin-induced bilateral high-frequency vestibular toxicity with subsequent clinical and objective evidence of functional recovery. In those patients with a clinical presentation suggestive of aminoglycoside-induced bilateral vestibular toxicity (ataxia and oscillopsia) and normal low-frequency (ENG-caloric) responses, high-frequency rotation chair testing should be performed to exclude a high-frequency vestibular deficit. PMID:10810261

  12. High-frequency Probing Diagnostic for Hall Current Plasma Thrusters

    SciTech Connect

    A.A. Litvak; Y. Raitses; N.J. Fisch

    2001-10-25

    High-frequency oscillations (1-100 MHz) in Hall thrusters have apparently eluded significant experimental scrutiny. A diagnostic setup, consisting of a single Langmuir probe, a special shielded probe connector-positioner, and an electronic impedance-matching circuit, was successfully built and calibrated. Through simultaneous high-frequency probing of the Hall thruster plasma at multiple locations, high-frequency plasma waves have been identified and characterized for various thruster operating conditions.

  13. Variable Coupling Scheme for High Frequency Electron Spin Resonance Resonators Using Asymmetric Meshes

    PubMed Central

    Tipikin, D. S.; Earle, K. A.; Freed, J. H.

    2010-01-01

    The sensitivity of a high frequency electron spin resonance (ESR) spectrometer depends strongly on the structure used to couple the incident millimeter wave to the sample that generates the ESR signal. Subsequent coupling of the ESR signal to the detection arm of the spectrometer is also a crucial consideration for achieving high spectrometer sensitivity. In previous work, we found that a means for continuously varying the coupling was necessary for attaining high sensitivity reliably and reproducibly. We report here on a novel asymmetric mesh structure that achieves continuously variable coupling by rotating the mesh in its own plane about the millimeter wave transmission line optical axis. We quantify the performance of this device with nitroxide spin-label spectra in both a lossy aqueous solution and a low loss solid state system. These two systems have very different coupling requirements and are representative of the range of coupling achievable with this technique. Lossy systems in particular are a demanding test of the achievable sensitivity and allow us to assess the suitability of this approach for applying high frequency ESR to the study of biological systems at physiological conditions, for example. The variable coupling technique reported on here allows us to readily achieve a factor of ca. 7 improvement in signal to noise at 170 GHz and a factor of ca. 5 at 95 GHz over what has previously been reported for lossy samples. PMID:20458356

  14. Monolithic spectrometer

    DOEpatents

    Rajic, S.; Egert, C.M.; Kahl, W.K.; Snyder, W.B. Jr.; Evans, B.M. III; Marlar, T.A.; Cunningham, J.P.

    1998-05-19

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays. 6 figs.

  15. Monolithic spectrometer

    DOEpatents

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  16. Elastic recoil changes in early emphysema.

    PubMed Central

    Silvers, G W; Petty, T L; Stanford, R E

    1980-01-01

    An attempt was made to determine if emphysema and static lung recoil were related in a group of 65 excised human lungs. We studied 23 normal lungs, 24 lungs with an emphysema score of 5 or less, and 18 lungs with an emphysema score greater than 5. A comparison of the percentage of predicted elastic recoil revealed that both emphysema groups were significantly different from normal lungs. In addition, the total lung capacities were significantly different between the three groups. In the group with an emphysema score greater than 5 we found a linear negative correlation between the extent of emphysema and percent of predicted elastic recoil at 90% total lung capacity (r = -0.696, p < 0.01). We found a negative correlation between the percentage of predicted elastic recoil and the lung volume (r = -0.612, p < 0.01). We conclude that a significant loss of elastic recoil and a significant increase in total lung capacity occurs in the early stages of emphysema. PMID:7434309

  17. Effects of high frequency current in welding aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Fish, R. E.

    1968-01-01

    Uncontrolled high frequency current causes cracking in the heat-affected zone of aluminum alloy 6061 weldments during tungsten inert gas ac welding. Cracking developed when an improperly adjusted superimposed high frequency current was agitating the semimolten metal in the areas of grain boundary.

  18. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, H.D.

    1996-04-30

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.

  19. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, Howard D.

    1996-01-01

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.

  20. High-frequency energy in singing and speech

    NASA Astrophysics Data System (ADS)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  1. Proton recoil scintillator neutron rem meter

    DOEpatents

    Olsher, Richard H.; Seagraves, David T.

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  2. Bulk and integrated acousto-optic spectrometers for molecular astronomy with heterodyne spectrometers

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1981-01-01

    A survey of acousto-optic spectrometers for molecular astronomy is presented, noting a technique of combining the acoustic bending of a collimated coherent light beam with a Bragg cell followed by an array of sensitive photodetectors. This acousto-optic spectrometer has a large bandwidth, a large number of channels, high resolution, and is energy efficient. Receiver development has concentrated on high-frequency heterodyne systems for the study of the chemical composition of the interstellar medium. RF spectrometers employing acousto-optic diffraction cells are described. Acousto-optic techniques have been suggested for applications to electronic warfare, electronic countermeasures and electronic support systems. Plans to use integrated optics for the further miniaturization of acousto-optic spectrometers are described. Bulk acousto-optic spectrometers with 300 MHz and 1 GHz bandwidths are being developed for use in the back-end of high-frequency heterodyne receivers for astronomical research.

  3. Particle Spectrometers for FRIB

    NASA Astrophysics Data System (ADS)

    Amthor, A. M.

    2014-09-01

    FRIB promises to dramatically expand the variety of nuclear systems available for direct experimental study by providing rates of many rare isotopes orders of magnitude higher than those currently available. A new generation of experimental systems, including new particle spectrometers will be critical to our ability to take full advantage of the scientific opportunities offered by FRIB. The High-Rigidity Spectrometer (HRS) will allow for experiments with the most neutron-rich and short-lived isotopes produced by in-flight fragmentation at FRIB. The bending capability of the HRS (8 Tm) matches to the rigidity for which rare isotopes are produced at the highest intensity in the FRIB fragment separator. The experimental program will be focused on nuclear structure and astrophysics, and allow for the use of other cutting-edge detection systems for gamma, neutron, and charged-particle detection. Stopped and reaccelerated beam studies will be an important compliment to in-flight techniques at FRIB, providing world-unique, high quality, intense rare isotope beams at low energies up to and beyond the Coulomb barrier--with the completion of ReA12--and serving many of the science goals of the broader facility, from nuclear structure and astrophysics to applications. Two specialized recoil spectrometers are being developed for studies with reaccelerated beams. SECAR, the Separator for Capture Reactions, will be built following ReA3, coupled to a windowless gas jet target, JENSA, and will focus on radiative capture reactions for astrophysics, particularly those needed to improve our understanding of novae and X-ray bursts. A recoil separator following ReA12 is proposed to address a variety of physics cases based on fusion-evaporation, Coulomb excitation, transfer, and deep-inelastic reactions by providing a large angular, momentum and charge state acceptance; a high mass resolving power; and the flexibility to couple to a variety of auxiliary detector systems. Two designs

  4. Electromagnetic inhibition of high frequency thermal bonding machine

    NASA Astrophysics Data System (ADS)

    He, Hong; Zhang, Qing-qing; Li, Hang; Zhang, Da-jian; Hou, Ming-feng; Zhu, Xian-wei

    2011-12-01

    The traditional high frequency thermal bonding machine had serious radiation problems at dominant frequency, two times frequency and three times frequency. Combining with its working principle, the problems of electromagnetic compatibility were studied, three following measures were adopted: 1.At the head part of the high frequency thermal bonding machine, resonant circuit attenuator was designed. The notch groove and reaction field can make the radiation being undermined or absorbed; 2.The electromagnetic radiation shielding was made for the high frequency copper power feeder; 3.Redesigned the high-frequency oscillator circuit to reduce the output of harmonic oscillator. The test results showed that these measures can make the output according with the national standard of electromagnetic compatibility (GB4824-2004-2A), the problems of electromagnetic radiation leakage can be solved, and good social, environmental and economic benefits would be brought.

  5. An inkjet vision measurement technique for high-frequency jetting

    SciTech Connect

    Kwon, Kye-Si Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  6. The High Frequency Stabilization of a Magnetoplasmadynamic Thruster

    NASA Astrophysics Data System (ADS)

    Kirdyashev, K.

    2004-10-01

    Experimental data on the high-frequency stabilization of the MPD thruster and the suppression of low-frequency oscillations in the frequency range from 20 to 100 kHz are presented. Conditions for the stabilizing effect of a high-frequency magnetic field at the frequency of 40 MHz on the plasma jet produced by the thruster are determined, and the efficiency of this action is evaluated. The action of high frequency field on the MPD thruster consists in the contention of two processes - the stabilization of the plasma drift instability by the magnetic component of high frequency field and the energy conversion of natural plasma oscillations excited by the external field to the ion-sound wave energy.

  7. Shift of the shadow boundary in high frequency scattering

    NASA Astrophysics Data System (ADS)

    Zworski, Maciej

    1991-02-01

    The microlocal theory of diffraction is used to establish the conjecture of Keller and Rubinow relating the shift of the shadow boundary in high frequency scattering to the directional curvatures of a strictly convex obstacle.

  8. High-frequency matrix converter with square wave input

    SciTech Connect

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  9. High frequency jet ventilation in fat embolism syndrome.

    PubMed

    Lee, A; Simpson, D

    1986-11-01

    The use of high frequency jet ventilation in the management of a patient with fat embolism syndrome is described. Its principal advantage over conventional intermittent positive pressure ventilation is a reduction in the amount of sedation necessary. PMID:3789371

  10. An inkjet vision measurement technique for high-frequency jetting

    NASA Astrophysics Data System (ADS)

    Kwon, Kye-Si; Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-06-01

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  11. High frequency, small signal MH loops of ferromagnetic thin films

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Ong, K. G.

    2000-01-01

    A method is presented for transforming the high frequency bias susceptibility measurements of ferromagnetic thin films into the form of a MH loop with, depending upon the measurement geometry, the y-axis zero crossing giving a measure of the coercive force or anisotropy field. The loops provide a measure of the quantitative and qualitative high frequency switching properties of ferromagnetic thin films. c2000 American Institute of Physics.

  12. SEPP-ZVS High Frequency Inverter Incorporating Auxiliary Switch

    NASA Astrophysics Data System (ADS)

    Ogiwara, Hiroyuki; Itoi, Misao; Nakaoka, Mutsuo

    This paper presents a novel circuit topology to attain ZVS operation of a high frequency inverter over a wide range output power regulation using a PWM control technique by connecting an auxiliary switch to the conventional single ended push-pull (SEPP) ZVS high frequency inverter. A switching current is injected into the main switches via the auxiliary switch only during the short period between its turn-on and off times to supply a current required for its ZVS operation.

  13. Soft Switching SEPP High Frequency Inverter for Induction Heating

    NASA Astrophysics Data System (ADS)

    Ogiwara, Hiroyuki; Nakaoka, Mutsuo

    This paper presents a novel circuit topology to attain soft switching operation of a high frequency inverter. Its output power is regulated over a wide range using a PWM control technique by connecting an auxiliary resonant circuit to the conventional single ended push pull (SEPP) high frequency inverter for induction heating. All switching devices in the proposed inverter are operated soft switching mode. This paper describes its circuit constitution and obtained experimental results from a practical point of view.

  14. High frequency single mode traveling wave structure for particle acceleration

    NASA Astrophysics Data System (ADS)

    Ivanyan, M. I.; Danielyan, V. A.; Grigoryan, B. A.; Grigoryan, A. H.; Tsakanian, A. V.; Tsakanov, V. M.; Vardanyan, A. S.; Zakaryan, S. V.

    2016-09-01

    The development of the new high frequency slow traveling wave structures is one of the promising directions in accomplishment of charged particles high acceleration gradient. The disc and dielectric loaded structures are the most known structures with slowly propagating modes. In this paper a large aperture high frequency metallic two-layer accelerating structure is studied. The electrodynamical properties of the slowly propagating TM01 mode in a metallic tube with internally coated low conductive thin layer are examined.

  15. High frequency ultrasound with color Doppler in dermatology*

    PubMed Central

    Barcaui, Elisa de Oliveira; Carvalho, Antonio Carlos Pires; Lopes, Flavia Paiva Proença Lobo; Piñeiro-Maceira, Juan; Barcaui, Carlos Baptista

    2016-01-01

    Ultrasonography is a method of imaging that classically is used in dermatology to study changes in the hypoderma, as nodules and infectious and inflammatory processes. The introduction of high frequency and resolution equipments enabled the observation of superficial structures, allowing differentiation between skin layers and providing details for the analysis of the skin and its appendages. This paper aims to review the basic principles of high frequency ultrasound and its applications in different areas of dermatology. PMID:27438191

  16. Correlation spectrometer

    DOEpatents

    Sinclair, Michael B.; Pfeifer, Kent B.; Flemming, Jeb H.; Jones, Gary D.; Tigges, Chris P.

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  17. Characterizing Earthquake Rupture Properties Using Peak High-Frequency Offset

    NASA Astrophysics Data System (ADS)

    Wen, L.; Meng, L.

    2014-12-01

    Teleseismic array back-projection (BP) of high frequency (~1Hz) seismic waves has been recently applied to image the aftershock sequence of the Tohoku-Oki earthquake. The BP method proves to be effective in capturing early aftershocks that are difficult to be detected due to the contamination of the mainshock coda wave. Furthermore, since the event detection is based on the identification of the local peaks in time series of the BP power, the resulting event location corresponds to the peak high-frequency energy rather than the hypocenter. In this work, we show that the comparison between the BP-determined catalog and conventional phase-picking catalog provides estimates of the spatial and temporal offset between the hypocenter and the peak high-frequency radiation. We propose to measure this peak high-frequency shift of global earthquakes between M4.0 to M7.0. We average the BP locations calibrated by multiple reference events to minimize the uncertainty due to the variation of 3D path effects. In our initial effort focusing on the foreshock and aftershock sequence of the 2014 Iquique earthquake, we find systematic shifts of the peak high-frequency energy towards the down-dip direction. We find that the amount of the shift is a good indication of rupture length, which scales with the earthquake magnitude. Further investigations of the peak high frequency offset may provide constraints on earthquake source properties such as rupture directivity, rupture duration, rupture speed, and stress drop.

  18. Multidimensional spectrometer

    SciTech Connect

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  19. Ionization and scintillation of nuclear recoils in gaseous xenon

    NASA Astrophysics Data System (ADS)

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Matis, H. S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C. A. B.; Shuman, D.; Álvarez, V.; Borges, F. I. G.; Cárcel, S.; Castel, J.; Cebrián, S.; Cervera, A.; Conde, C. A. N.; Dafni, T.; Dias, T. H. V. T.; Díaz, J.; Esteve, R.; Evtoukhovitch, P.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Gil, A.; Gómez, H.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Hernando Morata, J. A.; Herrera, D. C.; Iguaz, F. J.; Irastorza, I. G.; Jinete, M. A.; Labarga, L.; Laing, A.; Liubarsky, I.; Lopes, J. A. M.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez, A.; Moiseenko, A.; Monrabal, F.; Monserrate, M.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Natal da Luz, H.; Navarro, G.; Nebot-Guinot, M.; Palma, R.; Pérez, J.; Pérez Aparicio, J. L.; Ripoll, L.; Rodríguez, A.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Seguí, L.; Serra, L.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J. F.; Tomás, A.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R. C.; White, J.; Yahlali, N.

    2015-09-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  20. Recoil Based Fuel Breeding Fuel Structure

    SciTech Connect

    Popa-Simil, Liviu

    2008-07-01

    Nuclear transmutation reactions are based on the absorption of a smaller particle as neutron, proton, deuteron, alpha, etc. The resulting compound nucleus gets out of its initial lattice mainly by taking the recoil, also with help from its sudden change in chemical properties. The recoil implantation is used in correlation with thin and ultra thin materials mainly for producing radiopharmaceuticals and ultra-thin layer radioactive tracers. In nuclear reactors, the use of nano-particulate pellets could facilitate the recoil implantation for breeding, transmutation and partitioning purposes. Using enriched {sup 238}U or {sup 232}Th leads to {sup 239}Pu and {sup 233}U production while using other actinides as {sup 240}Pu, {sup 241}Am etc. leads to actinide burning. When such a lattice is immersed into a radiation resistant fluid (water, methanol, etc.), the recoiled product is transferred into the flowing fluid and removed from the hot area using a concentrator/purifier, preventing the occurrence of secondary transmutation reactions. The simulation of nuclear collision and energy transfer shows that the impacted nucleus recoils in the interstitial space creating a defect or lives small lattices. The defect diffuses, and if no recombination occurs it stops at the lattices boundaries. The nano-grains are coated in thin layer to get a hydrophilic shell to be washed by the collection liquid the particle is immersed in. The efficiency of collection depends on particle magnitude and nuclear reaction channel parameters. For {sup 239}Pu the direct recoil extraction rate is about 70% for {sup 238}UO{sub 2} grains of 5 nm diameters and is brought up to 95% by diffusion due to {sup 239}Neptunium incompatibility with Uranium dioxide lattice. Particles of 5 nm are hard to produce so a structure using particles of 100 nm have been tested. The particles were obtained by plasma sputtering in oxygen atmosphere. A novel effect as nano-cluster radiation damage robustness and cluster

  1. Cavity cooling below the recoil limit.

    PubMed

    Wolke, Matthias; Klinner, Julian; Keßler, Hans; Hemmerich, Andreas

    2012-07-01

    Conventional laser cooling relies on repeated electronic excitations by near-resonant light, which constrains its area of application to a selected number of atomic species prepared at moderate particle densities. Optical cavities with sufficiently large Purcell factors allow for laser cooling schemes, avoiding these limitations. Here, we report on an atom-cavity system, combining a Purcell factor above 40 with a cavity bandwidth below the recoil frequency associated with the kinetic energy transfer in a single photon scattering event. This lets us access a yet-unexplored regime of atom-cavity interactions, in which the atomic motion can be manipulated by targeted dissipation with sub-recoil resolution. We demonstrate cavity-induced heating of a Bose-Einstein condensate and subsequent cooling at particle densities and temperatures incompatible with conventional laser cooling. PMID:22767925

  2. A Digital Multigate Doppler Method for High Frequency Ultrasound

    PubMed Central

    Qiu, Weibao; Ye, Zongying; Yu, Yanyan; Chen, Yan; Chi, Liyang; Mu, Peitian; Li, Guofeng; Wang, Congzhi; Xiao, Yang; Dai, Jiyan; Sun, Lei; Zheng, Hairong

    2014-01-01

    Noninvasive visualization of blood flow with high frequency Doppler ultrasound has been extensively used to assess the morphology and hemodynamics of the microcirculation. A completely digital implementation of multigate pulsed-wave (PW) Doppler method was proposed in this paper for high frequency ultrasound applications. Analog mixer was eliminated by a digital demodulator and the same data acquisition path was shared with traditional B-mode imaging which made the design compact and flexible. Hilbert transform based quadrature demodulation scheme was employed to achieve the multigate Doppler acquisition. A programmable high frequency ultrasound platform was also proposed to facilitate the multigate flow visualization. Experimental results showed good performance of the proposed method. Parabolic velocity gradient inside the vessel and velocity profile with different time slots were acquired to demonstrate the functionality of the multigate Doppler. Slow wall motion was also recorded by the proposed method. PMID:25061836

  3. Switch over to the high frequency rf systems near transition

    SciTech Connect

    Brennan, J.M.; Wei, J.

    1988-01-01

    The purpose of this note is to point out that since bunch narrowing naturally occurs in the acceleration process in the vicinity of transition, it should be possible to switch over to the high frequency system close to transition when the bunch has narrowed enough to fit directly into the high frequency bucket. The advantage of this approach is the simplicity, no extra components or gymnastics are required of the low frequency system. The disadvantage, of course, is for protons which do not go through transition. But on the other hand, there is no shortage of intensity for protons and so it should be possible to keep the phase space area low for protons, and then matching to the high frequency bucket should be easily accomplished by adiabatic compression. 3 refs., 7 figs.

  4. Design of matching layers for high-frequency ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Fei, Chunlong; Ma, Jianguo; Chiu, Chi Tat; Williams, Jay A.; Fong, Wayne; Chen, Zeyu; Zhu, BenPeng; Xiong, Rui; Shi, Jing; Hsiai, Tzung K.; Shung, K. Kirk; Zhou, Qifa

    2015-09-01

    Matching the acoustic impedance of high-frequency (≥100 MHz) ultrasound transducers to an aqueous loading medium remains a challenge for fabricating high-frequency transducers. The traditional matching layer design has been problematic to establish high matching performance given requirements on both specific acoustic impedance and precise thickness. Based on both mass-spring scheme and microwave matching network analysis, we interfaced metal-polymer layers for the matching effects. Both methods hold promises for guiding the metal-polymer matching layer design. A 100 MHz LiNbO3 transducer was fabricated to validate the performance of the both matching layer designs. In the pulse-echo experiment, the transducer echo amplitude increased by 84.4% and its -6dB bandwidth increased from 30.2% to 58.3% comparing to the non-matched condition, demonstrating that the matching layer design method is effective for developing high-frequency ultrasonic transducers.

  5. A digital multigate Doppler method for high frequency ultrasound.

    PubMed

    Qiu, Weibao; Ye, Zongying; Yu, Yanyan; Chen, Yan; Chi, Liyang; Mu, Peitian; Li, Guofeng; Wang, Congzhi; Xiao, Yang; Dai, Jiyan; Sun, Lei; Zheng, Hairong

    2014-01-01

    Noninvasive visualization of blood flow with high frequency Doppler ultrasound has been extensively used to assess the morphology and hemodynamics of the microcirculation. A completely digital implementation of multigate pulsed-wave (PW) Doppler method was proposed in this paper for high frequency ultrasound applications. Analog mixer was eliminated by a digital demodulator and the same data acquisition path was shared with traditional B-mode imaging which made the design compact and flexible. Hilbert transform based quadrature demodulation scheme was employed to achieve the multigate Doppler acquisition. A programmable high frequency ultrasound platform was also proposed to facilitate the multigate flow visualization. Experimental results showed good performance of the proposed method. Parabolic velocity gradient inside the vessel and velocity profile with different time slots were acquired to demonstrate the functionality of the multigate Doppler. Slow wall motion was also recorded by the proposed method. PMID:25061836

  6. High frequency ultrasound imaging in pupillary block glaucoma.

    PubMed Central

    Aslanides, I M; Libre, P E; Silverman, R H; Reinstein, D Z; Lazzaro, D R; Rondeau, M J; Harmon, G K; Coleman, D J

    1995-01-01

    BACKGROUND--The diagnosis of pupillary block glaucoma requires sufficient clarity of the ocular media. This is particularly important for assessment of both the presence and patency of an iridotomy, and the determination of central anterior chamber depth. METHODS--High frequency ultrasonography was used in three patients with suspected pupillary block to determine iris configuration, posterior chamber volume, and ciliary body conformation. RESULTS--All patients demonstrated high frequency ultrasonographic findings consistent with pupillary block: iris bombé, a formed posterior chamber, and a lack of anterior rotation of the ciliary processes. CONCLUSION--High frequency ultrasound imaging appears to be a valuable adjunct in making or corroborating the diagnosis of pupillary block glaucoma. Images PMID:8534666

  7. Interface Strategy To Achieve Tunable High Frequency Attenuation.

    PubMed

    Lv, Hualiang; Zhang, Haiqian; Ji, Guangbin; Xu, Zhichuan J

    2016-03-16

    Among all polarizations, the interface polarization effect is the most effective, especially at high frequency. The design of various ferrite/iron interfaces can significantly enhance the materials' dielectric loss ability at high frequency. This paper presents a simple method to generate ferrite/iron interfaces to enhance the microwave attenuation at high frequency. The ferrites were coated onto carbonyl iron and could be varied to ZnFe2O4, CoFe2O4, Fe3O4, and NiFe2O4. Due to the ferrite/iron interface inducing a stronger dielectric loss effect, all of these materials achieved broad effective frequency width at a coating layer as thin as 1.5 mm. In particular, an effective frequency width of 6.2 GHz could be gained from the Fe@NiFe2O4 composite. PMID:26918285

  8. Search for a high frequency stochastic background of gravitational waves

    NASA Astrophysics Data System (ADS)

    Giampanis, Stefanos

    Over the past decades significant efforts have been made worldwide in the search for gravitational waves. Ground-based interferometry, primarily with the LIGO detectors, has reached a crucial point and it is believed that over the next few years a detection will take place. LIGO interferometers have recently completed collecting data from the longest science run that has been attempted so far. This thesis describes the search for a stochastic gravitational wave background radiation at high frequencies using data from the LIGO detectors located in Hanford, Washington USA. This is the first ever search for a stochastic signal at high frequencies by using data from two co-located interferometers. Chapter 1 provides a brief introduction to gravitational radiation as predicted by the general theory of relativity and the expected sources of gravitational waves with an emphasis on the stochastic background. Chapter 2 discusses the basic principles of laser interferometry and the experimental techniques used in modern ground-based interferometers such as the LIGO interferometers. Chapter 3 discusses in more detail the configuration, validation and characterization of the set of channels, "Fast Channels", that are used in the search for a high frequency stochastic background radiation. Chapter 4 is an introduction to the LIGO calibration and a more formal discussion on the calibration of the "Fast Channels". Chapter 5 introduces the cross-correlation analysis technique used in the search for a stochastic background and gives a thorough description of the data selection and analysis in searching for a high frequency stochastic signal with data from LIGO's fifth science run (S5). Chapter 6 concludes with the results obtained from the stochastic high frequency S5 analysis, discusses upper limits set at low and high frequencies from other searches and makes connection with Chapter 1 and the theoretical predictions and experimental bounds set within LIGO's frequency band of

  9. Carrier Tunneling in High-Frequency Electric Fields

    SciTech Connect

    Ganichev, S.D.; Ziemann, E.; Gleim, T.; Prettl, W.; Ganichev, S.D.; Yassievich, I.N.; Perel, V.I.; Wilke, I.; Haller, E.E.

    1998-03-01

    An enhancement of tunnel ionization of deep impurities in semiconductors in an alternating field as compared to static fields has been observed. The transition between the quasistatic and the high-frequency regime is determined by the tunneling time. For the case of deep impurities this is the time of redistribution of the defect vibrational system which depends strongly on temperature and the impurity structure. A theory of tunnel ionization of deep impurities by high-frequency fields has been developed. {copyright} {ital 1998} {ital The American Physical Society}

  10. Real-Time, High-Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; DePalma, Jude L.; Moradi, Saeed

    2003-01-01

    An electronic system that performs real-time analysis of the low-amplitude, high-frequency, ordinarily invisible components of the QRS portion of an electrocardiographic signal in real time has been developed. Whereas the signals readily visible on a conventional electrocardiogram (ECG) have amplitudes of the order of a millivolt and are characterized by frequencies <100 Hz, the ordinarily invisible components have amplitudes in the microvolt range and are characterized by frequencies from about 150 to about 250 Hz. Deviations of these high-frequency components from a normal pattern can be indicative of myocardial ischemia or myocardial infarction

  11. Condenser Microphone Protective Grid Correction for High Frequency Measurements

    NASA Technical Reports Server (NTRS)

    Lee, Erik; Bennett, Reginald

    2010-01-01

    Use of a protective grid on small diameter microphones can prolong the lifetime of the unit, but the high frequency effects can complicate data interpretation. Analytical methods have been developed to correct for the grid effect at high frequencies. Specifically, the analysis pertains to quantifying the microphone protective grid response characteristics in the acoustic near field of a rocket plume noise source. A frequency response function computation using two microphones will be explained. Experimental and instrumentation setup details will be provided. The resulting frequency response function for a B&K 4944 condenser microphone protective grid will be presented, along with associated uncertainties

  12. High frequency microbubble-switched oscillations modulated by microfluidic transistors

    NASA Astrophysics Data System (ADS)

    Yang, Fanghao; Dai, Xianming; Li, Chen

    2012-08-01

    Creating high frequency two-phase oscillations (HF-TPOs) remains an important goal in advancing microscale fluidic logic devices, micro-mixers, micro-actuators, and flow controls. However, thermally driven TPO frequency has been hindered by confinements of compressible vapor bubbles and low thermal diffusivity in microfluidic systems. In this study, a mechanism creating high frequency microbubbles growth/collapse cycle has been developed to achieve HF-TPOs. A "microfluidic transistor" was conceptualized and fabricated to passively sustain and modulate HF-TPOs. Three orders of magnitude higher TPO frequency has been achieved compared to TPOs reported in literatures under similar working conditions.

  13. SCINTILLATION SPECTROMETER

    DOEpatents

    Bell, P.R.; Francis, J.E.

    1960-06-21

    A portable scintillation spectrometer is described which is especially useful in radio-biological studies for determining the uptake and distribution of gamma -emitting substances in tissue. The spectrometer includes a collimator having a plurality of apertures that are hexagonal in cross section. Two crystals are provided: one is activated to respond to incident rays from the collimator; the other is not activated and shields the first from external radiation.

  14. High-frequency hearing in seals and sea lions.

    PubMed

    Cunningham, Kane A; Reichmuth, Colleen

    2016-01-01

    Existing evidence suggests that some pinnipeds (seals, sea lions, and walruses) can detect underwater sound at frequencies well above the traditional high-frequency hearing limits for their species. This phenomenon, however, is not well studied: Sensitivity patterns at frequencies beyond traditional high-frequency limits are poorly resolved, and the nature of the auditory mechanism mediating hearing at these frequencies is unknown. In the first portion of this study, auditory sensitivity patterns in the 50-180 kHz range were measured for one California sea lion (Zalophus californianus), one harbor seal (Phoca vitulina), and one spotted seal (Phoca largha). Results show the presence of two distinct slope-regions at the high-frequency ends of the audiograms of all three subjects. The first region is characterized by a rapid decrease in sensitivity with increasing frequency-i.e. a steep slope-followed by a region of much less rapid sensitivity decrease-i.e. a shallower slope. In the second portion of this study, a masking experiment was conducted to investigate how the basilar membrane of a harbor seal subject responded to acoustic energy from a narrowband masking noise centered at 140 kHz. The measured masking pattern suggests that the initial, rapid decrease in sensitivity on the high-frequency end of the subject's audiogram is not due to cochlear constraints, as has been previously hypothesized, but rather to constraints on the conductive mechanism. PMID:26519092

  15. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications

    PubMed Central

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K. Kirk

    2011-01-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol–gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed. PMID:21720451

  16. Collocations of High Frequency Noun Keywords in Prescribed Science Textbooks

    ERIC Educational Resources Information Center

    Menon, Sujatha; Mukundan, Jayakaran

    2012-01-01

    This paper analyses the discourse of science through the study of collocational patterns of high frequency noun keywords in science textbooks used by upper secondary students in Malaysia. Research has shown that one of the areas of difficulty in science discourse concerns lexis, especially that of collocations. This paper describes a corpus-based…

  17. High frequency eddy current device for near surface material characterizations

    NASA Astrophysics Data System (ADS)

    Hillmann, S.; Heuer, H.; Meyendorf, N.

    2009-03-01

    For near surface characterization a new high frequency eddy current device was been developed. By using a measurement frequency up to 100 MHz information of near surface areas can be acquired. Depending on the investigated material high resolution depth profiles can be derived. The obtained data with the new device were compared to those obtained with a high precision impedance analyser. It could be demonstrated that the new device measures the eddy current conductivity signal in the high frequencies much better than the impedance analyser. By sweeping the frequency from 100 kHz up to 100 MHz the technique delivers a depth profile of the electrical conductivity of the material. This kind of high frequency eddy current technique can be used for quality assurance, surface contamination control or near surface material characterization e.g. microstructure and cold work influences. It can be a powerful tool to obtain information for process control or a good / bad decision in mass production processes like for example rolling, coating, and surface treatments. The big advantage of the high frequency eddy current method is that it is fast und precise. This paper presents results with a new developed prototype Eddy-Current-Device for measurement frequencies up to 100 MHz which is first time suitable in rough industrial environment and makes expensive lab network analysers unnecessary for this kind of investigations.

  18. High-Frequency Oscillations and Seizure Generation in Neocortical Epilepsy

    ERIC Educational Resources Information Center

    Worrell, Greg A.; Parish, Landi; Cranstoun, Stephen D.; Jonas, Rachel; Baltuch, Gordon; Litt, Brian

    2004-01-01

    Neocortical seizures are often poorly localized, explosive and widespread at onset, making them poorly amenable to epilepsy surgery in the absence of associated focal brain lesions. We describe, for the first time in an unselected group of patients with neocortical epilepsy, the finding that high-frequency (60--100 Hz) epileptiform oscillations…

  19. Factors Affecting the Benefits of High-Frequency Amplification

    ERIC Educational Resources Information Center

    Horwitz, Amy R.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2008-01-01

    Purpose: This study was designed to determine the extent to which high-frequency amplification helped or hindered speech recognition as a function of hearing loss, gain-frequency response, and background noise. Method: Speech recognition was measured monaurally under headphones for nonsense syllables low-pass filtered in one-third-octave steps…

  20. Automated Screening for High-Frequency Hearing Loss

    PubMed Central

    MacKinnon, Robert C.; Jansen, Marije; Moore, David R.

    2014-01-01

    Objective: Hearing loss at high frequencies produces perceptual difficulties and is often an early sign of a more general hearing loss. This study reports the development and validation of two new speech-based hearing screening tests in English that focus on detecting hearing loss at frequencies above 2000 Hz. Design: The Internet-delivered, speech-in noise tests used closed target-word sets of digit triplets or consonant–vowel–consonant (CVC) words presented against a speech-shaped noise masker. The digit triplet test uses the digits 0 to 9 (excluding the disyllabic 7), grouped in quasi-random triplets. The CVC test uses simple words (e.g., “cat”) selected for the high-frequency spectral content of the consonants. During testing, triplets or CVC words were identified in an adaptive procedure to obtain the speech reception threshold (SRT) in noise. For these new, high-frequency (HF) tests, the noise was low-pass filtered to produce greater masking of the low-frequency speech components, increasing the sensitivity of the test for HF hearing loss. Individual test tokens (digits, CVCs) were first homogenized using a group of 10 normal-hearing (NH) listeners by equalizing intelligibility across tokens at several speech-in-noise levels. Both tests were then validated and standardized using groups of 24 NH listeners and 50 listeners with hearing impairment. Performance on the new high frequency digit triplet (HF-triplet) and CVC (HF-CVC) tests was compared with audiometric hearing loss, and with that on the unfiltered, broadband digit triplet test (BB-triplet) test, and the ASL (Adaptive Sentence Lists) speech-in-noise test. Results: The HF-triplet and HF-CVC test results (SRT) both correlated positively and highly with high-frequency audiometric hearing loss and with the ASL test. SRT for both tests as a function of high-frequency hearing loss increased at nearly three times the rate as that of the BB-triplet test. The intraindividual variability (SD) on the

  1. Precision Determination of Electron Scattering Angle by Differential Nuclear Recoil Energy Method

    SciTech Connect

    Liyanage, Nilanga; Saenboonruang, Kiadtisak

    2015-09-01

    The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of the electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.

  2. Precision determination of electron scattering angle by differential nuclear recoil energy method

    SciTech Connect

    Liyanage, N.; Saenboonruang, K.

    2015-12-01

    The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of the electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.

  3. 77 FR 8222 - Notice Requesting Nominations for the Subcommittee on Automated and High Frequency Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... COMMISSION Notice Requesting Nominations for the Subcommittee on Automated and High Frequency Trading AGENCY... Automated and High Frequency Trading within the Technology Advisory Committee. SUMMARY: The Commodity... Automated and High Frequency Trading (Subcommittee) under the auspices of the Technology Advisory...

  4. Thermal recoil force, telemetry, and the Pioneer anomaly

    SciTech Connect

    Toth, Viktor T.; Turyshev, Slava G.

    2009-02-15

    Precision navigation of spacecraft requires accurate knowledge of small forces, including the recoil force due to anisotropies of thermal radiation emitted by spacecraft systems. We develop a formalism to derive the thermal recoil force from the basic principles of radiative heat exchange and energy-momentum conservation. The thermal power emitted by the spacecraft can be computed from engineering data obtained from flight telemetry, which yields a practical approach to incorporate the thermal recoil force into precision spacecraft navigation. Alternatively, orbit determination can be used to estimate the contribution of the thermal recoil force. We apply this approach to the Pioneer anomaly using a simulated Pioneer 10 Doppler data set.

  5. Recombination in liquid xenon for low-energy recoils

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Mei, Dongming; Cubed Collaboration

    2014-09-01

    Detector response to low-energy recoils in sub-keV region is critical to detection of low-mass dark matter particles-WIMPS (Weakly interacting massive particles). The role of electron-ion recombination is important to the interpretation of the relation between ionization yield and scintillation yield, which are in general anti-correlated. Recent experimental results show that ionization yield increases down to keV range. This phenomenon contradicts general understanding for low energy recoils in the keV range in which direct excitation dominates. The explanation is that recombination becomes much less efficient when the track length is smaller than the thermalization distance of electrons. However, recombination rate is also proportional to ionization density, which is very high for keV recoils. To understand how recombination rate behaves for keV recoils, we calculated both initial recombination rate and volume recombination rate for keV recoils in liquid xenon. In this paper, we show the results of the calculated recombination rate as a function of recoil energy for both electronic recoils and nuclear recoils. Detector response to low-energy recoils in sub-keV region is critical to detection of low-mass dark matter particles-WIMPS (Weakly interacting massive particles). The role of electron-ion recombination is important to the interpretation of the relation between ionization yield and scintillation yield, which are in general anti-correlated. Recent experimental results show that ionization yield increases down to keV range. This phenomenon contradicts general understanding for low energy recoils in the keV range in which direct excitation dominates. The explanation is that recombination becomes much less efficient when the track length is smaller than the thermalization distance of electrons. However, recombination rate is also proportional to ionization density, which is very high for keV recoils. To understand how recombination rate behaves for keV recoils

  6. Musett: A segmented Si array for Recoil-Decay-Tagging studies at VAMOS

    NASA Astrophysics Data System (ADS)

    Theisen, Ch.; Jeanneau, F.; Sulignano, B.; Druillole, F.; Ljungvall, J.; Paul, B.; Virique, E.; Baron, P.; Bervas, H.; Clément, E.; Delagnes, E.; Dijon, A.; Dossat, E.; Drouart, A.; Farget, F.; Flouzat, Ch.; De France, G.; Görgen, A.; Houarner, Ch.; Jacquot, B.; Korten, W.; Lebertre, G.; Lecornu, B.; Legeard, L.; Lermitage, A.; Lhenoret, S.; Marry, C.; Maugeais, C.; Menager, L.; Meunier, O.; Navin, A.; Nizery, F.; Obertelli, A.; Rauly, E.; Raine, B.; Rejmund, M.; Ropert, J.; Saillant, F.; Savajols, H.; Schmitt, Ch.; Tripon, M.; Wanlin, E.; Wittwer, G.

    2014-05-01

    A new segmented silicon-array called MUSETT has been built for the study of heavy elements using the Recoil-Decay-Tagging technique. MUSETT is located at the focal plane of the VAMOS spectrometer at GANIL and is used in conjunction with a γ-ray array at the target position. This paper describes the device, which consists of four 10×10 cm2 Si detectors and its associated front-end electronics based on highly integrated ASICs electronics. The triggerless readout electronics, the data acquisition and the analysis tools developed for its characterization are presented. This device was commissioned at GANIL with the EXOGAM γ-ray spectrometer using the fusion-evaporation reaction 197Au(22Ne,5n)214Ac. Additionally, the performance of the VAMOS Wien filter used during the in-beam commissioning is also reported.

  7. Gravitational wave detection with high frequency phonon trapping acoustic cavities

    NASA Astrophysics Data System (ADS)

    Goryachev, Maxim; Tobar, Michael E.

    2014-11-01

    There are a number of theoretical predictions for astrophysical and cosmological objects, which emit high frequency (1 06-1 09 Hz ) gravitation waves (GW) or contribute somehow to the stochastic high frequency GW background. Here we propose a new sensitive detector in this frequency band, which is based on existing cryogenic ultrahigh quality factor quartz bulk acoustic wave cavity technology, coupled to near-quantum-limited SQUID amplifiers at 20 mK. We show that spectral strain sensitivities reaching 1 0-22 per √{Hz } per mode is possible, which in principle can cover the frequency range with multiple (>100 ) modes with quality factors varying between 1 06 and 1 010 allowing wide bandwidth detection. Due to its compactness and well-established manufacturing process, the system is easily scalable into arrays and distributed networks that can also impact the overall sensitivity and introduce coincidence analysis to ensure no false detections.

  8. High frequency impedance spectra on the chromium dioxide thin film

    SciTech Connect

    Fu, C. M.; Lai, C. J.; Wu, J. S.; Huang, J. C. A.; Wu, C.-C.; Shyu, S.-G.

    2001-06-01

    We report on the study of high frequency magnetotransport properties of the chromium dioxide (CrO{sub 2}) thin films, grown on Si substrate using chemical vapor deposition. The film exhibits a ferromagnetic transition with a Curie temperature near 390 K. The temperature dependent spontaneous magnetization follows Bloch{close_quote}s law. The impedance spectra, being analyzed based on the fundamental electrodynamics, are demonstrated to be in a low-loss dielectric limit along with the occurrence of dielectric relaxation and magnetization response. The specific features of impedance spectra, distinct from the usual metallic ferromagnet, are attributed to the half metallic nature of CrO{sub 2}. The results explore the possibility for high frequency device applications.

  9. Extracting cardiac myofiber orientations from high frequency ultrasound images

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Cong, Zhibin; Jiang, Rong; Shen, Ming; Wagner, Mary B.; Kirshbom, Paul; Fei, Baowei

    2013-03-01

    Cardiac myofiber plays an important role in stress mechanism during heart beating periods. The orientation of myofibers decides the effects of the stress distribution and the whole heart deformation. It is important to image and quantitatively extract these orientations for understanding the cardiac physiological and pathological mechanism and for diagnosis of chronic diseases. Ultrasound has been wildly used in cardiac diagnosis because of its ability of performing dynamic and noninvasive imaging and because of its low cost. An extraction method is proposed to automatically detect the cardiac myofiber orientations from high frequency ultrasound images. First, heart walls containing myofibers are imaged by B-mode high frequency (<20 MHz) ultrasound imaging. Second, myofiber orientations are extracted from ultrasound images using the proposed method that combines a nonlinear anisotropic diffusion filter, Canny edge detector, Hough transform, and K-means clustering. This method is validated by the results of ultrasound data from phantoms and pig hearts.

  10. Clustered Desynchronization from High-Frequency Deep Brain Stimulation

    PubMed Central

    Wilson, Dan; Moehlis, Jeff

    2015-01-01

    While high-frequency deep brain stimulation is a well established treatment for Parkinson’s disease, its underlying mechanisms remain elusive. Here, we show that two competing hypotheses, desynchronization and entrainment in a population of model neurons, may not be mutually exclusive. We find that in a noisy group of phase oscillators, high frequency perturbations can separate the population into multiple clusters, each with a nearly identical proportion of the overall population. This phenomenon can be understood by studying maps of the underlying deterministic system and is guaranteed to be observed for small noise strengths. When we apply this framework to populations of Type I and Type II neurons, we observe clustered desynchronization at many pulsing frequencies. PMID:26713619

  11. A high frequency transformer model for the EMTP

    SciTech Connect

    Morched, A.; Marti, L.; Ottevangers, J. )

    1993-07-01

    A model to simulate the high frequency behavior of a power transformer is presented. This model is based on the frequency characteristics of the transformer admittance matrix between its terminals over a given range of frequencies. The transformer admittance characteristics can be obtained from measurements or from detailed internal models based on the physical layout of the transformer. The elements of the nodal admittance matrix are approximated with rational functions consisting of real as well as complex conjugate poles and zeros. These approximations are realized in the form of an RLC network in a format suitable for direct use with EMTP. The high frequency transformer model can be used as a stand-alone linear model or as an add-on module of a more comprehensive model where iron core nonlinearities are represented in detail.

  12. High-frequency oscillation of the airway and chest wall.

    PubMed

    Fink, James B; Mahlmeister, Michael J

    2002-07-01

    High-frequency oscillation (HFO), applied to either the airway or chest wall, has been associated with changes in sputum attributes and clearance. The evolution of evidence, both in vitro and in vivo, supporting the use of HFO is reviewed. Devices that apply HFO to the airway range from the relatively simple mechanical Flutter and Acapella devices to the more complex Percussionaire Intrapercussive Ventilators. and the Hayek Oscillator are designed to provide high-frequency chest wall compression. Operation and use of these devices are described with examples of differentiation of device types by characterization of flows, and airway and esophageal pressures. Although HFO devices span a broad range of costs, they provide a reasonable therapeutic option to support secretion clearance for patients with cystic fibrosis. PMID:12088550

  13. On applications of high-frequency asymptotics in aeroacoustics.

    PubMed

    Peake, N

    2004-03-15

    The aim of this paper is to survey a range of applications of high-frequency asymptotic methods in aeroacoustics. Specifically, we are concerned with problems associated with noise generation, propagation and scattering as found in large modern aeroengines. With regard to noise generation, we consider the interaction between high-frequency vortical waves and thin aerofoils, with particular emphasis being placed on the way in which the vortical waves act on the non-uniform mean flow around the aerofoil. A ray-theoretic description of the resulting sound as it propagates along the engine intake is then presented, followed by consideration of the diffraction of these rays by the (possibly asymmetric) intake lip to produce sound in the far field. A range of more detailed possible extensions is also presented. PMID:15306513

  14. High Frequency Amplitude Detector for GMI Magnetic Sensors

    PubMed Central

    Asfour, Aktham; Zidi, Manel; Yonnet, Jean-Paul

    2014-01-01

    A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI) sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted. PMID:25536003

  15. Extracting Cardiac Myofiber Orientations from High Frequency Ultrasound Images.

    PubMed

    Qin, Xulei; Cong, Zhibin; Jiang, Rong; Shen, Ming; Wagner, Mary B; Kishbom, Paul; Fei, Baowei

    2013-03-29

    Cardiac myofiber plays an important role in stress mechanism during heart beating periods. The orientation of myofibers decides the effects of the stress distribution and the whole heart deformation. It is important to image and quantitatively extract these orientations for understanding the cardiac physiological and pathological mechanism and for diagnosis of chronic diseases. Ultrasound has been wildly used in cardiac diagnosis because of its ability of performing dynamic and noninvasive imaging and because of its low cost. An extraction method is proposed to automatically detect the cardiac myofiber orientations from high frequency ultrasound images. First, heart walls containing myofibers are imaged by B-mode high frequency (>20 MHz) ultrasound imaging. Second, myofiber orientations are extracted from ultrasound images using the proposed method that combines a nonlinear anisotropic diffusion filter, Canny edge detector, Hough transform, and K-means clustering. This method is validated by the results of ultrasound data from phantoms and pig hearts. PMID:24392208

  16. High-frequency Broadband Modulations of Electroencephalographic Spectra

    PubMed Central

    Onton, Julie; Makeig, Scott

    2009-01-01

    High-frequency cortical potentials in electroencephalographic (EEG) scalp recordings have low amplitudes and may be confounded with scalp muscle activities. EEG data from an eyes-closed emotion imagination task were linearly decomposed using independent component analysis (ICA) into maximally independent component (IC) processes. Joint decomposition of IC log spectrograms into source- and frequency-independent modulator (IM) processes revealed three distinct classes of IMs that separately modulated broadband high-frequency (∼15–200 Hz) power of brain, scalp muscle, and likely ocular motor IC processes. Multi-dimensional scaling revealed significant but spatially complex relationships between mean broadband brain IM effects and the valence of the imagined emotions. Thus, contrary to prevalent assumption, unitary modes of spectral modulation of frequencies encompassing the beta, gamma, and high gamma frequency ranges can be isolated from scalp-recorded EEG data and may be differentially associated with brain sources and cognitive activities. PMID:20076775

  17. Parametric Study of High Frequency Pulse Detonation Tubes

    NASA Technical Reports Server (NTRS)

    Cutler, Anderw D.

    2008-01-01

    This paper describes development of high frequency pulse detonation tubes similar to a small pulse detonation engine (PDE). A high-speed valve injects a charge of a mixture of fuel and air at rates of up to 1000 Hz into a constant area tube closed at one end. The reactants detonate in the tube and the products exit as a pulsed jet. High frequency pressure transducers are used to monitor the pressure fluctuations in the device and thrust is measured with a balance. The effects of injection frequency, fuel and air flow rates, tube length, and injection location are considered. Both H2 and C2H4 fuels are considered. Optimum (maximum specific thrust) fuel-air compositions and resonant frequencies are identified. Results are compared to PDE calculations. Design rules are postulated and applications to aerodynamic flow control and propulsion are discussed.

  18. Clustered Desynchronization from High-Frequency Deep Brain Stimulation.

    PubMed

    Wilson, Dan; Moehlis, Jeff

    2015-12-01

    While high-frequency deep brain stimulation is a well established treatment for Parkinson's disease, its underlying mechanisms remain elusive. Here, we show that two competing hypotheses, desynchronization and entrainment in a population of model neurons, may not be mutually exclusive. We find that in a noisy group of phase oscillators, high frequency perturbations can separate the population into multiple clusters, each with a nearly identical proportion of the overall population. This phenomenon can be understood by studying maps of the underlying deterministic system and is guaranteed to be observed for small noise strengths. When we apply this framework to populations of Type I and Type II neurons, we observe clustered desynchronization at many pulsing frequencies. PMID:26713619

  19. How High Frequency Trading Affects a Market Index

    PubMed Central

    Kenett, Dror Y.; Ben-Jacob, Eshel; Stanley, H. Eugene; gur-Gershgoren, Gitit

    2013-01-01

    The relationship between a market index and its constituent stocks is complicated. While an index is a weighted average of its constituent stocks, when the investigated time scale is one day or longer the index has been found to have a stronger effect on the stocks than vice versa. We explore how this interaction changes in short time scales using high frequency data. Using a correlation-based analysis approach, we find that in short time scales stocks have a stronger influence on the index. These findings have implications for high frequency trading and suggest that the price of an index should be published on shorter time scales, as close as possible to those of the actual transaction time scale. PMID:23817553

  20. Transformation ray method: controlling high frequency elastic waves (L).

    PubMed

    Chang, Zheng; Liu, Xiaoning; Hu, Gengkai; Hu, Jin

    2012-10-01

    Elastic ray theory is a high frequency asymptotic approximation of solution of elastodynamic equation, and is widely used in seismology. In this paper, the form invariance under a general spatial mapping and high frequency wave control have been examined by transformation method. It is showed that with the constraint of major and minor symmetry of the transformed elastic tensor, the eikonal equation keeps its form under a general mapping, however, the transport equation loses its form except for conformal mapping. Therefore, the elastic ray path can be controlled in an exact manner by a transformation method, whereas energy distribution along the ray is only approximately controlled. An elastic rotator based on ray tracing method is also provided to illustrate the method and to access the approximation. PMID:23039561

  1. Frequency shifts of high frequency p-modes

    NASA Technical Reports Server (NTRS)

    Jain, Rekha

    1995-01-01

    Frequency shifts of high frequency p-modes during the solar cycle are calculated for a non-magnetic polytrope convection zone model. An isothermal chromospheric atmosphere threaded by a uniform horizontal magnetic field is correlated to this model. The relevant observations of such frequency changes are discussed. The calculated simultaneous changes in the field strength and chromospheric temperature result in the frequency shifts that are similar to those of the observations.

  2. High Frequency Ultrasound of Armor-Grade Alumina Ceramics

    NASA Astrophysics Data System (ADS)

    Bottiglieri, S.; Haber, R. A.

    2009-03-01

    Different lots of high density, commercial, armor-grade alumina (Al2O3) were tested using high frequency ultrasound in order to determine any correlation between measured properties and ballistic performance. C-scan images were taken using a 15 MHz ultrasonic transducer in order to form attenuation coefficient and elastic property maps. These samples were further characterized by using quantitative analysis. The results indicate that attenuation coefficient values appear to have the strongest correlation, of every property measured, to ballistic classifications.

  3. Automated composite ellipsoid modelling for high frequency GTD analysis

    NASA Technical Reports Server (NTRS)

    Sze, K. Y.; Rojas, R. G.; Klevenow, F. T.; Scheick, J. T.

    1991-01-01

    The preliminary results of a scheme currently being developed to fit a composite ellipsoid to the fuselage of a helicopter in the vicinity of the antenna location are discussed under the assumption that the antenna is mounted on the fuselage. The parameters of the close-fit composite ellipsoid would then be utilized as inputs into NEWAIR3, a code programmed in FORTRAN 77 for high frequency Geometrical Theory of Diffraction (GTD) Analysis of the radiation of airborne antennas.

  4. Should High-Frequency Ventilation in the Adult Be Abandoned?

    PubMed

    Nguyen, Albert P; Schmidt, Ulrich H; MacIntyre, Neil R

    2016-06-01

    High-frequency oscillatory ventilation (HFOV) can improve ventilation-perfusion matching without excessive alveolar tidal stretching or collapse-reopening phenomenon. This is an attractive feature in the ventilation of patients with ARDS. However, two recent large multi-center trials of HFOV failed to show benefits in this patient population. The following review addresses whether, in view of these trails, HFOV should be abandoned in the adult population? PMID:27235314

  5. High frequency fatigue testing of Udimet 700 at 1400 F

    NASA Technical Reports Server (NTRS)

    Conn, A. F.; Rudy, S. L.

    1972-01-01

    An investigation pertaining to the development of life prediction methods for materials subjected to high temperature creep/fatigue conditions is presented. High frequency (13.4 kHz) fatigue data were measured at 1400 F on specimens of the nickel-based alloy Udimet 700. Tests were conducted on the virgin material, as well as on specimens which had received prior exposures to high temperature, fatigue, and creep.

  6. Microstrip antenna modeling and measurement at high frequencies

    SciTech Connect

    Bevensee, R.M.

    1986-04-30

    This report addresses the task C(i) of the Proposal for Microstrip Antenna Modeling and Measurement at High Frequencies by the writer, July 1985. The task is: Assess the advantages and disadvantages of the three computational approaches outlined in the Proposal, including any difficulties to be resolved and an estimate of the time required to implement each approach. The three approaches are (1) Finite Difference, (2) Sommerfeld-GTD-MOM, and (3) Surface Intergral Equations - MOM. These are discussed in turn.

  7. The Origin of High-Frequency Hearing in Whales.

    PubMed

    Churchill, Morgan; Martinez-Caceres, Manuel; de Muizon, Christian; Mnieckowski, Jessica; Geisler, Jonathan H

    2016-08-22

    Odontocetes (toothed whales) rely upon echoes of their own vocalizations to navigate and find prey underwater [1]. This sensory adaptation, known as echolocation, operates most effectively when using high frequencies, and odontocetes are rivaled only by bats in their ability to perceive ultrasonic sound greater than 100 kHz [2]. Although features indicative of ultrasonic hearing are present in the oldest known odontocetes [3], the significance of this finding is limited by the methods employed and taxa sampled. In this report, we describe a new xenorophid whale (Echovenator sandersi, gen. et sp. nov.) from the Oligocene of South Carolina that, as a member of the most basal clade of odontocetes, sheds considerable light on the evolution of ultrasonic hearing. By placing high-resolution CT data from Echovenator sandersi, 2 hippos, and 23 fossil and extant whales in a phylogenetic context, we conclude that ultrasonic hearing, albeit in a less specialized form, evolved at the base of the odontocete radiation. Contrary to the hypothesis that odontocetes evolved from low-frequency specialists [4], we find evidence that stem cetaceans, the archaeocetes, were more sensitive to high-frequency sound than their terrestrial ancestors. This indicates that selection for high-frequency hearing predates the emergence of Odontoceti and the evolution of echolocation. PMID:27498568

  8. High-frequency ultrasound in parotid gland disease.

    PubMed

    Onkar, Prashant Madhukar; Ratnaparkhi, Chetana; Mitra, Kajal

    2013-12-01

    Parotid gland is involved in many inflammatory and neoplastic conditions. Many a times, it is difficult to ascertain the type of swelling by clinical examination. The anatomy and various abnormalities of the glands are very easily visualized by high-frequency ultrasound. Ultrasound can confirm the presence of the mass with sensitivity up to 100%. It can demonstrate whether a lesion is located in the parotid gland or outside. It can help in differentiating benign from malignant neoplasms and local staging of the mass in malignant lesions. In addition, ultrasound can identify those entities that may not need surgical intervention. The glands appear enlarged and show altered echopattern in acute inflammation and may be normal or reduce in size in chronic inflammation. Other pathologies that involve salivary glands are sialolithiasis and various benign and malignant neoplasms. Ultrasound many times suggests final diagnosis or supplies important differential diagnosis. In this article, the use of high-frequency ultrasound in parotid disease is discussed, and sonographic features of different parotid pathologies are reviewed with examples illustrated. High-frequency ultrasound is the first and many a times the only imaging investigation done for evaluation of parotid glands. PMID:24263755

  9. High frequency resolution terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Sangala, Bagvanth Reddy

    2013-12-01

    A new method for the high frequency resolution terahertz time-domain spectroscopy is developed based on the characteristic matrix method. This method is useful for studying planar samples or stack of planar samples. The terahertz radiation was generated by optical rectification in a ZnTe crystal and detected by another ZnTe crystal via electro-optic sampling method. In this new characteristic matrix based method, the spectra of the sample and reference waveforms will be modeled by using characteristic matrices. We applied this new method to measure the optical constants of air. The terahertz transmission through the layered systems air-Teflon-air-Quartz-air and Nitrogen gas-Teflon-Nitrogen gas-Quartz-Nitrogen gas was modeled by the characteristic matrix method. A transmission coefficient is derived from these models which was optimized to fit the experimental transmission coefficient to extract the optical constants of air. The optimization of an error function involving the experimental complex transmission coefficient and the theoretical transmission coefficient was performed using patternsearch algorithm of MATLAB. Since this method takes account of the echo waveforms due to reflections in the layered samples, this method allows analysis of longer time-domain waveforms giving rise to very high frequency resolution in the frequency-domain. We have presented the high frequency resolution terahertz time-domain spectroscopy of air and compared the results with the literature values. We have also fitted the complex susceptibility of air to the Lorentzian and Gaussian functions to extract the linewidths.

  10. Interictal high-frequency oscillations in focal human epilepsy

    PubMed Central

    Cimbalnik, Jan; Kucewicz, Michal T.; Worrell, Greg

    2016-01-01

    Purpose of review Localization of focal epileptic brain is critical for successful epilepsy surgery and focal brain stimulation. Despite significant progress, roughly half of all patients undergoing focal surgical resection, and most patients receiving focal electrical stimulation, are not seizure free. There is intense interest in high-frequency oscillations (HFOs) recorded with intracranial electroencephalography as potential biomarkers to improve epileptogenic brain localization, resective surgery, and focal electrical stimulation. The present review examines the evidence that HFOs are clinically useful biomarkers. Recent findings Performing the PubMed search ‘High-Frequency Oscillations and Epilepsy’ for 2013–2015 identifies 308 articles exploring HFO characteristics, physiological significance, and potential clinical applications. Summary There is strong evidence that HFOs are spatially associated with epileptic brain. There remain, however, significant challenges for clinical translation of HFOs as epileptogenic brain biomarkers: Differentiating true HFO from the high-frequency power changes associated with increased neuronal firing and bandpass filtering sharp transients. Distinguishing pathological HFO from normal physiological HFO. Classifying tissue under individual electrodes as normal or pathological. Sharing data and algorithms so research results can be reproduced across laboratories. Multicenter prospective trials to provide definitive evidence of clinical utility. PMID:26953850

  11. Neutron star recoils from anisotropic supernovae.

    NASA Astrophysics Data System (ADS)

    Janka, H.-T.; Mueller, E.

    1994-10-01

    Refering to recent hydrodynamical computations (Herant et al. 1992; Janka & Mueller 1993a) it is argued that neutron star kicks up to a few hundred km/s might be caused by a turbulent overturn of the matter between proto-neutron star and supernova shock during the early phase of the supernova explosion. These recoil speeds ("kick velocities") may be of the right size to explain the measured proper motions of most pulsars and do not require the presence of magnetic fields in the star. It is also possible that anisotropic neutrino emission associated with convective processes in the surface layers of the nascent neutron star (Burrows & Fryxell 1992; Janka & Mueller 1993b; Mueller 1993) provides an acceleration mechanism (Woosley 1987), although our estimates indicate that the maximum attainable velocities are around 200km/s. Yet, it turns out to be very unlikely that the considered stochastic asymmetries of supernova explosions are able to produce large enough recoils to account for pulsar velocities in excess of about 500km/s, which can be found in the samples of Harrison et al. (1993) and Taylor et al. (1993). It is concluded that other acceleration mechanisms have to be devised to explain the fast motion of PSR 2224+65 (transverse speed >=800km/s Cordes et al. 1993) and the high-velocities deduced from associations between supernova remnants and nearby young pulsars (e.g., Frail & Kulkarni 1991; Stewart et al. 1993; Caraveo 1993).

  12. Nuclear astrophysics studies by recoil mass separators.

    NASA Astrophysics Data System (ADS)

    Gialanella, L.; Brand, K.; Campajola, L.; D'Onofrio, A.; Greife, U.; Morone, M. C.; Oliviero, G.; Ordine, A.; Roca, V.; Rolfs, C.; Romano, M.; Romoli, M.; Schmidt, S.; Schulte, W. H.; Strieder, F.; Terrasi, F.; Trautvetter, H. P.; Zahnow, D.

    1997-11-01

    It has been recently demonstrated that an accelerator mass spectrometry (AMS) system, used as a recoil separator in conjunction with a windowless gas target, can yield the high suppression factor needed to dispersively analyze radiative capture residues, with the aim of measuring cross sections in the sub-microbarn range. An experiment is underway utilizing a radioactive 7Be beam for the measurement of the cross section of the astrophysically important reaction 7Be(p, γ)8B at a center of mass energy ECM = 1 MeV. Preliminary results of this experiment are presented. The extension of the method to another reaction playing a key role in stellar evolution, i.e. 12C(α, γ)16O, requires an improvement of the angle- and momentum-acceptance of the recoil separator, the use of a jet gas target and of a specially designed low-threshold detector. The solutions proposed by a joint Italian-German project are discussed.

  13. Multiaperture Spectrometer

    NASA Technical Reports Server (NTRS)

    Schindler, Rudolf A.; Pagano, Robert J.; O'Callaghan, Fred G.

    1991-01-01

    Proposed multiaperture spectrometer containing single grating provides high spectral resolution over broad spectrum. Produces parallel line images, each of which highly spectrally resolved display of intensity vs. wavelength in wavelength band of one of orders of spectrum produced by grating. Advantages; convenient two-dimensional spectral image, fewer components, and greater efficiency.

  14. Spectrometer gun

    DOEpatents

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  15. Spectrometer gun

    DOEpatents

    Waechter, D.A.; Wolf, M.A.; Umbarger, C.J.

    1981-11-03

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun is described that includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  16. High frequency seismic waves and slab structures beneath Italy

    NASA Astrophysics Data System (ADS)

    Sun, Daoyuan; Miller, Meghan S.; Piana Agostinetti, Nicola; Asimow, Paul D.; Li, Dunzhu

    2014-04-01

    Tomographic images indicate a complicated subducted slab structure beneath the central Mediterranean where gaps in fast velocity anomalies in the upper mantle are interpreted as slab tears. The detailed shape and location of these tears are important for kinematic reconstructions and understanding the evolution of the subduction system. However, tomographic images, which are produced by smoothed, damped inversions, will underestimate the sharpness of the structures. Here, we use the records from the Italian National Seismic Network (IV) to study the detailed slab structure. The waveform records for stations in Calabria show large amplitude, high frequency (f>5 Hz) late arrivals with long coda after a relatively low-frequency onset for both P and S waves. In contrast, the stations in the southern and central Apennines lack such high frequency arrivals, which correlate spatially with the central Apennines slab window inferred from tomography and receiver function studies. Thus, studying the high frequency arrivals provides an effective way to investigate the structure of slab and detect possible slab tears. The observed high frequency arrivals in the southern Italy are the strongest for events from 300 km depth and greater whose hypocenters are located within the slab inferred from fast P-wave velocity perturbations. This characteristic behavior agrees with previous studies from other tectonic regions, suggesting the high frequency energy is generated by small scale heterogeneities within the slab which act as scatterers. Furthermore, using a 2-D finite difference (FD) code, we calculate synthetic seismograms to search for the scale, shape and velocity perturbations of the heterogeneities that may explain features observed in the data. Our preferred model of the slab heterogeneities beneath the Tyrrhenian Sea has laminar structure parallel to the slab dip and can be described by a von Kármán function with a down-dip correlation length of 10 km and 0.5 km in

  17. Unsteady combustion of homogeneous energetic solids using the laser-recoil method

    SciTech Connect

    Son, S.F.; Brewster, M.Q. . Dept. of Mechanical and Industrial Engineering)

    1995-01-01

    The laser-recoil technique was used to study the unsteady burning of a fine oxidizer AP-HTPB composite propellant (APF series) and a catalyzed double-base propellant (N5) at one atmosphere. Steady burning rate and temperature measurements were performed and quasi-steady, homogeneous, one-dimensional (OSHOD) theory implemented in order to interpret the unsteady results. The frequency response of the fine oxidizer AP-HTPB composite propellant exhibited two peaks that were shown to correspond to the condensed phase thermal layer and the condensed-phase reaction zone of the low- and high-frequency peaks, respectively. Several other factors were considered and eliminated as possible causes of the two peaks. For the fine oxidizer AP-HTPB composite propellant, at these conditions, the assumption of a quasi-steady surface reaction zone was clearly violated at frequencies as low as 60 Hz. The effect of mean radiant flux level on frequency response was also investigated for both APF and N5 propellants. N5 showed a pronounced steady-state burning rate plateau with radiant flux (similar to that for pressure) with corresponding effects exhibited in the frequency response. The results of this work show that detailed information can be obtained using the laser-recoil method that clarifies the structure and dynamics of burning solids. Further, the results suggest that more detailed models that relax the quasi-steady surface reaction zone assumption should be developed.

  18. High frequency planar accelerating structures for future linear colliders

    SciTech Connect

    Yu, D.; Ben-Menahem, S.; Wilson, P.; Miller, R.; Ruth, R.; Nassiri, A.

    1994-12-31

    Modern microfabrication techniques based on deep etch x-ray lithography, e.g., LIGA, can be used to produce large-aspect-ratio, metallic or dielectric, planar structures suitable for high-frequency RF acceleration of charged particle beams. Specifically, these techniques offer significant advantages over conventional manufacturing methods for future linear colliders (beyond NLC, the Next Linear Collider) because of several unique systems requirements. First, to have the required ac wall plug power within reasonable limits, such future linear colliders (5 TeV) must operate at high frequency (30 GHz). Secondly, luminosity requirements suggest the use of multi-bunch acceleration of electrons and positrons in the linear collider. Thirdly, in order to clearly discriminate physics events in the final interaction point at which electrons and positrons collide, it is required that secondary particle production from beamstrahlung be minimized. Flat electron and positron beams with a large aspect ratio will be beneficial in reducing beamstrahlung in the final focus region, but cause the beam to be more sensitive to wakefields in the vertical dimension. In principle, a flat beam can be accelerated in a planar structure with reduced wakefield in the vertical direction for the entire length of the accelerator. The LIGA process is particularly suitable for manufacturing miniaturized, planar, asymmetric cavities at high frequency. The main advantages of the LIGA process are fabrication of structures with high aspect ratio, small dimensional tolerances, and arbitrary mask shape (cross-section). Other advantages include mass-production with excellent repeatability and precision of up to an entire section of an accelerating structure consisting of a number of cells. It eliminates the need of tedious machining and brazing, for example, of individual disks and cups in conventional disk-loaded structures. Also, planar input/output couplers for the accelerating structure can be easily

  19. High-Frequency Shear Viscosity of Low-Viscosity Liquids

    NASA Astrophysics Data System (ADS)

    Kaatze, U.; Behrends, R.

    2014-11-01

    A thickness shear quartz resonator technique is described to measure the shear viscosity of low-viscosity liquids in the frequency range from 6 MHz to 130 MHz. Examples of shear-viscosity spectra in that frequency range are presented to show that various molecular processes are accompanied by shear-viscosity relaxation. Among these processes are conformational variations of alkyl chains, with relaxation times of about 0.3 ns for -pentadecane and -hexadecane at 25 C. These variations can be well represented in terms of a torsional oscillator model. Also featured briefly are shear-viscosity relaxations associated with fluctuations of hydrogen-bonded clusters in alcohols, for which values between 0.3 ns (-hexanol) and 1.5 ns (-dodecanol) have been found at 25 C. In addition, the special suitability of high-frequency shear-viscosity spectroscopy to the study of critically demixing mixtures is demonstrated by some illustrative examples. Due to slowing, critical fluctuations do not contribute to the shear viscosity at sufficiently high frequencies of measurements so that the non-critical background viscosity of critical systems can be directly determined from high-frequency shear-viscosity spectroscopy. Relaxations in appear also in the shear-viscosity spectra with, for example, 2 ns for the critical triethylamine-water binary mixture at temperatures between 10 C and 18 C. Such relaxations noticeably influence the relaxation rate of order parameter fluctuations. They may be also the reason for the need of a special mesoscopic viscosity when mutual diffusion coefficients of critical polymer solutions are discussed in terms of mode-coupling theory.

  20. Study of switching transients in high frequency converters

    NASA Technical Reports Server (NTRS)

    Zinger, Donald S.; Elbuluk, Malik E.; Lee, Tony

    1993-01-01

    As the semiconductor technologies progress rapidly, the power densities and switching frequencies of many power devices are improved. With the existing technology, high frequency power systems become possible. Use of such a system is advantageous in many aspects. A high frequency ac source is used as the direct input to an ac/ac pulse-density-modulation (PDM) converter. This converter is a new concept which employs zero voltage switching techniques. However, the development of this converter is still in its infancy stage. There are problems associated with this converter such as a high on-voltage drop, switching transients, and zero-crossing detecting. Considering these problems, the switching speed and power handling capabilities of the MOS-Controlled Thyristor (MCT) makes the device the most promising candidate for this application. A complete insight of component considerations for building an ac/ac PDM converter for a high frequency power system is addressed. A power device review is first presented. The ac/ac PDM converter requires switches that can conduct bi-directional current and block bi-directional voltage. These bi-directional switches can be constructed using existing power devices. Different bi-directional switches for the converter are investigated. Detailed experimental studies of the characteristics of the MCT under hard switching and zero-voltage switching are also presented. One disadvantage of an ac/ac converter is that turn-on and turn-off of the switches has to be completed instantaneously when the ac source is at zero voltage. Otherwise shoot-through current or voltage spikes can occur which can be hazardous to the devices. In order for the devices to switch softly in the safe operating area even under non-ideal cases, a unique snubber circuit is used in each bi-directional switch. Detailed theory and experimental results for circuits using these snubbers are presented. A current regulated ac/ac PDM converter built using MCT's and IGBT's is

  1. Engineering Graphene Conductivity for Flexible and High-Frequency Applications.

    PubMed

    Samuels, Alexander J; Carey, J David

    2015-10-14

    Advances in lightweight, flexible, and conformal electronic devices depend on materials that exhibit high electrical conductivity coupled with high mechanical strength. Defect-free graphene is one such material that satisfies both these requirements and which offers a range of attractive and tunable electrical, optoelectronic, and plasmonic characteristics for devices that operate at microwave, terahertz, infrared, or optical frequencies. Essential to the future success of such devices is therefore the ability to control the frequency-dependent conductivity of graphene. Looking to accelerate the development of high-frequency applications of graphene, here we demonstrate how readily accessible and processable organic and organometallic molecules can efficiently dope graphene to carrier densities in excess of 10(13) cm(-2) with conductivities at gigahertz frequencies in excess of 60 mS. In using the molecule 3,6-difluoro-2,5,7,7,8,8-hexacyanoquinodimethane (F2-HCNQ), a high charge transfer (CT) of 0.5 electrons per adsorbed molecule is calculated, resulting in p-type doping of graphene. n-Type doping is achieved using cobaltocene and the sulfur-containing molecule tetrathiafulvalene (TTF) with a CT of 0.41 and 0.24 electrons donated per adsorbed molecule, respectively. Efficient CT is associated with the interaction between the π electrons present in the molecule and in graphene. Calculation of the high-frequency conductivity shows dispersion-less behavior of the real component of the conductivity over a wide range of gigahertz frequencies. Potential high-frequency applications in graphene antennas and communications that can exploit these properties and the broader impacts of using molecular doping to modify functional materials that possess a low-energy Dirac cone are also discussed. PMID:26387636

  2. Acoustic trapping with a high frequency linear phased array

    NASA Astrophysics Data System (ADS)

    Zheng, Fan; Li, Ying; Hsu, Hsiu-Sheng; Liu, Changgeng; Tat Chiu, Chi; Lee, Changyang; Ham Kim, Hyung; Shung, K. Kirk

    2012-11-01

    A high frequency ultrasonic phased array is shown to be capable of trapping and translating microparticles precisely and efficiently, made possible due to the fact that the acoustic beam produced by a phased array can be both focused and steered. Acoustic manipulation of microparticles by a phased array is advantageous over a single element transducer since there is no mechanical movement required for the array. Experimental results show that 45 μm diameter polystyrene microspheres can be easily and accurately trapped and moved to desired positions by a 64-element 26 MHz phased array.

  3. Diffractive Model of the high-frequency impedance

    SciTech Connect

    Samuel Heifets

    1989-06-12

    High frequency diffraction can be described by iterations based on an approximate formulation of the boundary conditions. The method formulated is analogous to the Born series of scattering theory. It is used to study the interaction of short bunches with the beam environment in terms of the impedances. The impedances of typical elements of an accelerator structure are obtained. The cross-talk between elements, the impedance of a periodic array, and the effect of a taper are discussed. The method can be applied to a cavity of an arbitrary shape.

  4. Kapitza thermal resistance studied by high-frequency photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Horny, Nicolas; Chirtoc, Mihai; Fleming, Austin; Hamaoui, Georges; Ban, Heng

    2016-07-01

    Kapitza thermal resistance is determined using high-frequency photothermal radiometry (PTR) extended for modulation up to 10 MHz. Interfaces between 50 nm thick titanium coatings and silicon or stainless steel substrates are studied. In the used configuration, the PTR signal is not sensitive to the thermal conductivity of the film nor to its optical absorption coefficient, thus the Kapitza resistance is directly determined from single thermal parameter fits. Results of thermal resistances show the significant influence of the nature of the substrate, as well as of the presence of free electrons at the interface.

  5. High-frequency nonreciprocal reflection from magnetic films with overlayers

    SciTech Connect

    Wang, Ying; Nie, Yan; Camley, R. E.

    2013-11-14

    We perform a theoretical study of the nonreciprocal reflection of high-frequency microwave radiation from ferromagnetic films with thin overlayers. Reflection from metallic ferromagnetic films is always near unity and shows no nonreciprocity. In contrast, reflection from a structure which has a dielectric overlayer on top of a film composed of insulated ferromagnetic nanoparticles or nanostructures can show significant nonreciprocity in the 75–80 GHz frequency range, a very high value. This can be important for devices such as isolators or circulators.

  6. Dynamics and sensitivity analysis of high frequency conduction block

    PubMed Central

    Ackermann, D. Michael; Bhadra, Niloy; Gerges, Meana; Thomas, Peter J.

    2012-01-01

    The local delivery of extracellular high frequency stimulation (HFS) has been shown to be a fast acting and quickly reversible method of blocking neural conduction, and is currently being pursued for several clinical indications. However, the mechanism for this type of nerve block remains unclear. In this study, we investigate two hypotheses: 1) That depolarizing currents promote conduction block via inactivation of sodium channels, and 2) that the gating dynamics of the fast sodium channel are the primary determinate of minimal blocking frequency. Hypothesis 1 was investigated using a combined modeling and experimental study to investigate the effect of depolarizing and hyperpolarizing currents on high frequency block. The results of the modeling study show that both depolarizing and hyperpolarizing currents play an important role in conduction block and that the conductance to each of three ionic currents increases relative to resting values during HFS. However, depolarizing currents were found to promote the blocking effect, and hyperpolarizing currents were found to diminish the blocking effect. Inward sodium currents were larger than the sum of the outward currents, resulting in a net depolarization of the nodal membrane. Our experimental results support these findings and closely match results from the equivalent modeling scenario: intra-peritoneal administration of the persistent sodium channel blocker ranolazine resulted in an increase in the amplitude of HFS required to produce conduction block in rats, confirming that depolarizing currents promote the conduction block phenomenon. Hypothesis 2 was investigated using a spectral analysis of the channel gating variables in a single fiber axon model. The results of this study suggested a relationship between the dynamical properties of specific ion channel gating elements and the contributions of corresponding conductances to block onset. Specifically, we show that the dynamics of the fast sodium inactivation

  7. A dynamical structure of high frequency currency exchange market

    NASA Astrophysics Data System (ADS)

    Sazuka, Naoya; Ohira, Toru; Marumo, Kouhei; Shimizu, Tokiko; Takayasu, Misako; Takayasu, Hideki

    2003-06-01

    We analyze tick-by-tick data, the most high frequency data available, of yen-dollar currency exchange rates. We show that a dynamical structure can be observed in binarized data indicating the direction of up and down movement of prices, which is not apparently seen from the price change itself. This result is consistent with our previous study that there exists a conditional probabilistic structure in binarized data. The dynamical and probabilistic structure which we found could indicate that dealers’ decision making is based on a binary strategy, even if they are unconscious of this fact.

  8. Phoneme categorization relying solely on high-frequency energy.

    PubMed

    Vitela, A Davi; Monson, Brian B; Lotto, Andrew J

    2015-01-01

    Speech perception studies generally focus on the acoustic information present in the frequency regions below 6 kHz. Recent evidence suggests that there is perceptually relevant information in the higher frequencies, including information affecting speech intelligibility. This experiment examined whether listeners are able to accurately identify a subset of vowels and consonants in CV-context when only high-frequency (above 5 kHz) acoustic information is available (through high-pass filtering and masking of lower frequency energy). The findings reveal that listeners are capable of extracting information from these higher frequency regions to accurately identify certain consonants and vowels. PMID:25618101

  9. Phoneme categorization relying solely on high-frequency energy

    PubMed Central

    Vitela, A. Davi; Monson, Brian B.; Lotto, Andrew J.

    2015-01-01

    Speech perception studies generally focus on the acoustic information present in the frequency regions below 6 kHz. Recent evidence suggests that there is perceptually relevant information in the higher frequencies, including information affecting speech intelligibility. This experiment examined whether listeners are able to accurately identify a subset of vowels and consonants in CV-context when only high-frequency (above 5 kHz) acoustic information is available (through high-pass filtering and masking of lower frequency energy). The findings reveal that listeners are capable of extracting information from these higher frequency regions to accurately identify certain consonants and vowels. PMID:25618101

  10. Explanation of persistent high frequency density structure in coalesced bunches

    SciTech Connect

    Jackson, Gerald P.

    1988-07-01

    It has been observed that after the Main Ring rf manipulation of coalescing (where 5 to 13 primary bunches are transferred into a single rf bucket) the new secondary bunch displays evidence of high frequency density structure superimposed on the approximately Gaussian longitudinal bunch length distribution. This structure is persistent over a period of many seconds (hundreds of synchrotron oscillation periods). With the help of multiparticle simulation programs, an explanation of this phenomenon is given in terms of single particle longitudinal phase space dynamics. No coherent effects need be taken into account. 6 refs., 10 figs.

  11. Dynamics and sensitivity analysis of high-frequency conduction block

    NASA Astrophysics Data System (ADS)

    Ackermann, D. Michael; Bhadra, Niloy; Gerges, Meana; Thomas, Peter J.

    2011-10-01

    The local delivery of extracellular high-frequency stimulation (HFS) has been shown to be a fast acting and quickly reversible method of blocking neural conduction and is currently being pursued for several clinical indications. However, the mechanism for this type of nerve block remains unclear. In this study, we investigate two hypotheses: (1) depolarizing currents promote conduction block via inactivation of sodium channels and (2) the gating dynamics of the fast sodium channel are the primary determinate of minimal blocking frequency. Hypothesis 1 was investigated using a combined modeling and experimental study to investigate the effect of depolarizing and hyperpolarizing currents on high-frequency block. The results of the modeling study show that both depolarizing and hyperpolarizing currents play an important role in conduction block and that the conductance to each of three ionic currents increases relative to resting values during HFS. However, depolarizing currents were found to promote the blocking effect, and hyperpolarizing currents were found to diminish the blocking effect. Inward sodium currents were larger than the sum of the outward currents, resulting in a net depolarization of the nodal membrane. Our experimental results support these findings and closely match results from the equivalent modeling scenario: intra-peritoneal administration of the persistent sodium channel blocker ranolazine resulted in an increase in the amplitude of HFS required to produce conduction block in rats, confirming that depolarizing currents promote the conduction block phenomenon. Hypothesis 2 was investigated using a spectral analysis of the channel gating variables in a single-fiber axon model. The results of this study suggested a relationship between the dynamical properties of specific ion channel gating elements and the contributions of corresponding conductances to block onset. Specifically, we show that the dynamics of the fast sodium inactivation gate are

  12. A fast directional algorithm for high-frequency electromagnetic scattering

    SciTech Connect

    Tsuji, Paul; Ying Lexing

    2011-06-20

    This paper is concerned with the fast solution of high-frequency electromagnetic scattering problems using the boundary integral formulation. We extend the O(N log N) directional multilevel algorithm previously proposed for the acoustic scattering case to the vector electromagnetic case. We also detail how to incorporate the curl operator of the magnetic field integral equation into the algorithm. When combined with a standard iterative method, this results in an almost linear complexity solver for the combined field integral equations. In addition, the butterfly algorithm is utilized to compute the far field pattern and radar cross section with O(N log N) complexity.

  13. Generation of sheet currents by high frequency fast MHD waves

    NASA Astrophysics Data System (ADS)

    Núñez, Manuel

    2016-07-01

    The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium.

  14. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, Donald A.

    1996-01-01

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device.

  15. Novel vortex-transform for high frequency modulated patterns.

    PubMed

    Sierra-Sosa, Daniel; Angel-Toro, Luciano; Bolognini, Nestor; Tebaldi, Myrian

    2013-10-01

    A novel vortex-transform is proposed. This transform allows for generating complex-valued functions from modulated intensity patterns, including high frequency components from modulation, without the generation of unstable phase singularities. From these complex-valued functions it is possible to obtain intensity and pseudo-phase maps to analyze the intensity recordings without the necessity of phase retrieval techniques. The intensity and pseudo-phase maps obtained by using this transform preserve the modulation structure onto the intensity and phase modulo 2π maps, including stable phase singularities. PMID:24104283

  16. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, D.A.

    1996-05-21

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices are disclosed. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device. 16 figs.

  17. Investigation of iron cobalt nanocomposites for high frequency applications

    NASA Astrophysics Data System (ADS)

    Miller, Kelsy J.

    FeCo-based nanocomposite soft magnetic materials were developed in collaboration with Magnetics, Division of Spang and Co., for high frequency and high temperature application. Excellent soft magnetic properties include: low coercivity, high permeability, low energy losses, etc. These and large saturation inductions make these alloys attractive for fundamental studies and industrial applications. In this thesis, nanocrystalline composites will be developed from amorphous precursors for applications in two frequency regimes: 1) High frequency (0.01-30 MHz) such as high temperature power inductors, pulsed power transformers, and radio frequency (rf) magnetic heating; and 2) Ultra high frequency (30 MHz - 30 GHz) for radio frequency materials and electromagnetic interference (EMI) or radio frequency interference (RFI) absorption. New nanocomposites with higher saturation induction and high-temperature stability were developed with reduced glass forming elements such as Zr, Nb, Si and B. The amounts of the magnetic transition metals and early transition metal growth inhibitors were varied to determine trade-offs between higher inductions and fine microstructures and consequently low magnetic losses. Alloys having (Fe1-xCox)80+y+zNb4-y B13-zSi2Cu1 (25 ≤ x ≤ 50 and y = 0-4 and z = 0-3) nominal compositions were cast using planar flow casting (PFC) at Magnetics. Technical magnetic properties: permeability, maximum induction, remanence ratio, coercive field and high frequency magnetic losses as a function of composition and annealing temperature are reported after primary crystallization for 1 hr in a transverse magnetic field (TMF). Of note is the development of inductor cores with maximum inductions in excess of 1.76 T and 1.67 T in cores that exhibit power losses comparable with state of the art commercial soft magnetic alloys. For application in EMI/RFI absorption, FeCo-based alloys have the largest saturation induction and a tunable magnetic anisotropy which may

  18. External high-frequency control of combustion instability

    NASA Astrophysics Data System (ADS)

    Larionov, V. M.; Mitrofanov, G. A.; Kozar, A. N.

    2016-01-01

    The article presents the results of experimental studies of combustion instability in the pulse combustor. Propane-air mixture is burned in the chamber with the flame holder. It was experimentally found that feeding high-frequency sound vibrations into the combustion chamber causes the suppression of pulsating combustion. The oscillation frequency ranges in 870 to 1400 Hz. This corresponds to 9-12 resonance frequencies of oscillations in the combustor. The physical mechanism of the observed phenomenon consists in changing the conditions of formation and destruction of fuel jets in the vortex zone behind the flame holder.

  19. HIGH FREQUENCY ULTRASOUND OF ARMOR-GRADE ALUMINA CERAMICS

    SciTech Connect

    Bottiglieri, S.; Haber, R. A.

    2009-03-03

    Different lots of high density, commercial, armor-grade alumina (Al{sub 2}O{sub 3}) were tested using high frequency ultrasound in order to determine any correlation between measured properties and ballistic performance. C-scan images were taken using a 15 MHz ultrasonic transducer in order to form attenuation coefficient and elastic property maps. These samples were further characterized by using quantitative analysis. The results indicate that attenuation coefficient values appear to have the strongest correlation, of every property measured, to ballistic classifications.

  20. High frequency drift instabilities in a dusty plasma

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.; Krall, N. A.

    1994-01-01

    High frequency drift instabilities with omega(sub ce) much greater than omega which is greater than omega(sub ci) are investigated in a dusty magnetized plasma in which locally there is an electron density gradient which is opposite in sign to a dust density gradient. Two different equilibria are considered, characterized by rho(sub d) greater than L(sub d) and less than L(sub d), where rho(sub d) is the dust gyroradius and L(sub nd) is the dust density scale length. Possible application to Saturn's F-ring is discussed.

  1. The Spectrometer

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2012-01-01

    In the fall of 1999 I was shown an Ocean Optics spectrometer-in-the-computer at St. Patricks College at Maynooth, Ireland, and thought that I had seen heaven. Of course, it could not resolve the sodium D-lines (I had done that many years before with a homemade wire diffraction grating), and I began to realize that inside was some familiar old…

  2. Determination of the extraction efficiency for 233U source α-recoil ions from the MLL buffer-gas stopping cell

    NASA Astrophysics Data System (ADS)

    v. d. Wense, Lars; Seiferle, Benedict; Laatiaoui, Mustapha; Thirolf, Peter G.

    2015-03-01

    Following the α decay of 233U, 229Th recoil ions are shown to be extracted in a significant amount from the MLL buffer-gas stopping cell. The produced recoil ions and subsequent daughter nuclei are mass purified with the help of a customized quadrupole mass spectrometer. The combined extraction and mass purification efficiency for 229Th3+ is determined via MCP-based measurements and via the direct detection of the 229Th α decay. A large value of (10±2)% for the combined extraction and mass purification efficiency of 229Th3+ is obtained at a mass resolution of about 1u/e. In addition to 229Th, also other α-recoil ions of the 233, 232U decay chains are addressed.

  3. A perspective on high-frequency ultrasound for medical applications

    NASA Astrophysics Data System (ADS)

    Mamou, Jonathan; Aristizába, Orlando; Silverman, Ronald H.; Ketterling, Jeffrey A.

    2010-01-01

    High-frequency ultrasound (HFU, >15 MHz) is a rapidly developing field. HFU is currently used and investigated for ophthalmologic, dermatologic, intravascular, and small-animal imaging. HFU offers a non-invasive means to investigate tissue at the microscopic level with resolutions often better than 100 μm. However, fine resolution is only obtained over the limited depth-of-field (˜1 mm) of single-element spherically-focused transducers typically used for HFU applications. Another limitation is penetration depth because most biological tissues have large attenuation at high frequencies. In this study, two 5-element annular arrays with center frequencies of 17 and 34 MHz were fabricated and methods were developed to obtain images with increased penetration depth and depth-of-field. These methods were used in ophthalmologic and small-animal imaging studies. Improved blood sensitivity was obtained when a phantom mimicking a vitreous hemorrhage was imaged. Central-nervous systems of 12.5-day-old mouse embryos were imaged in utero and in three dimensions for the first time.

  4. Print protection using high-frequency fractal noise

    NASA Astrophysics Data System (ADS)

    Mahmoud, Khaled W.; Blackledge, Jonathon M.; Datta, Sekharjit; Flint, James A.

    2004-06-01

    All digital images are band-limited to a degree that is determined by a spatial extent of the point spread function; the bandwidth of the image being determined by the optical transfer function. In the printing industry, the limit is determined by the resolution of the printed material. By band limiting the digital image in such away that the printed document maintains its fidelity, it is possible to use the out-of-band frequency space to introduce low amplitude coded data that remains hidden in the image. In this way, a covert signature can be embedded into an image to provide a digital watermark, which is sensitive to reproduction. In this paper a high frequency fractal noise is used as a low amplitude signal. A statistically robust solution to the authentication of printed material using high-fractal noise is proposed here which is based on cross-entropy metrics to provide a statistical confidence test. The fractal watermark is based on application of self-affine fields, which is suitable for documents containing high degree of texture. In principle, this new approach will allow batch tracking to be performed using coded data that has been embedded into the high frequency components of the image whose statistical characteristics are dependent on the printer/scanner technology. The details of this method as well as experimental results are presented.

  5. High-Frequency Normal Mode Propagation in Aluminum Cylinders

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2009-01-01

    Acoustic measurements made using compressional-wave (P-wave) and shear-wave (S-wave) transducers in aluminum cylinders reveal waveform features with high amplitudes and with velocities that depend on the feature's dominant frequency. In a given waveform, high-frequency features generally arrive earlier than low-frequency features, typical for normal mode propagation. To analyze these waveforms, the elastic equation is solved in a cylindrical coordinate system for the high-frequency case in which the acoustic wavelength is small compared to the cylinder geometry, and the surrounding medium is air. Dispersive P- and S-wave normal mode propagations are predicted to exist, but owing to complex interference patterns inside a cylinder, the phase and group velocities are not smooth functions of frequency. To assess the normal mode group velocities and relative amplitudes, approximate dispersion relations are derived using Bessel functions. The utility of the normal mode theory and approximations from a theoretical and experimental standpoint are demonstrated by showing how the sequence of P- and S-wave normal mode arrivals can vary between samples of different size, and how fundamental normal modes can be mistaken for the faster, but significantly smaller amplitude, P- and S-body waves from which P- and S-wave speeds are calculated.

  6. Corrosion monitoring using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  7. Corrosion monitoring using high-frequency guided waves

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2016-04-01

    Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  8. High Frequency Elastic Wave Propagation in Media with a Microstructure

    NASA Astrophysics Data System (ADS)

    Tie, B.; Aubry, D.; Mouronval, A.-S.; Solas, D.; Thébault, J.; Tian, B.-Y.

    2010-05-01

    This contribution deals with the theoretical analysis and numerical modeling of elastic wave propagation in media with a microstructure. Two kinds of media are considered: polycrystalline material and honeycomb core sandwich shells, in which elastic waves are triggered by transient signals that result in large frequency ranges including high frequencies. Our theoretical and numerical investigations aim at understanding and simulating the interactions between the microstructure of those media and the wave propagation phenomena, when the characteristic lengths of the microstructure and the involved shortest wavelengths have roughly the same scale. In this paper, some key mechanisms of interaction between the considered microstructures and the elastic waves are highlighted. In polycrystalline superalloys, the misorientation distribution and the average grain size are considered, as they can alter pressure/shear wave propagation and also the permeability to ultrasonic waves monitored to perform non-destructive testing. For the flexure behavior of honeycomb core sandwich shells, the fundamental role played by the honeycomb cells, especially in high frequency domain, is analyzed. Relevant numerical modeling that provides a promising way to quantify micro-structure/wave interactions is presented. The important issue of how to take into account these micro-scale interactions in a homogenized macro-scale modeling is also discussed.

  9. 10 K high frequency pulse tube cryocooler with precooling

    NASA Astrophysics Data System (ADS)

    Liu, Sixue; Chen, Liubiao; Wu, Xianlin; Zhou, Yuan; Wang, Junjie

    2016-07-01

    A high frequency pulse tube cryocooler with precooling (HPTCP) has been developed and tested to meet the requirement of weak magnetic signals measurement, and the performance characteristics are presented in this article. The HPTCP is a two-stage pulse tube cryocooler with the precooling-stage replaced by liquid nitrogen. Two regenerators completely filled with stainless steel (SS) meshes are used in the cooler. Together with cold inertance tubes and cold gas reservoir, a cold double-inlet configuration is used to control the phase relationship of the HPTCP. The experimental result shows that the cold double-inlet configuration has improved the performance of the cooler obviously. The effects of operation parameters on the performance of the cooler are also studied. With a precooling temperature of 78.5 K, the maximum refrigeration capacity is 0.26 W at 15 K and 0.92 W at 20 K when the input electric power are 174 W and 248 W respectively, and the minimum no-load temperature obtained is 10.3 K, which is a new record on refrigeration temperature for high frequency pulse tube cryocooler reported with SS completely used as regenerative matrix.

  10. A high-frequency electrospray driven by gas volume charges

    SciTech Connect

    Lastochkin, Dmitri; Chang, H.-C.

    2005-06-15

    High-frequency (>10 kHz) ac electrospray is shown to eject volatile dielectric liquid drops by an entirely different mechanism from dc sprays. The steady dc Taylor conic tip is absent and continuous spraying of submicron drops is replaced by individual dynamic pinchoff events involving the entire drop. We attribute this spraying mechanism to a normal Maxwell force produced by an undispersed plasma cloud in front of the meniscus that produces a visible glow at the spherical tip. The volume charge within the cloud is formed by electron-induced gas ionization of the evaporated liquid and produces a large normal field that is much higher than the nominal applied field such that drop ejection occurs at a voltage (at high frequencies) that is as much as ten times lower than that for dc sprays. The ejection force is sensitive to the liquid properties (but not its electrolyte composition), the ac frequency and trace amounts of inert gases, which are believed to catalyze the ionization reactions. As electroneutral drops are ejected, due to the large (>100) ratio between individual drop ejection time and the ac frequency, this mechanism can produce large (microns) electroneutral drops at relatively low voltages.