Sample records for high-level waste vitrification

  1. World first in high level waste vitrification - A review of French vitrification industrial achievements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brueziere, J.; Chauvin, E.; Piroux, J.C.

    2013-07-01

    AREVA has more than 30 years experience in operating industrial HLW (High Level radioactive Waste) vitrification facilities (AVM - Marcoule Vitrification Facility, R7 and T7 facilities). This vitrification technology was based on borosilicate glasses and induction-heating. AVM was the world's first industrial HLW vitrification facility to operate in-line with a reprocessing plant. The glass formulation was adapted to commercial Light Water Reactor fission products solutions, including alkaline liquid waste concentrates as well as platinoid-rich clarification fines. The R7 and T7 facilities were designed on the basis of the industrial experience acquired in the AVM facility. The AVM vitrification process wasmore » implemented at a larger scale in order to operate the R7 and T7 facilities in-line with the UP2 and UP3 reprocessing plants. After more than 30 years of operation, outstanding record of operation has been established by the R7 and T7 facilities. The industrial startup of the CCIM (Cold Crucible Induction Melter) technology with enhanced glass formulation was possible thanks to the close cooperation between CEA and AREVA. CCIM is a water-cooled induction melter in which the glass frit and the waste are melted by direct high frequency induction. This technology allows the handling of highly corrosive solutions and high operating temperatures which permits new glass compositions and a higher glass production capacity. The CCIM technology has been implemented successfully at La Hague plant.« less

  2. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, D.E.

    1996-09-01

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Meltermore » Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling« less

  3. Glass Property Models, Constraints, and Formulation Approaches for Vitrification of High-Level Nuclear Wastes at the US Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong-Sang

    2015-03-02

    The legacy nuclear wastes stored in underground tanks at the US Department of Energy’s Hanford site is planned to be separated into high-level waste and low-activity waste fractions and vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. The property models with associated uncertainties and combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification processmore » control and waste form qualification at the planned waste vitrification plant. This paper provides an overview of current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford site.« less

  4. High level radioactive waste vitrification process equipment component testing

    NASA Astrophysics Data System (ADS)

    Siemens, D. H.; Health, W. C.; Larson, D. E.; Craig, S. N.; Berger, D. N.; Goles, R. W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessment under shielded cell conditions. The equipment tested will be applied to immobilize high level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conduucted to evaluate liquid metals for use in a liquid metal sealing system.

  5. SECONDARY WASTE MANAGEMENT FOR HANFORD EARLY LOW ACTIVITY WASTE VITRIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    UNTERREINER BJ

    2008-07-18

    More than 200 million liters (53 million gallons) of highly radioactive and hazardous waste is stored at the U.S. Department of Energy's Hanford Site in southeastern Washington State. The DOE's Hanford Site River Protection Project (RPP) mission includes tank waste retrieval, waste treatment, waste disposal, and tank farms closure activities. This mission will largely be accomplished by the construction and operation of three large treatment facilities at the Waste Treatment and Immobilization Plant (WTP): (1) a Pretreatment (PT) facility intended to separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW); (2) a HLW vitrification facilitymore » intended to immobilize the HLW for disposal at a geologic repository in Yucca Mountain; and (3) a LAW vitrification facility intended to immobilize the LAW for shallow land burial at Hanford's Integrated Disposal Facility (IDF). The LAW facility is on target to be completed in 2014, five years prior to the completion of the rest of the WTP. In order to gain experience in the operation of the LAW vitrification facility, accelerate retrieval from single-shell tank (SST) farms, and hasten the completion of the LAW immobilization, it has been proposed to begin treatment of the low-activity waste five years before the conclusion of the WTP's construction. A challenge with this strategy is that the stream containing the LAW vitrification facility off-gas treatment condensates will not have the option of recycling back to pretreatment, and will instead be treated by the Hanford Effluent Treatment Facility (ETF). Here the off-gas condensates will be immobilized into a secondary waste form; ETF solid waste.« less

  6. Corrosion assessment of refractory materials for high temperature waste vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, J.C.; Congdon, J.W.; Kielpinski, A.L.

    1995-11-01

    A variety of vitrification technologies are being evaluated to immobilize radioactive and hazardous wastes following years of nuclear materials production throughout the Department of Energy (DOE) complex. The compositions and physical forms of these wastes are diverse ranging from inorganic sludges to organic liquids to heterogeneous debris. Melt and off-gas products can be very corrosive at the high temperatures required to melt many of these waste streams. Ensuring material durability is required to develop viable treatment processes. Corrosion testing of materials in some of the anticipated severe environments is an important aspect of the materials identification and selection process. Corrosionmore » coupon tests on typical materials used in Joule heated melters were completed using glass compositions with high salt contents. The presence of chloride in the melts caused the most severe attack. In the metal alloys, oxidation was the predominant corrosion mechanism, while in the tested refractory material enhanced dissolution of the refractory into the glass was observed. Corrosion testing of numerous different refractory materials was performed in a plasma vitrification system using a surrogate heterogeneous debris waste. Extensive corrosion was observed in all tested materials.« less

  7. Evaluation of alloy 690 process pot at the contact with borosilicate melt pool during vitrification of high-level nuclear waste

    NASA Astrophysics Data System (ADS)

    Sengupta, Pranesh; Kaushik, C. P.; Kale, G. B.; Das, D.; Raj, K.; Sharma, B. P.

    2009-08-01

    Understanding the material behaviour under service conditions is essential to enhance the life span of alloy 690 process pot used in vitrification of high-level nuclear waste. During vitrification process, interaction of alloy 690 with borosilicate melt takes place for substantial time period. Present experimental studies show that such interactions may result in Cr carbide precipitation along grain boundaries, Cr depletion in austenitic matrix and intergranular attack close to alloy 690/borosilicate melt pool interfaces. Widths of Cr depleted zone within alloy 690 is found to follow kinetics of the type x = 10.9 × 10 -6 + 1 × 10 -8t1/2 m. Based on the experimental results it is recommended that compositional modification of alloy 690 process pot adjacent to borosilicate melt pool need to be considered seriously for any efforts towards reduction and/or prevention of process pot failures.

  8. Leaching characteristics of copper flotation waste before and after vitrification.

    PubMed

    Coruh, Semra; Ergun, Osman Nuri

    2006-12-01

    Copper flotation waste from copper production using a pyrometallurgical process contains toxic metals such as Cu, Zn, Co and Pb. Because of the presence of trace amounts of these highly toxic metals, copper flotation waste contributes to environmental pollution. In this study, the leaching characteristics of copper flotation waste from the Black Sea Copper Works in Samsun, Turkey have been investigated before and after vitrification. Samples obtained from the factory were subjected to toxicity tests such as the extraction procedure toxicity test (EP Tox), the toxicity characteristic leaching procedure (TCLP) and the "method A" extraction procedure of the American Society of Testing and Materials. The leaching tests showed that the content of some elements in the waste before vitrification exceed the regulatory limits and cannot be disposed of in the present form. Therefore, a stabilization or inertization treatment is necessary prior to disposal. Vitrification was found to stabilize heavy metals in the copper flotation waste successfully and leaching of these metals was largely reduced. Therefore, vitrification can be an acceptable method for disposal of copper flotation waste.

  9. In-situ vitrification of waste materials

    DOEpatents

    Powell, James R.; Reich, Morris; Barletta, Robert

    1997-11-14

    A method for the in-situ vitrification of waste materials in a disposable can that includes an inner container and an outer container is disclosed. The method includes the steps of adding frit and waste materials to the inner container, removing any excess water, heating the inner container such that the frit and waste materials melt and vitrify after cooling, while maintaining the outer container at a significantly lower temperature than the inner container. The disposable can is then cooled to ambient temperatures and stored. A device for the in-situ vitrification of waste material in a disposable can is also disclosed.

  10. In-situ vitrification of waste materials

    DOEpatents

    Powell, J.R.; Reich, M.; Barletta, R.

    1997-10-14

    A method for the in-situ vitrification of waste materials in a disposable can that includes an inner container and an outer container is disclosed. The method includes the steps of adding frit and waste materials to the inner container, removing any excess water, heating the inner container such that the frit and waste materials melt and vitrify after cooling, while maintaining the outer container at a significantly lower temperature than the inner container. The disposable can is then cooled to ambient temperatures and stored. A device for the in-situ vitrification of waste material in a disposable can is also disclosed. 7 figs.

  11. High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardal, M.A.; Darwen, N.J.

    2008-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification.more » Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance

  12. Structural and microstructural aspects of asbestos-cement waste vitrification

    NASA Astrophysics Data System (ADS)

    Iwaszko, Józef; Zawada, Anna; Przerada, Iwona; Lubas, Małgorzata

    2018-04-01

    The main goal of the work was to evaluate the vitrification process of asbestos-cement waste (ACW). A mixture of 50 wt% ACW and 50 wt% glass cullet was melted in an electric furnace at 1400 °C for 90 min and then cast into a steel mold. The vitrified product was subjected to annealing. Optical microscopy, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were used to evaluate the effects of the vitrification. The chemical constitution of the material before and after the vitrification process was also analyzed. It was found that the vitrified product has an amorphous structure in which the components of asbestos-cement waste are incorporated. MIR spectroscopy showed that the absorption bands of chrysotile completely disappeared after the vitrification process. The results of the spectroscopic studies were confirmed by X-ray studies - no diffraction reflections from the chrysotile crystallographic planes were observed. As a result of the treatment, the fibrous asbestos construction, the main cause of its pathogenic properties, completely disappeared. The vitrified material was characterized by higher resistance to ion leaching in an aquatic environment than ACW and a smaller volume of nearly 72% in relation to the apparent volume of the substrates. The research has confirmed the high effectiveness of vitrification in neutralizing hazardous waste containing asbestos and the FT-IR spectroscopy was found to be useful to identify asbestos varieties and visualizing changes caused by the vitrification process. The work also presents the current situation regarding the utilization of asbestos-containing products.

  13. Vitrification of waste

    DOEpatents

    Wicks, G.G.

    1999-04-06

    A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  14. Vitrification of waste

    DOEpatents

    Wicks, George G.

    1999-01-01

    A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  15. Vitrification of organics-containing wastes

    DOEpatents

    Bickford, D.F.

    1995-01-01

    A process for stabilizing organics-containing waste materials and recovery metals therefrom, and a waste glass product made according to the process are described. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate form the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.

  16. Vitrification of organics-containing wastes

    DOEpatents

    Bickford, Dennis F.

    1997-01-01

    A process for stabilizing organics-containing waste materials and recovering metals therefrom, and a waste glass product made according to the process. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate from the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.

  17. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tongan; Chun, Jaehun; Dixon, Derek R.

    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to themore » high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.« less

  18. Vitrification of organics-containing wastes

    DOEpatents

    Bickford, D.F.

    1997-09-02

    A process is described for stabilizing organics-containing waste materials and recovering metals therefrom, and a waste glass product made according to the process is also disclosed. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate from the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile. 1 fig.

  19. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1994-01-01

    According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

  20. The role of frit in nuclear waste vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, J.D.; Smith, P.A.; Dorn, D.A.

    1994-04-01

    Vitrification of nuclear waste requires additives which are often vitrified independently to form a frit. Frit composition is formulated to meet the needs of glass composition and processing. The effects of frit on melter feed and melt processing, glass acceptance, and waste loading is of practical interest in understanding the trade-offs associated with the competing demands placed on frit composition. Melter feed yield stress, viscosity and durability of frits and corresponding waste glasses as well as the kinetics of elementary melting processes have been measured. The results illustrate the competing requirements on frit. Four frits (FY91, FY93, HW39-4, and SR202)more » and simulated neutralized current acid waste (NCAW) were used in this study. The experimental evidence shows that optimization of frit for one processing related property often results in poorer performance for the remaining properties. The difficulties associated with maximum waste loading and durability are elucidated for glasses which could be processed using technology available for the previously proposed Hanford Waste Vitrification Plant.« less

  1. SIMULANT DEVELOPMENT FOR SAVANNAH RIVER SITE HIGH LEVEL WASTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M; Russell Eibling, R; David Koopman, D

    2007-09-04

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The HLW is processed in large batches through DWPF; DWPF has recently completed processing Sludge Batch 3 (SB3) and is currently processing Sludge Batch 4 (SB4). The composition of metal species in SB4 is shown in Table 1 as a function of the ratiomore » of a metal to iron. Simulants remove radioactive species and renormalize the remaining species. Supernate composition is shown in Table 2.« less

  2. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, J. H.

    2015-08-18

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO 4) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe, Cr) 2O 4), while not detrimental to glass durability, can cause an array of processing problems inside HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic,more » thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies. Higher waste loadings and more efficient processing strategies will reduce the overall HLW Hanford Tank Waste Treatment and Immobilization Plant (WTP) vitrification facilities mission life.« less

  3. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1995-01-01

    A process for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO.sub.2 to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO.sub.2, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product.

  4. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, C.L.W.

    1995-07-25

    A process is described for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO{sub 2} to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO{sub 2}, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. 4 figs.

  5. Sodalite as a vehicle to increase Re retention in waste glass simulant during vitrification

    NASA Astrophysics Data System (ADS)

    Luksic, Steven A.; Riley, Brian J.; Parker, Kent E.; Hrma, Pavel

    2016-10-01

    Technetium (Tc) retention during Hanford waste vitrification can be increased if the volatility can be controlled. Incorporating Tc into a thermally stable mineral phase, such as sodalite, is one way to achieve increased retention. Here, rhenium (Re)-bearing sodalite was tested as a vehicle to transport perrhenate (ReO4-), a nonradioactive surrogate for pertechnetate (TcO4-), into high-level (HLW) and low-activity waste (LAW) glass simulants. After melting HLW and LAW simulant feeds, the retention of Re in the glass was measured and compared with the Re retention in glass prepared from a feed containing Re2O7. Phase analysis of sodalite in both these glasses across a profile of temperatures describes the durability of Re-sodalite during the feed-to-glass transition. The use of Re sodalite improved the Re retention by 21% for HLW glass and 85% for LAW glass, demonstrating the potential improvement in Tc-retention if TcO4- were to be encapsulated in a Tc-sodalite prior to vitrification.

  6. System for enhanced destruction of hazardous wastes by in situ vitrification of soil

    DOEpatents

    Timmerman, Craig L.

    1991-01-01

    The present invention comprises a system for promoting the destruction of volatile and/or hazardous contaminants present in waste materials during in situ vitrification processes. In accordance with the present invention, a cold cap (46) comprising a cohesive layer of resolidified material is formed over the mass of liquefied soil and waste (40) present between and adjacent to the electrodes (10, 12, 14, 16) during the vitrification process. This layer acts as a barrier to the upward migration of any volatile type materials thereby increasing their residence time in proximity to the heated material. The degree of destruction of volatile and/or hazardous contaminants by pyrolysis is thereby improved during the course of the vitrification procedure.

  7. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang

    2009-10-05

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition modelsmore » were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.« less

  8. Treatment of Asbestos Wastes Using the GeoMelt Vitrification Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finucane, K.G.; Thompson, L.E.; Abuku, T.

    The disposal of waste asbestos from decommissioning activities is becoming problematic in countries which have limited disposal space. A particular challenge is the disposal of asbestos wastes from the decommissioning of nuclear sites because some of it is radioactively contaminated or activated and disposal space for such wastes is limited. GeoMelt{sup R} vitrification is being developed as a treatment method for volume and toxicity minimization and radionuclide immobilization for UK radioactive asbestos mixed waste. The common practice to date for asbestos wastes is disposal in licensed landfills. In some cases, compaction techniques are used to minimize the disposal space requirements.more » However, such practices are becoming less practical. Social pressures have resulted in changes to disposal regulations which, in turn, have resulted in the closure of some landfills and increased disposal costs. In the UK, tens of thousands of tonnes of asbestos waste will result from the decommissioning of nuclear sites over the next 20 years. In Japan, it is estimated that over 40 million tonnes of asbestos materials used in construction will require disposal. Methods for the safe and cost effective volume reduction of asbestos wastes are being evaluated for many sites. The GeoMelt{sup R} vitrification process is being demonstrated at full-scale in Japan for the Japan Ministry of Environment and plans are being developed for the GeoMelt treatment of UK nuclear site decommissioning-related asbestos wastes. The full-scale treatment operations in Japan have also included contaminated soils and debris. The GeoMelt{sup R} vitrification process result in the maximum possible volume reduction, destroys the asbestos fibers, treats problematic debris associated with asbestos wastes, and immobilizes radiological contaminants within the resulting glass matrix. Results from recent full-scale treatment operations in Japan are discussed and plans for GeoMelt treatment of UK nuclear

  9. Vitrification of copper flotation waste.

    PubMed

    Karamanov, Alexander; Aloisi, Mirko; Pelino, Mario

    2007-02-09

    The vitrification of an hazardous iron-rich waste (W), arising from slag flotation of copper production, was studied. Two glasses, containing 30wt% W were melted for 30min at 1400 degrees C. The first batch, labeled WSZ, was obtained by mixing W, blast furnace slag (S) and zeolite tuff (Z), whereas the second, labeled WG, was prepared by mixing W, glass cullet (G), sand and limestone. The glass frits showed high chemical durability, measured by the TCLP test. The crystallization of the glasses was evaluated by DTA. The crystal phases formed were identified by XRD resulting to be pyroxene and wollastonite solid solutions, magnetite and hematite. The morphology of the glass-ceramics was observed by optical and scanning electron microscopy. WSZ composition showed a high rate of bulk crystallization and resulted to be suitable for producing glass-ceramics by a short crystallization heat-treatment. WG composition showed a low crystallization rate and good sinterability; glass-ceramics were obtained by sinter-crystallization of the glass frit.

  10. HIGH TEMPERATURE TREATMENT OF INTERMEDIATE-LEVEL RADIOACTIVE WASTES - SIA RADON EXPERIENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolev, I.A.; Dmitriev, S.A.; Lifanov, F.A.

    2003-02-27

    This review describes high temperature methods of low- and intermediate-level radioactive waste (LILW) treatment currently used at SIA Radon. Solid and liquid organic and mixed organic and inorganic wastes are subjected to plasma heating in a shaft furnace with formation of stable leach resistant slag suitable for disposal in near-surface repositories. Liquid inorganic radioactive waste is vitrified in a cold crucible based plant with borosilicate glass productivity up to 75 kg/h. Radioactive silts from settlers are heat-treated at 500-700 0C in electric furnace forming cake following by cake crushing, charging into 200 L barrels and soaking with cement grout. Variousmore » thermochemical technologies for decontamination of metallic, asphalt, and concrete surfaces, treatment of organic wastes (spent ion-exchange resins, polymers, medical and biological wastes), batch vitrification of incinerator ashes, calcines, spent inorganic sorbents, contaminated soil, treatment of carbon containing 14C nuclide, reactor graphite, lubricants have been developed and implemented.« less

  11. Review of FY 2001 Development Work for Vitrification of Sodium Bearing Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Dean Dalton; Barnes, Charles Marshall

    2002-09-01

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by the Settlement Agreement between the Department of Energy and the State of Idaho. This report discusses significant findings from vitrification technology development during 2001 and their impacts on the design basis for SBW vitrification.

  12. VITRIFICATION SYSTEM FOR THE TREATMENT OF PLUTONIUM-BEARING WASTE AT LOS ALAMOS NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. NAKAOKA; G. VEAZEY; ET AL

    2001-05-01

    A glove box vitrification system is being fabricated to process aqueous evaporator bottom waste generated at the Plutonium Facility (TA-55) at Los Alamos National Laboratory (LANL). The system will be the first within the U.S. Department of Energy Complex to routinely convert Pu{sup 239}-bearing transuranic (TRU) waste to a glass matrix for eventual disposal at the Waste Isolation Pilot Plant (WIPP). Currently at LANL, this waste is solidified in Portland cement. Radionuclide loading in the cementation process is restricted by potential radiolytic degradation (expressed as a wattage limit), which has been imposed to prevent the accumulation of flammable concentrations ofmore » H{sub 2} within waste packages. Waste matrixes with a higher water content (e.g., cement) are assigned a lower permissible wattage limit to compensate for their potential higher generation of H{sub 2}. This significantly increases the number of waste packages that must be prepared and shipped, thus driving up the costs of waste handling and disposal. The glove box vitrification system that is under construction will address this limitation. Because the resultant glass matrix produced by the vitrification process is non-hydrogenous, no H{sub 2} can be radiolytically evolved, and drums could be loaded to the maximum allowable limit of 40 watts. In effect, the glass waste form shifts the limiting constraint for loading disposal drums from wattage to the criticality limit of 200 fissile gram equivalents, thus significantly reducing the number of drums generated from this waste stream. It is anticipated that the number of drums generated from treatment of evaporator bottoms will be reduced by a factor of 4 annually when the vitrification system is operational. The system is currently undergoing non-radioactive operability testing, and will be fully operational in the year 2003.« less

  13. Vitrification as an alternative to landfilling of tannery sewage sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celary, Piotr, E-mail: pcelary@is.pcz.czest.pl; Sobik-Szołtysek, Jolanta, E-mail: jszoltysek@is.pcz.czest.pl

    Highlights: • The possibility of vitrification of tannery sewage sludge was investigated. • Glass cullet was substituted with different wastes of mineral character. • Component ratio in the processed mixtures was optimized. • Environmental safety of the acquired vitrificates was verified. • An alternative management approach of usually landfilled waste was presented. - Abstract: Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses amore » potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the

  14. Glasses for immobilization of low- and intermediate-level radioactive waste

    NASA Astrophysics Data System (ADS)

    Laverov, N. P.; Omel'yanenko, B. I.; Yudintsev, S. V.; Stefanovsky, S. V.; Nikonov, B. S.

    2013-03-01

    Reprocessing of spent nuclear fuel (SNF) for recovery of fissionable elements is a precondition of long-term development of nuclear energetics. Solution of this problem is hindered by the production of a great amount of liquid waste; 99% of its volume is low- and intermediate-level radioactive waste (LILW). The volume of high-level radioactive waste (HLW), which is characterized by high heat release, does not exceed a fraction of a percent. Solubility of glasses at an elevated temperature makes them unfit for immobilization of HLW, the insulation of which is ensured only by mineral-like matrices. At the same time, glasses are a perfect matrix for LILW, which are distinguished by low heat release. The solubility of borosilicate glass at a low temperature is so low that even a glass with relatively low resistance enables them to retain safety of under-ground LILW depositories without additional engineering barriers. The optimal technology of liquid confinement is their concentration and immobilization in borosilicate glasses, which are disposed in shallow-seated geological repositories. The vitrification of 1 m3 liquid LILW with a salt concentration of ˜300 kg/m3 leaves behind only 0.2 m3 waste, that is, 4-6 times less than by bitumen impregnation and 10 times less than by cementation. Environmental and economic advantages of LILW vitrification result from (1) low solubility of the vitrified LILW in natural water; (2) significant reduction of LILW volume; (3) possibility to dispose the vitrified waste without additional engineering barriers under shallow conditions and in diverse geological media; (4) the strength of glass makes its transportation and storage possible; and finally (5) reliable longterm safety of repositories. When the composition of the glass matrix for LILW is being chosen, attention should be paid to the factors that ensure high technological and economic efficiency of vitrification. The study of vitrified LILW from the Kursk nuclear power plant

  15. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SCHAUS, P.S.

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Wastemore » Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.« less

  16. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    NASA Astrophysics Data System (ADS)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.; Kruger, Albert A.

    2017-11-01

    The effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. The accumulation rate of ∼53.8 ± 3.7 μm/h determined for this glass will result in a ∼26 mm-thick layer after 20 days of melter idling.

  17. Volatile species of technetium and rhenium during waste vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dongsang; Kruger, Albert A.

    Volatile loss of technetium (Tc) during vitrification of low-activity wastes is a technical challenge for treating and immobilizing the large volumes of radioactive and hazardous wastes stored at the U.S. Department of Energy's Hanford Site. There are various research efforts being pursued to develop technologies that can be implemented for cost effective management of Tc, including studies to understand the behavior of Tc during vitrification, with the goal of eventually increasing Tc retention in glass. Furthermore, one of these studies has focused on identifying the form or species of Tc and Re (surrogate for Tc) that evolve during the waste-to-glassmore » conversion process. This information is important for understanding the mechanism of Tc volatilization. In this paper, available information collected from the literature is critically evaluated to clarify the volatile species of Tc and Re and, more specifically, whether they volatilize as alkali pertechnetate and perrhenate or as technetium and rhenium oxides after decomposition of alkali pertechnetate and perrhenate. The evaluated data ranged from mass spectrometric identification of species volatilized from pure and binary alkali pertechnetate and perrhenate salts to structural and chemical analyses of volatilized materials during crucible melting and scaled melter processing of simulated wastes.« less

  18. Volatile species of technetium and rhenium during waste vitrification

    DOE PAGES

    Kim, Dongsang; Kruger, Albert A.

    2017-10-26

    Volatile loss of technetium (Tc) during vitrification of low-activity wastes is a technical challenge for treating and immobilizing the large volumes of radioactive and hazardous wastes stored at the U.S. Department of Energy's Hanford Site. There are various research efforts being pursued to develop technologies that can be implemented for cost effective management of Tc, including studies to understand the behavior of Tc during vitrification, with the goal of eventually increasing Tc retention in glass. Furthermore, one of these studies has focused on identifying the form or species of Tc and Re (surrogate for Tc) that evolve during the waste-to-glassmore » conversion process. This information is important for understanding the mechanism of Tc volatilization. In this paper, available information collected from the literature is critically evaluated to clarify the volatile species of Tc and Re and, more specifically, whether they volatilize as alkali pertechnetate and perrhenate or as technetium and rhenium oxides after decomposition of alkali pertechnetate and perrhenate. The evaluated data ranged from mass spectrometric identification of species volatilized from pure and binary alkali pertechnetate and perrhenate salts to structural and chemical analyses of volatilized materials during crucible melting and scaled melter processing of simulated wastes.« less

  19. Hanford Waste Vitrification Plant technical manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, D.E.; Watrous, R.A.; Kruger, O.L.

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. Themore » immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.« less

  20. Vitrification as an alternative to landfilling of tannery sewage sludge.

    PubMed

    Celary, Piotr; Sobik-Szołtysek, Jolanta

    2014-12-01

    Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with flotation sewage sludge, and 45% v/v and 5% v/v, respectively, for precipitation sewage sludge. These combinations allowed for obtaining products with negligible heavy metal leaching levels and hardness similar to commercial glass, which suggests they could be potentially used as construction aggregate substitutes. Incineration of sewage sludge before the vitrification process lead to

  1. Tc removal from the waste treatment and immobilization plant low-activity waste vitrification off-gas recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Nash, Charles A.

    Vitrification of Low Activity Waste in the Hanford Waste Treatment and Immobilization Plant generates a condensate stream from the off-gas processes. Components in this stream are partially volatile and accumulate to high concentrations through recycling, which impacts the waste glass loading and facility throughput. The primary radionuclide that vaporizes and accumulates in the stream is 99Tc. This program is investigating Tc removal via reductive precipitation with stannous chloride to examine the potential for diverting this stream to an alternate disposition path. As a result, research has shown stannous chloride to be effective, and this paper describes results of recent experimentsmore » performed to further mature the technology.« less

  2. Tc removal from the waste treatment and immobilization plant low-activity waste vitrification off-gas recycle

    DOE PAGES

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Nash, Charles A.

    2017-03-16

    Vitrification of Low Activity Waste in the Hanford Waste Treatment and Immobilization Plant generates a condensate stream from the off-gas processes. Components in this stream are partially volatile and accumulate to high concentrations through recycling, which impacts the waste glass loading and facility throughput. The primary radionuclide that vaporizes and accumulates in the stream is 99Tc. This program is investigating Tc removal via reductive precipitation with stannous chloride to examine the potential for diverting this stream to an alternate disposition path. As a result, research has shown stannous chloride to be effective, and this paper describes results of recent experimentsmore » performed to further mature the technology.« less

  3. Sodalite as a vehicle to increase Re retention in waste glass simulant during vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luksic, Steven A.; Riley, Brian J.; Parker, Kent E.

    Technetium retention during Hanford waste vitrification can be increased by inhibiting technetium volatility from the waste glass melter. Incorporating technetium into a mineral phase, such as sodalite, is one way to achieve this. Rhenium-bearing sodalite was tested as a vehicle to transport perrhenate (ReO4-), a nonradioactive surrogate for pertechnetate (TcO4-), into high-level (HLW) and low-activity waste (LAW) glasses. After melting feeds of these two glasses, the retention of rhenium was measured and compared with the rhenium retention in glass prepared from a feed containing Re2O7 as a standard. The rhenium retention was 21% higher for HLW glass and 85% highermore » for LAW glass when added to samples in the form of sodalite as opposed to when it was added as Re2O7, demonstrating the efficacy of this type of an approach.« less

  4. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.

    We present that the effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr) 2O 4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/ormore » small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. In conclusion, the accumulation rate of ~53.8 ± 3.7 μm/h determined for this glass will result in a ~26 mm-thick layer after 20 days of melter idling.« less

  5. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    DOE PAGES

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.; ...

    2017-08-30

    We present that the effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr) 2O 4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/ormore » small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. In conclusion, the accumulation rate of ~53.8 ± 3.7 μm/h determined for this glass will result in a ~26 mm-thick layer after 20 days of melter idling.« less

  6. In situ vitrification application to buried waste: Final report of intermediate field tests at Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callow, R.A.; Weidner, J.R.; Loehr, C.A.

    This report describes two in situ vitrification field tests conducted on simulated buried waste pits during June and July 1990 at the Idaho National Engineering Laboratory. In situ vitrification, an emerging technology for in place conversion of contaminated soils into a durable glass and crystalline waste form, is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to access the general suitability of the process to remediate waste structures representative of buried waste found at Idaho National Engineering Laboratory. In particular, these tests, as part of a treatability study, were designedmore » to provide essential information on the field performance of the process under conditions of significant combustible and metal wastes and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology successfully processed the high metal content waste. Test results indicate the process is a feasible technology for application to buried waste. 33 refs., 109 figs., 39 tabs.« less

  7. Vitrification, encapsulation-vitrification and droplet-vitrification: a review.

    PubMed

    Sakai, Akira; Engelmann, Florent

    2007-01-01

    This paper discusses the importance of the successive steps of the vitrification technique and reviews the current development and use of vitrification and of the two derived protocols, encapsulation-vitrification and droplet-vitrification. Vitrification refers to the physical process by which a highly concentrated cryoprotective solution supercools to very low temperatures and finally solidifies into a metastable glass, without undergoing crystallization at a practical cooling rate. Samples are thus cryopreserved without detrimental intracellular ice formation. In a standard vitrification protocol, excised explants are precultured on medium enriched with sucrose, treated (loaded) with a loading solution composed of 2 M glycerol + 0.4 M sucrose, dehydrated with a highly concentrated vitrification solution [e.g. the PVS2 vitrification solution, which contains 30 percent (w/v) glycerol, 15 percent (w/v) ethylene glycol and 15 percent (w/v) DMSO and 0.4 M sucrose], frozen and rewarmed rapidly, unloaded with basal culture medium supplemented with 1.2 M sucrose, and then transferred to standard culture conditions. In the encapsulation-vitrification technique, the explants are encapsulated in alginate beads, loaded and dehydrated with a vitrification solution before rapid immersion in liquid nitrogen. In the droplet-freezing technique, excised explants are loaded, treated with the vitrification solution and frozen in individual microdroplets of vitrification solution placed on aluminium foils, which are immersed rapidly in liquid nitrogen. These three techniques have been applied to different tissues of over 100 plant species from temperate and tropical origins and the number of cases where they are being tested on a large scale or applied routinely is increasing.

  8. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, J. H.

    2015-08-01

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO₄) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe,Cr)₂O₄), while not detrimental to glass durability, can cause an array of processing problems inside of HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscositymore » arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies.« less

  9. Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Derek R.; Schweiger, Michael J.; Riley, Brian J.

    2015-07-21

    The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of molten glass. Knowing the temperature profile within a cold cap will help determine its characteristics and relate them to the rate of glass production. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Since a direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed where the textural features inmore » a laboratory-made cold cap with a high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. To correlate the temperature distribution to microstructures within the cold cap, microstructures were identified of individual feed samples that were heat treated to set temperatures between 400°C and 1200°C and quenched. The temperature distribution within the cold cap was then established by correlating cold-cap regions with the feed samples of nearly identical structures and was compared with the temperature profile from a mathematical model.« less

  10. Advanced High-Level Waste Glass Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, David K.; Vienna, John D.; Schweiger, Michael J.

    2015-07-01

    The U.S. Department of Energy Office of River Protection (ORP) has implemented an integrated program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. The integrated ORP program is focused on providing a technical, science-based foundation from which key decisions can be made regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities. The fundamental data stemming from this program will support development of advanced glass formulations, key process control models, and tactical processing strategies to ensure safe and successful operations formore » both the low-activity waste (LAW) and high-level waste (HLW) vitrification facilities with an appreciation toward reducing overall mission life. The purpose of this advanced HLW glass research and development plan is to identify the near-, mid-, and longer-term research and development activities required to develop and validate advanced HLW glasses and their associated models to support facility operations at WTP, including both direct feed and full pretreatment flowsheets. This plan also integrates technical support of facility operations and waste qualification activities to show the interdependence of these activities with the advanced waste glass (AWG) program to support the full WTP mission. Figure ES-1 shows these key ORP programmatic activities and their interfaces with both WTP facility operations and qualification needs. The plan is a living document that will be updated to reflect key advancements and mission strategy changes. The research outlined here is motivated by the potential for substantial economic benefits (e.g., significant increases in waste throughput and reductions in glass volumes) that will be realized when advancements in glass formulation continue and models supporting facility operations are implemented. Developing and applying

  11. EMERGING TECHNOLOGY SUMMARY: VITRIFICATION OF SOILS CONTAMINATED BY HAZARDOUS AND/OR RADIOACTIVE WASTES

    EPA Science Inventory

    A performance summary of an advanced multifuel-capable combustion and melting system (CMS) for the vitrification of hazardous wastes is presented. Vortex Corporation has evaluated its patented CMS for use in the remediation of soils contaminated with heavy metals and radionuclid...

  12. Thermal Flammable Gas Production from Bulk Vitrification Feed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.

    2008-05-21

    The baseline bulk-vitrification (BV) process (also known as in-container vitrification ICV™) includes a mixer/dryer to convert liquid low-activity waste (LAW) into a dried, blended feed for vitrification. Feed preparation includes blending LAW with glass-forming minerals (GFMs) and cellulose and drying the mixture to a suitable dryness, consistency, and particle size for transport to the ICVTM container. The cellulose is to be added to the BV feed at a rate sufficient to destroy 75% of the nitrogen present as nitrate or nitrite. Concern exists that flammable gases may be produced during drying operations at levels that could pose a risk. Themore » drying process is conducted under vacuum in the temperature range of 60 to 80°C. These flammable gases could be produced either through thermal decomposition of cellulose or waste organics or as a by-product of the reaction of cellulose and/or waste organics with nitrate or the postulated small amount of nitrite present in the waste. To help address the concern about flammable gas production during drying, the Pacific Northwest National Laboratory (PNNL) performed studies to identify the gases produced at dryer temperatures and at possible process upset conditions. Studies used a thermogravimetric analyzer (TGA) up to 525°C and isothermal testing up to 120°C to determine flammable gas production resulting from the cellulose and organic constituents in bulk vitrification feed. This report provides the results of those studies to determine the effects of cellulose and waste organics on flammable gas evolution« less

  13. High-Level Radioactive Waste.

    ERIC Educational Resources Information Center

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  14. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-07-13

    This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLWmore » and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.« less

  15. Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator.

    PubMed

    Yang, Y; Xiao, Y; Voncken, J H L; Wilson, N

    2008-06-15

    Boiler ash generated from municipal solid waste (MSW) incinerators is usually classified as hazardous materials and requires special disposal. In the present study, the boiler ash was characterized for the chemical compositions, morphology and microstructure. The thermal chemical behavior during ash heating was investigated with thermal balance. Vitrification of the ash was conducted at a temperature of 1400 degrees C in order to generate a stable silicate slag, and the formed slag was examined with chemical and mineralogical analyses. The effect of vitrification on the leaching characteristics of various elements in the ash was evaluated with acid leaching. The study shows that the boiler ash as a heterogeneous fine powder contains mainly silicate, carbonate, sulfates, chlorides, and residues of organic materials and heavy metal compounds. At elevated temperatures, the boiler ash goes through the initial moisture removal, volatilization, decomposition, sintering, melting, and slag formation. At 1400 degrees C a thin layer of salt melt and a homogeneous glassy slag was formed. The experimental results indicate that leaching values of the vitrified slag are significantly reduced compared to the original boiler ash, and the vitrification could be an interesting alternative for a safer disposal of the boiler ash. Ash compacting, e.g., pelletizing can reduce volatilization and weight loss by about 50%, and would be a good option for the feed preparation before vitrification.

  16. High Level Waste System Impacts from Small Column Ion Exchange Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, D. J.; Hamm, L. L.; Aleman, S. E.

    2005-08-18

    The objective of this task is to identify potential waste streams that could be treated with the Small Column Ion Exchange (SCIX) and perform an initial assessment of the impact of doing so on the High-Level Waste (HLW) system. Design of the SCIX system has been performed as a backup technology for decontamination of High-Level Waste (HLW) at the Savannah River Site (SRS). The SCIX consists of three modules which can be placed in risers inside underground HLW storage tanks. The pump and filter module and the ion exchange module are used to filter and decontaminate the aqueous tank wastesmore » for disposition in Saltstone. The ion exchange module contains Crystalline Silicotitanate (CST in its engineered granular form is referred to as IONSIV{reg_sign} IE-911), and is selective for removal of cesium ions. After the IE-911 is loaded with Cs-137, it is removed and the column is refilled with a fresh batch. The grinder module is used to size-reduce the cesium-loaded IE-911 to make it compatible with the sludge vitrification system in the Defense Waste Processing Facility (DWPF). If installed at the SRS, this SCIX would need to operate within the current constraints of the larger HLW storage, retrieval, treatment, and disposal system. Although the equipment has been physically designed to comply with system requirements, there is also a need to identify which waste streams could be treated, how it could be implemented in the tank farms, and when this system could be incorporated into the HLW flowsheet and planning. This document summarizes a preliminary examination of the tentative HLW retrieval plans, facility schedules, decontamination factor targets, and vitrified waste form compatibility, with recommendations for a more detailed study later. The examination was based upon four batches of salt solution from the currently planned disposition pathway to treatment in the SCIX. Because of differences in capabilities between the SRS baseline and SCIX, these four

  17. An Improvement to Low-Level Radioactive Waste Vitrification Processes.

    DTIC Science & Technology

    1986-05-01

    waste stream. 3 9 Sodium and Potassium tetraphenyl borates are both cited in the literature as having high cesium selectivity. 23󈧝󈧫 The thermal... Ferrate (II) Impregnated Zeolite for Cesium Removal from Radioactive Waste," Nuc. Tech., 58, p.242, ANS, La Grange Park, Illinois, (1982T. 29. F.V

  18. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2014-01-07

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processedmore » into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion

  19. Environmental Management vitrification activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krumrine, P.H.

    1996-05-01

    Both the Mixed Waste and Landfill Stabilization Focus Areas as part of the Office of Technology Development efforts within the Department of Energy`s (DOE) Environmental Management (EM) Division have been developing various vitrification technologies as a treatment approach for the large quantities of transuranic (TRU), TRU mixed and Mixed Low Level Wastes that are stored in either landfills or above ground storage facilities. The technologies being developed include joule heated, plasma torch, plasma arc, induction, microwave, combustion, molten metal, and in situ methods. There are related efforts going into development glass, ceramic, and slag waste form windows of opportunity formore » the diverse quantities of heterogeneous wastes needing treatment. These studies look at both processing parameters, and long term performance parameters as a function of composition to assure that developed technologies have the right chemistry for success.« less

  20. Cold Test Operation of the German VEK Vitrification Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleisch, J.; Schwaab, E.; Weishaupt, M.

    2008-07-01

    In 2007 the German High-Level Liquid Waste (HLLW) Vitrification plant VEK (Verglasungseinrichtung Karlsruhe) has passed a three months integral cold test operation as final step before entering the hot phase. The overall performance of the vitrification process equipment with a liquid-fed ceramic glass melter as main component proved to be completely in line with the requirements of the regulatory body. The retention efficiency of main radioactive-bearing elements across melter and wet off-gas treatment system exceeded the design values distinctly. The strategy to produce a specified waste glass could be successfully demonstrated. The results of the cold test operation allow enteringmore » the next step of hot commissioning, i.e. processing of approximately 2 m{sup 3} of diluted HLLW. In summary: An important step of the VEK vitrification plant towards hot operation has been the performance of the cold test operation from April to July 2007. This first integral operation was carried out under boundary conditions and rules established for radioactive operation. Operation and process control were carried out following the procedure as documented in the licensed operational manuals. The function of the process technology and the safe operation could be demonstrated. No severe problems were encountered. Based on the positive results of the cold test, application of the license for hot operation has been initiated and is expected in the near future. (authors)« less

  1. ENGINEERING BULLETIN: IN SITU VITRIFICATION TREATMENT

    EPA Science Inventory

    In situ vitrification (ISV) uses electrical power to heat and melt soil, sludge, mine tailings, buried wastes, and sediments contaminated with organic, inorganic, and metal-bearing hazardous wastes. The molten material cools to form a hard, monolithic, chemically inert, stable...

  2. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false High-level radioactive waste. 227.30 Section 227.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the...

  3. High-Throughput Non-Contact Vitrification of Cell-Laden Droplets Based on Cell Printing

    NASA Astrophysics Data System (ADS)

    Shi, Meng; Ling, Kai; Yong, Kar Wey; Li, Yuhui; Feng, Shangsheng; Zhang, Xiaohui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng

    2015-12-01

    Cryopreservation is the most promising way for long-term storage of biological samples e.g., single cells and cellular structures. Among various cryopreservation methods, vitrification is advantageous by employing high cooling rate to avoid the formation of harmful ice crystals in cells. Most existing vitrification methods adopt direct contact of cells with liquid nitrogen to obtain high cooling rates, which however causes the potential contamination and difficult cell collection. To address these limitations, we developed a non-contact vitrification device based on an ultra-thin freezing film to achieve high cooling/warming rate and avoid direct contact between cells and liquid nitrogen. A high-throughput cell printer was employed to rapidly generate uniform cell-laden microdroplets into the device, where the microdroplets were hung on one side of the film and then vitrified by pouring the liquid nitrogen onto the other side via boiling heat transfer. Through theoretical and experimental studies on vitrification processes, we demonstrated that our device offers a high cooling/warming rate for vitrification of the NIH 3T3 cells and human adipose-derived stem cells (hASCs) with maintained cell viability and differentiation potential. This non-contact vitrification device provides a novel and effective way to cryopreserve cells at high throughput and avoid the contamination and collection problems.

  4. High-Throughput Non-Contact Vitrification of Cell-Laden Droplets Based on Cell Printing

    PubMed Central

    Shi, Meng; Ling, Kai; Yong, Kar Wey; Li, Yuhui; Feng, Shangsheng; Zhang, Xiaohui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng

    2015-01-01

    Cryopreservation is the most promising way for long-term storage of biological samples e.g., single cells and cellular structures. Among various cryopreservation methods, vitrification is advantageous by employing high cooling rate to avoid the formation of harmful ice crystals in cells. Most existing vitrification methods adopt direct contact of cells with liquid nitrogen to obtain high cooling rates, which however causes the potential contamination and difficult cell collection. To address these limitations, we developed a non-contact vitrification device based on an ultra-thin freezing film to achieve high cooling/warming rate and avoid direct contact between cells and liquid nitrogen. A high-throughput cell printer was employed to rapidly generate uniform cell-laden microdroplets into the device, where the microdroplets were hung on one side of the film and then vitrified by pouring the liquid nitrogen onto the other side via boiling heat transfer. Through theoretical and experimental studies on vitrification processes, we demonstrated that our device offers a high cooling/warming rate for vitrification of the NIH 3T3 cells and human adipose-derived stem cells (hASCs) with maintained cell viability and differentiation potential. This non-contact vitrification device provides a novel and effective way to cryopreserve cells at high throughput and avoid the contamination and collection problems. PMID:26655688

  5. Crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics for immobilization of simulated sulfate bearing high-level liquid waste

    NASA Astrophysics Data System (ADS)

    Wu, Lang; Xiao, Jizong; Wang, Xin; Teng, Yuancheng; Li, Yuxiang; Liao, Qilong

    2018-01-01

    The crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics with different content (0-30 wt %) of simulated sulfate bearing high-level liquid waste (HLLW) were evaluated. The sulfate phase segregation in vitrification process was also investigated. The results show that the glass-ceramics with 0-20 wt% of HLLW possess mainly zirconolite phase along with a small amount baddeleyite phase. The amount of perovskite crystals increases while the amount of zirconolite crystals decreases when the HLLW content increases from 20 to 30 wt%. For the samples with 20-30 wt% HLLW, yellow phase was observed during the vitrification process and it disappeared after melting at 1150 °C for 2 h. The viscosity of the sample with 16 wt% HLLW (HLLW-16) is about 27 dPa·s at 1150 °C. The addition of a certain amount (≤20 wt %) of HLLW has no significant change on the aqueous stability of glass-ceramic waste forms. After 28 days, the 90 °C PCT-type normalized leaching rates of Na, B, Si, and La of the sample HLLW-16 are 7.23 × 10-3, 1.57 × 10-3, 8.06 × 10-4, and 1.23 × 10-4 g·m-2·d-1, respectively.

  6. Safeguardability of the vitrification option for disposal of plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillay, K.K.S.

    1996-05-01

    Safeguardability of the vitrification option for plutonium disposition is rather complex and there is no experience base in either domestic or international safeguards for this approach. In the present treaty regime between the US and the states of the former Soviet Union, bilaterial verifications are considered more likely with potential for a third-party verification of safeguards. There are serious technological limitations to applying conventional bulk handling facility safeguards techniques to achieve independent verification of plutonium in borosilicate glass. If vitrification is the final disposition option chosen, maintaining continuity of knowledge of plutonium in glass matrices, especially those containing boron andmore » those spike with high-level wastes or {sup 137}Cs, is beyond the capability of present-day safeguards technologies and nondestructive assay techniques. The alternative to quantitative measurement of fissile content is to maintain continuity of knowledge through a combination of containment and surveillance, which is not the international norm for bulk handling facilities.« less

  7. Vitrification of radioactive high-level waste by spray calcination and in-can melting

    NASA Astrophysics Data System (ADS)

    Hanson, M. S.; Bjorklund, W. J.

    1980-07-01

    After several nonradioactive test runs, radioactive waste from the processing of 1.5 t of spent, light water reactor fuel was successfully concentrated, dried and converted to a vitreous product. A total of 97 L of waste glass (in two stainless steel canisters) was produced. The spray calcination process coupled to the in-can melting process, as developed at Pacific Northwest Labortory, was used to vitrify the waste. An effluent system consisting of a variety of condensation of scrubbing steps more than adequately decontaminated the process off gas before it was released to the atmosphere.

  8. Process for solidifying high-level nuclear waste

    DOEpatents

    Ross, Wayne A.

    1978-01-01

    The addition of a small amount of reducing agent to a mixture of a high-level radioactive waste calcine and glass frit before the mixture is melted will produce a more homogeneous glass which is leach-resistant and suitable for long-term storage of high-level radioactive waste products.

  9. Rhenium volatilisation as caesium perrhenate from simulated vitrified high level waste from a melter crucible

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, T.A.; Short, R.J.; Gribble, N.R.

    2013-07-01

    The Waste Vitrification Plant (WVP) converts Highly Active Liquor (HAL) from spent nuclear fuel reprocessing into a stable vitrified product. Recently WVP have been experiencing accumulation of solids in their primary off gas (POG) system leading to potential blockages. Chemical analysis of the blockage material via Laser Induced Breakdown Spectroscopy (LIBS) has shown it to exclusively consist of caesium, technetium and oxygen. The solids are understood to be caesium pertechnetate (CsTcO{sub 4}), resulting from the volatilisation of caesium and technetium from the high level waste glass melt. Using rhenium as a chemical surrogate for technetium, a series of full scalemore » experiments have been performed in order to understand the mechanism of rhenium volatilisation as caesium perrhenate (CsReO{sub 4}), and therefore technetium volatilisation as CsTcO{sub 4}. These experiments explored the factors governing volatilisation rates from the melt, potential methods of minimising the amount of volatilisation, and various strategies for mitigating the deleterious effects of the volatile material on the POG. This paper presents the results from those experiments, and discusses potential methods to minimise blockages that can be implemented on WVP, so that the frequency of the CsTcO{sub 4} blockages can be reduced or even eradicated altogether. (authors)« less

  10. Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrouzi, Aria; Zamecnik, Jack

    2012-07-01

    The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolutionmore » of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been

  11. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO 2 Containing Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition modelsmore » form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO 2, Na 2O, and Cs 2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO 2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO 2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO 2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge batch, the waste loading of the sludge batch, and

  12. Vitrification of ion exchange resins

    DOEpatents

    Cicero-Herman, Connie A.; Workman, Rhonda Jackson

    2001-01-01

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  13. Reference commercial high-level waste glass and canister definition

    NASA Astrophysics Data System (ADS)

    Slate, S. C.; Ross, W. A.; Partain, W. L.

    1981-09-01

    Technical data and performance characteristics of a high level waste glass and canister intended for use in the design of a complete waste encapsulation package suitable for disposal in a geologic repository are presented. The borosilicate glass contained in the stainless steel canister represents the probable type of high level waste product that is produced in a commercial nuclear-fuel reprocessing plant. Development history is summarized for high level liquid waste compositions, waste glass composition and characteristics, and canister design. The decay histories of the fission products and actinides (plus daughters) calculated by the ORIGEN-II code are presented.

  14. Vitrified metal finishing wastes I. Composition, density and chemical durability.

    PubMed

    Bingham, P A; Hand, R J

    2005-03-17

    Durable phosphate glasses were formed by vitrifying waste filter cakes from two metal finishing operations. Some melts formed crystalline components during cooling. Compositional analysis of dried, heat treated and vitrified samples was made using energy-dispersive X-ray spectroscopy, X-ray fluorescence spectroscopy, inductively-coupled plasma spectroscopy and Leco induction furnace combustion analysis. Hydrolytic dissolution, measured by an adapted product consistency test, was reduced by up to 3 orders of magnitude upon heat treatment or vitrification, surpassing the performance of borosilicate glass in some cases. This was attributed to the high levels of iron and zinc in the wastes, which greatly improve the durability of phosphate glasses. One of the wastes arose from a metal phosphating process and was particularly suitable for vitrification due to its high P2O5 content and favourable melting behaviour. The other waste, which arose from a number of processes, was less suitable as it had a low P2O5 content and during heating it emitted harmful corrosive gases and underwent violent reactions. Substantial volume reductions were obtained by heat treatment and vitrification of both wastes. Compositions and performances of some vitrified wastes were comparable with those of glasses which are under consideration for the immobilisation of toxic and nuclear wastes.

  15. IMPACT OF NOBLE METALS AND MERCURY ON HYDROGEN GENERATION DURING HIGH LEVEL WASTE PRETREATMENT AT THE SAVANNAH RIVER SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M; Tommy Edwards, T; David Koopman, D

    2009-03-03

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies radioactive High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. HLW consists of insoluble metal hydroxides (primarily iron, aluminum, calcium, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The pretreatment process in the Chemical Processing Cell (CPC) consists of two process tanks, the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) as well as a melter feed tank. During SRAT processing, nitric and formic acids are addedmore » to the sludge to lower pH, destroy nitrite and carbonate ions, and reduce mercury and manganese. During the SME cycle, glass formers are added, and the batch is concentrated to the final solids target prior to vitrification. During these processes, hydrogen can be produced by catalytic decomposition of excess formic acid. The waste contains silver, palladium, rhodium, ruthenium, and mercury, but silver and palladium have been shown to be insignificant factors in catalytic hydrogen generation during the DWPF process. A full factorial experimental design was developed to ensure that the existence of statistically significant two-way interactions could be determined without confounding of the main effects with the two-way interaction effects. Rh ranged from 0.0026-0.013% and Ru ranged from 0.010-0.050% in the dried sludge solids, while initial Hg ranged from 0.5-2.5 wt%, as shown in Table 1. The nominal matrix design consisted of twelve SRAT cycles. Testing included: a three factor (Rh, Ru, and Hg) study at two levels per factor (eight runs), three duplicate midpoint runs, and one additional replicate run to assess reproducibility away from the midpoint. Midpoint testing was used to identify potential quadratic effects from the three factors. A single

  16. Plasma vitrification of asbestos fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camacho, S.L.

    Asbestos is a mineral in the form of long, thread-like fibers. Asbestos fibers have been among the best insulators of pipes, boilers, ducts, tanks, etc., in buildings, ships, and industrial furnaces. Over 150,000 metric tons of asbestos were consumed in the United States in 1984. The Environmental Protection Agency has declared asbestos fibers a known human carcinogen. And today, asbestos insulators are being replaced by manmade non-hazardous fibers. Millions of tons of replaced asbestos fiber insulators are in storage, awaiting the demonstration of effective alternative disposal technologies. Plasma vitrification has been demonstrated during May, June and July 1995 as amore » viable, cost-effective, safe technology for asbestos fiber disposal. A low-mass plasma arc heater is submerged under the waste asbestos insulating materials, and the intense heat of the plasma flame heats and melts the fibers. The by-product is dark, non-hazardous glass pellets. The vitrification process renders the asbestos waste safe for use as road construction aggregates or other fill materials. This paper will describe the results of start-up of a 1 ton-per-hour Plasma Mobile Asbestos Vitrification (MAV) Plant at a DOD Site in Port Clinton, Ohio. The Plasma MAV Plant is being demonstrated for the on-site disposal of 1.5 million pounds of Amosite asbestos fibers.« less

  17. Phase Stability Determinations of DWPF Waste Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, S.L.

    1999-10-22

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. To fulfill this requirement, glass samples were heat treated at various times and temperatures. These results will provide guidance to the repository program about conditions to be avoided during shipping, handling and storage of DWPF canistered waste forms.

  18. Solidification of Savannah River plant high level waste

    NASA Astrophysics Data System (ADS)

    Maher, R.; Shafranek, L. F.; Kelley, J. A.; Zeyfang, R. W.

    1981-11-01

    Authorization for construction of the Defense Waste Processing Facility (DWPF) is expected in FY-83. The optimum time for stage 2 authorization is about three years later. Detailed design and construction will require approximately five years for stage 1, with stage 2 construction completed about two to three years later. Production of canisters of waste glass would begin in 1988, and the existing backlog of high level waste sludge stored at SRP would be worked off by about the year 2000. Stage 2 operation could begin in 1990. The technology and engineering are ready for construction and eventual operation of the DWPF for immobilizing high level radioactive waste at Savannah River Plant (SRP). Proceeding with this project will provide the public, and the leadership of this country, with a crucial demonstration that a major quanitity of existing high level nuclear wastes can be safely and permanently immobilized.

  19. Conversion of nuclear waste to molten glass: Formation of porous amorphous alumina in a high-Al melter feed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kai; Hrma, Pavel; Washton, Nancy

    The transition of Al phases in a simulated high-Al high-level nuclear waste melter feed heated at 5 K min-1 to 700°C was investigated with transmission electron microscopy, 27Al nuclear magnetic resonance spectroscopy, the Brunauer-Emmett-Teller method, and X-ray diffraction. At temperatures between 300 and 500°C, porous amorphous alumina formed from the dehydration of gibbsite, resulting in increased specific surface area of the feed (~8 m2 g-1). The high-surface-area amorphous alumina formed in this manner could potentially stop salt migration in the cold cap during nuclear waste vitrification.

  20. Property/composition relationships for Hanford high-level waste glasses melting at 115{degrees}C volume 1: Chapters 1-11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrma, P.R.; Piepel, G.F.

    1994-12-01

    A Composition Variation study (CVS) is being performed within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) project in support of a future high-level nuclear waste vitrification plant at the Hanford site in Washington. From 1989 to 1994, over 120 nonradioactive glasses were melted and properties measured in five statistically-designed experimental phases. Glass composition is represented by the 10 components SiO{sub 2}, B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, ZrO{sub 2}, Na{sub 2}O, Li{sub 2}O, CaO, MgO, and Others (all remaining components). The properties measured include viscosity ({eta}), electrical conductivity ({epsilon}), glass transition temperature (T{sub g} ), thermalmore » expansion of solid glass ({alpha}{sub s}) and molten glass ({alpha}{sub m}), crystallinity (quenched and canister centerline cooled glasses), liquidus temperature (T{sub L}), durability based on normalized elemental releases from the Materials Characterization Center-1 28-day dissolution test (MCC-1, r{sub mi}) and the 7-day Product Consistency Test (PCT, r{sub pi}), and solution pHs from MCC-1 and PCT. Amorphous phase separation was also evaluated. Empirical first- and second-order mixture models were fit using the CVS data to relate the various properties to glass composition. Equations for calculating the uncertainty associated with property values predicted by the models were also developed. The models were validated using both internal and external data. Other modeling approaches (e.g., non-bridging oxygen, free energy of hydration, phase-equilibria T{sub L}) were investigated for specific properties. A preliminary Qualified Composition Region was developed to identify glass compositions with high confidence of being processable in a melter and meeting waste form acceptance criteria.« less

  1. Final report on cermet high-level waste forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobisk, E.H.; Quinby, T.C.; Aaron, W.S.

    1981-08-01

    Cermets are being developed as an alternate method for the fixation of defense and commercial high level radioactive waste in a terminal disposal form. Following initial feasibility assessments of this waste form, consisting of ceramic particles dispersed in an iron-nickel base alloy, significantly improved processing methods were developed. The characterization of cermets has continued through property determinations on samples prepared by various methods from a variety of simulated and actual high-level wastes. This report describes the status of development of the cermet waste form as it has evolved since 1977. 6 tables, 18 figures.

  2. High-Level Waste System Process Interface Description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    d'Entremont, P.D.

    1999-01-14

    The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment.

  3. Development of analytical cell support for vitrification at the West Valley Demonstration Project. Topical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, F.H.; Borek, T.T.; Christopher, J.Z.

    1997-12-01

    Analytical and Process Chemistry (A&PC) support is essential to the high-level waste vitrification campaign at the West Valley Demonstration Project (WVDP). A&PC characterizes the waste, providing information necessary to formulate the recipe for the target radioactive glass product. High-level waste (HLW) samples are prepared and analyzed in the analytical cells (ACs) and Sample Storage Cell (SSC) on the third floor of the main plant. The high levels of radioactivity in the samples require handling them in the shielded cells with remote manipulators. The analytical hot cells and third floor laboratories were refurbished to ensure optimal uninterrupted operation during the vitrificationmore » campaign. New and modified instrumentation, tools, sample preparation and analysis techniques, and equipment and training were required for A&PC to support vitrification. Analytical Cell Mockup Units (ACMUs) were designed to facilitate method development, scientist and technician training, and planning for analytical process flow. The ACMUs were fabricated and installed to simulate the analytical cell environment and dimensions. New techniques, equipment, and tools could be evaluated m in the ACMUs without the consequences of generating or handling radioactive waste. Tools were fabricated, handling and disposal of wastes was addressed, and spatial arrangements for equipment were refined. As a result of the work at the ACMUs the remote preparation and analysis methods and the equipment and tools were ready for installation into the ACs and SSC m in July 1995. Before use m in the hot cells, all remote methods had been validated and four to eight technicians were trained on each. Fine tuning of the procedures has been ongoing at the ACs based on input from A&PC technicians. Working at the ACs presents greater challenges than had development at the ACMUs. The ACMU work and further refinements m in the ACs have resulted m in a reduction m in analysis turnaround time (TAT).« less

  4. ONDRAF/NIRAS and high-level radioactive waste management in Belgium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decamps, F.

    1993-12-31

    The National Agency for Radioactive Waste and Enriched Fissile Materials, ONDRAF/NIRAS, is a public body with legal personality in charge of managing all radioactive waste on Belgian territory, regardless of its origin and source. It is also entrusted with tasks related to the management of enriched fissile materials, plutonium containing materials and used or unused nuclear fuel, and with certain aspects of the dismantling of closed down nuclear facilities. High-level radioactive waste management comprises essentially and for the time being the storage of high-level liquid waste produced by the former EUROCHEMIC reprocessing plant and of high-level and very high-level heatmore » producing waste resulting from the reprocessing in France of Belgian spent fuel, as well as research and development (R and D) with regard to geological disposal in clay of this waste type.« less

  5. Preliminary hazards analysis -- vitrification process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coordes, D.; Ruggieri, M.; Russell, J.

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s constructionmore » and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.« less

  6. A COMPREHENSIVE TECHNICAL REVIEW OF THE DEMONSTRATION BULK VITRIFICATION SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SCHAUS, P.S.

    2006-09-29

    In May 2006, CH2M Hill Hanford Group, Inc. chartered an Expert Review Panel (ERP) to review the current status of the Demonstration Bulk Vitrification System (DBVS). It is the consensus of the ERP that bulk vitrification is a technology that requires further development and evaluation to determine its potential for meeting the Hanford waste stabilization mission. No fatal flaws (issues that would jeopardize the overall DBVS mission that cannot be mitigated) were found, given the current state of the project. However, a number of technical issues were found that could significantly affect the project's ability to meet its overall missionmore » as stated in the project ''Justification of Mission Need'' document, if not satisfactorily resolved. The ERP recognizes that the project has changed from an accelerated schedule demonstration project to a formally chartered project that must be in full compliance with DOE 413.3 requirements. The perspective of the ERP presented herein, is measured against the formally chartered project as stated in the approved Justification of Mission Need document. A justification of Mission Need document was approved in July 2006 which defined the objectives for the DBVS Project. In this document, DOE concluded that bulk vitrification is a viable technology that requires additional development to determine its potential applicability to treatment of a portion of the Hanford low activity waste. The DBVS mission need statement now includes the following primary objectives: (1) process approximately 190,000 gallons of Tank S-109 waste into fifty 100 metric ton boxes of vitrified product; (2) store and dispose of these boxes at Hanford's Integrated Disposal Facility (IDF); (3) evaluate the waste form characteristics; (4) gather pilot plant operability data, and (5) develop the overall life cycle system performance of bulk vitrification and produce a comparison of the bulk vitrification process to building a second LAW Immobilization facility

  7. Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products.

    PubMed

    Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D

    2011-11-30

    The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Radioactive demonstration of final mineralized waste forms for Hanford waste treatment plant secondary waste (WTP-SW) by fluidized bed steam reforming (FBSR) using the bench scale reformer platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Burket, P.; Cozzi, A.

    2014-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137Cs, 129I, 99Tc, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW.« less

  9. Ash from a pulp mill boiler--characterisation and vitrification.

    PubMed

    Ribeiro, Ana S M; Monteiro, Regina C C; Davim, Erika J R; Fernandes, M Helena V

    2010-07-15

    The physical, chemical and mineralogical characterisation of the ash resulting from a pulp mill boiler was performed in order to investigate the valorisation of this waste material through the production of added-value glassy materials. The ash had a particle size distribution in the range 0.06-53 microm, and a high amount of SiO(2) (approximately 82 wt%), which was present as quartz. To favour the vitrification of the ash and to obtain a melt with an adequate viscosity to cast into a mould, different amounts of Na(2)O were added to act as fluxing agent. A batch with 80 wt% waste load melted at 1350 degrees C resulting in a homogeneous transparent green-coloured glass with good workability. The characterisation of the produced glass by differential thermal analysis and dilatometry showed that this glass presents a stable thermal behaviour. Standard leaching tests revealed that the concentration of heavy metals in the leaching solution was lower than those allowed by the Normative. As a conclusion, by vitrification of batch compositions with adequate waste load and additive content it is possible to produce an ash-based glass that may be used in similar applications as a conventional silicate glass inclusively as a building ecomaterial. 2010 Elsevier B.V. All rights reserved.

  10. Innovative vitrification for soil remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jetta, N.W.; Patten, J.S.; Hart, J.G.

    1995-12-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at amore » specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project. During Phase 2, the basic nitrification process design was modified to meet the specific needs of the new waste streams available at Paducah. The system design developed for Paducah has significantly enhanced the processing capabilities of the Vortec vitrification process. The overall system design now includes the capability to shred entire drums and drum packs containing mud, concrete, plastics and PCB`s as well as bulk waste materials. This enhanced processing capability will substantially expand the total DOE waste remediation applications of the technology.« less

  11. Vitrification

    NASA Astrophysics Data System (ADS)

    A. Takahashi, Tsuneo

    Vitrification is an alternative to customary approaches to cryopreserve cell, tissue and organ. In this method, ice formation can be prevented by a combination of high solute concentration and rapid cooling, a solution become glassy without ice crystalline formation at temperatures below-115°C. The cell and tissue damage associated with ice formation is avoided, but thawing should be rapid enough to prevent ice growth during warming and they should be equilibrated with the vitrification medium without injury. This approach has been extensively studied in the past few years, and has the potential to be an alternative approach to the cryopreservation of a wide range of biological systems.

  12. Supplemental Immobilization Cast Stone Technology Development and Waste Form Qualification Testing Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westsik, Joseph H.; Serne, R. Jeffrey; Pierce, Eric M.

    2013-05-31

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). The pretreatment facility will have the capacity to separate all of the tank wastes into the HLW and LAW fractions, and the HLW Vitrification Facility will have the capacity to vitrifymore » all of the HLW. However, a second immobilization facility will be needed for the expected volume of LAW requiring immobilization. A number of alternatives, including Cast Stone—a cementitious waste form—are being considered to provide the additional LAW immobilization capacity.« less

  13. High-level waste program progress report, April 1, 1980-June 30, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-08-01

    The highlights of this report are on: waste management analysis for nuclear fuel cycles; fixation of waste in concrete; study of ceramic and cermet waste forms; alternative high-level waste forms development; and high-level waste container development.

  14. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Crawford, C.; Cozzi, A.

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates

  15. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Radulesscu; J.S. Tang

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container alongmore » with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this analysis

  16. Comparison of sucrose and trehalose media modification as an update of oocyte vitrification: A study of apoptotic level

    NASA Astrophysics Data System (ADS)

    Lestari, Silvia W.; Fitriyah, Nurin N.; Pangestu, Mulyoto; Pratama, Gita; Margiana, Ria

    2018-02-01

    Number of women who are not being able to have offspring in their reproductive life is increasing which might be influenced by several factors. As a consequence, oocyte cryopreservation could be an ensuring solution for women fertility preservation. A good vitrification could be conducted by combining an appropriate of type and concentration of cryoprotectants. One of the marks of successful vitrification is the vitrified oocytes could avoid apoptosis. This study aimed to evaluate the modification of cryoprotectant media as un update of oocyte vitrification as follow: the combination and the concentration of cryoprotectant media of oocytes vitrification, based on their effects on the apoptosis or DNA damage of oocytes. A total of 84 MII stage oocytes from adult female Deutschland, Denken and Yoken (DDY) mice (7-8 weeks old) were used in this study. Vitrification procedure was performed by using VS1 contained 15% EG, 15% DMSO, 0.5 mol/l sucrose (Merck, Darmstadt, Germany) and VS2 contained 15% EG, 15% DMSO, 0.5 mol/l trehalose (Merck, Darmstadt, Germany) in HM. Furthermore, warming solution (WS) was divided into four groups. There were: WS1a contained 0.3 mol/l sucrose, WS1b contained 0.15 mol/l sucrose, WS2a contained 0.3 mol/l trehalose, and WS2b contained 0.15 mol/l trehalose. Apoptotic level was performed by staining the oocytes with TUNEL and propidium iodide (PI) based on Brison and Schultz method then examined under confocal microscope. The rate of apoptosis in oocytes after vitrification and warming was higher compared to the fresh control oocytes. Furthermore, the rate of apoptosis in the vitrified oocytes by sucrose media (28%) was higher compared to the vitrified oocytes by trehalose media (16%). The results of this study indicated that vitrification increased apoptosis in the vitrified oocytes related to the oocyte injury after vitrification. Moreover, the vitrification increased apoptosis more in the vitrified oocytes by sucrose media than the vitrified

  17. Final Environmental Impact Statement for Treating Transuranic (TRU)/Alpha Low-level Waste at the Oak Ridge National Laboratory Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    2000-06-30

    The DOE proposes to construct, operate, and decontaminate/decommission a TRU Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste. This document analyzes the potential environmental impacts associated with five alternatives--No Action, the Low-Temperature Drying Alternative (Preferred Alternative), themore » Vitrification Alternative, the Cementation Alternative, and the Treatment and Waste Storage at Oak Ridge National Laboratory (ORNL) Alternative.« less

  18. Glass Development for Treatment of LANL Evaporator Bottoms Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DE Smith; GF Piepel; GW Veazey

    1998-11-20

    Vitrification is an attractive treatment option for meeting the stabilization and final disposal requirements of many plutonium (Pu) bearing materials and wastes at the Los Alamos National Laboratory (LANL) TA-55 facility, Rocky Flats Environmental Technology Site (RFETS), Hanford, and other Department of Energy (DOE) sites. The Environmental Protection Agency (EPA) has declared that vitrification is the "best demonstrated available technology" for high- level radioactive wastes (HLW) (Federal Register 1990) and has produced a handbook of vitriilcation technologies for treatment of hazardous and radioactive waste (US EPA, 1992). This technology has been demonstrated to convert Pu-containing materials (Kormanos, 1997) into durablemore » (Lutze, 1988) and accountable (Forsberg, 1995) waste. forms with reduced need for safeguarding (McCulhun, 1996). The composition of the Evaporator Bottoms Waste (EVB) at LANL, like that of many other I%-bearing materials, varies widely and is generally unpredictable. The goal of this study is to optimize the composition of glass for EVB waste at LANL, and present the basic techniques and tools for developing optimized glass compositions for other Pu-bearing materials in the complex. This report outlines an approach for glass formulation with fixed property restrictions, using glass property-composition databases. This approach is applicable to waste glass formulation for many variable waste streams and vitrification technologies.. Also reported are the preliminary property data for simulated evaporator bottom glasses, including glass viscosity and glass leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP).« less

  19. Long-term high-level waste technology. Composite report

    NASA Astrophysics Data System (ADS)

    Cornman, W. R.

    1981-12-01

    Research and development studies on the immobilization of high-level wastes from the chemical reprocessing of nuclear reactor fuels are summarized. The reports are grouped under the following tasks: (1) program management and support; (2) waste preparation; (3) waste fixation; and (4) final handling. Some of the highlights are: leaching properties were obtained for titanate and tailored ceramic materials being developed at ICPP to immobilize zirconia calcine; comparative leach tests, hot-cell tests, and process evaluations were conducted of waste form alternatives to borosilicate glass for the immobilization of SRP high-level wastes, experiments were run at ANL to qualify neutron activation analysis and radioactive tracers for measuring leach rates from simulated waste glasses; comparative leach test samples of SYNROC D were prepared, characterized, and tested at LLNL; encapsulation of glass marbles with lead or lead alloys was demonstrated on an engineering scale at PNL; a canister for reference Commercial HLW was designed at PNL; a study of the optimization of salt-crete was completed at SRL; a risk assessment showed that an investment for tornado dampers in the interim storage building of the DWPF is unjustified.

  20. High-level radioactive waste management alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1974-05-01

    A summary of a comprehensive overview study of potential alternatives for long-term management of high-level radioactive waste is presented. The concepts studied included disposal in geologic formations, disposal in seabeds, disposal in ice caps, disposal into space, and elimination by transmutation. (TFD)

  1. Nanoliter droplet vitrification for oocyte cryopreservation.

    PubMed

    Zhang, Xiaohui; Khimji, Imran; Shao, Lei; Safaee, Hooman; Desai, Khanjan; Keles, Hasan Onur; Gurkan, Umut Atakan; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M; Maas, Richard L; Demirci, Utkan

    2012-04-01

    Oocyte cryopreservation remains largely experimental, with live birth rates of only 2-4% per thawed oocyte. In this study, we present a nanoliter droplet technology for oocyte vitrification. An ejector-based droplet vitrification system was designed to continuously cryopreserve oocytes in nanoliter droplets. Oocyte survival rates, morphologies and parthenogenetic development after each vitrification step were assessed in comparison with fresh oocytes. Oocytes were retrieved after cryoprotectant agent loading/unloading, and nanoliter droplet encapsulation showed comparable survival rates to fresh oocytes after 24 h in culture. Also, oocytes recovered after vitrification/thawing showed similar morphologies to those of fresh oocytes. Additionally, the rate of oocyte parthenogenetic activation after nanoliter droplet encapsulation was comparable with that observed for fresh oocytes. This nanoliter droplet technology enables the vitrification of oocytes at higher cooling and warming rates using lower cryoprotectant agent levels (i.e., 1.4 M ethylene glycol, 1.1 M dimethyl sulfoxide and 1 M sucrose), thus making it a potential technology to improve oocyte cryopreservation outcomes.

  2. Baseline tests for arc melter vitrification of INEL buried wastes. Volume II: Baseline test data appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oden, L.L.; O`Conner, W.K.; Turner, P.C.

    1993-11-19

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc meltingmore » furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.« less

  3. Application of the Evacuated Canister System for Removing Residual Molten Glass From the West Valley Demonstration Project High-Level Waste Melter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Joseph J.; Dombrowski, David J.; Valenti, Paul J.

    The principal mission of the West Valley Demonstration Project (WVDP) is to meet a series of objectives defined in the West Valley Demonstration Project Act (Public Law 96-368). Chief among these is the objective to solidify liquid high-level waste (HLW) at the WVDP site into a form suitable for disposal in a federal geologic repository. In 1982, the Secretary of Energy formally selected vitrification as the technology to be used to solidify HLW at the WVDP. One of the first steps in meeting the HLW solidification objective involved designing, constructing and operating the Vitrification (Vit) Facility, the WVDP facility thatmore » houses the systems and subsystems used to process HLW into stainless steel canisters of borosilicate waste-glass that satisfy waste acceptance criteria (WAC) for disposal in a federal geologic repository. HLW processing and canister production began in 1996. The final step in meeting the HLW solidification objective involved ending Vit system operations and shut ting down the Vit Facility. This was accomplished by conducting a discrete series of activities to remove as much residual material as practical from the primary process vessels, components, and associated piping used in HLW canister production before declaring a formal end to Vit system operations. Flushing was the primary method used to remove residual radioactive material from the vitrification system. The inventory of radioactivity contained within the entire primary processing system diminished by conducting the flushing activities. At the completion of flushing activities, the composition of residual molten material remaining in the melter (the primary system component used in glass production) consisted of a small quantity of radioactive material and large quantities of glass former materials needed to produce borosilicate waste-glass. A special system developed during the pre-operational and testing phase of Vit Facility operation, the Evacuated Canister System (ECS

  4. Corrosion resistance of ceramic refractories to simulated waste glasses at high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, S.B.; Lin, Y.; Mohr, R.K.

    1996-08-01

    In many vitrification processes, refractory materials are used to contain the waste glass melt. The corrosive nature of the high-temperature melt consumes the waste feed materials but also limits refractory life. As vitrification is applied to more diverse waste streams, and particularly in higher-temperature applications, increasingly severe demands are placed on the refractory materials. A variety of potential refractory materials including Fused-cast AZS, Monofrax K3, Monofrax E, and the Corhart refractories ER1195, ER2161, C1215, C1215Z, Rechrome, and T1186, were subjected to corrosion testing at 1,450 C using the ASTM C-621 procedure. A series of simulated waste glasses was used whichmore » included F, Cl, S, Cu, Zn, Pb; these minor components were found to cause significant, and in some cases drastic, increases in corrosion rates. The corrosion tests were conducted over a range of time intervals extending to 144 hrs in order to investigate the kinetics of the corrosion processes. The change of the concentrations of constituents in the glass was monitored by compositional analysis of glass samples and correlated to the observed extent of corrosion; typically, components of the material under test increase with time while key minor components, such as Co and Pb, decrease. The rate of corrosion of high-zirconia refractories was slowed considerably by adding zirconia to the waste glass composition; this has the added benefit of improving the aqueous leach resistance of the waste form that is produced.« less

  5. Space augmentation of military high-level waste disposal

    NASA Technical Reports Server (NTRS)

    English, T.; Lees, L.; Divita, E.

    1979-01-01

    Space disposal of selected components of military high-level waste (HLW) is considered. This disposal option offers the promise of eliminating the long-lived radionuclides in military HLW from the earth. A space mission which meets the dual requirements of long-term orbital stability and a maximum of one space shuttle launch per week over a period of 20-40 years, is a heliocentric orbit about halfway between the orbits of earth and Venus. Space disposal of high-level radioactive waste is characterized by long-term predictability and short-term uncertainties which must be reduced to acceptably low levels. For example, failure of either the Orbit Transfer Vehicle after leaving low earth orbit, or the storable propellant stage failure at perihelion would leave the nuclear waste package in an unplanned and potentially unstable orbit. Since potential earth reencounter and subsequent burn-up in the earth's atmosphere is unacceptable, a deep space rendezvous, docking, and retrieval capability must be developed.

  6. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WILLIS, W.L.

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

  7. ROLE OF MANGANESE REDUCTION/OXIDATION (REDOX) ON FOAMING AND MELT RATE IN HIGH LEVEL WASTE (HLW) MELTERS (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C; Michael Stone, M

    2007-03-30

    High-level nuclear waste is being immobilized at the Savannah River Site (SRS) by vitrification into borosilicate glass at the Defense Waste Processing Facility (DWPF). Control of the Reduction/Oxidation (REDOX) equilibrium in the DWPF melter is critical for processing high level liquid wastes. Foaming, cold cap roll-overs, and off-gas surges all have an impact on pouring and melt rate during processing of high-level waste (HLW) glass. All of these phenomena can impact waste throughput and attainment in Joule heated melters such as the DWPF. These phenomena are caused by gas-glass disequilibrium when components in the melter feeds convert to glass andmore » liberate gases such as H{sub 2}O vapor (steam), CO{sub 2}, O{sub 2}, H{sub 2}, NO{sub x}, and/or N{sub 2}. During the feed-to-glass conversion in the DWPF melter, multiple types of reactions occur in the cold cap and in the melt pool that release gaseous products. The various gaseous products can cause foaming at the melt pool surface. Foaming should be avoided as much as possible because an insulative layer of foam on the melt surface retards heat transfer to the cold cap and results in low melt rates. Uncontrolled foaming can also result in a blockage of critical melter or melter off-gas components. Foaming can also increase the potential for melter pressure surges, which would then make it difficult to maintain a constant pressure differential between the DWPF melter and the pour spout. Pressure surges can cause erratic pour streams and possible pluggage of the bellows as well. For these reasons, the DWPF uses a REDOX strategy and controls the melt REDOX between 0.09 {le} Fe{sup 2+}/{summation}Fe {le} 0.33. Controlling the DWPF melter at an equilibrium of Fe{sup +2}/{summation}Fe {le} 0.33 prevents metallic and sulfide rich species from forming nodules that can accumulate on the floor of the melter. Control of foaming, due to deoxygenation of manganic species, is achieved by converting oxidized MnO{sub 2

  8. 10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...

  9. 10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...

  10. Nanoliter droplet vitrification for oocyte cryopreservation

    PubMed Central

    Zhang, Xiaohui; Khimji, Imran; Shao, Lei; Safaee, Hooman; Desai, Khanjan; Keles, Hasan Onur; Gurkan, Umut Atakan; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M; Maas, Richard L; Demirci, Utkan

    2011-01-01

    Aim Oocyte cryopreservation remains largely experimental, with live birth rates of only 2–4% per thawed oocyte. In this study, we present a nanoliter droplet technology for oocyte vitrification. Materials & methods An ejector-based droplet vitrification system was designed to continuously cryopreserve oocytes in nanoliter droplets. Oocyte survival rates, morphologies and parthenogenetic development after each vitrification step were assessed in comparison with fresh oocytes. Results Oocytes were retrieved after cryoprotectant agent loading/unloading, and nanoliter droplet encapsulation showed comparable survival rates to fresh oocytes after 24 h in culture. Also, oocytes recovered after vitrification/thawing showed similar morphologies to those of fresh oocytes. Additionally, the rate of oocyte parthenogenetic activation after nanoliter droplet encapsulation was comparable with that observed for fresh oocytes. This nanoliter droplet technology enables the vitrification of oocytes at higher cooling and warming rates using lower cryoprotectant agent levels (i.e., 1.4 M ethylene glycol, 1.1 M dimethyl sulfoxide and 1 M sucrose), thus making it a potential technology to improve oocyte cryopreservation outcomes. PMID:22188180

  11. Description of waste pretreatment and interfacing systems dynamic simulation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garbrick, D.J.; Zimmerman, B.D.

    1995-05-01

    The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggestedmore » average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage.« less

  12. Special Analysis for Disposal of High-Concentration I-129 Waste in the Intermediate-Level Vaults at the E-Area Low-Level Waste Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collard, L.B.

    2000-09-26

    This revision was prepared to address comments from DOE-SR that arose following publication of revision 0. This Special Analysis (SA) addresses disposal of wastes with high concentrations of I-129 in the Intermediate-Level (IL) Vaults at the operating, low-level radioactive waste disposal facility (the E-Area Low-Level Waste Facility or LLWF) on the Savannah River Site (SRS). This SA provides limits for disposal in the IL Vaults of high-concentration I-129 wastes, including activated carbon beds from the Effluent Treatment Facility (ETF), based on their measured, waste-specific Kds.

  13. Strategic Minimization of High Level Waste from Pyroprocessing of Spent Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Michael F.; Benedict, Robert W.

    The pyroprocessing of spent nuclear fuel results in two high-level waste streams--ceramic and metal waste. Ceramic waste contains active metal fission product-loaded salt from the electrorefining, while the metal waste contains cladding hulls and undissolved noble metals. While pyroprocessing was successfully demonstrated for treatment of spent fuel from Experimental Breeder Reactor-II in 1999, it was done so without a specific objective to minimize high-level waste generation. The ceramic waste process uses “throw-away” technology that is not optimized with respect to volume of waste generated. In looking past treatment of EBR-II fuel, it is critical to minimize waste generation for technologymore » developed under the Global Nuclear Energy Partnership (GNEP). While the metal waste cannot be readily reduced, there are viable routes towards minimizing the ceramic waste. Fission products that generate high amounts of heat, such as Cs and Sr, can be separated from other active metal fission products and placed into short-term, shallow disposal. The remaining active metal fission products can be concentrated into the ceramic waste form using an ion exchange process. It has been estimated that ion exchange can reduce ceramic high-level waste quantities by as much as a factor of 3 relative to throw-away technology.« less

  14. Vitrification of waste with conitnuous filling and sequential melting

    DOEpatents

    Powell, James R.; Reich, Morris

    2001-09-04

    A method of filling a canister with vitrified waste starting with a waste, such as high-level radioactive waste, that is cooler than its melting point. Waste is added incrementally to a canister forming a column of waste capable of being separated into an upper zone and a lower zone. The minimum height of the column is defined such that the waste in the lower zone can be dried and melted while maintaining the waste in the upper zone below its melting point. The maximum height of the column is such that the upper zone remains porous enough to permit evolved gases from the lower zone to flow through the upper zone and out of the canister. Heat is applied to the waste in the lower zone to first dry then to raise and maintain its temperature to a target temperature above the melting point of the waste. Then the heat is applied to a new lower zone above the melted waste and the process of adding, drying and melting the waste continues upward in the canister until the entire canister is filled and the entire contents are melted and maintained at the target temperature for the desired period. Cooling of the melted waste takes place incrementally from the bottom of the canister to the top, or across the entire canister surface area, forming a vitrified product.

  15. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...

  16. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...

  17. Nucleation and crystal growth behavior of nepheline in simulated high-level waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Amoroso, J.; Mcclane, D.

    The Savannah River National Laboratory (SRNL) has been tasked with supporting glass formulation development and process control strategies in key technical areas, relevant to the Department of Energy’s Office of River Protection (DOE-ORP) and related to high-level waste (HLW) vitrification at the Waste Treatment and Immobilization Plant (WTP). Of specific interest is the development of predictive models for crystallization of nepheline (NaAlSiO4) in HLW glasses formulated at high alumina concentrations. This report summarizes recent progress by researchers at SRNL towards developing a predicative tool for quantifying nepheline crystallization in HLW glass canisters using laboratory experiments. In this work, differential scanningmore » calorimetry (DSC) was used to obtain the temperature regions over which nucleation and growth of nepheline occur in three simulated HLW glasses - two glasses representative of WTP projections and one glass representative of the Defense Waste Processing Facility (DWPF) product. The DWPF glass, which has been studied previously, was chosen as a reference composition and for comparison purposes. Complementary quantitative X-ray diffraction (XRD) and optical microscopy confirmed the validity of the methodology to determine nucleation and growth behavior as a function of temperature. The nepheline crystallization growth region was determined to generally extend from ~ 500 to >850 °C, with the maximum growth rates occurring between 600 and 700 °C. For select WTP glass compositions (high Al2O3 and B2O3), the nucleation range extended from ~ 450 to 600 °C, with the maximum nucleation rates occurring at ~ 530 °C. For the DWPF glass composition, the nucleation range extended from ~ 450 to 750 °C with the maximum nucleation rate occurring at ~ 640 °C. The nepheline growth at the peak temperature, as determined by XRD, was between 35 - 75 wt.% /hour. A maximum nepheline growth rate of ~ 0.1 mm/hour at 700 °C was measured for the DWPF

  18. Baseline tests for arc melter vitrification of INEL buried wastes. Volume 1: Facility description and summary data report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oden, L.L.; O`Connor, W.K.; Turner, P.C.

    1993-11-19

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc meltingmore » furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.« less

  19. Plasma vitrification of waste materials

    DOEpatents

    McLaughlin, David F.; Dighe, Shyam V.; Gass, William R.

    1997-01-01

    This invention provides a process wherein hazardous or radioactive wastes in the form of liquids, slurries, or finely divided solids are mixed with finely divided glassformers (silica, alumina, soda, etc.) and injected directly into the plume of a non-transferred arc plasma torch. The extremely high temperatures and heat transfer rates makes it possible to convert the waste-glassformer mixture into a fully vitrified molten glass product in a matter of milliseconds. The molten product may then be collected in a crucible for casting into final wasteform geometry, quenching in water, or further holding time to improve homogeneity and eliminate bubbles.

  20. Plasma vitrification of waste materials

    DOEpatents

    McLaughlin, D.F.; Dighe, S.V.; Gass, W.R.

    1997-06-10

    This invention provides a process wherein hazardous or radioactive wastes in the form of liquids, slurries, or finely divided solids are mixed with finely divided glassformers (silica, alumina, soda, etc.) and injected directly into the plume of a non-transferred arc plasma torch. The extremely high temperatures and heat transfer rates makes it possible to convert the waste-glassformer mixture into a fully vitrified molten glass product in a matter of milliseconds. The molten product may then be collected in a crucible for casting into final wasteform geometry, quenching in water, or further holding time to improve homogeneity and eliminate bubbles. 4 figs.

  1. Multiphase, multi-electrode Joule heat computations for glass melter and in situ vitrification simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowery, P.S.; Lessor, D.L.

    Waste glass melter and in situ vitrification (ISV) processes represent the combination of electrical thermal, and fluid flow phenomena to produce a stable waste-from product. Computational modeling of the thermal and fluid flow aspects of these processes provides a useful tool for assessing the potential performance of proposed system designs. These computations can be performed at a fraction of the cost of experiment. Consequently, computational modeling of vitrification systems can also provide and economical means for assessing the suitability of a proposed process application. The computational model described in this paper employs finite difference representations of the basic continuum conservationmore » laws governing the thermal, fluid flow, and electrical aspects of the vitrification process -- i.e., conservation of mass, momentum, energy, and electrical charge. The resulting code is a member of the TEMPEST family of codes developed at the Pacific Northwest Laboratory (operated by Battelle for the US Department of Energy). This paper provides an overview of the numerical approach employed in TEMPEST. In addition, results from several TEMPEST simulations of sample waste glass melter and ISV processes are provided to illustrate the insights to be gained from computational modeling of these processes. 3 refs., 13 figs.« less

  2. Commercial Ion Exchange Resin Vitrification in Borosilicate Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cicero-Herman, C.A.; Workman, P.; Poole, K.

    1998-05-01

    Bench-scale studies were performed to determine the feasibility of vitrification treatment of six resins representative of those used in the commercial nuclear industry. Each resin was successfully immobilized using the same proprietary borosilicate glass formulation. Waste loadings varied from 38 to 70 g of resin/100 g of glass produced depending on the particular resin, with volume reductions of 28 percent to 68 percent. The bench-scale results were used to perform a melter demonstration with one of the resins at the Clemson Environmental Technologies Laboratory (CETL). The resin used was a weakly acidic meth acrylic cation exchange resin. The vitrification processmore » utilized represented a approximately 64 percent volume reduction. Glass characterization, radionuclide retention, offgas analyses, and system compatibility results will be discussed in this paper.« less

  3. Case for retrievable high-level nuclear waste disposal

    USGS Publications Warehouse

    Roseboom, Eugene H.

    1994-01-01

    Plans for the nation's first high-level nuclear waste repository have called for permanently closing and sealing the repository soon after it is filled. However, the hydrologic environment of the proposed site at Yucca Mountain, Nevada, should allow the repository to be kept open and the waste retrievable indefinitely. This would allow direct monitoring of the repository and maintain the options for future generations to improve upon the disposal methods or use the uranium in the spent fuel as an energy resource.

  4. Development of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) Process for Cesium Removal from High-Level Tank Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Bruce A; Bonnesen, Peter V; Delmau, Laetitia Helene

    2011-01-01

    This paper describes the chemical performance of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) process in its current state of development for removal of cesium from the alkaline high-level tank wastes at the Savannah River Site (SRS) in the US Department of Energy (USDOE) complex. Overall, motivation for seeking a major enhancement in performance for the currently deployed CSSX process stems from needs for accelerating the cleanup schedule and reducing the cost of salt-waste disposition. The primary target of the NG-CSSX development campaign in the past year has been to formulate a solvent system and to design a corresponding flowsheet thatmore » boosts the performance of the SRS Modular CSSX Unit (MCU) from a current minimum decontamination factor of 12 to 40,000. The chemical approach entails use of a more soluble calixarene-crown ether, called MaxCalix, allowing the attainment of much higher cesium distribution ratios (DCs) on extraction. Concurrently decreasing the Cs-7SB modifier concentration is anticipated to promote better hydraulics. A new stripping chemistry has been devised using a vitrification-friendly aqueous boric acid strip solution and a guanidine suppressor in the solvent, resulting in sharply decreased DCs on stripping. Results are reported herein on solvent phase behavior and batch Cs distribution for waste simulants and real waste together with a preliminary flowsheet applicable for implementation in the MCU. The new solvent will enable MCU to process a much wider range of salt feeds and thereby extend its service lifetime beyond its design life of three years. Other potential benefits of NG-CSSX include increased throughput of the SRS Salt Waste Processing Facility (SWPF), currently under construction, and an alternative modular near-tank application at Hanford.« less

  5. Technology Readiness Assessment of Department of Energy Waste Processing Facilities

    DTIC Science & Technology

    2007-09-11

    Must Be Reliable, Robust, Flexible, and Durable 6 EM Is Piloting the TRA/AD2 Process Hanford Waste Treatment Plant ( WTP ) – The Initial Pilot Project...Evaluation WTP can only treat ~ ½ of the LAW in the time it will take to treat all the HLW. • There is a need for tank space that will get more urgent with...Facility before the WTP Pretreatment and High-Level Waste (HLW) Vitrification Facilities are available (Requires tank farm pretreatment capability) TRAs

  6. Effects of Quartz Particle Size and Sucrose Addition on Melting Behavior of a Melter Feed for High-Level Waste Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcial, Jose; Hrma, Pavel R; Schweiger, Michael J

    2010-08-11

    The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5°C/min up to 1200°C. The initial size of quartz particles in feed ranged from 5 to 195 µm. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only in feeds withmore » 5-μm quartz particles; particles >150 µm formed clusters. Particles of 5 µm completely dissolved by 900°C whereas particles >150 µm did not fully dissolve even when the temperature reached 1200°C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles.« less

  7. Spent fuel and high-level radioactive waste transportation report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educatedmore » layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.« less

  8. Spent fuel and high-level radioactive waste transportation report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educatedmore » layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.« less

  9. Spent Fuel and High-Level Radioactive Waste Transportation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by SSEB in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or nomore » background in nuclear waste Issues. In addition. this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.« less

  10. Spotiton: A prototype for an integrated inkjet dispense and vitrification system for cryo-TEM

    PubMed Central

    Jain, Tilak; Sheehan, Patrick; Crum, John; Carragher, Bridget; Potter, Clinton S.

    2012-01-01

    Over the last three decades, Cryo-TEM has developed into a powerful technique for high-resolution imaging of biological macromolecules in their native vitrified state. However, the technique for vitrifying specimens onto EM grids is essentially unchanged – application of ~ 3 µL sample to a grid, followed by blotting and rapid plunge freezing into liquid ethane. Several trials are often required to obtain suitable thin (few hundred nanometers or less) vitrified layers amenable for cryo-TEM imaging, which results in waste of precious sample and resources. While commercially available instruments provide some level of automation to control the vitrification process in an effort to increase quality and reproducibility, obtaining satisfactory vitrified specimens remains a bottleneck in the Cryo-TEM pipeline. We describe here a completely novel method for EM specimen preparation based on small volume (picoliter to nanoliter) dispensing using inkjet technology. A first prototype system (Spotiton v0.5) demonstrates feasibility of this new approach for specimen vitrification. A piezo-electric inkjet dispenser is integrated with optical real-time cameras (100 Hz frame rate) to analyze picoliter to nanoliter droplet profiles in-flight and spreading dynamics on the grid, and thus provides a method to optimize timing of the process. Using TEM imaging and biochemical assays we demonstrate that the piezo-electric inkjet mechanism does not disrupt the structural or functional integrity of macromolecules. These preliminary studies provide insight into the factors and components that will need further development to enable a robust and repeatable technique for specimen vitrification using this novel approach. PMID:22569522

  11. Pretreatment of Hanford medium-curie wastes by fractional crystallization.

    PubMed

    Nassif, Laurent; Dumont, George; Alysouri, Hatem; Rousseau, Ronald W

    2008-07-01

    Acceleration of the schedule for decontamination of the Hanford site using bulk vitrification requires implementation of a pretreatment operation. Medium-curie waste must be separated into two fractions: one is to go to a waste treatment and immobilization plant and a second, which is low-activity waste, is to be processed by bulk vitrification. The work described here reports research on using fractional crystallization for that pretreatment. Sodium salts are crystallized by evaporation of water from solutions simulating those removed from single-shell tanks, while leaving cesium in solution. The crystalline products are then recovered and qualified as low-activity waste, which is suitable upon redissolution for processing by bulk vitrification. The experimental program used semibatch operation in which a feed solution was continuously added to maintain a constant level in the crystallizer while evaporating water. The slurry recovered at the end of a run was filtered to recover product crystals, which were then analyzed to determine their composition. The results demonstrated that targets on cesium separation from the solids, fractional recovery of sodium salts, and sulfate content of the recovered salts can be achieved by the process tested.

  12. Three-Dimensional Printing of Vitrification Loop Prototypes for Aquatic Species.

    PubMed

    Tiersch, Nolan J; Childress, William M; Tiersch, Terrence R

    2018-05-16

    Vitrification is a method of cryopreservation that freezes samples rapidly, while forming an amorphous solid ("glass"), typically in small (μL) volumes. The goal of this project was to create, by three-dimensional (3D) printing, open vitrification devices based on an elliptical loop that could be efficiently used and stored. Vitrification efforts can benefit from the application of 3D printing, and to begin integration of this technology, we addressed four main variables: thermoplastic filament type, loop length, loop height, and method of loading. Our objectives were to: (1) design vitrification loops with varied dimensions; (2) print prototype loops for testing; (3) evaluate loading methods for the devices; and (4) classify vitrification responses to multiple device configurations. The various configurations were designed digitally using 3D CAD (Computer Aided Design) software, and prototype devices were produced with MakerBot ® 3D printers. The thermoplastic filaments used to produce devices were acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA). Vitrification devices were characterized by the film volumes formed with different methods of loading (pipetting or submersion). Frozen films were classified to determine vitrification quality: zero (opaque, or abundant crystalline ice formation); one (translucent, or partial vitrification), or two (transparent, or substantial vitrification, glass). A published vitrification solution was used to conduct experiments. Loading by pipetting formed frozen films more reliably than by submersion, but submersion yielded fewer filling problems and was more rapid. The loop designs that yielded the highest levels of vitrification enabled rapid transfer of heat, and most often were characterized as being longer and consisting of fewer layers (height). 3D printing can assist standardization of vitrification methods and research, yet can also provide the ability to quickly design and fabricate custom devices when

  13. SITE TECHNOLOGY CAPSULE: GEOTECH DEVELOPMENT CORPORATION COLD TOP EX-SITU VITRIFICATION TECHNOLOGY

    EPA Science Inventory

    A SITE technology demonstration was conducted in 1997 to evaluate the potential applicability and effectiveness of the Geotech Cold Top ex-situ vitrification technology on chromium-contaminated soils. The primary objective was to develop test data to evaluate whether the waste a...

  14. Iron Phosphate Glass-Containing Hanford Waste Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevigny, Gary J.; Kimura, Marcia L.; Fischer, Christopher M.

    2012-01-18

    Resolution of the nation's high-level tank waste legacy requires the design, construction, and operation of large and technically complex one-of-a-kind processing waste treatment and vitrification facilities. While the ultimate limits for waste loading and melter efficiency have yet to be defined or realized, significant reductions in glass volumes for disposal and mission life may be possible with advancements in melter technologies and/or glass formulations. This test report describes the experimental results from a small-scale test using the research-scale melter (RSM) at Pacific Northwest National Laboratory (PNNL) to demonstrate the viability of iron-phosphate-based glass with a selected waste composition that ismore » high in sulfate (4.37 wt% SO3). The primary objective of the test was to develop data to support a cost-benefit analysis related to the implementation of phosphate-based glasses for Hanford low-activity waste (LAW) and/or other high-level waste streams within the U.S. Department of Energy complex. The testing was performed by PNNL and supported by Idaho National Laboratory, Savannah River National Laboratory, Missouri University of Science and Technology, and Mo-Sci Corporation.« less

  15. Towards increased waste loading in high level waste glasses: Developing a better understanding of crystallization behavior

    DOE PAGES

    Marra, James C.; Kim, Dong -Sang

    2014-12-18

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JCHM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these ''troublesome'' waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Thus, recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized.more » Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating. The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe 2O 3 (with higher Al 2O 3). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group.« less

  16. 75 FR 1615 - Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ... DEPARTMENT OF ENERGY Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition...-Level Waste and Facilities Disposition Final Environmental Impact Statement. This document corrects an... Record of Decision: Idaho High-Level Waste and Facilities [[Page 1616

  17. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Burket, P.; Cozzi, A.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline

  18. Improved low-CPA vitrification of mouse oocytes using quartz microcapillary.

    PubMed

    Choi, Jung Kyu; Huang, Haishui; He, Xiaoming

    2015-06-01

    Cryopreservation by low-cryoprotectant (CPA) vitrification has the potential to combine all the advantages of the conventional high-CPA vitrification and slow-freezing approaches while avoiding their drawbacks. However, current low-CPA vitrification protocol for cryopreservation of oocytes requires a lengthy and multi-step procedure for unloading CPAs. In this study, we report a much-simplified procedure of using quartz microcapillary (QMC) for low-CPA vitrification of mouse oocytes with only one step for unloading CPAs. The immediate viability of oocytes after the improved low-CPA vitrification was determined to be more than 90%. Moreover, no significant difference was observed in terms of embryonic development from the two-cell to blastocyst stages between the fresh and vitrified oocytes after in vitro fertilization (IVF). This improved low-CPA vitrification technology has the potential for efficient cryopreservation of oocytes to preserve the fertility of mammals including humans for assisted reproductive medicine, maintenance of animal resource and endangered species, and livestock management. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOEpatents

    Doherty, J.P.; Marek, J.C.

    1987-02-25

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

  20. Development of a High Level Waste Tank Inspection System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, D.K.; Loibl, M.W.; Meese, D.C.

    1995-03-21

    The Westinghouse Savannah River Technology Center was requested by it`s sister site, West Valley Nuclear Service (WVNS), to develop a remote inspection system to gather wall thickness readings of their High Level Waste Tanks. WVNS management chose to take a proactive approach to gain current information on two tanks t hat had been in service since the early 70`s. The tanks contain high level waste, are buried underground, and have only two access ports to an annular space between the tank and the secondary concrete vault. A specialized remote system was proposed to provide both a visual surveillance and ultrasonicmore » thickness measurements of the tank walls. A magnetic wheeled crawler was the basis for the remote delivery system integrated with an off-the-shelf Ultrasonic Data Acquisition System. A development program was initiated for Savannah River Technology Center (SRTC) to design, fabricate, and test a remote system based on the Crawler. The system was completed and involved three crawlers to perform the needed tasks, an Ultrasonic Crawler, a Camera Crawler, and a Surface Prep Crawler. The crawlers were computer controlled so that their operation could be done remotely and their position on the wall could be tracked. The Ultrasonic Crawler controls were interfaced with ABB Amdata`s I-PC, Ultrasonic Data Acquisition System so that thickness mapping of the wall could be obtained. A second system was requested by Westinghouse Savannah River Company (WSRC), to perform just ultrasonic mapping on their similar Waste Storage Tanks; however, the system needed to be interfaced with the P-scan Ultrasonic Data Acquisition System. Both remote inspection systems were completed 9/94. Qualifications tests were conducted by WVNS prior to implementation on the actual tank and tank development was achieved 10/94. The second inspection system was deployed at WSRC 11/94 with success, and the system is now in continuous service inspecting the remaining high level waste tanks

  1. Final Report - Crystal Settling, Redox, and High Temperature Properties of ORP HLW and LAW Glasses, VSL-09R1510-1, Rev. 0, dated 6/18/09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Wang, C.; Gan, H.

    2013-11-13

    The radioactive tank waste treatment programs at the U. S. Department of Energy (DOE) have featured joule heated ceramic melter technology for the vitrification of high level waste (HLW). The Hanford Tank Waste Treatment and Immobilization Plant (WTP) employs this same basic technology not only for the vitrification of HLW streams but also for the vitrification of Low Activity Waste (LAW) streams. Because of the much greater throughput rates required of the WTP as compared to the vitrification facilities at the West Valley Demonstration Project (WVDP) or the Defense Waste Processing Facility (DWPF), the WTP employs advanced joule heated meltersmore » with forced mixing of the glass pool (bubblers) to improve heat and mass transport and increase melting rates. However, for both HLW and LAW treatment, the ability to increase waste loadings offers the potential to significantly reduce the amount of glass that must be produced and disposed and, therefore, the overall project costs. This report presents the results from a study to investigate several glass property issues related to WTP HLW and LAW vitrification: crystal formation and settling in selected HLW glasses; redox behavior of vanadium and chromium in selected LAW glasses; and key high temperature thermal properties of representative HLW and LAW glasses. The work was conducted according to Test Plans that were prepared for the HLW and LAW scope, respectively. One part of this work thus addresses some of the possible detrimental effects due to considerably higher crystal content in waste glass melts and, in particular, the impact of high crystal contents on the flow property of the glass melt and the settling rate of representative crystalline phases in an environment similar to that of an idling glass melter. Characterization of vanadium redox shifts in representative WTP LAW glasses is the second focal point of this work. The third part of this work focused on key high temperature thermal properties of

  2. Glass Waste Forms for Oak Ridge Tank Wastes: Fiscal Year 1998 Report for Task Plan SR-16WT-31, Task B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, M.K.

    1999-05-10

    Using ORNL information on the characterization of the tank waste sludges, SRTC performed extensive bench-scale vitrification studies using simulants. Several glass systems were tested to ensure the optimum glass composition (based on the glass liquidus temperature, viscosity and durability) is determined. This optimum composition will balance waste loading, melt temperature, waste form performance and disposal requirements. By optimizing the glass composition, a cost savings can be realized during vitrification of the waste. The preferred glass formulation was selected from the bench-scale studies and recommended to ORNL for further testing with samples of actual OR waste tank sludges.

  3. Source term evaluation model for high-level radioactive waste repository with decay chain build-up.

    PubMed

    Chopra, Manish; Sunny, Faby; Oza, R B

    2016-09-18

    A source term model based on two-component leach flux concept is developed for a high-level radioactive waste repository. The long-lived radionuclides associated with high-level waste may give rise to the build-up of activity because of radioactive decay chains. The ingrowths of progeny are incorporated in the model using Bateman decay chain build-up equations. The model is applied to different radionuclides present in the high-level radioactive waste, which form a part of decay chains (4n to 4n + 3 series), and the activity of the parent and daughter radionuclides leaching out of the waste matrix is estimated. Two cases are considered: one when only parent is present initially in the waste and another where daughters are also initially present in the waste matrix. The incorporation of in situ production of daughter radionuclides in the source is important to carry out realistic estimates. It is shown that the inclusion of decay chain build-up is essential to avoid underestimation of the radiological impact assessment of the repository. The model can be a useful tool for evaluating the source term of the radionuclide transport models used for the radiological impact assessment of high-level radioactive waste repositories.

  4. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    DOEpatents

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  5. High-level waste borosilicate glass: A compendium of corrosion characteristics. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunnane, J.C.; Bates, J.K.; Bradley, C.R.

    The objective of this document is to summarize scientific information pertinent to evaluating the extent to which high-level waste borosilicate glass corrosion and the associated radionuclide release processes are understood for the range of environmental conditions to which waste glass may be exposed in service. Alteration processes occurring within the bulk of the glass (e.g., devitrification and radiation-induced changes) are discussed insofar as they affect glass corrosion.This document is organized into three volumes. Volumes I and II represent a tiered set of information intended for somewhat different audiences. Volume I is intended to provide an overview of waste glass corrosion,more » and Volume 11 is intended to provide additional experimental details on experimental factors that influence waste glass corrosion. Volume III contains a bibliography of glass corrosion studies, including studies that are not cited in Volumes I and II. Volume I is intended for managers, decision makers, and modelers, the combined set of Volumes I, II, and III is intended for scientists and engineers working in the field of high-level waste.« less

  6. Chem I Supplement. Chemistry Related to Isolation of High-Level Nuclear Waste.

    ERIC Educational Resources Information Center

    Hoffman, Darleane C.; Choppin, Gregory R.

    1986-01-01

    Discusses some of the problems associated with the safe disposal of high-level nuclear wastes. Describes several waste disposal plans developed by various nations. Outlines the multiple-barrier concept of isolation in deep geological questions associated with the implementation of such a method. (TW)

  7. Product/Process (P/P) Models For The Defense Waste Processing Facility (DWPF): Model Ranges And Validation Ranges For Future Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Edwards, T.

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-compositionmore » models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository.« less

  8. Corrosion Management of the Hanford High-Level Nuclear Waste Tanks

    NASA Astrophysics Data System (ADS)

    Beavers, John A.; Sridhar, Narasi; Boomer, Kayle D.

    2014-03-01

    The Hanford site is located in southeastern Washington State and stores more than 200,000 m3 (55 million gallons) of high-level radioactive waste resulting from the production and processing of plutonium. The waste is stored in large carbon steel tanks that were constructed between 1943 and 1986. The leak and structurally integrity of the more recently constructed double-shell tanks must be maintained until the waste can be removed from the tanks and encapsulated in glass logs for final disposal in a repository. There are a number of corrosion-related threats to the waste tanks, including stress-corrosion cracking, pitting corrosion, and corrosion at the liquid-air interface and in the vapor space. This article summarizes the corrosion management program at Hanford to mitigate these threats.

  9. Separating and stabilizing phosphate from high-level radioactive waste: process development and spectroscopic monitoring.

    PubMed

    Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G

    2012-06-05

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

  10. Behavior of radioactive iodine and technetium in the spray calcination of high-level waste

    NASA Astrophysics Data System (ADS)

    Knox, C. A.; Farnsworth, R. K.

    1981-08-01

    The Remote Laboratory-Scale Waste Treatment Facility (RLSWTF) was designed and built as a part of the High-Level Waste Immobilization Program (now the High-Level Waste Process Development Program) at the Pacific Northwest Laboratory. In facility, installed in a radiochemical cell, is described in which installed in a radiochemical cell is described in which small volumes of radioactive liquid wastes can be solidified, the process off gas can be analyzed, and the methods for decontaminating this off gas can be tested. During the spray calcination of commercial high-level liquid waste spiked with Tc-99 and I-131 and 31 wt% loss of I-131 past the sintered-metal filters. These filters and venturi scrubber were very efficient in removing particulates and Tc-99 from the the off-gas stream. Liquid scrubbers were not efficient in removing I-131 as 25% of the total lost went to the building off-gas system. Therefore, solid adsorbents are needed to remove iodine. For all future operations where iodine is present, a silver zeolite adsorber is to be used.

  11. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Screening Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westsik, Joseph H.; Piepel, Gregory F.; Lindberg, Michael J.

    2013-09-30

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in themore » HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second LAW immobilization facility will be needed for the expected volume of LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the

  12. Effective Oocyte Vitrification and Survival Techniques for Bovine Somatic Cell Nuclear Transfer

    PubMed Central

    Park, Min Jee; Lee, Seung Eun; Lee, Jun Beom; Jeong, Chang Jin

    2015-01-01

    Abstract Bovine somatic cell nuclear transfer (SCNT) using vitrified–thawed (VT) oocytes has been studied; however, the cloning efficiency of these oocytes is not comparable with that of nonvitrified (non-V) fresh oocytes. This study sought to optimize the survival and cryopreservation of VT oocytes for SCNT. Co-culture with feeder cells that had been preincubated for 15 h significantly improved the survival of VT oocytes and their in vitro developmental potential following SCNT in comparison to co-culture with feeder cells that had been preincubated for 2, 5, or 24 h (p<0.05). Spindle assessment via the Oosight Microscopy Imaging System and microtubule staining revealed that vitrified metaphase II oocytes (VT group) were not suitable for SCNT. However, enucleating and/or activating oocytes prior to freezing enhanced their developmental potential and suitability for SCNT. The cloning efficiency of the enucleated–activated–vitrified–thawed (EAVT) group (21.6%) was better than that of the other vitrification groups [enucleated–vitrified–thawed (EVT) group, 13.7%; VT group, 15.0%; p<0.05] and was comparable with that of the non-V group (25.9%). The reactive oxygen species level was significantly lower in the EAVT group than in the other vitrification groups (p<0.05). mRNA levels of maternal genes (ZAR1, BMP15, and NLRP5) and a stress gene (HSF1) were lower in the vitrification groups than in the non-V group (p<0.05), whereas the level of phospho-p44/42 mitogen-activated protein kinase did not differ among the groups. Among the vitrification groups, blastocysts in the EAVT group had the best developmental potential, as judged by their high mRNA expression of developmental potential–related genes (POU5f1, Interferon-tau, and SLC2A5) and their low expression of proapoptotic (CASP3) and stress (Hsp70) genes. This study demonstrates that SCNT using bovine frozen–thawed oocytes can be successfully achieved using optimized vitrification and co

  13. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM- 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B; Ruel Waltz, R

    2008-06-05

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. The 2007 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. A very small amount of material had seeped from Tank 12 from a previously identified leaksite. The material observed had dried on the tank wall and did not reach the annulus floor. A total of 5945 photographs were made and 1221 visual and video inspections were performed during 2007. Additionally, ultrasonic testing was performed on four Waste Tanksmore » (15, 36, 37 and 38) in accordance with approved inspection plans that met the requirements of WSRC-TR-2002- 00061, Revision 2 'In-Service Inspection Program for High Level Waste Tanks'. The Ultrasonic Testing (UT) In-Service Inspections (ISI) are documented in a separate report that is prepared by the ISI programmatic Level III UT Analyst. Tanks 15, 36, 37 and 38 are documented in 'Tank Inspection NDE Results for Fiscal Year 2007'; WSRC-TR-2007-00064.« less

  14. [Influence of liquid ceramic additive on binding of heavy metal during the vitrification of fly ash from municipal solid waste incinerator].

    PubMed

    Li, Run-dong; Nie, Yong-feng; Li, Ai-min; Wang, Lei; Chi, Yong; Cen, Ke-fa

    2004-09-01

    Vitrification process can effectively control the leachability of heavy metals in fly ash generated from municipal solid waste incinerator (MWSI). The use of liquid ceramic (LC) additive as a heavy metal chemical stabilization agent was evaluated for MSWI fly ash. The residuals of chromium, lead and zinc in slag increase by different degree with liquid ceramic additive at 1400 degrees C, while those of cadmium and copper decreases. The migrating characteristic of nickel is hardly affected by the additive less than 10%. The volatilization of Cr and Zn occurs after 61 minute with 10% addition of LC, and the binding efficiency of Cr decreases with increasing of melting temperature. The results indicate that the binding efficiency of heavy metals was affected greatly by LC additive and showed significant differences according to type of heavy metal during melting process. The short melting time (no longer than 33 min) is useful to obtain high binding efficiency of heavy metals.

  15. Burning high-level TRU waste in fusion fission reactors

    NASA Astrophysics Data System (ADS)

    Shen, Yaosong

    2016-09-01

    Recently, the concept of actinide burning instead of a once-through fuel cycle for disposing spent nuclear fuel seems to get much more attention. A new method of burning high-level transuranic (TRU) waste combined with Thorium-Uranium (Th-U) fuel in the subcritical reactors driven by external fusion neutron sources is proposed in this paper. The thorium-based TRU fuel burns all of the long-lived actinides via a hard neutron spectrum while outputting power. A one-dimensional model of the reactor concept was built by means of the ONESN_BURN code with new data libraries. The numerical results included actinide radioactivity, biological hazard potential, and much higher burnup rate of high-level transuranic waste. The comparison of the fusion-fission reactor with the thermal reactor shows that the harder neutron spectrum is more efficient than the soft. The Th-U cycle produces less TRU, less radiotoxicity and fewer long-lived actinides. The Th-U cycle provides breeding of 233U with a long operation time (>20 years), hence significantly reducing the reactivity swing while improving safety and burnup.

  16. Evaluation of Vitrification Processing Step for Rocky Flats Incinerator Ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wigent, W.L.; Luey, J.K.; Scheele, R.D.

    In 1997, Pacific Northwest National Laboratory (PNNL) staff developed a processing option for incinerator ash at the Rocky Flats Environmental Technology Sites (RFETS). This work was performed with support from Los Alamos National Laboratory (LANL) and Safe Sites of Colorado (SSOC). A description of the remediation needs for the RFETS incinerator ash is provided in a report summarizing the recommended processing option for treatment of the ash (Lucy et al. 1998). The recommended process flowsheet involves a calcination pretreatment step to remove carbonaceous material followed by a vitrification processing step for a mixture of glass tit and calcined incinerator ash.more » Using the calcination pretreatment step to remove carbonaceous material reduced process upsets for the vitrification step, allowed for increased waste loading in the final product, and improved the quality of the final product. Figure 1.1 illustrates the flow sheet for the recommended processing option for treatment of RFETS incinerator ash. In 1998, work at PNNL further developed the recommended flow sheet through a series of studies to better define the vitrification operating parameters and to address secondary processing issues (such as characterizing the offgas species from the calcination process). Because a prototypical rotary calciner was not available for use, studies to evaluate the offgas from the calcination process were performed using a benchtop rotary calciner and laboratory-scale equipment (Lucy et al. 1998). This report focuses on the vitrification process step after ash has been calcined. Testing with full-scale containers was performed using ash surrogates and a muffle furnace similar to that planned for use at RFETS. Small-scale testing was performed using plutonium-bearing incinerator ash to verify performance of the waste form. Ash was not obtained from RFETS because of transportation requirements to calcine the incinerator ash prior to shipment of the material. Because

  17. Vitrification as an alternative means of cryopreserving ovarian tissue.

    PubMed

    Amorim, Christiani A; Curaba, Mara; Van Langendonckt, Anne; Dolmans, Marie-Madeleine; Donnez, Jacques

    2011-08-01

    Because of the simplicity of vitrification, many authors have investigated it as an alternative to slow freezing for cryopreserving ovarian tissue. In the last decade, numerous studies have evaluated vitrification of ovarian tissue from both humans and animals.Different vitrification solutions and protocols, mostly adapted from embryo and oocyte vitrification, have been applied. The results have been discrepant from species to species and even within the same species, but lately they appear to indicate that vitrification can achieve similar or even superior results to conventional freezing. Despite the encouraging results obtained with vitrification of ovarian tissue from humans and different animal species, it is necessary to understand how vitrification solutions and protocols can affect ovarian tissue, notably preantral follicles. In addition, it is important to bear in mind that the utilization of different approaches to assess tissue functionality and oocyte quality is essential in order to validate the promising results already obtained with vitrification procedures. This review summarizes the principles of vitrification, discusses the advantages of vitrification protocols for ovarian tissue cryopreservation and describes different studies conducted on the vitrification of ovarian tissue in humans and animal species. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  18. High-level waste tank farm set point document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, J.A. III

    1995-01-15

    Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREASmore » listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.« less

  19. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    DOEpatents

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  20. Defense Waste Processing Facility (DWPF) Durability-Composition Models and the Applicability of the Associated Reduction of Constraints (ROC) Criteria for High TiO 2 Containing Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.; Trivelpiece, C. L.

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the DWPF since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it has been poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than relying on statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models formmore » the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to determine, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). One of the process models within PCCS is known as the Thermodynamic Hydration Energy Reaction MOdel (THERMO™). The DWPF will soon be receiving increased concentrations of TiO 2-, Na 2O-, and Cs 2O-enriched wastes from the Salt Waste Processing Facility (SWPF). The SWPF has been built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to validate the existing TiO 2 term in THERMO™ beyond 2.0 wt% in the DWPF, new durability data were developed over the target range of 2.00 to 6.00 wt% TiO 2 and evaluated against the 1995 durability model. The durability was measured by the 7-day Product Consistency Test. This study documents the adequacy of the existing THERMO™ terms. It is recommended that the modified THERMO™ durability models and the modified property acceptable region

  1. HIGH INCIDENCE OF POLYSPERMIC FERTILIZATION IN BOVINE OOCYTES MATURED IN VITRO AFTER CRYOTOP VITRIFICATION.

    PubMed

    Hwang, In-Sul; Kwon, Dae-Jin; Im, Gi-Sun; Tashima, Kazuya; Hochi, Shinichi; Hwang, Seongsoo

    2016-01-01

    Vitrification with the Cryotop device is the most promising technique for oocyte cryopreservation, but the high post-warming morphological survival of bovine oocytes does not guarantee high developmental competence after in vitro fertilization (IVF). This study was designed to examine achievement of normal fertilization in bovine oocytes vitrified-warmed with the Cryotop device. Oocytes were matured in vitro and vitrified-warmed after complete removal of the cumulus layers. Distribution of cortical granules (CGs) was assessed by Lens culinaris agglutinin (LCA) lectin staining. Ten hours after IVF, presumptive zygotes were analyzed for pronuclear formation. Day-8 blastocysts were harvested and stained with Hoechst-33342 for total cell counting. Both yield and mean cell number of the blastocysts were impaired by Cryotop vitrification. Incidence of polyspermic fertilization was three-times higher in vitrified oocytes compared to fresh oocytes. No difference in CG distribution was found between vitrified and fresh oocytes. Polyspermic fertilization induced in vitrified-warmed bovine oocytes may be one of the possible causes responsible for their low developmental potential.

  2. CHEMICAL ANALYSIS OF SIMULATED HIGH LEVEL WASTE GLASSES TO SUPPORT SULFATE SOLUBILITY MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Marra, J.

    2014-08-14

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms both within the DOE complex and to some extent at U.K. sites. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerated cleanup missions. Much of the previous work on improving sulfate retention in waste glasses has been done on an empirical basis, making itmore » difficult to apply the findings to future waste compositions despite the large number of glass systems studied. A more fundamental, rather than empirical, model of sulfate solubility in glass, under development at Sheffield Hallam University (SHU), could provide a solution to the issues of sulfate solubility. The model uses the normalized cation field strength index as a function of glass composition to predict sulfate capacity, and has shown early success for some glass systems. The objective of the current scope is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DOE waste vitrification efforts, allowing for enhanced waste loadings and waste throughput. A series of targeted glass compositions was selected to resolve data gaps in the current model. SHU fabricated these glasses and sent samples to the Savannah River National Laboratory (SRNL) for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for simulated waste glasses fabricated SHU in support of sulfate solubility model development. A review of the measured compositions revealed that there are issues with the B{sub 2}O{sub 3} and Fe{sub 2}O{sub 3

  3. Emerging technologies in medical applications of minimum volume vitrification

    PubMed Central

    Zhang, Xiaohui; Catalano, Paolo N; Gurkan, Umut Atakan; Khimji, Imran; Demirci, Utkan

    2011-01-01

    Cell/tissue biopreservation has broad public health and socio-economic impact affecting millions of lives. Cryopreservation technologies provide an efficient way to preserve cells and tissues targeting the clinic for applications including reproductive medicine and organ transplantation. Among these technologies, vitrification has displayed significant improvement in post-thaw cell viability and function by eliminating harmful effects of ice crystal formation compared to the traditional slow freezing methods. However, high cryoprotectant agent concentrations are required, which induces toxicity and osmotic stress to cells and tissues. It has been shown that vitrification using small sample volumes (i.e., <1 μl) significantly increases cooling rates and hence reduces the required cryoprotectant agent levels. Recently, emerging nano- and micro-scale technologies have shown potential to manipulate picoliter to nanoliter sample sizes. Therefore, the synergistic integration of nanoscale technologies with cryogenics has the potential to improve biopreservation methods. PMID:21955080

  4. Electrochemical probing of high-level radioactive waste tanks containing washed sludge and precipitates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1987-01-01

    At the U.S. Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assessmore » the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition.« less

  5. Property evolution during vitrification of dimethacrylate photopolymer networks.

    PubMed

    Abu-elenain, Dalia A; Lewis, Steven H; Stansbury, Jeffrey W

    2013-11-01

    This study seeks to correlate the interrelated properties of conversion, shrinkage, modulus and stress as dimethacrylate networks transition from rubbery to glassy states during photopolymerization. An unfilled BisGMA/TEGDMA resin was photocured for various irradiation intervals (7-600 s) to provide controlled levels of immediate conversion, which was monitored continuously for 10 min. Fiber optic near-infrared spectroscopy permitted coupling of real-time conversion measurement with dynamic polymerization shrinkage (linometer), modulus (dynamic mechanical analyzer) and stress (tensometer) development profiles. The varied irradiation conditions produced final conversion ranging from 6% to more than 60%. Post-irradiation conversion (dark cure) was quite limited when photopolymerization was interrupted either at very low or very high levels of conversion while significant dark cure contributions were possible for photocuring reactions suspended within the post-gel, rubbery regime. Analysis of conversion-based property evolution during and subsequent to photocuring demonstrated that the shrinkage rate increased significantly at about 40% conversion followed by late-stage suppression in the conversion-dependent shrinkage rate that begins at about 45-50% conversion. The gradual vitrification process over this conversion range is evident based on the broad but well-defined inflection in the modulus versus conversion data. As limiting conversion is approached, modulus and, to a somewhat lesser extent, stress rise precipitously as a result of vitrification with the stress profile showing little if any late-stage suppression as seen with shrinkage. Near the limiting conversion for this model resin, the volumetric polymerization shrinkage rate slows while an exponential rise in modulus promotes the vitrification process that appears to largely dictate stress development. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Property evolution during vitrification of dimethacrylate photopolymer networks

    PubMed Central

    Abu-Elenain, Dalia; Lewis, Steven H.; Stansbury, Jeffrey W.

    2013-01-01

    Objectives This study seeks to correlate the interrelated properties of conversion, shrinkage, modulus and stress as dimethacrylate networks transition from rubbery to glassy states during photopolymerization. Methods An unfilled BisGMA/TEGDMA resin was photocured for various irradiation intervals (7–600 s) to provide controlled levels of immediate conversion, which was monitored continuously for 10 min. Fiber optic near-infrared spectroscopy permitted coupling of real-time conversion measurement with dynamic polymerization shrinkage (linometer), modulus (dynamic mechanical analyzer) and stress (tensometer) development profiles. Results The varied irradiation conditions produced final conversion ranging from 6 % to more than 60 %. Post-irradiation conversion (dark cure) was quite limited when photopolymerization was interrupted either at very low or very high levels of conversion while significant dark cure contributions were possible for photocuring reactions suspended within the post-gel, rubbery regime. Analysis of conversion-based property evolution during and subsequent to photocuring demonstrated that the shrinkage rate increased significantly at about 40 % conversion followed by late-stage suppression in the conversion-dependent shrinkage rate that begins at about 45–50 % conversion. The gradual vitrification process over this conversion range is evident based on the broad but well-defined inflection in the modulus versus conversion data. As limiting conversion is approached, modulus and, to a somewhat lesser extent, stress rise precipitously as a result of vitrification with the stress profile showing little if any late-stage suppression as seen with shrinkage. Significance Near the limiting conversion for this model resin, the volumetric polymerization shrinkage rate slows while an exponential rise in modulus promotes the vitrification process that appears to largely dictate stress development. PMID:24080378

  7. FERRATE TREATMENT FOR REMOVING CHROMIUM FROM HIGH-LEVEL RADIOACTIVE TANK WASTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylvester, Paul; Rutherford, Andy; Gonzalez-Martin, Anuncia

    2000-12-01

    A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(III) molar ratio, but the chromium removal tends to level out for Fe(VI)/Cr(III) greater than 10.more » Increasing temperature leads to better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be handled as low-activity waste.« less

  8. Apparatus for in situ heating and vitrification

    DOEpatents

    Buelt, James L.; Oma, Kenton H.; Eschbach, Eugene A.

    1994-01-01

    An apparatus for decontaminating ground areas where toxic chemicals are buried includes a plurality of spaced electrodes located in the ground and to which a voltage is applied for bringing about current flow. Power delivered to the ground volatilizes the chemicals that are then collected and directed to a gas treatment system. A preferred form of the invention employs high voltage arc discharge between the electrodes for heating a ground region to relatively high temperatures at relatively low power levels. Electrodes according to the present invention are provided with preferentially active lower portions between which current flows for the purpose of soil heating or for soil melting and vitrification. Promoting current flow below ground level avoids predominantly superficial treatment and increases electrode life.

  9. Apparatus for in situ heating and vitrification

    DOEpatents

    Buelt, J.L.; Oma, K.H.; Eschbach, E.A.

    1994-05-31

    An apparatus for decontaminating ground areas where toxic chemicals are buried includes a plurality of spaced electrodes located in the ground and to which a voltage is applied for bringing about current flow. Power delivered to the ground volatilizes the chemicals that are then collected and directed to a gas treatment system. A preferred form of the invention employs high voltage arc discharge between the electrodes for heating a ground region to relatively high temperatures at relatively low power levels. Electrodes according to the present invention are provided with preferentially active lower portions between which current flows for the purpose of soil heating or for soil melting and vitrification. Promoting current flow below ground level avoids predominantly superficial treatment and increases electrode life. 15 figs.

  10. Simulation of radioelement volatility during the vitrification of radioactive wastes by arc plasma.

    PubMed

    Ghiloufi, Imed

    2009-04-15

    A computer model is used to simulate the volatility of some radioelements cesium ((137)Cs), cobalt ((60)Co), and ruthenium ((106)Ru) during the radioactive wastes vitrification by thermal plasma. This model is based on the calculation of system composition using the free enthalpy minimization method, coupled with the equation of mass transfer at the reactional interface. The model enables the determination of the effects of various parameters (e.g., temperature, plasma current, and matrix composition) on the radioelement volatility. The obtained results indicate that any increase in molten bath temperature causes an increase in the cobalt volatility; while ruthenium has a less obvious behavior. It is also found that the oxygen flux in the carrier gas supports the radioelement incorporations in the containment matrix, except in the case of the ruthenium which is more volatile under an oxidizing atmosphere. For electrolyses effects, an increase in the plasma current considerably increases both the vaporization speed and the vaporized quantities of (137)Cs and (60)Co. The increase of silicon percentage in the containment matrix supports the incorporation of (60)Co and (137)Cs in the matrix. The simulation results are compared favorably to the experimental measurements obtained by emission spectroscopy.

  11. Specifying the Concept of Future Generations for Addressing Issues Related to High-Level Radioactive Waste.

    PubMed

    Kermisch, Celine

    2016-12-01

    The nuclear community frequently refers to the concept of "future generations" when discussing the management of high-level radioactive waste. However, this notion is generally not defined. In this context, we have to assume a wide definition of the concept of future generations, conceived as people who will live after the contemporary people are dead. This definition embraces thus each generation following ours, without any restriction in time. The aim of this paper is to show that, in the debate about nuclear waste, this broad notion should be further specified and to clarify the related implications for nuclear waste management policies. Therefore, we provide an ethical analysis of different management strategies for high-level waste in the light of two principles, protection of future generations-based on safety and security-and respect for their choice. This analysis shows that high-level waste management options have different ethical impacts across future generations, depending on whether the memory of the waste and its location is lost, or not. We suggest taking this distinction into account by introducing the notions of "close future generations" and "remote future generations", which has important implications on nuclear waste management policies insofar as it stresses that a retrievable disposal has fewer benefits than usually assumed.

  12. Cryopreservation: Vitrification and Controlled Rate Cooling.

    PubMed

    Hunt, Charles J

    2017-01-01

    Cryopreservation is the application of low temperatures to preserve the structural and functional integrity of cells and tissues. Conventional cooling protocols allow ice to form and solute concentrations to rise during the cryopreservation process. The damage caused by the rise in solute concentration can be mitigated by the use of compounds known as cryoprotectants. Such compounds protect cells from the consequences of slow cooling injury, allowing them to be cooled at cooling rates which avoid the lethal effects of intracellular ice. An alternative to conventional cooling is vitrification. Vitrification methods incorporate cryoprotectants at sufficiently high concentrations to prevent ice crystallization so that the system forms an amorphous glass thus avoiding the damaging effects caused by conventional slow cooling. However, vitrification too can impose damaging consequences on cells as the cryoprotectant concentrations required to vitrify cells at lower cooling rates are potentially, and often, harmful. While these concentrations can be lowered to nontoxic levels, if the cells are ultra-rapidly cooled, the resulting metastable system can lead to damage through devitrification and growth of ice during subsequent storage and rewarming if not appropriately handled.The commercial and clinical application of stem cells requires robust and reproducible cryopreservation protocols and appropriate long-term, low-temperature storage conditions to provide reliable master and working cell banks. Though current Good Manufacturing Practice (cGMP) compliant methods for the derivation and banking of clinical grade pluripotent stem cells exist and stem cell lines suitable for clinical applications are available, current cryopreservation protocols, whether for vitrification or conventional slow freezing, remain suboptimal. Apart from the resultant loss of valuable product that suboptimal cryopreservation engenders, there is a danger that such processes will impose a selective

  13. Commercial high-level-waste management: Options and economics. A comparative analysis of the ceramic and glass waste forms

    NASA Astrophysics Data System (ADS)

    McKisson, R. L.; Grantham, L. F.; Guon, J.; Recht, H. L.

    1983-02-01

    Results of an estimate of the waste management costs of the commercial high level waste from a 3000 metric ton per year reprocessing plant show that the judicious use of the ceramic waste form can save about $2 billion during a 20 year operating campaign relative to the use of the glass waste form. This assumes PWR fuel is processed and the waste is encapsulated in 0.305-m-diam canisters with ultimate emplacement in a BWIP-type horizontal-borehole repository. Waste loading and waste form density are the driving factors in that the low waste loading (25%) and relatively low density (3.1 g cu cm) characteristic of the glass form require several times as many canisters to handle a given waste throughput than is needed for the ceramic waste form whose waste loading capability exceeds 60% and whose waste density is nominally 5.2 cu cm.

  14. Defense waste processing facility (DWPF) liquids model: revisions for processing higher TIO 2 containing glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.; Trivelpiece, C. L.

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-compositionmore » models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. This report documents the development of revised TiO 2, Na 2O, Li 2O and Fe 2O 3 coefficients in the SWPF liquidus model and revised coefficients (a, b, c, and d).« less

  15. Aseptic minimum volume vitrification technique for porcine parthenogenetically activated blastocyst.

    PubMed

    Lin, Lin; Yu, Yutao; Zhang, Xiuqing; Yang, Huanming; Bolund, Lars; Callesen, Henrik; Vajta, Gábor

    2011-01-01

    Minimum volume vitrification may provide extremely high cooling and warming rates if the sample and the surrounding medium contacts directly with the respective liquid nitrogen and warming medium. However, this direct contact may result in microbial contamination. In this work, an earlier aseptic technique was applied for minimum volume vitrification. After equilibration, samples were loaded on a plastic film, immersed rapidly into factory derived, filter-sterilized liquid nitrogen, and sealed into sterile, pre-cooled straws. At warming, the straw was cut, the filmstrip was immersed into a 39 degree C warming medium, and the sample was stepwise rehydrated. Cryosurvival rates of porcine blastocysts produced by parthenogenetical activation did not differ from control, vitrified blastocysts with Cryotop. This approach can be used for minimum volume vitrification methods and may be suitable to overcome the biological dangers and legal restrictions that hamper the application of open vitrification techniques.

  16. Socioeconomic studies of high-level nuclear waste disposal.

    PubMed Central

    White, G F; Bronzini, M S; Colglazier, E W; Dohrenwend, B; Erikson, K; Hansen, R; Kneese, A V; Moore, R; Page, E B; Rappaport, R A

    1994-01-01

    The socioeconomic investigations of possible impacts of the proposed repository for high-level nuclear waste at Yucca Mountain, Nevada, have been unprecedented in several respects. They bear on the public decision that sooner or later will be made as to where and how to dispose permanently of the waste presently at military weapons installations and that continues to accumulate at nuclear power stations. No final decision has yet been made. There is no clear precedent from other countries. The organization of state and federal studies is unique. The state studies involve more disciplines than any previous efforts. They have been carried out in parallel to federal studies and have pioneered in defining some problems and appropriate research methods. A recent annotated bibliography provides interested scientists with a compact guide to the 178 published reports, as well as to relevant journal articles and related documents. PMID:7971963

  17. Yucca Mountain, Nevada - A proposed geologic repository for high-level radioactive waste

    USGS Publications Warehouse

    Levich, R.A.; Stuckless, J.S.

    2006-01-01

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation. ?? 2007 Geological Society of America. All rights reserved.

  18. Turning nuclear waste into glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  19. Ferrate treatment for removing chromium from high-level radioactive tank waste.

    PubMed

    Sylvester, P; Rutherford, L A; Gonzalez-Martin, A; Kim, J; Rapko, B M; Lumetta, G J

    2001-01-01

    A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. This method could be generally applicable to removing chromium from chromium-contaminated solids, when coupled with a subsequent reduction of the separated chromate back to chromium(III). The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(II) molar ratio, but the chromium removal tends to level out for Fe(VI)/ Cr(III) greaterthan 10. Increasingtemperature leadsto better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be disposed as low-activity waste.

  20. Determination of Intracellular Vitrification Temperatures for Unicellular Micro Organisms under Conditions Relevant for Cryopreservation.

    PubMed

    Fonseca, Fernanda; Meneghel, Julie; Cenard, Stéphanie; Passot, Stéphanie; Morris, G John

    2016-01-01

    During cryopreservation ice nucleation and crystal growth may occur within cells or the intracellular compartment may vitrify. Whilst previous literature describes intracellular vitrification in a qualitative manner, here we measure the intracellular vitrification temperature of bacteria and yeasts under conditions relevant to cryopreservation, including the addition of high levels of permeating and nonpermeating additives and the application of rapid rates of cooling. The effects of growth conditions that are known to modify cellular freezing resistance on the intracellular vitrification temperature are also examined. For bacteria a plot of the activity on thawing against intracellular glass transition of the maximally freeze-concentrated matrix (Tg') shows that cells with the lowest value of intracellular Tg' survive the freezing process better than cells with a higher intracellular Tg'. This paper demonstrates the role of the physical state of the intracellular environment in determining the response of microbial cells to preservation and could be a powerful tool to be manipulated to allow the optimization of methods for the preservation of microorganisms.

  1. Mercury Phase II Study - Mercury Behavior across the High-Level Waste Evaporator System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.; Crawford, C. L.; Jackson, D. G.

    2016-06-17

    The Mercury Program team’s effort continues to develop more fundamental information concerning mercury behavior across the liquid waste facilities and unit operations. Previously, the team examined the mercury chemistry across salt processing, including the Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU), and the Defense Waste Processing Facility (DWPF) flowsheets. This report documents the data and understanding of mercury across the high level waste 2H and 3H evaporator systems.

  2. Cellular damage suffered by equine embryos after exposure to cryoprotectants or cryopreservation by slow-freezing or vitrification.

    PubMed

    Hendriks, W K; Roelen, B A J; Colenbrander, B; Stout, T A E

    2015-11-01

    Equine embryos are cryopreserved by slow-freezing or vitrification. While small embryos (<300 μm) survive cryopreservation reasonably well, larger embryos do not. It is not clear if slow-freezing or vitrification is less damaging to horse embryos. To compare the type and extent of cellular damage suffered by small and large embryos during cryopreservation by slow-freezing vs. vitrification. Sixty-three Day 6.5-7 embryos were subdivided by size and assigned to one of 5 treatments: control, exposure to slow-freezing or vitrification cryoprotectants (CPs), and cryopreservation by either technique. After thawing/CP removal, embryos were stained with fluorescent stains for various parameters of cellular integrity, and assessed by multiphoton microscopy. Exposing large embryos to vitrification CPs resulted in more dead cells (6.8 ± 1.3%: 95% confidence interval [CI], 3.1-10.4%) than exposure to slow-freezing media (0.3 ± 0.1%; 95% CI 0.0-0.6%: P = 0.001). Cryopreservation by either technique induced cell death and cytoskeleton disruption. Vitrification of small embryos resulted in a higher proportion of cells with fragmented or condensed (apoptotic) nuclei (P = 0.002) than slow-freezing (6.7 ± 1.5%, 95% CI 3.0-10.4% vs. 5.0 ± 2.1%, 95% CI 4.0-14.0%). Slow-freezing resulted in a higher incidence of disintegrated embryos (P = 0.01) than vitrification. Mitochondrial activity was low in control embryos, and was not differentially affected by cryopreservation technique, whereas vitrification changed mitochondrial distribution from a homogenous crystalline pattern in control embryos to a heterogeneous granulated distribution in vitrified embryos (P = 0.05). Cryopreservation caused more cellular damage to large embryos than smaller ones. While vitrification is more practical, it is not advisable for large embryos due to a higher incidence of dead cells. The choice is less obvious for small embryos, as vitrification led to occasionally very high

  3. Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration.

    PubMed

    Matsumoto, T; Sakai, A; Yamada, K

    1994-05-01

    In vitro-grown apical meristems of wasabi (Wasabia japonica Matsumura) were successfully cryopreserved by vitrification. Excised apical meristems precultured on solidified M S medium containing 0.3M sucrose at 20°C for 1 day were loaded with a mixture of 2M glycerol and 0.4M sucrose for 20 min at 25°C. Cryoprotected meristems were then sufficiently dehydrated with a highly concentrated vitrification solution (designated PVS2) for 10 min at 25°C prior to a plunge into liquid nitrogen. After rapid warming, the meristems were expelled into 2 ml of 1.2M sucrose for 20 min and then plated on solidified culture medium. Successfully vitrified and warmed meristems remained green after plating, resumed growth within 3 days, and directly developed shoots within two weeks. The average rate of normal shoot formation amounted to about 80 to 90% in the cryopreserved meristems. This method was successfully applied to three other cultivars of wasabi. This vitrification procedure promises to become a routine method for cryopreserving meristems of wasabi.

  4. Granite disposal of U.S. high-level radioactive waste.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeze, Geoffrey A.; Mariner, Paul E.; Lee, Joon H.

    This report evaluates the feasibility of disposing U.S. high-level radioactive waste in granite several hundred meters below the surface of the earth. The U.S. has many granite formations with positive attributes for permanent disposal. Similar crystalline formations have been extensively studied by international programs, two of which, in Sweden and Finland, are the host rocks of submitted or imminent repository license applications. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in granite media. In this report we develop scoping performance analyses, basedmore » on the applicable features, events, and processes (FEPs) identified by international investigators, to support generic conclusions regarding post-closure safety. Unlike the safety analyses for disposal in salt, shale/clay, or deep boreholes, the safety analysis for a mined granite repository depends largely on waste package preservation. In crystalline rock, waste packages are preserved by the high mechanical stability of the excavations, the diffusive barrier of the buffer, and favorable chemical conditions. The buffer is preserved by low groundwater fluxes, favorable chemical conditions, backfill, and the rigid confines of the host rock. An added advantage of a mined granite repository is that waste packages would be fairly easy to retrieve, should retrievability be an important objective. The results of the safety analyses performed in this study are consistent with the results of comprehensive safety assessments performed for sites in Sweden, Finland, and Canada. They indicate that a granite repository would satisfy established safety criteria and suggest that a small number of FEPs would largely control the release and transport of radionuclides. In the event the U.S. decides to pursue a potential repository in granite, a detailed evaluation of these FEPs would be needed to

  5. 75 FR 61228 - Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: Technical Lessons Gained From High-Level... Waste Policy Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will meet in Dulles... of Energy on technical issues and to review the technical validity of DOE activities related to...

  6. Successful ongoing pregnancies after vitrification of oocytes.

    PubMed

    Lucena, Elkin; Bernal, Diana Patricia; Lucena, Carolina; Rojas, Alejandro; Moran, Abby; Lucena, Andrés

    2006-01-01

    To demonstrate the efficiency of vitrifying mature human oocytes for different clinical indications. Descriptive case series. Cryobiology laboratory, Centro Colombiano de Fertilidad y Esterilidad-CECOLFES LTDA. (Bogotá, Colombia). Oocyte vitrification was offered as an alternative management for patients undergoing infertility treatment because of ovarian hyperstimulation syndrome, premature ovarian failure, natural ovarian failure, male factor, poor response, or oocyte donation. Mature oocytes were obtained from 33 donor women and 40 patients undergoing infertility treatment. Oocytes were retrieved by ultrasound-guided transvaginal aspiration and vitrified with the Cryotops method, with 30% ethylene glycol, 30% dimethyl sulfoxide, and 0.5 mol/L sucrose. Viability was assessed 3 hours after thawing. The surviving oocytes were inseminated by intracytoplasmic sperm injection. Fertilization was evaluated after 24 hours. The zygotes were further cultured in vitro for up to 72 hours until time of embryo transfer. Recovery, viability, fertilization, and pregnancy rates. Oocyte vitrification with the Cryotop method resulted in high rates of recovery, viability, fertilization, cleavage, and ongoing pregnancy. Vitrification with the Cryotop method is an efficient, fast, and economical method for oocyte cryopreservation that offers high rates of survival, fertilization, embryo development, and ongoing normal pregnancies, providing a new alternative for the management of female infertility.

  7. Methods of vitrifying waste with low melting high lithia glass compositions

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2001-01-01

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  8. Cleanup Verification Package for the 300 VTS Waste Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. W. Clark and T. H. Mitchell

    2006-03-13

    This cleanup verification package documents completion of remedial action for the 300 Area Vitrification Test Site, also known as the 300 VTS site. The site was used by Pacific Northwest National Laboratory as a field demonstration site for in situ vitrification of soils containing simulated waste.

  9. Radioactive Waste Conditioning, Immobilisation, And Encapsulation Processes And Technologies: Overview And Advances (Chapter 7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.; Lee, William E.; Ojovan, Michael I.

    The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of lowmore » level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and

  10. Selecting a plutonium vitrification process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouan, A.

    1996-05-01

    Vitrification of plutonium is one means of mitigating its potential danger. This option is technically feasible, even if it is not the solution advocated in France. Two situations are possible, depending on whether or not the glass matrix also contains fission products; concentrations of up to 15% should be achievable for plutonium alone, whereas the upper limit is 3% in the presence of fission products. The French continuous vitrification process appears to be particularly suitable for plutonium vitrification: its capacity is compatible with the required throughout, and the compact dimensions of the process equipment prevent a criticality hazard. Preprocessing ofmore » plutonium metal, to convert it to PuO{sub 2} or to a nitric acid solution, may prove advantageous or even necessary depending on whether a dry or wet process is adopted. The process may involve a single step (vitrification of Pu or PuO{sub 2} mixed with glass frit) or may include a prior calcination step - notably if the plutonium is to be incorporated into a fission product glass. It is important to weigh the advantages and drawbacks of all the possible options in terms of feasibility, safety and cost-effectiveness.« less

  11. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservationmore » and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by

  12. Metal behavior during vitrification of incinerator ash in a coke bed furnace.

    PubMed

    Kuo, Yi-Ming; Lin, Ta-Chang; Tsai, Perng-Jy

    2004-06-18

    In this study, municipal waste incinerator ash was vitrified in a coke bed furnace system and the behavior of metals was investigated. Coke and lime were added to provide heat which facilitated vitrification. Ash contributed more than 90% of metal (except for Ca) input-mass. Metal species with low boiling points accounted for the major fraction of their input-mass adsorbed by air pollution control devices (APCDs) fly ash. Among the remaining metals, those species with light specific weights in this furnace tended to be encapsulated in slag, while heavier species were mainly discharged by ingot. Meanwhile, the leachability of hazardous metals in slag was significantly reduced. The distribution index (DI) was defined and used as an index for distribution of heavy metals in the system. A high DI assures safe slag reuse and implies feasibility of recovering hazardous heavy metals such as Cr, Cu, Fe, Pb and Zn. The vitrification in a coke bed furnace proved to be a useful technology for the final disposal of MSW incinerator ash. The heavy metals are separated into the slag, ingot and fly ash, allowing safe reuse of the slag and possible recovery of the metals contained in the ingot and ash fractions.

  13. DWPF Safely Dispositioning Liquid Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-01-05

    The only operating radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid radioactive waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called “vitrification,” as the preferred option for treating liquid radioactive waste.

  14. Electrochemical probing of high-level radioactive waste tanks containing washed sludge and precipitates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1986-12-01

    At the US Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assessmore » the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species for carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 molar nitrite required for reactor fuel reprocessing wastes. Periodic agitation, to keep the organic phase suspended, or cathodic protection are possible alternatives to higher nitrite inhibitor concentrations.« less

  15. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter: Summary of 2017 experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Fowley, M.

    A full-scale, transparent mock-up of the Hanford Tank Waste Treatment and Immobilization Project High Level Waste glass melter riser and pour spout has been constructed to allow for testing with visual feedback of particle settling, accumulation, and resuspension when operating with a controlled fraction of crystals in the glass melt. Room temperature operation with silicone oil and magnetite particles simulating molten glass and spinel crystals, respectively, allows for direct observation of flow patterns and settling patterns. The fluid and particle mixture is recycled within the system for each test.

  16. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptablemore » for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF« less

  17. I-NERI-2007-004-K, DEVELOPMENT AND CHARACTERIZATION OF NEW HIGH-LEVEL WASTE FORMS FOR ACHIEVING WASTE MINIMIZATION FROM PYROPROCESSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.M. Frank

    Work describe in this report represents the final year activities for the 3-year International Nuclear Energy Research Initiative (I-NERI) project: Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing. Used electrorefiner salt that contained actinide chlorides and was highly loaded with surrogate fission products was processed into three candidate waste forms. The first waste form, a high-loaded ceramic waste form is a variant to the CWF produced during the treatment of Experimental Breeder Reactor-II used fuel at the Idaho National Laboratory (INL). The two other waste forms were developed by researchers at the Korean Atomicmore » Energy Research Institute (KAERI). These materials are based on a silica-alumina-phosphate matrix and a zinc/titanium oxide matrix. The proposed waste forms, and the processes to fabricate them, were designed to immobilize spent electrorefiner chloride salts containing alkali, alkaline earth, lanthanide, and halide fission products that accumulate in the salt during the processing of used nuclear fuel. This aspect of the I-NERI project was to demonstrate 'hot cell' fabrication and characterization of the proposed waste forms. The outline of the report includes the processing of the spent electrorefiner salt and the fabrication of each of the three waste forms. Also described is the characterization of the waste forms, and chemical durability testing of the material. While waste form fabrication and sample preparation for characterization must be accomplished in a radiological hot cell facility due to hazardous radioactivity levels, smaller quantities of each waste form were removed from the hot cell to perform various analyses. Characterization included density measurement, elemental analysis, x-ray diffraction, scanning electron microscopy and the Product Consistency Test, which is a leaching method to measure chemical durability. Favorable results from this demonstration

  18. Efficient vitrification of mouse embryos using the Kitasato Vitrification System as a novel vitrification device.

    PubMed

    Momozawa, Kenji; Matsuzawa, Atsushi; Tokunaga, Yukio; Abe, Shiori; Koyanagi, Yumi; Kurita, Miho; Nakano, Marina; Miyake, Takao

    2017-04-24

    Currently, the cryopreservation of embryos and oocytes is essential for assisted reproductive technology (ART) laboratories worldwide. This study aimed to evaluate the efficacy of the Kitasato Vitrification System (KVS) as a vitrification device for the cryopreservation of mouse embryos to determine whether this novel device can be adapted to the field of ART. In Experiment 1, blastocysts were vitrified using the KVS. Vitrified blastocysts were warmed and subsequently cultured for 72 h. In Experiment 2, 2-cell-stage embryos were vitrified using the KVS, and vitrified embryos were warmed and subsequently cultured for 96 h. In Experiment 3, we evaluated the in vivo developmental potential of vitrified 2-cell-stage embryos using the KVS, and in Experiment 4, we evaluated the cooling and warming rates for these devices using a numerical simulation. In Experiment 1, there were no significant differences between the survival rates of the KVS and a control device. However, re-expanded (100%) and hatching (91.8%) rates were significantly higher for blastocysts vitrified using the KVS. In Experiment 2, there were no significant differences between the survival rates, or rates of development to the blastocyst stage, of vitrified and fresh embryos. In Experiment 3, after embryo transfer, 41% of the embryos developed into live offspring. In Experiment 4, the cooling and warming rates of the KVS were 683,000 and 612,000 °C/min, respectively, exceeding those of the control device. Our study clearly demonstrates that the KVS is a novel vitrification device for the cryopreservation of mouse embryos at the blastocyst and 2-cell stage.

  19. Natural geochemical analogues of the near field of high-level nuclear waste repositories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apps, J.A.

    1995-09-01

    United States practice has been to design high-level nuclear waste (HLW) geological repositories with waste densities sufficiently high that repository temperatures surrounding the waste will exceed 100{degrees}C and could reach 250{degrees}C. Basalt and devitrified vitroclastic tuff are among the host rocks considered for waste emplacement. Near-field repository thermal behavior and chemical alteration in such rocks is expected to be similar to that observed in many geothermal systems. Therefore, the predictive modeling required for performance assessment studies of the near field could be validated and calibrated using geothermal systems as natural analogues. Examples are given which demonstrate the need for refinementmore » of the thermodynamic databases used in geochemical modeling of near-field natural analogues and the extent to which present models can predict conditions in geothermal fields.« less

  20. DWPF Safely Dispositioning Liquid Waste

    ScienceCinema

    None

    2018-06-21

    The only operating radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid radioactive waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called “vitrification,” as the preferred option for treating liquid radioactive waste.

  1. Novel incineration technology integrated with drying, pyrolysis, gasification, and combustion of MSW and ashes vitrification.

    PubMed

    Liu, Yangsheng; Liu, Yushan

    2005-05-15

    The conventional mass burn systems for municipal solid waste (MSW) emit large amount of acidic gases and dioxins as well as heavy metals due to the large excess air ratio. Additionally, the final process residues, bottom ash with potential leachability of heavy metals and fly ash with high level of heavy metals and dioxins, also constitute a major environmental problem. To deal with these issues more effectively, a novel MSW incineration technology was developed in this study. MSW drying, pyrolysis, gasification, incineration, and ash vitrification were achieved as a spectrum of combustion by the same equipment (primary chamber) in one step. In practice, the primary chamber of this technology actually acted as both gasifier for organic matter and vitrifying reactor for ashes, and the combustion process was mainly completed in the secondary chamber. Experiments were carried outto examine its characteristics in an industrial MSW incineration plant, located in Taiyuan, with a capability of 100 tons per day (TPD). Results showed that (1) the pyrolysis, gasification, and vitrification processes in the primary chamber presented good behaviors resulting in effluent gases with high contents of combustibles (e.g., CO and CH4) and bottom ash with a low loss-on-ignition (L.o.l), low leachability of heavy metals, and low toxicity of cyanide and fluoride. The vitrified bottom ash was benign to its environment and required no further processing for its potential applications. (2) Low stack emissions of dioxins (0.076 ng of TEQ m(-3)), heavy metals (ranging from 0.013 to 0.033 mg m(-3)), and other air pollutants were achieved. This new technology could effectively dispose Chinese MSW with a low calorific value and high water content; additionally, it also had a low capital and operating costs compared with the imported systems.

  2. Vitrification and xenografting of human ovarian tissue.

    PubMed

    Amorim, Christiani Andrade; Dolmans, Marie-Madeleine; David, Anu; Jaeger, Jonathan; Vanacker, Julie; Camboni, Alessandra; Donnez, Jacques; Van Langendonckt, Anne

    2012-11-01

    To assess the efficiency of two vitrification protocols to cryopreserve human preantral follicles with the use of a xenografting model. Pilot study. Gynecology research unit in a university hospital. Ovarian biopsies were obtained from seven women aged 30-41 years. Ovarian tissue fragments were subjected to one of three cryopreservation protocols (slow freezing, vitrification protocol 1, and vitrification protocol 2) and xenografted for 1 week to nude mice. The number of morphologically normal follicles after cryopreservation and grafting and fibrotic surface area were determined by histologic analysis. Apoptosis was assessed by the TUNEL method. Morphometric analysis of TUNEL-positive surface area also was performed. Follicle proliferation was evaluated by immunohistochemistry. After xenografting, a difference was observed between the cryopreservation procedures applied. According to TUNEL analysis, both vitrification protocols showed better preservation of preantral follicles than the conventional freezing method. Moreover, histologic evaluation showed a significantly higher proportion of primordial follicles in vitrified (protocol 2)-warmed ovarian tissue than in frozen-thawed tissue. The proportion of growing follicles and fibrotic surface area was similar in all groups. Vitrification procedures appeared to preserve not only the morphology and survival of preantral follicles after 1 week of xenografting, but also their ability to resume folliculogenesis. In addition, vitrification protocol 2 had a positive impact on the quiescent state of primordial follicles after xenografting. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Alginate Hydrogel Microencapsulation Inhibits Devitrification and Enables Large-Volume Low-CPA Cell Vitrification

    PubMed Central

    Huang, Haishui; Choi, Jung Kyu; Rao, Wei; Zhao, Shuting; Agarwal, Pranay; Zhao, Gang

    2015-01-01

    Cryopreservation of stem cells is important to meet their ever-increasing demand by the burgeoning cell-based medicine. The conventional slow freezing for stem cell cryopreservation suffers from inevitable cell injury associated with ice formation and the vitrification (i.e., no visible ice formation) approach is emerging as a new strategy for cell cryopreservation. A major challenge to cell vitrification is intracellular ice formation (IIF, a lethal event to cells) induced by devitrification (i.e., formation of visible ice in previously vitrified solution) during warming the vitrified cells at cryogenic temperature back to super-zero temperatures. Consequently, high and toxic concentrations of penetrating cryoprotectants (i.e., high CPAs, up to ~8 M) and/or limited sample volumes (up to ~2.5 μl) have been used to minimize IIF during vitrification. We reveal that alginate hydrogel microencapsulation can effectively inhibit devitrification during warming. Our data show that if ice formation were minimized during cooling, IIF is negligible in alginate hydrogel-microencapsulated cells during the entire cooling and warming procedure of vitrification. This enables vitrification of pluripotent and multipotent stem cells with up to ~4 times lower concentration of penetrating CPAs (up to 2 M, low CPA) in up to ~100 times larger sample volume (up to ~250 μl, large volume). PMID:26640426

  4. Alginate Hydrogel Microencapsulation Inhibits Devitrification and Enables Large-Volume Low-CPA Cell Vitrification.

    PubMed

    Huang, Haishui; Choi, Jung Kyu; Rao, Wei; Zhao, Shuting; Agarwal, Pranay; Zhao, Gang; He, Xiaoming

    2015-11-25

    Cryopreservation of stem cells is important to meet their ever-increasing demand by the burgeoning cell-based medicine. The conventional slow freezing for stem cell cryopreservation suffers from inevitable cell injury associated with ice formation and the vitrification ( i.e. , no visible ice formation) approach is emerging as a new strategy for cell cryopreservation. A major challenge to cell vitrification is intracellular ice formation (IIF, a lethal event to cells) induced by devitrification ( i.e. , formation of visible ice in previously vitrified solution) during warming the vitrified cells at cryogenic temperature back to super-zero temperatures. Consequently, high and toxic concentrations of penetrating cryoprotectants ( i.e. , high CPAs, up to ~8 M) and/or limited sample volumes (up to ~2.5 μl) have been used to minimize IIF during vitrification. We reveal that alginate hydrogel microencapsulation can effectively inhibit devitrification during warming. Our data show that if ice formation were minimized during cooling, IIF is negligible in alginate hydrogel-microencapsulated cells during the entire cooling and warming procedure of vitrification. This enables vitrification of pluripotent and multipotent stem cells with up to ~4 times lower concentration of penetrating CPAs (up to 2 M, low CPA) in up to ~100 times larger sample volume (up to ~250 μl, large volume).

  5. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.

    The effectiveness of HLW vitrification is limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layer, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but, excessive agglomeration observed in high-Ni-Fe glass resulted in an under-prediction ofmore » accumulated layers, which gradually worsen over time as an increased number of agglomerates formed. Accumulation rate of ~53.8 ± 3.7 µm/h determined for this glass will result in ~26 mm thick layer in 20 days of melter idling.« less

  6. ROAD MAP FOR DEVELOPMENT OF CRYSTAL-TOLERANT HIGH LEVEL WASTE GLASSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Peeler, D.; Herman, C.

    The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. This road map guides the research and development for formulation and processing of crystaltolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objectivemore » is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will also be addressed in this road map. The planned research described in this road map is motivated by the potential for substantial economic benefits (significant reductions in glass volumes) that will be realized if the current constraints (T1% for WTP and TL for DWPF) are approached in an appropriate and technically defensible manner for defense waste and current melter designs. The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal-tolerant high-level waste (HLW) glasses targeting high waste loadings while still meeting process related limits and melter lifetime expectancies. The modeling effort will be an iterative process, where model form and a broader range of conditions, e

  7. Cold cap subsidence for in situ vitrification and electrodes therefor

    DOEpatents

    Buelt, James L.; Carter, John G.; Eschbach, Eugene A.; FitzPatrick, Vincent F.; Koehmstedt, Paul L.; Morgan, William C.; Oma, Kenton H.; Timmerman, Craig L.

    1992-01-01

    An electrode for use in in situ vitrification of soil comprises a molybdenum rod received within a conductive sleeve or collar formed of graphite. Electrodes of this type are placed on either side of a region containing buried waste material and an electric current is passed therebetween for vitrifying the soil between the electrodes. The graphite collar enhances the thermal conductivity of the electrode, bringing heat to the surface, and preventing the formation of a cold cap of material above the ground surface. The annulus between the molybdenum rod electrode and the graphite collar is filled with a conductive ceramic powder of a type that sinters upon the molybdenum rod, protecting the same from oxidation as the graphite material is consumed, or a metal powder which liquifies at operating temperatures. The molybdenum rod in the former case may be coated with an oxidation protectant, e.g. of molybdenum disilicide. As insulative blanket is suitably placed on the surface of the soil during processing to promote subsidence by allowing off-gassing and reducing surface heat loss. In other embodiments, connection to vitrification electrodes is provided below ground level to avoid loss of connection due to electrodes deterioration, or a sacrificial electrode may be employed when operation is started. Outboard electrodes can be utilized to square up the vitrified area. Further, the center of the molybdenum rod can be made hollow and filled with a powdered metal, such as copper, which liquifies at operating temperatures. In one embodiment, the molybdenum rod and the graphite collar are physically joined at the bottom.

  8. [Successful pregnancies after oocyte and embryo vitrification].

    PubMed

    Salazar, Francisco Hernández; Loza, Erik Omar Okhuysen; Lucas, Maria Teresa Huerta J; Gutiérrez, Gustavo Romero

    2008-02-01

    Cryopreservation of human oocytes represents a solution for ethic conflict about frozen embryo storage for patients with risk to develop ovarian hyperstimulation syndrome; also is an available technique to preserve fertility in women with cancer under treatment, in poor response patients, in case of premature ovarian failure or aging and for other medical or social conditions that require to delay pregnancies, as well as to make easier oocyte donation programs. This paper reports two cases of successful pregnancies after embryo and oocyte vitrification, as well as their results. The technique of vitrification with the cryotop method is an excellent alternative, efficient, fast and cheap for oocyte and embryo cryopreservation with high ranges of fertilization, cleavage and pregnancies with a normal evolution.

  9. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    2012-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for Highmore » Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.« less

  10. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M.L.; Poirier, Michael; McCabe, Daniel J.

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter,more » so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.« less

  11. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, David K.; Kim, Dong-Sang; Vienna, John D.

    2015-11-01

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, keymore » product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule. The purpose of this advanced LAW glass research and development plan is to identify the near-term, mid-term, and longer-term research and development activities required to develop and validate advanced LAW glasses, property-composition models and their uncertainties, and an advanced glass algorithm to support WTP facility operations, including both Direct Feed LAW and full pretreatment flowsheets. Data are needed to develop, validate, and implement 1) new glass property-composition models and 2) a new glass formulation algorithm. Hence, this plan integrates specific studies associated with increasing the Na2O and SO3/halide concentrations in glass, because these components will ultimately dictate waste loadings for LAW vitrification. Of equal importance is the development of an efficient and economic strategy for 99Tc management. Specific and detailed studies are being implemented to understand the fate of Tc

  12. Using polymerization, glass structure, and quasicrystalline theory to produce high level radioactive borosilicate glass remotely: a 20+ year legacy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in borosilicate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt a highly variable waste with some glass forming additives such as SiO 2 and B 2O 3 in the form of a premelted frit and pour the molten mixture into a stainless steel canister. Seal the canister before moisture can enter themore » canister (10’ tall by 2’ in diameter) so the canister does not corrode from the inside out. Glass has also become widely used for HLW is that due to the fact that the short range order (SRO) and medium range order (MRO) found in the structure of glass atomistically bonds the radionuclides and hazardous species in the waste. The SRO and MRO have also been found to govern the melt properties such as viscosity and resistivity of the melt and the crystallization potential and solubility of certain species. Furthermore, the molecular structure of the glass also controls the glass durability, i.e. the contaminant/radionuclide release, by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to HLW waste variability. Nuclear waste glasses melt between 1050-1150°C which minimizes the volatility of radioactive components such as 99Tc, 137Cs, and 129I. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models were developed based on the molecular structure of glass, polymerization theory of glass, and quasicrystalline theory of glass crystallization. These models create a glass which is durable, pourable, and processable with 95% accuracy without knowing from batch to

  13. Using polymerization, glass structure, and quasicrystalline theory to produce high level radioactive borosilicate glass remotely: a 20+ year legacy

    DOE PAGES

    Jantzen, Carol M.

    2017-03-27

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in borosilicate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt a highly variable waste with some glass forming additives such as SiO 2 and B 2O 3 in the form of a premelted frit and pour the molten mixture into a stainless steel canister. Seal the canister before moisture can enter themore » canister (10’ tall by 2’ in diameter) so the canister does not corrode from the inside out. Glass has also become widely used for HLW is that due to the fact that the short range order (SRO) and medium range order (MRO) found in the structure of glass atomistically bonds the radionuclides and hazardous species in the waste. The SRO and MRO have also been found to govern the melt properties such as viscosity and resistivity of the melt and the crystallization potential and solubility of certain species. Furthermore, the molecular structure of the glass also controls the glass durability, i.e. the contaminant/radionuclide release, by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to HLW waste variability. Nuclear waste glasses melt between 1050-1150°C which minimizes the volatility of radioactive components such as 99Tc, 137Cs, and 129I. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models were developed based on the molecular structure of glass, polymerization theory of glass, and quasicrystalline theory of glass crystallization. These models create a glass which is durable, pourable, and processable with 95% accuracy without knowing from batch to

  14. Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey, William G.; Esparza, Brian P.

    2013-07-01

    Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls formore » the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)« less

  15. Numerical investigations of transient heat transfer characteristics and vitrification tendencies in ultra-fast cell cooling processes.

    PubMed

    Jiao, Anjun; Han, Xu; Critser, John K; Ma, Hongbin

    2006-06-01

    During freezing, cells are often damaged directly or indirectly by ice formation. Vitrification is an alternative approach to cryopreservation that avoids ice formation. The common method to achieve vitrification is to use relatively high concentrations of cryoprotectant agents (CPA) in combination with a relatively slow cooling rate. However, high concentrations of CPAs have potentially damaging toxic and/or osmotic effects on cells. Therefore, establishing methods to achieve vitrification with lower concentrations of CPAs through ultra-fast cooling rates would be advantageous in these aspects. These ultra-fast cooling rates can be realized by a cooling system with an ultra-high heat transfer coefficient (h) between the sample and coolant. The oscillating motion heat pipe (OHP), a novel cooling device utilizing the pressure change to excite the oscillation motion of the liquid plugs and vapor bubbles, can significantly increase h and may fulfill this aim. The current investigation was designed to numerically study the effects of different values of h on the transient heat transfer characteristics and vitrification tendencies of the cell suspension during the cooling processes in an ultra-thin straw (100 microm in diameter). The transient temperature distribution, the cooling rate and the volume ratio (x) of the ice quantity to the maximum crystallizable ice of the suspension were calculated. From these numerical results, it is concluded that the ultra-high h (>10(4) W/m2 K) obtained by OHPs could facilitate vitrification by efficiently decreasing x as well as the time to pass through the dangerous temperature region where the maximum ice formation happens. For comparison, OHPs can decrease both of the parameters to less than 20% of those from the widely used open pulled straw methods. Therefore, the OHP method will be a promising approach to improving vitrification tendencies of CPA solutions and could also decrease the required concentration of CPAs for

  16. Identification of a highly successful cryopreservation method (droplet-vitrification) for petunia

    USDA-ARS?s Scientific Manuscript database

    Petunia (Petunia × hybrida Vilm.) is a very important crop conserved in the National Genebank of China. Petunia cultivar “Niu 2” was used to develop a droplet-vitrification protocol to cryopreserve shoot tips. Six variables (age of the in vitro plants, concentration of sucrose in the preculture solu...

  17. The future of high-level nuclear waste disposal, state sovereignty and the tenth amendment: Nevada v. Watkins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swazo, S.

    The federal government`s monopoly over America`s nuclear energy production began during World War II with the birth of the Atomic Age. During the next thirty years, nuclear waste inventories increased with minor congressional concern. In the early 1970s, the need for federal legislation to address problems surrounding nuclear waste regulation, along with federal efforts to address these problems, became critical. Previous federal efforts had completely failed to address nuclear waste disposal. In 1982, Congress enacted the Nuclear Waste Policy Act (NWPA) to deal with issues of nuclear waste management and disposal, and to set an agenda for the development ofmore » two national high-level nuclear waste repositories. This article discusses the legal challenge to the NWPA in the Nevada v. Watkins case. This case illustrates the federalism problems faced by the federal government in trying to site the nation`s only high-level nuclear waste repository within a single state.« less

  18. Dehydration Preparation of Mouse Sperm for Vitrification and Rapid Laser Warming.

    PubMed

    Paredes, E; Mazur, P

    Mice are fundamental models of study due to their ease of breeding, manipulation, and the well-studied genome. There has been extensive research focused on the cryopreservation of mouse germaplasm, as a way to help maintain the different transgenic mouse breeds. The first protocols for mouse sperm were developed in the 90's using slow cooling and a mixture of raffinose and glycerol. Since then, the rate of success reported remains highly variable. The Aim of this work is to study factors that are key for developing vitrification protocols for ultra-rapid laser warming of mouse sperm. Our results show that due to the exquisite sensitivity of sperm cells to osmotic excursions, our target levels of dehydration (~85% water content) cannot be achieved without causing a significant decrease in sperm motility and membrane fusion. It seems likely that mouse sperm vitrification is going to be difficult to develop due to the exquisite sensitivity of mouse sperm cells to handling and dehydration.

  19. High-level waste borosilicate glass: A compendium of corrosion characteristics. Volume 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunnane, J.C.; Bates, J.K.; Bradley, C.R.

    1994-03-01

    The objective of this document is to summarize scientific information pertinent to evaluating the extent to which high-level waste borosilicate glass corrosion and the associated radionuclide release processes are understood for the range of environmental conditions to which waste glass may be exposed in service. Alteration processes occurring within the bulk of the glass (e.g., devitrification and radiation-induced changes) are discussed insofar as they affect glass corrosion. Volume III contains a bibliography of glass corrosion studies, including studies that are not cited in Volumes I and II.

  20. [Testicular tissue vitrification: evolution or revolution?].

    PubMed

    Wyns, C; Abu-Ghannam, G; Poels, J

    2013-09-01

    Preservation of reproductive health is a major concern for patient long-term quality of life. While sperm freezing has proven to be effective to preserve fertility after puberty, cryopreservation of immature testicular tissue (ITT) is emerging as a promising approach for fertility preservation in young boys. Slow-freezing (SF) is the conventional method used to preserve ITT and has resulted in the birth of mice offspring. In humans, methods to preserve ITT are still at the research stage. Controlled SF using dimethyl sulfoxide showed preservation of proliferative spermatogonia after thawing in a xenotransplantation model used to evaluate the efficiency of freezing and thawing procedures. However, spermatogonial recovery was low and normal differentiation could not be achieved. Both freezing/thawing and the environment of the xenotransplantation model may be implicated. Indeed, with SF, ice crystal formation could damage tissue and cells. For this reason, vitrification, leading to solidification of a liquid without crystallization, may be a promising alternative. ITT vitrification has been investigated in different species and shown spermatogonial survival and differentiation to the round or elongated spermatids stage. Offspring were also recently obtained after vitrification and allotransplantation in avians, confirming the potential of vitrification for fertility preservation. In humans, vitrification appears to be as efficient as SF in terms of spermatogonial survival and initiation of differentiation after xenotransplantation. However, before validation of such fertility preservation methods, completion of normal spermatogenesis and the fertilization capacity of sperm retrieved from cryopreserved and transplanted tissue should be fully investigated. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  1. Hanford Immobilized Low Activity Waste (ILAW) Performance Assessment 2001 Version [Formerly DOE/RL-97-69] [SEC 1 & 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANN, F.M.

    2000-08-01

    The Hanford Immobilized Low-Activity Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-activity fraction of waste presently contained in Hanford Site tanks. The tank waste is the byproduct of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste is stored in underground single- and double-shell tanks. The tank waste is to be retrieved, separated into low-activity and high-level fractions, and then immobilized by vitrification. The US. Department of Energy (DOE) plans to dispose of the low-activity fraction in the Hanford Site 200 Eastmore » Area. The high-level fraction will be stored at the Hanford Site until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to modify the current Disposal Authorization Statement for the Hanford Site that would allow the following: construction of disposal trenches; and filling of these trenches with ILAW containers and filler material with the intent to dispose of the containers.« less

  2. Synthesizing optimal waste blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, V.; Diwekar, W.M.; Hoza, M.

    Vitrification of tank wastes to form glass is a technique that will be used for the disposal of high-level waste at Hanford. Process and storage economics show that minimizing the total number of glass logs produced is the key to keeping cost as low as possible. The amount of glass produced can be reduced by blending of the wastes. The optimal way to combine the tanks to minimize the vole of glass can be determined from a discrete blend calculation. However, this problem results in a combinatorial explosion as the number of tanks increases. Moreover, the property constraints make thismore » problem highly nonconvex where many algorithms get trapped in local minima. In this paper the authors examine the use of different combinatorial optimization approaches to solve this problem. A two-stage approach using a combination of simulated annealing and nonlinear programming (NLP) is developed. The results of different methods such as the heuristics approach based on human knowledge and judgment, the mixed integer nonlinear programming (MINLP) approach with GAMS, and branch and bound with lower bound derived from the structure of the given blending problem are compared with this coupled simulated annealing and NLP approach.« less

  3. EFFECTS OF QUARTZ PARTICLE SIZE AND SUCROSE ADDITION ON MELTING BEHAVIOR OF A MELTER FEED FOR HIGH-LEVEL GLASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MARCIAL J; KRUGER AA; HRMA PR

    2010-07-28

    The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5 C/min up to 1200 C. The initial size of quartz particles in feed ranged from 5 to 195 {micro}m. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only inmore » feeds with 5-{micro}m quartz particles; particles {ge}150 {micro}m formed clusters. Particles of 5 {micro}m completely dissolved by 900 C whereas particles {ge}150 {micro}m did not fully dissolve even when the temperature reached 1200 C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles. Over 100 sites in the United States are currently tasked with the storage of nuclear waste. The largest is the Hanford Site located in southeastern Washington State with 177 subterranean tanks containing over fifty-million gallons of nuclear waste from plutonium production from 1944 through 1987. This waste will be vitrified at the Hanford Tank Waste Treatment and Immobilization Plant. In the vitrification process, feed is charged into a melter and converted into glass to be ultimately stored in a permanent repository. The duration of waste-site cleanups by the vitrification process depends on the rate of melting, i.e., on the rate of the feed-to-glass conversion. Foaming associated with the melting process and the rate of dissolution of quartz particles (silica being the major glass-forming additive) are assumed to be important factors that influence the rate of melting. Previous studies on foaming of high-alumina feed demonstrated that varying the makeup of a melter feed has a significant impact on foaming. The volume of feeds that contained 5

  4. Recovery of valuable metals from electroplating sludge with reducing additives via vitrification.

    PubMed

    Huang, Ruth; Huang, Kuo-Lin; Lin, Zih-Yi; Wang, Jian-Wen; Lin, Chitsan; Kuo, Yi-Ming

    2013-11-15

    In this study, vitrification was applied to treat Ni-Cu electroplating sludge. The sludge was mixed with additives (limestone:cullet = 4:6) and then heated to 1450 °C. The cooled product could be separated into slag and ingot. An atomic absorption spectrometer was used to determine the metal levels of specimens and toxicity characteristic leaching procedure (TCLP) tests, whereas the crystalline and surface characteristics were examined using quantitative X-ray diffraction (XRD) analysis and scanning electron microscopy, respectively. With a glassy structure, the slag was mainly composed of Ca, Si, and Mg. The TCLP results of slags met the Taiwan regulated standards, suggesting that slag can be used for recycling purposes. With the aid of additives, the crystalline phase of slag was transformed form CaMgSiO4 into CsSiO3. The ingots were mainly composed of Ni (563,000-693,800 mg/kg), Cu (79,900-87,400 mg/kg), and Fe (35,000-43,600 mg/kg) (target metals) due the gravity separation during vitrification. At appropriate additives/sludge ratios (>0.2), >95% of target metals gathered in the ingot as a recoverable form (Ni-Fe alloy). The high Ni level of slag suggests that the ingot can be used as the raw materials for smelters or the additives for steel making. Therefore, the vitrification approach of this study is a promising technology to recover valuable metals from Ni-Cu electroplating sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. The role of troublesome components in plutonium vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hong; Vienna, J.D.; Peeler, D.K.

    1996-05-01

    One option for immobilizing surplus plutonium is vitrification in a borosilicate glass. Two advantages of the glass form are (1) high tolerance to feed variability and, (2) high solubility of some impurity components. The types of plutonium-containing materials in the United States inventory include: pits, metals, oxides, residues, scrap, compounds, and fuel. Many of them also contain high concentrations of carbon, chloride, fluoride, phosphate, sulfate, and chromium oxide. To vitrify plutonium-containing scrap and residues, it is critical to understand the impact of each component on glass processing and chemical durability of the final product. This paper addresses glass processing issuesmore » associated with these troublesome components. It covers solubility limits of chlorine, fluorine, phosphate, sulfate, and chromium oxide in several borosilicate based glasses, and the effect of each component on vitrification (volatility, phase segregation, crystallization, and melt viscosity). Techniques (formulation, pretreatment, removal, and/or dilution) to mitigate the effect of these troublesome components are suggested.« less

  6. Comparison of two closed carriers for vitrification of human blastocysts in a donor program.

    PubMed

    Guerrero, Jaime; Gallardo, Miguel; Rodríguez-Arnedo, Adoración; Ten, Jorgen; Bernabeu, Rafael

    2018-04-01

    The survival of human blastocysts to vitrification with two different carriers is compared. Both vitrification carriers used in this study are in the category of closed carriers, as they completely isolate the samples from direct contact with liquid nitrogen or its vapours during cooling and storage, until warming. This characteristic is appealing because it reduces or eliminates the theoretical risk of cross-contamination during that period of time. The two closed vitrification systems used present very different design and features: in the High Security Vitrification device, the carrier straw containing the embryos is encapsulated inside an external straw before plunging in liquid nitrogen, resulting in thermal insulation during cooling. On the other hand, in the SafeSpeed carrier embryos are loaded in a thin-walled, narrow capillary designed to maximize the thermal transference. Both closed carriers achieved comparable outcomes in terms of survival of blastocysts to the vitrification process, with 97.5% vs. 96.1% survival with HSV and SafeSpeed, respectively. In conclusion, the cooling and warming rates at which these carriers operate, in combination with the cytosolic solute concentration in the cells of the cryopreserved blastocysts attained after a cryoprotectant-loading protocol, result in successful vitrification of human blastocysts for human assisted reproduction. Copyright © 2018. Published by Elsevier Inc.

  7. Competition between crystallization and vitrification of the rigid amorphous fraction in poly(3-hydroxybutyrate)

    NASA Astrophysics Data System (ADS)

    Di Lorenzo, Maria Laura; Righetti, Maria Cristina; Gazzano, Massimo

    2012-07-01

    Semicrystalline polymers have a metastable nanophase structure, where the various nanophases can be crystal, liquid, glass, or mesophase. This multi-level structure is determined by a competition among self-organization, crystallization, and vitrification of the amorphous segments and is established during material processing. The kinetics of such competition is here determined for poly(3-hydroxybutyrate) (PHB), as vitrification/devitrification of the rigid amorphous fraction strongly affects crystallization kinetics of PHB.

  8. Role of Congress in the High Level Radioactive Waste Odyssey: The Wisdom and Will of the Congress - 13096

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vieth, Donald L.; Voegele, Michael D.

    2013-07-01

    Congress has had a dual role with regard to high level radioactive waste, being involved in both its creation and its disposal. A significant amount of time has passed between the creation of the nation's first high level radioactive waste and the present day. The pace of addressing its remediation has been highly irregular. Congress has had to consider the technical, regulatory, and political issues and all have had specific difficulties. It is a true odyssey framed by an imperative and accountability, by a sense of urgency, by an ability or inability to finish the job and by consequences. Congressmore » had set a politically acceptable course by 1982. However, President Obama intervened in the process after he took office in January 2009. Through the efforts of his Administration, by the end of 2012, the US government has no program to dispose of high level radioactive waste and no reasonable prospect of a repository for high level radioactive waste. It is not obvious how the US government program will be reestablished or who will assume responsibility for leadership. The ultimate criteria for judging the consequences are 1) the outcome of the ongoing NRC's Nuclear Waste Confidence Rulemaking and 2) the concomitant permissibility of nuclear energy supplying electricity from operating reactors in the US. (authors)« less

  9. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A. A.; Peeler, D. K.; Kim, D. S.

    2015-11-23

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, keymore » product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule.« less

  10. Thermal Predictions of the Cooling of Waste Glass Canisters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donna Post Guillen

    2014-11-01

    Radioactive liquid waste from five decades of weapons production is slated for vitrification at the Hanford site. The waste will be mixed with glass forming additives and heated to a high temperature, then poured into canisters within a pour cave where the glass will cool and solidify into a stable waste form for disposal. Computer simulations were performed to predict the heat rejected from the canisters and the temperatures within the glass during cooling. Four different waste glass compositions with different thermophysical properties were evaluated. Canister centerline temperatures and the total amount of heat transfer from the canisters to themore » surrounding air are reported.« less

  11. Niv versus dropping vitrification in cryopreservation of human ovarian tissue.

    PubMed

    Xiao, Z; Li, S W; Zhang, Y Y; Wang, Y; Li, L L; Fan, W

    2014-01-01

    The containers for vitrification of tissues include cryovials, copper grids, Pasteur pipettes, the solid-surface method and etc. Recently the acupuncture needle was used to achieve better result in vitrification of human ovarian tissue. To determine if the needle immersed vitrification method (NIV) is a promising approach to vitrify the human ovarian tissue. Human ovarian biopsies from five patients were vitrified using NIV and Dropping vitrification. After 14 days of in vitro culture, the incidence of apoptotic primordial follicles from fresh and vitrified groups was assessed by TUNEL assay. 17β-estradiol (E2) and progesterone (P4) were detected in the media after culturing of vitrified and fresh ovarian tissues. The incidence of apoptotic primordial follicles was significantly higher in the dropping vitrification group than in the NIV group (P < 0.05). E2 and P4 concentrations were significantly higher in NIV groups than in Dropping vitrification group (P < 0.05). NIV was an appropriate method to vitrify ovarian tissue by improving the growth potential of frozen-warmed ovarian tissue in vitro culture.

  12. Vitrification and levitation of a liquid droplet on liquid nitrogen.

    PubMed

    Song, Young S; Adler, Douglas; Xu, Feng; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M; Maas, Richard L; Demirci, Utkan

    2010-03-09

    The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitrogen. This is distinct from the more generally observed Leidenfrost phenomenon that occurs when a liquid droplet is self-vaporized on a hot plate. In the case of rapid cooling, the phase transition from liquid to vitrified solid (i.e., vitrification) and the levitation of droplets on liquid nitrogen (i.e., Leidenfrost phenomenon) take place simultaneously. Here, we investigate these two simultaneous physical events by using a theoretical model containing three dimensionless parameters (i.e., Stefan, Biot, and Fourier numbers). We explain theoretically and observe experimentally a threshold droplet radius during the vitrification of a cryoprotectant droplet in the presence of the Leidenfrost effect.

  13. Vitrification and levitation of a liquid droplet on liquid nitrogen

    PubMed Central

    Song, Young S.; Adler, Douglas; Xu, Feng; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M.; Maas, Richard L.; Demirci, Utkan

    2010-01-01

    The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitrogen. This is distinct from the more generally observed Leidenfrost phenomenon that occurs when a liquid droplet is self-vaporized on a hot plate. In the case of rapid cooling, the phase transition from liquid to vitrified solid (i.e., vitrification) and the levitation of droplets on liquid nitrogen (i.e., Leidenfrost phenomenon) take place simultaneously. Here, we investigate these two simultaneous physical events by using a theoretical model containing three dimensionless parameters (i.e., Stefan, Biot, and Fourier numbers). We explain theoretically and observe experimentally a threshold droplet radius during the vitrification of a cryoprotectant droplet in the presence of the Leidenfrost effect. PMID:20176969

  14. Comparison of selected foreign plans and practices for spent fuel and high-level waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, K.J.; Mitchell, S.J.; Lakey, L.T.

    1990-04-01

    This report describes the major parameters for management of spent nuclear fuel and high-level radioactive wastes in selected foreign countries as of December 1989 and compares them with those in the United States. The foreign countries included in this study are Belgium, Canada, France, the Federal Republic of Germany, Japan, Sweden, Switzerland, and the United Kingdom. All the countries are planning for disposal of spent fuel and/or high-level wastes in deep geologic repositories. Most countries (except Canada and Sweden) plan to reprocess their spent fuel and vitrify the resultant high-level liquid wastes; in comparison, the US plans direct disposal ofmore » spent fuel. The US is planning to use a container for spent fuel as the primary engineered barrier. The US has the most developed repository concept and has one of the earliest scheduled repository startup dates. The repository environment presently being considered in the US is unique, being located in tuff above the water table. The US also has the most prescriptive regulations and performance requirements for the repository system and its components. 135 refs., 8 tabs.« less

  15. Label-free characterization of vitrification-induced morphology changes in single-cell embryos with full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zarnescu, Livia; Leung, Michael C.; Abeyta, Michael; Sudkamp, Helge; Baer, Thomas; Behr, Barry; Ellerbee, Audrey K.

    2015-09-01

    Vitrification is an increasingly popular method of embryo cryopreservation that is used in assisted reproductive technology. Although vitrification has high post-thaw survival rates compared to other freezing techniques, its long-term effects on embryo development are still poorly understood. We demonstrate an application of full-field optical coherence tomography (FF-OCT) to visualize the effects of vitrification on live single-cell (2 pronuclear) mouse embryos without harmful labels. Using FF-OCT, we observed that vitrification causes a significant increase in the aggregation of structures within the embryo cytoplasm, consistent with reports in literature based on fluorescence techniques. We quantify the degree of aggregation with an objective metric, the cytoplasmic aggregation (CA) score, and observe a high degree of correlation between the CA scores of FF-OCT images of embryos and of fluorescence images of their mitochondria. Our results indicate that FF-OCT shows promise as a label-free assessment of the effects of vitrification on embryo mitochondria distribution. The CA score provides a quantitative metric to describe the degree to which embryos have been affected by vitrification and could aid clinicians in selecting embryos for transfer.

  16. Investigation of variable compositions on the removal of technetium from Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Pareizs, John M.

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the offgas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter,more » so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.« less

  17. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    2009-06-11

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2008 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

  18. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program formore » High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.« less

  19. Ageing management program for the Spanish low and intermediate level waste disposal and spent fuel and high-level waste centralised storage facilities

    NASA Astrophysics Data System (ADS)

    Zuloaga, P.; Ordoñez, M.; Andrade, C.; Castellote, M.

    2011-04-01

    The generic design of the centralised spent fuel storage facility was approved by the Spanish Safety Authority in 2006. The planned operational life is 60 years, while the design service life is 100 years. Durability studies and surveillance of the behaviour have been considered from the initial design steps, taking into account the accessibility limitations and temperatures involved. The paper presents an overview of the ageing management program set in support of the Performance Assessment and Safety Review of El Cabril low and intermediate level waste (LILW) disposal facility. Based on the experience gained for LILW, ENRESA has developed a preliminary definition of the Ageing Management Plan for the Centralised Interim Storage Facility of spent Fuel and High Level Waste (HLW), which addresses the behaviour of spent fuel, its retrievability, the confinement system and the reinforced concrete structure. It includes tests plans and surveillance design considerations, based on the El Cabril LILW disposal facility.

  20. Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.

    2011-09-12

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sentmore » to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.« less

  1. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for Highmore » Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.« less

  2. Results of instrument reliability study for high-level nuclear-waste repositories. [Geotechnical parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogue, F.; Binnall, E.P.

    1982-10-01

    Reliable instrumentation will be needed to monitor the performance of future high-level waste repository sites. A study has been made to assess instrument reliability at Department of Energy (DOE) waste repository related experiments. Though the study covers a wide variety of instrumentation, this paper concentrates on experiences with geotechnical instrumentation in hostile repository-type environments. Manufacturers have made some changes to improve the reliability of instruments for repositories. This paper reviews the failure modes, rates, and mechanisms, along with manufacturer modifications and recommendations for additional improvements to enhance instrument performance. 4 tables.

  3. The Use of Basalt, Basalt Fibers and Modified Graphite for Nuclear Waste Repository - 12150

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulik, V.I.; Biland, A.B.

    2012-07-01

    New materials enhancing the isolation of radioactive waste and spent nuclear fuel are continuously being developed.. Our research suggests that basalt-based materials, including basalt roving chopped basalt fiber strands, basalt composite rebar and materials based on modified graphite, could be used for enhancing radioactive waste isolation during the storage and disposal phases and maintaining it during a significant portion of the post-closure phase. The basalt vitrification process of nuclear waste is a viable alternative to glass vitrification. Basalt roving, chopped basalt fiber strands and basalt composite rebars can significantly increase the strength and safety characteristics of nuclear waste and spentmore » nuclear fuel storages. Materials based on MG are optimal waterproofing materials for nuclear waste containers. (authors)« less

  4. Technetium Incorporation in Glass for the Hanford Tank Waste Treatment and Immobilization Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Kim, Dong Sang

    2015-01-14

    A priority of the United States Department of Energy (U.S. DOE) is to dispose of nuclear wastes accumulated in 177 underground tanks at the Hanford Nuclear Reservation in eastern Washington State. These nuclear wastes date from the Manhattan Project of World War II and from plutonium production during the Cold War. The DOE plans to separate high-level radioactive wastes from low activity wastes and to treat each of the waste streams by vitrification (immobilization of the nuclides in glass) for disposal. The immobilized low-activity waste will be disposed of here at Hanford and the immobilized high-level waste at the nationalmore » geologic repository. Included in the inventory of highly radioactive wastes is large volumes of 99Tc (~9 × 10E2 TBq or ~2.5 × 104 Ci or ~1500 kg). A problem facing safe disposal of Tc-bearing wastes is the processing of waste feed into in a chemically durable waste form. Technetium incorporates poorly into silicate glass in traditional glass melting. It readily evaporates during melting of glass feeds and out of the molten glass, leading to a spectrum of high-to-low retention (ca. 20 to 80%) in the cooled glass product. DOE-ORP currently has a program at Pacific Northwest National Laboratory (PNNL), in the Department of Materials Science and Engineering at Rutgers University and in the School of Mechanical and Materials Engineering at Washington State University that seeks to understand aspects of Tc retention by means of studying Tc partitioning, molten salt formation, volatilization pathways, and cold cap chemistry. Another problem involves the stability of Tc in glass in both the national geologic repository and on-site disposal after it has been immobilized. The major environmental concern with 99Tc is its high mobility in addition to a long half-life (2.1×105 yrs). The pertechnetate ion (TcO4-) is highly soluble in water and does not adsorb well onto the surface of minerals and so migrates nearly at the same velocity as

  5. Kinetics of Cold-Cap Reactions for Vitrification of Nuclear Waste Glass Based on Simultaneous Differential Scanning Calorimetry - Thermogravimetry (DSC-TGA) and Evolved Gas Analysis (EGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.

    2013-12-03

    For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent massmore » loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.« less

  6. 75 FR 20582 - Record of Decision: Final Environmental Impact Statement for Decommissioning and/or Long-Term...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... storage tanks and facilities used in the solidification of high-level radioactive waste, and any material... Act (Pub. L. 96-368, 42 U.S.C. 2021a). The WVDP Act requires DOE to demonstrate that the liquid high... take the following actions: 1. Solidify high-level radioactive waste by vitrification or such other...

  7. Non-combustible waste vitrification with plasma torch melter.

    PubMed

    Park, J K; Moon, Y P; Park, B C; Song, M J; Ko, K S; Cho, J M

    2001-05-01

    Non-combustible radioactive wastes generated from Nuclear Power Plants (NPPs) are composed of concrete, glass, asbestos, metal, sand, soil, spent filters, etc. The melting tests for concrete, glass, sand, and spent filters were carried out using a 60 kW plasma torch system. The surrogate wastes were prepared for the tests. Non-radioactive Co and Cs were added to the surrogates in order to simulate the radioactive waste. Several kinds of surrogate prepared by their own mixture or by single waste were melted with the plasma torch system to produce glassy waste forms. The characteristics of glassy waste forms were examined for the volume reduction factor (VRF) and the leach rate. The VRFs were estimated through the density measurement of the surrogates and the glassy waste forms, and were turned out to be 1.2-2.4. The EPA (Environmental Protection Agency) Toxicity Characteristic Leaching Procedure (TCLP) was used to determine the leach resistance for As, Ba, Hg, Pb, Cd, Cr, Se, Co, and Cs. The leaching index was calculated using the total content of each element in both the waste forms and the leachant. The TCLP tests resulted in that the leach rates for all elements except Co and Cs were lower than those of the Universal Treatment Standard (UTS) limits. There were no UTS limits for Co and Cs, and their leach rate & index from the experiments were resulted in around 10 times higher than those of other elements.

  8. Progress and future direction for the interim safe storage and disposal of Hanford high-level waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzer, J.E.; Wodrich, D.D.; Bacon, R.F.

    This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the U.S. Department of Energy (DOE) and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System (TWRS) Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described. In these times ofmore » budget austerity, implementing an ongoing program that combines technical excellence and cost effectiveness is the near-term challenge. The technical initiatives and progress described in this paper are made more cost effective by DOE`s focus on work force productivity improvement, reduction of overhead costs, and reduction, integration and simplification of DOE regulations and operations requirements to more closely model those used in the private sector.« less

  9. Iron phosphate compositions for containment of hazardous metal waste

    DOEpatents

    Day, Delbert E.

    1998-01-01

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P.sub.2 O.sub.5 and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe.sup.3+ provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided.

  10. Iron phosphate compositions for containment of hazardous metal waste

    DOEpatents

    Day, D.E.

    1998-05-12

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P{sub 2}O{sub 5} and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe{sup 3+} provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided. 21 figs.

  11. Spectroscopic and first-principles calculation studies of the chemical forms of palladium ion in nitric acid solution for development of disposal of high-level radioactive nuclear wastes

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinta; Sato, Toshikazu; Yoshida, Tomoko; Nakaya, Masato; Yoshino, Masahito; Nagasaki, Takanori; Inaba, Yusuke; Takeshita, Kenji; Onoe, Jun

    2018-04-01

    We have investigated the chemical forms of palladium (Pd) ion in nitric acid solution, using XAFS/UV-vis spectroscopic and first-principles methods in order to develop the disposal of high-level radioactive nuclear liquid wastes (HLLW: radioactive metal ions in 2 M nitric acid solution). The results of theoretical calculations and XAFS/UV-vis spectroscopy indicate that Pd is a divalent ion and forms a square-planar complex structure coordinated with four nitrate ions, [Pd(NO3)4]2-, in nitric acid solution. This complex structure is also thermodynamically predicted to be most stable among complexes [Pd(H2O)x(NO3)4-x]x-2 (x = 0-4). Since the overall feature of UV-vis spectra of the Pd complex was independent of nitric acid concentration in the range 1-6 M, the structure of the Pd complex remains unchanged in this range. Furthermore, we examined the influence of γ-ray radiation on the [Pd(NO3)4]2- complex, using UV-vis spectroscopy, and found that UV-vis spectra seemed not to be changed even after 1.0 MGy irradiation. This implies that the Pd complex structure will be still stable in actual HLLW. These findings obtained above are useful information to develop the vitrification processes for disposal of HLLW.

  12. Dewatering Treatment Scale-up Testing Results of Hanford Tank Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedeschi, A.R.; May, T.H.; Bryan, W.E.

    2008-07-01

    This report documents CH2M HILL Hanford Group Inc. (CH2M HILL) 2007 dryer testing results in Richland, WA at the AMEC Nuclear Ltd., GeoMelt Division (AMEC) Horn Rapids Test Site. It provides a discussion of scope and results to qualify the dryer system as a viable unit-operation in the continuing evaluation of the bulk vitrification process. A 10,000 liter (L) dryer/mixer was tested for supplemental treatment of Hanford tank low activity wastes, drying and mixing a simulated non-radioactive salt solution with glass forming minerals. Testing validated the full scale equipment for producing dried product similar to smaller scale tests, and qualifiedmore » the dryer system for a subsequent integrated dryer/vitrification test using the same simulant and glass formers. The dryer system is planned for installation at the Hanford tank farms to dry/mix radioactive waste for final treatment evaluation of the supplemental bulk vitrification process. (authors)« less

  13. Numerical Modeling of Thermal-Hydrology in the Near Field of a Generic High-Level Waste Repository

    NASA Astrophysics Data System (ADS)

    Matteo, E. N.; Hadgu, T.; Park, H.

    2016-12-01

    Disposal in a deep geologic repository is one of the preferred option for long term isolation of high-level nuclear waste. Coupled thermal-hydrologic processes induced by decay heat from the radioactive waste may impact fluid flow and the associated migration of radionuclides. This study looked at the effects of those processes in simulations of thermal-hydrology for the emplacement of U. S. Department of Energy managed high-level waste and spent nuclear fuel. Most of the high-level waste sources have lower thermal output which would reduce the impact of thermal propagation. In order to quantify the thermal limits this study concentrated on the higher thermal output sources and on spent nuclear fuel. The study assumed a generic nuclear waste repository at 500 m depth. For the modeling a representative domain was selected representing a portion of the repository layout in order to conduct a detailed thermal analysis. A highly refined unstructured mesh was utilized with refinements near heat sources and at intersections of different materials. Simulations looked at different values for properties of components of the engineered barrier system (i.e. buffer, disturbed rock zone and the host rock). The simulations also looked at the effects of different durations of surface aging of the waste to reduce thermal perturbations. The PFLOTRAN code (Hammond et al., 2014) was used for the simulations. Modeling results for the different options are reported and include temperature and fluid flow profiles in the near field at different simulation times. References:G. E. Hammond, P.C. Lichtner and R.T. Mills, "Evaluating the Performance of Parallel Subsurface Simulators: An Illustrative Example with PFLOTRAN", Water Resources Research, 50, doi:10.1002/2012WR013483 (2014). Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under

  14. 10 CFR Appendix D to Part 2 - Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Construction Authorization for a High-Level Waste Geologic Repository. D Appendix D to Part 2 Energy NUCLEAR... the Proceeding on Consideration of Construction Authorization for a High-Level Waste Geologic... Completion of NMSS and Commission supervisory review; issuance of construction authorization; NWPA 3-year...

  15. 10 CFR Appendix D to Part 2 - Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Construction Authorization for a High-Level Waste Geologic Repository. D Appendix D to Part 2 Energy NUCLEAR... the Proceeding on Consideration of Construction Authorization for a High-Level Waste Geologic... Completion of NMSS and Commission supervisory review; issuance of construction authorization; NWPA 3-year...

  16. DOUBLE SHELL TANK (DST) INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WASHENFELDER DJ

    2008-01-22

    The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLWmore » until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control

  17. Vitrification-based cryopreservation of shoot-tips of Pinus kesiya Royle ex. Gord.

    PubMed

    Kalita, V; Choudhury, H; Kumaria, S; Tandon, P

    2012-01-01

    The present investigation was aimed at developing a protocol for long-term preservation of germplasm of Pinus kesiya Royle ex. Gord. through vitrification. Some of the critical components affecting explant tolerance to cryopreservation, such as effects of preculture, vitrification solutions, exposure time to vitrification solutions, volume of vitrification solution and its toxicity, washing of vitrified tissues after thawing, were analysed. The results showed that shoot regrowth of P. kesiya shoot-tips was considerably affected when exposed to cryoprotectants for longer periods of time (longer than 10 min). Among different vitrification solutions studied, maximum survival (76 percent) of shoot-tips was achieved with mVSL (using 0.6 ml of the solution) in MS basal medium containing 4.0 mg l-1 N6-benzyladenine (BA).

  18. Thermoelastic analysis of spent fuel and high level radioactive waste repositories in salt. A semi-analytical solution. [JUDITH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. John, C.M.

    1977-04-01

    An underground repository containing heat generating, High Level Waste or Spent Unreprocessed Fuel may be approximated as a finite number of heat sources distributed across the plane of the repository. The resulting temperature, displacement and stress changes may be calculated using analytical solutions, providing linear thermoelasticity is assumed. This report documents a computer program based on this approach and gives results that form the basis for a comparison between the effects of disposing of High Level Waste and Spent Unreprocessed Fuel.

  19. Principles of Product Quality Control of German Radioactive Waste Forms from the Reprocessing of Spent Fuel: Vitrification, Compaction and Numerical Simulation - 12529

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tietze-Jaensch, Holger; Schneider, Stephan; Aksyutina, Yuliya

    2012-07-01

    The German product quality control is inter alia responsible for control of two radioactive waste forms of heat generating waste: a) homogeneous vitrified HLW and b) heterogeneous compacted hulls, end-pieces and technological metallic waste. In either case, significantly different metrology is employed at the site of the conditioning plant for the obligatory nuclide inventory declaration. To facilitate an independent evaluation and checking of the accompanying documentation numerical simulations are carried out. The physical and chemical properties of radioactive waste residues are used to assess the data consistency and uncertainty margins, as well as to predict the long-term behavior of themore » radioactive waste. This is relevant for repository acceptance and safety considerations. Our new numerical approach follows a bottom-up simulation starting from the burn-up behavior of the fuel elements in the reactor core. The output of these burn-up calculations is then coupled with a program that simulates the material separation in the subsequent dissolution and extraction processes normalized to the mass balance. Follow-up simulations of the separated reprocessing lines of a) the vitrification of highly-active liquid and b) the compaction of residual intermediate-active metallic hulls remaining after fuel pellets dissolution, end-pieces and technological waste, allows calculating expectation values for the various repository relevant properties of either waste stream. The principles of the German product quality control of radioactive waste residues from the spent fuel reprocessing have been introduced and explained. Namely, heat generating homogeneous vitrified HLW and heterogeneous compacted metallic MLW have been discussed. The advantages of a complementary numerical property simulation have been made clear and examples of benefits are presented. We have compiled a new program suite to calculate the physical and radio-chemical properties of common nuclear waste

  20. An analysis of the back end of the nuclear fuel cycle with emphasis on high-level waste management, volume 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The programs and plans of the U.S. government for the "back end of the nuclear fuel cycle" were examined to determine if there were any significant technological or regulatory gaps and inconsistencies. Particular emphasis was placed on analysis of high-level nuclear waste management plans, since the permanent disposal of radioactive waste has emerged as a major factor in the public acceptance of nuclear power. The implications of various light water reactor fuel cycle options were examined including throwaway, stowaway, uranium recycle, and plutonium plus uranium recycle. The results of this study indicate that the U.S. program for high-level waste management has significant gaps and inconsistencies. Areas of greatest concern include: the adequacy of the scientific data base for geological disposal; programs for the the disposal of spent fuel rods; interagency coordination; and uncertainties in NRC regulatory requirements for disposal of both commercial and military high-level waste.

  1. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KOZLOWSKI, S.D.

    2007-05-30

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditionsmore » for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.« less

  2. Vitrification of mouse embryo-derived ICM cells: a tool for preserving embryonic stem cell potential?

    PubMed

    Desai, Nina; Xu, Jing; Tsulaia, Tamara; Szeptycki-Lawson, Julia; AbdelHafez, Faten; Goldfarb, James; Falcone, Tommaso

    2011-02-01

    Vitrification technology presents new opportunities for preservation of embryo derived stem cells without first establishing a viable ESC line. This study tests the feasibility of cryopreserving ICM cells using vitrification. ICMs from mouse embryos were isolated and vitrified in HSV straws or on cryoloops. Upon warming, the vitrified ICMs were cultured and observed for attachment and morphology. Colonies were passaged every 3-6 days. ICMs and ICM-derived ESC colonies were tested for expression of stem cell specific markers. ICMs vitrified on both the cryoloop and the HSV straw had high survival rates. ICM derived ESCs remained undifferentiated for several passages and demonstrated expression of typical stem cell markers; SSEA-1, Sox-2, Oct 4 and alkaline phosphatase. This is the first report on successful vitrification of isolated ICMs and the subsequent derivation of ESC colonies. Vitrification of isolated ICMs is a novel approach for preservation of the "stem cell source" material.

  3. Waste Management Facilities Cost Information report for Greater-Than-Class C and DOE equivalent special case waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feizollahi, F.; Shropshire, D.

    This Waste Management Facility Cost Information (WMFCI) report for Greater-Than-Class C low-level waste (GTCC LLW) and DOE equivalent special case waste contains preconceptual designs and planning level life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities needed for management of GTCC LLW and DOE equivalent waste. The report contains information on 16 facilities (referred to as cost modules). These facilities are treatment facility front-end and back-end support functions (administration support, and receiving, preparation, and shipping cost modules); seven treatment concepts (incineration, metal melting, shredding/compaction, solidification, vitrification, metal sizing and decontamination, and wet/air oxidation cost modules); two storage concepts (enclosedmore » vault and silo); disposal facility front-end functions (disposal receiving and inspection cost module); and four disposal concepts (shallow-land, engineered shallow-land, intermediate depth, and deep geological cost modules). Data in this report allow the user to develop PLCC estimates for various waste management options. A procedure to guide the U.S. Department of Energy (DOE) and its contractor personnel in the use of estimating data is also included in this report.« less

  4. Vitrification and devitrification of micro-droplets

    NASA Astrophysics Data System (ADS)

    Ryoun Youn, Jae; Song, Young Seok

    2012-11-01

    Vitrification can be achieved by flash freezing and thawing (i.e. quenching) when ice crystal formation is inhibited in a cryogenic environment. Such ultra-rapid cooling and rewarming occurs due to the large temperature difference between the liquid and its surrounding medium. Here, we analyze the crystallization behavior of a droplet (i.e. vitrification and devitrification) by using a numerical model. The numerical results were found to explain the experimental observations successfully. The findings showed that for successful cryopreservation not only sufficiently fast cooling, but also rewarming processes should be designed and controlled to avoid devitrification of a droplet.

  5. PLUTONIUM/HIGH-LEVEL VITRIFIED WASTE BDBE DOSE CALCULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.C. Richardson

    2003-03-19

    In accordance with the Nuclear Waste Policy Amendments Act of 1987, Yucca Mountain was designated as the site to be investigated as a potential repository for the disposal of high-level radioactive waste. The Yucca Mountain site is an undeveloped area located on the southwestern edge of the Nevada Test Site (NTS), about 100 miles northwest of Las Vegas. The site currently lacks rail service or an existing right-of-way. If the Yucca Mountain site is found suitable for the repository, rail service is desirable to the Office of Civilian Waste Management (OCRWM) Program because of the potential of rail transportation tomore » reduce costs and to reduce the number of shipments relative to highway transportation. A Preliminary Rail Access Study evaluated 13 potential rail spur options. Alternative routes within the major options were also developed. Each of these options was then evaluated for potential land use conflicts and access to regional rail carriers. Three potential routes having few land use conflicts and having access to regional carriers were recommended for further investigation. Figure 1-1 shows these three routes. The Jean route is estimated to be about 120 miles long, the Carlin route to be about 365 miles long, and Caliente route to be about 365 miles long. The remaining ten routes continue to be monitored and should any of the present conflicts change, a re-evaluation of that route will be made. Complete details of the evaluation of the 13 routes can be found in the previous study. The DOE has not identified any preferred route and recognizes that the transportation issues need a full and open treatment under the National Environmental Policy Act. The issue of transportation will be included in public hearings to support development of the Environmental Impact Statement (EIS) proceedings for either the Monitored Retrievable Storage Facility or the Yucca Mountain Project or both.« less

  6. Vitrification of neat semen alters sperm parameters and DNA integrity.

    PubMed

    Khalili, Mohammad Ali; Adib, Maryam; Halvaei, Iman; Nabi, Ali

    2014-05-06

    Our aim was to evaluate the effect of neat semen vitrification on human sperm vital parameters and DNA integrity in men with normal and abnormal sperm parameters. Semen samples were 17 normozoospermic samples and 17 specimens with abnormal sperm parameters. Semen analysis was performed according to World Health Organization (WHO) criteria. Then, the smear was provided from each sample and fixed for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Vitrification of neat semen was done by plunging cryoloops directly into liquid nitrogen and preserved for 7 days. The samples were warmed and re-evaluated for sperm parameters as well as DNA integrity. Besides, the correlation between sperm parameters and DNA fragmentation was assessed pre- and post vitrification. Cryopreserved spermatozoa showed significant decrease in sperm motility, viability and normal morphology after thawing in both normal and abnormal semen. Also, the rate of sperm DNA fragmentation was significantly higher after vitrification compared to fresh samples in normal (24.76 ± 5.03 and 16.41 ± 4.53, P = .002) and abnormal (34.29 ± 10.02 and 23.5 ± 8.31, P < .0001), respectively. There was negative correlation between sperm motility and sperm DNA integrity in both groups after vitrification. Vitrification of neat ejaculates has negative impact on sperm parameters as well as DNA integrity, particularly among abnormal semen subjects. It is, therefore, recommend to process semen samples and vitrify the sperm pellets.

  7. An analysis of the technical status of high level radioactive waste and spent fuel management systems

    NASA Technical Reports Server (NTRS)

    English, T.; Miller, C.; Bullard, E.; Campbell, R.; Chockie, A.; Divita, E.; Douthitt, C.; Edelson, E.; Lees, L.

    1977-01-01

    The technical status of the old U.S. mailine program for high level radioactive nuclear waste management, and the newly-developing program for disposal of unreprocessed spent fuel was assessed. The method of long term containment for both of these waste forms is considered to be deep geologic isolation in bedded salt. Each major component of both waste management systems is analyzed in terms of its scientific feasibility, technical achievability and engineering achievability. The resulting matrix leads to a systematic identification of major unresolved technical or scientific questions and/or gaps in these programs.

  8. Enhanced LAW Glass Correlation - Phase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Isabelle S.; Matlack, Keith S.; Pegg, Ian L.

    About 50 million gallons of high-level mixed waste is currently stored in underground tanks at the United States Department of Energy’s (DOE’s) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE’s Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity waste fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed in an engineered facility onmore » the Hanford site while the IHLW product is designed for acceptance into a national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal. Acceptable glass formulations for vitrification of Hanford low activity waste (LAW) must meet a variety of product quality, processability, and waste loading requirements. To this end, The Vitreous State Laboratory (VSL) at The Catholic University of America (CUA) developed and tested a number of glass formulations during Part A, Part B1 and Part B2 of the WTP development program. The testing resulted in the selection of target glass compositions for the processing of eight of the Phase I LAW tanks. The selected glass compositions were tested at the crucible scale to confirm their compliance with ILAW performance requirements. Duramelter 100 (DM100) and LAW Pilot Melter tests were then conducted to demonstrate the viability of these glass compositions for LAW vitrification at high processing rates.« less

  9. Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests

    DOE PAGES

    Xu, Kai; Hrma, Pavel; Rice, Jarrett A.; ...

    2016-05-23

    The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold cap during nuclear waste vitrification. Here, to investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700°C before the emerging glass-forming melt was completely connected. Above 700°C, intermediate aluminosilicate phases and quartz particles gradually dissolved in the continuous borosilicate melt, which expanded with transient foam. Finally, knowledge of the chemistry and physics of feed-to-glass conversion willmore » help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less

  10. The effect of minimal concentration of ethylene glycol (EG) combined with polyvinylpyrrolidone (PVP) on mouse oocyte survival and subsequent embryonic development following vitrification.

    PubMed

    Wang, Yao; Okitsu, Osamu; Zhao, Xiao-Ming; Sun, Yun; Di, Wen; Chian, Ri-Cheng

    2014-01-01

    Vitrification techniques employ a relatively high concentration of cryoprotectant in vitrification solutions. Exposure of oocytes to high concentrations of cryoprotectant is known to damage the oocytes via both cytotoxic and osmotic effects. Therefore, the key to successful vitrification of oocytes is to strike a balance between the usage of minimal concentration of cryoprotectant without compromising their cryoprotective actions. The minimal concentration of ethylene glycol (EG) on mouse oocyte survival and subsequent embryonic development was evaluated following vitrification-warming and parthenogenetic activation. Polyvinylpyrrolidone (PVP) combined with EG on mouse oocyte survival and subsequent embryonic development as well as morphology of the spindle and chromosome alignment were also evaluated. Vitrification system was adapted with JY Straw and the cooling rate was approximately 442-500 °C/min. In contrast, the warming rate was approximately 2,210-2,652 °C/min. Survival rate of oocytes increased significantly when 15 % EG was combined with 2 % PVP in vitrification solution (VS). The effect of combination of EG and PVP was not significant when the concentration of EG was 20 % and higher. Although there were no significant differences in embryonic development, the percentage of abnormal spindle and chromosome alignment was significantly higher in the oocytes without 2 % PVP in VS. Our data provide a proof of principle for oocyte vitrification that may not require a high concentration of cryoprotectant. There are synergic effects of EG combined with PVP for oocyte vitrification, which may provide important information to the field in developing less cytotoxic VS.

  11. 10 CFR Appendix D to Part 2 - Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste Geologic Repository. D Appendix D to Part 2 Energy NUCLEAR... for a High-Level Waste Geologic Repository. Day Regulation (10 CFR) Action 0 2.101(f)(8), 2.105(a)(5...

  12. 10 CFR Appendix D to Part 2 - Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Construction Authorization for a High-Level Waste Geologic Repository. D Appendix D to Part 2 Energy NUCLEAR.... D Appendix D to Part 2—Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste Geologic Repository. Day Regulation (10 CFR) Action 0 2.101(f)(8), 2.105(a)(5...

  13. 10 CFR Appendix D to Part 2 - Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Construction Authorization for a High-Level Waste Geologic Repository. D Appendix D to Part 2 Energy NUCLEAR.... D Appendix D to Part 2—Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste Geologic Repository. Day Regulation (10 CFR) Action 0 2.101(f)(8), 2.105(a)(5...

  14. Method for initiating in-situ vitrification using an impregnated cord

    DOEpatents

    Carter, John G.

    1991-01-01

    In-situ vitrification of soil is initiated by placing a cord of dielectric material impregnated with conductive material in thermally-conductive contact with the soil, and energizing the cord with an electric current for heating the cord and starting the vitrification process.

  15. Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, W.M.

    1995-09-01

    A workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste (HLW) was held in San Antonio, Texas, on July 22-25, 1991. It was sponsored by the US Nuclear Regulatory Commission (NRC) and the Center for Nuclear Waste Regulatory Analyses (CNWRA). Invitations to the workshop were extended to a large number of individuals with a variety of technical and professional interests related to geologic disposal of nuclear waste and natural analog studies. The objective of the workshop was to examine the role of natural analog studies in performance assessment, site characterization, and prioritization of research relatedmore » to geologic disposal of HLW.« less

  16. Method for initiating in-situ vitrification using an impregnated cord

    DOEpatents

    Carter, J.G.

    1991-04-02

    In-situ vitrification of soil is initiated by placing a cord of dielectric material impregnated with conductive material in thermally-conductive contact with the soil, and energizing the cord with an electric current for heating the cord and starting the vitrification process. 1 figure.

  17. Appendix C: Automated Vitrification of Mammalian Embryos on a Digital Microfluidic Device.

    PubMed

    Liu, Jun; Pyne, Derek G; Abdelgawad, Mohamed; Sun, Yu

    2017-01-01

    This chapter introduces a digital microfluidic device that automates sample preparation for mammalian embryo vitrification. Individual microdroplets manipulated on the microfluidic device were used as microvessels to transport a single mouse embryo through a complete vitrification procedure. Advantages of this approach, compared to manual operation and channel-based microfluidic vitrification, include automated operation, cryoprotectant concentration gradient generation, and feasibility of loading and retrieval of embryos.

  18. Analogues to features and processes of a high-level radioactive waste repository proposed for Yucca Mountain, Nevada

    USGS Publications Warehouse

    Simmons, Ardyth M.; Stuckless, John S.; with a Foreword by Abraham Van Luik, U.S. Department of Energy

    2010-01-01

    Natural analogues are defined for this report as naturally occurring or anthropogenic systems in which processes similar to those expected to occur in a nuclear waste repository are thought to have taken place over time periods of decades to millennia and on spatial scales as much as tens of kilometers. Analogues provide an important temporal and spatial dimension that cannot be tested by laboratory or field-scale experiments. Analogues provide one of the multiple lines of evidence intended to increase confidence in the safe geologic disposal of high-level radioactive waste. Although the work in this report was completed specifically for Yucca Mountain, Nevada, as the proposed geologic repository for high-level radioactive waste under the U.S. Nuclear Waste Policy Act, the applicability of the science, analyses, and interpretations is not limited to a specific site. Natural and anthropogenic analogues have provided and can continue to provide value in understanding features and processes of importance across a wide variety of topics in addressing the challenges of geologic isolation of radioactive waste and also as a contribution to scientific investigations unrelated to waste disposal. Isolation of radioactive waste at a mined geologic repository would be through a combination of natural features and engineered barriers. In this report we examine analogues to many of the various components of the Yucca Mountain system, including the preservation of materials in unsaturated environments, flow of water through unsaturated volcanic tuff, seepage into repository drifts, repository drift stability, stability and alteration of waste forms and components of the engineered barrier system, and transport of radionuclides through unsaturated and saturated rock zones.

  19. Effect of open pulled straw (OPS) vitrification on the fertilisation rate and developmental competence of porcine oocytes.

    PubMed

    Varga, Erika; Gardón, J C; Papp, Agnes Bali

    2006-03-01

    Freezing technologies are very important to preserve gametes and embryos of animals with a good pedigree or those having high genetic value. The aim of this work was to compare immature and in vitro matured porcine oocytes regarding their morphology and ability to be fertilised after vitrification by the open pulled straw (OPS) method. In four experiments 830 oocytes were examined. To investigate the effect of cumulus cells on oocyte survival after OPS vitrification, both denuded and cumulus-enclosed oocytes were vitrified at the germinal vesicle (GV) stage, then after vitrification they were matured in vitro. Besides, in vitro matured oocytes surrounded with a cumulus and those without a cumulus were also vitrified. The survival of oocytes was evaluated by their morphology. After in vitro fertilisation the rates of oocytes penetrated by spermatozoa were compared. Our results suggest that the vitrification/warming procedure is the most effective in cumulus-enclosed oocytes (22.35 +/- 1.75%). There was no difference between the order of maturation and vitrification in cumulus-enclosed oocytes, which suggests the importance of cumulus cells in protecting the viability of oocytes during cryopreservation.

  20. Preliminary post-emplacement safety analysis of the subseabed disposal of high-level nuclear waste

    NASA Astrophysics Data System (ADS)

    Kaplan, M. F.; Koplik, C. M.; Klett, R. D.

    1984-09-01

    The radiological hazard from the disposal of high-level nuclear waste within the deep ocean sediments is evaluated, on a preliminary basis, for locations in the central North Pacific and in the northwestern Atlantic. Radio-nuclide transport in the sediment and water column and by marine organisms is considered. Peak doses to an individual are approximately five orders of magnitude below background levels for both sites. Sensitivity analyses for most aspects of the post-emplacement systems models are included.

  1. Advances in the cryopreservation of mammalian oocytes and embryos: Development of ultrarapid vitrification

    PubMed Central

    2002-01-01

    The cryopreservation of embryos has become a powerful tool in assisted reproduction in several mammalian species. Embryos are cryopreserved by slow freezing or by vitrification. However, consistently high survival has not been obtained in most oocytes and in some embryos. The main reasons for the low survival would be sensitivity to low temperatures, which leads to chilling injury, and low permeability of the cell membrane, which leads to the formation of intracellular ice. As a strategy aiming to overcome these injuries, modified vitrification methods have been devised in which the cooling and warming rate is markedly increased by minimizing the volume of the solution and the container. The modified methods use electron microscope grids, open‐pulled straws, cryoloops, or container‐less microdrops. In this article, recent developments in the ultrarapid vitrification of mammalian oocytes and embryos are reviewed based on the understanding of the mechanisms of cell injury in cryopreservation. (Reprod Med Biol 2002; 1: 1–9) PMID:29699066

  2. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasbarro, Christina; Bello, Job M.; Bryan, Samuel A.

    2013-02-24

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source.« less

  3. Cryopreservation by vitrification: a promising approach for transplant organ banking.

    PubMed

    Finger, Erik B; Bischof, John C

    2018-06-01

    The objective of this review is to describe the physical and biological barriers to organ cryopreservation, historic approaches for conventional cryopreservation and evolving techniques for ice-free cryopreservation by vitrification. Vitrification is a process whereby a biologic substance is cooled to cryogenic temperatures without the destructive phase transition of liquid to solid ice. Recent advances in cryoprotective solutions, organ perfusion techniques and novel heating technologies have demonstrated the potential for vitrification and rewarming organs on a scale applicable for human transplantation. Successful strategies for organ cryopreservation could enable organ banking, which would recast the entire process in which organs are recovered, allocated, stored and prepared for transplant.

  4. Thermomechanical Stress in Cryopreservation Via Vitrification With Nanoparticle Heating as a Stress-Moderating Effect.

    PubMed

    Eisenberg, David P; Bischof, John C; Rabin, Yoed

    2016-01-01

    This study focuses on thermomechanical effects in cryopreservation associated with a novel approach of volumetric heating by means on nanoparticles in an alternating electromagnetic field. This approach is studied for the application of cryopreservation by vitrification, where the crystalline phase is completely avoided-the cornerstone of cryoinjury. Vitrification can be achieved by quickly cooling the material to cryogenic storage, where ice cannot form. Vitrification can be maintained at the end of the cryogenic protocol by quickly rewarming the material back to room temperature. The magnitude of the rewarming rates necessary to maintain vitrification is much higher than the magnitude of the cooling rates that are required to achieve it in the first place. The most common approach to achieve the required cooling and rewarming rates is by exposing the specimen's surface to a temperature-controlled environment. Due to the underlying principles of heat transfer, there is a size limit in the case of surface heating beyond which crystallization cannot be prevented at the center of the specimen. Furthermore, due to the underlying principles of solid mechanics, there is a size limit beyond which thermal expansion in the specimen can lead to structural damage and fractures. Volumetric heating during the rewarming phase of the cryogenic protocol can alleviate these size limitations. This study suggests that volumetric heating can reduce thermomechanical stress, when combined with an appropriate design of the thermal protocol. Without such design, this study suggests that the level of stress may still lead to structural damage even when volumetric heating is applied. This study proposes strategies to harness nanoparticles heating in order to reduce thermomechanical stress in cryopreservation by vitrification.

  5. Tunable, self-powered integrated arc plasma-melter vitrification system for waste treatment and resource recovery

    DOEpatents

    Titus, Charles H.; Cohn, Daniel R.; Surma, Jeffrey E.

    1998-01-01

    The present invention provides a relatively compact self-powered, tunable waste conversion system and apparatus which has the advantage of highly robust operation which provides complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The system provides the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or by an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment of the invention, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced or without further use of the gases generated by the conversion process. The apparatus may be employed as a self-powered or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production.

  6. Review of the Scientific Understanding of Radioactive Waste at the U.S. DOE Hanford Site.

    PubMed

    Peterson, Reid A; Buck, Edgar C; Chun, Jaehun; Daniel, Richard C; Herting, Daniel L; Ilton, Eugene S; Lumetta, Gregg J; Clark, Sue B

    2018-01-16

    This Critical Review reviews the origin and chemical and rheological complexity of radioactive waste at the U.S. Department of Energy Hanford Site. The waste, stored in underground tanks, was generated via three distinct processes over decades of plutonium extraction operations. Although close records were kept of original waste disposition, tank-to-tank transfers and conditions that impede equilibrium complicate our understanding of the chemistry, phase composition, and rheology of the waste. Tank waste slurries comprise particles and aggregates from nano to micro scales, with varying densities, morphologies, heterogeneous compositions, and complicated responses to flow regimes and process conditions. Further, remnant or changing radiation fields may affect the stability and rheology of the waste. These conditions pose challenges for transport through conduits or pipes to treatment plants for vitrification. Additionally, recalcitrant boehmite degrades glass quality and the high aluminum content must be reduced prior to vitrification for the manufacture of waste glass of acceptable durability. However, caustic leaching indicates that boehmite dissolves much more slowly than predicted given surface normalized rates. Existing empirical models based on ex situ experiments and observations generally only describe material balances and have not effectively predicted process performance. Recent advances in the areas of in situ microscopy, aberration-corrected transmission electron microscopy, theoretical modeling across scales, and experimental methods for probing the physics and chemistry at mineral-fluid and mineral-mineral interfaces are being implemented to build robustly predictive physics-based models.

  7. Characterization and Delivery of Hanford High-Level Radioactive Waste Slurry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thien, Michael G.; Denslow, Kayte M.; Lee, K. P.

    2014-11-15

    Two primary challenges to characterizing Hanford’s high-level radioactive waste slurry prior to transfer to a treatment facility are the ability to representatively sample million-gallon tanks and to estimate the critical velocity of the complex slurry. Washington River Protection Solutions has successfully demonstrated a sampling concept that minimizes sample errors by collecting multiple sample increments from a sample loop where the mixed tank contents are recirculated. Pacific Northwest National Laboratory has developed and demonstrated an ultrasonic-based Pulse-Echo detection device that is capable of detecting a stationary settled bed of solids in a pipe with flowing slurry. These two concepts are essentialmore » elements of a feed delivery strategy that drives the Hanford clean-up mission.« less

  8. Cryopreservation of redwood (Sequoia sempervirens) in vitro buds using vitrification-based techniques.

    PubMed

    Ozudogru, E A; Kirdok, E; Kaya, E; Capuana, M; Benelli, C; Engelmann, E

    2011-01-01

    In this study, the efficiency of three vitrification-based cryopreservation techniques, i.e. vitrification, encapsulation-vitrification and droplet-vitrification were compared for cryopreserving Sequoia sempervirens apical and basal buds sampled from in vitro shoot cultures. The effect of cold-hardening of mother-plants and of bud culture medium and sucrose preculture was also investigated. Culture of apical and basal buds sampled from cold-hardened mother-plants on Quoirin and Lepoivre medium with activated charcoal had a positive effect on regrowth. Only droplet-vitrification ensured survival and regrowth after cryopreservation. After cryopreservation, regeneration of apical buds was possible for PVS2 exposure durations between 90 and 180 min but it remained low, with a maximum of 18 percent after 135 min treatment. With basal buds, regeneration after cryopreservation was possible over a larger range of PVS2 treatment durations, between 30 and 180 min. The highest regeneration percentage was slightly higher (22 percent) than that measured with apical buds, and was also achieved after 135 min PVS2 exposure.

  9. Environmental evaluation of alternatives for long-term management of Defense high-level radioactive wastes at the Idaho Chemical Processing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-09-01

    The U.S. Department of Energy (DOE) is considering the selection of a strategy for the long-term management of the defense high-level wastes at the Idaho Chemical Processing Plant (ICPP). This report describes the environmental impacts of alternative strategies. These alternative strategies include leaving the calcine in its present form at the Idaho National Engineering Laboratory (INEL), or retrieving and modifying the calcine to a more durable waste form and disposing of it either at the INEL or in an offsite repository. This report addresses only the alternatives for a program to manage the high-level waste generated at the ICPP. 24more » figures, 60 tables.« less

  10. A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests - 13342

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thien, Mike G.; Barnes, Steve M.

    2013-07-01

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broadmore » spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described. (authors)« less

  11. Stabilization of biothreat diagnostic samples through vitrification matrices.

    PubMed

    Minogue, Timothy Devin; Kalina, Warren Vincent; Coyne, Susan Rajnik

    2014-06-01

    Diagnostics for biothreat agents require sample shipment to reference labs for diagnosis of disease; however high/fluctuating temperatures during sample transport negatively affect sample quality and results. Vitrification additives preserve sample integrity for molecular-based assay diagnostics in the absence of refrigeration by imparting whole molecule stability to a plethora of environmental insults. Therefore, we have evaluated commercially available vitrification matrices' (Biomatrica's CloneStable® and RNAStable®) ability to stabilize samples of Yersinia pestis and Venezuelan Equine Encephalitis Virus. When heated to 95°C in RNAStable®, Y. pestis had a 13-fold improvement in detection via real-time PCR compared to heated samples in buffer. VEEV, in RNAStable® at 55°C, had a ~10-fold improved detection versus heated samples in buffer. CloneStable® also preserved Y. pestis antigens for 7days after exposure to cycling temperatures. Overall, RNAStable® and CloneStable® respectively offered superior stabilization to nucleic acids and proteins in response to temperature fluctuations. Copyright © 2014. Published by Elsevier B.V.

  12. Can Sisyphus succeed? Getting U.S. high-level nuclear waste into a geological repository.

    PubMed

    North, D Warner

    2013-01-01

    The U.S. government has the obligation of managing the high-level radioactive waste from its defense activities and also, under existing law, from civilian nuclear power generation. This obligation is not being met. The January 2012 Final Report from the Blue Ribbon Commission on America's Nuclear Future provides commendable guidance but little that is new. The author, who served on the federal Nuclear Waste Technical Review Board from 1989 to 1994 and subsequently on the Board on Radioactive Waste Management of the National Research Council from 1994 to 1999, provides a perspective both on the Commission's recommendations and a potential path toward progress in meeting the federal obligation. By analogy to Sisyphus of Greek mythology, our nation needs to find a way to roll the rock to the top of the hill and have it stay there, rather than continuing to roll back down again. © 2012 Society for Risk Analysis.

  13. Treatment of copper industry waste and production of sintered glass-ceramic.

    PubMed

    Coruh, Semra; Ergun, Osman Nuri; Cheng, Ta-Wui

    2006-06-01

    Copper waste is iron-rich hazardous waste containing heavy metals such as Cu, Zn, Co, Pb. The results of leaching tests show that the concentration of these elements exceeds the Turkish and EPA regulatory limits. Consequently, this waste cannot be disposed of in its present form and therefore requires treatment to stabilize it or make it inert prior to disposal. Vitrification was selected as the technology for the treatment of the toxic waste under investigation. During the vitrification process significant amounts of the toxic organic and inorganic chemical compounds could be destroyed, and at the same time, the metal species are immobilized as they become an integral part of the glass matrix. The copper flotation waste samples used in this research were obtained from the Black Sea Copper Works of Samsun, Turkey. The samples were vitrified after being mixed with other inorganic waste and materials. The copper flotation waste and their glass-ceramic products were characterized by X-ray analysis (XRD), scanning electron microscopy and by the toxicity characteristic leaching procedure test. The products showed very good chemical durability. The glass-ceramics fabricated at 850 degrees C/2 h have a large application potential especially as construction and building materials.

  14. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste - 13532

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasbarro, Christina; Bello, Job; Bryan, Samuel

    2013-07-01

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source. (authors)« less

  15. Vitrification of mouse embryos using the thin plastic strip method

    PubMed Central

    Hur, Yong Soo; Ann, Ji Young; Maeng, Ja Young; Park, Miji; Park, Jeong Hyun; Yoon, Jung; Yoon, San Hyun; Hur, Chang Young; Lee, Won Don; Lim, Jin Ho

    2012-01-01

    Objective The aim of this study was to compare vitrification optimization of mouse embryos using electron microscopy (EM) grid, cryotop, and thin plastic strip (TPS) containers by evaluating developmental competence and apoptosis rates. Methods Mouse embryos were obtained from superovulated mice. Mouse cleavage-stage, expanded, hatching-stage, and hatched-stage embryos were cryopreserved in EM grid, cryotop, and TPS containers by vitrification in 15% ethylene glycol, 15% dimethylsulfoxide, 10 µg/mL Ficoll, and 0.65 M sucrose, and 20% serum substitute supplement (SSS) with basal medium, respectively. For the three groups in which the embryos were thawed in the EM grid, cryotop, and TPS containers, the thawing solution consisted of 0.25 M sucrose, 0.125 M sucrose, and 20% SSS with basal medium, respectively. Rates of survival, re-expansion, reaching the hatched stage, and apoptosis after thawing were compared among the three groups. Results Developmental competence after thawing of vitrified expanded and hatching-stage blastocysts using cryotop and TPS methods were significantly higher than survival using the EM grid (p<0.05). Also, apoptosis positive nuclei rates after thawing of vitrified expanded blastocysts using cryotop and TPS were significantly lower than when using the EM grid (p<0.05). Conclusion The TPS vitrification method has the advantages of achieving a high developmental ability and effective preservation. PMID:23346525

  16. A Review of Iron Phosphate Glasses and Recommendations for Vitrifying Hanford Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delbert E. Ray; Chandra S. Ray

    2013-11-01

    This report contains a comprehensive review of the research conducted, world-wide, on iron phosphate glass over the past ~30 years. Special attention is devoted to those iron phosphate glass compositions which have been formulated for the purpose of vitrifying numerous types of nuclear waste, with special emphasis on the wastes stored in the underground tanks at Hanford WA. Data for the structural, chemical, and physical properties of iron phosphate waste forms are reviewed for the purpose of understanding their (a) outstanding chemical durability which meets all current DOE requirements, (b) high waste loadings which can exceed 40 wt% (up tomore » 75 wt%) for several Hanford wastes, (c) low melting temperatures, can be as low as 900°C for certain wastes, and (d) high tolerance for “problem” waste components such as sulfates, halides, and heavy metals (chromium, actinides, noble metals, etc.). Several recommendations are given for actions that are necessary to smoothly integrate iron phosphate glass technology into the present waste treatment plans and vitrification facilities at Hanford.« less

  17. DuraLith geopolymer waste form for Hanford secondary waste: correlating setting behavior to hydration heat evolution.

    PubMed

    Xu, Hui; Gong, Weiliang; Syltebo, Larry; Lutze, Werner; Pegg, Ian L

    2014-08-15

    The binary furnace slag-metakaolin DuraLith geopolymer waste form, which has been considered as one of the candidate waste forms for immobilization of certain Hanford secondary wastes (HSW) from the vitrification of nuclear wastes at the Hanford Site, Washington, was extended to a ternary fly ash-furnace slag-metakaolin system to improve workability, reduce hydration heat, and evaluate high HSW waste loading. A concentrated HSW simulant, consisting of more than 20 chemicals with a sodium concentration of 5 mol/L, was employed to prepare the alkaline activating solution. Fly ash was incorporated at up to 60 wt% into the binder materials, whereas metakaolin was kept constant at 26 wt%. The fresh waste form pastes were subjected to isothermal calorimetry and setting time measurement, and the cured samples were further characterized by compressive strength and TCLP leach tests. This study has firstly established quantitative linear relationships between both initial and final setting times and hydration heat, which were never discovered in scientific literature for any cementitious waste form or geopolymeric material. The successful establishment of the correlations between setting times and hydration heat may make it possible to efficiently design and optimize cementitious waste forms and industrial wastes based geopolymers using limited testing results. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Hanford's Supplemental Treatment Project: Full-Scale Integrated Testing of In-Container-Vitrification and a 10,000-Liter Dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witwer, K.S.; Dysland, E.J.; Garfield, J.S.

    2008-07-01

    The GeoMelt{sup R} In-Container Vitrification{sup TM} (ICV{sup TM}) process was selected by the U.S. Department of Energy (DOE) in 2004 for further evaluation as the supplemental treatment technology for Hanford's low-activity waste (LAW). Also referred to as 'bulk vitrification', this process combines glass forming minerals, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a refractory-lined steel container. AMEC Nuclear Ltd. (AMEC) is adapting its GeoMelt ICV{sup TM} technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL). The DVBS project is funded by the DOE Office of River Protection andmore » administered by CH2M HILL Hanford Group, Inc. The Demonstration Bulk Vitrification Project (DBVS) was initiated to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat up to 750,000 liters of LAW from Waste Tank 241-S-109 at the DOE Hanford Site. Since the beginning of the DBVS project in 2004, testing has used laboratory, crucible-scale, and engineering-scale equipment to help establish process limitations of selected glass formulations and identify operational issues. Full-scale testing has provided critical design verification of the ICV{sup TM} process before operating the Hanford pilot-plant. In 2007, the project's fifth full-scale test, called FS-38D, (also known as the Integrated Dryer Melter Test, or IDMT,) was performed. This test had three primary objectives: 1) Demonstrate the simultaneous and integrated operation of the ICV{sup TM} melter with a 10,000- liter dryer, 2) Demonstrate the effectiveness of a new feed reformulation and change in process methodology towards reducing the production and migration of molten ionic salts (MIS), and, 3) Demonstrate that an acceptable glass product is produced under these conditions. Testing was performed from August 8 to 17, 2007. Process and analytical results demonstrated that the primary

  19. Chapter 17 Sterile Plate-Based Vitrification of Adherent Human Pluripotent Stem Cells and Their Derivatives Using the TWIST Method.

    PubMed

    Neubauer, Julia C; Stracke, Frank; Zimmermann, Heiko

    2017-01-01

    Due to their high biological complexity, e.g., their close cell-to-cell contacts, cryopreservation of human pluripotent stem cells with standard slow-rate protocols often is inefficient and can hardly be standardized. Vitrification that means ultrafast freezing already showed very good viability and recovery rates for this sensitive cell system, but is only applicable for low cell numbers, bears a high risk of contamination, and can hardly be implemented under GxP regulations. In this chapter, a sterile plate-based vitrification method for adherent pluripotent stem cells and their derivatives is presented based on a procedure and device for human embryonic stem cells developed by Beier et al. (Cryobiology 66:8-16, 2013). This protocol overcomes the limitations of conventional vitrification procedures resulting in the highly efficient preservation of ready-to-use adherent pluripotent stem cells with the possibility of vitrifying cells in multi-well formats for direct application in high-throughput screenings.

  20. Cryotolerance of Day 2 or Day 6 in vitro produced ovine embryos after vitrification by Cryotop or Spatula methods.

    PubMed

    Dos Santos Neto, P C; Vilariño, M; Barrera, N; Cuadro, F; Crispo, M; Menchaca, A

    2015-02-01

    This study was conducted to evaluate the cryotolerance of in vitro produced ovine embryos submitted to vitrification at different developmental stages using two methods of minimum volume and rapid cooling rate. Embryos were vitrified at early stage (2 to 8-cells) on Day 2 or at advanced stage (morulae and blastocysts) on Day 6 after in vitro fertilization. Vitrification procedure consisted of the Cryotop (Day 2, n=165; Day 6, n=174) or the Spatula method (Day 2, n=165; Day 6, n=175). Non vitrified embryos were maintained in in vitro culture as a control group (n=408). Embryo survival was determined at 3h and 24h after warming, development and hatching rates were evaluated on Day 6 and Day 8 after fertilization, and total cell number was determined on expanded blastocysts. Embryo survival at 24h after warming increased as the developmental stage progressed (P<0.05) and was not affected by the vitrification method. The ability for hatching of survived embryos was not affected by the stage of the embryos at vitrification or by the vitrification method. Thus, the proportion of hatching from vitrified embryos was determined by the survival rate and was lower for Day 2 than Day 6 vitrified embryos. The percentage of blastocysts on Day 8 was lower for the embryos vitrified on Day 2 than Day 6 (P<0.05), and was lower for both days of vitrification than for non-vitrified embryos (P<0.05). No interaction of embryo stage by vitrification method was found (P=NS) and no significant difference was found in the blastocyst cell number among vitrified and non-vitrified embryos. In conclusion, both methods using minimum volume and ultra-rapid cooling rate allow acceptable survival and development rates in Day 2 and Day 6 in vitro produced embryos in sheep. Even though early stage embryos showed lower cryotolerance, those embryos that survive the vitrification-warming process show high development and hatching rates, similar to vitrification of morulae or blastocysts. Copyright

  1. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudisill, T.; King, W.; Hay, M.

    Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions duringmore » tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.« less

  2. Idaho National Engineering Laboratory High-Level Waste Roadmap. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    The Idaho National Engineering Laboratory (INEL) High-Level Waste (HLW) Roadmap takes a strategic look at the entire HLW life-cycle starting with generation, through interim storage, treatment and processing, transportation, and on to final disposal. The roadmap is an issue-based planning approach that compares ``where we are now`` to ``where we want and need to be.`` The INEL has been effectively managing HLW for the last 30 years. Calcining operations are continuing to turn liquid HLW into a more manageable form. Although this document recognizes problems concerning HLW at the INEL, there is no imminent risk to the public or environment.more » By analyzing the INEL current business operations, pertinent laws and regulations, and committed milestones, the INEL HLW Roadmap has identified eight key issues existing at the INEL that must be resolved in order to reach long-term objectives. These issues are as follows: A. The US Department of Energy (DOE) needs a consistent policy for HLW generation, handling, treatment, storage, and disposal. B. The capability for final disposal of HLW does not exist. C. Adequate processes have not been developed or implemented for immobilization and disposal of INEL HLW. D. HLW storage at the INEL is not adequate in terms of capacity and regulatory requirements. E. Waste streams are generated with limited consideration for waste minimization. F. HLW is not adequately characterized for disposal nor, in some cases, for storage. G. Research and development of all process options for INEL HLW treatment and disposal are not being adequately pursued due to resource limitations. H. HLW transportation methods are not selected or implemented. A root-cause analysis uncovered the underlying causes of each of these issues.« less

  3. Underground Architecture and Layout for the Belgian High-Level and Long-Lived Intermediate-Level Radioactive Waste Disposal Facility- 12116

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Cotthem, Alain; Van Humbeeck, Hughes; Biurrun, Enrique

    The underground architecture and layout of the proposed Belgian high-level (HLW) and long-lived, intermediate-level radioactive wastes (ILW-LL) disposal system (repository) is mainly based on lessons learned during the development and 30-year-long operation of an underground research laboratory (URL) ('HADES') located adjacent to the city of Mol at a depth of 225 m in a 100-m-thick, Tertiary clay formation; the Boom clay. The following main operational and safety challenges are addressed in the proposed architecture and layout: 1. Following excavation, the underground openings needed to be promptly supported to minimize the extent of the excavation damaged zone (EDZ). 2. The sizemore » and unsupported stand-up time at tunnel crossings/intersections also needed to be minimized to minimize the extent of the related EDZ. 3. Steel components had to be minimized to limit the related long-term (post-closure) corrosion and hydrogen production. 4. The shafts and all equipment had to go down through a 180-m-thick aquifer and handle up to 65-Ton payloads. 5. The shaft seals had to be placed in the underlying clay layer. The currently proposed layout minimizes the excavated volume based on strict long-term-safety criteria and optimizes operational safety. Operational safety is further enhanced by a remote-controlled waste-package-handling system transporting the waste packages from their respective surface location down to their respective disposal location with no intermediate operation. The related on-site preparation and thenceforth use of cement-based, waste package- transportation containers are integral operational-safety components. In addition to strengthening the waste packages and providing radiation protection, these containers also provide long-term corrosion protection of the internal 'primary' steel packages. (authors)« less

  4. Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings

    USGS Publications Warehouse

    Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    In the United States, low-level radioactive waste is disposed by shallow-land burial. Low-level radioactive waste generated by non-Federal facilities has been buried at six commercially operated sites; low-level radioactive waste generated by Federal facilities has been buried at eight major and several minor Federally operated sites (fig. 1). Generally, low-level radioactive waste is somewhat imprecisely defined as waste that does not fit the definition of high-level radioactive waste and does not exceed 100 nCi/g in the concentration of transuranic elements. Most low-level radioactive waste generated by non-Federal facilities is generated at nuclear powerplants; the remainder is generated primarily at research laboratories, hospitals, industrial facilities, and universities. On the basis of half lives and concentrations of radionuclides in low-level radioactive waste, the hazard associated with burial of such waste generally lasts for about 500 years. Studies made at several of the commercially and Federally operated low-level radioactive-waste repository sites indicate that some of these sites have not provided containment of waste nor the expected protection of the environment.

  5. Vitrification in human and domestic animal embryology: work in progress.

    PubMed

    Vajta, Gábor

    2013-01-01

    According to the analysis of papers published in major international journals, rapidly increasing application of vitrification is one of the greatest achievements in domestic animal and especially human embryology during the first decade of our century. This review highlights factors supporting or hampering this progress, summarises results achieved with vitrification and outlines future tasks to fully exploit the benefits of this amazing approach that has changed or will change many aspects of laboratory (and also clinical) embryology. Supporting factors include the simplicity, cost efficiency and convincing success of vitrification compared with other approaches in all species and developmental stages in mammalian embryology, while causes that slow down the progress are mostly of human origin: inadequate tools and solutions, superficial teaching, improper application and unjustified concerns resulting in legal restrictions. Elimination of these hindrances seems to be a slower process and more demanding task than meeting the biological challenge. A key element of future progress will be to pass the pioneer age, establish a consensus regarding biosafety requirements, outline the indispensable features of a standard approach and design fully-automated vitrification machines executing all phases of the procedure, including equilibration, cooling, warming and dilution steps.

  6. An ecotoxic risk assessment of residue materials produced by the plasma pyrolysis/vitrification (PP/V) process.

    PubMed

    Lapa, N; Santos, Oliveira J F; Camacho, S L; Circeo, L J

    2002-01-01

    Plasma is the fourth state of matter, following the three states of solid, liquid and gas. Experience has amply demonstrated that solids exposed to the oxygen-deficient plasma flame are converted to liquid, and liquid exposed to the same flame is converted to gas. A low amount of vitrified solid residue material usually remains at the end of this process. Plasma pyrolysis/vitrification (PP/V) has been demonstrated as a safe, efficient, cost-effective technology for the treatment of wastes, including hazardous wastes. Besides the low amounts of gaseous byproducts that PP/V produces, the solid vitrified residue presents a low leachability of pollutants. Studies have been performed in many countries in order to assess the leachability of chemical substances. But from the results of identified studies, none has reported results on the ecotoxicological properties of the leachates. The aim of this study was to contribute to the assessment of ecotoxic risk of four different vitrified materials. Vitrified samples of contaminated soils, municipal solid wastes, and incinerator bottom ashes were submitted to the European leaching pre-standard test number prEN 12457-2. The leachates were analyzed for 22 chemical parameters. The biological characterization comprised the assessment of bioluminescence inhibition of Photobacterium phosphoreum bacterium, growth inhibition of Pseudokirchneriella subcapitata algae and the germination inhibition of Lactuca sativa vegetable. The chemical and ecotoxicological results were analyzed according to the French proposal of Criteria on the Evaluation Methods of Waste Toxicity (CEMWT) and a Toxicity Classification System (TCS). The chemical and ecotoxicological results indicated a low leachability of pollutants and a low toxicity level of leachates. All samples studied were as below the TCS class 1 level (no significant toxicity observed) and as non-ecotoxic for CEMWT. Therefore, the environmental ecotoxic risk of the analyzed vitrified samples

  7. 75 FR 137 - Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ... DEPARTMENT OF ENERGY Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement Revised by State 12/ 21/09 AGENCY: Department of Energy. ACTION: Amended Record of Decision. SUMMARY: The U.S. Department of Energy (DOE) is amending its initial Record of...

  8. RNA-Seq transcriptome profiling of mouse oocytes after in vitro maturation and/or vitrification.

    PubMed

    Gao, Lei; Jia, Gongxue; Li, Ai; Ma, Haojia; Huang, Zhengyuan; Zhu, Shien; Hou, Yunpeng; Fu, Xiangwei

    2017-10-16

    In vitro maturation (IVM) and vitrification have been widely used to prepare oocytes before fertilization; however, potential effects of these procedures, such as expression profile changes, are poorly understood. In this study, mouse oocytes were divided into four groups and subjected to combinations of in vitro maturation and/or vitrification treatments. RNA-seq and in silico pathway analysis were used to identify differentially expressed genes (DEGs) that may be involved in oocyte viability after in vitro maturation and/or vitrification. Our results showed that 1) 69 genes were differentially expressed after IVM, 66 of which were up-regulated. Atp5e and Atp5o were enriched in the most significant gene ontology term "mitochondrial membrane part"; thus, these genes may be promising candidate biomarkers for oocyte viability after IVM. 2) The influence of vitrification on the transcriptome of oocytes was negligible, as no DEGs were found between vitrified and fresh oocytes. 3) The MII stage is more suitable for oocyte vitrification with respect to the transcriptome. This study provides a valuable new theoretical basis to further improve the efficiency of in vitro maturation and/or oocyte vitrification.

  9. Successful vitrification and autografting of baboon (Papio anubis) ovarian tissue.

    PubMed

    Amorim, Christiani A; Jacobs, Sophie; Devireddy, Ram V; Van Langendonckt, Anne; Vanacker, Julie; Jaeger, Jonathan; Luyckx, Valérie; Donnez, Jacques; Dolmans, Marie-Madeleine

    2013-08-01

    Can a vitrification protocol using an ethylene glycol/dimethyl sulphoxide-based solution and a cryopin successfully cryopreserve baboon ovarian tissue? Our results show that baboon ovarian tissue can be successfully cryopreserved with our vitrification protocol. Non-human primates have already been used as an animal model to test vitrification protocols for human ovarian tissue cryopreservation. Ovarian biopsies from five adult baboons were vitrified, warmed and autografted for 5 months. After grafting, follicle survival, growth and function and also the quality of stromal tissue were assessed histologically and by immunohistochemistry. The influence of the vitrification procedure on the cooling rate was evaluated by a computer model. After vitrification, warming and long-term grafting, follicles were able to grow and maintain their function, as illustrated by Ki67, anti-Müllerian hormone (AMH) and growth differentiation factor-9 (GDF-9) immunostaining. Corpora lutea were also observed, evidencing successful ovulation in all the animals. Stromal tissue quality did not appear to be negatively affected by our cryopreservation procedure, as demonstrated by vascularization and proportions of fibrotic areas, which were similar to those found in fresh ungrafted ovarian tissue. Despite our promising findings, before applying this technique in a clinical setting, we need to validate it by achieving pregnancies. In addition to encouraging results obtained with our vitrification procedure for non-human ovarian tissue, this study also showed, for the first time, expression of AMH and GDF-9 in ovarian follicles. This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (grant Télévie No. 7.4507.10, grant 3.4.590.08 awarded to Marie-Madeleine Dolmans), Fonds Spéciaux de Recherche, Fondation St Luc, Foundation Against Cancer, and Department of Mechanical Engineering at Louisiana State University (support to Ram Devireddy), and

  10. Ceramic Single Phase High-Level Nuclear Waste Forms: Hollandite, Perovskite, and Pyrochlore

    NASA Astrophysics Data System (ADS)

    Vetter, M.; Wang, J.

    2017-12-01

    The lack of viable options for the safe, reliable, and long-term storage of nuclear waste is one of the primary roadblocks of nuclear energy's sustainable future. The method being researched is the incorporation and immobilization of harmful radionuclides (Cs, Sr, Actinides, and Lanthanides) into the structure of glasses and ceramics. Borosilicate glasses are the main waste form that is accepted and used by today's nuclear industry, but they aren't the most efficient in terms of waste loading, and durability is still not fully understood. Synroc-phase ceramics (i.e. hollandite, perovskite, pyrochlore, zirconolite) have many attractive qualities that glass waste forms do not: high waste loading, moderate thermal expansion and conductivity, high chemical durability, and high radiation stability. The only downside to ceramics is that they are more complex to process than glass. New compositions can be discovered by using an Artificial Neural Network (ANN) to have more options to optimize the composition, loading for performance by analyzing the non-linear relationships between ionic radii, electronegativity, channel size, and a mineral's ability to incorporate radionuclides into its structure. Cesium can be incorporated into hollandite's A-site, while pyrochlore and perovskite can incorporate actinides and lanthanides into their A-site. The ANN is used to predict new compositions based on hollandite's channel size, as well as the A-O bond distances of pyrochlore and perovskite, and determine which ions can be incorporated. These new compositions will provide more options for more experiments to potentially improve chemical and thermodynamic properties, as well as increased waste loading capabilities.

  11. Vitrification of plutonium at Rocky Flats the argument for a pilot plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, L.

    1996-05-01

    Current plans for stabilizing and storing the plutonium at Rocky Flats Plant fail to put the material in a form suitable for disposition and resistant to proliferation. Vitrification should be considered as an alternate technology. The vitrification should begin with a small-scale pilot plant.

  12. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter. Preliminary settling and resuspension testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.; Fowley, M. D.; Miller, D. H.

    2016-05-01

    The full-scale, room-temperature Hanford Tank Waste Treatment and Immobilization Plant (WTP) High-Level Waste (HLW) melter riser test system was successfully operated with silicone oil and magnetite particles at a loading of 0.1 vol %. Design and construction of the system and instrumentation, and the selection and preparation of simulant materials, are briefly reviewed. Three experiments were completed. A prototypic pour rate was maintained, based on the volumetric flow rate. Settling and accumulation of magnetite particles were observed at the bottom of the riser and along the bottom of the throat after each experiment. The height of the accumulated layer atmore » the bottom of the riser, after the first pouring experiment, approximated the expected level given the solids loading of 0.1 vol %. More detailed observations of particle resuspension and settling were made during and after the third pouring experiment. The accumulated layer of particles at the bottom of the riser appeared to be unaffected after a pouring cycle of approximately 15 minutes at the prototypic flow rate. The accumulated layer of particles along the bottom of the throat was somewhat reduced after the same pouring cycle. Review of the time-lapse recording showed that some of the settling particles flow from the riser into the throat. This may result in a thicker than expected settled layer in the throat.« less

  13. Geomicrobiology of High-Level Nuclear Waste-Contaminated Vadose Sediments at the Hanford Site, Washington State

    PubMed Central

    Fredrickson, James K.; Zachara, John M.; Balkwill, David L.; Kennedy, David; Li, Shu-mei W.; Kostandarithes, Heather M.; Daly, Michael J.; Romine, Margaret F.; Brockman, Fred J.

    2004-01-01

    Sediments from a high-level nuclear waste plume were collected as part of investigations to evaluate the potential fate and migration of contaminants in the subsurface. The plume originated from a leak that occurred in 1962 from a waste tank consisting of high concentrations of alkali, nitrate, aluminate, Cr(VI), 137Cs, and 99Tc. Investigations were initiated to determine the distribution of viable microorganisms in the vadose sediment samples, probe the phylogeny of cultivated and uncultivated members, and evaluate the ability of the cultivated organisms to survive acute doses of ionizing radiation. The populations of viable aerobic heterotrophic bacteria were generally low, from below detection to ∼104 CFU g−1, but viable microorganisms were recovered from 11 of 16 samples, including several of the most radioactive ones (e.g., >10 μCi of 137Cs/g). The isolates from the contaminated sediments and clone libraries from sediment DNA extracts were dominated by members related to known gram-positive bacteria. Gram-positive bacteria most closely related to Arthrobacter species were the most common isolates among all samples, but other phyla high in G+C content were also represented, including Rhodococcus and Nocardia. Two isolates from the second-most radioactive sample (>20 μCi of 137Cs g−1) were closely related to Deinococcus radiodurans and were able to survive acute doses of ionizing radiation approaching 20 kGy. Many of the gram-positive isolates were resistant to lower levels of gamma radiation. These results demonstrate that gram-positive bacteria, predominantly from phyla high in G+C content, are indigenous to Hanford vadose sediments and that some are effective at surviving the extreme physical and chemical stress associated with radioactive waste. PMID:15240306

  14. Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovach, L.A.; Murphy, W.M.

    1995-09-01

    A Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste was held in San Antonio, Texas on July 22--25, 1991. The proceedings comprise seventeen papers submitted by participants at the workshop. A series of papers addresses the relation of natural analog studies to the regulation, performance assessment, and licensing of a geologic repository. Applications of reasoning by analogy are illustrated in papers on the role of natural analogs in studies of earthquakes, petroleum, and mineral exploration. A summary is provided of a recently completed, internationally coordinated natural analog study at Pocos de Caldas, Brazil. Papersmore » also cover problems and applications of natural analog studies in four technical areas of nuclear waste management-. waste form and waste package, near-field processes and environment, far-field processes and environment, and volcanism and tectonics. Summaries of working group deliberations in these four technical areas provide reviews and proposals for natural analog applications. Individual papers have been cataloged separately.« less

  15. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, D.; Nash, C.; Mcclane, D.

    Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfates in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to demonstrate evaporation of a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations, in order to predict the composition of the effluents from the EMF evaporator to aid in planning for their disposition. This document describes the results of that test using the core simulant. This simulant formulation is designated as the “core simulant”; other additives will be included for specific testing, such as volatiles for evaporation or hazardous metals for measuring leaching properties of waste forms. The results indicate that the simulant can easily be concentrated via evaporation. During that the pH adjustment step in simulant preparation, ammonium is quickly converted to ammonia, and most of the ammonia was stripped from the simulated waste and partitioned to the condensate. Additionally, it was found that after concentrating (>12x) and cooling that a small amount of LiF and Na 3(SO 4)F precipitate out of solution. With the exception of ammonia, analysis of the condensate indicated very low to below detectable levels of many of the constituents in the simulant, yielding very high decontamination factors (DF).« less

  16. 78 FR 1155 - Low-Level Waste Disposal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... NUCLEAR REGULATORY COMMISSION 10 CFR Part 61 [NRC-2011-0012] RIN 3150-AI92 Low-Level Waste... correcting a document appearing in the Federal Register on December 7, 2012 entitled, ``Low-Level Waste... and Submitting Comments, ``Regulatory Analysis for Proposed Revisions to Low-Level Waste Disposal...

  17. Cryopreservation of human embryos by vitrification or slow freezing: which one is better?

    PubMed

    Kolibianakis, Efstratios M; Venetis, Christos A; Tarlatzis, Basil C

    2009-06-01

    To summarize the available evidence from randomized controlled trials comparing vitrification versus slow freezing for cryopreservation of human embryos. Vitrification, as compared with slow freezing, appears to be better in terms of postthawing survival rates both for cleavage-stage embryos [odds ratio (OR): 6.35, 95% confidence interval (CI): 1.14-35.26, random effects model] and for blastocysts (OR: 4.09, 95% CI: 2.45-6.84, random effects model). Furthermore, postthawing blastocyst development of embryos cryopreserved in the cleavage stage is significantly higher with vitrification as compared with slow freezing (OR: 1.56, 95% CI: 1.07-2.27, fixed effects model). No significant difference in clinical pregnancy rates per transfer could be detected between the two cryopreservation methods (OR: 1.66, 95% CI: 0.98-2.79). Currently, vitrification does not appear to be associated with an increased probability of pregnancy. However, a significant advantage of vitrification over slow freezing in terms of postthawing survival rates is present for embryos cryopreserved both at the cleavage and at the blastocyst stages. The above conclusions are based on limited data, and thus further properly designed randomized controlled trials are needed.

  18. Evidence for dawsonite in Hanford high-level nuclear waste tanks.

    PubMed

    Reynolds, Jacob G; Cooke, Gary A; Herting, Daniel L; Warrant, R Wade

    2012-03-30

    Gibbsite [Al(OH)(3)] and boehmite (AlOOH) have long been assumed to be the most prevalent aluminum-bearing minerals in Hanford high-level nuclear waste sludge. The present study shows that dawsonite [NaAl(OH)(2)CO(3)] is also a common aluminum-bearing phase in tanks containing high total inorganic carbon (TIC) concentrations and (relatively) low dissolved free hydroxide concentrations. Tank samples were probed for dawsonite by X-ray Diffraction (XRD), Scanning Electron Microscopy with Energy Dispersive Spectrometry (SEM-EDS) and Polarized Light Optical Microscopy. Dawsonite was conclusively identified in four of six tanks studied. In a fifth tank (AN-102), the dawsonite identification was less conclusive because it was only observed as a Na-Al bearing phase with SEM-EDS. Four of the five tank samples with dawsonite also had solid phase Na(2)CO(3) · H(2)O. The one tank without observable dawsonite (Tank C-103) had the lowest TIC content of any of the six tanks. The amount of TIC in Tank C-103 was insufficient to convert most of the aluminum to dawsonite (Al:TIC mol ratio of 20:1). The rest of the tank samples had much lower Al:TIC ratios (between 2:1 and 0.5:1) than Tank C-103. One tank (AZ-102) initially had dawsonite, but dawsonite was not observed in samples taken 15 months after NaOH was added to the tank surface. When NaOH was added to a laboratory sample of waste from Tank AZ-102, the ratio of aluminum to TIC in solution was consistent with the dissolution of dawsonite. The presence of dawsonite in these tanks is of significance because of the large amount of OH(-) consumed by dawsonite dissolution, an effect confirmed with AZ-102 samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Comparison of apoptosis pathway following the use of two protocols for vitrification of immature mouse testicular tissue.

    PubMed

    Hajiaghalou, Samira; Ebrahimi, Bita; Shahverdi, Abdolhossein; Sharbatoghli, Mina; Beigi Boroujeni, Nasim

    2016-11-01

    Our objective was to evaluate the apoptosis incidence in immature mouse testicular tissue after two different protocols of vitrification and short-term culture. Testes of 7-day-old Naval Medical Research Institute mice were isolated and distributed into control and vitrification groups. In vitrification 1 group, testes were vitrified using a combination of ethylene glycol and DMSO in three steps, and in vitrification 2 group, testes were vitrified using a combination of ethylene glycol and sucrose in five steps. Then, fresh and vitrified-warmed testis fragments were cultured for 20 hours. Morphology, cell viability, apoptosis incidence, and apoptosis gene expression (BAX, BCL2, Caspase 3, Fas, Fas ligand, p53) were evaluated at 0, 3, and 20 hours of culture by light microscopy, flow cytometry, and real-time polymerase chain reaction, respectively. Significant decrease of early apoptosis (annexin V+/PI- cells in vitrification 1 and 2 groups at 0 hours of culture, 37.34 ± 0.91 and 30.72 ± 2.2, and at 20 hours of culture, 1.46 ± 0.28 and 0.76 ± 0.11, respectively), increase of late apoptosis (annexin V+/PI+ cells in vitrification 1 group at 0 hours of culture, 14.46 ± 0.86, and at 20 hours of culture, 37.18 ± 2.34), and BAX/BCL-2 ratio (in vitrification 1 and 2 groups at 0 hours of culture, 7.31 ± 0.31 and 6.83 ± 1.38, and at 20 hours of culture, 24.08 ± 4.32 and 9.35 ± 1.91, respectively) were observed in vitrification groups during culture period. Caspase 3 expression was significantly decreased in all groups after 3 hours of culture (in control, vitrification 1, and vitrification 2 groups at 0 hours of culture, 1.00 ± 0.0, 1.56 ± 0.09, and 0.79 ± 0.06, and at 20 hours of culture, 0.37 ± 0.0, 0.96 ± 0.10, and 0.12 ± 0.03, respectively). Expression of p53 was significantly lower in vitrification 1 (0.32 ± 0.02) and control (0.50 ± 0.03) groups in 20 hours of culture as compared with vitrification 2 (0

  20. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyacke, M.

    1993-08-01

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placedmore » in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.« less

  1. Ultrastructural changes of sheep cumulus-oocyte complexes following different methods of vitrification.

    PubMed

    Ebrahimi, Bita; Valojerdi, Mojtaba Rezazadeh; Eftekhari-Yazdi, Poopak; Baharvand, Hossein

    2012-05-01

    To determine the ultrastructural changes of sheep cumulus-oocyte complexes (COCs) following different methods of vitrification, good quality isolated COCs (GV stage) were randomly divided into the non-vitrified control, conventional straw, cryotop and solid surface vitrification groups. In both conventional and cryotop methods, vitrified COCs were respectively loaded by conventional straws and cryotops, and then plunged directly into liquid nitrogen (LN2); whereas in the solid surface group, vitrified COCs were first loaded by cryotops and then cooled before plunging into LN2. Post-warming survivability and ultrastructural changes of healthy COCs in the cryotop group especially in comparison with the conventional group revealed better viability rate and good preservation of the ooplasm organization. However in all vitrification groups except the cryotop group, mitochondria were clumped. Solely in the conventional straw group, the mitochondria showed different densities and were extremely distended. Moreover in the latter group, plenty of large irregular connected vesicles in the ooplasm were observed and in some parts their membrane ruptured. Also, in the conventional and solid surface vitrification groups, cumulus cells projections became retracted from the zona pellucida in some parts. In conclusion, the cryotop vitrification method as compared with other methods seems to have a good post-warming survivability and shows less deleterious effects on the ultrastructure of healthy vitrified-warmed sheep COCs.

  2. Design and Testing of a Solid-Liquid Interface Monitor for High-Level Waste Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, D.; Awwad, A.; Roelant, D.

    2008-07-01

    A high-level waste (HLW) monitor has been designed, fabricated and tested at full-scale for deployment inside a Hanford tank. The Solid-Liquid Interface Monitor (SLIM) integrates a commercial sonar system with a mechanical deployment system for deploying into an underground waste tank. The system has undergone several design modifications based upon changing requirements at Hanford. We will present the various designs of the monitor from first to last and will present performance data from the various prototype systems. We will also present modeling of stresses in the enclosure under 85 mph wind loading. The system must be able to function atmore » winds up to 15 mph and must withstand a maximum loading of 85 mph. There will be several examples presented of engineering tradeoffs made as FIU analyzed new requirements and modified the design to accommodate. We will present our current plans for installing into the Cold Test Facility at Hanford and into a double-shelled tank at Hanford. Finally, we will present our vision for how this technology can be used at Hanford and Savannah River Site to improve the filling and emptying of high-level waste tanks. In conclusion: 1. The manually operated first-generation SLIM is a viable option on tanks where personnel are allowed to work on top of the tank. 2. The remote controlled second-generation SLIM can be utilized on tanks where personnel access is limited. 3. The totally enclosed fourth-generation SLIM, when the design is finalized, can be used when the possibility exists for wind dispersion of any HLW that maybe on the system. 4. The profiling sonar can be used effectively for real-time monitoring of the solid-liquid interface over a large area. (authors)« less

  3. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J.C.; Van Konynenburg, R.A.; McCright, R.D.

    1988-04-01

    Three iron- to nickel-based austenitic alloys (Types 304L and 316L stainless steels and Alloy 825) are being considered as candidate materials for the fabrication of high-level radioactive-waste containers. Waste will include fuel assemblies from reactors as well as high-level waste in borosilicate glass forms, and will be sent to the prospective repository at Yucca Mountain, Nevada. The decay of radionuclides in the repository will result in the generation of substantial heat and in fluences of gamma radiation. Container materials may undergo any of several modes of degradation in this environment, including atmospheric oxidation; uniform aqueous phase corrosion; pitting; crevice corrosion;more » sensitization and intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This report is an analysis of data relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of the three austenitic candidate alloys. The candidates are compared in terms of their susceptibilities to these forms of corrosion. Although all three candidates have demonstrated pitting and crevice corrosion in chloride-containing environments, Alloy 825 has the greatest resistance to these types of localized corrosion (LC); such resistance is important because pits can penetrate the metal and serve as crack initiation sites. Both Types 304L and 316L stainless steels are susceptible to SCC in acidic chloride media. In contrast, SCC has not been documented in Alloy 825 under comparable conditions. Gamma radiation has been found to enhance SCC in Types 304 and 304L stainless steels, but it has no detectable effect on the resistance of Alloy 825 to SCC. Furthermore, while the effects of microbiologically induced corrosion have been observed for 300-series stainless steels, nickel-based alloys such as Alloy 825 seem to be immune to such problems. 211 refs., 49 figs., 10 tabs.« less

  4. High-level waste disposal, ethics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Schwartz, Michael O.

    2008-06-01

    Moral philosophy applied to nuclear waste disposal can be linked to paradigmatic science. Simple thermodynamic principles tell us something about rightness or wrongness of our action. Ethical judgement can be orientated towards the chemical compatibility between waste container and geological repository. A container-repository system as close as possible to thermodynamic equilibrium is ethically acceptable. It aims at unlimited stability, similar to the stability of natural metal deposits within the Earth’s crust. The practicability of the guideline can be demonstrated.

  5. Improvement of vitrification of in vitro produced buffalo embryos with special reference to sex ratio following vitrification

    PubMed Central

    Mahmoud, K. Gh. M; Scholkamy, T. H; Darwish, S. F

    2015-01-01

    Cryopreservation and sexing of embryos are integrated into commercial embryo transfer technologies. To improve the effectiveness of vitrification of in vitro produced buffalo embryos, two experiments were conducted. The first evaluated the effect of exposure time (2 and 3 min) and developmental stage (morula and blastocysts) on the viability and development of vitrified buffalo embryos. Morphologically normal embryos and survival rates (re-expansion) significantly increased when vitrified morulae were exposed for 2 min compared to 3 min (P<0.001). On the other hand, morphologically normal and survival rates of blastocysts significantly increased when exposed for 3 min compared to 2 min (P<0.001). However, there were no significant differences between the two developmental stages (morulae and blastocystes) in the percentages of morphologically normal embryos and re-expansion rates after a 24 h culture. The second experiment aimed to evaluate the effect of viability on the sex ratio of buffalo embryos after vitrification and whether male and female embryos survived vitrification differently. A total number of 61 blastocysts were vitrified for 3 min with the same cryoprotectant as experiment 1. Higher percentages of males were recorded for live as compared to dead embryos; however, this difference was not significant. In conclusion, the post-thaw survival and development of in vitro produced morulae and blastocysts were found to be affected by exposure time rather than developmental stage. Survivability had no significant effect on the sex ratio of vitrified blastocysts; nevertheless, the number of surviving males was higher than dead male embryos. PMID:27175197

  6. Evolution of human oocyte cryopreservation: slow freezing versus vitrification.

    PubMed

    Levi-Setti, Paolo Emanuele; Patrizio, Pasquale; Scaravelli, Giulia

    2016-12-01

    The purpose is to determine the efficiency and efficacy of oocyte cryopreservation by slow freezing versus vitrification, recent data collected from the Italian National Assisted Reproductive Technology Register during the period 2009-2014 will be presented and reviewed. The data on oocyte cryopreservation were also compared with the results obtained with embryo cryopreservation and relative IVF with fresh oocytes. During the period 2009-2014 preservation of oocytes by vitrification had a significantly higher survival rate, implantation, and pregnancy rate than slow freezing; however, there are still large variations in success rates among centers in relation to the number of procedures performed. Vitrification has now become the method of choice for oocyte cryopreservation because of better results than slow freezing, but still requires a more standardized utilization. The transfer of fresh or cryopreserved embryo still shows a statistically significant better performance than transfers with embryos obtained with cryopreserved oocytes. Only in a few centers with much experience in cryopreservation are the results between transfers of frozen embryos or embryos obtained from oocyte cryopreservation comparable.

  7. Vitrification of zona-free rabbit expanded or hatching blastocysts: a possible model for human blastocysts.

    PubMed

    Cervera, R P; Garcia-Ximénez, F

    2003-10-01

    The purpose of this study was to test the effectiveness of one two-step (A) and two one-step (B1 and B2) vitrification procedures on denuded expanded or hatching rabbit blastocysts held in standard sealed plastic straws as a possible model for human blastocysts. The effect of blastocyst size was also studied on the basis of three size categories (I: diameter <200 micro m; II: diameter 200-299 micro m; III: diameter >/==" BORDER="0">300 micro m). Rabbit expanded or hatching blastocysts were vitrified at day 4 or 5. Before vitrification, the zona pellucida was removed using acidic phosphate buffered saline. For the two-step procedure, prior to vitrification, blastocysts were pre- equilibrated in a solution containing 10% dimethyl sulphoxide (DMSO) and 10% ethylene glycol (EG) for 1 min. Different final vitrification solutions were compared: 20% DMSO and 20% EG with (A and B1) or without (B2) 0.5 mol/l sucrose. Of 198 vitrified blastocysts, 181 (91%) survived, regardless of the vitrification procedure applied. Vitrification procedure A showed significantly higher re-expansion (88%), attachment (86%) and trophectoderm outgrowth (80%) rates than the two one-step vitrification procedures, B1 and B2 (46 and 21%, 20 and 33%, and 18 and 23%, respectively). After warming, blastocysts of greater size (II and III) showed significantly higher attachment (54 and 64%) and trophectoderm outgrowth (44 and 58%) rates than smaller blastocysts (I, attachment: 29%; trophectoderm outgrowth: 25%). These result demonstrate that denuded expanded or hatching rabbit blastocysts of greater size can be satisfactorily vitrified by use of a two-step procedure. The similarity of vitrification solutions used in humans could make it feasible to test such a procedure on human denuded blastocysts of different sizes.

  8. 77 FR 72997 - Low-Level Waste Disposal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ...-2011-0012] RIN 3150-AI92 Low-Level Waste Disposal AGENCY: Nuclear Regulatory Commission. ACTION... Regulatory Commission (NRC) is proposing to amend its regulations that govern low-level radioactive waste... development of criteria for waste acceptance based on the results of these analyses. These amendments will...

  9. Why consider subseabed disposal of high-level nuclear waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heath, G. R.; Hollister, C. D.; Anderson, D. R.

    1980-01-01

    Large areas of the deep seabed warrant assessment as potential disposal sites for high-level radioactive waste because: (1) they are far from seismically and tectonically active lithospheric plate boundaries; (2) they are far from active or young volcanos; (3) they contain thick layers of very uniform fine-grained clays; (4) they are devoid of natural resources likely to be exploited in the forseeable future; (5) the geologic and oceanographic processes governing the deposition of sediments in such areas are well understood, and are remarkably insensitive to past oceanographic and climatic changes; and (6) sedmentary records of tens of millions of yearsmore » of slow, uninterrupted deposition of fine grained clay support predictions of the future stability of such sites. Data accumulated to date on the permeability, ion-retardation properties, and mechanical strength of pelagic clay sediments indicate that they can act as a primary barrier to the escape of buried nuclides. Work in progress should determine within the current decade whether subseabed disposal is environmentally acceptable and technically feasible, as well as address the legal, political and social issues raised by this new concept.« less

  10. Collaboration, Automation, and Information Management at Hanford High Level Radioactive Waste (HLW) Tank Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aurah, Mirwaise Y.; Roberts, Mark A.

    Washington River Protection Solutions (WRPS), operator of High Level Radioactive Waste (HLW) Tank Farms at the Hanford Site, is taking an over 20-year leap in technology, replacing systems that were monitored with clipboards and obsolete computer systems, as well as solving major operations and maintenance hurdles in the area of process automation and information management. While WRPS is fully compliant with procedures and regulations, the current systems are not integrated and do not share data efficiently, hampering how information is obtained and managed.

  11. Thermohydrological conditions and silica redistribution near high-level nuclear wastes emplaced in saturated geological formations

    NASA Astrophysics Data System (ADS)

    Verma, A.; Pruess, K.

    1988-02-01

    Evaluation of the thermohydrological conditions near high-level nuclear waste packages is needed for the design of the waste canister and for overall repository design and performance assessment. Most available studies in this area have assumed that the hydrologic properties of the host rock are not changed in response to the thermal, mechanical, or chemical effects caused by waste emplacement. However, the ramifications of this simplifying assumption have not been substantiated. We have studied dissolution and precipitation of silica in liquid-saturated hydrothermal flow systems, including changes in formation porosity and permeability. Using numerical simulation, we compare predictions of thermohydrological conditions with and without inclusion of silica redistribution effects. Two cases were studied, namely, a canister-scale problem, and a repository-wide thermal convection problem and different pore models were employed for the permeable medium (fractures with uniform or nonuniform cross sections). We find that silica redistribution in water-saturated conditions does not have a sizeable effect on host rock and canister temperatures, pore pressures, or flow velocities.

  12. System for chemically digesting low level radioactive, solid waste material

    DOEpatents

    Cowan, Richard G.; Blasewitz, Albert G.

    1982-01-01

    An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

  13. Characterization of Radioactive Waste Melter Feed Vitrified By Microwave Energy,

    DTIC Science & Technology

    processed in the Defense Waste Processing Facility ( DWPF ) and poured into stainless steel canisters for eventual disposal in a geologic repository...Vitrification of melter feed samples is necessary for DWPF process and product control. Microwave fusion of melter feed at approximately 12OO deg C for 10

  14. High levels of antimony in dust from e-waste recycling in southeastern China.

    PubMed

    Bi, Xiangyang; Li, Zhonggen; Zhuang, Xiaochun; Han, Zhixuan; Yang, Wenlin

    2011-11-01

    Environmental contamination due to uncontrolled e-waste recycling is an emerging global issue. Antimony (Sb) is a toxic element used in semiconductor components and flame retardants for circuit board within electronic equipment. When e-waste is recycled, Sb is released and contaminates the surrounding environment; however, few studies have characterized the extent of this problem. In this study, we investigated Sb and arsenic (As) distributions in indoor dust from 13 e-waste recycling villages in Guiyu, Guangdong Province, southeastern China. Results revealed significantly elevated concentrations of Sb (6.1-232 mg/kg) in dust within all villages, which were 3.9-147 times higher than those from the non e-waste sites, indicating e-waste recycling was an important source of Sb pollution. On the contrary, As concentrations (5.4-17.7 mg/kg) in e-waste dusts were similar to reference values from the control sites. Therefore, dusts emitted from e-waste recycling may be characterized by high Sb/As ratios, which may help identify the contamination due to the e-waste recycling activities. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. International High Level Nuclear Waste Management

    ERIC Educational Resources Information Center

    Dreschhoff, Gisela; And Others

    1974-01-01

    Discusses the radioactive waste management in Belgium, Canada, France, Germany, India, Italy, Japan, the United Kingdom, the United States, and the USSR. Indicates that scientists and statesmen should look beyond their own lifetimes into future centuries and millennia to conduct long-range plans essential to protection of future generations. (CC)

  16. SUBGRADE MONOLITHIC ENCASEMENT STABILIZATION OF CATEGORY 3 LOW LEVEL WASTE (LLW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PHILLIPS, S.J.

    2004-02-03

    A highly efficient and effective technology has been developed and is being used for stabilization of Hazard Category 3 low-level waste at the U.S. Department of Energy's Hanford Site. Using large, structurally interconnected monoliths, which form one large monolith that fills a waste disposal trench, the patented technology can be used for final internment of almost any hazardous, radioactive, or toxic waste or combinations of these waste materials packaged in a variety of sizes, shapes, and volumes within governmental regulatory limits. The technology increases waste volumetric loading by 100 percent, area use efficiency by 200 percent, and volumetric configuration efficiencymore » by more than 500 percent over past practices. To date, in excess of 2,010 m{sup 3} of contact-handled and remote-handled low-level radioactive waste have been interned using this patented technology. Additionally, in excess of 120 m{sup 3} of low-level radioactive waste requiring stabilization in low-diffusion coefficient waste encasement matrix has been disposed using this technology. Greater than five orders of magnitude in radiation exposure reduction have been noted using this method of encasement of Hazard Category 3 waste. Additionally, exposure monitored at all monolith locations produced by the slip form technology is less than 1.29 x E-07 C {center_dot} kg{sup -1}. Monolithic encasement of Hazard Category 3 low-level waste and other waste category materials may be successfully accomplished using this technology at nominally any governmental or private sector waste disposal facility. Additionally, other waste materials consisting of hazardous, radioactive, toxic, or mixed waste materials can be disposed of using the monolithic slip form encasement technology.« less

  17. Prospective randomized comparison of human oocyte cryopreservation with slow-rate freezing or vitrification.

    PubMed

    Smith, Gary D; Serafini, Paulo C; Fioravanti, Joyce; Yadid, Isaac; Coslovsky, Marcio; Hassun, Pericles; Alegretti, José Roberto; Motta, Eduardo L

    2010-11-01

    To compare cryopreservation of mature human oocytes with slow-rate freezing and vitrification and determine which is most efficient at establishing a pregnancy. Prospective randomized. Academically affiliated, private fertility center. Consenting patients with concerns about embryo cryopreservation and more than nine mature oocytes at retrieval were randomized to slow-rate freezing or vitrification of supernumerary (more than nine) oocytes. Oocytes were frozen or vitrified, and upon request oocytes were thawed or warmed, respectively. Oocyte survival, fertilization, embryo development, and clinical pregnancy. Patient use has resulted in 30 thaws and 48 warmings. Women's age at time of cryopreservation was similar. Oocyte survival was significantly higher following vitrification/warming (81%) compared with freezing/thawing (67%). Fertilization was more successful in oocytes vitrified/warmed compared with frozen/thawed. Fertilized oocytes from vitrification/warming had significantly better cleavage rates (84%) compared with freezing/thawing (71%) and resulted in embryos with significantly better morphology. Although similar numbers of embryos were transferred, embryos resulting from vitrified oocytes had significantly enhanced clinical (38%) pregnancy rates compared with embryos resulting from frozen oocyte (13%). Miscarriage and/or spontaneous abortion rates were similar. Our results suggest that vitrification/warming is currently the most efficient means of oocyte cryopreservation in relation to subsequent success in establishing pregnancy. Copyright © 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less

  19. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less

  20. Vitrification of erythrocytes, cryoprotective solutions and pure water by rapid solidification

    NASA Astrophysics Data System (ADS)

    Schedgick, David J.

    2003-06-01

    Vitrification has been used successfully in the past to cryopreserve biologically active materials in the presence of high concentrations of cryoprotectants. Rapid cooling and rapid rewarming were investigated to reduce or eliminate the concentrations of cryoprotectant necessary for cryopreservation. Glycerol based cryoprotectants were unidirectionally quenched and rewarmed to determine the depth at which a glass could form upon quenching while also avoiding subsequent crystallization upon rewarming. It was determined that, at sufficient cooling rates, pure water could be vitrified in thicknesses of 700 microns by quenching on free standing diamond wafers, and that solutions of greater than 50% glycerol are required to vitrify thicknesses equivalent to that of a human kidney. This process has been adapted to cryopreserve erythrocytes resuspended in isotonic saline. The cell suspensions were either drawn into small diameter glass tubes (500 micron inner diameter), loaded between thin glass plates (130--170 micron plate thickness), or formed into thin discs by shearing a drop of the suspension on a diamond film. The tubes, plates and sheared droplets were then quenched by immersion into liquid nitrogen. Erythrocyte survival after rewarming was measured at up to 97% of the unfrozen controls. Additionally, erythrocyte intracellular 2,3-DPG, ATP, and K+ were measured for the quenched cells and compared to the unfrozen controls. 2,3-DPG levels dropped 17.9% +/- 16.3%, ATP decreased 46.8% +/- 13.4%, and 52.8% +/- 3.4% of intracellular K+ remained after cryopreservation. The changes in intracellular indicators were similar to the changes observed in erythrocytes cryopreserved using the conventional glycerolized cryopreservation technique. Glass formation in erythrocyte suspensions upon cooling has been confirmed by differential scanning calorimetry (DS). Samples quenched in tubes, plates and on diamond films showed glass transition endotherms and crystallization exotherms

  1. Integrated software system for low level waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worku, G.

    1995-12-31

    In the continually changing and uncertain world of low level waste management, many generators in the US are faced with the prospect of having to store their waste on site for the indefinite future. This consequently increases the set of tasks performed by the generators in the areas of packaging, characterizing, classifying, screening (if a set of acceptance criteria applies), and managing the inventory for the duration of onsite storage. When disposal sites become available, it is expected that the work will require re-evaluating the waste packages, including possible re-processing, re-packaging, or re-classifying in preparation for shipment for disposal undermore » the regulatory requirements of the time. In this day and age, when there is wide use of computers and computer literacy is at high levels, an important waste management tool would be an integrated software system that aids waste management personnel in conducting these tasks quickly and accurately. It has become evident that such an integrated radwaste management software system offers great benefits to radwaste generators both in the US and other countries. This paper discusses one such approach to integrated radwaste management utilizing some globally accepted radiological assessment software applications.« less

  2. DEMONSTRATION BULLETIN: IN SITU VITRIFICATION - GEOSAFE CORPORATION

    EPA Science Inventory

    in Situ Vitrification (ISV) is designed to treat soils, sludges, sediments, and mine tailings contaminated with organic and inorganic compounds. The process uses electrical current to heat (mett) and vitrify the soil in place. Organic contaminants are decomposed by the extreme h...

  3. Successful slush nitrogen vitrification of human ovarian tissue.

    PubMed

    Talevi, Riccardo; Barbato, Vincenza; Fiorentino, Ilaria; Braun, Sabrina; De Stefano, Cristofaro; Ferraro, Raffaele; Sudhakaran, Sam; Gualtieri, Roberto

    2016-06-01

    To study whether slush nitrogen vitrification improves the preservation of human ovarian tissue. Control vs. treatment study. University research laboratory. Ovarian biopsies collected from nine women (aged 14-35 years) during laparoscopic surgery for benign gynecologic conditions. None. Ovarian cortical strips of 2 × 5 × 1 mm were vitrified with liquid or slush nitrogen. Fresh and vitrified cortical strips were analyzed for cryodamage and viability under light, confocal, and transmission electron microscopy. Compared with liquid nitrogen, vitrification with slush nitrogen preserves [1] follicle quality (grade 1 follicles: fresh control, 50%; liquid nitrogen, 27%; slush nitrogen, 48%); [2] granulosa cell ultrastructure (intact cells: fresh control, 92%; liquid nitrogen, 45%; slush nitrogen, 73%), stromal cell ultrastructure (intact cells: fresh control, 59.8%; liquid nitrogen, 24%; slush nitrogen, 48.7%), and DNA integrity (TUNEL-positive cells: fresh control, 0.5%; liquid nitrogen, 2.3%; slush nitrogen, 0.4%); and [3] oocyte, granulosa, and stromal cell viability (oocyte: fresh control, 90%; liquid nitrogen, 63%; slush nitrogen, 87%; granulosa cells: fresh control, 93%; liquid nitrogen, 53%; slush nitrogen, 81%; stromal cells: fresh control, 63%; liquid nitrogen, 30%; slush nitrogen, 52%). The histology, ultrastructure, and viability of follicles and stromal cells are better preserved after vitrification with slush nitrogen compared with liquid nitrogen. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Ovarian tissue vitrification and heterotopic autologous transplantation in prepubertal Wistar rats.

    PubMed

    Wietcovsky, Leticia; Til, David; Salvador, Rafael Alonso; Amaral, Nicole Louise Lângaro; Senn, Alfred Paul; Amaral, Vera Lucia Lângaro

    2018-03-15

    To evaluate the efficiency of ovarian tissue heterotopic autografting after vitrification in prepubertal rats. Fragments of excised ovaries from prepubertal rats were used after assessing post-warming cellular viability, to determine the best vitrification protocol prior to retroauricular autografting. Pre-pubertal females (N=24) were castrated and divided into three group: Group 1 - fresh ovarian tissue transplantation; Group 2 - vitrified/warmed tissue transplantation; Group 3 - bilateral oophorectomy without transplantation. The ovarian fragments were exposed to solutions from the Ingamed® commercial kit, allocated in bacteriological loops and immersed in liquid nitrogen. Sixty days after transplantation, a vaginal mucus sample was collected for cytology tests, followed by sacrificing the animal, performing a cardiac puncture for collecting a blood sample to determine luteinizing hormone and estradiol levels, and excision of the transplanted fragment for histology tests. Vaginal cytology revealed that 87.5% of females from groups 1 and 2 had estrus while all females in Group 3 remained in diestrus. The mean LH value in groups 1 (0.08 mIU/mL) and 2 (0.34 mIU/mL) were statistically different from that of Group 3 (2.27 mIU/mL). E2 values did not differ between the groups. The histological analysis of Group 1 excised grafts versus those from Group 2 showed a higher percentage of primary follicles (62.5% vs. 12.5%), developing follicles (75% vs. 25%), corpus luteum (37.5% vs. 12.5%) and stromal region (100% vs. 87.5%). This study indicated that pre-pubertal ovarian tissue vitrification can be used to preserve fertility and to restore endocrine function in castrated rats.

  5. Review of the Scientific Understanding of Radioactive Waste at the U.S. DOE Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Reid A.; Buck, Edgar C.; Chun, Jaehun

    This paper reviews the origin and chemical and rheological complexity of radioactive waste at the U.S. Department of Energy’s Hanford Site. The waste, stored in underground tanks, was generated via three distinct processes over decades of plutonium extraction operations. Although close records were kept of original waste disposition, tank-to-tank transfers and conditions that impede equilibrium complicate our understanding of the chemistry, phase composition, and rheology of the waste. Tank waste slurries comprise particles and aggregates from nano to micron scales, with varying densities, morphologies, heterogeneous compositions, and complicated responses to flow regimes and process conditions. Further, remnant or changing radiationmore » fields may affect the stability and rheology of the waste. These conditions pose challenges for transport through conduits or pipes to treatment plants for vitrification. Additionally, recalcitrant boehmite degrades glass quality and must be reduced prior to vitrification, but dissolves much more slowly than predicted given surface normalized rates. Existing empirical models based on ex situ experiments and observations lack true predictive capabilities. Recent advances in in situ microscopy, aberration corrected TEM, theoretical modeling across scales, and experimental methods for probing the physics and chemistry at mineral-fluid and mineral-mineral interfaces are being implemented to build robustly predictive physics-based models.« less

  6. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 7. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burt, D.L.

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection.

  7. Cryopreservation of day 2-3 embryos by vitrification yields better outcome than slow freezing.

    PubMed

    Levron, Jacob; Leibovitz, Oshrit; Brengauz, Masha; Gitman, Hila; Yerushalmi, Gil M; Katorza, Eldad; Gat, Itai; Elizur, Shai E

    2014-03-01

    To compare the outcome of vitrification versus slow freezing cryopreservation for cleavage stage day 2-3 embryos. A retrospective observational study. All thawed embryos assisted reproduction cycles between January 2010 and December 2012 at a single IVF laboratory of a Tertiary Medical Center. Five hundred and thirty-nine cycles of day 2-3 thawed embryos. In 327 of the thawed cycles, the embryos were vitrified and in 212 of the cycles the embryos were derived from slow freezing embryos. Embryo survival rate, blastomere surviving rate and pregnancy rate. Embryo survival rate was significantly higher after vitrification compared with slow freezing (81.6%, 647/793 versus 70.0%, 393/562 embryos, p < 0.0001). The clinical pregnancy rate per ET was significantly higher following vitrification compared to slow freezing, 20.0%, 63/314 versus 11.9%, 23/193, respectively (p = 0.02). Vitrification of day 2-3 cleavage stage embryos yields better cycle outcome in all the parameters compared to slow freezing.

  8. Compositional Models of Glass/Melt Properties and their Use for Glass Formulation

    DOE PAGES

    Vienna, John D.; USA, Richland Washington

    2014-12-18

    Nuclear waste glasses must simultaneously meet a number of criteria related to their processability, product quality, and cost factors. The properties that must be controlled in glass formulation and waste vitrification plant operation tend to vary smoothly with composition allowing for glass property-composition models to be developed and used. Models have been fit to the key glass properties. The properties are transformed so that simple functions of composition (e.g., linear, polynomial, or component ratios) can be used as model forms. The model forms are fit to experimental data designed statistically to efficiently cover the composition space of interest. Examples ofmore » these models are found in literature. The glass property-composition models, their uncertainty definitions, property constraints, and optimality criteria are combined to formulate optimal glass compositions, control composition in vitrification plants, and to qualify waste glasses for disposal. An overview of current glass property-composition modeling techniques is summarized in this paper along with an example of how those models are applied to glass formulation and product qualification at the planned Hanford high-level waste vitrification plant.« less

  9. Technical information report: Plasma melter operation, reliability, and maintenance analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrickson, D.W.

    1995-03-14

    This document provides a technical report of operability, reliability, and maintenance of a plasma melter for low-level waste vitrification, in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. A process description is provided that minimizes maintenance and downtime and includes material and energy balances, equipment sizes and arrangement, startup/operation/maintence/shutdown cycle descriptions, and basis for scale-up to a 200 metric ton/day production facility. Operational requirements are provided including utilities, feeds, labor, and maintenance. Equipment reliability estimates and maintenance requirements are provided which includes a list of failure modes, responses, and consequences.

  10. A Preliminary Performance Assessment for Salt Disposal of High-Level Nuclear Waste - 12173

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Joon H.; Clayton, Daniel; Jove-Colon, Carlos

    2012-07-01

    A salt repository is one of the four geologic media currently under study by the U.S. DOE Office of Nuclear Energy to support the development of a long-term strategy for geologic disposal of commercial used nuclear fuel (UNF) and high-level radioactive waste (HLW). The immediate goal of the generic salt repository study is to develop the necessary modeling tools to evaluate and improve the understanding of the repository system response and processes relevant to long-term disposal of UNF and HLW in a salt formation. The current phase of this study considers representative geologic settings and features adopted from previous studiesmore » for salt repository sites. For the reference scenario, the brine flow rates in the repository and underlying interbeds are very low, and transport of radionuclides in the transport pathways is dominated by diffusion and greatly retarded by sorption on the interbed filling materials. I-129 is the dominant annual dose contributor at the hypothetical accessible environment, but the calculated mean annual dose is negligibly small. For the human intrusion (or disturbed) scenario, the mean mass release rate and mean annual dose histories are very different from those for the reference scenario. Actinides including Pu-239, Pu-242 and Np-237 are major annual dose contributors, and the calculated peak mean annual dose is acceptably low. A performance assessment model for a generic salt repository has been developed incorporating, where applicable, representative geologic settings and features adopted from literature data for salt repository sites. The conceptual model and scenario for radionuclide release and transport from a salt repository were developed utilizing literature data. The salt GDS model was developed in a probabilistic analysis framework. The preliminary performance analysis for demonstration of model capability is for an isothermal condition at the ambient temperature for the near field. The capability demonstration

  11. Setting and Stiffening of Cementitious Components in Cast Stone Waste Form for Disposal of Secondary Wastes from the Hanford waste treatment and immobilization plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chul-Woo; Chun, Jaehun; Um, Wooyong

    2013-04-01

    Cast stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from Hanford vitrification plant. While the strength and radioactive technetium leaching of different waste form candidates have been reported, no study has been performed to understand the flow and stiffening behavior of Cast Stone, which is essential to ensure the proper workability, especially considering necessary safety as a nuclear waste form in a field scale application. The rheological and ultrasonic wave reflection (UWR) measurements were used to understand the setting and stiffening Cast Stone batches. X-ray diffraction (XRD) was used to find themore » correlation between specific phase formation and the stiffening of the paste. Our results showed good correlation between rheological properties of the fresh Cast Stone mixture and phase formation during hydration of Cast Stone. Secondary gypsum formation originating from blast furnace slag was observed in Cast Stone made with low concentration simulants. The formation of gypsum was suppressed in high concentration simulants. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration.« less

  12. Vitrification-based cryopreservation of Drosophila embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreuders, P.D.; Mazur, P.

    1994-12-31

    Currently, over 30,000 strains of Drosophila melanogaster are maintained by geneticists through regular transfer of breeding stocks. A more cost effective solution is to cryopreserve their embryos. Cooling and warming rates >10,000{degrees}C/min. are required to prevent chilling injury. To avoid the lethal intracellular ice normally produced at such high cooling rates, it is necessary to use {ge}50% (w/w) concentrations of glass-inducing solutes to vitrify the embryos. Differential scanning calorimetry (DSC) is used to develop and evaluate ethylene glycol and polyvinyl pyrrolidone based vitrification solutions. The resulting solution consists of 8.5M ethylene glycol + 10% polyvinylpyrrolidone in D-20 Drosophila culture medium.more » A two stage method is used for the introduction and concentration of these solutes within the embryo. The method reduces the exposure time to the solution and, consequently, reduces toxicity. Both DSC and freezing experiments suggest that, while twelve-hour embryos will vitrify using cooling rates >200{degrees}C/min., they will devitrify and be killed with even moderately rapid warming rates of {approximately}1,900{degrees}C/min. Very rapid warming ({approximately}100,000{degrees}C/min.) results in variable numbers of successfully cryopreserved embryos. This sensitivity to warming rite is typical of devitrification. The variability in survival is reduced using embryos of a precisely determined embryonic stage. The vitrification of the older, fifteen-hour, embryos yields an optimized hatching rate of 68%, with 35 - 40% of the resulting larvae developing to normal adults. This Success rite in embryos of this age may reflect a reduced sensitivity to limited devitrification or a more even distribution of the ethylene glycol within the embryo.« less

  13. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable themore » earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the

  14. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enablemore » the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the

  15. Experimental study on cesium immobilization in struvite structures.

    PubMed

    Wagh, Arun S; Sayenko, S Y; Shkuropatenko, V A; Tarasov, R V; Dykiy, M P; Svitlychniy, Y O; Virych, V D; Ulybkina, Е А

    2016-01-25

    Ceramicrete, a chemically bonded phosphate ceramic, was developed for nuclear waste immobilization and nuclear radiation shielding. Ceramicrete products are fabricated by an acid-base reaction between magnesium oxide and mono potassium phosphate that has a struvite-K mineral structure. In this study, we demonstrate that this crystalline structure is ideal for incorporating radioactive Cs into a Ceramicrete matrix. This is accomplished by partially replacing K by Cs in the struvite-K structure, thus forming struvite-(K, Cs) mineral. X-ray diffraction and thermo-gravimetric analyses are used to confirm such a replacement. The resulting product is non-leachable and stable at high temperatures, and hence it is an ideal matrix for immobilizing Cs found in high-activity nuclear waste streams. The product can also be used for immobilizing secondary waste streams generated during glass vitrification of spent fuel, or the method described in this article can be used as a pretreatment method during glass vitrification of high level radioactive waste streams. Furthermore, it suggests a method of producing safe commercial radioactive Cs sources. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Vapor Corrosion Response of Low Carbon Steel Exposed to Simulated High Level Radioactive Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersma, B

    2006-01-26

    A program to resolve the issues associated with potential vapor space corrosion and liquid/air interface corrosion in the Type III high level waste tanks is in place. The objective of the program is to develop understanding of vapor space (VSC) and liquid/air interface (LAIC) corrosion to ensure a defensible technical basis to provide accurate corrosion evaluations with regard to vapor space and liquid/air interface corrosion. The results of the FY05 experiments are presented here. The experiments are an extension of the previous research on the corrosion of tank steel exposed to simple solutions to corrosion of the steel when exposedmore » to complex high level waste simulants. The testing suggested that decanting and the consequent residual species on the tank wall is the predominant source of surface chemistry on the tank wall. The laboratory testing has shown that at the boundary conditions of the chemistry control program for solutions greater than 1M NaNO{sub 3}{sup -}. Minor and isolated pitting is possible within crevices in the vapor space of the tanks that contain stagnant dilute solution for an extended period of time, specifically when residues are left on the tank wall during decanting. Liquid/air interfacial corrosion is possible in dilute stagnant solutions, particularly with high concentrations of chloride. The experimental results indicate that Tank 50 would be most susceptible to the potential for liquid/air interfacial corrosion or vapor space corrosion, with Tank 49 and 41 following, since these tanks are nearest to the chemistry control boundary conditions. The testing continues to show that the combination of well-inhibited solutions and mill-scale sufficiently protect against pitting in the Type III tanks.« less

  17. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada--hydrology and geochemistry

    USGS Publications Warehouse

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  18. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada: hydrology and geochemistry

    USGS Publications Warehouse

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  19. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyrwas, R. B.

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval ofmore » actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.« less

  20. Method for recovering metals from waste

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    2000-01-01

    A method for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300-800.degree. C. to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000-1,550.degree. C. at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  1. Method for recovering materials from waste

    DOEpatents

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1994-01-01

    A method for recovering metals from metals-containing wastes, a vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800{degrees}C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1000--1550{degrees}C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  2. Method for recovering metals from waste

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1998-01-01

    A method for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300.degree.-800.degree. C. to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000.degree.-1,550.degree. C. at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  3. Method for recovering metals from waste

    DOEpatents

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1998-12-01

    A method is described for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800 C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000--1,550 C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification. 2 figs.

  4. Stabilization and disposal of Argonne-West low-level mixed wastes in ceramicrete waste forms.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, D. B.; Singh, D.; Strain, R. V.

    1998-02-17

    The technology of room-temperature-setting phosphate ceramics or Ceramicrete{trademark} technology, developed at Argonne National Laboratory (ANL)-East is being used to treat and dispose of low-level mixed wastes through the Department of Energy complex. During the past year, Ceramicrete{trademark} technology was implemented for field application at ANL-West. Debris wastes were treated and stabilized: (a) Hg-contaminated low-level radioactive crushed light bulbs and (b) low-level radioactive Pb-lined gloves (part of the MWIR {number_sign} AW-W002 waste stream). In addition to hazardous metals, these wastes are contaminated with low-level fission products. Initially, bench-scale waste forms with simulated and actual waste streams were fabricated by acid-base reactionsmore » between mixtures of magnesium oxide powders and an acid phosphate solution, and the wastes. Size reduction of Pb-lined plastic glove waste was accomplished by cryofractionation. The Ceramicrete{trademark} process produces dense, hard ceramic waste forms. Toxicity Characteristic Leaching Procedure (TCLP) results showed excellent stabilization of both Hg and Pb in the waste forms. The principal advantage of this technology is that immobilization of contaminants is the result of both chemical stabilization and subsequent microencapsulation of the reaction products. Based on bench-scale studies, Ceramicrete{trademark} technology has been implemented in the fabrication of 5-gal waste forms at ANL-West. Approximately 35 kg of real waste has been treated. The TCLP is being conducted on the samples from the 5-gal waste forms. It is expected that because the waste forms pass the limits set by the EPAs Universal Treatment Standard, they will be sent to a radioactive-waste disposal facility.« less

  5. Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.

    2012-09-30

    A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTE’s using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan tomore » conduct the development and demonstration. Results of the technology readiness assessment identified five CTE’s and found relatively low TRL’s for each of them: • Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 • Feeding, melting, and pouring: TRL-1 • Glass ceramic formulation: TRL-1 • Canister cooling and crystallization: TRL-1 • Canister decontamination: TRL-4 Although the TRL’s are low for most of these CTE’s (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRL’s are listed below: • Complete this TMP • Perform a preliminary engineering study • Characterize, estimate, and simulate waste to be treated • Laboratory scale glass ceramic testing • Melter and off-gas testing with simulants • Test the mixing, sampling, and analyses • Canister testing • Decontamination system testing • Issue a requirements document • Issue a risk management document • Complete preliminary design • Integrated pilot testing • Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2

  6. Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kai; Hrma, Pavel; Rice, Jarrett A.

    2016-05-23

    The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold-cap zone during nuclear waste vitrification. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate. To investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis – wavelength dispersive X-ray spectroscopy, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700 °C before the emerging glass-forming melt wasmore » completely connected. Above 800 °C, intermediate aluminosilicate phases and quartz particles were gradually dissolving in the continuous borosilicate melt, which expanded into transient foam. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less

  7. Is Yucca Mountain a long-term solution for disposing of US spent nuclear fuel and high-level radioactive waste?

    PubMed

    Thorne, M C

    2012-06-01

    On 26 January 2012, the Blue Ribbon Commission on America's Nuclear Future released a report addressing, amongst other matters, options for the managing and disposal of high-level waste and spent fuel. The Blue Ribbon Commission was not chartered as a siting commission. Accordingly, it did not evaluate Yucca Mountain or any other location as a potential site for the storage or disposal of spent nuclear fuel and high-level waste. Nevertheless, if the Commission's recommendations are followed, it is clear that any future proposals to develop a repository at Yucca Mountain would require an extended period of consultation with local communities, tribes and the State of Nevada. Furthermore, there would be a need to develop generally applicable regulations for disposal of spent fuel and high-level radioactive waste, so that the Yucca Mountain site could be properly compared with alternative sites that would be expected to be identified in the initial phase of the site-selection process. Based on what is now known of the conditions existing at Yucca Mountain and the large number of safety, environmental and legal issues that have been raised in relation to the DOE Licence Application, it is suggested that it would be imprudent to include Yucca Mountain in a list of candidate sites for future evaluation in a consent-based process for site selection. Even if there were a desire at the local, tribal and state levels to act as hosts for such a repository, there would be enormous difficulties in attempting to develop an adequate post-closure safety case for such a facility, and in showing why this unsaturated environment should be preferred over other geological contexts that exist in the USA and that are more akin to those being studied and developed in other countries.

  8. Cryotop vitrification as compared to conventional slow freezing for human embryos at the cleavage stage: survival and outcomes.

    PubMed

    Lin, Tseng-Kai; Su, Jin-Tsung; Lee, Fa-Kung; Lin, Yu-Ru; Lo, Hsiao-Ching

    2010-09-01

    This study was conducted to compare the efficacy of cryotop vitrification of human cleavage-stage embryos to that of conventional slow freezing of these embryos with respect to survival. A second objective was to compare the two cryopreservation techniques with respect to outcomes for a cohort of women. Cleavage-stage embryos from 102 patients were cryopreserved either by vitrification (57 patients) or by traditional slow freezing (45 patients). After thawing, rates of embryo survival, implantation, and clinical pregnancy were determined. Survival of embryos was significantly higher with the vitrification procedure as compared to traditional slow freezing [287/298 (96.3%) vs. 294/446 (65.9%); p < 0.05). Rates of implantation and clinical pregnancy were also significantly higher using vitrification procedure as compared to the slow freezing procedure (24.3% vs. 7.1% and 35.6% vs. 15.6% respectively, p < 0.05). As compared to conventional slow freezing, cryopreservation of human cleavage-stage embryo using vitrification results in higher rates of embryo survival, implantation, and clinical pregnancy. Vitrification therefore represents the superior cryopreservation technique for cleavage-stage embryos. Copyright © 2010 Taiwan Association of Obstetric & Gynecology. Published by Elsevier B.V. All rights reserved.

  9. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    for 137Cs. After treatment, disposition of the decontaminated Recycle stream may be suitable for the Effluent Treatment Facility, where it could be evaporated and solidified. The contaminated slurry stream containing the absorbents and radionuclides will be preliminarily characterized in this phase of the program to evaluate disposal options, and disposition routes will be tested in the next phase. The testing described herein will aid in selection of the best disposal pathway. Several research tasks have been identified that are needed for this initial phase: imulant formulation- Concentration of Recycle to reduce storage volume; Blending of concentrated Recycle with tank waste; Sorption of radionuclides; Precipitation of radionuclides. After this initial phase of testing, additional tasks are expected to be identified for development. These tasks likely include evaluation and testing of applicable solid-liquid separation technologies, slurry rheology measurements, composition variability testing and evaluations, corrosion and erosion testing, slurry storage and immobilization investigations, and decontaminated Recycle evaporation and solidification. Although there are a number of unknown parameters listed in the technical details of the concepts described here, many of these parameters have precedence and do not generally require fundamental new scientific breakthroughs. Many of the materials and processes described are already used in radioactive applications in the DOE complex, or have been tested previously in comparable conditions. Some of these materials and equipment are already used in High Level Waste applications, which are much more complex and aggressive conditions than the LAW Recycle stream. In some cases, the unknown parameters are simply extensions of already studied conditions, such as tank waste corrosion chemistry. The list of testing needs at first appears daunting, but virtually all have been done before, although there are potential issues with

  10. Measurement of actinides and strontium-90 in high activity waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, S.L. III; Nelson, M.R.

    1994-08-01

    The reliable measurement of trace radionuclides in high activity waste is important to support waste processing activities at SRS (F and H Area Waste Tanks, Extended Sludge Processing (ESP) and In-Tank precipitation (ITP) processing). Separation techniques are needed to remove high levels of gamma activity and alpha/beta interferences prior to analytical measurement. Using new extraction chromatographic resins from EiChrom Industries, Inc., the SRS Central Laboratory has developed new high speed separation methods that enable measurement of neptunium, thorium, uranium, plutonium, americium and strontium-90 in high activity waste solutions. Small particle size resin and applied vacuum are used to reduce analysismore » times and enhance column performance. Extraction chromatographic resins are easy to use and eliminate the generation of contaminated liquid organic waste.« less

  11. 77 FR 64361 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... 15, ``Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level... for low-level waste. DATES: Submit comments by November 15, 2012. Comments received after this date...

  12. Strain preservation of experimental animals: vitrification of two-cell stage embryos for multiple mouse strains.

    PubMed

    Eto, Tomoo; Takahashi, Riichi; Kamisako, Tsutomu

    2015-04-01

    Strain preservation of experimental animals is crucial for experimental reproducibility. Maintaining complete animal strains, however, is costly and there is a risk for genetic mutations as well as complete loss due to disasters or illness. Therefore, the development of effective vitrification techniques for cryopreservation of multiple experimental animal strains is important. We examined whether a vitrification method using cryoprotectant solutions, P10 and PEPeS, is suitable for preservation of multiple inbred and outbred mouse strains. First, we investigated whether our vitrification method using cryoprotectant solutions was suitable for two-cell stage mouse embryos. In vitro development of embryos exposed to the cryoprotectant solutions was similar to that of fresh controls. Further, the survival rate of the vitrified embryos was extremely high (98.1%). Next, we collected and vitrified two-cell stage embryos of 14 mouse strains. The average number of embryos obtained from one female was 7.3-33.3. The survival rate of vitrified embryos ranged from 92.8% to 99.1%, with no significant differences among mouse strains. In vivo development did not differ significantly between fresh controls and vitrified embryos of each strain. For strain preservation using cryopreserved embryos, two offspring for inbred lines and one offspring for outbred lines must be produced from two-cell stage embryos collected from one female. The expected number of surviving fetuses obtained from embryos collected from one female of either the inbred or outbred strains ranged from 2.9 to 19.5. The findings of the present study indicated that this vitrification method is suitable for strain preservation of multiple mouse strains. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. High-Level Radioactive Waste: Safe Storage and Ultimate Disposal.

    ERIC Educational Resources Information Center

    Dukert, Joseph M.

    Described are problems and techniques for safe disposal of radioactive waste. Degrees of radioactivity, temporary storage, and long-term permanent storage are discussed. Included are diagrams of estimated waste volumes to the year 2000 and of an artist's conception of a permanent underground disposal facility. (SL)

  14. Site Selection and Geological Research Connected with High Level Waste Disposal Programme in the Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomas, J.

    2003-02-25

    Attempts to solve the problem of high-level waste disposal including the spent fuel from nuclear power plants have been made in the Czech Republic for over the 10 years. Already in 1991 the Ministry of Environment entitled The Czech Geological Survey to deal with the siting of the locality for HLW disposal and the project No. 3308 ''The geological research of the safe disposal of high level waste'' had started. Within this project a sub-project ''A selection of perspective HLW disposal sites in the Bohemian Massif'' has been elaborated and 27 prospective areas were identified in the Czech Republic. Thismore » selection has been later narrowed to 8 areas which are recently studied in more detail. As a parallel research activity with siting a granitic body Melechov Massif in Central Moldanubian Pluton has been chosen as a test site and the 1st stage of research i.e. evaluation and study of its geological, hydrogeological, geophysical, tectonic and structural properties has been already completed. The Melechov Massif was selected as a test site after the recommendation of WATRP (Waste Management Assessment and Technical Review Programme) mission of IAEA (1993) because it represents an area analogous with the host geological environment for the future HLW and spent fuel disposal in the Czech Republic, i.e. variscan granitoids. It is necessary to say that this site would not be in a locality where the deep repository will be built, although it is a site suitable for oriented research for the sampling and collection of descriptive data using up to date and advanced scientific methods. The Czech Republic HLW and spent fuel disposal programme is now based on The Concept of Radioactive Waste and Spent Nuclear Fuel Management (''Concept'' hereinafter) which has been prepared in compliance with energy policy approved by Government Decree No. 50 of 12th January 2000 and approved by the Government in May 2002. Preparation of the Concept was required, amongst other reasons in

  15. Effects of Vitrification on Outcomes of In Vivo-Mature, In Vitro-Mature and Immature Human Oocytes.

    PubMed

    Song, Wen-Yan; Peng, Zhao-Feng; Chen, Xue-Mei; Jin, Hai-Xia; Yao, Gui-Dong; Shi, Sen-Lin; Yang, Hong-Yi; Zhang, Xiang-Yang; Sun, Ying-Pu

    2016-01-01

    To observe the effects of vitrification on spindle, zona pellucida, embryonic aneuploidy and DNA injury in in vivo-maruted, in vitro-mature and immature human oocytes. Between January 2009 and February 2015, 223 immature oocytes from 450 infertile patients, and 31 in vivo-mature oocytes from 3 infertile couples were collected. Of the 223 immature oocytes, 113 were used for in vitro culture before vitrification. Some oocytes were randomly divided into in vivo-mature group (group A, n = 15), in vitro-mature group (group B, n = 88) and immature group (group C, n = 85), and then the oocytes with spindle in these three groups after freezing-thawing were selected to use for Polscope imaging, embryonic aneuploidy screening and embryo development evaluation. Other oocytes were randomly divided into group A (n = 16), group B (n = 25) and group C (n = 25) for detecting DNA injury. After thawing, spindle occurrence rate, spindle Retardance value, and cleavage rate were significantly higher in groups A and B than in group C (all P < 0.05), but there were no statistical differences in fertility rate, high-quality embryo rate, blastulation rate and aneuploidy rate amongst the three groups (all P > 0.05). Zona pellucida density (ZPD) was significantly lower in group A than in groups B and C both before and after vitrification (all P < 0.05). ZPD was significantly higher after thawing than before vitrification (all P < 0.05), but zona pellucida thickness (ZPT) was not significantly changed in all the three groups (all P > 0.05). Rate of comet cells was significantly lower in group A than in groups B and C (all P < 0.01). Comet tail was significantly longer in group C than in groups B and A (all P < 0.05). In vivo- and in vitro-mature human oocytes are more suitable to vitrification than immature human oocytes. Spindle Retardance value has more predictive value for embryonic development potential than ZPD and ZPT. © 2016 The Author(s) Published by S. Karger AG, Basel.

  16. Recovery patterns, histological observations and genetic integrity in Malus shoot tips cryopreserved using droplet-vitrification and encapsulation-dehydration procedures.

    PubMed

    Li, Bai-Quan; Feng, Chao-Hong; Wang, Min-Rui; Hu, Ling-Yun; Volk, Gayle; Wang, Qiao-Chun

    2015-11-20

    A droplet-vitrification procedure is described for cryopreservation of Malus shoot tips. Survival patterns, recovery types, histological observations, and genetic integrity were compared for Malus shoot tips cryopreserved using this droplet-vitrification procedure and an encapsulation-dehydration procedure that was previously reported by us. In both procedures, three types of shoot tip recovery were observed following cryopreservation: callus formation without shoot regrowth, leaf formation without shoot regrowth, and shoot regrowth. Three categories of histological observations were also identified in cross-sections of shoot tips recovered after cryopreservation using the two cryogenic procedures. In category 1, almost all of the cells (94-95%) in the apical dome (AD) were damaged or killed and only some cells (30-32%) in the leaf primordia (LPs) survived. In category 2, only a few cells (18-20%) in the AD and some cells (30-31%) in the LPs survived. In category 3, majority of the cells (60-62%) in the AD and some cells (30-33%) in the LPs survived. These data suggest that shoot regrowth is correlated to the presence of a majority of surviving cells in the AD after liquid nitrogen exposure. No polymorphic bands were detected by inter-simple sequence repeats or by random amplified polymorphic DNA assessments, and ploidy levels analyzed by flow cytometry were unchanged when plants recovered after cryoexposure were compared to controls. The droplet-vitrification procedure appears to be robust since seven genotypes representing four Malus species and one hybrid recovered shoots following cryopreservation. Mean shoot regrowth levels of these seven genotypes were 48% in the droplet-vitrification method, which were lower than those (61%) in the encapsulation-dehydration procedure reported in our previous study, suggesting the latter may be preferred for routine cryobanking applications for Malus shoot tips. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Natural analogues for processes affecting disposal of high-level radioactive waste in the vadose zone

    NASA Astrophysics Data System (ADS)

    Stuckless, J. S.

    2003-04-01

    Natural analogues can contribute to understanding and predicting the performance of subsystems and processes affecting a mined geologic repository for high-level radioactive waste in several ways. Most importantly, analogues provide tests for various aspects of systems of a repository at dimensional scales and time spans that cannot be attained by experimental study. In addition, they provide a means for the general public to judge the predicted performance of a potential high-level nuclear waste repository in familiar terms such that the average person can assess the anticipated long-term performance and other scientific conclusions. Hydrologists working on the Yucca Mountain Project (currently the U.S. Department of Energy's Office of Repository Development) have modeled the flow of water through the vadose zone at Yucca Mountain, Nevada and particularly the interaction of vadose-zone water with mined openings. Analogues from both natural and anthropogenic examples confirm the prediction that most of the water moving through the vadose zone will move through the host rock and around tunnels. This can be seen both quantitatively where direct comparison between seepage and net infiltration has been made and qualitatively by the excellent degree of preservation of archaeologic artifacts in underground openings. The latter include Paleolithic cave paintings in southwestern Europe, murals and artifacts in Egyptian tombs, painted subterranean Buddhist temples in India and China, and painted underground churches in Cappadocia, Turkey. Natural analogues also suggest that this diversion mechanism is more effective in porous media than in fractured media. Observations from natural analogues are also consistent with the modeled decrease in the percentage of infiltration that becomes seepage with a decrease in amount of infiltration. Finally, analogues, such as tombs that have ben partially filled by mud flows, suggest that the same capillary forces that keep water in the

  18. Alternation of apoptotic and implanting genes expression of mouse embryos after re-vitrification

    PubMed Central

    Majidi Gharenaz, Nasrin; Movahedin, Mansoureh; Mazaheri, Zohreh; Pour beiranvand, Shahram

    2016-01-01

    Background: Nowadays, oocytes and embryos vitrification has become a routine technique. Based on clinical judgment, re-vitrification maybe required. But little is known about re-vitrification impact on genes expression. Objective: The impact of re-vitrification on apoptotic and implanting genes, Bax, Bcl-2 and ErbB4, at compaction stage embryos were evaluated in this study. Materials and Methods: In this experimental study, 8 cell embryos (n=240) were collected from female mature mice, 60-62 hr post HCG injection. The embryos were divided randomly to 3 groups included: fresh (n=80), vitrified at 8 cell stage (n=80), vitrified at 8 cell stage thawed and re-vitrified at compaction stage (n=80). Embryos were vitrified by using cryolock, (open system) described by Kuwayama. Q-PCR was used to examine the expression of Bax, Bcl2 ErbB4 genes in derived blastocysts. Results: Our result showed that expanded blastocyst rate was similar between vitrified and re-vitrified groups, while re-vitrified embryos showed significant decrease in expanded blastocyst rate comparing with fresh embryos (p=0.03). In addition, significant difference was observed on apoptotic gene expression when comparing re-vitrified and fresh embryos (p=0.004), however expression of Bax and Bcl-2 (apoptotic) genes didn't demonstrate a significant difference between re-vitrified and vitrified groups. The expression rate of ErbB4, an implantation gene was decreased in re-vitrified embryos comparing with fresh embryos (p=0.003), but it was similar between re-vitrified and vitrified embryos. Conclusion: Re-vitrification can alter the expression of Bax, Bcl-2 and ErbB4 genes and developmental rate of mouse embryos in compaction stage. PMID:27679826

  19. Closed Fuel Cycle Waste Treatment Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, J. D.; Collins, E. D.; Crum, J. V.

    waste form with encapsulated nano-sized AgI crystals; Carbon-14 immobilized as a CaCO3 in a cement waste form; Krypton-85 stored as a compressed gas; An aqueous reprocessing high-level waste (HLW) raffinate waste immobilized by the vitrification process; An undissolved solids (UDS) fraction from aqueous reprocessing of LWR fuel either included in the borosilicate HLW glass or immobilized in the form of a metal alloy or titanate ceramics; Zirconium-based LWR fuel cladding hulls and stainless steel (SS) fuel assembly hardware super-compacted for disposal or purified for reuse (or disposal as low-level waste, LLW) of Zr by reactive gas separations; Electrochemical process salt HLW incorporated into a glass bonded Sodalite waste form; and Electrochemical process UDS and SS cladding hulls melted into an iron based alloy waste form. Mass and volume estimates for each of the recommended waste forms based on the source terms from a representative flowsheet are reported. In addition to the above listed primary waste streams, a range of secondary process wastes are generated by aqueous reprocessing of LWR fuel, metal SFR fuel fabrication, and electrochemical reprocessing of SFR fuel. These secondary wastes have been summarized and volumes estimated by type and classification. The important waste management data gaps and research needs have been summarized for each primary waste stream and selected waste process.« less

  20. Localized chemistry of 99Tc in simulated low activity waste glass

    NASA Astrophysics Data System (ADS)

    Weaver, Jamie L.

    A priority of the United States Department of Energy (DOE) is to dispose of the nuclear waste accumulated in the underground tanks at the Hanford Nuclear Reservation in Richland, WA. Incorporation and stabilization of technetium (99Tc) from these tanks into vitrified waste forms is a concern to the waste glass community and DOE due to 99Tc's long half-life ( 2.13˙105 y), and its high mobility in the subsurface environment under oxidizing conditions. Working in collaboration with researchers at Pacific Northwest National Laboratory (PNNL) and other national laboratories, plans were formulated to obtain first-of-a-kind chemical structure determination of poorly understood and environmentally relevant technetium compounds that relate to the chemistry of the Tc in nuclear waste glasses. Knowledge of the structure and spectral signature of these compounds aid in refining the understanding of 99Tc incorporation into and release from oxide based waste glass. In this research a first-of-its kind mechanism for the behavior of 99Tc during vitrification is presented, and the structural role of Tc(VII) and (IV) in borosilicate waste glasses is readdressed.

  1. Human single follicle growth in vitro from cryopreserved ovarian tissue after slow freezing or vitrification.

    PubMed

    Wang, Tian-ren; Yan, Jie; Lu, Cui-ling; Xia, Xi; Yin, Tai-lang; Zhi, Xu; Zhu, Xiao-hui; Ding, Ting; Hu, Wei-hong; Guo, Hong-yan; Li, Rong; Yan, Li-ying; Qiao, Jie

    2016-04-01

    What is the effect of human ovarian tissue cryopreservation on single follicular development in vitro? Vitrification had a greater negative effect on growth and gene expression of human ovarian follicles when compared with fresh follicles. For human ovarian cortex cryopreservation, the conventional option is slow freezing while more recently vitrification has been demonstrated to maintain good quality and function of ovarian tissues. Ovarian tissues were collected from 11 patients. For every patient, the ovarian cortex was divided into three samples: Fresh, slow-rate freezing (Slow) and vitrification (Vit). Tissue histology was performed and follicles were isolated for single-cell mRNA analysis and in vitro culture (IVC) in 1% alginate for 8 days. Follicle morphology was assessed with hematoxylin-eosin analysis. Follicles were individually embedded in alginate (1% w/v) and cultured in vitro for 8 days. Follicle survival and growth were assessed by microscopy. Follicle viability was observed after Calcein-AM and ethidium homodimer-I (Ca-AM/EthD-I) staining. Expression of genes, including GDF9 (growth differentiation factor 9), BMP15 (bone morphogenetic protein 15) and ZP3 (zona pellucida glycoprotein 3) in oocytes and AMH (anti-Mullerian hormone), FSHR (FSH receptor), CYP11A (cholesterol side-chain cleavage cytochrome P450) and STAR (steroidogenic acute regulatory protein) in GCs, was evaluated by single-cell mRNA analysis. A total of 129 follicles were separated from ovarian cortex (Fresh n = 44; Slow n = 40; Vit n = 45). The percentage of damaged oocytes and granulosa cells was significantly higher in both the Slow and Vit groups, as compared with Fresh control (P< 0.05). The growth of follicles in vitro was significantly delayed in the Vit group compared with the Fresh group (P< 0.05). Both slow freezing (P< 0.05) and vitrification (P< 0.05) down-regulated the mRNA levels of ZP3 and CYP11A compared with Fresh group, while there was no significant difference

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlack, K. S.; Abramowitz, H.; Miller, I. S.

    About 50 million gallons of high-level mixed waste is currently stored in underground tanks at the United States Department of Energy’s (DOE’s) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE’s Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity waste fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed in an engineered facility onmore » the Hanford site while the IHLW product is designed for acceptance into a national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal.« less

  3. 76 FR 35137 - Vulnerability and Threat Information for Facilities Storing Spent Nuclear Fuel and High-Level...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... High-Level Radioactive Waste AGENCY: U.S. Nuclear Regulatory Commission. ACTION: Public meeting... Nuclear Fuel, High-Level Radioactive Waste, and Reactor-Related Greater Than Class C Waste,'' and 73... Spent Nuclear Fuel (SNF) and High-Level Radioactive Waste (HLW) storage facilities. The draft regulatory...

  4. The mixed low-level waste problem in BE/NWN capsule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, D.C.

    1999-07-01

    The Boh Environmental, LLC (BE) and Northwest Nuclear, LLC (NWN) program addresses the problem of diminishing capacity in the United States to store mixed waste. A lack of an alternative program has caused the US Department of Energy (DOE) to indefinitely store all of its mixed waste in Resource Conservation and Recovery Act (RCRA) compliant storage facilities. Unfortunately, this capacity is fast approaching the administrative control limit. The combination of unique BE encapsulation and NWN waste characterization technologies provides an effective solution to DOE's mixed-waste dilemma. The BE ARROW-PAK technique encapsulates mixed low-level waste (MLLW) in extra-high molecular weight, high-densitymore » polyethylene, pipe-grade resin cylinders. ARROW-PAK applications include waste treatment, disposal, transportation (per 49 CFR 173), vault encasement, and interim/long-term storage for 100 to 300 yr. One of the first demonstrations of this treatment/storage technique successfully treated 880 mixed-waste debris drums at the DOE Hanford Site in 1997. NWN, deploying the APNea neutron assay technology, provides the screening and characterization capability necessary to ensure that radioactive waste is correctly categorized as either transuranic (TRU) or LLW. MLLW resulting from D and D activities conducted at the Oak Ridge East Tennessee Technology Park will be placed into ARROW-PAK containers following comprehensive characterization of the waste by NWN. The characterized and encapsulated waste will then be shipped to a commercial disposal facility, where the shipments meet all waste acceptance criteria of the disposal facility including treatment criteria.« less

  5. The evaluation of xenotransplantation of feline ovarian tissue vitrified by needle immersed vitrification technique into male immunodeficient mice.

    PubMed

    Demirel, Mürşide Ayşe; Acar, Duygu Baki; Ekim, Burcu; Çelikkan, Ferda Topal; Alkan, Kübra Karakaş; Salar, Seçkin; Erdemli, Esra Atabenli; Özkavukçu, Sinan; Yar, Seda Sağlam; Kanca, Halit; Baştan, Ayhan

    2018-03-01

    In this study, the efficiency of the "Needle Immersed Vitrification" technique was tested on cryopreserved feline ovarian tissue. For vitrification, ovarian fragments (0.5-1.5 mm 2 ) from each ovary were collected; the grafts were exposed to 7.5-15% ethylene glycol and 7.5-15% dimethyl sulfoxide at room temperature and stored in liquid nitrogen at least 1 week. Morphologic examinations, expression of genes such as B cell lymphoma 2, B-cell lymphoma-2-associated X protein, Bone morphogenetic protein 15, zone of polarizing activity, zona pellucida C protein and DNA (cytosine-5)-methyltransferase 1, ultrastructural analysis and viability tests were carried out from collected grafts. Light microscopy examinations revealed the percentage of morphologically normal primordial follicles in a fresh group which was significantly higher than the treatment groups (p < 0.001). Terminal deoxynucleotidyl transferase dUTP nick end labeling and anti-caspase-3 staining observed in oocytes, follicle cells, interstitial tissue showed higher rates of apoptosis for post-vitrification and -transplantation groups than freshly grafted ovarian tissues. Furthermore, we observed significant downregulation of zone of polarizing activity and zona pellucida C protein gene expression in vitrified ovarian tissue grafts than in the fresh grafts (p < 0.05). In conclusion, we suggest that the needle immersed vitrification method is a convenient, cheap, and feasible vitrification method for cat ovarian tissues. However, further studies need to be performed to determine more optimal vitrification solutions and equilibration times for the needle immersed vitrification method in order to adapt it for cat ovaries.

  6. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Actual Waste Testing with SRS Tank 5F Sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, William D.; Hay, Michael S.

    Solubility testing with actual High Level Waste tank sludge has been conducted in order to evaluate several alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge sluicing efforts. Tests were conducted with archived Savannah River Site (SRS) radioactive sludge solids that had been retrieved from Tank 5F in order to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent toward dissolving the bulk non-radioactive waste components. Solubility tests were performed by direct sludge contact with the oxalic/nitric acid reagent and with sludge that had beenmore » pretreated and acidified with dilute nitric acid. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid following current baseline tank chemical cleaning methods. One goal of testing with the optimized reagent was to compare the total amounts of oxalic acid and water required for sludge dissolution using the baseline and optimized cleaning methods. A second objective was to compare the two methods with regard to the dissolution of actinide species known to be drivers for SRS tank closure Performance Assessments (PA). Additionally, solubility tests were conducted with Tank 5 sludge using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species.« less

  7. Thermal Analyses of a Human Kidney and a Rabbit Kidney During Cryopreservation by Vitrification.

    PubMed

    Ehrlich, Lili E; Fahy, Gregory M; Wowk, Brian G; Malen, Jonathan A; Rabin, Yoed

    2018-01-01

    This study focuses on thermal analysis of the problem of scaling up from the vitrification of rabbit kidneys to the vitrification of human kidneys, where vitrification is the preservation of biological material in the glassy state. The basis for this study is a successful cryopreservation protocol for a rabbit kidney model, based on using a proprietary vitrification solution known as M22. Using the finite element analysis (FEA) commercial code ANSYS, heat transfer simulations suggest that indeed the rabbit kidney unquestionably cools rapidly enough to be vitrified based on known intrarenal concentrations of M22. Scaling up 21-fold, computer simulations suggest less favorable conditions for human kidney vitrification. In this case, cooling rates below -100 °C are sometimes slower than 1 °C/min, a rate that provides a clear-cut margin of safety at all temperatures based on the stability of rabbit kidneys in past studies. Nevertheless, it is concluded in this study that vitrifying human kidneys is possible without significant ice damage, assuming that human kidneys can be perfused with M22 as effectively as rabbit kidneys. The thermal analysis suggests that cooling rates can be further increased by a careful design of the cryogenic protocol and by tailoring the container to the shape of the kidney, in contrast to the present cylindrical container. This study demonstrates the critical need for the thermal analysis of experimental cryopreservation and highlights the unmet need for measuring the thermophysical properties of cryoprotective solutions under conditions relevant to realistic thermal histories.

  8. Recovery of fission product palladium from acidic high level waste solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizvi, G.H.; Mathur, J.N.; Murali, M.S.

    1996-07-01

    The recovery of palladium from a synthetic pressurized heavy water reactor high level waste (PHWR-HLW) solution has been carried out, and the best reagents to use for the actual HLW solutions are discussed. The extraction of palladium from nitric acid solutions has been carried out using Cyanex-471X (triisobutylphosphine sulfide, TIPS) as the extractant. The metal ion could be quantitatively extracted from solutions with nitric acid concentrations between 2.0 and 6.0 M. The species extracted into the organic phase was found to be Pd(NO{sub 3}){sub 2}{center_dot}TIPS. Nitric acid in the range of 2.0 to 5.0 M had no effect on TIPSmore » for at least 71 hours. A systematic study of gamma irradiation on loading and stripping of palladium from loaded organic phases using several potential extractants, TIPS, alpha benzoin oxime, dioctylsulfide, and dioctylsulfoxide has been made. A flow sheet for the recovery of palladium from actual HLW solutions using TIPS is proposed.« less

  9. Simple, efficient and successful vitrification of bovine blastocysts using electron microscope grids.

    PubMed

    Park, S P; Kim, E Y; Kim, D I; Park, N H; Won, Y S; Yoon, S H; Chung, K S; Lim, J H

    1999-11-01

    This study demonstrates that higher survival of vitrified-thawed bovine blastocysts can be obtained using electron microscope (EM) grids as embryo containers at freezing, rather than plastic straws. In-vitro produced day 7 bovine blastocysts after in-vitro fertilization (IVF) were vitrified on grids or in straws with EFS40 freezing solution and their survival after thawing was compared. Embryo survival was assessed as re-expanded and hatched rates at 24 and 48 h after thawing respectively. When the effects of exposure to vitrification solution and chilling injury from the freezing procedure were examined, embryo survival in the exposure group (24 h: 100, 48 h: 73.3%) was not different compared with that in the control group (100, 84.4%). After vitrification, the hatched rate of the EM grid group 48 h after thawing (67.8%) was significantly higher than that of the straw group (53.3%) (P < 0.05). Fast developing embryos (expanded blastocyst and early hatching blastocyst stage) showed better resistance to freezing than delayed ones (early blastocyst stage), irrespective of embryo containers (early: 24 h, 57.1 and 48 h, 24.4%; expanded: 84.7 and 60.6%; early hatching: 91.7 and 80.0%) (P < 0.001). When using expanded and early hatching blastocysts, embryo survival rates in the vitrification-EM grid group (67.8, 95.0% respectively) were significantly higher than that of the vitrification-straw group (53.0, 65.0%) at 48 h.

  10. Magnetic induction heating of superparamagnetic nanoparticles during rewarming augments the recovery of hUCM-MSCs cryopreserved by vitrification.

    PubMed

    Wang, Jianye; Zhao, Gang; Zhang, Zhengliang; Xu, Xiaoliang; He, Xiaoming

    2016-03-01

    Cryopreservation by vitrification has been recognized as a promising strategy for long-term banking of living cells. However, the difficulty to generate a fast enough heating rate to minimize devitrification and recrystallization-induced intracellular ice formation during rewarming is one of the major obstacles to successful vitrification. We propose to overcome this hurdle by utilizing magnetic induction heating (MIH) of magnetic nanoparticles to enhance rewarming. In this study, superparamagnetic (SPM) Fe3O4 nanoparticles were synthesized by a chemical coprecipitation method. We successfully applied the MIH of Fe3O4 nanoparticles for rewarming human umbilical cord matrix mesenchymal stem cells (hUCM-MSCs) cryopreserved by vitrification. Our results show that extracellular Fe3O4 nanoparticles with MIH may efficiently suppress devitrification and/or recrystallization during rewarming and significantly improve the survival of vitrified cells. We further optimized the concentration of Fe3O4 nanoparticles and the current of an alternating current (AC) magnetic field for generating the MIH to maximize cell viability. Our results indicate that MIH in an AC magnetic field with 0.05% (w/v) Fe3O4 nanoparticles significantly facilitates rewarming and improves the cryopreservation outcome of hUCM-MSCs by vitrification. The application of MIH of SPM nanoparticles to achieve rapid and spatially homogeneous heating is a promising strategy for enhanced cryopreservation of stem cells by vitrification. Here we report the successful synthesis and application of Fe3O4 nanoparticles for magnetic induction heating (MIH) to enhance rewarming of vitrification-cryopreserved human umbilical cord matrix mesenchymal stem cells (hUCM-MSCs). We found that MIH-enhanced rewarming greatly improves the survival of vitrification-cryopreserved hUCM-MSCs. Moreover, the hUCM-MSCs retain their intact stemness and multilineage potential of differentiation post cryopreservation by vitrification with the

  11. Formulation and preparation of Hanford Waste Treatment Plant direct feed low activity waste Effluent Management Facility core simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Daniel J.; Nash, Charles A.; Adamson, Duane J.

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it tomore » the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW

  12. Stability of the cytoskeleton of matured buffalo oocytes pretreated with cytochalasin B prior to vitrification.

    PubMed

    Wang, C L; Xu, H Y; Xie, L; Lu, Y Q; Yang, X G; Lu, S S; Lu, K H

    2016-06-01

    Stabilizing the cytoskeleton system during vitrification can improve the post-thaw survival and development of vitrified oocytes. The cytoskeleton stabilizer cytochalasin B (CB) has been used in cryopreservation to improve the developmental competence of vitrified oocytes. To assess the effect of pretreating matured buffalo oocytes with CB before vitrification, we applied 0, 4, 8, or 12 μg/mL CB for 30 min. The optimum concentration of CB treatment (8 μg/mL for 30 min) was then used to evaluate the distribution of microtubules and microfilaments, the expression of the cytoskeleton proteins actin and tubulin, and the developmental potential of matured oocytes that were vitrified-warmed by the Cryotop method. Western blotting demonstrated that vitrification significantly decreased tubulin expression, but that the decrease was attenuated for oocytes pretreated with 8 μg/mL CB before vitrification. After warming and intracytoplasmic sperm injection, oocytes that were pretreated with 8 μg/mL CB before vitrification yielded significantly higher 8-cell and blastocyst rates than those that were vitrified without CB pretreatment. The values for the vitrified groups in all experiments were significantly lower (P < 0.01) than those of the control groups. In conclusion, pretreatment with 8 μg/mL CB for 30 min significantly improves the cytoskeletal structure, expression of tubulin, and development capacity of vitrified matured buffalo oocytes. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. GEOSAFE CORPORATION IN SITU VITRIFICATION: INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    This report summarizes the findings associated with a Demonstration of the Geosafe Corporation (Geosafe) In Situ Vitrification (ISV) Process. The Geosafe ISV Technology was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) Program in conjuction with remedi...

  14. Ovarian tissue cryopreservation by stepped vitrification and monitored by X-ray computed tomography.

    PubMed

    Corral, Ariadna; Clavero, Macarena; Gallardo, Miguel; Balcerzyk, Marcin; Amorim, Christiani A; Parrado-Gallego, Ángel; Dolmans, Marie-Madeleine; Paulini, Fernanda; Morris, John; Risco, Ramón

    2018-04-01

    Ovarian tissue cryopreservation is, in most cases, the only fertility preservation option available for female patients soon to undergo gonadotoxic treatment. To date, cryopreservation of ovarian tissue has been carried out by both traditional slow freezing method and vitrification, but even with the best techniques, there is still a considerable loss of follicle viability. In this report, we investigated a stepped cryopreservation procedure which combines features of slow cooling and vitrification (hereafter called stepped vitrification). Bovine ovarian tissue was used as a tissue model. Stepwise increments of the Me 2 SO concentration coupled with stepwise drops-in temperature in a device specifically designed for this purpose and X-ray computed tomography were combined to investigate loading times at each step, by monitoring the attenuation of the radiation proportional to Me 2 SO permeation. Viability analysis was performed in warmed tissues by immunohistochemistry. Although further viability tests should be conducted after transplantation, preliminary results are very promising. Four protocols were explored. Two of them showed a poor permeation of the vitrification solution (P1 and P2). The other two (P3 and P4), with higher permeation, were studied in deeper detail. Out of these two protocols, P4, with a longer permeation time at -40 °C, showed the same histological integrity after warming as fresh controls. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Cryopreservation of coconut (Cocos nucifera L.) zygotic embryos by vitrification.

    PubMed

    Sajini, K K; Karun, A; Amamath, C H; Engelmann, F

    2011-01-01

    The present study investigates the effect of preculture conditions, vitrification and unloading solutions on survival and regeneration of coconut zygotic embryos after cryopreservation. Among the seven plant vitrification solutions tested, PVS3 was found to be the most effective for regeneration of cryopreserved embryos. The optimal protocol involved preculture of embryos for 3 days on medium with 0.6 M sucrose, PVS3 treatment for 16 h, rapid cooling and rewarming and unloading in 1.2 M sucrose liquid medium for 1.5 h. Under these conditions, 70-80 survival (corresponding to size enlargement and weight gain) was observed with cryopreserved embryos and 20-25 percent of the plants regenerated (showing normal shoot and root growth) from cryopreserved embryos were established in pots.

  16. Conflicting Expertise and Uncertainty: Quality Assurance in High-Level Radioactive Waste Management.

    ERIC Educational Resources Information Center

    Fitzgerald, Michael R.; McCabe, Amy Snyder

    1991-01-01

    Dynamics of a large, expensive, and controversial surface and underground evaluation of a radioactive waste management program at the Yucca Mountain power plant are reviewed. The use of private contractors in the quality assurance study complicates the evaluation. This case study illustrates high stakes evaluation problems. (SLD)

  17. Chapter 10 Human Oocyte Vitrification.

    PubMed

    Rienzi, Laura; Cobo, Ana; Ubaldi, Filippo Maria

    2017-01-01

    Discovery and widespread application of successful cryopreservation methods for MII-phase oocytes was one of the greatest successes in human reproduction during the past decade. Although considerable improvements in traditional slow-rate freezing were also achieved, the real breakthrough was the result of introduction of vitrification. Here we describe the method that is most commonly applied for this purpose, provides consistent survival and in vitro developmental rates, results in pregnancy and birth rates comparable to those achievable with fresh oocytes, and does not result in higher incidence of gynecological or postnatal complications.

  18. Hanford’s Supplemental Treatment Project: Full-Scale Integrated Testing of In-Container-Vitrification and a 10,000-Liter Dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witwer, Keith S.; Dysland, Eric J.; Garfield, J. S.

    2008-02-22

    The GeoMelt® In-Container Vitrification™ (ICV™) process was selected by the U.S. Department of Energy (DOE) in 2004 for further evaluation as the supplemental treatment technology for Hanford’s low-activity waste (LAW). Also referred to as “bulk vitrification,” this process combines glass forming minerals, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a refractory-lined steel container. AMEC Nuclear Ltd. (AMEC) is adapting its GeoMelt ICV™ technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL). The DVBS project is funded by the DOE Office of River Protection and administered by CH2M HILLmore » Hanford Group, Inc. The Demonstration Bulk Vitrification Project (DBVS) was initiated to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat up to 750,000 liters of LAW from Waste Tank 241-S-109 at the DOE Hanford Site. Since the beginning of the DBVS project in 2004, testing has used laboratory, crucible-scale, and engineering-scale equipment to help establish process limitations of selected glass formulations and identify operational issues. Full-scale testing has provided critical design verification of the ICV™ process before operating the Hanford pilot-plant. In 2007, the project’s fifth full-scale test, called FS-38D, (also known as the Integrated Dryer Melter Test, or IDMT,) was performed. This test had three primary objectives: 1) Demonstrate the simultaneous and integrated operation of the ICV™ melter with a 10,000-liter dryer, 2) Demonstrate the effectiveness of a new feed reformulation and change in process methodology towards reducing the production and migration of molten ionic salts (MIS), and, 3) Demonstrate that an acceptable glass product is produced under these conditions. Testing was performed from August 8 to 17, 2007. Process and analytical results demonstrated that the primary test objectives, along

  19. The Increased Expression of Connexin and VEGF in Mouse Ovarian Tissue Vitrification by Follicle Stimulating Hormone

    PubMed Central

    Yang, Yanzhou; Chen, Jie; Wu, Hao; Pei, Xiuying; Chang, Qing; Ma, Wenzhi; Ma, Huiming; Hei, Changchun; Zheng, Xiaomin; Cai, Yufang; Zhao, Chengjun; Yu, Jia; Wang, Yanrong

    2015-01-01

    Ovarian follicular damages were caused by cryoinjury during the process of ovarian vitrification and ischemia/reperfusion during the process of ovarian transplantation. And appropriate FSH plays an important role in antiapoptosis during ovarian follicle development. Therefore, in this study, 0.3 IU/mL FSH was administered into medium during mouse ovarian cryopreservation by vitrification to ascertain the function of FSH on ovarian vitrification and avascular transplantation. The results suggested that the expressions of Cx37, Cx43, apoptotic molecular caspase-3, and angiogenesis molecular VEGF were confirmed using immunohistochemistry, western blotting, and real-time PCR, and the results suggested that the treatment with FSH remarkably increased the number of morphologically normal follicles in vitrified/warmed ovaries by upregulating the expression of Cx37, Cx43, VEGF, and VEGF receptor 2, but downregulating the expression of caspase-3. In addition, the vitrified/warmed ovaries were transplanted, and the related fertility was analyzed, and the results suggested that the fertility, neoangiogenesis, and follicle reserve were remarkably increased in the FSH administrated group. Taken together, administration of 0.3 IU/mL FSH during ovarian cryopreservation by vitrification can maintain ovarian survival during ovarian vitrification and increases the blood supply with avascular transplantation via upregulation of Cx43, Cx37, and VEGF/VEGFR2, as well as through its antiapoptotic effects. PMID:26539488

  20. SITE TECHNOLOGY CAPSULE: GEOSAFE CORPORATION IN SITU VITRIFICATION TECHNOLOGY

    EPA Science Inventory

    The Geosafe In Situ Vitrification (ISV) Technology is designed to treat soils, sludges, sediments, and mine tallings contaminated with organic, inorganic, and radioactive compounds. The organic compounds are pyrolyzed and reduced to simple gases which are collected under a treatm...

  1. Cryopreservation of in vitro grown nodal segments of Rauvolfia serpentina by PVS2 vitrification.

    PubMed

    Ray, Avik; Bhattacharya, Sabita

    2008-01-01

    This paper describes the cryopreservation by PVS2 vitrification of Rauvolfia serpentina (L.) Benth ex kurz, an important tropical medicinal plant. The effects of type and size of explants, sucrose preculture (duration and concentration) and vitrification treatment were tested. Preliminary experiments with PVS1, 2 and 3 produced shoot growth only for PVS2. When optimizing the PVS2 vitrification of nodal segments, those of 0.31 - 0.39 cm in size were better than other nodal sizes and or apices. Sucrose preculture had a positive role in survival and subsequent regrowth of the cryopreserved explants. Seven days on 0.5 M sucrose solution significantly improved the viability of nodal segments. PVS2 incubation for 45 minutes combined with a 7-day preculture gave the optimum result of 66 percent. Plantlets derived after cryopreservation resumed growth and regenerated normally.

  2. Glass transition behavior of the vitrification solutions containing propanediol, dimethyl sulfoxide and polyvinyl alcohol.

    PubMed

    Wang, Hai-Yan; Lu, Shu-Shen; Lun, Zhao-Rong

    2009-02-01

    Knowledge of the glass transition behavior of vitrification solutions is important for research and planning of the cryopreservation of biological materials by vitrification. This brief communication shows the analysis for the glass transition and glass stability of the multi-component vitrification solutions containing propanediol (PE), dimethyl sulfoxide (Me2SO) and polyvinyl alcohol (PVA) by using differential scanning calorimetry (DSC) during the cooling and subsequent warming between 25 and -150 degrees C. The glass formation of the solutions was enhanced by introduction of PVA. Partial glass formed during cooling and the fractions of free water in the partial glass matrix increased with the increasing of PVA concentration, which caused slight decline of glass transition temperature, T(g). Exothermic peaks of devitrification were delayed and broadened, which may result from the inhibition of ice nucleation or recrystallization of PVA.

  3. Environmental Assessment for the Closure of the High-Level Waste Tanks in F- & H-Areas at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    1996-07-31

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the closure of 51 high-level radioactive waste tanks and tank farm ancillary equipment (including transfer lines, evaporators, filters, pumps, etc) at the Savannah River Site (SRS) located near Aiken, South Carolina. The waste tanks are located in the F- and H-Areas of SRS and vary in capacity from 2,839,059 liters (750,000 gallons) to 4,921,035 liters (1,300,000 gallons). These in-ground tanks are surrounded by soil to provide shielding. The F- and H-Area High-Level Waste Tanks are operated under the authoritymore » of Industrial Wastewater Permits No.17,424-IW; No.14520, and No.14338 issued by the South Carolina Department of Health and Environmental Control (SCDHEC). In accordance with the Permit requirements, DOE has prepared a Closure Plan (DOE, 1996) and submitted it to SCDHEC for approval. The Closure Plan identifies all applicable or relevant and appropriate regulations, statutes, and DOE Orders for closing systems operated under the Industrial Wastewater Permits. When approved by SCDHEC, the Closure Plan will present the regulatory process for closing all of the F- and H-Area High Level Waste Tanks. The Closure Plan establishes performance objectives or criteria to be met prior to closing any tank, group of tanks, or ancillary tank farm equipment. The proposed action is to remove the residual wastes from the tanks and to fill the tanks with a material to prevent future collapse and bind up residual waste, to lower human health risks, and to increase safety in and around the tanks. If required, an engineered cap consisting of clay, backfill (soil), and vegetation as the final layer to prevent erosion would be applied over the tanks. The selection of tank system closure method will be evaluated against the following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) criteria

  4. Hydrothermal transformations in an aluminophosphate glass matrix containing simulators of high-level radioactive wastes

    NASA Astrophysics Data System (ADS)

    Yudintsev, S. V.; Mal'kovsky, V. I.; Mokhov, A. V.

    2016-05-01

    The interaction of aluminophosphate glass with water at 95°C for 35 days results in glass heterogenization and in the appearance of a gel layer and various phases. The leaching rate of elements is low owing to the formation of a protective layer on the glass surface. It is shown that over 80% of uranium leached from the glass matrix occurs as colloids below 450 nm in size characterized by high migration ability in the geological environment. To determine the composition of these colloids is a primary task for further studies. Water vapor is a crystallization factor for glasses. The conditions as such may appear even at early stages of glass storage because of the failure of seals on containers of high-level radioactive wastes. The examination of water resistance of crystallized matrices and determination of the fraction of radionuclide in colloids are also subjects for further studies.

  5. West Valley demonstration project: Alternative processes for solidifying the high-level wastes

    NASA Astrophysics Data System (ADS)

    Holton, L. K.; Larson, D. E.; Partain, W. L.; Treat, R. L.

    1981-10-01

    Two pretreatment approaches and several waste form processes for radioactive wastes were selected for evaluation. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.

  6. Treatment options for low-level radiologically contaminated ORNL filtercake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hom-Ti; Bostick, W.D.

    1996-04-01

    Water softening sludge (>4000 stored low level contaminated drums; 600 drums per year) generated by the ORNL Process Waste Treatment Plant must be treated, stabilized, and placed in safe storage/disposal. The sludge is primarily CaCO{sub 3} and is contaminated by low levels of {sup 90}Sr and {sup 137}Cs. In this study, microwave sintering and calcination were evaluated for treating the sludge. The microwave melting experiments showed promise: volume reductions were significant (3-5X), and the waste form was durable with glass additives (LiOH, fly ash). A commercial vendor using surrogate has demonstrated a melt mineralization process that yields a dense monolithicmore » waste form with a volume reduction factor (VR) of 7.7. Calcination of the sludge at 850-900 C yielded a VR of 2.5. Compaction at 4500 psi increased the VR to 4.2, but the compressed form is not dimensionally stable. Addition of paraffin helped consolidate fines and yielded a VR of 3.5. In conclusion, microwave melting or another form of vitrification is likely to be the best method; however for immediate implementation, the calculation/compaction/waxing process is viable.« less

  7. C-106 High-Level Waste Solids: Washing/Leaching and Solubility Versus Temperature Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GJ Lumetta; DJ Bates; PK Berry

    This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing and caustic leaching on the composition of the Hanford tank C-106 high-level waste (HLW) solids. The objective of this work was to determine the composition of the C-106 solids remaining after washing with 0.01M NaOH or leaching with 3M NaOH. Another objective of this test was to determine the solubility of various C-106 components as a function of temperature. The work was conducted according to test plan BNFL-TP-29953-8,Rev. 0, Determination of the Solubility of HLW Sludge Solids. The test went accordingmore » to plan, with only minor deviations from the test plan. The deviations from the test plan are discussed in the experimental section.« less

  8. Viscoplasticity of simulated high-level radioactive waste glass containing platinum group metal particles

    NASA Astrophysics Data System (ADS)

    Uruga, Kazuyoshi; Usami, Tsuyoshi; Tsukada, Takeshi; Komamine, Satoshi; Ochi, Eiji

    2014-09-01

    The shear rate dependency of the viscosity of three simulated high-level radioactive waste glasses containing 0, 1.2 and 4.5 wt% platinum group metals (PGMs) was examined at a temperature range of 1173-1473 K by a rotating viscometer. Shear stress when the shear rate equals zero, i.e. yield stress, was also measured by capillary method. The viscosity of the glass containing no PGM was shear rate-independent Newtonian fluid. On the other hand, the apparent viscosity of the glasses containing PGMs increased with decreasing shear rate, and nonzero amount of yield stresses were detected from both glasses. The viscosity and yield stress of the glass containing 4.5 wt% PGMs was roughly one to two orders of magnitude greater than the glass containing 1.2 wt% PGMs. These viscoplastic properties were numerically expressed by Casson equation.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kot, Wing K.; Pegg, Ian L.; Brandys, Marek

    One of the primary roles of waste pretreatment at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is to separate the majority of the radioactive components from the majority of the nonradioactive components in retrieved tank wastes, producing a high level waste (HLW) stream and a low activity waste (LAW) stream. This separation process is a key element in the overall strategy to reduce the volume of HLW that requires vitrification and subsequent disposal in a national deep geological repository for high level nuclear waste. After removal of the radioactive constituents, the LAW stream, which has a much largermore » volume but smaller fraction of radioactivity than the HLW stream, will be immobilized and disposed of in near surface facilities at the Hanford site.« less

  10. Circular economy and waste to energy

    NASA Astrophysics Data System (ADS)

    Rada, E. C.; Ragazzi, M.; Torretta, V.; Castagna, G.; Adami, L.; Cioca, L. I.

    2018-05-01

    Waste management in European Union has long being regulated by the 4Rs principle, i.e. reduction, reuse, recycling, recovery, with landfill disposal as the last option. This vision recently led the European Union (especially since 2015) to the introduction of virtuous goals based on the rejection of linear economy in favour of circular economy strongly founded on materials recovery. In this scenario, landfill disposal option will disappear, while energy recovery may appear controversial when not applied to biogas production from anaerobic digestion. The present work aims to analyse the effects that circular economy principles introduced in the European Union context will have on the thermochemical waste treatment plants design. Results demonstrate that indirect combustion (gasification + combustion) along with integrated vitrification of the non-combustible fraction of treated waste will have a more relevant role in the field of waste treatment than in the past, thanks to the compliance of this option with the principles of circular economy.

  11. Geological repository for nuclear high level waste in France from feasibility to design within a legal framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voizard, Patrice; Mayer, Stefan; Ouzounian, Gerald

    Over the past 15 years, the French program on deep geologic disposal of high level and long-lived radioactive waste has benefited from a clear legal framework as the result of the December 30, 1991 French Waste Act. To fulfil its obligations stipulated in this law, ANDRA has submitted the 'Dossier 2005 Argile' (clay) and 'Dossier 2005 Granite' to the French Government. The first of those reports presents a concept for the underground disposal of nuclear waste at a specific clay site and focuses on a feasibility study. Knowledge of the host rock characteristics is based on the investigations carried outmore » at the Meuse/Haute Marne Underground Research Laboratory. The repository concept addresses various issues, the most important of which relates to the large amount of waste, the clay host rock and the reversibility requirement. This phase has ended upon review and evaluation of the 'Dossier 2005' made by different organisations including the National Review Board, the National Safety Authority and the NEA International Review Team. By passing the 'new', June 28, 2006 Planning Act on the sustainable management of radioactive materials and waste, the French parliament has further defined a clear legal framework for future work. This June 28 Planning Act thus sets a schedule and defines the objectives for the next phase of repository design in requesting the submission of a construction authorization application by 2015. The law calls for the repository program to be in a position to commission disposal installations by 2025. (authors)« less

  12. Tectonic characterization of a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Whitney, John W.; O'Leary, Dennis W.

    1993-01-01

    Tectonic characterization of a potential high-level nuclear waste repository at Yucca Mountain, Nevada, is needed to assess seismic and possible volcanic hazards that could affect the site during the preclosure (next 100 years) and the behavior of the hydrologic system during the postclosure (the following 10,000 years) periods. Tectonic characterization is based on assembling mapped geological structures in their chronological order of development and activity, and interpreting their dynamic interrelationships. Addition of mechanistic models and kinematic explanations for the identified tectonic processes provides one or more tectonic models having predictive power. Proper evaluation and application of tectonic models can aid in seismic design and help anticipate probable occurrence of future geologic events of significance to the repository and its design.

  13. System Description for Tank 241-AZ-101 Waste Retrieval Data Acquisition System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ROMERO, S.G.

    2000-01-10

    Describes the hardware and software for the AZ-101 Mixer Pump Data Acquisition System. The purpose of the tank 241-AZ-101 retrieval system Data Acquisition System (DAS) is to provide monitoring and data acquisition of key parameters in order to confirm the effectiveness of the mixer pumps utilized for suspending solids in the tank. The suspension of solids in Tank 241-AZ-101 is necessary for pretreatment of the neutralized current acid waste (NCAW), and eventual disposal as glass via the Hanford Waste Vitrification Plant.

  14. Corrosion Testing of Monofrax K-3 Refractory in Defense Waste Processing Facility (DWPF) Alternate Reductant Feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M.; Jantzen, C.; Burket, P.

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) uses a combination of reductants and oxidants while converting high level waste (HLW) to a borosilicate waste form. A reducing flowsheet is maintained to retain radionuclides in their reduced oxidation states which promotes their incorporation into borosilicate glass. For the last 20 years of processing, the DWPF has used formic acid as the main reductant and nitric acid as the main oxidant. During reaction in the Chemical Process Cell (CPC), formate and formic acid release measurably significant H 2 gas which requires monitoring of certain vessel’s vapor spaces.more » A switch to a nitric acid-glycolic acid (NG) flowsheet from the nitric-formic (NF) flowsheet is desired as the NG flowsheet releases considerably less H 2 gas upon decomposition. This would greatly simplify DWPF processing from a safety standpoint as close monitoring of the H 2 gas concentration could become less critical. In terms of the waste glass melter vapor space flammability, the switch from the NF flowsheet to the NG flowsheet showed a reduction of H 2 gas production from the vitrification process as well. Due to the positive impact of the switch to glycolic acid determined on the flammability issues, evaluation of the other impacts of glycolic acid on the facility must be examined.« less

  15. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite.

    PubMed

    Kaufhold, Stephan; Hassel, Achim Walter; Sanders, Daniel; Dohrmann, Reiner

    2015-03-21

    Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na-bentonites compared to the Ca-bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Fe-silicate. Up to now it is not clear why and how the patina formed. It, however, may be relevant as a corrosion inhibitor. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Low-Activity Waste Pretreatment System Additional Engineering-Scale Integrated Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landon, Matt R.; Wilson, Robert A.

    Washington River Protections Solutions, LLC’s (WRPS) Low Activity Waste Pretreatment System (LAWPS) Project provides for the early production of immobilized low-activity waste (ILAW) by feeding LAW directly from Tank Farms to the Waste Treatment and Immobilization Plant (WTP) LAW Facility, bypassing the WTP Pretreatment Facility. Prior to the transfer of feed to the WTP LAW Vitrification Facility, tank supernatant waste will be pretreated in the LAWPS to meet the WTP LAW waste acceptance criteria (WAC). Full-scale and engineering-scale testing of critical technology elements, as part of the technology maturation process, are components of the overall LAWPS Project. WRPS awarded themore » engineering-scale integrated testing scope to AECOM via WRPS Subcontract 58349. This report is deliverable MSR-008 of the subcontract.« less

  17. Social scientist on board in long-term management of high level and/or long-lived radioactive waste in Belgium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parotte, C.

    In Belgium, the long-term management of radioactive waste is under the exclusive competence of the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (knew as ONDRAF/NIRAS). Unlike low-level waste, no institutional policy has yet been formally approved for the long-term management of high level and/or long-lived radioactive waste (knew as B and C waste). In this context, ONDRAF/NIRAS considers the public and stakeholders' participation as an essential factor in the formulation of an effective and legitimate policy. This is why it has decided to integrate them in different ways during the elaboration of the Waste Plan (ONDRAF/NIRAS-document containing guidelinesmore » to make a principled policy decision about nuclear waste management). To do so, social scientists have been regularly mobilized either as external evaluators, follow-up committee members, or participatory observants. Hence, the Waste Plan is only the first step in a long decision-making process. For a PhD student under contract with ONDRAF/NIRAS, this mandate consists of thinking out a way to construct an inter-organizational innovative communication system that would be participative, transparent and embedded in a long-term perspective, thus integrating all the further legal steps to take throughout the decision-making process. In this regard, two paradoxical constraints must be taken into account: on the one hand, my own influence on the legal decision-making process should remain limited, because of a series of constraints, lock-ins and previous decisions which have to be respected; on the other hand, ONDRAF/NIRAS expects the research conclusions to be policy relevant and useful. In this paper, the purpose is twofold. Firstly, the issues raised by this policy mandate is an opportunity to question the per-formative dimensions of the social scientist in the decision-making process and, more specifically, to have a reflexive view on our position as PhD Student. Secondly, assuming the

  18. A simple vitrification method for cryobanking avian testicular tissue

    USDA-ARS?s Scientific Manuscript database

    Cryopreservation of testicular tissue is a promising method of preserving male reproductive potential for avian species. This study was conducted to assess whether a vitrification method can be used to preserve avian testicular tissue, using the Japanese quail (Coturnix japonica) as a model. A sim...

  19. Assessment, evaluation, and testing of technologies for environmental restoration, decontamination, and decommissioning and high level waste management. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uzochukwu, G.A.

    1997-12-31

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration, decontamination and decommissioning, and high-level waste management objectives are being assessed and evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objectives of the environmental restoration, decontamination and decommissioning, and high-level waste management effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formattedmore » and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites.« less

  20. Dielectric Properties of Low-Level Liquid Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. E. Lagos; M. A. Ebadian

    1998-10-20

    The purpose of this study was to develop a data collection containing values for the dielectric properties of various low-level liquid waste (LLLW) simulants measured as a function of frequency, temperature, and composition. The investigation was motivated by current interest in the use of microwave processing for the treatment of radioactive waste. A large volume of transuranic liquid and sludge produced by the U.S. Department of Defense (DOD) during the production of nuclear fiel bars is stored at several U.S. Department of Energy (DOE) sites around the United States. Waste storage and disposal space is scarce, expensive, and must bemore » minimized. Thus, several DOE sites are pursuing the use of microwave heating as a means of achieving volume reduction and solidification of low-level liquid wastes. It is important to know which microwave frequencies should be employed tc achieve the most efficient processing at a range of different temperatures. The dielectric properties of the LLLW simulants can be utilized to determine the optimum frequencies for use with a particular LLLW or with other LLLWS of similar composition. Furthermore, nonlinear thermal processes, such as thermal runaway, which occur in the material being treated cannot be modeled without a knowledge of the temperature dependence of the dielectric properties. Often, this data does not exist; however, when it does, only very limited data near room temperature are available. The data collection generated in this study can be used to predict the behavior of a variety of microwave thermal treatment technologies, which have the potential of substantially reducing the volume of the LLLWS that are currently stored at many DOE sites. This information should help the users of the microwave reduction and solidification technology to optimize microwave processes used in the treatment of LLLW. The microwave reduction and solidification technology has clear advantages over other methods of reducing LLLWS

  1. Vitrification and gelation in sticky spheres

    NASA Astrophysics Data System (ADS)

    Royall, C. Patrick; Williams, Stephen R.; Tanaka, Hajime

    2018-01-01

    Glasses and gels are the two dynamically arrested, disordered states of matter. Despite their importance, their similarities and differences remain elusive, especially at high density, where until now it has been impossible to distinguish them. We identify dynamical and structural signatures which distinguish the gel and glass transitions in a colloidal model system of hard and "sticky" spheres. It has been suggested that "spinodal" gelation is initiated by gas-liquid viscoelastic phase separation to a bicontinuous network and the resulting densification leads to vitrification of the colloid-rich phase, but whether this phase has sufficient density for arrest is unclear [M. A. Miller and D. Frenkel, Phys. Rev. Lett. 90, 135702 (2003) and P. J. Lu et al., Nature 435, 499-504 (2008)]. Moreover alternative mechanisms for arrest involving percolation have been proposed [A. P. R. Eberle et al., Phys. Rev. Lett. 106, 105704 (2011)]. Here we resolve these outstanding questions, beginning by determining the phase diagram. This, along with demonstrating that percolation plays no role in controlling the dynamics of our system, enables us to confirm spinodal decomposition as the mechanism for gelation. We are then able to show that gels can be formed even at much higher densities than previously supposed, at least to a volume fraction of ϕ = 0.59. Far from being networks, these gels apparently resemble glasses but are still clearly distinguished by the "discontinuous" nature of the transition and the resulting rapid solidification, which leads to the formation of inhomogeneous (with small voids) and far-from-equilibrium local structures. This is markedly different from the glass transition, whose continuous nature leads to the formation of homogeneous and locally equilibrated structures. We further reveal that the onset of the attractive glass transition in the form of a supercooled liquid is in fact interrupted by gelation. Our findings provide a general thermodynamic

  2. Geologic and hydrologic considerations for various concepts of high-level radioactive waste disposal in conterminous United States

    USGS Publications Warehouse

    Ekren, E.B.; Dinwiddie, G.A.; Mytton, J.W.; Thordarson, William; Weir, J.E.; Hinrichs, E.N.; Schroder, L.J.

    1974-01-01

    The purpose of this investigation is to evaluate and identify which geohydrologic environments in conterminous United States are best suited for various concepts or methods of underground disposal of high-level radioactive wastes and to establish geologic and hydrologic criteria that are pertinent to high-level waste disposal. The unproven methods of disposal include (1) a very deep drill hole (30,000-50,000 ft or 9,140-15,240 m), (2) a matrix of (an array of multiple) drill holes (1,000-20,000 ft or 305-6,100 m), (3) a mined chamber (1,000-10,000 ft or 305-3,050 m), (4) a cavity with separate manmade structures (1,000-10,000 ft or 305-3,050 m), and (5) an exploded cavity (2,000-20,000 ft or 610-6,100 m) o The geohydrologic investigation is made on the presumption that the concepts or methods of disposal are technically feasible. Field and laboratory experiments in the future may demonstrate whether or not any of the methods are practical and safe. All the conclusions drawn are tentative pending experimental confirmation. The investigation focuses principally on the geohydrologic possibilities of several methods of disposal in rocks other than salt. Disposal in mined chambers in salt is currently under field investigation, and this disposal method has been intensely investigated and evaluated by various workers under the sponsorship of the Atomic Energy Commission. Of the various geohydrologic factors that must be considered in the selection of optimum waste-disposal sites, the most important is hydrologic isolation to assure that the wastes will be safely contained within a small radius of the emplacement zone. To achieve this degree of hydrologic isolation, the host rock for the wastes must have very low permeability and the site must be virtually free of faults. In addition, the locality should be in (1) an area of low seismic risk where the possibility of large earthquakes rupturing the emplacement zone is very low, (2) where the possibility- of flooding by

  3. Influence of Meiotic Stages on Developmental Competence of Goat’ Oocyte After Vitrification

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ihsan, M. N.

    2018-02-01

    This objective of this research was to investigate effect of goat oocyte meiotic stages on developmental competence after cryopreservation. Ovaries were collected from slaugterhouse and oocytes was aspirated from2-6 mm of follicles. Oocyte with compacted cumulus cells and evenly granulated ooplasm were selected for this experiment. The lenght of in vitro maturation before vitrification was 8 or 22 h in IVM media TCM 199 + FCS 10 % + PMSG 10 IU + hCG 10 IU at 38.5 °C in a humidified atmosphere of 5 % CO2 in air and were vitrified. After vitrification process, GVBD and MII oocyte were matured for 18 or 4 h to fullfill 26 h maturation requirement and then oocytes were subjected to IVF and culture. Cleavage and blastocyst formation rate were to asses their developmental competence. Cleavage rates were obtained for both GVBD ( 56.78 %) and MII (69.64 % ) oocytes (P<0.05). Proportion of cleaved embryos from vitrified MII oocytes develop into blastocysts higher (P<0.05) than those from vitrified GVBD oocytes (10.25% vs 3.54%) repectively. Goat oocytes in different maturation stages response to vitrification differently and MII stages have better developmental competence than GVBD.

  4. SOLIDIFICATION OF THE HANFORD LAW WASTE STREAM PRODUCED AS A RESULT OF NEAR-TANK CONTINUOUS SLUDGE LEACHING AND SODIUM HYDROXIDE RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M.; Johnson, F.; Crawford, C.

    2011-09-20

    The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge canmore » be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than

  5. The Effect of Carbonate, Oxalate and Peroxide on the Cesium Loading of Ionsiv IE-910 and IE-911

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F.F.

    2000-12-19

    The Savannah River Site (SRS) continues to examine three processes for the removal of radiocesium from high-level waste. One option involves the use of crystalline silicotitanate (CST) as a non-elutable ion exchange medium. The process uses CST in its engineered form - IONSIV IE-911 made by UOP, LLC. - in a column to contact the liquid waste. Cesium exchanges with sodium ions residing inside the CST particles. The design disposes of the cesium-loaded CST by vitrification within the Defense Waste Processing Facility.

  6. Impeding 99Tc(IV) mobility in novel waste forms

    PubMed Central

    Lee, Mal-Soon; Um, Wooyong; Wang, Guohui; Kruger, Albert A.; Lukens, Wayne W.; Rousseau, Roger; Glezakou, Vassiliki-Alexandra

    2016-01-01

    Technetium (99Tc) is an abundant, long-lived radioactive fission product whose mobility in the subsurface is largely governed by its oxidation state. Tc immobilization is crucial for radioactive waste management and environmental remediation. Tc(IV) incorporation in spinels has been proposed as a novel method to increase Tc retention in glass waste forms during vitrification. However, experiments under high-temperature and oxic conditions show reoxidation of Tc(IV) to volatile pertechnetate, Tc(VII). Here we examine this problem with ab initio molecular dynamics simulations and propose that, at elevated temperatures, doping with first row transition metal can significantly enhance Tc retention in magnetite in the order Co>Zn>Ni. Experiments with doped spinels at 700 °C provide quantitative confirmation of the theoretical predictions in the same order. This work highlights the power of modern, state-of-the-art simulations to provide essential insights and generate theory-inspired design criteria of complex materials at elevated temperatures. PMID:27357121

  7. Closure development for high-level nuclear waste containers for the tuff repository; Phase 1, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robitz, E.S. Jr.; McAninch, M.D. Jr.; Edmonds, D.P.

    1990-09-01

    This report summarizes Phase 1 activities for closure development of the high-level nuclear waste package task for the tuff repository. Work was conducted under U.S. Department of Energy (DOE) Contract 9172105, administered through the Lawrence Livermore National Laboratory (LLNL), as part of the Yucca Mountain Project (YMP), funded through the DOE Office of Civilian Radioactive Waste Management (OCRWM). The goal of this phase was to select five closure processes for further evaluation in later phases of the program. A decision tree methodology was utilized to perform an objective evaluation of 15 potential closure processes. Information was gathered via a literaturemore » survey, industrial contacts, and discussions with project team members, other experts in the field, and the LLNL waste package task staff. The five processes selected were friction welding, electron beam welding, laser beam welding, gas tungsten arc welding, and plasma arc welding. These are felt to represent the best combination of weldment material properties and process performance in a remote, radioactive environment. Conceptual designs have been generated for these processes to illustrate how they would be implemented in practice. Homopolar resistance welding was included in the Phase 1 analysis, and developments in this process will be monitored via literature in Phases 2 and 3. Work was conducted in accordance with the YMP Quality Assurance Program. 223 refs., 20 figs., 9 tabs.« less

  8. Cryopreservation of Mexican fruit flies by vitrification: stage selection and avoidance of thermal stress.

    PubMed

    Rajamohan, A; Leopold, R A

    2007-02-01

    This report presents details of a vitrification methodology for the cryopreservation of embryos of the Mexican fruit fly, Anastrepha ludens. The overall summary of the data indicates that selecting the correct developmental stage for cryopreservation is the most important criterion. The key aspect in selection of the correct stage is to balance depletion of the gut yolk content against development of the embryonic cuticle. Embryogenesis was divided into four stages between 90 and 120 h after incubation at 21.7 degrees C. The classification was based on the intestinal yolk content and the initial development of mandibular-maxillary complex. Stages having low mid-gut yolk content and the appearance of mouth hooks were found to be the most suitable for cryopreservation. Embryos developing at 30 degrees C had premature cuticle formation relative to gut development and significantly lower hatching after cryopreservation. Vitrification of embryos by direct quenching in liquid nitrogen was less effective than quenching after annealing the samples in liquid nitrogen vapor. Quenched samples of vitrification solutions containing 1,2-ethanediol as the major component exhibited fractures. Fracturing occurred less frequently when the solutions were annealed and when containing polyethylene glycol. Hatching of vitrified embryos stored in liquid nitrogen for over 12 months was not statistically different from those held for only 15 min. Our protocol yielded normalized hatching rates that ranged as high as 61%. Selecting the exact stage for cryopreservation from a population of embryos obtained by collection from ovipositing females during a span of just 30 min resulted in nearly 80% of the embryos hatching into larvae.

  9. RESULTS OF THE FY09 ENHANCED DOE HIGH LEVEL WASTE MELTER THROUGHPUT STUDIES AT SRNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, F.; Edwards, T.

    2010-06-23

    High-level waste (HLW) throughput (i.e., the amount of waste processed per unit time) is a function of two critical parameters: waste loading (WL) and melt rate. For the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site and the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), increasing HLW throughput would significantly reduce the overall mission life cycle costs for the Department of Energy (DOE). The objective of this task is to develop data, assess property models, and refine or develop the necessary models to support increased WL of HLW at SRS. It is a continuationmore » of the studies initiated in FY07, but is under the specific guidance of a Task Change Request (TCR)/Work Authorization received from DOE headquarters (Project Number RV071301). Using the data generated in FY07, FY08 and historical data, two test matrices (60 glasses total) were developed at the Savannah River National Laboratory (SRNL) in order to generate data in broader compositional regions. These glasses were fabricated and characterized using chemical composition analysis, X-ray Diffraction (XRD), viscosity, liquidus temperature (TL) measurement and durability as defined by the Product Consistency Test (PCT). The results of this study are summarized below: (1) In general, the current durability model predicts the durabilities of higher waste loading glasses quite well. A few of the glasses exhibited poorer durability than predicted. (2) Some of the glasses exhibited anomalous behavior with respect to durability (normalized leachate for boron (NL [B])). The quenched samples of FY09EM21-02, -07 and -21 contained no nepheline or other wasteform affecting crystals, but have unacceptable NL [B] values (> 10 g/L). The ccc sample of FY09EM21-07 has a NL [B] value that is more than one half the value of the quenched sample. These glasses also have lower concentrations of Al{sub 2}O{sub 3} and SiO{sub 2}. (3) Five of the ccc samples (EM-13, -14, -15

  10. Recovery patterns, histological observations and genetic integrity in Malus shoot tips cryopreserved using droplet vitrification and encapsulation-dehydration procedures

    USDA-ARS?s Scientific Manuscript database

    A droplet-vitrification procedure is described for cryopreservation of Malus shoot tips. Survival patterns, recovery types, histological observations, and genetic integrity were compared for Malus shoot tips cryopreserved using this droplet-vitrification procedure and an encapsulation-dehydration pr...

  11. Guidelines for development of structural integrity programs for DOE high-level waste storage tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandyopadhyay, K.; Bush, S.; Kassir, M.

    Guidelines are provided for developing programs to promote the structural integrity of high-level waste storage tanks and transfer lines at the facilities of the Department of Energy. Elements of the program plan include a leak-detection system, definition of appropriate loads, collection of data for possible material and geometric changes, assessment of the tank structure, and non-destructive examination. Possible aging degradation mechanisms are explored for both steel and concrete components of the tanks, and evaluated to screen out nonsignificant aging mechanisms and to indicate methods of controlling the significant aging mechanisms. Specific guidelines for assessing structural adequacy will be provided inmore » companion documents. Site-specific structural integrity programs can be developed drawing on the relevant portions of the material in this document.« less

  12. (Low-level radioactive waste management techniques)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hoesen, S.D.; Kennerly, J.M.; Williams, L.C.

    1988-08-08

    The US team consisting of representatives of Oak Ridge National Laboratory (ORNL), Savannah River plant (SRP), Idaho National Engineering Laboratory (INEL), and the Department of Energy, Oak Ridge Operations participated in a training program on French low-level radioactive waste (LLW) management techniques. Training in the rigorous waste characterization, acceptance and certification procedures required in France was provided at Agence Nationale pour les Gestion des Dechets Radioactif (ANDRA) offices in Paris.

  13. Successful vitrification of human amnion-derived mesenchymal stem cells.

    PubMed

    Moon, Jeong Hee; Lee, Jung Ryeol; Jee, Byung Chul; Suh, Chang Suk; Kim, Seok Hyun; Lim, Hyun Jung; Kim, Hae Kwon

    2008-08-01

    A cryopreservation protocol for human amnion-derived mesenchymal stem cells (HAMs) is required because these cells cannot survive for long periods in culture. The aim of this study was to determine whether vitrification is a useful freezing method for storage of HAMs. HAMs were cryopreserved using vitrification method. The morphology and viability of thawed HAMs was evaluated by Trypan Blue staining. The expression of several embryonic stem cell (ESC) markers was evaluated using flow cytometry, RT-PCR and immunocytochemistry. Von Kossa, Oil Red O and Alcian Blue staining were used to asses the differentiation potential of thawed HAMs. The post-thawing viability of HAMs was 84.3 +/- 3.2% (Mean +/- SD, n = 10). The thawed HAMs showed morphological characteristics indistinguishable from the non-vitrified fresh HAMs. The expression of surface antigens (strong positive for CD44, CD49d, CD59, CD90, CD105 and HLA-ABC; weak positive for HLA-G; negative for CD31, CD34, CD45, CD106, CD117 and HLA-DR) and the expression of ESC markers [CK18, fibroblast growth factor-5, GATA-4, neural cell adhesion molecule, Nestin, Oct-4, stem cell factor, HLA-ABC, Vimentin, bone morphogenetic protein (BMP) 4, hepatocyte nuclear factor 4 alpha (HNF-4 alpha), Pax-6, alpha-fetoprotein, Brachyury, BMP-2, TRA-1-60, stage-specific embryonic antigen (SSEA-3, SSEA-4)] were maintained in the vitrified-thawed HAMs. The thawed HAMs retained ability to differentiate into osteoblasts, adipocytes and chondrocytes under appropriate culture conditions. Our results suggest that vitrification is a reliable and effective method for cryopreservation of HAMs.

  14. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Yasser T.

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Centermore » has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)« less

  15. Successful vitrification of bovine immature oocyte using liquid helium instead of liquid nitrogen as cryogenic liquid.

    PubMed

    Yu, Xue-Li; Xu, Ya-Kun; Wu, Hua; Guo, Xian-Fei; Li, Xiao-Xia; Han, Wen-Xia; Li, Ying-Hua

    2016-04-01

    The objectives of this study were to compare the effectiveness of liquid helium (LHe) and liquid nitrogen (LN2) as cryogenic liquid for vitrification of bovine immature oocytes with open-pulled straw (OPS) system and determine the optimal cryoprotectant concentration of LHe vitrification. Cumulus oocyte complexes were divided into three groups, namely, untreated group (control), LN2 vitrified with OPS group, and LHe vitrified with OPS group. Oocyte survival was assessed by morphology, nuclear maturation, and developmental capability. Results indicated that the rates of normal morphology, maturation, cleavage, and blastocyst (89.3%, 52.8%, 42.7%, and 10.1%, respectively) in the LHe-vitrified group were all higher than those (79.3%, 43.4%, 34.1%, and 4.7%) in the LN2-vitrified group (P < 0.05) although the corresponding rates in both treated groups decreased compared with the control group (100%, 75.0%, 64.9%, and 40.8%; P < 0.05). Normal calves were obtained after the transfer of blastocysts derived from LHe- and LN2-vitrified oocytes. The effects of the different vitrification solutions (EDS30, EDS35, EDS40, EDS45, and EDS50) in LHe vitrification for bovine immature oocytes vitrification were examined. No difference was found in the rates of morphologically normal oocytes among the EDS30 (87.9%), EDS35 (90.1%), EDS40 (89.4%), and EDS45 (87.2%) groups (P > 0.05). The maturation rate of the EDS35 group (65.0%) was higher than those of the EDS30 (51.3%), EDS40 (50.1%), EDS45 (52.1%), and EDS50 groups (36.9%; P < 0.05). No significant differences were observed in the cleavage and blastocyst rates between the EDS35 (49.0% and 12.1%) and EDS40 (41.7% and 10.2%) groups. However, the cleavage and blastocyst rates in the EDS35 group were higher (P < 0.05) than those of the EDS30 (36.2% and 6.8%), EDS45 (35.9% and 5.8%), and EDS50 (16.6% and 2.2%) groups. In conclusion, LHe can be used as a cryogenic liquid for vitrification of bovine immature oocytes, and it is more

  16. Plasma vitrification and re-use of non-combustible fiber reinforced plastic, gill net and waste glass.

    PubMed

    Chu, J P; Chen, Y T; Mahalingam, T; Tzeng, C C; Cheng, T W

    2006-12-01

    Fiber reinforced plastic (FRP) composite material has widespread use in general tank, special chemical tank and body of yacht, etc. The purpose of this study is directed towards the volume reduction of non-combustible FRP by thermal plasma and recycling of vitrified slag with specific procedures. In this study, we have employed three main wastes such as, FRP, gill net and waste glass. The thermal molten process was applied to treat vitrified slag at high temperatures whereas in the post-heat treatment vitrified slags were mixed with specific additive and ground into powder form and then heat treated at high temperatures. With a two-stage heat treatment, the treated sample was generated into four crystalline phases, cristobalite, albite, anorthite and wollastonite. Fine and relatively high dense structures with desirable properties were obtained for samples treated by the two-stage heating treatment. Good physical and mechanical properties were achieved after heat treatment, and this study reveals that our results could be comparable with the commercial products.

  17. Roles of intracellular ice formation, vitrification of cell water, and recrystallisation of intracellular ice on the survival of mouse embryos and oocytes.

    PubMed

    Mazur, Peter; Paredes, Estefania

    2016-03-01

    Mazur and collaborators began examining the validity of initial views regarding mouse oocyte and embryo vitrification and found that most are partially or fully wrong. First, the relative effects of warming and cooling rates on the survival of mouse oocytes subjected to a vitrification procedure were determined. The high sensitivity to warming rate strongly suggests that the lethality of slow warming is a consequence of either the crystallisation of intracellular glassy water during warming or the recrystallisation during slow warming of small intracellular crystals that had formed during cooling. Warming rates of 107°C min-1 were achieved in 0.1-µL drops of ethylene glycol-acetamide-Ficoll-sucrose (EAFS) solution plus a small amount of India ink on Cryotops warmed using an infrared laser pulse. Under these conditions, survival rates of 90% were obtained even when mouse oocytes were suspended in 0.3× EAFS, a concentration that falls in the range that many cells can tolerate. A second important finding was that the survival of oocytes is more dependent on the osmotic withdrawal of much of the intracellular water before vitrification than it is on the penetration of cryoprotective solutes into the cells. Herein we review the roles of internal ice formation, vitrification and recrystallisation. It remains to be seen how widely these findings will be applicable to other types of cells and tissues from other species.

  18. Greater-than-Class C low-level waste characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piscitella, R.R.

    1991-12-31

    In 1985, Public Law 99-240 (Low-Level Radioactive Waste Policy Amendments Act of 1985) made the Department of Energy (DOE) responsible for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW). DOE strategies for storage and disposal of GTCC LLW required characterization of volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate characteristics, project volumes, and determine radionuclide activities to the years 2035 and 2055. Twenty-year life extensions for 70% of the operating nuclear reactors were assumed to calculate the GTCC LLW available in 2055. The following categories of GTCCmore » LLW were addressed: Nuclear Utilities Waste; Potential Sealed Sources GTCC LLW; DOE-Held Potential GTCC LLW; and Other Generator Waste. It was determined that the largest volume of these wastes, approximately 57%, is generated by nuclear utilities. The Other Generator Waste category contributes approximately 10% of the total GTCC LLW volume projected to the year 2035. DOE-Held Potential GTCC LLW accounts for nearly 33% of all waste projected to the year 2035. Potential Sealed Sources GTCC LLW is less than 0.2% of the total projected volume. The base case total projected volume of GTCC LLW for all categories was 3,250 cubic meters. This was substantially less than previous estimates.« less

  19. Low-temperature lithium diffusion in simulated high-level boroaluminosilicate nuclear waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Kerisit, Sebastien N.; Gin, Stephane

    2014-12-01

    Ion exchange is recognized as an integral, if underrepresented, mechanism influencing glass corrosion. However, due to the formation of various alteration layers in the presence of water, it is difficult to conclusively deconvolute the mechanisms of ion exchange from other processes occurring simultaneously during corrosion. In this work, an operationally inert non-aqueous solution was used as an alkali source material to isolate ion exchange and study the solid-state diffusion of lithium. Specifically, the experiments involved contacting glass coupons relevant to the immobilization of high-level nuclear waste, SON68 and CJ-6, which contained Li in natural isotope abundance, with a non-aqueous solutionmore » of 6LiCl dissolved in dimethyl sulfoxide at 90 °C for various time periods. The depth profiles of major elements in the glass coupons were measured using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Lithium interdiffusion coefficients, D Li, were then calculated based on the measured depth profiles. The results indicate that the penetration of 6Li is rapid in both glasses with the simplified CJ-6 glass (D 6Li ≈ 4.0-8.0 × 10 -21 m 2/s) exhibiting faster exchange than the more complex SON68 glass (D Li ≈ 2.0-4.0 × 10 -21 m 2/s). Additionally, sodium ions present in the glass were observed to participate in ion exchange reactions; however, different diffusion coefficients were necessary to fit the diffusion profiles of the two alkali ions. Implications of the diffusion coefficients obtained in the absence of alteration layers to the long-term performance of nuclear waste glasses in a geological repository system are also discussed.« less

  20. Environmental analysis burial of offsite low-level waste at SRP

    NASA Astrophysics Data System (ADS)

    Poe, W. L.; Moyer, R. A.

    1980-12-01

    The environmental effects of receipt and burial of low level naval waste are assessed. This low level waste was sent to the NRC-licensed burial ground operated by Chem-Nuclear Systems, Inc., at Barnwell, South Carolina. The DOE announced that DOE-generated low level waste would no longer be buried at commercial waste burial sites. The SRP was selected to receive the Naval waste described in this analysis. Receipt and burial of these wastes will have a negligible effect on SRP's environment and increase only sightly the environmental effects of the SRP operations discussed in the EIS on SRP waste management operations. The environmental effects of burial of this waste at Chem-Nuclear Burial Ground or at the SRP Burial Ground are described in this environmental analysis to permit assessment of incremental effects caused by the decision to bury this Naval waste in the SRP Burial Ground rather than in the Barnwell Burial Ground. The radiological effects from burial of this waste in either the SRP or Chem-Nuclear Burial Ground are very small when compared to those from natural background radiation or to the annual population dose commitment from operation of SRP. The environmental effects of burial at SRP to dose commitments normally received by the population surrounding SRP are compared.

  1. Thermal/structural modeling of a large scale in situ overtest experiment for defense high level waste at the Waste Isolation Pilot Plant Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, H.S.; Stone, C.M.; Krieg, R.D.

    Several large scale in situ experiments in bedded salt formations are currently underway at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, USA. In these experiments, the thermal and creep responses of salt around several different underground room configurations are being measured. Data from the tests are to be compared to thermal and structural responses predicted in pretest reference calculations. The purpose of these comparisons is to evaluate computational models developed from laboratory data prior to fielding of the in situ experiments. In this paper, the computational models used in the pretest reference calculation for one of themore » large scale tests, The Overtest for Defense High Level Waste, are described; and the pretest computed thermal and structural responses are compared to early data from the experiment. The comparisons indicate that computed and measured temperatures for the test agree to within ten percent but that measured deformation rates are between two and three times greater than corresponsing computed rates. 10 figs., 3 tabs.« less

  2. Vitrification versus slow freezing gives excellent survival, post warming embryo morphology and pregnancy outcomes for human cleaved embryos.

    PubMed

    Rezazadeh Valojerdi, Mojtaba; Eftekhari-Yazdi, Poopak; Karimian, Leila; Hassani, Fatemeh; Movaghar, Bahar

    2009-06-01

    The objective of this retrospective study was to evaluate the efficacy of vitrification and slow freezing for the cryopreservation of human cleavage stage embryos in terms of post-warming survival rate, post-warming embryo morphology and clinical outcomes. The embryos of 305 patients at cleavage stages were cryopreserved either with vitrification (153 patients) or slow-freezing (152 patients) methods. After warming; the survival rate, post-warmed embryo morphology, clinical pregnancy and implantation rates were evaluated and compared between the two groups. In the vitrification group versus slow freezing group, the survival rate (96.9% vs. 82.8%) and the post-warmed excellent morphology with all blastomeres intact (91.8% vs. 56.2%) were higher with an odds ratio of 6.607 (95% confidence interval; 4.184-10.434) and 8.769 (95% confidence interval; 6.460-11.904), respectively. In this group, the clinical pregnancy rate (40.5% vs. 21.4%) and the implantation rate (16.6% vs. 6.8%) were also higher with an odds ratio of 2.427 (95%confidence interval; 1.461-4.033) and 2.726 (95% confidence interval; 1.837-4.046), respectively. Vitrification in contrast to slow freezing is an efficient method for cryopreservation of human cleavage stage embryos. Vitrification provides a higher survival rate, minimal deleterious effects on post-warming embryo morphology and it can improve clinical outcomes.

  3. Hydroxypropyl cellulose as an option for supplementation of cryoprotectant solutions for embryo vitrification in human assisted reproductive technologies.

    PubMed

    Mori, Chiemi; Yabuuchi, Akiko; Ezoe, Kenji; Murata, Nana; Takayama, Yuko; Okimura, Tadashi; Uchiyama, Kazuo; Takakura, Kei; Abe, Hiroyuki; Wada, Keiko; Okuno, Takashi; Kobayashi, Tamotsu; Kato, Keiichi

    2015-06-01

    Hydroxypropyl cellulose (HPC) was investigated as a replacement for serum substitute supplement (SSS) for use in cryoprotectant solutions for embryo vitrification. Mouse blastocysts from inbred (n = 1056), hybrid (n = 128) strains, and 121 vitrified blastocysts donated by infertile patients (n = 102) were used. Mouse and human blastocysts, with or without zona pellucida, were vitrified and warmed in either 1% or 5% HPC or in 5% or 20% SSS-supplemented media using the Cryotop (Kitazato BioPharma Co. Ltd, Fuji, Japan) method, and the survival and oxygen consumption rates were assessed. Viscosity of each vitrification solution was compared. Survival rates of mouse hybrid blastocysts and human zona pellucida-intact blastocysts were comparable among the groups. Mouse and human zona pellucida-free blastocysts, which normally exhibit poor cryoresistance, showed significantly higher survival rates in 5% HPC than 5% SSS (P < 0.05). The 5% HPC-supplemented vitrification solution showed a significantly higher viscosity (P < 0.05). The blastocysts were easily detached from the Cryotop strip during warming when HPC-supplemented vitrification solution was used. The oxygen consumption rates were similar between non-vitrified and 5% HPC groups. The results suggest possible use of HPC for supplementation of cryoprotectant solutions and provide useful information to improve vitrification protocols. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Survival of mouse oocytes after being cooled in a vitrification solution to -196°C at 95° to 70,000°C/min and warmed at 610° to 118,000°C/min: A new paradigm for cryopreservation by vitrification.

    PubMed

    Mazur, Peter; Seki, Shinsuke

    2011-02-01

    There is great interest in achieving reproducibly high survivals of mammalian oocytes (especially human) after cryopreservation, but the results to date have not matched the interest. A prime cause of cell death is the formation of more than trace amounts of intracellular ice, and one strategy to avoid it is vitrification. In vitrification procedures, cells are loaded with high concentrations of glass-inducing solutes and cooled to -196°C at rates high enough to presumably induce the glassy state. In the last decade, several devices have been developed to achieve very high cooling rates. Nearly all in the field have assumed that the cooling rate is the critical factor. The purpose of our study was to test that assumption by examining the consequences of cooling mouse oocytes in a vitrification solution at four rates ranging from 95 to 69,250°C/min to -196°C and for each cooling rate, subjecting them to five warming rates back above 0°C at rates ranging from 610 to 118,000°C/min. In samples warmed at the highest rate (118,000°C/min), survivals were 70% to 85% regardless of the prior cooling rate. In samples warmed at the lowest rate (610°C/min), survivals were low regardless of the prior cooling rate, but decreased from 25% to 0% as the cooling rate was increased from 95 to 69,000°C/min. Intermediate cooling and warming rates gave intermediate survivals. The especially high sensitivity of survival to warming rate suggests that either the crystallization of intracellular glass during warming or the growth by recrystallization of small intracellular ice crystals formed during cooling are responsible for the lethality of slow warming. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. 40 CFR 761.347 - First level sampling-waste from existing piles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false First level sampling-waste from..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for... Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.347 First level sampling—waste...

  6. 40 CFR 761.347 - First level sampling-waste from existing piles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false First level sampling-waste from..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for... Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.347 First level sampling—waste...

  7. The Projected Impacts to Clark County and Local Governmental Public Safety Agencies Resulting from the Transportation of High-Level Nuclear Waste to Yucca Mountain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mushkatel, A.H.; Conway, S.; Navis, I.

    2006-07-01

    This paper focuses on the difficulties of projecting fiscal impacts to public safety agencies from the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. The efforts made by Clark County Nevada, to develop a fiscal model of impacts for public safety agencies are described in this paper. Some of the difficulties in constructing a fiscal model of impacts for the entire 24 year high-level nuclear waste transportation shipping campaign are identified, and a refined methodology is provided to accomplish this task. Finally, a comparison of the fiscal impact projections for public safety agencies that Clark County developed in 2001,more » with those done in 2005 is discussed, and the fiscal impact cost projections for the entire 24 year transportation campaign are provided. (authors)« less

  8. Unraveling protein stabilization mechanisms: vitrification and water replacement in a glass transition temperature controlled system.

    PubMed

    Grasmeijer, N; Stankovic, M; de Waard, H; Frijlink, H W; Hinrichs, W L J

    2013-04-01

    The aim of this study was to elucidate the role of the two main mechanisms used to explain the stabilization of proteins by sugar glasses during drying and subsequent storage: the vitrification and the water replacement theory. Although in literature protein stability is often attributed to either vitrification or water replacement, both mechanisms could play a role and they should be considered simultaneously. A model protein, alkaline phosphatase, was incorporated in either inulin or trehalose by spray drying. To study the storage stability at different glass transition temperatures, a buffer which acts as a plasticizer, ammediol, was incorporated in the sugar glasses. At low glass transition temperatures (<50°C), the enzymatic activity of the protein strongly decreased during storage at 60°C. Protein stability increased when the glass transition temperature was raised considerably above the storage temperature. This increased stability could be attributed to vitrification. A further increase of the glass transition temperature did not further improve stability. In conclusion, vitrification plays a dominant role in stabilization at glass transition temperatures up to 10 to 20°C above storage temperature, depending on whether trehalose or inulin is used. On the other hand, the water replacement mechanism predominantly determines stability at higher glass transition temperatures. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Mississippi State Briefing Book for low-level radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Mississippi State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state an federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Mississippi. The profile is the result of a survey of NRC licensees in Mississippi. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Mississippi.« less

  10. Wyoming State Briefing Book for low-level radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.« less

  11. Massachusetts State Briefing Book for low-level radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-03-12

    The Massachusetts State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Massachusetts. The profile is the result of a survey of NRC licensees in Massachusetts. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Massachusetts.« less

  12. Texas State Briefing Book for low-level radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-08-01

    The Texas State Briefing Book is one of a series of state briefing books on low-level radioactivee waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Texas. The profile is the result of a survey of NRC licensees in Texas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Texas.« less

  13. Ohio State Briefing Book for low-level radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Ohio State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Ohio. The profile is the result of a survey of NRC licensees in Ohio. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Ohio.« less

  14. Road Map for Development of Crystal-Tolerant High Level Waste Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyas, Josef; Vienna, John D.; Peeler, David

    This road map guides the research and development for formulation and processing of crystal-tolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) is also addressed in this road map.

  15. PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-12

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has themore » advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors

  16. Comparison of survival rate of cleavage stage embryos produced from in vitro maturation cycles after slow freezing and after vitrification.

    PubMed

    Son, Weon-Young; Chung, Jin-Tae; Gidoni, Yariv; Holzer, Hananel; Levin, Dan; Chian, Ri-Cheng; Tan, Seang Lin

    2009-09-01

    Significantly more embryos survived the vitrification procedure compared to slow freezing (85.5% vs. 61.8%) in cleavage-stage human embryos produced from in vitro maturation cycles, suggesting that vitrification is more efficient than slow freezing for cryopreservation.

  17. Cryoprotectant-free vitrification of human spermatozoa in new artificial seminal fluid.

    PubMed

    Agha-Rahimi, A; Khalili, M A; Nottola, S A; Miglietta, S; Moradi, A

    2016-11-01

    Vitrification is a new method that has been recently introduced in Assisted Reproduction Technique programs. The aim of this study was to design a new medium similar to normal human seminal fluid (SF), formulation artificial seminal fluid (ASF), and to compare the cryoprotective potency of this medium with SF and human tubal fluid (HTF) medium. Thirty normal ejaculates were processed with the swim-up technique and sperm suspensions were divided into four aliquots: (i) fresh sample (control); (ii) vitrification in HTF medium supplemented with 5 mg/mL human serum albumin and 0.25 mol sucrose (Vit HTF); (iii) vitrification with patients' SF (Vit SF); and (iv) vitrification in ASF (Vit ASF). After warming, sperm parameters of motility, viability, and morphology were analyzed using WHO criteria. Also, sperm pellets were fixed in 2.5% glutaraldehyde and processed for scanning electron microscopy and transmission electron microscopy observations. The results showed that progressive motility (46.09 ± 10.33 vs. 36.80 ± 13.75), grade A motility (36.59 ± 11.40 vs. 16.41 ± 11.24), and normal morphology (18.74 ± 8.35 vs. 11.85 ± 5.84) and viability (68.22 ± 10.83 vs. 60.86 ± 11.72) of spermatozoa were significantly higher in Vit ASF than in Vit HTF. All parameters were better in Vit ASF than in Vit SF, but only viability was significantly different (p = 0.006). After cryopreservation, deep invagination in cytoplasm and mechanically weak point sites and folded tail were commonly observed. But, this phenomenon was more significant in Vit HTF and Vit SF than in ASF (p < 0.05). In transmission electron microscopy evaluation, acrosome damage, plasma membrane loss, chromatin vacuolation, and disruption of mitochondria arrangement and structures were observed in all vitrified groups. Adherence of several tail sections together was also seen in all cryo groups. But this was seen more in Vit HTF and Vit SF than in ASF (p < 0.05). In conclusion

  18. Positive effect of resveratrol against preantral follicles degeneration after ovarian tissue vitrification.

    PubMed

    Rocha, Carina Diniz; Soares, Mayara Mafra; de Cássia Antonino, Deize; Júnior, Jairo Melo; Freitas Mohallem, Renata Ferreira; Ribeiro Rodrigues, Ana Paula; Figueiredo, José Ricardo; Beletti, Marcelo Emílio; Jacomini, José Octavio; Alves, Benner Geraldo; Alves, Kele Amaral

    2018-07-01

    This study aimed to evaluate whether the addition of resveratrol to vitrification/thawing medium improves the cryotolerance of preantral follicles enclosed in bovine ovarian fragments. Ovarian fragments were obtained from bovine fetuses and distributed to the following groups: fresh ovarian fragments (control), vitrified (VIT), and vitrified with resveratrol (VIT + RESV). Overall, the mean percentage of normal follicles was greater (P < 0.05) in the VIT + RESV compared to the VIT group. Moreover, the probability of finding normal follicles was 2.5 greater (P < 0.05) in the VIT + RESV group. In class comparison, the primordial and transitional follicles have ∼3.0 times (P < 0.05) greater odds of being normal after vitrification compared to the secondary follicles. Additionally, a negative association (P < 0.05) was observed between the proportion of viable follicles and the stage of follicular development. ROS levels were similar (P > 0.05) between the VIT and VIT + RESV groups, and both were lower (P < 0.05) than the control group. The tissue viability in the VIT + RESV group was similar (P > 0.05) to the control group. In summary, the resveratrol provided greater ovarian tissue viability and has a positive effect against degeneration of preantral follicles enclosed in ovarian fragments. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Preparation and Characterization of a Calcium Phosphate Ceramic for the Immobilization of Chloride-containing Intermediate Level Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metcalfe, Brian; Donald, Ian W.; Scheele, Randall D.

    2003-12-01

    Attention has recently been given to the immobilization of special categories of radioactive wastes, some of which contain high concentrations of actinide chlorides. Although vitrification in phosphate glass has been proposed, this was rejected because of the high losses of chloride. On the basis of non-radioactive and, more recently, radioactive studies, we have shown that calcium phosphate is an effective host for immobilizing the chloride constituents [1]. In this instance, the chlorine is retained as chloride, rather than evolved as a chlorine-bearing gas. The immobilized product is in the form of a free-flowing, non-hygroscopic powder, in which the chlorides aremore » chemically combined within the mineral phases chlorapatite [Ca5(PO4)3Cl] and spodiosite [Ca2(PO4)Cl]. Data from studies on non-radioactive simulated waste consisting of a mixture of CaCl2 and SmCl3, and radioactive simulated waste composed of CaCl2 with PuCl3 or PuCl3 and AmCl3, are presented and compared. The XRD data confirm the presence of chlorapatite and spodiosite in the non-radioactive and radioactive materials. The durability of all specimens was measured with a modified MCC-1 test. Releases of Cl after 28 days were 1.6 x 10-3 g m-2 for the non-radioactive specimens and 7 x 10-3 g m-2 for the Pu-bearing specimens. Releases of Ca after 28 days were 0.3 x 10-3 and 2.0 x 10-3 g m-2 for the non-radioactive composition and the Pu composition, respectively, whilst release of Pu from the radioactive specimens was lower for the mixed Pu/Am specimen at 1.2 x 10-5g m-2. The release of Am from the mixed Pu/Am composition was exceptionally low at 2.4 x 10-7 g m-2. Overall, the release rate data suggest that the ceramics dissolve congruently, followed by precipitation of Sm, Pu and Am as less soluble phases, possibly oxides or phosphates. The differences in behaviour noted between non-radioactive and radioactive specimens are interpreted in terms of the crystal chemistry of the individual systems.« less

  20. Kansas State Briefing Book on low-level radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-07-01

    The Kansas State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Kansas. The profile is the result of a survey of radioactive material licensees in Kansas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developedmore » through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Kansas.« less

  1. Vermont State Briefing Book on low-level radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-07-01

    The Vermont State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Vermont. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Vermont. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment wasmore » developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Vermont.« less

  2. Thirteenth annual U.S. DOE low-level radioactive waste management conference: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1991-12-31

    The 40 papers in this document comprise the proceedings of the Department of Energy`s Thirteenth Annual Low-Level Radioactive Waste Management Conference that was held in Atlanta, Georgia, on November 19--21, 1991. General subjects addressed during the conference included: disposal facility design; greater-than-class C low-level waste; public acceptance considerations; waste certification; site characterization; performance assessment; licensing and documentation; emerging low-level waste technologies; waste minimization; mixed waste; tracking and transportation; storage; and regulatory changes. Papers have been processed separately for inclusion on the data base.

  3. Midwest Interstate Low-Level Radioactive Waste Commission annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-08-01

    In 1980, Congress passed the Low-Level Radioactive Waste Policy Act. This Act provided for a new approach to the disposal of low-level radioactive waste. It assigned each state responsibility for the disposal of low-level radioactive waste generated within its borders, and it authorized states to enter into compacts for the purpose of operating regional disposal facilities. It also authorized compacts to restrict the use of regional disposal facilities to only member states. To meet their obligations under the Act, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio and Wisconsin formed the Midwest Interstate Low-Level Radioactive Waste Compact. The Compact was ratified bymore » each of the state legislatures and by Congress. The Compact established the Midwest Interstate Low-Level Radioactive Waste Commission, composed on one representative appointed by the Governor or Legislature of each member state. Article 3 of the compact requires that the Commission prepare an annual report regarding the activities and actions of the Commission. It also requires that the annual report be distributed to the Governors and legislative leaders in the member states. The Commission's Bylaw Article 12 requires the annual report to cover the preceding fiscal year, and to be distributed in August of each year. The Bylaw also requires that an annual audit, prepared by a certified public accountant, be included as part of the annual report. 3 figs.« less

  4. Slow Freezing, but Not Vitrification Supports Complete Spermatogenesis in Cryopreserved, Neonatal Sheep Testicular Xenografts

    PubMed Central

    Pukazhenthi, Budhan S.; Nagashima, Jennifer; Travis, Alexander J.; Costa, Guilherme M.; Escobar, Enrique N.; França, Luiz R.; Wildt, David E.

    2015-01-01

    The ability to spur growth of early stage gametic cells recovered from neonates could lead to significant advances in rescuing the genomes of rare genotypes or endangered species that die unexpectedly. The purpose of this study was to determine, for the first time, the ability of two substantially different cryopreservation approaches, slow freezing versus vitrification, to preserve testicular tissue of the neonatal sheep and subsequently allow initiation of spermatogenesis post-xenografting. Testis tissue from four lambs (3-5 wk old) was processed and then untreated or subjected to slow freezing or vitrification. Tissue pieces (fresh, n = 214; slow freezing, then thawing, n = 196; vitrification, then warming, n = 139) were placed subcutaneously under the dorsal skin of SCID mice and then grafts recovered and evaluated 17 wk later. Grafts from fresh and slow frozen tissue contained the most advanced stages of spermatogenesis, including normal tubule architecture with elongating spermatids in ~1% (fresh) and ~10% (slow frozen) of tubules. Fewer than 2% of seminiferous tubules advanced to the primary spermatocyte stage in xenografts derived from vitrified tissue. Results demonstrate that slow freezing of neonatal lamb testes was far superior to vitrification in preserving cellular integrity and function after xenografting, including allowing ~10% of tubules to retain the capacity to resume spermatogenesis and yield mature spermatozoa. Although a first for any ruminant species, findings also illustrate the importance of preemptive studies that examine cryo-sensitivity of testicular tissue before attempting this type of male fertility preservation on a large scale. PMID:25923660

  5. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.K.; Gitt, M.; Williams, G.A.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less

  6. Long-Term High-Level Defense-Waste technology

    NASA Astrophysics Data System (ADS)

    1982-07-01

    In the residual liquid solidification effort, the primary alternative studied is the wiped film evaporator approach to solidifying salt well pumped liquids and returning the molten material to single shell tanks for microwave final stabilization to a hard dry product. Both systems analysis and experimental work are proceeding to evaluate this approach. The primary alternative for in situ stabilization of in-tank wastes is microwave drying of wet salt cake and unpumped sludges. Experimental work was successfully conducted on a 1/12 scale tank containing wet synthetic salt cake. Related systems analysis of a full scale system was initiated.

  7. Cryopreservation of cocoa (Theobroma cacao L.) somatic embryos by vitrification.

    PubMed

    Adu-Gyamfi, Raphael; Wetten, Andy

    2012-01-01

    Losses of cultivated cocoa (Theobroma cacao L.) due to diseases and continued depletion of forests that harbour the wild progenitors of the crop make ex situ conservation of cocoa germplasm of paramount importance. In order to enhance security of in situ germplasm collections, 2-3 mm floral-derived secondary somatic embryos were cryopreserved by vitrification. This work demonstrates the most uncomplicated clonal cocoa cryopreservation. Optimal post-cryostorage survival (74.5 percent) was achieved by 5 d preculture of SSEs on 0.5 M sucrose medium followed by 60 min dehydration in cold PVS2. To minimise free radical related cryo-injury, cation sources were removed from the embryo development solution and/or the recovery medium, the former treatment resulting in a significant benefit. After optimisation with cocoa genotype AMAZ 15, the same protocol was effective across all five additional cocoa genotypes tested. For the multiplication of clones, embryos regenerated following cryopreservation were used as explant sources, and vitrification was found to maintain their embryogenic potential.

  8. High levels of PAH-metabolites in urine of e-waste recycling workers from Agbogbloshie, Ghana.

    PubMed

    Feldt, Torsten; Fobil, Julius N; Wittsiepe, Jürgen; Wilhelm, Michael; Till, Holger; Zoufaly, Alexander; Burchard, Gerd; Göen, Thomas

    2014-01-01

    The informal recycling of electronic waste (e-waste) is an emerging source of environmental pollution in Africa. Among other toxins, polycyclic aromatic hydrocarbons (PAHs) are a major health concern for exposed individuals. In a cross-sectional study, the levels of PAH metabolites in the urine of individuals working on one of the largest e-waste recycling sites of Africa, and in controls from a suburb of Accra without direct exposure to e-waste recycling activities, were investigated. Socioeconomic data, basic health data and urine samples were collected from 72 exposed individuals and 40 controls. In the urine samples, concentrations of the hydroxylate PAH metabolites (OH-PAH) 1-hydroxyphenanthrene (1-OH-phenanthrene), the sum of 2- and 9-hydroxyphenanthrene (2-/9-OH-phenanthrene), 3-hydroxyphenanthrene (3-OH-phenanthrene), 4-hydroxyphenanthrene (4-OH-phenanthrene) and 1-hydroxypyrene (1-OH-pyrene), as well as cotinine and creatinine, were determined. In the exposed group, median urinary concentrations were 0.85 μg/g creatinine for 1-OH-phenanthrene, 0.54 μg/g creatinine for 2-/9-OH-phenanthrene, 0.99 μg/g creatinine for 3-OH-phenanthrene, 0.22 μg/g creatinine for 4-OH-phenanthrene, and 1.33 μg/g creatinine for 1-OH-pyrene, all being significantly higher compared to the control group (0.55, 0.37, 0.63, 0.11 and 0.54 μg/g creatinine, respectively). Using a multivariate linear regression analysis including sex, cotinine and tobacco smoking as covariates, exposure to e-waste recycling activities was the most important determinant for PAH exposure. On physical examination, pathological findings were rare, but about two thirds of exposed individuals complained about cough, and one quarter about chest pain. In conclusion, we observed significantly higher urinary PAH metabolite concentrations in individuals who were exposed to e-waste recycling compared to controls who were not exposed to e-waste recycling activities. The impact of e-waste recycling on exposure to

  9. I-NERI Annual Technical Progress Report 2007-004-K Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Frank

    The current method for the immobilization of fission products that accumulate in electrorefiner salt during the electrochemical processing of used metallic nuclear fuel is to encapsulate the electrorefiner salt in a glass-bonded sodalite ceramic waste form. This process was developed by Argonne National Laboratory in the USA and is currently performed at the Idaho National Laboratory for the treatment of Experimental Breeder Reactor-II (EBR-II) used fuel. This process utilizes a “once-through” option for the disposal of spent electrorefiner salt; where, after the treatment of the EBR-II fuel, the electrorefiner salt containing the active fission products will be disposed of inmore » the ceramic waste form (CWF). The CWF produced will have low fission product loading of approximately 2 to 5 weight percent due to the limited fuel inventory currently being processed. However; the design and implementation of advanced electrochemical processing facilities to treat used fuel would process much greater quantities fuel. With an advanced processing facility, it would be necessary to selectively remove fission products from the electrorefiner salt for salt recycle and to concentrate the fission products to reduce the volume of high-level waste from the treatment facility. The Korean Atomic Energy Research Institute and the Idaho National Laboratory have been collaborating on I-NERI research projects for a number of years to investigate both aspects of selective fission product separation from electrorefiner salt, and to develop advanced waste forms for the immobilization of the collected fission products. The first joint KAERI/INL I-NERI project titled: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels, was successfully completed in 2009 by concentrating and isolating fission products from actual electrorefiner salt used for the treated used EBR-II fuel. Two separation methods were tested and from these tests

  10. Current results with slow freezing and vitrification of the human oocyte.

    PubMed

    Boldt, Jeffrey

    2011-09-01

    The past decade has witnessed renewed interest in human oocyte cryopreservation (OCP). This article reviews the two general methods used for OCP, slow freezing and vitrification, compares the outcomes associated with each technique and discusses the factors that might influence success with OCP (such as oocyte selection or day of transfer). Based on available data, OCP offers a reliable, reproducible method for preservation of the female gamete and will find increasing application in assisted reproductive technology. Oocyte cryopreservation can provide a number of advantages to couples undergoing assisted reproduction or to women interested in fertility preservation. Two methods, slow freezing and vitrification, have been used successfully for oocyte cryopreservation. This article reviews and compares these methods, and discusses various factors that can impact upon success of oocyte cryopreservation. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  11. Role of geophysics in identifying and characterizing sites for high-level nuclear waste repositories.

    USGS Publications Warehouse

    Wynn, J.C.; Roseboom, E.H.

    1987-01-01

    Evaluation of potential high-level nuclear waste repository sites is an area where geophysical capabilities and limitations may significantly impact a major governmental program. Since there is concern that extensive exploratory drilling might degrade most potential disposal sites, geophysical methods become crucial as the only nondestructive means to examine large volumes of rock in three dimensions. Characterization of potential sites requires geophysicists to alter their usual mode of thinking: no longer are anomalies being sought, as in mineral exploration, but rather their absence. Thus the size of features that might go undetected by a particular method take on new significance. Legal and regulatory considerations that stem from this different outlook, most notably the requirements of quality assurance (necessary for any data used in support of a repository license application), are forcing changes in the manner in which geophysicists collect and document their data. -Authors

  12. The preliminary design and feasibility study of the spent fuel and high level waste repository in the Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valvoda, Z.; Holub, J.; Kucerka, M.

    1996-12-31

    In the year 1993, began the Program of Development of the Spent Fuel and High Level Waste Repository in the Conditions of the Czech Republic. During the first phase, the basic concept and structure of the Program has been developed, and the basic design criteria and requirements were prepared. In the conditions of the Czech Republic, only an underground repository in deep geological formation is acceptable. Expected depth is between 500 to 1000 meters and as host rock will be granites. A preliminary variant design study was realized in 1994, that analyzed the radioactive waste and spent fuel flow frommore » NPPs to the repository, various possibilities of transportation in accordance to the various concepts of spent fuel conditioning and transportation to the underground structures. Conditioning and encapsulation of spent fuel and/or radioactive waste is proposed on the repository site. Underground disposal structures are proposed at one underground floor. The repository will have reserve capacity for radioactive waste from NPPs decommissioning and for waste non acceptable to other repositories. Vertical disposal of unshielded canisters in boreholes and/or horizontal disposal of shielded canisters is studied. As the base term of the start up of the repository operation, the year 2035 has been established. From this date, a preliminary time schedule of the Project has been developed. A method of calculating leveled and discounted costs within the repository lifetime, for each of selected 5 variants, was used for economic calculations. Preliminary expected parametric costs of the repository are about 0,1 Kc ($0.004) per MWh, produced in the Czech NPPs. In 1995, the design and feasibility study has gone in more details to the technical concept of repository construction and proposed technologies, as well as to the operational phase of the repository. Paper will describe results of the 1995 design work and will present the program of the repository development in

  13. DEMONSTRATION BULLETIN: COLD TOP EX-SITU VITRIFICATION PROCESS - GEOTECH DEVELOPMENT CORPORATION

    EPA Science Inventory

    The Cold Top Vitrification process, developed by Geotech Development Corporation, is an ex-situ, submerged-electrode, resistance-melting technology. The technology is designed to transform heavy metal contaminated soil into a glassy, amorphous, non-leachable mass composed of inte...

  14. Multilayer Protective Coatings for High-Level Nuclear Waste Storage Containers

    NASA Astrophysics Data System (ADS)

    Fusco, Michael

    Corrosion-based failures of high-level nuclear waste (HLW) storage containers are potentially hazardous due to a possible release of radionuclides through cracks in the canister due to corrosion, especially for above-ground storage (i.e. dry casks). Protective coatings have been proposed to combat these premature failures, which include stress-corrosion cracking and hydrogen-diffusion cracking, among others. The coatings are to be deposited in multiple thin layers as thin films on the outer surface of the stainless steel waste basket canister. Coating materials include: TiN, ZrO2, TiO2, Al 2O3, and MoS2, which together may provide increased resistances to corrosion and mechanical wear, as well as act as a barrier to hydrogen diffusion. The focus of this research is on the corrosion resistance and characterization of single layer coatings to determine the possible benefit from the use of the proposed coating materials. Experimental methods involve electrochemical polarization, both DC and AC techniques, and corrosion in circulating salt brines of varying pH. DC polarization allows for estimation of corrosion rates, passivation behavior, and a qualitative survey of localized corrosion, whereas AC electrochemistry has the benefit of revealing information about kinetics and interfacial reactions that is not obtainable using DC techniques. Circulation in salt brines for nearly 150 days revealed sustained adhesion of the coatings and minimal weight change of the steel samples. One-inch diameter steel coupons composed of stainless steel types 304 and 316 and A36 low alloy carbon steel were coated with single layers using magnetron sputtering with compound targets in an inert argon atmosphere. This resulted in very thin films for the metal-oxides based on low sputter rates. DC polarization showed that corrosion rates were very similar between bare and coated stainless steel samples, whereas a statistically significant decrease in uniform corrosion was measured on coated

  15. Timing of The First Zygotic Cleavage Affects Post-Vitrification Viability of Murine Embryos Produced In Vivo

    PubMed Central

    Jusof, Wan-Hafizah Wan; Khan, Nor-Ashikin Mohamed Noor; Rajikin, Mohd Hamim; Satar, Nuraliza Abdul; Mustafa, Mohd-Fazirul; Jusoh, Norhazlin; Dasiman, Razif

    2015-01-01

    Background Timing of the first zygotic cleavage is an accurate predictor of embryo quality. Embryos that cleaved early (EC) have been shown to exhibit higher develop- mental viability compared to those that cleaved at a later period (LC). However, the vi- ability of EC embryos in comparison to LC embryos after vitrification is unknown. The present study aims to investigate the post-vitrification developmental viability of murine EC versus LC embryos. Materials and Methods In this experimental study, female ICR mice (6-8 weeks old) were superovulated and cohabited with fertile males for 24 hours. Afterwards, their ovi- ducts were excised and embryos harvested. Embryos at the 2-cell stage were catego- rized as EC embryos, while zygotes with two pronuclei were categorized as LC embryos. Embryos were cultured in M16 medium supplemented with 3% bovine serum albumin (BSA) in a humidified 5% CO2atmosphere. Control embryos were cultured until the blastocyst stage without vitrification. Experimental embryos at the 2-cell stage were vitri- fied for one hour using 40% v/v ethylene glycol, 18% w/v Ficoll-70 and 0.5 M sucrose as the cryoprotectant. We recorded the numbers of surviving embryos from the control and experimental groups and their development until the blastocyst stage. Results were analyzed using the chi-square test. Results A significantly higher proportion of EC embryos (96.7%) from the control group developed to the blastocyst stage compared with LC embryos (57.5%, P<0.0001). Similarly, in the experimental group, a significantly higher percentage of vitrified EC embryos (69.4%) reached the blastocyst stage compared to vitrified LC embryos (27.1%, P<0.0001). Conclusion Vitrified EC embryos are more vitrification tolerant than LC embryos. Prese- lection of EC embryos may be used as a tool for selection of embryos that exhibit higher developmental competence after vitrification. PMID:26246881

  16. 77 FR 58591 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0362] Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... Commission) has issued for public comment a document entitled: NUREG-1307 Revision 15, ``Report on Waste...

  17. The nitrate to ammonia and ceramic (NAC) process for the denitration and immobilization of low-level radioactive liquid waste (LLW)

    NASA Astrophysics Data System (ADS)

    Muguercia, Ivan

    Hazardous radioactive liquid waste is the legacy of more than 50 years of plutonium production associated with the United States' nuclear weapons program. It is estimated that more than 245,000 tons of nitrate wastes are stored at facilities such as the single-shell tanks (SST) at the Hanford Site in the state of Washington, and the Melton Valley storage tanks at Oak Ridge National Laboratory (ORNL) in Tennessee. In order to develop an innovative, new technology for the destruction and immobilization of nitrate-based radioactive liquid waste, the United State Department of Energy (DOE) initiated the research project which resulted in the technology known as the Nitrate to Ammonia and Ceramic (NAC) process. However, inasmuch as the nitrate anion is highly mobile and difficult to immobilize, especially in relatively porous cement-based grout which has been used to date as a method for the immobilization of liquid waste, it presents a major obstacle to environmental clean-up initiatives. Thus, in an effort to contribute to the existing body of knowledge and enhance the efficacy of the NAC process, this research involved the experimental measurement of the rheological and heat transfer behaviors of the NAC product slurry and the determination of the optimal operating parameters for the continuous NAC chemical reaction process. Test results indicate that the NAC product slurry exhibits a typical non-Newtonian flow behavior. Correlation equations for the slurry's rheological properties and heat transfer rate in a pipe flow have been developed; these should prove valuable in the design of a full-scale NAC processing plant. The 20-percent slurry exhibited a typical dilatant (shear thickening) behavior and was in the turbulent flow regime due to its lower viscosity. The 40-percent slurry exhibited a typical pseudoplastic (shear thinning) behavior and remained in the laminar flow regime throughout its experimental range. The reactions were found to be more efficient in the

  18. Thermal and clinical performance of a closed device designed for human oocyte vitrification based on the optimization of the warming rate.

    PubMed

    Gallardo, Miguel; Hebles, María; Migueles, Beatriz; Dorado, Mónica; Aguilera, Laura; González, Mercedes; Piqueras, Paloma; Montero, Lorena; Sánchez-Martín, Pascual; Sánchez-Martín, Fernando; Risco, Ramón

    2016-08-01

    Although it was qualitatively pointed out by Fahy et al. (1984), the key role of the warming rates in non-equillibrium vitrification has only recently been quantitatively established for murine oocytes by Mazur and Seki (2011). In this work we study the performance of a closed vitrification device designed under the new paradigm, for the vitrification of human oocytes. The vitrification carrier consists of a main straw in which a specifically designed capillary is mounted and where the oocytes are loaded by aspiration. It can be hermetically sealed before immersion in liquid nitrogen for vitrification, and it is warmed in a sterile water bath at 37 °C. Measured warming rates achieved with this design were of 600.000 ºC/min for a standard DMEM solution and 200.000 ºC/min with the vitrification solution for human oocytes. A cohort of 143 donor MII sibling human oocytes was split into two groups: control (fresh) and vitrified with SafeSpeed device. Similar results were found in both groups: survival (97.1%), fertilization after ICSI (74.7% in control vs. 77.3% in vitrified) and good quality embryos at day three (54.3% in control vs. 58.1% in vitrified) were settled as performance indicators. The pregnancy rate was 3/6 (50%) for the control, 2/3 (66%) for vitrified and 4/5 (80%) for mixed transfers. Copyright © 2016. Published by Elsevier Inc.

  19. Decreased pregnancy and live birth rates after vitrification of in vitro matured oocytes.

    PubMed

    Cohen, Yoni; St-Onge-St-Hilaire, Alexandra; Tannus, Samer; Younes, Grace; Dahan, Michael H; Buckett, William; Son, Weon-Young

    2018-06-04

    To assess effects on fertilization rate, embryo quality, pregnancy, and live birth rates of vitrification and warming of oocytes that matured in vitro (vIVM) compared to fresh in vitro maturation (fIVM) cycles. A retrospective cohort study conducted at a university hospital-affiliated IVF unit. Fifty-six cycles of vIVM cycles and 263 fIVM in women diagnosed with polycystic ovarian syndrome (PCOS) ovaries were included in the analysis. The study group included PCOS patients who failed ovulation induction with intrauterine insemination and were offered IVM cycle followed by oocyte vitrification and warming. The embryological aspects and clinical outcomes were compared to those of controls undergoing fresh IVM cycles during the same period. The main outcome measure was live birth rate. One thousand seventy oocytes were collected from 56 patients and underwent vitrification and warming. In the control group, 4781 oocytes were collected from 219 patients who had undergone a fresh IVM cycle. Oocyte maturation rates were similar between the groups (mean ± SD: 0.7 ± 0.2 vs. 0.6 ± 0.2, for vIVM and fIVM, respectively). Survival rate after warming was 59.8%. Fertilization and embryo cleavage rates per oocyte were significantly lower in the vIVM group. Clinical pregnancy (10.7 vs. 36.1%) and live birth rates (8.9 vs. 25.9%) per cycle were significantly lower in the vIVM group than those in the fIVM group (P = 0.005 and P < 0.001, respectively). Five healthy babies were born in the vIVM group. The reproductive potential of vitrified IVM oocytes is impaired. This injury likely occurs through vitrification and warming.

  20. The Dominance of Warming Rate Over Cooling Rate in the Survival of Mouse Oocytes Subjected to a Vitrification Procedure✰

    PubMed Central

    Seki, Shinsuke; Mazur, Peter

    2009-01-01

    The formation of more than trace amounts of ice in cells is lethal. The two contrasting routes to avoiding it are slow equilibrium freezing and vitrification. The cryopreservation of mammalian oocytes by either method continues to be difficult, but there seems a slowly emerging consensus that vitrification procedures are somewhat better for mouse and human oocytes. The approach in these latter procedures is to load cells with high concentrations of glass-inducing solutes and cool them at rates high enough to induce the glassy state. Several devices have been developed to achieve very high cooling rates. Our study has been concerned with the relative influences of warming rate and cooling rate on the survival of mouse oocytes subjected to a vitrification procedure. Oocytes suspended in an ethylene glycol-acetamide-Ficoll-sucrose solution were cooled to −196°C at rates ranging from 37°C/min to 1827°C/min between 20°C and −120°C, and for each cooling rate, warmed at rates ranging from 139°C/min to 2950°C/min between −70°C and −35°C. The results are unambiguous. If the samples were warmed at the highest rate, survivals were >80% over cooling rates of 187°C/min to 1827°C/min. If the samples were warmed at the lowest rate, survivals were near 0% regardless of the cooling rate. We interpret the lethality of slow warming to be a consequence of it allowing time for the growth of small intracellular ice crystals by recrystallization. PMID:19427303

  1. Different routes to the glass transition: A comparison between chemical and physical vitrification

    NASA Astrophysics Data System (ADS)

    Caponi, Silvia; Corezzi, Silvia

    2012-07-01

    Despite the differences in the molecular processes involved in chemical and physical vitrification, surprising similarities are observed in the dynamics and in the thermodynamical properties of the resulting glasses. We report on a systematic study of reactive glass-formers undergoing a process of progressive polymerization of the constituent molecules via the formation of irreversible chemical bonds. The formation of most of the materials used in engineering plastics and the hardening of natural and synthetic resins, including epoxy resins, are based on chemical vitrification. The clear analogies characterizing the dynamic evolution of physical and chemical glass-formers, on the time scale of the structural and the low-frequency vibrational dynamics, are briefly reviewed.

  2. [A prospective study to compare the efficiency of oocyte vitrification using closed or open devices].

    PubMed

    Sarandi, S; Herbemont, C; Sermondade, N; Benoit, A; Sonigo, C; Poncelet, C; Benard, J; Gronier, H; Boujenah, J; Grynberg, M; Sifer, C

    2016-05-01

    Oocyte vitrification using an open device is thought to be a source of microbiological and chemical contaminations that can be avoided using a closed device. The principal purpose of this study was to compare the two vitrification protocols: closed and open system. The secondary aim was to study the effects of the storage in the vapor phase of nitrogen (VPN) on oocytes vitrified using an open system and to compare it to those of a storage in liquid nitrogen (LN). Forty-four patients have been included in our study between November 2014 and May 2015. Two hundred and fourteen oocytes have been vitrified at germinal vesicle (GV), metaphase I (0PB) and metaphase II (1PB) stages. We vitrified 96 oocytes (59 GV/37 0PB) using a closed vitrification device and 118 oocytes (57 GV/31 0PB/30 1PB) using an open device. The vitrified oocytes were then stored either in LN or in VPN. The main outcome measures were the survival rate after warming (SR), meiosis resumption rate (MRR) and maturation rate (MR). The global post-thaw SR was significantly higher for oocytes vitrified using an open system (93.2%) compared to those vitrified using a closed one (64.5%; P<0.001). On the contrary, there was no significant difference in terms of global MRR and MR (82.1% vs. 87.5% and 60.7% vs. 61.2% using closed and open system respectively). The SR, MRR and the MR were not significantly different when vitrified oocytes were stored in VPN or LN (91.6, 83.8, 64.5% vs. 93.9, 89.8, 59.1% respectively). Taking into account the limits of our protocol, the open vitrification system remains the more efficient system. The use of sterile liquid nitrogen for oocyte vitrification and the subsequent storage in vapor phase of nitrogen could minimize the hypothetical risks of biological and chemical contaminations. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Radioactive Waste Management Complex low-level waste radiological performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsitemore » receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.« less

  4. The siting program of geological repository for spent fuel/high-level waste in Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novotny, P.

    1993-12-31

    The management of high-level waste in Czech Republic have a very short history, because before the year 1989 spent nuclear fuel was re-exported back to USSR. The project ``Geological research of HLW repository in Czech Republic`` was initiated during 1990 by the Ministry of the Environment of the Czech Republic and by this project delegated the Czech Geological Survey (CGU) Prague. The first CGU project late in 1990 for multibarrier concept has proposed a geological repository to be located at a depth of about 500 m. Screening and studies of potential sites for repository started in 1991. First stage representedmore » regional siting of the Czech Republic for perspective rock types and massifs. In cooperation with GEOPHYSICS Co., Geophysical Institute of the Czech Academy of Sciences and Charles University Prague 27 perspective regions were selected, using criteria IAEA. This work in the Czech Republic was possible thanks to the detailed geological studies done in the past and thanks to the numerous archive data, concentrated in the central geological archive GEOFOND. Selection of perspective sites also respected natural conservation regions, regions conserving water and mineral waters resources. CGU opened up contact with countries with similar geological situation and started cooperation with SKB (Swedish Nuclear Fuel and Waste Management Co.). The Project of geological research for the next 10 years is a result of these activities.« less

  5. Candidate Low-Temperature Glass Waste Forms for Technetium-99 Recovered from Hanford Effluent Management Facility Evaporator Concentrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Mei; Tang, Ming; Rim, Jung Ho

    Alternative treatment and disposition options may exist for technetium-99 (99Tc) in secondary liquid waste from the Hanford Direct-Feed Low-Activity Waste (DFLAW) process. One approach includes development of an alternate glass waste form that is suitable for on-site disposition of technetium, including salts and other species recovered by ion exchange or precipitation from the EMF evaporator concentrate. By recovering the Tc content from the stream, and not recycling the treated concentrate, the DFLAW process can potentially be operated in a more efficient manner that lowers the cost to the Department of Energy. This report provides a survey of candidate glass formulationsmore » and glass-making processes that can potentially incorporate technetium at temperatures <700 °C to avoid volatilization. Three candidate technetium feed streams are considered: (1) dilute sodium pertechnetate loaded on a non-elutable ion exchange resin; (2) dilute sodium-bearing aqueous eluent from ion exchange recovery of pertechnetate, or (3) technetium(IV) oxide precipitate containing Sn and Cr solids in an aqueous slurry. From the technical literature, promising candidate glasses are identified based on their processing temperatures and chemical durability data. The suitability and technical risk of three low-temperature glass processing routes (vitrification, encapsulation by sintering into a glass composite material, and sol-gel chemical condensation) for the three waste streams was assessed, based on available low-temperature glass data. For a subset of candidate glasses, their long-term thermodynamic behavior with exposure to water and oxygen was modeled using Geochemist’s Workbench, with and without addition of reducing stannous ion. For further evaluation and development, encapsulation of precipitated TcO2/Sn/Cr in a glass composite material based on lead-free sealing glasses is recommended as a high priority. Vitrification of pertechnetate in aqueous anion exchange eluent

  6. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter: Summary of FY2016 experiements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Fowley, M.; Miller, D.

    2016-12-01

    Five experiments were completed with the full-scale, room temperature Hanford Waste Treatment and Immobilization Plant (WTP) high-level waste (HLW) melter riser test system to observe particle flow and settling in support of a crystal tolerant approach to melter operation. A prototypic pour rate was maintained based on the volumetric flow rate. Accumulation of particles was observed at the bottom of the riser and along the bottom of the throat after each experiment. Measurements of the accumulated layer thicknesses showed that the settled particles at the bottom of the riser did not vary in thickness during pouring cycles or idle periods.more » Some of the settled particles at the bottom of the throat were re-suspended during subsequent pouring cycles, and settled back to approximately the same thickness after each idle period. The cause of the consistency of the accumulated layer thicknesses is not year clear, but was hypothesized to be related to particle flow back to the feed tank. Additional experiments reinforced the observation of particle flow along a considerable portion of the throat during idle periods. Limitations of the system are noted in this report and may be addressed via future modifications. Follow-on experiments will be designed to evaluate the impact of pouring rate on particle re-suspension, the influence of feed tank agitation on particle accumulation, and the effect of changes in air lance positioning on the accumulation and re-suspension of particles at the bottom of the riser. A method for sampling the accumulated particles will be developed to support particle size distribution analyses. Thicker accumulated layers will be intentionally formed via direct addition of particles to select areas of the system to better understand the ability to continue pouring and re-suspend particles. Results from the room temperature system will be correlated with observations and data from the Research Scale Melter (RSM) at Pacific Northwest National

  7. THE DOE OFFICE OF ENVIRONMENTAL MANAGEMENT INTERNATIONAL COOPERATIVE PROGRAM: OVERVIEW OF TECHNICAL TASKS AND RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, J.; Fox, K.; Farfan, E.

    2009-12-08

    The DOE Office of Environmental Management (DOE-EM) Office of Engineering and Technology is responsible for implementing EM's International Cooperative Program. Over the past 15 years, collaborative work has been conducted through this program with researchers in Russia, Ukraine, France, United Kingdom and Republic of Korea. Currently, work is being conducted with researchers in Russia and Ukraine. Efforts aimed at evaluating and advancing technologies to support U.S. high-level waste (HLW) vitrification initiatives are being conducted in collaboration with Russian researchers. Work at Khlopin Radium Institute (KRI) is targeted at improving the throughput of current vitrification processes by increasing melting rate. Thesemore » efforts are specifically targeted at challenging waste types identified at the Savannah River Site (SRS) and Hanford Site. The objectives of current efforts at SIA Radon are to gain insight into vitrification process limits for the cold crucible induction melter (CCIM) technology. Previous demonstration testing has shown that the CCIM offers the potential for dramatic increases in waste loading and waste throughput. However, little information is known regarding operational limits that could affect long-term, efficient CCIM operations. Collaborative work with the Russian Electrotechnical University (ETU) 'LETI' is aimed at advancing CCIM process monitoring, process control and design. The goal is to further mature the CCIM technology and to establish it as a viable HLW vitrification technology. The greater than two year effort conducted with the International Radioecology Laboratory in the Ukraine recently completed. The objectives of this study were: to assess the long-term impacts to the environment from radiation exposure in the Chernobyl Exclusion Zone (ChEZ); and to provide information on remediation guidelines and ecological risk assessment within radioactively contaminated territories around the Chernobyl Nuclear Power Plant (Ch

  8. Maine State Briefing Book on low-level radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-08-01

    The Maine State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Maine. The profile is the result of a survey of radioactive material licensees in Maine. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested partices including industry, government, the media, and interest groups. The assessment was developedmore » through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant goverment agencies and activities, all of which may impact management practices in Maine.« less

  9. Vitrification: an effective new approach to oocyte banking and preserving fertility in cancer patients.

    PubMed

    Cobo, A; Domingo, J; Pérez, S; Crespo, J; Remohí, J; Pellicer, A

    2008-05-01

    Oocyte cryopreservation is a useful tool for preserving the fertility of cancer patients at risk of losing ovarian function due to undergoing potentially sterilising therapies. Results obtained with different cryopreservation protocols have been disappointing, particularly those obtained with slow cooling procedures. The efficacy of vitrification as an application in clinical practice has recently been demonstrated. The aim of this study is to report results obtained with the Cryotop method of oocyte vitrification in a population of healthy women and to point out its potential usefulness for fertility preservation in oncological patients. The study population consisting of non-oncological patients included 47 oocyte donors and 57 recipients undergoing an oocyte donation cycle of assisted reproductive technology (ART). A total of 693 mature metaphase II oocytes were collected following ovarian stimulation using long protocol down-regulation plus gonadotropin administration. Vitrification was carried out by means of the Cryotop method. Oocytes were donated to a compatible recipient after endometrial preparation. Of the 693 oocytes, 666 (96.1%) survived. A total of 487 (73.1%) were fertilised successfully. One hundred and seventeen embryos were transferred to 57 recipients. Pregnancy rate per transfer and implantation rates were 63.2% and 38.5% respectively. Twenty-eight healthy babies were later born. Oocyte cryo-banking by means of the Cryotop vitrification method represents a viable option for healthy women, producing excellent survival rates and a clinical outcome similar to that obtained with fresh oocytes. This approach could potentially be used in cancer patients who want to safeguard their fertility. Cancer patients could potentially benefit from this approach by storing their oocytes before the onset of the oncological therapy.

  10. Comparison of ethylene glycol and propylene glycol for the vitrification of immature porcine oocytes.

    PubMed

    Somfai, Tamás; Nakai, Michiko; Tanihara, Fuminori; Noguchi, Junko; Kaneko, Hiroyuki; Kashiwazaki, Naomi; Egerszegi, István; Nagai, Takashi; Kikuchi, Kazuhiro

    2013-01-01

    Our aim was to optimize a cryoprotectant treatment for vitrification of immature porcine cumulus-oocyte complexes (COCs). Immature COCs were vitrified either in 35% ethylene glycol (EG), 35% propylene glycol (PG) or a combination of 17.5% EG and 17.5% PG. After warming, the COCs were in vitro matured (IVM), and surviving oocytes were in vitro fertilized (IVF) and cultured. The mean survival rate of vitrified oocytes in 35% PG (73.9%) was higher (P<0.05) than that in 35% EG (27.8%). Oocyte maturation rates did not differ among vitrified and non-vitrified control groups. Blastocyst formation in the vitrified EG group (10.8%) was higher (P<0.05) than that in the vitrified PG group (2.0%) but was lower than that in the control group (25.0%). Treatment of oocytes with 35% of each cryoprotectant without vitrification revealed a higher toxicity of PG on subsequent blastocyst development compared with EG. The combination of EG and PG resulted in 42.6% survival after vitrification. The maturation and fertilization rates of the surviving oocytes were similar in the vitrified, control and toxicity control (TC; treated with EG+PG combination without cooling) groups. Blastocyst development in the vitrified group was lower (P<0.05) than that in the control and TC groups, which in turn had similar development rates (10.7%, 18.1% and 23.3%, respectively). In conclusion, 35% PG enabled a higher oocyte survival rate after vitrification compared with 35% EG. However, PG was greatly toxic to oocytes. The combination of 17.5% EG and 17.5% PG yielded reasonable survival rates without toxic effects on embryo development.

  11. Oocyte vitrification for elective fertility preservation: the past, present, and future.

    PubMed

    Gunnala, Vinay; Schattman, Glenn

    2017-02-01

    Oocyte cryopreservation is no longer experimental and one of its rapidly growing indications is elective fertility preservation. Currently there is no sufficient evidence to support its practice and therefore its place in IVF remains uncertain. Vitrification has superior post-thaw survival and fertilization outcomes compared with oocytes that were frozen with the slow-freeze technique. Oocyte vitrification produces similar IVF outcomes compared with fresh oocytes and is not associated with further obstetrical or perinatal morbidity. Undergoing elective oocyte cryopreservation between ages 35 and 37 will optimize live birth rates as well as cost effectiveness from mathematical models. In women who delay child bearing, elective oocyte cryopreservation in the mid 30s may be beneficial in terms of live birth rates and cost effectiveness. Prospective studies of women who have undergone oocyte cryopreservation and are now attempting conception are needed before official recommendations can be made regarding elective egg freezing.

  12. (Low-level waste disposal facility siting and site characterization)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezga, L.J.; Ketelle, R.H.; Pin, F.G.

    A US team consisting of representatives of Oak Ridge National Laboratory (ORNL), Savannah River Plant (SRP), Savannah river Laboratory (SRL), and the Department of Energy Office of Defense Waste and Byproducts Management participated in the fourth meeting held under the US/French Radioactive Waste Management Agreement between the US Department of Energy and the Commissariat a l'Energie Atomique. This meeting, held at Agence Nationale pour les Gestion des Dechets Radioactifs' (ANDRA's) Headquarters in Paris, was a detailed, technical topical workshop focusing on Low-Level Waste Disposal Facility Siting and Site Characterization.'' The meeting also included a visit to the Centre de lamore » Manche waste management facility operated by ANDRA to discuss and observe the French approach to low-level waste management. The final day of the meeting was spent at the offices of Societe Generale pour les Techniques Nouvelles (SGN) discussing potential areas of future cooperation and exchange. 20 figs.« less

  13. Early containment of high-alkaline solution simulating low-level radioactive waste stream in clay-bearing blended cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A.A.; Olson, R.A.; Tennis, P.D.

    1995-04-01

    Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter,more » the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO{sub 3}, quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite.« less

  14. 30. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS LEVELS ABOVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS LEVELS ABOVE GRADE AND AT LEVEL OF OPERATING CORRIDOR. INEEL DRAWING NUMBER 200-0633-00-287-106351. FLUOR NUMBER 5775-CPP-633-A-1. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  15. GEOTECH, INC., COLD TOP EX-SITU VITRIFICATION SYSTEM; INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    A Superfund Innovative Technology Evaluation (SITE) technology demonstration was conducted in February and March 1997 to evaluate the Geotech Development Corporation (Geotech) Cold Top ex-situ vitrification technology in chromium-contaminated soils. The demonstration was conduct...

  16. French Geological Repository Project for High Level and Long-Lived Waste: Scientific Programme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landais, P.; Lebon, P.; Ouzounian, G.

    2008-07-01

    The feasibility study presented in the Dossier 2005 Argile set out to evaluate the conditions for building, operating and managing a reversible disposal facility. The research was directed at demonstrating a potential for confining long-lived radioactive waste in a deep clay formation by establishing the feasibility of the disposal principle. Results have been enough convincing and a Planning Act was passed on 28 June, 2006. Decision in principle has been taken to dispose of intermediate and high level long-lived radioactive waste in a geological repository. An application file for a license to construct a disposal facility is requested by endmore » of 2014 and its commissioning is planned for 2025. Based on previous results as well as on recommendations made by various Dossier 2005 evaluators, a new scientific programme for 2006-2015 has been defined. It gives details of what will be covered over the 2006-2015 period. Particular emphasis is placed on consolidating scientific data, increasing understanding of certain mechanisms and using a scientific and technical integration approach. It aims at integrating scientific developments and engineering advances. The scientific work envisaged beyond 2006 has the benefit of a unique context, which is direct access to the geological medium over long timescales. It naturally extends the research carried out to date, and incorporates additional investigations of the geological medium, and the preparation of demonstration work especially through full-scale tests. Results will aim at improving the representation of repository evolutions over time, extract the relevant parameters for monitoring during the reversibility phases, reduce the parametric uncertainties and enhance the robustness of models for performance calculations and safety analyses. Structure and main orientation of the ongoing scientific programme are presented. (author)« less

  17. Biological intrusion of low-level-waste trench covers

    NASA Astrophysics Data System (ADS)

    Hakonson, T. E.; Gladney, E. S.

    The long-term integrity of low-level waste shallow land burialsites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. The need to consider biological processes as being potentially important in reducing the integrity of waste burial site cover treatment is demonstrated. One approach to limiting biological intrusion through the waste cover is to apply a barrier within the profile to limit root and animal penetration with depth. Experiments in the Los Alamos Experimental Engineered Test Facility were initiated to develop and evaluate biological barriers that are effective in minimizing intrusion into waste trenches. The experiments that are described employ four different candidate barrier materials of geologic origin. Experimental variables that will be evaluated, in addition to barrier type, are barrier depth and sil overburden depth.

  18. Super cool X-1000 and Super cool Z-1000, two ice blockers, and their effect on vitrification/warming of mouse embryos.

    PubMed

    Badrzadeh, H; Najmabadi, S; Paymani, R; Macaso, T; Azadbadi, Z; Ahmady, A

    2010-07-01

    To evaluate the survival and blastocyst formation rates of mouse embryos after vitrification/thaw process with different ice blocker media. We used X-1000 and Z-1000 separately and mixed using V-Kim, a closed vitrification system. Mouse embryos were vitrified using ethylene glycol based medium supplemented with Super cool X-1000 and/or Super cool Z-1000. Survival rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 74%, 72%, 68%, and 85% respectively, with no significant difference among experimental and control groups; however, a significantly higher survival rate was noticed in the Super cool X-1000/Z-1000 group when compared with the Super cool Z-1000 group. Blastocyst formation rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 71%, 66%, 65%, and 72% respectively. There was no significant difference in this rate among control and experimental groups. In a closed vitrification system, addition of ice blocker Super cool X-1000 to the vitrification solution containing Super cool Z-1000 may improve the embryo survival rate. We recommend combined ice blocker usage to optimize the vitrification outcome. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Final Report. LAW Glass Formulation to Support AP-101 Actual Waste Testing, VSL-03R3470-2, Rev. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, I. S.; Pegg, I. L.; Rielley, Elizabeth

    2015-06-22

    The main objective of the work was to develop and select a glass formulation for vitrification testing of the actual waste sample of LAW AP-101 at Battelle - Pacific Northwest Division (PNWD). Other objectives of the work included preparation and characterization of glasses to demonstrate compliance with contract and processing requirements, evaluation of the ability to achieve waste loading requirements, testing to demonstrate compatibility of the glass melts with melter materials of construction, comparison of the properties of simulant and actual waste glasses, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  20. New Jersey State Briefing Book for low-level radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The New Jersey state Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New Jersey. The profile is the result of a survey of NRC licensees in New Jersey. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessmentmore » was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Jersey.« less