Science.gov

Sample records for high-mass resonances decaying

  1. Search for High Mass Resonances Decaying to Muon Pairs in ?s=1.96??TeV pp? Collisions

    E-print Network

    Bauer, Gerry P.

    We present a search for a new narrow, spin-1, high mass resonance decaying to ?+?-+X [mu superscript + mu superscript - + X], using a matrix-element-based likelihood and a simultaneous measurement of the resonance mass and ...

  2. Search for high-mass resonances decaying into ?-lepton pairs in pp collisions at ?s = 7 TeV

    E-print Network

    Bauer, Gerry P.

    A search for high-mass resonances decaying into ?[superscript +]?[superscript ?] is performed using a data sample of pp collisions at ?s = 7 TeV. The data were collected with the CMS detector at the LHC and correspond to ...

  3. Search for high-mass resonances decaying into ZZ in pp? collisions at ?s=1.96??TeV

    E-print Network

    Gomez-Ceballos, Guillelmo

    We search for high-mass resonances decaying into Z boson pairs using data corresponding to 6??fb-1 collected by the CDF experiment in pp? collisions at ?s=1.96??TeV. The search is performed in three distinct final states: ...

  4. Search for High-Mass Resonances Decaying to Dimuons at CDF

    E-print Network

    Xie, Si

    We present a search for high-mass neutral resonances using dimuon data corresponding to an integrated luminosity of 2.3??fb[superscript -1] collected in pp? collisions at ?s=1.96??TeV by the CDF II detector at the Fermilab ...

  5. Search for high-mass resonances decaying into ?-lepton pairs in pp collisions at ?{ s} = 7 TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, S.; Zhu, B.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Azzolini, V.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Karim, M.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Brun, H.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.

    2012-09-01

    A search for high-mass resonances decaying into ?+?- is performed using a data sample of pp collisions at ?{ s} = 7 TeV. The data were collected with the CMS detector at the LHC and correspond to an integrated luminosity of 4.9 fb-1. The number of observed events is in agreement with the standard model prediction. An upper limit on the product of the resonance cross section and branching fraction into ?-lepton pairs is calculated as a function of the resonance mass. Using the sequential standard model resonance ZSSM′ and the superstring-inspired E6 model with resonance Z?? as benchmarks, resonances with standard model couplings with masses below 1.4 and 1.1 TeV, respectively, are excluded at 95% confidence level.

  6. A search for high-mass resonances decaying to ? + ? - in pp collisions at TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.

    2015-07-01

    A search for high-mass resonances decaying into ? + ? - final states using proton-proton collisions at TeV produced by the Large Hadron Collider is presented. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 19.5-20.3 fb-1. No statistically significant excess above the Standard Model expectation is observed; 95% credibility upper limits are set on the cross section times branching fraction of Z' resonances decaying into ? + ? - pairs as a function of the resonance mass. As a result, Z' bosons of the Sequential Standard Model with masses less than 2.02 TeV are excluded at 95% credibility. The impact of the fermionic couplings on the Z' acceptance is investigated and limits are also placed on a Z' model that exhibits enhanced couplings to third-generation fermions. [Figure not available: see fulltext.

  7. Search for High-Mass Resonances Decaying to Dimuons at CDF

    SciTech Connect

    Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Remortel, N. van; Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.

    2009-03-06

    We present a search for high-mass neutral resonances using dimuon data corresponding to an integrated luminosity of 2.3 fb{sup -1} collected in pp collisions at {radical}(s)=1.96 TeV by the CDF II detector at the Fermilab Tevatron. No significant excess above the standard model expectation is observed in the dimuon invariant-mass spectrum. We set 95% confidence level upper limits on {sigma}BR(pp{yields}X{yields}{mu}{mu}), where X is a boson with spin-0, 1, or 2. Using these cross section limits, we determine lower mass limits on sneutrinos in R-parity-violating supersymmetric models, Z{sup '} bosons, and Kaluza-Klein gravitons in the Randall-Sundrum model.

  8. A search for high-mass resonances decaying to ?[superscript +]?[superscript ?] in pp collisions at ?s = 7 TeV with the ATLAS detector

    E-print Network

    Taylor, Frank E.

    This Letter presents a search for high-mass resonances decaying into ?[superscript +]?[superscript ?] final states using proton–proton collisions at ?s = 7 TeV produced by the Large Hadron Collider. The data were recorded ...

  9. Search for narrow high-mass resonances in proton–proton collisions at ?s = 8 TeV decaying to a Z and a Higgs boson

    E-print Network

    Apyan, Aram

    A search for a narrow, high-mass resonance decaying into Z and Higgs (H) bosons is presented. The final state studied consists of a merged jet pair and a ? pair resulting from the decays of Z and H bosons, respectively. ...

  10. A search for high-mass resonances decaying to ???? in pp collisions at ?s=8 TeV with the ATLAS detector

    SciTech Connect

    Aad, G.

    2015-07-29

    A search for high-mass resonances decaying into ???? final states using proton-proton collisions at ?s=8 TeV produced by the Large Hadron Collider is presented. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 19.5–20.3 fb–1. No statistically significant excess above the Standard Model expectation is observed; 95% credibility upper limits are set on the cross section times branching fraction of Z' resonances decaying into ???? pairs as a function of the resonance mass. As a result, Z' bosons of the Sequential Standard Model with masses less than 2.02 TeV are excluded at 95% credibility. As a result, the impact of the fermionic couplings on the Z' acceptance is investigated and limits are also placed on a Z' model that exhibits enhanced couplings to third-generation fermions.

  11. A search for high-mass resonances decaying to ???? in pp collisions at ?s=8 TeV with the ATLAS detector

    DOE PAGESBeta

    Aad, G.

    2015-07-29

    A search for high-mass resonances decaying into ???? final states using proton-proton collisions at ?s=8 TeV produced by the Large Hadron Collider is presented. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 19.5–20.3 fb–1. No statistically significant excess above the Standard Model expectation is observed; 95% credibility upper limits are set on the cross section times branching fraction of Z' resonances decaying into ???? pairs as a function of the resonance mass. As a result, Z' bosons of the Sequential Standard Model with masses less than 2.02 TeV are excluded at 95% credibility.more »As a result, the impact of the fermionic couplings on the Z' acceptance is investigated and limits are also placed on a Z' model that exhibits enhanced couplings to third-generation fermions.« less

  12. A search for high-mass resonances decaying to ???? in pp collisions at \\( \\sqrt{s}=8 \\) TeV with the ATLAS detector

    DOE PAGESBeta

    Aad, G.

    2015-07-29

    A search for high-mass resonances decaying into ???? final states using proton-proton collisions at \\( \\sqrt{s}=8 \\) TeV produced by the Large Hadron Collider is presented. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 19.5–20.3 fb–1. No statistically significant excess above the Standard Model expectation is observed; 95% credibility upper limits are set on the cross section times branching fraction of Z' resonances decaying into ???? pairs as a function of the resonance mass. As a result, Z' bosons of the Sequential Standard Model with masses less than 2.02 TeV are excluded atmore »95% credibility. As a result, the impact of the fermionic couplings on the Z' acceptance is investigated and limits are also placed on a Z' model that exhibits enhanced couplings to third-generation fermions.« less

  13. Search for narrow high-mass resonances in proton-proton collisions at ?{ s} = 8 TeV decaying to a Z and a Higgs boson

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Molina, J.; Mora Herrera, C.; Pol, M. E.; Rebello Teles, P.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zhang, F.; Zhang, L.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Chapon, E.; Charlot, C.; Dahms, T.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Bernet, C.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.

    2015-09-01

    A search for a narrow, high-mass resonance decaying into Z and Higgs (H) bosons is presented. The final state studied consists of a merged jet pair and a ? pair resulting from the decays of Z and H bosons, respectively. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of 8 TeV, collected with the CMS experiment in 2012, and corresponding to an integrated luminosity of 19.7 fb-1. In the resonance mass range of interest, which extends from 0.8 to 2.5 TeV, the Z and H bosons are produced with large momenta, which implies that the final products of the two quarks or the two ? leptons must be detected within a small angular interval. From a combination of all possible decay modes of the ? leptons, production cross sections in a range between 0.9 and 27.8 fb are excluded at 95% confidence level, depending on the resonance mass.

  14. Search for high-mass resonances decaying into $ZZ$ in p$\\bar{p}$ collisions at $\\sqrt{s}=1.96$\\,TeV

    SciTech Connect

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; /Dubna, JINR /Texas A-M

    2011-11-01

    The authors search for high-mass resonances decaying into Z boson pairs using data corresponding to 6 fb{sup -1} collected by the CDF experiment in p{bar p} collisions at {radical}s = 1.96 TeV. The search is performed in three distinct final states: ZZ {yields} {ell}{sup +}{ell}{sup -}{ell}{sup +}{ell}{sup -}, ZZ {yields} {ell}{sup +}{ell}{sup -}{nu}{nu}, and ZZ {yields} {ell}{sup +}{ell}{sup -}jj. For a Randall-Sundrum graviton G*, the 95% CL upper limits on the production cross section times branching ratio to ZZ, {sigma}(p{bar p} {yields} G* {yields} ZZ), vary between 0.26 pb and 0.045 pb in the mass range 300 < M{sub G*} < 1000 GeV/c{sup 2}.

  15. Search for High-Mass Resonances Decaying into Leptons of Different Flavor (e mu, e tau, mu tau) in p anti-p Collisions at sqrt(s) = 1.96 TeV

    SciTech Connect

    Tu, Yanjun; /Pennsylvania U.

    2008-10-01

    We present a search for high-mass resonances decaying into two leptons of different flavor: e{mu}, e{tau}, and {mu}{tau}. These resonances are predicted by several models beyond the standard model, such as the R-parity-violating MSSM. The search is based on 1 fb{sup -1} of data collected at the Collider Detector at Fermilab (CDF II) in proton anti-proton collisions. Our observations are consistent with the standard model expectations. The results are interpreted to set 95% C.L. upper limits on {sigma} x BR of {tilde {nu}}{sub {tau}} {yields} e{mu}, e{tau}, {mu}{tau}.

  16. Search for high-mass resonances decaying to e mu in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect

    Abulencia, A.; Acosta, D.; Adelman, Jahred A.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara

    2006-03-01

    The authors describe a general search for resonances decaying to a neutral e{mu} final state in p{bar p} collisions at a center-of-mass energy of 1.96 TeV. Using a data sample representing 344 pb{sup -1} of integrated luminosity recorded by the CDF II experiment, they compare Standard Model predictions with the number of observed events for invariant masses between 50 and 800 GeV/c{sup 2}. Finding no significant excess (5 events observed vs. 7.7 {+-} 0.8 expected for M{sub e{mu}} > 100 GeV/c{sup 2}), they set limits on sneutrino and Z{prime} masses as functions of lepton family number violating couplings.

  17. Search for high-mass dilepton resonances in pp collisions at ?s = 8 TeV with the ATLAS detector

    E-print Network

    Taylor, Frank E.

    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to dielectron or dimuon final states. Results are presented from an analysis of proton-proton (pp) collisions at a ...

  18. Highly mass-sensitive thin film plate acoustic resonators (FPAR).

    PubMed

    Arapan, Lilia; Alexieva, Gergana; Avramov, Ivan D; Radeva, Ekaterina; Strashilov, Vesseline; Katardjiev, Ilia; Yantchev, Ventsislav

    2011-01-01

    The mass sensitivity of thin aluminum nitride (AlN) film S0 Lamb wave resonators is theoretically and experimentally studied. Theoretical predictions based on modal and finite elements method analysis are experimentally verified. Here, two-port 888 MHz synchronous FPARs are micromachined and subsequently coated with hexamethyl-disiloxane(HMDSO)-plasma-polymerized thin films of various thicknesses. Systematic data on frequency shift and insertion loss versus film thickness are presented. FPARs demonstrate high mass-loading sensitivity as well as good tolerance towards the HMDSO viscous losses. Initial measurements in gas phase environment are further presented. PMID:22163994

  19. Highly Mass-Sensitive Thin Film Plate Acoustic Resonators (FPAR)

    PubMed Central

    Arapan, Lilia; Alexieva, Gergana; Avramov, Ivan D.; Radeva, Ekaterina; Strashilov, Vesseline; Katardjiev, Ilia; Yantchev, Ventsislav

    2011-01-01

    The mass sensitivity of thin aluminum nitride (AlN) film S0 Lamb wave resonators is theoretically and experimentally studied. Theoretical predictions based on modal and finite elements method analysis are experimentally verified. Here, two-port 888 MHz synchronous FPARs are micromachined and subsequently coated with hexamethyl-disiloxane(HMDSO)-plasma-polymerized thin films of various thicknesses. Systematic data on frequency shift and insertion loss versus film thickness are presented. FPARs demonstrate high mass-loading sensitivity as well as good tolerance towards the HMDSO viscous losses. Initial measurements in gas phase environment are further presented. PMID:22163994

  20. Search for high-mass diphoton resonances in pp collisions ats=8 TeVwith the ATLAS detector

    DOE PAGESBeta

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O.?S.; Abramowicz, H.; et al

    2015-08-14

    This article describes a search for high-mass resonances decaying to a pair of photons using a sample of 20.3 fb-1 of pp collisions at s?=8 TeV recorded with the ATLAS detector at the Large Hadron Collider. The data are found to be in agreement with the Standard Model prediction, and limits are reported in the framework of the Randall-Sundrum model. This theory leads to the prediction of graviton states, the lightest of which could be observed at the Large Hadron Collider. A lower limit of 2.66 (1.41) TeV at 95% confidence level is set on the mass of the lightestmore »graviton for couplings of k/M¯¯Pl=0.1 (0.01).« less

  1. Search for high mass dilepton resonances in pp collisions at ?s = 7 TeV with the ATLAS experiment

    E-print Network

    Taylor, Frank E.

    This Letter presents a search for high mass e[superscript +]e[superscript ?] or ?[superscript +]?[superscript ?] resonances in pp collisions at ?s = 7 TeV at the LHC. The data were recorded by the ATLAS experiment during ...

  2. Ephemeris, orbital decay, and masses of ten eclipsing high-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Falanga, M.; Bozzo, E.; Lutovinov, A.; Bonnet-Bidaud, J. M.; Fetisova, Y.; Puls, J.

    2015-05-01

    We update the ephemeris of the eclipsing high-mass X-ray binary (HMXB) systems LMC X-4, Cen X-3, 4U 1700-377, 4U 1538-522, SMC X-1, IGR J18027-2016, Vela X-1,IGR J17252-3616, XTE J1855-026, and OAO 1657-415 with the help of more than ten years of monitoring these sources with the All Sky Monitor onboard RXTE and with the Integral Soft Gamma-Ray Imager onboard INTEGRAL. These results are used to refine previous measurements of the orbital period decay of all sources (where available) and provide the first accurate values of the apsidal advance in Vela X-1 and 4U 1538-522. Updated values for the masses of the neutron stars hosted in the ten HMXBs are also provided, as well as the long-term light curves folded on the best determined orbital parameters of the sources. These light curves reveal complex eclipse ingresses and egresses that are understood mostly as being caused by accretion wakes. Our results constitute a database to be used for population and evolutionary studies of HMXBs and for theoretical modeling of long-term accretion in wind-fed X-ray binaries. Appendix A is available in electronic form at http://www.aanda.org

  3. Experimental Proof of Resonant Auger Decay Driven Intermolecular Coulombic Decay

    NASA Astrophysics Data System (ADS)

    Trinter, F.; Schöffler, M. S.; Kim, H.-K.; Sturm, F.; Cole, K.; Neumann, N.; Vredenborg, A.; Williams, J.; Bocharova, I.; Guillemin, R.; Simon, M.; Belkacem, A.; Landers, A. L.; Weber, Th; Schmidt-Böcking, H.; Dörner, R.; Jahnke, T.

    2014-04-01

    Resonant Auger decay driven Intermolecular Coulombic Decay through synchrotron radiation in gas phase carbon monoxided dimers and nitrogen dimers has been studied. We report the first experiment where the low-energy ICD-electron has been measured in coincidence with the ionic fragments and Resonant Auger ICD has been proved experimentally.

  4. Search for high-mass diphoton resonances in p p collisions at ?{s }=8 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; Abouzeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Ã Kesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Ã Sman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boddy, C. R.; Boehler, M.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.

    2015-08-01

    This article describes a search for high-mass resonances decaying to a pair of photons using a sample of 20.3 fb-1 of p p collisions at ?{s }=8 TeV recorded with the ATLAS detector at the Large Hadron Collider. The data are found to be in agreement with the Standard Model prediction, and limits are reported in the framework of the Randall-Sundrum model. This theory leads to the prediction of graviton states, the lightest of which could be observed at the Large Hadron Collider. A lower limit of 2.66 (1.41) TeV at 95% confidence level is set on the mass of the lightest graviton for couplings of k /M¯ Pl =0.1 (0.01).

  5. Search for high-mass diphoton resonances in $pp$ collisions at $\\sqrt{s}=8$ TeV with the ATLAS detector

    E-print Network

    ATLAS Collaboration

    2015-08-27

    This article describes a search for high-mass resonances decaying to a pair of photons using a sample of $20.3$ fb$^{-1}$ of $pp$ collisions at $\\sqrt{s}=8$ TeV recorded with the ATLAS detector at the Large Hadron Collider. The data are found to be in agreement with the Standard Model prediction, and limits are reported in the framework of the Randall-Sundrum model. This theory leads to the prediction of graviton states, the lightest of which could be observed at the Large Hadron Collider. A lower limit of $2.66$ ($1.41$) TeV at 95% confidence level is set on the mass of the lightest graviton for couplings of $k/\\overline{M}_{\\mathrm{Pl}} = 0.1$ ($0.01$).

  6. Discovery Potential for Di-lepton and Lepton+Etmiss Resonances at High Mass with ATLAS

    E-print Network

    ATLAS Collaboration; M. I. Pedraza-Morales

    2009-10-18

    This paper describes the discovery potential for new resonances with the ATLAS experiment. The resonances discussed in here are the Z', leptoquarks, graviton and W' resonances in some of their leptonic final states, considering a center-of-mass energy of 14 TeV for all of them, and an estimation of the potential of the W' search at the early center-of-mass energy of the LHC . The studied scenarios show that an initial run of few tens of 1/pb would be enough to go beyond the current limits in most of these models.

  7. Laser desorption studies of high mass biomolecules in Fourier-transform ion cyclotron resonance mass spectrometry.

    PubMed Central

    Solouki, T; Russell, D H

    1992-01-01

    Matrix-assisted laser desorption ionization is used to obtain Fourier-transform ion cyclotron resonance mass spectra of model peptides (e.g., gramicidin S, angiotensin I, renin substrate, melittin, and bovine insulin). Matrix-assisted laser desorption ionization yields ions having appreciable kinetic energies. Two methods for trapping the high kinetic energy ions are described: (i) the ion signal for [M+H]+ ions is shown to increase with increasing trapping voltages, and (ii) collisional relaxation is used for the detection of [M+H]+ ions of bovine insulin. Images PMID:1378614

  8. High Mass Resolving Power Radio Frequency Glow Discharge Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (RFGD-FTICR/MS)

    SciTech Connect

    Nichols, L.S.

    2001-01-05

    The combination of a radio frequency glow discharge (rfGD) external ion source with a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer has resulted in the ability to perform high mass resolution elemental analysis of both conductive and nonconductive materials. Samples investigated in the present study include copper, brass, and a National Institute of Standards and Technology (NIST) glass standard, SRM 1412. Analyses of both the copper and the brass materials resulted in ultra-high mass resolving power (m/Dm > 100,000). A mass resolving power of 280,000 (FWHM) was obtained for the 63Cu+ isotope of the copper sample, the highest reported to date for rfGD studies. In addition, study of the SRM 1412 glass standard revealed mass spectral peaks related to metal oxides present in the glass matrix at concentrations of approximately 4 percent (by weight). The resulting preliminary data demonstrate the capabilities of a rfGD-FTICR instrument and its promise as a powerful tool in distinguishing between isobaric and other mass spectral interferences in insulators, as well as conducting materials.

  9. Resonant Auger decay driving intermolecular Coulombic decay in molecular dimers

    NASA Astrophysics Data System (ADS)

    Trinter, F.; Schöffler, M. S.; Kim, H.-K.; Sturm, F. P.; Cole, K.; Neumann, N.; Vredenborg, A.; Williams, J.; Bocharova, I.; Guillemin, R.; Simon, M.; Belkacem, A.; Landers, A. L.; Weber, Th.; Schmidt-Böcking, H.; Dörner, R.; Jahnke, T.

    2014-01-01

    In 1997, it was predicted that an electronically excited atom or molecule placed in a loosely bound chemical system (such as a hydrogen-bonded or van-der-Waals-bonded cluster) could efficiently decay by transferring its excess energy to a neighbouring species that would then emit a low-energy electron. This intermolecular Coulombic decay (ICD) process has since been shown to be a common phenomenon, raising questions about its role in DNA damage induced by ionizing radiation, in which low-energy electrons are known to play an important part. It was recently suggested that ICD can be triggered efficiently and site-selectively by resonantly core-exciting a target atom, which then transforms through Auger decay into an ionic species with sufficiently high excitation energy to permit ICD to occur. Here we show experimentally that resonant Auger decay can indeed trigger ICD in dimers of both molecular nitrogen and carbon monoxide. By using ion and electron momentum spectroscopy to measure simultaneously the charged species created in the resonant-Auger-driven ICD cascade, we find that ICD occurs in less time than the 20femtoseconds it would take for individual molecules to undergo dissociation. Our experimental confirmation of this process and its efficiency may trigger renewed efforts to develop resonant X-ray excitation schemes for more localized and targeted cancer radiation therapy.

  10. Statistical theory of decay of giant resonances

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Yoshida, S.

    1990-02-01

    A general formulation of the decay of giant resonances is presented. Giant resonances are assumed to be excited by a ?-ray through the semidirect process, and decay by particle emission in compound or pre-equilibrium processes. The S-matrix for the semidirect process is evaluated and inserted into the general expression of the transmission matrices, which are used as inputs to the compound or pre-equilibrium fluctuation cross section. The results are compared with those of Dias et al. [Phys. Rev. Lett. 57 (1986) 1998], which are based on a different approach and have been used in analysis of the data.

  11. Searches for resonances decaying to top

    SciTech Connect

    Meyer, Jorg; /Gottingen U.

    2008-04-01

    Searches for resonances decaying to top pairs in p{anti p} collisions at {radical}s = 1.96 TeV are presented. An upper limit on the production of a narrow width resonance is given using 2.1 fb{sup -1} data collected by the D0 experiment. Limits on the couplings of a massive gluon are given and a measurement of the differential cross section d{sigma}/dM{sub t{anti t}} is presented using 1.9 fb{sup -1} data collected by the CDF experiment.

  12. Resonance decay effects on anisotropy parameters

    E-print Network

    X. Dong; S. Esumi; P. Sorensen; N. Xu; Z. Xu

    2004-07-19

    We present the elliptic flow $v_2$ of pions produced from resonance decays. The transverse momentum $p_T$ spectra of the parent particles are taken from thermal model fits and their $v_2$ are fit under the assumption that they follow number-of-constituent-quark (NCQ) scaling expected from quark-coalescence models. The $v_2$ of pions from resonance particle decays is found to be similar to the measured pion $v_2$. We also propose the measurement of electron $v_2$ as a means to extract open-charm $v_2$ and investigate whether a thermalized system of quarks and gluons (a quark-gluon plasma) is created in collisions of Au nuclei at RHIC.

  13. A search for high-mass resonances decaying to dimuons at CDF T. Aaltonen,24

    E-print Network

    Quigg, Chris

    . Campbell,35 F. Canelli,18 A. Canepa,46 B. Carls,25 D. Carlsmith,60 R. Carosi,47 S. Carrillom ,19 S. Carron. Jones,49 K.K. Joo,28 S.Y. Jun,13 J.E. Jung,28 T.R. Junk,18 T. Kamon,54 D. Kar,19 P.E. Karchin,59 Y. Kato

  14. The decay widths, the decay constants, and the branching fractions of a resonant state

    NASA Astrophysics Data System (ADS)

    de la Madrid, Rafael

    2015-08-01

    We introduce the differential and the total decay widths of a resonant (Gamow) state decaying into a continuum of stable states. When the resonance has several decay modes, we introduce the corresponding partial decay widths and branching fractions. In the approximation that the resonance is sharp, the expressions for the differential, partial and total decay widths of a resonant state bear a close resemblance with the Golden Rule. In such approximation, the branching fractions of a resonant state are the same as the standard branching fractions obtained by way of the Golden Rule. We also introduce dimensionless decay constants along with their associated differential decay constants, and we express experimentally measurable quantities such as the branching fractions and the energy distributions of decay events in terms of those dimensionless decay constants.

  15. Decay Properties Of The Dipole Isobaric Analog Resonances

    E-print Network

    M. L. Gorelik; I. V. Safonov; M. H. Urin

    2006-12-06

    A continuum-RPA-based approach is applied to describe the decay properties of isolated dipole isobaric analog resonances in nuclei having not-too-large neutron excess. Calculated for a few resonances in 90Zr the elastic E1-radiative width and partial proton widths for decay into one-hole states of 89Y are compared with available experimental data.

  16. Sensitivity to new high-mass states decaying to ttbar at a 100 TeV collider

    E-print Network

    B. Auerbach; S. Chekanov; J. Love; J. Proudfoot; A. V. Kotwal

    2015-01-07

    We discuss the sensitivity of a 100 TeV pp collider to heavy particles decaying to top-antitop final states. This center-of-mass energy, together with an integrated luminosity of 10 ab-1, can produce heavy particles in the mass range of several tens of teraelectronvolts (TeV). A Monte Carlo study has been performed using boosted-top techniques to reduce QCD background for the reconstruction of heavy particles with masses in the range of 8-20 TeV, and various widths. In particular, we have studied two models that predict heavy states, a model with an extra gauge boson (Zprime) and with a Kaluza-Klein (KK) excitation of the gluon (gKK). We estimate the sensitive values of $\\sigma \\times$Br of about 2 (4) fb for Zprime (gKK), with a corresponding mass reach of 13 (20) TeV.

  17. Resonant Edge Magnetoplasmons and Their Decay in Graphene

    NASA Astrophysics Data System (ADS)

    Kumada, N.; Roulleau, P.; Roche, B.; Hashisaka, M.; Hibino, H.; Petkovi?, I.; Glattli, D. C.

    2014-12-01

    We investigate resonant edge magnetoplasmons (EMPs) and their decay in graphene by high-frequency electronic measurements. From EMP resonances in disk shaped graphene, we show that the dispersion relation of EMPs is nonlinear due to interactions, giving rise to the intrinsic decay of EMP wave packets. We also identify extrinsic dissipation mechanisms due to interaction with localized states in bulk graphene from the decay time of EMP wave packets. We indicate that, owing to the linear band structure and the sharp edge potential, EMP dissipation in graphene can be lower than that in GaAs systems.

  18. Search for High-Mass e{sup +}e{sup -} Resonances in pp Collisions at {radical}(s)=1.96 TeV

    SciTech Connect

    Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Remortel, N. van; Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.

    2009-01-23

    A search for high-mass resonances in the e{sup +}e{sup -} final state is presented based on 2.5 fb{sup -1} of {radical}(s)=1.96 TeV pp collision data from the CDF II detector at the Fermilab Tevatron. The largest excess over the standard model prediction is at an e{sup +}e{sup -} invariant mass of 240 GeV/c{sup 2}. The probability of observing such an excess arising from fluctuations in the standard model anywhere in the mass range of 150-1000 GeV/c{sup 2} is 0.6% (equivalent to 2.5{sigma}). We exclude the standard model coupling Z{sup '} and the Randall-Sundrum graviton for k/M{sub Pl}=0.1 with masses below 963 and 848 GeV/c{sup 2} at the 95% credibility level, respectively.

  19. Curvaton decay by resonant production of the Standard Model higgs

    SciTech Connect

    Enqvist, Kari; Figueroa, Daniel G.; Lerner, Rose N. E-mail: daniel.figueroa@unige.ch

    2013-01-01

    We investigate in detail a model where the curvaton is coupled to the Standard Model higgs. Parametric resonance might be expected to cause a fast decay of the curvaton, so that it would not have time to build up the curvature perturbation. However, we show that this is not the case, and that the resonant decay of the curvaton may be delayed even down to electroweak symmetry breaking. This delay is due to the coupling of the higgs to the thermal background, which is formed by the Standard Model degrees of freedom created from the inflaton decay. We establish the occurrence of the delay by considering the curvaton evolution and the structure of the higgs resonances. We then provide analytical expressions for the delay time, and for the subsequent resonant production of the higgs, which ultimately leads to the curvaton effective decay width. Contrary to expectations, it is possible to obtain the observed curvature perturbation for values of the curvaton-higgs coupling as large as 10{sup ?1}. Our calculations also apply in the general case of curvaton decay into any non Standard Model species coupled to the thermal background.

  20. Vector Boson Scattering at High Mass with ATLAS

    SciTech Connect

    Davison, Adam

    2008-11-23

    In the absence of a light Higgs boson, the mechanism of electroweak symmetry breaking will be best studied in processes of vector boson scattering at high mass. Various models predict resonances in this channel. Scalar and vector resonances have been investigated in the WW, WZ and ZZ channels. The ability of ATLAS to measure the di-boson cross-section over a range of centre-of-mass energies has been studied with particular attention paid to the reconstruction of jet pairs with low opening angle resulting from the decays of highly boosted vector bosons.

  1. Search for High-Mass \\boldmath$e^+e^-$ Resonances in \\boldmath$p\\bar{p}$ Collisions at \\boldmath$\\sqrt{s}=$1.96 TeV

    SciTech Connect

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Albrow, Michael G.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, Alberto; Antos, J.; Apollinari, G.; /Fermilab /Purdue U.

    2008-10-01

    A search for high-mass resonances in the e{sup +}e{sup -} final state is presented based on {radical}s =1.96 TeV p{bar p} collision data from the CDF II detector at the Fermilab Tevatron from an integrated luminosity of 2.5 fb{sup -1}. The largest excess over the standard model prediction is at an e{sup +}e{sup -} invariant mass of 240 GeV/c{sup 2}. The probability of observing such an excess arising from fluctuations in the standard model anywhere in the mass range of 150-1,000 GeV/c{sup 2} is 0.6% (equivalent to 2.5 {sigma}). We set Bayesian upper limits on {sigma}(p{bar p} {yields} X) {center_dot} {Beta}(X {yields} e{sup +}e{sup -}) at the 95% credibility level, where X is a spin 1 or spin 2 particle, and we exclude the standard model coupling Z{prime} and the Randall-Sundrum graviton for {kappa}/{bar M}{sub Pl} = 0.1 with masses below 963 and 848 GeV/c{sup 2}, respectively.

  2. Effect of resonance decays on hadron elliptic flows 

    E-print Network

    Greco, V.; Ko, Che Ming.

    2004-01-01

    of resonance decays on hadron elliptic flows V. Greco and C. M. Ko Cyclotron Institute and Physics Department, Texas A&M University, College Station, Texas 77843-3366, USA (Received 9 February 2004; published 11 August 2004) Within the quark coalescence.... Lower panel: Spectra of D (dotted line with open squares) and K* (dash-dot-dotted line with shaded squares) together with those of nucleons (dotted line) and K (dash-dot-dotted line) from their decays. V. GRECO AND C. M. KO PHYSICAL REVIEW C 70...

  3. Resonance contributions to the decay b?sl+l-

    NASA Astrophysics Data System (ADS)

    O'Donnell, Patrick J.; Tung, Humphrey K.

    1991-04-01

    We comment on a discrepancy in sign between two recent papers [C. S. Lim, T. Morozumi, and A. I. Sanda,

    Phys. Lett. B 218, 343 (1989)
    ; N. G. Deshpande, J. Trampetic, and K. Panose,
    Phys. Rev. D 39, 1461 (1989)
    ]; regarding the resonance contributions to the decay b?sl+l-. We find that the problem can be settled by considering the unitarity limit in the Argand plot of the transition amplitude.

  4. Phase-Space Exploration in Nuclear Giant Resonance Decay

    E-print Network

    S. Drozdz; S. Nishizaki; J. Speth; J. Wambach

    1994-07-08

    The rate of phase-space exploration in the decay of isovector and isoscalar giant quadrupole resonances in $^{40}$Ca is analyzed. The study is based on the time dependence of the survival probability and of the spectrum of generalized entropies evaluated in the space of 1p-1h and 2p-2h states. If the 2p-2h background shows the characteristics typical for chaotic systems, the isovector excitation evolves almost statistically while the isoscalar excitation remains largely localized, even though it penetrates the whole available phase space.

  5. Resonant Auger-intersite-Coulombic hybridized decay in the photoionization of endohedral fullerenes

    NASA Astrophysics Data System (ADS)

    Javani, Mohammad H.; Wise, Jacob B.; De, Ruma; Madjet, Mohamed E.; Manson, Steven T.; Chakraborty, Himadri S.

    2014-06-01

    Considering the photoionization of Ar@C60, we predict resonant femtosecond decays of both Ar and C60 vacancies through the continua of atom-fullerene hybrid final states. For Ar 3s?np excitations, these resonances are far stronger than the Ar-to-C60 resonant intersite-Coulombic decays (ICD), while for C60 excitations they are strikingly larger than the corresponding Auger features. The results indicate the power of hybridization to enhance decay rates and modify lifetimes and line profiles, offering a unique probe, more powerful than regular ICDs, for multicenter decay processes.

  6. Resonant Auger-intercoulombic hybridized decay in the photoionization of endohedral fullerenes

    E-print Network

    Javani, Mohammad H; De, Ruma; Madjet, Mohamed E; Manson, Steven T; Chakraborty, Himadri S

    2013-01-01

    Considering the photoionization of Ar@C60, we predict resonant femtosecond decays of both Ar and C60 vacancies through the continua of atom-fullerene hybrid final states. The resulting resonances emerge from the interference between simultaneous autoionizing and intercoulombic decay (ICD) processes. For Ar 3s-->np excitations, these resonances are far stronger than the Ar-to-C60 resonant ICDs, while for C60 excitations they are strikingly larger than the corresponding Auger features. The results indicate the power of hybridization to enhance decay rates, and modify lifetimes and line profiles.

  7. Three-Body Nature of N* and ?* Resonances from Sequential Decay Chains

    NASA Astrophysics Data System (ADS)

    Thiel, A.; Sokhoyan, V.; Gutz, E.; van Pee, H.; Anisovich, A. V.; Bacelar, J. C. S.; Bantes, B.; Bartholomy, O.; Bayadilov, D.; Beck, R.; Beloglazov, Yu.; Castelijns, R.; Crede, V.; Dutz, H.; Elsner, D.; Ewald, R.; Frommberger, F.; Fuchs, M.; Funke, Ch.; Gregor, R.; Gridnev, A.; Hillert, W.; Hoffmeister, Ph.; Horn, I.; Jaegle, I.; Junkersfeld, J.; Kalinowsky, H.; Kammer, S.; Kleber, V.; Klein, Frank; Klein, Friedrich; Klempt, E.; Kotulla, M.; Krusche, B.; Lang, M.; Löhner, H.; Lopatin, I.; Lugert, S.; Mertens, T.; Messchendorp, J. G.; Metag, V.; Metsch, B.; Nanova, M.; Nikonov, V.; Novinski, D.; Novotny, R.; Ostrick, M.; Pant, L.; Pfeiffer, M.; Piontek, D.; Roy, A.; Sarantsev, A. V.; Schmidt, Ch.; Schmieden, H.; Shende, S.; Süle, A.; Sumachev, V. V.; Szczepanek, T.; Thoma, U.; Trnka, D.; Varma, R.; Walther, D.; Wendel, Ch.; Wilson, A.; Cbelsa/Taps Collaboration

    2015-03-01

    The N ?0?0 decays of positive-parity N* and ?* resonances at about 2 GeV are studied at ELSA by photoproduction of two neutral pions off protons. The data reveal clear evidence for several intermediate resonances: ? (1232 ) , N (1520 )3 /2- , and N (1680 )5 /2+ , with spin parities JP=3 /2+ , 3 /2- , and 5 /2+. The partial wave analysis (within the Bonn-Gatchina approach) identifies N (1440 )1 /2+ and the N (? ? )S wave (abbreviated as N ? here) as further isobars and assigns the final states to the formation of nucleon and ? resonances and to nonresonant contributions. We observe the known ? (1232 )? decays of ? (1910 )1 /2+ , ? (1920 )3 /2+, ? (1905 )5 /2+, ? (1950 )7 /2+, and of the corresponding spin-parity series in the nucleon sector, N (1880 )1 /2+, N (1900 )3 /2+, N (2000 )5 /2+, and N (1990 )7 /2+ . For the nucleon resonances, these decay modes are reported here for the first time. Further new decay modes proceed via N (1440 )1 /2+? , N (1520 )3 /2-? , N (1680 )5 /2+? , and N ? . The latter decay modes are observed in the decay of N* resonances and at most weakly in ?* decays. It is argued that these decay modes provide evidence for a 3-quark nature of N* resonances rather than a quark-diquark structure.

  8. Geometrical scaling and modal decay rates in periodic arrays of deeply subwavelength Terahertz resonators

    SciTech Connect

    Isi?, Goran Gaji?, Radoš

    2014-12-21

    It is well known that due to the high conductivity of noble metals at terahertz frequencies and scalability of macroscopic Maxwell equations, a geometrical downscaling of a terahertz resonator results in the linear upscaling of its resonance frequency. However, the scaling laws of modal decay rates, important for the resonator excitation efficiency, are much less known. Here, we investigate the extent to which the scale-invariance of decay rates is violated due to the finite conductivity of the metal. We find that the resonance quality factor or the excitation efficiency may be substantially affected by scaling and show that this happens as a result of the scale-dependence of the metal absorption rate, while the radiative decay and the dielectric cavity absorption rates are approximately scale-invariant. In particular, we find that by downscaling overcoupled resonators, their excitation efficiency increases, while the opposite happens with undercoupled resonators.

  9. Roper + Pion decays as a test of the radial resonances wavefunction

    E-print Network

    Pierre Stassart

    2006-10-17

    We calculate the decays of baryon resonances to the pion + Roper resonance channel in the frame of the flux-tube breaking model. The baryon and meson wavefunctions we use are obtained from a linear confinement semi-relativistic constituent quark model. The results, in good agreement with the existing data, provide a spectrum independant test on the radial form of the main component of the Roper resonance. They shed light on a likely orbital nature for the second delta resonance.

  10. Efficient site-specific low-energy electron production via interatomic Coulombic decay following resonant Auger decay in argon dimers

    NASA Astrophysics Data System (ADS)

    Kimura, M.; Fukuzawa, H.; Sakai, K.; Mondal, S.; Kukk, E.; Kono, Y.; Nagaoka, S.; Tamenori, Y.; Saito, N.; Ueda, K.

    2013-04-01

    We identified interatomic Coulombic decay (ICD) channels in argon dimers after spectator-type resonant Auger decay 2p-13d?3p-23d,4d in one of the atoms, using momentum-resolved electron-ion-ion coincidence. The results illustrate that the resonant core excitation is a very efficient way of producing slow electrons at a specific site, which may cause localized radiation damage. We find also that ICD rate for 3p-24d is significantly lower than that for 3p-23d.

  11. Observation of a resonance in B+ ? K+ ?+ ?- decays at low recoil.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Cowie, E; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hess, M; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Martynov, A; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B

    2013-09-13

    A broad peaking structure is observed in the dimuon spectrum of B+ ? K+ ?+ ?- decays in the kinematic region where the kaon has a low recoil against the dimuon system. The structure is consistent with interference between the B+ ? K+ ?+ ?- decay and a resonance and has a statistical significance exceeding six standard deviations. The mean and width of the resonance are measured to be 4191(-8)(+9)??MeV/c2 and 65(-16)(+22)??MeV/c2, respectively, where the uncertainties include statistical and systematic contributions. These measurements are compatible with the properties of the ?(4160) meson. First observations of both the decay B+ ? ?(4160)K+ and the subsequent decay ?(4160) ? ?+ ?- are reported. The resonant decay and the interference contribution make up 20% of the yield for dimuon masses above 3770??MeV/c2. This contribution is larger than theoretical estimates. PMID:24074076

  12. Low Threshold Parametric Decay Backscattering Instability in Tokamak Electron Cyclotron Resonance Heating Experiments

    SciTech Connect

    Gusakov, E. Z.; Popov, A. Yu.

    2010-09-10

    The experimental conditions leading to substantial reduction of the backscattering decay instability threshold in electron cyclotron resonance heating experiments in toroidal devices are analyzed. It is shown that a drastic decrease of threshold is provided by the nonmonotonic behavior of plasma density in the vicinity of magnetic island and poloidal magnetic field inhomogeneity making possible localization of ion Bernstein decay waves. The corresponding ion Bernstein wave gain and the parametric decay instability pump power threshold is calculated.

  13. Recent results on giant dipole resonance decays in highly excited nuclei

    SciTech Connect

    Snover, K.A.

    1991-01-01

    Some recent results on Giant Dipole Resonance (GDR) decays in highly excited, equilibrated nuclei, are discussed based primarily on work done at Seattle. Four sections address the following topics: oblate shapes of rotating, highly excited Zr--Mo nuclei; adiabatic versus motionally narrowed' GDR decay; large spin-driven deformations observed in hot medium-mass nuclei; and search for entrance channel effects in GDR decay following [sup 58]Ni [plus] [sup 92]Zr fusion. 22 refs.

  14. Recent results on giant dipole resonance decays in highly excited nuclei

    SciTech Connect

    Snover, K.A.

    1991-12-31

    Some recent results on Giant Dipole Resonance (GDR) decays in highly excited, equilibrated nuclei, are discussed based primarily on work done at Seattle. Four sections address the following topics: oblate shapes of rotating, highly excited Zr--Mo nuclei; adiabatic versus `motionally narrowed` GDR decay; large spin-driven deformations observed in hot medium-mass nuclei; and search for entrance channel effects in GDR decay following {sup 58}Ni {plus} {sup 92}Zr fusion. 22 refs.

  15. Three-body nature of $N^{\\bf *}$ and $?^*$ resonances from sequential decay chains

    E-print Network

    The CBELSA/TAPS Collaboration

    2015-01-09

    The $N\\pi^0\\pi^0$ decays of positive-parity $N^*$ and $\\Delta^*$ resonances at about 2\\,GeV are studied at ELSA by photoproduction of two neutral pions off protons. The data reveal clear evidence for several intermediate resonances: $\\Delta(1232)$, $N(1520){3/2^-}$, and $N(1680){5/2^+}$, with spin-parities $J^P=3/2^+$, $3/2^-$, and $5/2^+$. The partial wave analysis (within the Bonn-Gatchina approach) identifies $N(1440)1/2^+$ and the $N(\\pi\\pi)_{\\rm S-wave}$ (abbreviated as $N\\sigma$ here) as further isobars, and assigns the final states to the formation of nucleon and $\\Delta$ resonances and to non-resonant contributions. We observe the known $\\Delta(1232)\\pi$ decays of $\\Delta(1910)1/2^+$, $\\Delta(1920)3/2^+$, $\\Delta(1905)5/2^+$, $\\Delta(1950)7/2^+$, and of the corresponding spin-parity series in the nucleon sector, $N(1880)1/2^+$, $N(1900)3/2^+$, $N(2000)5/2^+$, and $N(1990)7/2^+$. For the nucleon resonances, these decay modes are reported here for the first time. Further new decay modes proceed via $N(1440)1/2^+\\pi$, $N(1520)3/2^-\\pi$, $N(1680)5/2^+\\pi$, and $N\\sigma$. The latter decay modes are observed in the decay of $N^*$ resonances and at most weakly in $\\Delta^*$ decays. It is argued that these decay modes provide evidence for a 3-quark nature of $N^*$ resonances rather than a quark-diquark structure.

  16. Evidence for light scalar resonances in charm meson decays from Fermilab E791

    SciTech Connect

    Alan J. Schwartz

    2003-01-24

    From Dalitz-plot analyses of D{sup +} {yields} {pi}{sup -}{pi}{sup +}{pi}{sup +} and D{sup +} {yields} K{sup -}{pi}{sup +}{pi}{sup +} decays, we find evidence for light and broad scalar resonances {sigma}(500) and {kappa}(800). From a Dalitz-plot analysis of D{sub s}{sup +} {yields} {pi}{sup -}{pi}{sup +}{pi}{sup +} decays, they measure the masses and decay widths of the scalar resonances f{sub 0}(980) and f{sub 0}(1370).

  17. Structure of the Isovector Dipole Resonance in Neutron-Rich $^{60}Ca$ Nucleus and Direct Decay from Pygmy Resonance

    E-print Network

    T. N. Leite; N. Teruya

    2004-09-23

    The structure of the isovector dipole resonance in neutron-rich calcium isotope, $^{60}Ca$, has been investigated by implementing a careful treatment of the differences of neutron and proton radii in the continuum random phase approximation ($RPA$). The calculations have taken into account the current estimates of the neutron skin. The estimates of the escape widths for direct neutron decay from the pygmy dipole resonance ($PDR$) were shown rather wide, implicating a strong coupling to the continuum. The width of the giant dipole resonance ($GDR$) was evaluated, bringing on a detailed discussion about its microscopic structure.

  18. Narrow Resonances in Light Heavy-Ion Collisions: Formation and Decay

    SciTech Connect

    Haas, F.; Courtin, S.; Lebhertz, D.; Salsac, M.-D.

    2009-03-04

    Resonances in light heavy-ion collisions have been observed in systems with a small number of open channels. Very narrow resonances have been reported in the {sup 24}Mg+{sup 24}Mg and {sup 12}C+{sup 12}C cases for which the results of recent experiments on their decay modes will be presented. Special emphasis will be given to the {sup 12}C+{sup 12}C reaction where weak absorption allows the observation of resonant and refractive effects over a large bombarding energy range. The nature of recently observed sub-coulomb resonances will also be raised.

  19. Decay of Nuclear Giant Resonances: Quantum Self-similar Fragmentation

    E-print Network

    A. Z. Gorski; R. Botet; S. Drozdz; M. Ploszajczak

    1996-06-07

    Scaling analysis of nuclear giant resonance transition probabilities with increasing level of complexity in the background states is performed. It is found that the background characteristics, typical for chaotic systems lead to nontrivial multifractal scaling properties.

  20. Resonant Higgs boson pair production in the decay channel

    NASA Astrophysics Data System (ADS)

    Lozano, Víctor Martín; Moreno, Jesús M.; Park, Chan Beom

    2015-08-01

    The addition of a scalar singlet provides one of the simplest extensions of the Standard Model. In this work we briefly review the latest constraints on the mass and mixing of the new Higgs boson and study its production and decay at the LHC. We mainly focus on double Higgs production in the decay channel. This decay is found to be efficient in a region of masses of the heavy Higgs boson of 260-500 GeV, so it is complementary to the 4 b channel, more efficient for Higgs bosons with masses greater than 500 GeV. We analyse this di-leptonic decay channel in detail using kinematic variables such as M T2 and the M T2-assisted on-shell reconstruction of invisible momenta. Using proper cuts, a significance of ˜ 3 ? for 3000 fb-1 can be achieved at the 14 TeV LHC for m H = 260-400 GeV if the mixing is close to its present limit and BR( H ? hh) ? 1. Smaller values for the mixing would require combining various decay channels in order to reach a similar significance. The complementarity among H ? hh, H ? ZZ and H ? WW channels is studied for arbitrary BR( H ? hh) values.

  1. Effect of three-pion unitarity on resonance poles from heavy meson decays

    SciTech Connect

    Satoshi X. Nakamura

    2011-10-01

    We study the final state interaction in 3-pion decay of meson resonances at the Excited Baryon Analysis Center (EBAC) of JLab. We apply the dynamical coupled-channels formulation which has been extensively used by EBAC to extract N* information. The formulation satisfies the 3-pion unitarity condition which has been missed in the existing works with the isobar models. We report the effect of the 3-pion unitarity on the meson resonance pole positions and Dalitz plot.

  2. Effect of three-pion unitarity on resonance poles from heavy meson decays

    SciTech Connect

    Nakamura, Satoshi X.

    2011-10-21

    We study the final state interaction in 3{pi} decay of meson resonances at the Excited Baryon Analysis Center (EBAC) of JLab. We apply the dynamical coupled-channels formulation which has been extensively used by EBAC to extract N{sup *} information. The formulation satisfies the 3{pi} unitarity condition which has been missed in the existing works with the isobar models. We report the effect of the 3{pi} unitarity on the meson resonance pole positions and Dalitz plot.

  3. Temperature and density evolution during decay in a 2.45 GHz hydrogen electron cyclotron resonance plasma: off-resonant and resonant cases.

    PubMed

    Cortázar, O D; Megía-Macías, A; Vizcaíno-de-Julián, A

    2013-09-01

    Time resolved electron temperature and density measurements during the decay stage in a hydrogen electron cyclotron resonance (ECR) plasma are presented for a resonance and off-resonance magnetic field configurations. The measurements are conducted on a ECR plasma generator excited at 2.45 GHz denominated test-bench for ion-sources plasma studies at ESS Bilbao. The plasma parameters evolution is studied by Langmuir probe diagnostic with synchronized sample technique developed for repetitive pulsed plasmas with a temporal resolution of 200 ns in typical decay processes of about 40 ?s. An afterglow transient is clearly observed in the reflected microwave power signal from the plasma. Simultaneously, the electron temperature evolution shows rebounding peaks that may be related to the interplay between density drop and microwave coupling with deep impact on the Electron Energy Distribution Function. The correlation of such structures with the plasma absorbed power and the coupling quality is also reported. PMID:24089817

  4. Temperature and density evolution during decay in a 2.45 GHz hydrogen electron cyclotron resonance plasma: Off-resonant and resonant cases

    NASA Astrophysics Data System (ADS)

    Cortázar, O. D.; Megía-Macías, A.; Vizcaíno-de-Julián, A.

    2013-09-01

    Time resolved electron temperature and density measurements during the decay stage in a hydrogen electron cyclotron resonance (ECR) plasma are presented for a resonance and off-resonance magnetic field configurations. The measurements are conducted on a ECR plasma generator excited at 2.45 GHz denominated test-bench for ion-sources plasma studies at ESS Bilbao. The plasma parameters evolution is studied by Langmuir probe diagnostic with synchronized sample technique developed for repetitive pulsed plasmas with a temporal resolution of 200 ns in typical decay processes of about 40 ?s. An afterglow transient is clearly observed in the reflected microwave power signal from the plasma. Simultaneously, the electron temperature evolution shows rebounding peaks that may be related to the interplay between density drop and microwave coupling with deep impact on the Electron Energy Distribution Function. The correlation of such structures with the plasma absorbed power and the coupling quality is also reported.

  5. Decay Times and Quality Factors for a Resonance Apparatus

    ERIC Educational Resources Information Center

    Stephens, Heather; Tam, Austin; Moloney, Michael

    2011-01-01

    The commercial resonance demonstration apparatus shown in Fig. 1 exhibits curious behavior. It consists of three pairs of slender spring-steel rods attached to a horizontal bar. When one of the rods is pulled aside and released, the rod of corresponding length is excited into visible motion, but the other rods remain apparently stationary. This…

  6. Variation of Cross-Section Enhancement in Decay Spectra of CO under Resonant Raman Conditions

    SciTech Connect

    Piancastelli, M.N.; Neeb, M.; Kivimaeki, A.; Kempgens, B.; Koeppe, H.M.; Maier, K.; Bradshaw, A.M.

    1996-11-01

    We have measured participator and spectator decay at several photon energies within the range of the lifetime-broadened first vibrational component of the C 1{ital s}{r_arrow}{pi}{sup *} resonance in CO. From the branching ratios it is evident that the resonant enhancement is different for single-hole and two hole-one electron states: The maximum in the resonant intensity peaks at different photon energies. It now becomes necessary to calculate energy-dependent transition matrix elements within the lifetime-broadening range. {copyright} {ital 1996 The American Physical Society.}

  7. Particle Decay from Giant Resonance Region of Ca-40 

    E-print Network

    Youngblood, David H.; Bacher, A. D.; Brown, D. R.; Bronson, J. D.; Moss, JM; Rozsa, C. M.

    1977-01-01

    ). Recently Meyer-SchQtzmeister et al. ' have ob- served with the '4Fe (a, y) "Ni reaction a peaking of E2 strength consistent with the inelastic scat- tering results; however, other attempts to locate this strength with proton and a capture reactions.... The target thicknesses were determined with an "'Am n source using the en- ergy loss technique. Singles data were taken during coincidence runs by deleting appropriate coincidence requirements. Decay branches ob- served in the coincidence measurements...

  8. Search for Resonances Decaying to Top and Bottom Quarks with the CDF Experiment

    E-print Network

    Aaltonen, T.

    We report on a search for charged massive resonances decaying to top (t) and bottom (b) quarks in the full data set of proton-antiproton collisions at a center-of-mass energy of ?s = 1.96??TeV collected by the CDF II ...

  9. Search for a Resonance Decaying into WZ Boson Pairs in pp-bar Collisions

    E-print Network

    Baringer, Philip S.; Bean, Alice; Clutter, Justace Randall; McGivern, Carrie Lynne; Moulik, Tania; Sekaric, Jadranka; Wilson, Graham Wallace; Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, M.

    2010-02-09

    We present the first search for an electrically charged resonance W? decaying to a WZ boson pair using 4.1??fb(?1) of integrated luminosity collected with the D0 detector at the Fermilab Tevatron pp-bar collider. The WZ pairs are reconstructed...

  10. Population of isomers in the decay of the giant dipole resonance N. Tsoneva and Ch. Stoyanov

    E-print Network

    Ponomarev, Vladimir

    Population of isomers in the decay of the giant dipole resonance N. Tsoneva and Ch. Stoyanov in atomic nuclei--single- particle and the collective ones 6 . Isomers have been known for more than 50 and they are characterized by a half-life from ms to years depending on the value of Jiso Jg.s. . The nuclear isomer

  11. Decay-assisted collinear resonance ionization spectroscopy: Application to neutron-deficient francium

    E-print Network

    K. M. Lynch; J. Billowes; M. L. Bissell; I. Budin?evi?; T. E. Cocolios; R. P. De Groote; S. De Schepper; V. N. Fedosseev; K. T. Flanagan; S. Franchoo; R. F. Garcia Ruiz; H. Heylen; B. A. Marsh; G. Neyens; T. J. Procter; R. E. Rossel; S. Rothe; I. Strashnov; H. H. Stroke; K. D. A. Wendt

    2014-02-18

    This paper reports on the hyperfine-structure and radioactive-decay studies of the neutron-deficient francium isotopes $^{202-206}$Fr performed with the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at the ISOLDE facility, CERN. The high resolution innate to collinear laser spectroscopy is combined with the high efficiency of ion detection to provide a highly-sensitive technique to probe the hyperfine structure of exotic isotopes. The technique of decay-assisted laser spectroscopy is presented, whereby the isomeric ion beam is deflected to a decay spectroscopy station for alpha-decay tagging of the hyperfine components. Here, we present the first hyperfine-structure measurements of the neutron-deficient francium isotopes $^{202-206}$Fr, in addition to the identification of the low-lying states of $^{202,204}$Fr performed at the CRIS experiment.

  12. Decays and productions via bottomonium for Zb resonances and other BB¯ molecules

    NASA Astrophysics Data System (ADS)

    Ohkoda, S.; Yamaguchi, Y.; Yasui, S.; Hosaka, A.

    2012-12-01

    We discuss decays and productions for the possible molecular states formed by bottom mesons B (B*) and B¯ (B¯*). The twin resonances found by Belle, Zb±,0(10610) and Zb±(10650), are such candidates. The spin wave functions of the molecular states are rearranged into those of heavy and light spin degrees of freedom by using the recoupling formulas of angular momentum. By applying the heavy quark symmetry we derive model independent relations among various decay and production rates, which can be tested in experiments.

  13. Renormalizable Sectors in Resonance Chiral Theory: S -> pi pi Decay Amplitude

    E-print Network

    L. Y. Xiao; J. J. Sanz-Cillero

    2007-05-26

    We develop a resonance chiral theory without any a priori limitation on the number of derivatives in the hadronic operators. Through an exhaustive analysis of the resonance lagrangian and by means of field redefinitions, we find that the number of independent operator contributing to the S -> pi pi decay amplitude is finite: there is only one single-trace operator (the cd term) and three multi-trace terms. The deep implication of this fact is that the ultraviolet divergences that appear in this amplitude at the loop level can only appear through these chiral invariant structures. Hence, a renormalization of these couplings renders the amplitude finite.

  14. Initial cooperative decay rate and cooperative Lamb shift of resonant atoms in an infinite cylindrical geometry

    SciTech Connect

    Friedberg, Richard; Manassah, Jamal T.

    2011-08-15

    We obtain in both the scalar and vector photon models the analytical expressions for the initial cooperative decay rate and the cooperative Lamb shift for an ensemble of resonant atoms distributed uniformly in an infinite cylindrical geometry for the case that the initial state of the system is prepared in a phased state modulated in the direction of the cylindrical axis. We find that qualitatively the scalar and vector theories give different results.

  15. Extraction of kinetic freeze-out properties and effect of resonance decays

    E-print Network

    Levente Molnar

    2005-07-21

    We present STAR results from identified particle spectra measured in $\\sqrt{s_{NN}}$ = 62.4 GeV Au-Au collisions. Particle production and system dynamics are compared to results at $\\sqrt{s_{NN}}$ = 200 GeV. We extract kinetic and chemical freeze-out parameters using blast wave model parameterization and statistical model. We discuss the effect of resonance decays on the extracted kinetic freeze-out parameters.

  16. A New Mass Reconstruction Technique for Resonances Decaying to di-tau

    E-print Network

    A. Elagin; P. Murat; A. Pranko; A. Safonov

    2011-02-22

    Accurate reconstruction of the mass of a resonance decaying to a pair of $\\tau$ leptons is challenging because of the presence of multiple neutrinos from $\\tau$ decays. The existing methods rely on either a partially reconstructed mass, which has a broad spectrum that reduces sensitivity, or the collinear approximation, which is applicable only to the relatively small fraction of events. We describe a new technique, which provides an accurate mass reconstruction of the original resonance and does not suffer from the limitations of the collinear approximation. The major improvement comes from replacing assumptions of the collinear approximation by a requirement that mutual orientations of the neutrinos and other decay products are consistent with the mass and decay kinematics of a $\\tau$ lepton. This is achieved by minimizing a likelihood function defined in the kinematically allowed phase space region. In this paper we describe the technique and illustrate its performance using $Z/\\gamma^{*}\\to\\tau\\tau$ and $H\\to\\tau\\tau$ events simulated with the realistic detector resolution. The method is also tested on a clean sample of data $Z/\\gamma^{*}\\to\\tau\\tau$ events collected by the CDF experiment at the Tevatron. We expect that this new technique will allow for a major improvement in searches for the Higgs boson at both the LHC and the Tevatron.

  17. Measurement of the resonant and CP components in $\\overline{B}^0\\rightarrow J/??^+?^-$ decays

    E-print Network

    LHCb collaboration; R. Aaij; B. Adeva; M. Adinolfi; A. Affolder; Z. Ajaltouni; J. Albrecht; F. Alessio; M. Alexander; S. Ali; G. Alkhazov; P. Alvarez Cartelle; A. A. Alves Jr; S. Amato; S. Amerio; Y. Amhis; L. An; L. Anderlini; J. Anderson; R. Andreassen; M. Andreotti; J. E. Andrews; R. B. Appleby; O. Aquines Gutierrez; F. Archilli; A. Artamonov; M. Artuso; E. Aslanides; G. Auriemma; M. Baalouch; S. Bachmann; J. J. Back; A. Badalov; V. Balagura; W. Baldini; R. J. Barlow; C. Barschel; S. Barsuk; W. Barter; V. Batozskaya; Th. Bauer; A. Bay; L. Beaucourt; J. Beddow; F. Bedeschi; I. Bediaga; S. Belogurov; K. Belous; I. Belyaev; E. Ben-Haim; G. Bencivenni; S. Benson; J. Benton; A. Berezhnoy; R. Bernet; M. -O. Bettler; M. van Beuzekom; A. Bien; S. Bifani; T. Bird; A. Bizzeti; P. M. Bjørnstad; T. Blake; F. Blanc; J. Blouw; S. Blusk; V. Bocci; A. Bondar; N. Bondar; W. Bonivento; S. Borghi; A. Borgia; M. Borsato; T. J. V. Bowcock; E. Bowen; C. Bozzi; T. Brambach; J. van den Brand; J. Bressieux; D. Brett; M. Britsch; T. Britton; N. H. Brook; H. Brown; A. Bursche; G. Busetto; J. Buytaert; S. Cadeddu; R. Calabrese; M. Calvi; M. Calvo Gomez; A. Camboni; P. Campana; D. Campora Perez; A. Carbone; G. Carboni; R. Cardinale; A. Cardini; H. Carranza-Mejia; L. Carson; K. Carvalho Akiba; G. Casse; L. Cassina; L. Castillo Garcia; M. Cattaneo; Ch. Cauet; R. Cenci; M. Charles; Ph. Charpentier; S. -F. Cheung; N. Chiapolini; M. Chrzaszcz; K. Ciba; X. Cid Vidal; G. Ciezarek; P. E. L. Clarke; M. Clemencic; H. V. Cliff; J. Closier; V. Coco; J. Cogan; E. Cogneras; P. Collins; A. Comerma-Montells; A. Contu; A. Cook; M. Coombes; S. Coquereau; G. Corti; M. Corvo; I. Counts; B. Couturier; G. A. Cowan; D. C. Craik; M. Cruz Torres; S. Cunliffe; R. Currie; C. D'Ambrosio; J. Dalseno; P. David; P. N. Y. David; A. Davis; K. De Bruyn; S. De Capua; M. De Cian; J. M. De Miranda; L. De Paula; W. De Silva; P. De Simone; D. Decamp; M. Deckenhoff; L. Del Buono; N. Déléage; D. Derkach; O. Deschamps; F. Dettori; A. Di Canto; H. Dijkstra; S. Donleavy; F. Dordei; M. Dorigo; A. Dosil Suárez; D. Dossett; A. Dovbnya; F. Dupertuis; P. Durante; R. Dzhelyadin; A. Dziurda; A. Dzyuba; S. Easo; U. Egede; V. Egorychev; S. Eidelman; S. Eisenhardt; U. Eitschberger; R. Ekelhof; L. Eklund; I. El Rifai; Ch. Elsasser; S. Ely; S. Esen; T. Evans; A. Falabella; C. Färber; C. Farinelli; N. Farley; S. Farry; D. Ferguson; V. Fernandez Albor; F. Ferreira Rodrigues; M. Ferro-Luzzi; S. Filippov; M. Fiore; M. Fiorini; M. Firlej; C. Fitzpatrick; T. Fiutowski; M. Fontana; F. Fontanelli; R. Forty; O. Francisco; M. Frank; C. Frei; M. Frosini; J. Fu; E. Furfaro; A. Gallas Torreira; D. Galli; S. Gallorini; S. Gambetta; M. Gandelman; P. Gandini; Y. Gao; J. Garofoli; J. Garra Tico; L. Garrido; C. Gaspar; R. Gauld; L. Gavardi; E. Gersabeck; M. Gersabeck; T. Gershon; Ph. Ghez; A. Gianelle; S. Giani'; V. Gibson; L. Giubega; V. V. Gligorov; C. Göbel; D. Golubkov; A. Golutvin; A. Gomes; H. Gordon; C. Gotti; M. Grabalosa Gándara; R. Graciani Diaz; L. A. Granado Cardoso; E. Graugés; G. Graziani; A. Grecu; E. Greening; S. Gregson; P. Griffith; L. Grillo; O. Grünberg; B. Gui; E. Gushchin; Yu. Guz; T. Gys; C. Hadjivasiliou; G. Haefeli; C. Haen; S. C. Haines; S. Hall; B. Hamilton; T. Hampson; X. Han; S. Hansmann-Menzemer; N. Harnew; S. T. Harnew; J. Harrison; T. Hartmann; J. He; T. Head; V. Heijne; K. Hennessy; P. Henrard; L. Henry; J. A. Hernando Morata; E. van Herwijnen; M. Heß; A. Hicheur; D. Hill; M. Hoballah; C. Hombach; W. Hulsbergen; P. Hunt; N. Hussain; D. Hutchcroft; D. Hynds; M. Idzik; P. Ilten; R. Jacobsson; A. Jaeger; J. Jalocha; E. Jans; P. Jaton; A. Jawahery; M. Jezabek; F. Jing; M. John; D. Johnson; C. R. Jones; C. Joram; B. Jost; N. Jurik; M. Kaballo; S. Kandybei; W. Kanso; M. Karacson; T. M. Karbach; M. Kelsey; I. R. Kenyon; T. Ketel; B. Khanji; C. Khurewathanakul; S. Klaver; O. Kochebina; M. Kolpin; I. Komarov; R. F. Koopman; P. Koppenburg; M. Korolev; A. Kozlinskiy; L. Kravchuk; K. Kreplin; M. Kreps; G. Krocker; P. Krokovny; F. Kruse; M. Kucharczyk; V. Kudryavtsev; K. Kurek; T. Kvaratskheliya; V. N. La Thi; D. Lacarrere; G. Lafferty; A. Lai; D. Lambert; R. W. Lambert; E. Lanciotti; G. Lanfranchi; C. Langenbruch; B. Langhans; T. Latham; C. Lazzeroni; R. Le Gac; J. van Leerdam; J. -P. Lees; R. Lefèvre; A. Leflat; J. Lefrançois; S. Leo; O. Leroy; T. Lesiak; B. Leverington; Y. Li; M. Liles; R. Lindner; C. Linn; F. Lionetto; B. Liu; G. Liu; S. Lohn; I. Longstaff; J. H. Lopes; N. Lopez-March; P. Lowdon; H. Lu; D. Lucchesi; H. Luo; A. Lupato; E. Luppi; O. Lupton; F. Machefert; I. V. Machikhiliyan; F. Maciuc; O. Maev; S. Malde; G. Manca; G. Mancinelli; M. Manzali; J. Maratas; J. F. Marchand; U. Marconi; C. Marin Benito; P. Marino; R. Märki; J. Marks; G. Martellotti; A. Martens; A. Martín Sánchez; M. Martinelli; D. Martinez Santos

    2014-06-26

    The resonant structure of the reaction $\\overline{B}^0\\rightarrow J/\\psi \\pi^+\\pi^-$ is studied using data from 3 fb$^{-1}$ of integrated luminosity collected by the LHCb experiment, one-third at 7 Tev center-of-mass energy and the remainder at 8 Tev. The invariant mass of the $\\pi^+\\pi^-$ pair and three decay angular distributions are used to determine the fractions of the resonant and non-resonant components. Six interfering $\\pi^+\\pi^-$ states: $\\rho(770)$, $f_0(500)$, $f_2(1270)$, $\\rho(1450)$, $\\omega(782)$ and $\\rho(1700)$ are required to give a good description of invariant mass spectra and decay angular distributions. The positive and negative CP fractions of each of the resonant final states are determined. The $f_0(980)$ meson is not seen and the upper limit on its presence, compared with the observed $f_0(500)$ rate, is inconsistent with a model of tetraquark substructure for these scalar mesons at the eight standard deviation level. In the $q\\overline{q}$ model, the absolute value of the mixing angle between the $f_0(980)$ and the $f_0(500)$ scalar mesons is limited to be less than $17^{\\circ}$ at 90% confidence level.

  18. Enhancement of excited-state population of magnesium ions upon decay of autoionizing resonances

    SciTech Connect

    Whitfield, S.B.; Caldwell, C.D. ); Krause, M.O. )

    1991-03-01

    Decay of autoionizing resonances in atoms often leads to preferential production of excited states of the resulting ion. The population of these states can exceed the population of the ground state by more than an order of magnitude. We report measurements of the branching ratios for Mg{sup +} ions resulting from the decay of selected autoionizing levels. These derive either from single excitation of a 2{ital p} electron or from two-electron excitations. For excited states of the type 2{ital p}{sup 5}({sup 2}{ital P}{sub 1/2,3/2})3{ital s}{sup 2}{ital ns}, {ital n}=4 or 5, production of Mg{sup +} ions having the final configuration 2{ital p}{sup 6}{ital ns} is the predominant decay feature. For {ital n}{gt}5, the predominant decay feature is the 2{ital p}{sup 6}({ital n}+1){ital s} configuration, indicating that shakeup is very strong in the decay of the excited state. For excited states of the type 2{ital p}{sup 5}({sup 2}{ital P}{sub 1/2})5{ital d} and 2{ital p}{sup 5}({sup 2}{ital P}{sub 3/2})6{ital d}, the decay behaves in a manner similar to that of the {ital ns} states. However, for the 2{ital p}{sup 5}({sup 2}{ital P}{sub 1/2})6{ital d} state, the most prominent decay channel appears to be the 2{ital p}{sup 6}11{ital d} state, which leads to the emission of an electron with the same kinetic energy as the {ital L}{sub 2}-{ital M}{sub 1}{ital M1} Auger line.

  19. Resonant Auger Decay of Molecules in Intense X-Ray Laser Fields: Light-Induced Strong Nonadiabatic Effects

    E-print Network

    Moiseyev, Nimrod

    Resonant Auger Decay of Molecules in Intense X-Ray Laser Fields: Light-Induced Strong Nonadiabatic uttermost important in intense fields. In particular, even for diatomic molecules, light-induced strong September 2010; published 21 March 2011) The resonant Auger process is studied in intense x-ray laser fields

  20. Search for heavy lepton resonances decaying to a Z boson and a lepton in pp collisions at ?{s}=8 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.

    2015-09-01

    A search for heavy leptons decaying to a Z boson and an electron or a muon is presented. The search is based on pp collision data taken at ?{s}=8 TeV by the ATLAS experiment at the CERN Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb-1. Three high-transverse-momentum electrons or muons are selected, with two of them required to be consistent with originating from a Z boson decay. No significant excess above Standard Model background predictions is observed, and 95% confidence level limits on the production cross section of high-mass trilepton resonances are derived. The results are interpreted in the context of vector-like lepton and type-III seesaw models. For the vector-like lepton model, most heavy lepton mass values in the range 114-176 GeV are excluded. For the type-III seesaw model, most mass values in the range 100-468 GeV are excluded. [Figure not available: see fulltext.

  1. Search for heavy lepton resonances decaying to a Z boson and a lepton in pp collisions at \\( \\sqrt{s}=8 \\) TeV with the ATLAS detector

    SciTech Connect

    Aad, G.

    2015-09-16

    In this study, a search for heavy leptons decaying to a Z boson and an electron or a muon is presented. The search is based on pp collision data taken at \\( \\sqrt{s}=8 \\) TeV by the ATLAS experiment at the CERN Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb?¹. Three high-transverse-momentum electrons or muons are selected, with two of them required to be consistent with originating from a Z boson decay. No significant excess above Standard Model background predictions is observed, and 95% confidence level limits on the production cross section of high-mass trilepton resonances are derived. The results are interpreted in the context of vector-like lepton and type-III seesaw models. For the vector-like lepton model, most heavy lepton mass values in the range 114–176 GeV are excluded. For the type-III seesaw model, most mass values in the range 100–468 GeV are excluded.

  2. Search for heavy lepton resonances decaying to a Z boson and a lepton in pp collisions at \\( \\sqrt{s}=8 \\) TeV with the ATLAS detector

    DOE PAGESBeta

    Aad, G.

    2015-09-16

    In this study, a search for heavy leptons decaying to a Z boson and an electron or a muon is presented. The search is based on pp collision data taken at \\( \\sqrt{s}=8 \\) TeV by the ATLAS experiment at the CERN Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb?¹. Three high-transverse-momentum electrons or muons are selected, with two of them required to be consistent with originating from a Z boson decay. No significant excess above Standard Model background predictions is observed, and 95% confidence level limits on the production cross section of high-mass trilepton resonances aremore »derived. The results are interpreted in the context of vector-like lepton and type-III seesaw models. For the vector-like lepton model, most heavy lepton mass values in the range 114–176 GeV are excluded. For the type-III seesaw model, most mass values in the range 100–468 GeV are excluded.« less

  3. Interatomic Coulombic decay following resonant core excitation of Ar in argon dimer

    NASA Astrophysics Data System (ADS)

    Miteva, T.; Chiang, Y.-C.; Koloren?, P.; Kuleff, A. I.; Gokhberg, K.; Cederbaum, L. S.

    2014-08-01

    A scheme utilizing excitation of core electrons followed by the resonant-Auger - interatomic Coulombic decay (RA-ICD) cascade was recently proposed as a means of controlling the generation site and energies of slow ICD electrons. This control mechanism was verified in a series of experiments in rare gas dimers. In this article, we present fully ab initio computed ICD electron and kinetic energy release spectra produced following 2p3/2 ? 4s, 2p1/2 ? 4s, and 2p3/2 ? 3d core excitations of Ar in Ar2. We demonstrate that the manifold of ICD states populated in the resonant Auger process comprises two groups. One consists of lower energy ionization satellites characterized by fast interatomic decay, while the other consists of slow decaying higher energy ionization satellites. We show that accurate description of nuclear dynamics in the latter ICD states is crucial for obtaining theoretical electron and kinetic energy release spectra in good agreement with the experiment.

  4. Interatomic Coulombic decay following resonant core excitation of Ar in argon dimer

    SciTech Connect

    Miteva, T.; Chiang, Y.-C.; Kuleff, A. I.; Gokhberg, K. Cederbaum, L. S.; Koloren?, P.

    2014-08-14

    A scheme utilizing excitation of core electrons followed by the resonant-Auger – interatomic Coulombic decay (RA-ICD) cascade was recently proposed as a means of controlling the generation site and energies of slow ICD electrons. This control mechanism was verified in a series of experiments in rare gas dimers. In this article, we present fully ab initio computed ICD electron and kinetic energy release spectra produced following 2p{sub 3/2} ? 4s, 2p{sub 1/2} ? 4s, and 2p{sub 3/2} ? 3d core excitations of Ar in Ar{sub 2}. We demonstrate that the manifold of ICD states populated in the resonant Auger process comprises two groups. One consists of lower energy ionization satellites characterized by fast interatomic decay, while the other consists of slow decaying higher energy ionization satellites. We show that accurate description of nuclear dynamics in the latter ICD states is crucial for obtaining theoretical electron and kinetic energy release spectra in good agreement with the experiment.

  5. Studying the decay mode of the J/{psi} into a vector meson and a tensor resonance

    SciTech Connect

    Dai, L. R.

    2010-12-28

    The decay mode of the J/{psi} into a vector meson and a tensor resonance is presented. The tensor resonances are considered as dynamically generated states from the vector meson-vector meson interaction provided by the hidden gauge formalism upon unitarization in coupled channels. The couplings of the resonances to the pairs of vector-vector building blocks were evaluated in a previous work. Four ratios of partial decay widths are evaluated using one parameter and compared with experimental data including BES collaboration. The theoretical results are compatible with present experimental data.

  6. Hadronic decays of the tau lepton : {tau}- {yields} ({pi}{pi}{pi})- {nu}{tau} within Resonance Chiral Theory

    SciTech Connect

    Gomez Dumm, D.; Pich, A.; Portoles, J.

    2006-01-12

    {tau} decays into hadrons foresee the study of the hadronization of vector and axial-vector QCD currents, yielding relevant information on the dynamics of the resonances entering into the processes. We analyse {tau} {yields} {pi}{pi}{pi}{nu}{tau} decays within the framework of the Resonance Chiral Theory, comparing this theoretical scheme with the experimental data, namely ALEPH spectral function and branching ratio. Hence we get values for the mass and on-shell width of the a 1 (1260) resonance, and provide the structure functions that have been measured by OPAL and CLEO-II.

  7. Measurement of the resonant and CP components in B¯0?J/??+?- decays

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Bauer, Th.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani', S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hartmann, T.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jezabek, M.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, G.; Lohn, S.

    2014-07-01

    The resonant structure of the reaction B¯0?J/??+?- is studied using data from 3 fb-1 of integrated luminosity collected by the LHCb experiment, one third at 7 TeV center-of-mass energy and the remainder at 8 TeV. The invariant mass of the &pi?- pair and three decay angular distributions are used to determine the fractions of the resonant and nonresonant components. Six interfering ?+?- states, ?(770), f0(500), f2(1270), ?(1450), ?(782) and ?(1700), are required to give a good description of invariant mass spectra and decay angular distributions. The positive and negative charge parity fractions of each of the resonant final states are determined. The f0(980) meson is not seen and the upper limit on its presence, compared with the observed f0(500) rate, is inconsistent with a model where these scalar mesons are formed from two quarks and two antiquarks (tetraquarks) at the eight standard deviation level. In the qq¯ model, the absolute value of the mixing angle between the f0(980) and the f0(500) scalar mesons is limited to be less than 17° at 90% confidence level.

  8. Search in leptonic channels for heavy resonances decaying to long-lived neutral particles

    E-print Network

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Aguilo, Ernest; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Reis, Thomas; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Castello, Roberto; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Soares Jorge, Luana; Sznajder, Andre; Vilela Pereira, Antonio; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Carrillo Montoya, Camilo Andres; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Tikvica, Lucija; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Kuotb Awad, Alaa Metwaly; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Korpela, Arja

    2013-01-01

    A search is performed for heavy resonances decaying to two long-lived massive neutral particles, each decaying to leptons. The experimental signature is a distinctive topology consisting of a pair of oppositely charged leptons originating at a separated secondary vertex. Events were collected by the CMS detector at the LHC during pp collisions at $\\sqrt{s}$ = 7 TeV, and selected from data samples corresponding to 4.1 (5.1) inverse femtobarns of integrated luminosity in the electron (muon) channel. No significant excess is observed above standard model expectations, and an upper limit is set with 95% confidence level on the production cross section times the branching fraction to leptons, as a function of the long-lived massive neutral particle lifetime.

  9. Search for a resonance decaying into WZ boson pairs in pp collisions.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Aoki, M; Arnoud, Y; Arov, M; Askew, A; Asman, B; Atramentov, O; Avila, C; BackusMayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Barfuss, A-F; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calfayan, P; Calpas, B; Calvet, S; Camacho-Pérez, E; Cammin, J; Carrasco-Lizarraga, M A; Carrera, E; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cutts, D; Cwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De la Cruz-Burelo, E; DeVaughan, K; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Gadfort, T; Galea, C F; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Golovanov, G; Gómez, B; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Heredia-De la Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jamin, D; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kaadze, K; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kirby, M H; Kirsch, M; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, W M; Leflat, A; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Mättig, P; Magaña-Villalba, R; Mal, P K; Malik, S; Malyshev, V L; Maravin, Y; Martin, B; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Mendoza, L; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; Obrant, G; Onoprienko, D; Orduna, J; Osman, N; Osta, J; Otec, R; Otero y Garzón, G J; Owen, M; Padilla, M; Padley, P; Pangilinan, M; Parashar, N; Parihar, V; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Popov, A V; Prewitt, M; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M

    2010-02-12

    We present the first search for an electrically charged resonance W' decaying to a WZ boson pair using 4.1 fb(-1) of integrated luminosity collected with the D0 detector at the Fermilab Tevatron pp collider. The WZ pairs are reconstructed through their decays into three charged leptons (l=e, mu). A total of 9 data events is observed in good agreement with the background prediction. We set 95% C.L. limits on the W'WZ coupling and on the W' production cross section multiplied by the branching fractions. We also exclude W' masses between 188 and 520 GeV within a simple extension of the standard model and set the most restrictive limits to date on low-scale technicolor models. PMID:20366811

  10. Search in leptonic channels for heavy resonances decaying to long-lived neutral particles

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Vilela Pereira, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Carrillo Montoya, C. A.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Kuotb Awad, A. M.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.

    2013-02-01

    A search is performed for heavy resonances decaying to two long-lived massive neutral particles, each decaying to leptons. The experimental signature is a distinctive topology consisting of a pair of oppositely charged leptons originating at a separated secondary vertex. Events were collected by the CMS detector at the LHC during pp collisions at sqrt{s}=7 TeV, and selected from data samples corresponding to 4.1 (5.1) fb-1 of integrated luminosity in the electron (muon) channel. No significant excess is observed above standard model expectations, and an upper limit is set with 95% confidence level on the production cross section times the branching fraction to leptons, as a function of the long-lived massive neutral particle lifetime.[Figure not available: see fulltext.

  11. Hyperon AND Hyperon Resonance Properties From Charm Baryon Decays At BaBar

    SciTech Connect

    Ziegler, Veronique; /Iowa U.

    2007-07-03

    This report describes studies of hyperons and hyperon resonances produced in charm baryon decays at BABAR. Using two-body decays of the {Xi}{sub c}{sup 0} and {Omega}{sub c}{sup 0}, it is shown, for the first time, that the spin of the {omega}{sup -} is 3/2. The {Omega}{sup -} analysis procedures are extended to three-body final states and properties of the {Xi}(1690){sup 0} are extracted from a detailed isobar model analysis of the {Lambda}{sub c}{sup +} {yields} {Lambda}{bar K}{sup 0}K{sup +} Dalitz plot. The mass and width values of the {Xi}(1690){sup 0} are measured with much greater precision than attained previously. The hypothesis that the spin of the {Xi}(1690) resonance is 1/2 yields an excellent description of the data, while spin values 3/2 and 5/2 are disfavored. The {Lambda}a{sub 0}(980){sup +} decay mode of the {Lambda}{sub c}{sup +} is observed for the first time. Similar techniques are then used to study {Xi}(1530){sup 0} production in {Lambda}{sub c}{sup +} decay. The spin of the {Xi}(1530) is established for the first time to be 3/2. The existence of an S-wave amplitude in the {Xi}{sup -}{pi}{sup +} system is shown, and its interference with the {Xi}(1530){sup 0} amplitude provides the first clear demonstration of the Breit-Wigner phase motion expected for the {Xi}(1530). The {Xi}{sup -}{pi}{sup +} mass distribution in the vicinity of the {Xi}(1690){sup 0} exhibits interesting structure which may be interpreted as indicating that the {Xi}(1690) has negative parity.

  12. Resonance Effective Theory Approach to {tau} {yields} 3{pi}{nu}{tau} Decays

    SciTech Connect

    Gomez Dumm, D.; Pich, A.; Portoles, J.

    2004-12-02

    The decays {tau} {yields} 3{pi}{nu}{tau} are analyzed in the framework of the resonance effective theory of QCD, We derive the effective chiral Lagrangian relevant for the evaluation of the hadronic axial-vector current, taking into account the constraints imposed by QCD on the high energy asymptotic behaviour. Then we fit the unknown parameters to the spectral function and branching ratio measured by ALEPH, showing that the theory is in good agreement with experimental data. A detailed description of the work sketched here can be found.

  13. Effect of a thermal bath on electronic resonance decay: A numerical path-integral study

    NASA Astrophysics Data System (ADS)

    Plöhn, Heiko; Thoss, Michael; Winterstetter, Manfred; Domcke, Wolfgang

    1998-08-01

    The effect of electron-vibrational coupling on the decay of a metastable electronic state is treated by a real-time path-integral method. The electronic resonance is described within the framework of the projection operator formalism of scattering theory. The effect of the bath is taken into account by the Feynman-Vernon influence functional technique. In this formulation, neither Born-type nor Markov-type approximations are invoked. The numerical evaluation of the time-discretized path integral is made possible by a recursive partial summation technique. This approach, which has previously been formulated for scattering amplitudes, is generalized to population probabilities that are given by a forward-backward double path integral. The performance of the method is demonstrated for model systems describing a d-wave shape resonance, which is linearly coupled to a bath with Ohmic spectral function. The effect of the bath is investigated as a function of coupling strength and temperature.

  14. Search for a Narrow, Spin-2 Resonance Decaying to a Pair of Z Bosons in the q[bar over q]?[superscript +]?[superscript ?] Final State

    E-print Network

    Apyan, Aram

    Results are presented from a search for a narrow, spin-2 resonance decaying into a pair of Z bosons, with one Z-boson decaying into leptons (e[superscript +]e[superscript ?] or ?[superscript +]?[superscript ?]) and the ...

  15. Search for a new resonance decaying into top-antitop at Tevatron

    SciTech Connect

    Schwanenberger, Christian; /Bonn U.

    2006-02-01

    In this report a new search for a narrow-width heavy resonance decaying into top quark pairs (X {yields} t{bar t}) in p{bar p} collisions at {radical}s = 1.96 TeV has been performed using data collected by the D0 detector at the Fermilab Tevatron collider. The analysis considers t{bar t} candidate events in the lepton+jets channel using a lifetime tag to identify b-jets and the t{bar t} invariant mass distribution to search for evidence of resonant production. The analyzed dataset corresponds to an integrated luminosity of approximately 370 pb{sup -1}. Since no evidence for a t{bar t} resonance X is found, upper limits on {sigma}{sub x} x B(X {yields} t{bar t}) for different hypothesized resonance masses using a Bayesian approach are set. Within a topcolor-assisted technicolor model, the existence of a leptophobic Z' boson with M{sub Z'} < 680 GeV and width {Lambda}{sub Z'} = 0.012 M{sub Z'} can be excluded at 95% C.L.

  16. Search for resonant top-antitop production in the lepton plus jets decay mode using the full CDF data set.

    PubMed

    Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Ciocci, M A; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; De Barbaro, P; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Eusebi, R; Farrington, S; Fernández Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, P; Martínez, M; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Ranjan, N; Redondo Fernández, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Sorin, V; Song, H; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C

    2013-03-22

    This Letter reports a search for a narrow resonant state decaying into two W bosons and two b quarks where one W boson decays leptonically and the other decays into a quark-antiquark pair. The search is particularly sensitive to top-antitop resonant production. We use the full data sample of proton-antiproton collisions at a center-of-mass energy of 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron, corresponding to an integrated luminosity of 9.45 fb(-1). No evidence for resonant production is found, and upper limits on the production cross section times branching ratio for a narrow resonant state are extracted. Within a specific benchmark model, we exclude a Z' boson with mass, M(Z'), below 915 GeV/c(2) decaying into a top-antitop pair at the 95% credibility level assuming a Z' boson decay width of ?(Z') = 0.012 M(Z'). This is the most sensitive search for a narrow qq-initiated tt resonance in the mass region below 750 GeV/c(2). PMID:25166792

  17. Search for Resonances Decaying to Top and Bottom Quarks with the CDF Experiment

    E-print Network

    CDF Collaboration; T. Aaltonen; S. Amerio; D. Amidei; A. Anastassov; A. Annovi; J. Antos; F. Anza'; G. Apollinari; J. A. Appel; T. Arisawa; A. Artikov; J. Asaadi; W. Ashmanskas; B. Auerbach; A. Aurisano; F. Azfar; W. Badgett; T. Bae; A. Barbaro-Galtieri; V. E. Barnes; B. A. Barnett; P. Barria; P. Bartos; M. Bauce; F. Bedeschi; S. Behari; G. Bellettini; J. Bellinger; D. Benjamin; A. Beretvas; A. Bhatti; L. Bianchi; K. R. Bland; B. Blumenfeld; A. Bocci; A. Bodek; D. Bortoletto; J. Boudreau; A. Boveia; L. Brigliadori; C. Bromberg; E. Brucken; J. Budagov; H. S. Budd; K. Burkett; G. Busetto; P. Bussey; P. Butti; A. Buzatu; A. Calamba; S. Camarda; M. Campanelli; F. Canelli; B. Carls; D. Carlsmith; R. Carosi; S. Carrillo; B. Casal; M. Casarsa; A. Castro; P. Catastini; D. Cauz; V. Cavaliere; A. Cerri; L. Cerrito; Y. C. Chen; M. Chertok; G. Chiarelli; G. Chlachidze; K. Cho; D. Chokheli; A. Clark; C. Clarke; M. E. Convery; J. Conway; M. Corbo; M. Cordelli; C. A. Cox; D. J. Cox; M. Cremonesi; D. Cruz; J. Cuevas; R. Culbertson; N. d'Ascenzo; M. Datta; P. de Barbaro; L. Demortier; L. Marchese; M. Deninno; F. Devoto; M. D'Errico; A. Di Canto; B. Di Ruzza; J. R. Dittmann; M. D'Onofrio; S. Donati; M. Dorigo; A. Driutti; K. Ebina; R. Edgar; A. Elagin; R. Erbacher; S. Errede; B. Esham; S. Farrington; J. P. Fernández Ramos; R. Field; G. Flanagan; R. Forrest; M. Franklin; J. C. Freeman; H. Frisch; Y. Funakoshi; C. Galloni; A. F. Garfinkel; P. Garosi; H. Gerberich; E. Gerchtein; S. Giagu; V. Giakoumopoulou; K. Gibson; C. M. Ginsburg; N. Giokaris; P. Giromini; V. Glagolev; D. Glenzinski; M. Gold; D. Goldin; A. Golossanov; G. Gomez; G. Gomez-Ceballos; M. Goncharov; O. González López; I. Gorelov; A. T. Goshaw; K. Goulianos; E. Gramellini; C. Grosso-Pilcher; R. C. Group; J. Guimaraes da Costa; S. R. Hahn; J. Y. Han; F. Happacher; K. Hara; M. Hare; R. F. Harr; T. Harrington-Taber; K. Hatakeyama; C. Hays; J. Heinrich; M. Herndon; A. Hocker; Z. Hong; W. Hopkins; S. Hou; R. E. Hughes; U. Husemann; M. Hussein; J. Huston; G. Introzzi; M. Iori; A. Ivanov; E. James; D. Jang; B. Jayatilaka; E. J. Jeon; S. Jindariani; M. Jones; K. K. Joo; S. Y. Jun; T. R. Junk; M. Kambeitz; T. Kamon; P. E. Karchin; A. Kasmi; Y. Kato; W. Ketchum; J. Keung; B. Kilminster; D. H. Kim; H. S. Kim; J. E. Kim; M. J. Kim; S. B. Kim; S. H. Kim; Y. K. Kim; Y. J. Kim; N. Kimura; M. Kirby; K. Knoepfel; K. Kondo; D. J. Kong; J. Konigsberg; A. V. Kotwal; M. Kreps; J. Kroll; M. Kruse; T. Kuhr; M. Kurata; A. T. Laasanen; S. Lammel; M. Lancaster; K. Lannon; G. Latino; H. S. Lee; J. S. Lee; S. Leo; S. Leone; J. D. Lewis; A. Limosani; E. Lipeles; A. Lister; H. Liu; Q. Liu; T. Liu; S. Lockwitz; A. Loginov; A. Lucà; D. Lucchesi; J. Lueck; P. Lujan; P. Lukens; G. Lungu; J. Lys; R. Lysak; R. Madrak; P. Maestro; S. Malik; G. Manca; A. Manousakis-Katsikakis; F. Margaroli; P. Marino; K. Matera; M. E. Mattson; A. Mazzacane; P. Mazzanti; R. McNulty; A. Mehta; P. Mehtala; C. Mesropian; T. Miao; D. Mietlicki; A. Mitra; H. Miyake; S. Moed; N. Moggi; C. S. Moon; R. Moore; M. J. Morello; A. Mukherjee; Th. Muller; P. Murat; M. Mussini; J. Nachtman; Y. Nagai; J. Naganoma; I. Nakano; A. Napier; J. Nett; C. Neu; T. Nigmanov; L. Nodulman; S. Y. Noh; O. Norniella; L. Oakes; S. H. Oh; Y. D. Oh; I. Oksuzian; T. Okusawa; R. Orava; L. Ortolan; C. Pagliarone; E. Palencia; P. Palni; V. Papadimitriou; W. Parker; G. Pauletta; M. Paulini; C. Paus; T. J. Phillips; G. Piacentino; E. Pianori; J. Pilot; K. Pitts; C. Plager; L. Pondrom; S. Poprocki; K. Potamianos; F. Prokoshin; A. Pranko; F. Ptohos; G. Punzi; I. Redondo Fernández; P. Renton; M. Rescigno; F. Rimondi; L. Ristori; A. Robson; T. Rodriguez; S. Rolli; M. Ronzani; R. Roser; J. L. Rosner; F. Ruffini; A. Ruiz; J. Russ; V. Rusu; W. K. Sakumoto; Y. Sakurai; L. Santi; K. Sato; V. Saveliev; A. Savoy-Navarro; P. Schlabach; E. E. Schmidt; T. Schwarz; L. Scodellaro; F. Scuri; S. Seidel; Y. Seiya; A. Semenov; F. Sforza; S. Z. Shalhout; T. Shears; P. F. Shepard; M. Shimojima; M. Shochet; I. Shreyber-Tecker; A. Simonenko; K. Sliwa; J. R. Smith; F. D. Snider; V. Sorin; H. Song; M. Stancari; R. St. Denis; D. Stentz; J. Strologas; Y. Sudo; A. Sukhanov; I. Suslov; K. Takemasa; Y. Takeuchi; J. Tang; M. Tecchio; P. K. Teng; J. Thom; E. Thomson; V. Thukral; D. Toback; S. Tokar; K. Tollefson; T. Tomura; D. Tonelli; S. Torre; D. Torretta; P. Totaro; M. Trovato; F. Ukegawa; S. Uozumi; F. Vázquez; G. Velev; C. Vellidis; C. Vernieri; M. Vidal; R. Vilar; J. Vizán; M. Vogel; G. Volpi; P. Wagner; R. Wallny; S. M. Wang; D. Waters; W. C. Wester III; D. Whiteson; A. B. Wicklund; S. Wilbur; H. H. Williams; J. S. Wilson; P. Wilson; B. L. Winer; P. Wittich; S. Wolbers; H. Wolfe; T. Wright; X. Wu; Z. Wu; K. Yamamoto; D. Yamato; T. Yang; U. K. Yang; Y. C. Yang; W. -M. Yao; G. P. Yeh; K. Yi; J. Yoh; K. Yorita; T. Yoshida; G. B. Yu; I. Yu; A. M. Zanetti; Y. Zeng; C. Zhou; S. Zucchelli

    2015-04-07

    We report on a search for charged massive resonances decaying to top ($t$) and bottom ($b$) quarks in the full data set of proton-antiproton collisions at center-of-mass energy of $\\sqrt{s} = 1.96$ TeV collected by the CDF~II detector at the Tevatron, corresponding to an integrated luminosity of 9.5 $fb^{-1}$. No significant excess above the standard model (SM) background prediction is observed. We set 95% Bayesian credibility mass-dependent upper limits on the heavy charged particle production cross section times branching ratio to $t b$. Using a SM extension with a $W^{\\prime}$ and left-right-symmetric couplings as a benchmark model, we constrain the $W^{\\prime}$ mass and couplings in the 300 to 900 GeV/$c^2$ range. The limits presented here are the most stringent for a charged resonance with mass in the range 300 -- 600 GeV/$c^2$ decaying to top and bottom quarks.

  18. Search for Resonances Decaying to Top and Bottom Quarks with the CDF Experiment.

    PubMed

    Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Anzà, F; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bianchi, L; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; de Barbaro, P; Demortier, L; Deninno, M; D'Errico, M; Devoto, F; Di Canto, A; Di Ruzza, B; Dittmann, J R; Donati, S; D'Onofrio, M; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Farrington, S; Fernández Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Galloni, C; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S H; Kim, S B; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Lister, A; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lucà, A; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Marchese, L; Margaroli, F; Marino, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Pranko, A; Prokoshin, F; Ptohos, F; Punzi, G; Redondo Fernández, I; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sliwa, K; Smith, J R; Snider, F D; Song, H; Sorin, V; St Denis, R; Stancari, M; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2015-08-01

    We report on a search for charged massive resonances decaying to top (t) and bottom (b) quarks in the full data set of proton-antiproton collisions at a center-of-mass energy of ?[s]=1.96??TeV collected by the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.5??fb(-1). No significant excess above the standard model background prediction is observed. We set 95% Bayesian credibility mass-dependent upper limits on the heavy charged-particle production cross section times branching ratio to tb. Using a standard model extension with a W'?tb and left-right-symmetric couplings as a benchmark model, we constrain the W' mass and couplings in the 300-900??GeV/c(2) range. The limits presented here are the most stringent for a charged resonance with mass in the range 300-600??GeV/c(2) decaying to top and bottom quarks. PMID:26296108

  19. Dark photons and resonant monophoton signatures in Higgs boson decays at the LHC

    NASA Astrophysics Data System (ADS)

    Gabrielli, Emidio; Heikinheimo, Matti; Mele, Barbara; Raidal, Martti

    2014-09-01

    Motivated by dark-photon ? ¯ scenarios extensively considered in the literature, we explore experimentally allowed models where the Higgs boson coupling to photon and dark photon H?? ¯ can be enhanced. Correspondingly, large rates for the H??? ¯ decay become plausible, giving rise to one monochromatic photon with E??mH/2 (i.e., more than twice the photon energy in the rare standard-model decay H??Z??? ¯?), and a similar amount of missing energy. We perform a model-independent study of this exotic resonant monophoton signature at the LHC, featuring a distinctive ET? peak around 60 GeV, and ? +ET transverse invariant mass ruled by mH. At parton level, we find a 5? sensitivity of the present LHC data set for a H??? ¯ branching fraction of 0.5%. Such large branching fractions can be naturally obtained in dark U(1)F models explaining the origin and hierarchy of the standard model Yukawa couplings. We urge the LHC experiments to search for this new exotic resonance in the present data set and in future LHC runs.

  20. Search for Resonances Decaying to Top and Bottom Quarks with the CDF Experiment

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Anzà, F.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bianchi, L.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.

    2015-08-01

    We report on a search for charged massive resonances decaying to top (t ) and bottom (b ) quarks in the full data set of proton-antiproton collisions at a center-of-mass energy of ?{s }=1.96 TeV collected by the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.5 fb-1 . No significant excess above the standard model background prediction is observed. We set 95% Bayesian credibility mass-dependent upper limits on the heavy charged-particle production cross section times branching ratio to t b . Using a standard model extension with a W'?t b and left-right-symmetric couplings as a benchmark model, we constrain the W' mass and couplings in the 300 - 900 GeV /c2 range. The limits presented here are the most stringent for a charged resonance with mass in the range 300 - 600 GeV /c2 decaying to top and bottom quarks.

  1. Studies of inclusive rare B meson decays produced at the upsilon 4S resonance

    NASA Astrophysics Data System (ADS)

    Li, Yong

    The rare decays of B mesons produced at the U (4S) resonance will be used to study CP violation. This dissertation presents studies of B-->h'XS, B-->hXS and B-->K(*)-X with h'/h/K( *)- in high momentum region; which are experimental signatures for the rare B meson decay process b-->sg* . The observation of the B-->h'XS is the evidence and the first measurement of the b-->sg* penguin transition. The data sample was collected by the CLEO detector and consists of 8.9fb-1 on resonance and 4.3fb-1 just below BB¯ threshold. The Time-of-Flight (TOF) system measures the flight time of particles with high resolution and thus provides important information for particle identification. The high level TOF calibration handles the pulse height dependence, track position dependence, momentum dependence and particle species dependence of the TOF measurement. This calibration improves the accuracy of the particle identification for the CLEO Time-of-Flight detector.

  2. Two-photon resonant excitation of interatomic coulombic decay in neon dimers

    NASA Astrophysics Data System (ADS)

    Dubrouil, A.; Reduzzi, M.; Devetta, M.; Feng, C.; Hummert, J.; Finetti, P.; Plekan, O.; Grazioli, C.; Di Fraia, M.; Lyamayev, V.; La Forge, A.; Katzy, R.; Stienkemeier, F.; Ovcharenko, Y.; Coreno, M.; Berrah, N.; Motomura, K.; Mondal, S.; Ueda, K.; Prince, K. C.; Callegari, C.; Kuleff, A. I.; Demekhin, Ph V.; Sansone, G.

    2015-10-01

    The recent availability of intense and ultrashort extreme ultraviolet sources opens up the possibility of investigating ultrafast electronic relaxation processes in matter in an unprecedented regime. In this work we report on the observation of two-photon excitation of interatomic Coulombic decay (ICD) in neon dimers using the tunable intense pulses delivered by the free electron laser FERMI. The unique characteristics of FERMI (narrow bandwidth, spectral stability, and tunability) allow one to resonantly excite specific ionization pathways and to observe a clear signature of the ICD mechanism in the ratio of the ion yield created by Coulomb explosion. The present experimental results are explained by ab initio electronic structure and nuclear dynamics calculations.

  3. Phenomena of Time Resonances Explosions for the Compound-Clot Decays in High-Energy Nuclear Reactions

    E-print Network

    V. S. Olkhovsky; M. E. Dolinska; S. A. Omelchenko

    2009-02-16

    The phenomenon of time resonances (or explosions) can explain the exponential reduction of the energy, which is accompanied for the certain degree by slight fluctuations under some conditions in the range of the energy strongly overlapped compound-resonances. These resonant explosions correspond to formation of several highly-exited non-exponentially decaying nuclear clots (partial compound nuclei consisting of several small groups of projectile nucleons and targets). This paper is a continuation and expansion of theoretical authors' work, which is a more general self-consistent version of the time-evolution approach in comparison with the traditional Izumo-Araseki time compound-nucleus model.

  4. Lifetimes and Fano asymmetry parameters of inter-Coulombic decay resonances in photoionization of Ar@C60

    NASA Astrophysics Data System (ADS)

    Javani, Mohammad; Manson, Steven T.; Madjet, Mohamed E.; Chakraborty, Himadri S.

    2014-05-01

    In a theoretical study of the photoionization of Ar@C60 we find evidence of inter-Coulombic decay (ICD) probability of Ar single-core-electron excited states through degenerate ionization continua of the encapsulating fullerene. Resonances from the ``backward ICD,'' namely, the decay of C60 photoexcited inner holes through Ar 3s ionization are also detected. We further predict abundance of a new type of resonance from the interference between concurrent autoionizing and ICD processes that can be termed as resonant hybridized Auger-ICD. Calculations are carried out on a framework of the time-dependent local density approximation where the fullerene ion core of sixty C4+ ions is smudged into a continuous jellium distribution. All these classes of resonances assume significantly different shapes from each other and from those of the pure autoionizing resonances of both Ar and C60. The resonances are fit to Fano profiles in order to calculate their lifetime, strength and Fano asymmetry parameter q and compare with the regular autoionizing resonances.

  5. Quark and Lepton Hybrids? A search for resonance decays to lepton+jet and limits on leptoquarks at

    E-print Network

    Quark and Lepton Hybrids? A search for resonance decays to lepton+jet and limits on leptoquarks energies than achieved ever before. Since the proton contains quarks, this means that at HERA we see the most energetic quark-electron collisions ever observed. Electrons belong to a class of particles known

  6. Cascade ? decay study of 108Ag following thermal and resonance neutron capture in 107Ag

    NASA Astrophysics Data System (ADS)

    Zanini, L.; Corvi, F.; Postma, H.; Be?vá?, F.; Krti?ka, M.; Honzátko, J.; Tomandl, I.

    2003-07-01

    With the aim to obtain information on the E1 and M1 photon strength functions at ?-ray energies below the neutron separation energy, we studied two-step ? cascades following the capture of thermal neutrons in 107Ag. For this purpose, we undertook an experiment with the dedicated facility for two-step ? cascades at the ?ež research reactor. The obtained data were discussed in conjunction with previous results from resonance neutron capture measurements with the same isotope, obtained at the GELINA facility of the Institute for Reference Materials and Measurements. The cascade ? decay of the 108Ag compound nucleus has been simulated with the aid of the Monte Carlo algorithm DICEBOX assuming several models for photon strength functions. To interpret the results of the experiments, the outcome from these simulations was confronted with the observed cascade-related quantities. The results indicate that the E1 photon strength function below the neutron binding energy is suppressed with respect to the conventional Brink-Axel model and that the M1 and/or possibly E2 photon strengths may play an important role in the decay of compound nucleus at excitations below ?3 MeV.

  7. Molecular structure of highly-excited resonant states in $^{24}$Mg and the corresponding $^8$Be+$^{16}$O and $^{12}$C+$^{12}$C decays

    E-print Network

    C. Xu; C. Qi; R. J. Liotta; R. Wyss; S. M. Wang; F. R. Xu; D. X. Jiang

    2010-06-05

    Exotic $^8$Be and $^{12}$C decays from high-lying resonances in $^{24}$Mg are analyzed in terms of a cluster model. The calculated quantities agree well with the corresponding experimental data. It is found that the calculated decay widths are very sensitive to the angular momentum carried by the outgoing cluster. It is shown that this property makes cluster decay a powerful tool to determine the spin as well as the molecular structures of the resonances.

  8. Baryon resonance production and dielectron decays in proton-proton collisions at 3.5 GeV

    NASA Astrophysics Data System (ADS)

    Agakishiev, G.; Balanda, A.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Chernenko, S.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Finocchiaro, P.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gernhäuser, R.; Göbel, K.; Golubeva, M.; González-D?az, D.; Guber, F.; Gumberidze, M.; Heinz, T.; Hennino, T.; Holzmann, R.; Ierusalimov, A.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B. W.; Kornakov, G.; Kotte, R.; Krása, A.; Krizek, F.; Krücken, R.; Kuc, H.; Kühn, W.; Kugler, A.; Kurepin, A.; Ladygin, V.; Lalik, R.; Lang, S.; Lapidus, K.; Lebedev, A.; Liu, T.; Lopes, L.; Lorenz, M.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michalska, B.; Michel, J.; Müntz, C.; Naumann, L.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Schmah, A.; Schwab, E.; Siebenson, J.; Sobolev, Yu. G.; Spataro, S.; Spruck, B.; Ströbele, H.; Stroth, J.; Sturm, C.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Trebacz, R.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Weber, M.; Wendisch, C.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.

    2014-05-01

    We report on baryon resonance production and decay in proton-proton collisions at a kinetic energy of 3.5 GeV based on data measured with HADES. The exclusive channels and as well as are studied simultaneously for the first time. The invariant masses and angular distributions of the pion-nucleon systems were studied and compared to simulations based on a resonance model ansatz assuming saturation of the pion production by an incoherent sum of baryonic resonances ( R with masses < 2 GeV/c2. A very good description of the one-pion production is achieved allowing for an estimate of individual baryon resonance production cross sections which are used as input to calculate the dielectron yields from decays. Two models of the resonance decays into dielectrons are examined assuming a point-like coupling and the dominance of the meson. The results of model calculations are compared to data from the exclusive channel by means of the dielectron and invariant mass distributions.

  9. Search for resonant production of tt? decaying to jets in pp? collisions at ?{s}=1.96 TeV

    DOE PAGESBeta

    Aaltonen, T.

    2011-10-11

    This Letter reports a search for non-standard model topquark resonances, Z', decaying to ttMs; ?W+bW-b? , where both W decay to quarks. We examine the top-antitop quark invariant mass spectrum for the presence of narrow resonant states. The search uses a data sample of p{bar p} collisions at a center of mass energy of 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron, with an integrated luminosity of 2.8 fb-1. No evidence for top-antitop quark resonant production is found. We place upper limits on the production cross section times branching ratio for a specific topcolor assisted technicolormore »model with width of ?Z' = 0.012 MZ'. Within this model, we exclude Z' boson with masses below 805 GeV/c2 at the 95% confidence level.« less

  10. $S$-wave resonance contributions to the $B^0_{(s)}\\to J/??^+?^-$ and $B_s\\to?^+?^-?^+?^-$ decays

    E-print Network

    Wen-Fei Wang; Hsiang-nan Li; Wei Wang; Cai-Dian Lü

    2015-05-22

    We study $S$-wave resonance contributions to the $B^0_{(s)}\\to J/\\psi\\pi^+\\pi^-$ and $B_s\\to\\pi^+\\pi^-\\ell^+\\ell^-$ decays in the perturbative QCD (PQCD) framework by introducing two-hadron distribution amplitudes for final states. The Breit-Wigner formula for the $f_0(500)$, $f_0(1500)$ and $f_0(1790)$ resonances and the Flatt\\'e model for the $f_0(980)$ resonance are adopted to parameterize the time-like scalar form factors in the two-pion distribution amplitudes, which include both resonant and nonresonant contributions. The resultant branching fraction and differential branching fraction in the pion-pair invariant mass for each resonance channel are consistent with experimental data. The determined $S$-wave two-pion distribution amplitudes, containing the information of both resonant and nonresonant rescattering phases, can be employed to predict direct CP asymmetries of other three-body hadronic $B$ meson decays in various localized regions of two-pion phase space.

  11. Search for production of resonances decaying to a lepton, neutrino and jets in collisions at TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boddy, C. R.; Boehler, M.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.

    2015-05-01

    A search is presented for narrow diboson resonances decaying to or in the final state where one boson decays leptonically (to an electron or a muon plus a neutrino) and the other boson decays hadronically. The analysis is performed using an integrated luminosity of 20.3 fb of collisions at TeV collected by the ATLAS detector at the large hadron collider. No evidence for resonant diboson production is observed, and resonance masses below 700 and 1490 GeV are excluded at 95 % confidence level for the spin-2 Randall-Sundrum bulk graviton with coupling constant of 1.0 and the extended gauge model boson respectively.

  12. Phase-space densities and effects of resonance decays in hydrodynamic approach to heavy ion collisions

    E-print Network

    S. V. Akkelin; Yu. M. Sinyukov

    2004-10-18

    A method allowing analysis of the overpopulation of phase-space in heavy ion collisions in a model independent way is proposed within the hydrodynamic approach. It makes it possible to extract a chemical potential of thermal pions at freeze out irrespective of the form of freeze-out (isothermal) hypersurface in Minkowski space and transverse flows on it. The contributions of resonance (with masses up to 2 GeV) decays to spectra, interferometry volumes and phase-space densities are calculated and discussed in detail. The estimates of average phase-space densities and chemical potentials of thermal pions are obtained for SPS and RHIC energies. They demonstrate that multibosonic phenomena at those energies might be considered as a correction factor rather than as a significant physical effect. The analysis of the evolution of the pion average phase-space density in chemically frozen hadron systems shows that it is almost constant or slightly increases with time while the particle density and phase-space density at each space point drops down rapidly during the system's expansion. We found that, unlike the particle density, the average phase-space density has no direct link to the freeze-out criterion and final thermodynamic parameters, being connected rather to the initial phase-space density of hadronic matter formed in relativistic nucleus-nucleus collisions.

  13. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2

    NASA Astrophysics Data System (ADS)

    Poellmann, C.; Steinleitner, P.; Leierseder, U.; Nagler, P.; Plechinger, G.; Porer, M.; Bratschitsch, R.; Schüller, C.; Korn, T.; Huber, R.

    2015-09-01

    Atomically thin two-dimensional crystals have revolutionized materials science. In particular, monolayer transition metal dichalcogenides promise novel optoelectronic applications, owing to their direct energy gaps in the optical range. Their electronic and optical properties are dominated by Coulomb-bound electron-hole pairs called excitons, whose unusual internal structure, symmetry, many-body effects and dynamics have been vividly discussed. Here we report the first direct experimental access to all 1s A excitons, regardless of momentum--inside and outside the radiative cone--in single-layer WSe2. Phase-locked mid-infrared pulses reveal the internal orbital 1s-2p resonance, which is highly sensitive to the shape of the excitonic envelope functions and provides accurate transition energies, oscillator strengths, densities and linewidths. Remarkably, the observed decay dynamics indicates an ultrafast radiative annihilation of small-momentum excitons within 150 fs, whereas Auger recombination prevails for optically dark states. The results provide a comprehensive view of excitons and introduce a new degree of freedom for quantum control, optoelectronics and valleytronics of dichalcogenide monolayers.

  14. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2.

    PubMed

    Poellmann, C; Steinleitner, P; Leierseder, U; Nagler, P; Plechinger, G; Porer, M; Bratschitsch, R; Schüller, C; Korn, T; Huber, R

    2015-09-01

    Atomically thin two-dimensional crystals have revolutionized materials science. In particular, monolayer transition metal dichalcogenides promise novel optoelectronic applications, owing to their direct energy gaps in the optical range. Their electronic and optical properties are dominated by Coulomb-bound electron-hole pairs called excitons, whose unusual internal structure, symmetry, many-body effects and dynamics have been vividly discussed. Here we report the first direct experimental access to all 1s A excitons, regardless of momentum--inside and outside the radiative cone--in single-layer WSe2. Phase-locked mid-infrared pulses reveal the internal orbital 1s-2p resonance, which is highly sensitive to the shape of the excitonic envelope functions and provides accurate transition energies, oscillator strengths, densities and linewidths. Remarkably, the observed decay dynamics indicates an ultrafast radiative annihilation of small-momentum excitons within 150 fs, whereas Auger recombination prevails for optically dark states. The results provide a comprehensive view of excitons and introduce a new degree of freedom for quantum control, optoelectronics and valleytronics of dichalcogenide monolayers. PMID:26168345

  15. Theoretical analysis of direct CP violation and differential decay width in in phase space around the resonances and

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Hua; Song, Ren; Su, Yu-Mo; Lü, Gang; Zheng, Bo

    2015-09-01

    We perform a theoretical study on direct CP violation in in phase space around the intermediate states and . The possible interference between the amplitudes corresponding to the two resonances is taken into account, and the relative strong phase of the two amplitudes is treated as a free parameter. Our analysis shows that by a properly chosen strong phase, both the CP violation strength and the differential decay width accommodate the experimental results.

  16. Search for massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at ?s = 8 TeV

    E-print Network

    Apyan, Aram

    A search is reported for massive resonances decaying into a quark and a vector boson (W or Z), or two vector bosons (WW, WZ, or ZZ). The analysis is performed on an inclusive sample of multijet events corresponding to an ...

  17. Search for a light Higgs resonance in radiative decays of the Y(1S) with a charm tag

    SciTech Connect

    Lees, J. P.

    2015-04-10

    In this study, a search is presented for the decay ?(1S)??A0, A0 ? cc¯, where A0 is a candidate for the CP-odd Higgs boson of the next-to-minimal supersymmetric standard model. The search is based on data collected with the BABAR detector at the ?(2S) resonance. A sample of ?(1S) mesons is selected via the decay ?(2S) ? ?+? ?(1S). The A0 ? cc¯ decay is identified through the reconstruction of hadronic D0, D+, and D*(2010)+ meson decays. No significant signal is observed. The measured 90% confidence-level upper limits on the product branching fraction B(?(1S) ? ?A0)×B(A0 ? cc¯) range from 7.4×10–5 to 2.4×10–3 for A0 masses from 4.00 to 8.95 GeV/c2 and 9.10 to 9.25 GeV/c2, where the region between 8.95 and 9.10 GeV/c2 is excluded because of background from ?(2S) ? ??bJ(1P), ?bJ(1P) ? ??(1S) decays.

  18. Search for a light Higgs resonance in radiative decays of the ? (1 S ) with a charm tag

    NASA Astrophysics Data System (ADS)

    Lees, J. P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.; Koch, H.; Schroeder, T.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Lankford, A. J.; Dey, B.; Gary, J. W.; Long, O.; Franco Sevilla, M.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Lockman, W. S.; Panduro Vazquez, W.; Schumm, B. A.; Seiden, A.; Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.; Röhrken, M.; Andreassen, R.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Spaan, B.; Bernard, D.; Verderi, M.; Playfer, S.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Piemontese, L.; Santoro, V.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Bhuyan, B.; Prasad, V.; Adametz, A.; Uwer, U.; Lacker, H. M.; Mallik, U.; Chen, C.; Cochran, J.; Prell, S.; Ahmed, H.; Gritsan, A. V.; Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Cowan, G.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.; Barlow, R. J.; Lafferty, G. D.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Cowan, R.; Cheaib, R.; Patel, P. M.; Robertson, S. H.; Neri, N.; Palombo, F.; Cremaldi, L.; Godang, R.; Summers, D. J.; Simard, M.; Taras, P.; De Nardo, G.; Onorato, G.; Sciacca, C.; Raven, G.; Jessop, C. P.; LoSecco, J. M.; Honscheid, K.; Kass, R.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Olsen, J.; Smith, A. J. S.; Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Pilloni, A.; Piredda, G.; Bünger, C.; Dittrich, S.; Grünberg, O.; Hess, M.; Leddig, T.; Voß, C.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Vasseur, G.; Aston, D.; Bard, D. J.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Lindemann, D.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wisniewski, W. J.; Wulsin, H. W.; Purohit, M. V.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Puccio, E. M. T.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Spanier, S. M.; Ritchie, J. L.; Schwitters, R. F.; Izen, J. M.; Lou, X. C.; Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P.; Albert, J.; Banerjee, Sw.; Beaulieu, A.; Bernlochner, F. U.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.; BaBar Collaboration

    2015-04-01

    A search is presented for the decay ? (1 S )?? A0 , A0?c c ¯, where A0 is a candidate for the C P -odd Higgs boson of the next-to-minimal supersymmetric standard model. The search is based on data collected with the BABAR detector at the ? (2 S ) resonance. A sample of ? (1 S ) mesons is selected via the decay ? (2 S )??+?-? (1 S ) . The A0?c c ¯ decay is identified through the reconstruction of hadronic D0, D+, and D*(2010 )+ meson decays. No significant signal is observed. The measured 90% confidence-level upper limits on the product branching fraction B (? (1 S )?? A0)×B (A0?c c ¯ ) range from 7.4 ×10-5 to 2.4 ×10-3 for A0 masses from 4.00 to 8.95 GeV /c2 and 9.10 to 9.25 GeV /c2 , where the region between 8.95 and 9.10 GeV /c2 is excluded because of background from ? (2 S )?? ?b J(1 P ) , ?b J(1 P )?? ? (1 S ) decays.

  19. Resonance conversion as a dominant decay mode for the 3.5-eV isomer in {sup 229m}Th

    SciTech Connect

    Karpeshin, F. F.; Trzhaskovskaya, M. B.

    2006-04-15

    on the basis of calculations performed within the relativistic multiconfiguration Dirac-Fock method, it is shown that the probability of the decay of the 3.5-eV nuclear level in the {sup 229m}Th isomer via resonance conversion exceeds the probability of its direct radiative decay by at least a factor of about 600. The possibility of experimentally observing delayed soft photons or alpha particles in the decay of this isomer is discussed.

  20. Search for resonant production of tt? decaying to jets in pp? collisions at ?{s}=1.96 TeV

    SciTech Connect

    Aaltonen, T.

    2011-10-11

    This Letter reports a search for non-standard model topquark resonances, Z', decaying to ttMs; ?W+bW-b? , where both W decay to quarks. We examine the top-antitop quark invariant mass spectrum for the presence of narrow resonant states. The search uses a data sample of p{bar p} collisions at a center of mass energy of 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron, with an integrated luminosity of 2.8 fb-1. No evidence for top-antitop quark resonant production is found. We place upper limits on the production cross section times branching ratio for a specific topcolor assisted technicolor model with width of ?Z' = 0.012 MZ'. Within this model, we exclude Z' boson with masses below 805 GeV/c2 at the 95% confidence level.

  1. High mass star formation in the galaxy

    NASA Technical Reports Server (NTRS)

    Scoville, N. Z.; Good, J. C.

    1987-01-01

    The Galactic distributions of HI, H2, and HII regions are reviewed in order to elucidate the high mass star formation occurring in galactic spiral arms and in active galactic nuclei. Comparison of the large scale distributions of H2 gas and radio HII regions reveals that the rate of formation of OB stars depends on (n sub H2) sup 1.9 where (n sub H2) is the local mean density of H2 averaged over 300 pc scale lengths. In addition the efficiency of high mass star formation is a decreasing function of cloud mass in the range 200,000 to 3,000,000 solar mass. These results suggest that high mass star formation in the galactic disk is initiated by cloud-cloud collisions which are more frequent in the spiral arms due to orbit crowding. Cloud-cloud collisions may also be responsible for high rates of OB star formation in interacting galaxies and galactic nuclei. Based on analysis of the Infrared Astronomy Satellite (IRAS) and CO data for selected GMCs in the Galaxy, the ratio L sub IR/M sub H2 can be as high as 30 solar luminosity/solar mass for GMCs associated with HII regions. The L sub IR/M sub H2 ratios and dust temperature obtained in many of the high luminosity IRAS galaxies are similar to those encountered in galactic GMCs with OB star formation. High mass star formation is therefore a viable explanation for the high infrared luminosity of these galaxies.

  2. Search for Dilepton Resonances in pp Collisions at ?s=7??TeV with the ATLAS Detector

    E-print Network

    Taylor, Frank E.

    This Letter reports on a search for narrow high-mass resonances decaying into dilepton final states. The data were recorded by the ATLAS experiment in pp collisions at ?s=7??TeV at the Large Hadron Collider and correspond ...

  3. Search for exotic resonances decaying into WZ/ZZ in pp collisions at sqrt{s}=7 TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovicc, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.

    2013-02-01

    A search for new exotic particles decaying to the VZ final state is performed, where V is either a W or a Z boson decaying into two overlapping jets and the Z decays into a pair of electrons, muons or neutrinos. The analysis uses a data sample of pp collisions corresponding to an integrated luminosity of 5 fb-1 collected by the CMS experiment at the LHC at sqrt{s}=7 TeV in 2011. No significant excess is observed in the mass distribution of the VZ candidates compared with the background expectation from standard model processes. Model-dependent upper limits at the 95% confidence level are set on the product of the cross section times the branching fraction of hypothetical particles decaying to the VZ final state as a function of mass. Sequential standard model W' bosons with masses between 700 and 940 GeV are excluded. In the Randall-Sundrum model for graviton resonances with a coupling parameter of 0.05, masses between 750 and 880 GeV are also excluded.[Figure not available: see fulltext.

  4. Decay Detector for the Study of Giant Monopole Resonance in Unstable Nuclei 

    E-print Network

    Button, Jonathan Thomas

    2013-04-19

    Giant Resonances (GR) are the broad resonances that occur at excitation energies between 10 and 30 MeV. They correspond to the collective motion of nucleons within the nucleus. The GR modes can be classified according to their multipolarity L, spin...

  5. Search for production of WW / WZ resonances decaying to a lepton, neutrino and jets in pp collisions at ?s = 8 TeV with the ATLAS detector

    DOE PAGESBeta

    Aad, G.

    2015-05-12

    In this study, a search is presented for narrow diboson resonances decaying to WW or WZ in the final state where one W boson decays leptonically (to an electron or a muon plus a neutrino) and the other W/Z boson decays hadronically. The analysis is performed using an integrated luminosity of 20.3 fb–1 of pp collisions at ?s = 8 TeV collected by the ATLAS detector at the large hadron collider. No evidence for resonant diboson production is observed, and resonance masses below 700 and 1490 GeV are excluded at 95% confidence level for the spin-2 Randall–Sundrum bulk graviton G*more »with coupling constant of 1.0 and the extended gauge model W' boson respectively.« less

  6. Search for production of WW / WZ resonances decaying to a lepton, neutrino and jets in pp collisions at ?s = 8 TeV with the ATLAS detector

    SciTech Connect

    Aad, G.

    2015-05-12

    In this study, a search is presented for narrow diboson resonances decaying to WW or WZ in the final state where one W boson decays leptonically (to an electron or a muon plus a neutrino) and the other W/Z boson decays hadronically. The analysis is performed using an integrated luminosity of 20.3 fb–1 of pp collisions at ?s = 8 TeV collected by the ATLAS detector at the large hadron collider. No evidence for resonant diboson production is observed, and resonance masses below 700 and 1490 GeV are excluded at 95% confidence level for the spin-2 Randall–Sundrum bulk graviton G* with coupling constant of 1.0 and the extended gauge model W' boson respectively.

  7. Disentangling the Spin-Parity of a Resonance via the Gold-Plated Decay Mode

    E-print Network

    Tanmoy Modak; Dibyakrupa Sahoo; Rahul Sinha; Hai-Yang Cheng; Tzu-Chiang Yuan

    2015-08-26

    Searching for new resonances and finding out their properties is an essential part of any existing or future particle physics experiment. The nature of a new resonance is characterized by its spin, charge conjugation, parity, and its couplings with the existing particles of the Standard Model. If a new resonance is found in the four lepton final state produced via two intermediate $Z$ bosons, the resonance could be a new heavy scalar or a $Z'$ boson or even a higher spin particle. In such cases the step by step methodology as enunciated in this paper can be followed to determine the spin, parity and the coupling to two $Z$ bosons of the parent particles, in a fully model-independent way. In our approach we show how three uni-angular distributions and few experimentally measurable observables can conclusively tell us about the spin, parity as well as the couplings of the new resonance to two $Z$ bosons. We have performed a numerical analysis to validate our approach and showed how the uniangular observables can be used to disentangle the spin parity as well as coupling of the resonance.

  8. Search for W' boson resonances decaying to a top quark and a bottom quark.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Jesus, A C S Assis; Atramentov, O; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burke, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K; Chan, K M; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Kalinin, A M; Kalk, J M; Kappler, S; Karmanov, D; Kasper, P A; Katsanos, I; Kau, D; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Korablev, V M; Kozelov, A V; Kraus, J; Krop, D; Kuhl, T; Kumar, A; Kupco, A; Kurca, T; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lellouch, J; Leveque, J; Li, J; Li, L; Li, Q Z; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna, R; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osman, N; Osta, J; Otec, R; Y Garzón, G J Otero; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Pope, B G; Popov, A V; Potter, C; da Silva, W L Prado; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rieger, J; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S

    2008-05-30

    We search for the production of a heavy W' gauge boson that decays to third generation quarks in 0.9 fb-1 of pp collisions at square root(s)=1.96 TeV, collected with the D0 detector at the Fermilab Tevatron collider. We find no significant excess in the final-state invariant mass distribution and set upper limits on the production cross section times branching fraction. For a left-handed W' boson with SM couplings, we set a lower mass limit of 731 GeV. For right-handed W' bosons, we set lower mass limits of 739 GeV if the W' boson decays to both leptons and quarks and 768 GeV if the W' boson decays only to quarks. We also set limits on the coupling of the W' boson to fermions as a function of its mass. PMID:18518600

  9. Ultra High Mass Range Mass Spectrometer System

    DOEpatents

    Reilly, Peter T. A. [Knoxville, TN

    2005-12-06

    Applicant's present invention comprises mass spectrometer systems that operate in a mass range from 1 to 10.sup.16 DA. The mass spectrometer system comprising an inlet system comprising an aerodynamic lens system, a reverse jet being a gas flux generated in an annulus moving in a reverse direction and a multipole ion guide; a digital ion trap; and a thermal vaporization/ionization detector system. Applicant's present invention further comprises a quadrupole mass spectrometer system comprising an inlet system having a quadrupole mass filter and a thermal vaporization/ionization detector system. Applicant's present invention further comprises an inlet system for use with a mass spectrometer system, a method for slowing energetic particles using an inlet system. Applicant's present invention also comprises a detector device and a method for detecting high mass charged particles.

  10. Search for resonances decaying to ?[subscript c]?[superscript +]?[superscript -] in two-photon interactions

    E-print Network

    Cowan, Ray Franklin

    We report a study of the process ???X??[subscript c]?[superscript +]?[superscript -], where X stands for one of the resonances ?[subscript c2](1P), ?[subscript c](2S), X(3872), X(3915), or ?[subscript c2](2P). The analysis ...

  11. Measurement of the resonant and CP components in B¯[superscript 0]-->J/??+?? decays

    E-print Network

    Counts, Ian Thomas Hunt

    The resonant structure of the reaction B¯0?J/??+?? is studied using data from 3??fb?1 of integrated luminosity collected by the LHCb experiment, one third at 7 TeV center-of-mass energy and the remainder at 8 TeV. The ...

  12. Study of Branching Ratio And Polarization Fraction in Neutral B Meson Decays to Negative Rho Meson Positive Kaon Resonance

    SciTech Connect

    Cheng, Baosen; /Wisconsin U., Madison

    2006-03-07

    We present the preliminary results on the search for B{sup 0} {yields} {rho}{sup -}K*{sup +}. The data sample comprises 122.7 million B{bar B} pairs in the e{sup +}e{sup -} annihilation through the {Upsilon}(4S) resonance collected during 1999-2003 with the BABAR detector at the PEP-II asymmetric-energy collider at Stanford Linear Accelerator Center (SLAC). We obtain an upper limit of the branching ratio at 90% confidence level as {Beta}(B{sup 0} {yields} {rho}{sup -}K*{sup +}) < 17.2 x 10{sup -6}. The fitted result on the polarization fraction shows no evidence that the decay is longitudinally dominated as predicted by various theoretical models.

  13. Search for W-prime Boson Resonances Decaying to a Top Quark and a Bottom Quark

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Aguilo, E.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, Georgiy; /Dubna, JINR /St. Petersburg, INP /Northeastern U.

    2008-03-01

    We search for the production of a heavy W{prime} gauge boson that decays to third generation quarks in 0.9 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, collected with the D0 detector at the Fermilab Tevatron collider. We find no significant excess in the final-state invariant mass distribution and set upper limits on the production cross section times branching fraction. For a left-handed W{prime} boson with SM couplings, we set a lower mass limit of 731 GeV. For right-handed W{prime} bosons, we set lower mass limits of 739 GeV if the W{prime} boson decays to both leptons and quarks and 768 GeV if the W{prime} boson decays only to quarks. We also set limits on the coupling of the W{prime} boson to fermions as a function of its mass.

  14. Search for Z[superscript ?] resonances decaying to tt? in dilepton+jets final states in pp collisions at ?s=7??TeV

    E-print Network

    Apyan, Aram

    A search for resonances decaying to top quark-antiquark pairs is performed using a dilepton+jets data sample recorded by the CMS experiment at the LHC in pp collisions at ?s=7??TeV corresponding to an integrated luminosity ...

  15. Search for pair-produced resonances decaying to jet pairs in proton–proton collisions at ?s = 8 TeV

    E-print Network

    Apyan, Aram

    Results are reported of a general search for pair production of heavy resonances decaying to pairs of hadronic jets in events with at least four jets. The study is based on up to 19.4 fb[superscript ?1] of integrated ...

  16. Decays of tetraquark resonances in a two-variable approximation to the triple flip-flop potential

    NASA Astrophysics Data System (ADS)

    Bicudo, P.; Cardoso, M.

    2011-05-01

    We develop a unitarized formalism to study tetraquarks using the triple flip-flop potential, which includes two meson-meson potentials and the tetraquark four-body potential. This can be related to the Jaffe-Wilczek and to the Karliner-Lipkin tetraquark models, where we also consider the possible open channels, since the four quarks and antiquarks may at any time escape to a pair of mesons. Here we study a simplified two-variable toy model and explore the analogy with a cherry in a glass, but a broken one where the cherry may escape from. It is quite interesting to have our system confined or compact in one variable and infinite in the other variable. In this framework we solve the two-variable Schrödinger equation in configuration space. With the finite difference method, we compute the spectrum, we search for localized states and we attempt to compute phase-shifts. We then apply the outgoing spherical wave method to compute in detail the phase-shifts and to determine the decay widths. We explore the model in the equal mass case, and we find narrow resonances. In particular the existence of two commuting angular momenta is responsible for our small decay widths.

  17. Tetraquark resonances with the triple flip-flop potential, decays in the cherry in a broken glass approximation

    E-print Network

    Pedro Bicudo; Marco Cardoso

    2010-10-02

    We develop a unitarized formalism to study tetraquarks using the triple flip-flop potential, which includes two meson-meson potentials and the tetraquark four-body potential. This can be related to the Jaffe-Wilczek and to the Karliner-Lipkin tetraquark models, where we also consider the possible open channels, since the four quarks and antiquarks may at any time escape to a pair of mesons. Here we study a simplified two-variable toy model and explore the analogy with a cherry in a glass, but a broken one where the cherry may escape from. It is quite interesting to have our system confined or compact in one variable and infinite in the other variable. In this framework we solve the two-variable Schr\\"odinger equation in configuration space. With the finite difference method, we compute the spectrum, we search for localized states and we attempt to compute phase shifts. We then apply the outgoing spherical wave method to compute in detail the phase shifts and and to determine the decay widths. We explore the model in the equal mass case, and we find narrow resonances. In particular the existence of two commuting angular momenta is responsible for our small decay widths.

  18. Decays of tetraquark resonances in a two-variable approximation to the triple flip-flop potential

    SciTech Connect

    Bicudo, P.; Cardoso, M.

    2011-05-01

    We develop a unitarized formalism to study tetraquarks using the triple flip-flop potential, which includes two meson-meson potentials and the tetraquark four-body potential. This can be related to the Jaffe-Wilczek and to the Karliner-Lipkin tetraquark models, where we also consider the possible open channels, since the four quarks and antiquarks may at any time escape to a pair of mesons. Here we study a simplified two-variable toy model and explore the analogy with a cherry in a glass, but a broken one where the cherry may escape from. It is quite interesting to have our system confined or compact in one variable and infinite in the other variable. In this framework we solve the two-variable Schroedinger equation in configuration space. With the finite difference method, we compute the spectrum, we search for localized states and we attempt to compute phase-shifts. We then apply the outgoing spherical wave method to compute in detail the phase-shifts and to determine the decay widths. We explore the model in the equal mass case, and we find narrow resonances. In particular the existence of two commuting angular momenta is responsible for our small decay widths.

  19. On the partial-wave analysis of mesonic resonances decaying to multiparticle final states produced by polarized photons

    NASA Astrophysics Data System (ADS)

    Salgado, Carlos W.; Weygand, Dennis P.

    2014-04-01

    Meson spectroscopy is going through a revival with the advent of high statistics experiments and new advances in the theoretical predictions. The Constituent Quark Model (CQM) is finally being expanded considering more basic principles of field theory and using discrete calculations of Quantum Chromodynamics (lattice QCD). These new calculations are approaching predictive power for the spectrum of hadronic resonances and decay modes. It will be the task of the new experiments to extract the meson spectrum from the data and compare with those predictions. The goal of this report is to describe one particular technique for extracting resonance information from multiparticle final states. The technique described here, partial wave analysis based on the helicity formalism, has been used at Brookhaven National Laboratory (BNL) using pion beams, and Jefferson Laboratory (JLab) using photon beams. In particular this report broadens this technique to include production experiments using linearly polarized real photons or quasi-real photons. This article is of a didactical nature. We describe the process of analysis, detailing assumptions and formalisms, and is directed towards people interested in starting partial wave analysis.

  20. Observation of J /? p Resonances Consistent with Pentaquark States in ?b0?J /? K-p Decays

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gian?, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.

    2015-08-01

    Observations of exotic structures in the J /? p channel, which we refer to as charmonium-pentaquark states, in ?b0?J /? K-p decays are presented. The data sample corresponds to an integrated luminosity of 3 fb-1 acquired with the LHCb detector from 7 and 8 TeV p p collisions. An amplitude analysis of the three-body final state reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the J /? p mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of 4380 ±8 ±29 MeV and a width of 205 ±18 ±86 MeV , while the second is narrower, with a mass of 4449.8 ±1.7 ±2.5 MeV and a width of 39 ±5 ±19 MeV . The preferred JP assignments are of opposite parity, with one state having spin 3 /2 and the other 5 /2 .

  1. Observation of J/?p Resonances Consistent with Pentaquark States in ?_{b}^{0}?J/?K^{-}p Decays.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Ruscio, F; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fohl, K; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Humair, T; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusardi, N; Lusiani, A; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A

    2015-08-14

    Observations of exotic structures in the J/?p channel, which we refer to as charmonium-pentaquark states, in ?_{b}^{0}?J/?K^{-}p decays are presented. The data sample corresponds to an integrated luminosity of 3 fb^{-1} acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude analysis of the three-body final state reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the J/?p mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of 4380±8±29 MeV and a width of 205±18±86 MeV, while the second is narrower, with a mass of 4449.8±1.7±2.5 MeV and a width of 39±5±19 MeV. The preferred J^{P} assignments are of opposite parity, with one state having spin 3/2 and the other 5/2. PMID:26317714

  2. On the Partial-Wave Analysis of Mesonic Resonances Decaying to Multiparticle Final States Produced by Polarized Photons

    SciTech Connect

    Salgado, Carlos W.; Weygand, Dennis P.

    2014-04-01

    Meson spectroscopy is going through a revival with the advent of high statistics experiments and new advances in the theoretical predictions. The Constituent Quark Model (CQM) is finally being expanded considering more basic principles of field theory and using discrete calculations of Quantum Chromodynamics (lattice QCD). These new calculations are approaching predictive power for the spectrum of hadronic resonances and decay modes. It will be the task of the new experiments to extract the meson spectrum from the data and compare with those predictions. The goal of this report is to describe one particular technique for extracting resonance information from multiparticle final states. The technique described here, partial wave analysis based on the helicity formalism, has been used at Brookhaven National Laboratory (BNL) using pion beams, and Jefferson Laboratory (Jlab) using photon beams. In particular this report broaden this technique to include production experiments using linearly polarized real photons or quasi-real photons. This article is of a didactical nature. We describe the process of analysis, detailing assumptions and formalisms, and is directed towards people interested in starting partial wave analysis.

  3. 15th order resonance terms using the decaying orbit of TETR-3. [perturbation due to gravitation

    NASA Technical Reports Server (NTRS)

    Wagner, C. A.; Klosko, S. M.

    1975-01-01

    Fifteenth-order commensurability of the orbit of TETR-3 (1971-83B) is studied. The study is designed to obtain good discrimination of 15th-order resonances through a better range of inclinations. The first low inclination orbit, 33 deg, is used for this purpose; it is very sensitive to the high degree terms which were rather poorly represented by previously analyzed orbits.

  4. Improved L-C resonant decay technique for Q measurement of quasilinear power inductors: New results for MPP and ferrite powdered cores

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Gerber, Scott S.

    1995-01-01

    The L-C resonant decay technique for measuring circuit Q or losses is improved by eliminating the switch from the inductor-capacitor loop. A MOSFET switch is used instead to momentarily connect the resonant circuit to an existing voltage source, which itself is gated off during the decay transient. Very reproducible, low duty cycle data could be taken this way over a dynamic voltage range of at least 10:1. Circuit Q is computed from a polynomial fit to the sequence of the decaying voltage maxima. This method was applied to measure the losses at 60 kHz in inductors having loose powder cores of moly permalloy and an Mn-Zn power ferrite. After the copper and capacitor losses are separated out, the resulting specific core loss is shown to be roughly as expected for the MPP powder, but anomalously high for the ferrite powder. Possible causes are mentioned.

  5. Search for resonant pair production of Higgs bosons decaying to two bottom quark-antiquark pairs in proton-proton collisions at 8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Molina, J.; Mora Herrera, C.; Pol, M. E.; Rebello Teles, P.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zhang, L.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Chapon, E.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Bernet, C.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.

    2015-10-01

    A model-independent search for a narrow resonance produced in proton-proton collisions at ?{ s} = 8 TeV and decaying to a pair of 125 GeV Higgs bosons that in turn each decays into a bottom quark-antiquark pair is performed by the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 17.9 fb-1. No evidence for a signal is observed. Upper limits at a 95% confidence level on the production cross section for such a resonance, in the mass range from 270 to 1100 GeV, are reported. Using these results, a radion with decay constant of 1 TeV and mass from 300 to 1100 GeV, and a Kaluza-Klein graviton with mass from 380 to 830 GeV are excluded at a 95% confidence level.

  6. Search for a Narrow Resonance Produced in 13 TeV pp Collisions Decaying to Electron Pair or Muon Pair Final States

    E-print Network

    CMS Collaboration

    2015-01-01

    A search for a new narrow resonance decaying to an electron pair or a muon pair is performed using 13 TeV pp collision data collected by the CMS experiment at the CERN LHC. The electron event sample used corresponds to an integrated luminosity of 2.6 fb$^{-1}$ while the muon event sample used corresponds to an integrated luminosity of 2.8 fb$^{-1}$. No evidence for such a resonance is observed and limits are set at the 95$\\%$ confidence level on a new massive narrow spin 1 boson decaying into electron or muon pairs. These limits exclude a sequential standard model Z$^\\prime_\\mathrm{SSM}$ resonance with a mass lighter than 3.15 TeV and superstring-inspired Z$^\\prime_{\\psi}$ with a mass lighter than $2.60~\\mathrm{TeV}$.

  7. Search for massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at = 8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Kalogeropoulos, A.; Keaveney, J.; Kim, T. J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Klein, B.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Liao, J.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Martins, M. Correa; Martins, T. Dos Reis; Pol, M. E.; Aldá, W. L.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; De Souza, S. Fonseca; Malbouisson, H.; Malek, M.; Figueiredo, D. Matos; Mundim, L.; Nogima, H.; Da Silva, W. L. Prado; Santaolalla, J.; Santoro, A.; Sznajder, A.; Manganote, E. J. Tonelli; Pereira, A. Vilela; Bernardes, C. A.; Dias, F. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Sierra, L. F. Chaparro; Florez, C.; Gomez, J. P.; Moreno, B. Gomez; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Montoya, C. A. Carrillo; De Oliveira, A. Carvalho Antunes; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Xiao, H.

    2014-08-01

    A search is reported for massive resonances decaying into a quark and a vector boson (W or Z), or two vector bosons (WW, WZ, or ZZ). The analysis is performed on an inclusive sample of multijet events corresponding to an integrated luminosity of 19.7 fb-1, collected in proton-proton collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC. The search uses novel jet-substructure identification techniques that provide sensitivity to the presence of highly boosted vector bosons decaying into a pair of quarks. Exclusion limits are set at a confidence level of 95% on the production of: (i) excited quark resonances q*decaying to qW and qZ for masses less than 3.2 TeV and 2.9 TeV, respectively, (ii) a Randall-Sundrum graviton GRS decaying into WW for masses below 1.2 TeV, and (iii) a heavy partner of the W boson W' decaying into WZ for masses less than 1.7 TeV. For the first time mass limits are set on W' ? WZ and GRS ? WW in the all-jets final state. The mass limits on q* ? qW, q* ? qZ, W' ? WZ, GRS ? WW are the most stringent to date. A model with a "bulk" graviton Gbulk that decays into WW or ZZ bosons is also studied. [Figure not available: see fulltext.

  8. {sup 12}C+{sup 16}O: Properties of sub-barrier resonance {gamma}-decay

    SciTech Connect

    Goasduff, A.; Courtin, S.; Haas, F.; Lebhertz, D.; Jenkins, D. G.; Fallis, J.; Ruiz, C.; Hutcheon, D. A.; Amandruz, P.-A.; Davis, C.; Hager, U.; Ottewell, D.; Ruprecht, G.

    2012-10-20

    In a recent experiment performed at Triumf using the Dragon 0 Degree-Sign spectrometer and its associated BGO array, the complete {gamma}-decay of the radiative capture channel below the Coulomb barrier has been measured for the first time. This measurement has been performed at two energies E{sub c.m.}= 6.6 and 7.2 MeV. A selective contribution of the entrance spins 2{sup +} and 3{sup -} has been evidenced which is consistent with existing results above the barrier.

  9. Search for massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at ?s = 8 TeV

    SciTech Connect

    Khachatryan, Vardan

    2014-08-01

    Search for massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at ?s = 8 TeV05/08/2014A search is reported for massive resonances decaying into a quark and a vector boson (W or Z), or two vector bosons (WW, WZ, or ZZ). The analysis is performed on an inclusive sample of multijet events corresponding to an integrated luminosity of 19.7 inverse femtobarns, collected in proton-proton collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC. The search uses novel jet-substructure identification techniques that provide sensitivity to the presence of highly boosted vector bosons decaying into a pair of quarks. Exclusion limits are set at a confidence level of 95% on the production of: (i) excited quark resonances q* decaying to qW and qZ for masses less than 3.2 TeV and 2.9 TeV, respectively, (ii) a Randall-Sundrum graviton G[RS] decaying into WW for masses below 1.2 TeV, and (iii) a heavy partner of the W boson W' decaying into WZ for masses less than 1.7 TeV. For the first time mass limits are set on W' to WZ and G[RS] to WW in the all-jets final state. The mass limits on q* to qW, q* to qZ, W' to WZ, G[RS] to WW are the most stringent to date. A model with a "bulk" graviton G[Bulk] that decays into WW or ZZ bosons is also studied.

  10. Light Higgs channel of the resonant decay of magnon condensate in superfluid $^3$He-B

    E-print Network

    V. V. Zavjalov; S. Autti; V. B. Eltsov; P. Heikkinen; G. E. Volovik

    2015-11-17

    In superfluids the order parameter, which describes spontaneous symmetry breaking, is an analogue of the Higgs field in the Standard Model of particle physics. Oscillations of the field amplitude are massive Higgs bosons, while oscillations of the orientation are massless Nambu-Goldstone bosons. The 125~GeV Higgs boson, discovered at Large Hadron Collider, is light compared to electroweak energy scale, which led to a suggestion of the ``little Higgs'' extension of the Standard Model, in which the light Higgs appears as a NG mode acquiring mass due to violation of a hidden symmetry. Here we show that such light Higgs exists in superfluid $^3$He-B, where one of three Nambu-Goldstone spin-wave modes acquires small mass due to the spin-orbit interaction. Other modes become optical and acoustic magnons. We observe parametric decay of Bose-Einstein condensate of optical magnons to light Higgs modes and decay of optical to acoustic magnons. Formation of a light Higgs from a Nambu-Goldstone mode observed in $^3$He-B opens a possibility that such scenario can be realized in other systems, where violation of some hidden symmetry is possible, including the Standard Model.

  11. Light Higgs channel of the resonant decay of magnon condensate in superfluid (3)He-B.

    PubMed

    Zavjalov, V V; Autti, S; Eltsov, V B; Heikkinen, P J; Volovik, G E

    2016-01-01

    In superfluids the order parameter, which describes spontaneous symmetry breaking, is an analogue of the Higgs field in the Standard Model of particle physics. Oscillations of the field amplitude are massive Higgs bosons, while oscillations of the orientation are massless Nambu-Goldstone bosons. The 125?GeV Higgs boson, discovered at Large Hadron Collider, is light compared with electroweak energy scale. Here, we show that such light Higgs exists in superfluid (3)He-B, where one of three Nambu-Goldstone spin-wave modes acquires small mass due to the spin-orbit interaction. Other modes become optical and acoustic magnons. We observe parametric decay of Bose-Einstein condensate of optical magnons to light Higgs modes and decay of optical to acoustic magnons. Formation of a light Higgs from a Nambu-Goldstone mode observed in (3)He-B opens a possibility that such scenario can be realized in other systems, where violation of some hidden symmetry is possible, including the Standard Model. PMID:26743951

  12. Diboson resonance as a portal to hidden strong dynamics

    NASA Astrophysics Data System (ADS)

    Chiang, Cheng-Wei; Fukuda, Hajime; Harigaya, Keisuke; Ibe, Masahiro; Yanagida, Tsutomu T.

    2015-11-01

    We propose a new explanation for excess events observed in the search for a high-mass resonance decaying into dibosons by the ATLAS experiment. The resonance is identified as a composite spin-0 particle that couples to the Standard Model gauge bosons via dimension-5 operators. The excess events can be explained if the dimension-5 operators are suppressed by a mass scale of O(1-10) TeV. We also construct a model of hidden strong gauge dynamics which realizes the spin-0 particle as its lightest composite state, with appropriate couplings to Standard Model gauge bosons.

  13. Search for Light Resonances Decaying into Pairs of Muons as a Signal of New Physics

    SciTech Connect

    Chatrchyan, S.

    2011-07-01

    A search for groups of collimated muons is performed using a data sample collected by the CMS experiment at the LHC, at a centre-of-mass energy of 7 TeV, and corresponding to an integrated luminosity of 35 inverse picobarns. The analysis searches for production of new low-mass states decaying into pairs of muons and is designed to achieve high sensitivity to a broad range of models predicting leptonic jet signatures. With no excess observed over the background expectation, upper limits on the production cross section times branching fraction times acceptance are set, ranging from 0.1 to 0.5 pb at the 95% CL depending on event topology. In addition, the results are interpreted in several benchmark models in the context of supersymmetry with a new light dark sector exploring previously inaccessible parameter space.

  14. Search for Light Resonances Decaying into Pairs of Muons as a Signal of New Physics

    E-print Network

    CMS Collaboration

    2011-06-17

    A search for groups of collimated muons is performed using a data sample collected by the CMS experiment at the LHC, at a centre-of-mass energy of 7 TeV, and corresponding to an integrated luminosity of 35 inverse picobarns. The analysis searches for production of new low-mass states decaying into pairs of muons and is designed to achieve high sensitivity to a broad range of models predicting leptonic jet signatures. With no excess observed over the background expectation, upper limits on the production cross section times branching fraction times acceptance are set, ranging from 0.1 to 0.5 pb at the 95% CL depending on event topology. In addition, the results are interpreted in several benchmark models in the context of supersymmetry with a new light dark sector exploring previously inaccessible parameter space.

  15. Search for a narrow, spin-2 resonance decaying to a pair of Z bosons in the $q\\bar{q}^{l^+ l^-}$ final state

    E-print Network

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Aguilo, Ernest; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Staykova, Zlatka; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Reis, Thomas; Thomas, Laurent; Vander Marcken, Gil; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Castello, Roberto; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; De Jesus Damiao, Dilson; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Da Costa, Eliza Melo; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Soares Jorge, Luana; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Dayong; Zhang, Linlin; Zhu, Bo; Zou, Wei; Avila, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Karjalainen, Ahti; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath

    2013-01-01

    Results are presented from a search for a narrow, spin-2 resonance decaying into a pair of Z bosons, with one Z-boson decaying into leptons (e+e- or mu+mu-) and the other into jets. An example of such a resonance is the Kaluza--Klein graviton, G[KK], predicted in Randall--Sundrum models. The analysis is based on a 4.9 inverse femtobarn sample of proton-proton collisions at a center-of-mass energy of 7 TeV, collected with the CMS detector at the LHC. Kinematic and topological properties, including decay angular distributions as a novel feature of the analysis, are used to discriminate between signal and background. No evidence for a resonance is observed, and upper limits on the production cross sections times branching fractions are set. In two models that predict Z-boson spin correlations in graviton decays, graviton masses are excluded lower than a value which varies between 610 and 945 GeV, depending on the model and the strength of the graviton couplings.

  16. Search for massive resonances decaying into pairs of boosted bosons in semi-leptonic final states at = 8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Kalogeropoulos, A.; Keaveney, J.; Kim, T. J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Klein, B.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Liao, J.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Martins, M. Correa; Martins, T. Dos Reis; Pol, M. E.; Aldá, W. L.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; De Souza, S. Fonseca; Malbouisson, H.; Malek, M.; Figueiredo, D. Matos; Mundim, L.; Nogima, H.; Da Silva, W. L. Prado; Santaolalla, J.; Santoro, A.; Sznajder, A.; Manganote, E. J. Tonelli; Pereira, A. Vilela; Bernardes, C. A.; Dias, F. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Sierra, L. F. Chaparro; Florez, C.; Gomez, J. P.; Moreno, B. Gomez; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Montoya, C. A. Carrillo; De Oliveira, A. Carvalho Antunes; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Xiao, H.

    2014-08-01

    A search for new resonances decaying to WW, ZZ, or WZ is presented. Final states are considered in which one of the vector bosons decays leptonically and the other hadronically. Results are based on data corresponding to an integrated luminosity of 19.7 fb-1 recorded in proton-proton collisions at = 8 TeV with the CMS detector at the CERN LHC. Techniques aiming at identifying jet substructures are used to analyze signal events in which the hadronization products from the decay of highly boosted W or Z bosons are contained within a single reconstructed jet. Upper limits on the production of generic WW, ZZ, or WZ resonances are set as a function of the resonance mass and width. We increase the sensitivity of the analysis by statistically combining the results of this search with a complementary study of the all-hadronic final state. Upper limits at 95% confidence level are set on the bulk graviton production cross section in the range from 700 to 10 fb for resonance masses between 600 and 2500 GeV, respectively. These limits on the bulk graviton model are the most stringent to date in the diboson final state. [Figure not available: see fulltext.

  17. Search for massive resonances decaying into pairs of boosted bosons in semi-leptonic final states at $\\sqrt{s} =$ 8 TeV

    SciTech Connect

    Khachatryan, Vardan; et al.,

    2014-08-01

    A search for new resonances decaying to WW, ZZ, or WZ is presented. Final states are considered in which one of the vector bosons decays leptonically and the other hadronically. Results are based on data corresponding to an integrated luminosity of 19.7 inverse femtobarns recorded in proton-proton collisions at $\\sqrt{s}$ = 8 TeV with the CMS detector at the CERN LHC. Techniques aiming at identifying jet substructures are used to analyze signal events in which the hadronization products from the decay of highly boosted W or Z bosons are contained within a single reconstructed jet. Upper limits on the production of generic WW, ZZ, or WZ resonances are set as a function of the resonance mass and width. We increase the sensitivity of the analysis by statistically combining the results of this search with a complementary study of the all-hadronic final state. Upper limits at 95% confidence level are set on the bulk graviton production cross section in the range from 700 to 10 femtobarns for resonance masses between 600 and 2500 GeV, respectively. These limits on the bulk graviton model are the most stringent to date in the diboson final state.

  18. Decay of {sup 161m1,m2}Dy isomers under conditions of a resonance environment (Moessbauer Screen)

    SciTech Connect

    Loginov, Yu. E. Zinoviev, V. G.; Kabina, L. P.; Lisin, S. S.; Maljutenkov, Ed. I.

    2013-06-15

    The half-lives of the isomers {sup 161m1}Dy and {sup 161m2}Dy (E = 25.6 keV and T{sub 1/2} {approx} 30 ns for the former and E = 74.6 keV and T{sub 1/2} {approx} 3 ns for the latter) placed in a {sup 160}Gd{sub 2}O{sub 3} crystal lattice at T = 300 K and surrounded by stable {sup 161}Dy nuclei in the composition of {sup 161}Dy{sub 2}O{sub 3} were measured by the method of ({beta}-{gamma}) coincidences in the beta-decay process {sup 161}Tb {yields} {sup 161}Dy. Nuclei of {sup 161m1,m2}Dy were obtained according to the chain {sup 160}Gd(n, {gamma}){sup 161}Gd {yields} {sup 161}Tb {yields} {sup 161}Dy from {sup 160}Dy{sub 2}O{sub 3} weighted portions irradiated at the PWR-M reactor of the Petersburg Nuclear Physics Institute (PNPI, Gatchina, Russia). The T{sub 1/2} value observed for the isomer {sup 161m1}Dy was found to be correlated with the number of surrounding {sup 161}Dy nuclei. The presence of this correlation in {sup 161m1}Dy can be explained by the multiple resonance scattering of photons from isomer decay within the sample used. No such correlation was observed for {sup 161m2}Dy. The half-lives measured for the isomers {sup 161m1}Dy and {sup 161m2}Dy in the absence of the above environment are 29.2(1) and 3.50(1) ns, respectively.

  19. Search for resonances decaying to ?c?+?- in two-photon interactions

    NASA Astrophysics Data System (ADS)

    Lees, J. P.; Poireau, V.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schumm, B. A.; Seiden, A.; Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Huard, Z.; Meadows, B. T.; Sokoloff, M. D.; Sun, L.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Spaan, B.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Piemontese, L.; Santoro, V.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Uwer, U.; Lacker, H. M.; Lueck, T.; Dauncey, P. D.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Meyer, W. T.; Prell, S.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Behn, E.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Dallapiccola, C.; Cowan, R.; Dujmic, D.; Sciolla, G.; Cheaib, R.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Biassoni, P.; Neri, N.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Simard, M.; Taras, P.; De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Martinelli, M.; Raven, G.; Jessop, C. P.; LoSecco, J. M.; Wang, W. F.; Honscheid, K.; Kass, R.; Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.; Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Bünger, C.; Grünberg, O.; Hartmann, T.; Leddig, T.; Schröder, H.; Voss, C.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wagner, A. P.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Young, C. C.; Ziegler, V.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Lund, P.; Spanier, S. M.; Ritchie, J. L.; Ruland, A. M.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Ahmed, H.

    2012-11-01

    We report a study of the process ???X??c?+?-, where X stands for one of the resonances ?c2(1P), ?c(2S), X(3872), X(3915), or ?c2(2P). The analysis is performed with a data sample of 473.9fb-1 collected with the BABAR detector at the PEP-II asymmetric-energy electron-positron collider. We do not observe a significant signal for any channel, and calculate 90% confidence-level upper limits on the products of branching fractions and two-photon widths ?X???B(X??c?+?-): 15.7 eV for ?c2(1P), 133 eV for ?c(2S), 11.1 eV for X(3872) (assuming it to be a spin-2 state), 16 eV for X(3915) (assuming it to be a spin-2 state), and 18 eV for ?c2(2P). We also report upper limits on the ratios of branching fractions B(?c(2S)??c?+?-)/B(?c(2S)?KS0K+?-)<10.0 and B(?c2(1P)??c?+?-)/B(?c2(1P)?KS0K+?-)<32.9 at the 90% confidence level.

  20. Phase-space densities and effects of resonance decays in a hydrodynamic approach to heavy ion collisions

    SciTech Connect

    Akkelin, S.V.; Sinyukov, Yu.M.

    2004-12-01

    A method allowing analysis of the overpopulation of phase space in heavy ion collisions in a model-independent way is proposed within the hydrodynamic approach. It makes it possible to extract a chemical potential of thermal pions at freeze-out, irrespective of the form of freeze-out (isothermal) hypersurface in Minkowski space and transverse flows on it. The contributions of resonance (with masses up to 2 GeV) decays to spectra, interferometry volumes, and phase-space densities are calculated and discussed in detail. The estimates of average phase-space densities and chemical potentials of thermal pions are obtained for SPS and RHIC energies. They demonstrate that multibosonic phenomena at those energies might be considered as a correction factor rather than as a significant physical effect. The analysis of the evolution of the pion average phase-space density in chemically frozen hadron systems shows that it is almost constant or slightly increases with time while the particle density and phase-space density at each space point decreases rapidly during the system's expansion. We found that, unlike the particle density, the average phase-space density has no direct link to the freeze-out criterion and final thermodynamic parameters, being connected rather to the initial phase-space density of hadronic matter formed in relativistic nucleus-nucleus collisions.

  1. The effect of the partner atom on the spectra of interatomic Coulombic decay triggered by resonant Auger processes

    SciTech Connect

    Miteva, T. Chiang, Y.-C.; Kuleff, A. I.; Cederbaum, L. S.; Gokhberg, K.; Koloren?, P.

    2014-10-28

    The resonant-Auger – interatomic Coulombic decay (ICD) cascade was recently suggested as an efficient means of controlling the course of the ICD process. Recent theoretical and experimental works show that control over the energies of the emitted ICD electrons can be achieved either by varying the photon energy to produce different initial core excitations or by changing the neighboring species. This work presents a theoretical investigation on the role of the rare-gas neighbor and clarifies how the latter influences the ICD process. For this purpose, we compare fully ab initio computed ICD-electron and kinetic energy release spectra following the 2p{sub 3/2} ? 4s, 2p{sub 1/2} ? 4s and 2p{sub 3/2} ? 3d of Ar in ArKr and Ar{sub 2}. We demonstrate that the presence of the chemically “softer” partner atom results in an increase in the energies of the emitted ICD electrons, and also in the appearance of additional ICD-active states. The latter leads to a threefold increase in the ICD yield for the case of the 2p{sub 3/2,} {sub 1/2} ? 4s parent core excitations.

  2. The effect of the partner atom on the spectra of interatomic Coulombic decay triggered by resonant Auger processes

    NASA Astrophysics Data System (ADS)

    Miteva, T.; Chiang, Y.-C.; Koloren?, P.; Kuleff, A. I.; Cederbaum, L. S.; Gokhberg, K.

    2014-10-01

    The resonant-Auger - interatomic Coulombic decay (ICD) cascade was recently suggested as an efficient means of controlling the course of the ICD process. Recent theoretical and experimental works show that control over the energies of the emitted ICD electrons can be achieved either by varying the photon energy to produce different initial core excitations or by changing the neighboring species. This work presents a theoretical investigation on the role of the rare-gas neighbor and clarifies how the latter influences the ICD process. For this purpose, we compare fully ab initio computed ICD-electron and kinetic energy release spectra following the 2p3/2 ? 4s, 2p1/2 ? 4s and 2p3/2 ? 3d of Ar in ArKr and Ar2. We demonstrate that the presence of the chemically "softer" partner atom results in an increase in the energies of the emitted ICD electrons, and also in the appearance of additional ICD-active states. The latter leads to a threefold increase in the ICD yield for the case of the 2p3/2, 1/2 ? 4s parent core excitations.

  3. Search for New Heavy Resonances Decaying To t+t^- Pairs at the LHC with Square Root S= 7 TEV (L = 5.0 FB^-1) 

    E-print Network

    Suarez, Indara

    2015-01-22

    FOR NEW HEAVY RESONANCES DECAYING TO ?+?? PAIRS AT THE LHC WITH ? S = 7 TEV (L = 5.0 FB?1) A Dissertation by INDARA MAYELI SUAREZ Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment... Calorimeter . . . . . . . . . . . . . . . . 32 3.2.5 The Hadronic Calorimeter . . . . . . . . . . . . . . . . . . . . 34 viii 3.2.6 The Muon System . . . . . . . . . . . . . . . . . . . . . . . . 37 4. EVENT RECONSTRUCTION AND OBJECT IDENTIFICATION . . . . 43...

  4. Search for Z' resonances decaying to tt¯; in dilepton+jets final states in pp collisions at ?s=7 TeV

    DOE PAGESBeta

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; et al

    2013-04-03

    A search for resonances decaying to top quark-antiquark pairs is performed using a dilepton+jets data sample recorded by the CMS experiment at the LHC in pp collisions at ?s=7 TeV corresponding to an integrated luminosity of 5.0 b?¹. No significant deviations from the standard model background are observed. Upper limits are presented for the production cross section times branching fraction of top quark-antiquark resonances for masses from 750 to 3000 GeV. In particular, the existence of a leptophobic topcolor particle Z' is excluded at the 95% confidence level for resonance masses MZ'Z'=0.012MZ', and MZ'=0.10MZ'.

  5. Search for Z' resonances decaying to tt¯ in dilepton+jets final states in pp collisions at s=7TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Vilela Pereira, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Carrillo Montoya, C. A.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M., Jr.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Kuotb Awad, A. M.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.

    2013-04-01

    A search for resonances decaying to top quark-antiquark pairs is performed using a dilepton+jets data sample recorded by the CMS experiment at the LHC in pp collisions at s=7TeV corresponding to an integrated luminosity of 5.0fb-1. No significant deviations from the standard model background are observed. Upper limits are presented for the production cross section times branching fraction of top quark-antiquark resonances for masses from 750 to 3000 GeV. In particular, the existence of a leptophobic topcolor particle Z' is excluded at the 95% confidence level for resonance masses MZ'<1.3TeV for ?Z'=0.012MZ', and M<1.9TeV for ?Z'=0.10MZ'.

  6. Existence of $?(2200)7/2^-$ precludes chiral symmetry restoration at high mass

    E-print Network

    A. V. Anisovich; V. Burkert; E. Klempt; V. A. Nikonov; E. Pasyuk; A. V. Sarantsev; S. Strauch; U. Thoma

    2015-03-19

    We report a partial wave analysis of new data on the double polarization variable E for the reaction $\\gamma p\\to \\pi^+ n$ in the mass range from 1.25 to 2.25 GeV, and of further data published earlier. The analysis of the new data within the BnGa formalism reveals strong evidence for the poorly known baryon resonance, the one-star $\\Delta(2200)7/2^-$. This is the lowest-mass $\\Delta$ resonance with spin-parity $J^P=7/2^-$. Its mass is significantly higher than the mass of its parity partner $\\Delta(1950)7/2^+$ which is the lowest-mass $\\Delta$ resonance with spin-parity $J^P=7/2^+$. The implications of this observation for the interpretation of high-mass excitations of mesons and baryons is discussed.

  7. Dilepton events with displaced vertices, double beta decay, and resonant leptogenesis with Type-II seesaw dominance, TeV scale $Z'$ and RH neutrinos

    E-print Network

    Nayak, Bidyut Prava

    2015-01-01

    In a class of Type-II seesaw dominated $SO(10)$ models proposed recently with heavy neutrinos, extra $Z'$ boson, and resonant leptogenesis, at first we show that the lightest first generation sterile neutrino that mediates dominant contributions to neutrinoless double beta decay also generates the displaced vertex leading to verifiable like-sign di-electron as well as di-muon production events outside the LHC detectors having suppressed standard model back-ground and missing energy. Resonant leptogenesis in this case is implemented by a pair of quasi-degenerate sterile neutrinos of the second and the third generations having masses of ${\\cal O}(500)$ GeV. Then we predict a new alternative scenario where the models allow the second generation sterile neutrino mass to be ${\\cal O}(10)$ GeV capable of mediating the dominant double beta decay as well as the displaced vertices for significantly improved number of like-sign dilepton events in different channels. Resonant leptogenesis in this alternative scenario is...

  8. Search for pair-produced resonances decaying to jet pairs in proton-proton collisions at ?{ s} = 8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Molina, J.; Mora Herrera, C.; Pol, M. E.; Rebello Teles, P.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Chapon, E.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Bernet, C.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.

    2015-07-01

    Results are reported of a general search for pair production of heavy resonances decaying to pairs of hadronic jets in events with at least four jets. The study is based on up to 19.4 fb-1 of integrated luminosity from proton-proton collisions at a center-of-mass energy of 8 TeV, recorded with the CMS detector at the LHC. Limits are determined on the production of scalar top quarks (top squarks) in the framework of R-parity violating supersymmetry and on the production of color-octet vector bosons (colorons). First limits at the LHC are placed on top squark production for two scenarios. The first assumes decay to a bottom quark and a light-flavor quark and is excluded for masses between 200 and 385 GeV, and the second assumes decay to a pair of light-flavor quarks and is excluded for masses between 200 and 350 GeV at 95% confidence level. Previous limits on colorons decaying to light-flavor quarks are extended to exclude masses from 200 to 835 GeV.

  9. Search for a new resonance decaying to a W or Z boson and a Higgs boson in the ??/??/?? + bb¯ final states with the ATLAS detector

    DOE PAGESBeta

    Aad, G.

    2015-06-16

    A search for a new resonance decaying to a W or Z boson and a Higgs boson in the ??/??/??+bb¯ final states is performed using 20.3 fb-1 of pp collision data recorded at ?s = 8 TeV with the ATLAS detector at the Large Hadron Collider. The search is conducted by examining the WH / ZH invariant mass distribution for a localized excess. Thus, no significant deviation from the Standard Model background prediction is observed. The results are interpreted in terms of constraints on the Minimal Walking Technicolor model and on a simplified approach based on a phenomenological Lagrangian ofmore »Heavy Vector Triplets.« less

  10. Search for resonant pair production of neutral long-lived particles decaying to bb in pp collisions at square root(S)=1.96 TeV.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Andeen, T; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Atramentov, O; Avila, C; Backusmayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calfayan, P; Calpas, B; Calvet, S; Cammin, J; Carrasco-Lizarraga, M A; Carrera, E; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Cho, D K; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cutts, D; Cwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; Devaughan, K; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Escalier, M; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gómez, B; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jamin, D; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kozelov, A V; Kraus, J; Kuhl, T; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lellouch, J; Li, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Mättig, P; Magaña-Villalba, R; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Maravin, Y; Martin, B; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Mendoza, L; Menezes, D; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Mitrevski, J; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; Obrant, G; Ochando, C; Onoprienko, D; Orduna, J; Oshima, N; Osman, N; Osta, J; Otec, R; Otero Y Garzón, G J; Owen, M; Padilla, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Popov, A V; da Silva, W L Prado; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simak, V

    2009-08-14

    We report on a first search for resonant pair production of neutral long-lived particles (NLLP) which each decay to a bb pair, using 3.6 fb(-1) of data recorded with the D0 detector at the Fermilab Tevatron collider. We search for pairs of displaced vertices in the tracking detector at radii in the range 1.6-20 cm from the beam axis. No significant excess is observed above background, and upper limits are set on the production rate in a hidden-valley benchmark model for a range of Higgs boson masses and NLLP masses and lifetimes. PMID:19792632

  11. Search for a new resonance decaying to a W or Z boson and a Higgs boson in the ??/??/?? + bb¯ final states with the ATLAS detector

    SciTech Connect

    Aad, G.

    2015-06-16

    A search for a new resonance decaying to a W or Z boson and a Higgs boson in the ??/??/??+bb¯ final states is performed using 20.3 fb-1 of pp collision data recorded at ?s = 8 TeV with the ATLAS detector at the Large Hadron Collider. The search is conducted by examining the WH / ZH invariant mass distribution for a localized excess. Thus, no significant deviation from the Standard Model background prediction is observed. The results are interpreted in terms of constraints on the Minimal Walking Technicolor model and on a simplified approach based on a phenomenological Lagrangian of Heavy Vector Triplets.

  12. Search for a new resonance decaying to a W or Z boson and a Higgs boson in the final states with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Beven, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.

    2015-06-01

    A search for a new resonance decaying to a W or Z boson and a Higgs boson in the final states is performed using 20.3 fb of pp collision data recorded at 8 TeV with the ATLAS detector at the Large Hadron Collider. The search is conducted by examining the WH / ZH invariant mass distribution for a localized excess. No significant deviation from the Standard Model background prediction is observed. The results are interpreted in terms of constraints on the Minimal Walking Technicolor model and on a simplified approach based on a phenomenological Lagrangian of Heavy Vector Triplets.

  13. Formaldehyde Masers: Exclusive Tracers of High-mass Star Formation

    NASA Astrophysics Data System (ADS)

    Araya, E. D.; Olmi, L.; Morales Ortiz, J.; Brown, J. E.; Hofner, P.; Kurtz, S.; Linz, H.; Creech-Eakman, M. J.

    2015-11-01

    The detection of four formaldehyde (H2CO) maser regions toward young high-mass stellar objects in the last decade, in addition to the three previously known regions, calls for an investigation of whether H2CO masers are an exclusive tracer of young high-mass stellar objects. We report the first survey specifically focused on the search for 6 cm H2CO masers toward non high-mass star-forming regions (non HMSFRs). The observations were conducted with the 305 m Arecibo Telescope toward 25 low-mass star-forming regions, 15 planetary nebulae and post-AGB stars, and 31 late-type stars. We detected no H2CO emission in our sample of non HMSFRs. To check for the association between high-mass star formation and H2CO masers, we also conducted a survey toward 22 high-mass star-forming regions from a Hi-GAL (Herschel infrared Galactic Plane Survey) sample known to harbor 6.7 GHz CH3OH masers. We detected a new 6 cm H2CO emission line in G32.74?0.07. This work provides further evidence that supports an exclusive association between H2CO masers and young regions of high-mass star formation. Furthermore, we detected H2CO absorption toward all Hi-GAL sources, and toward 24 low-mass star-forming regions. We also conducted a simultaneous survey for OH (4660, 4750, 4765 MHz), H110? (4874 MHz), HCOOH (4916 MHz), CH3OH (5005 MHz), and CH2NH (5289 MHz) toward 68 of the sources in our sample of non HMSFRs. With the exception of the detection of a 4765 MHz OH line toward a pre-planetary nebula (IRAS 04395+3601), we detected no other spectral line to an upper limit of 15 mJy for most sources.

  14. Search for a heavy resonance decaying into a Z+jet final state in p anti-p collisions at s**(1/2) = 1.96-TeV using the D0 detector

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; /Buenos Aires U. /Rio de Janeiro, CBPF /Rio de Janeiro State U. /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Hefei, CUST /Andes U., Bogota

    2006-06-01

    We have searched for a heavy resonance decaying into a Z+jet final state in p{bar p} collisions at a center of mass energy of 1.96 TeV at the Fermilab Tevatron collider using the D0 detector. No indication for such a resonance was found in a data sample corresponding to an integrated luminosity of 370 pb{sup -1}. We set upper limits on the cross section times branching fraction for heavy resonance production at the 95% C.L. as a function of the resonance mass and width. The limits are interpreted within the framework of a specific model of excited quark production.

  15. Search for new resonances decaying via WZ to leptons in proton–proton collisions at ?s = 8 TeV

    E-print Network

    Apyan, Aram

    A search is performed in proton–proton collisions at ?s = 8 TeV for exotic particles decaying via WZ to fully leptonic final states with electrons, muons, and neutrinos. The data set corresponds to an integrated luminosity ...

  16. Measurement of Resonant and CP Components in [bar over B][0 over s] ? J/??[superscript +]?[superscript ?] Decays

    E-print Network

    Counts, Ian Thomas Hunt

    Structure of the decay [bar over B][0 over s] ? J/??[superscript +]?[superscript ?] is studied using data corresponding to 3?fb[superscript ?1] of integrated luminosity from pp collisions produced by the LHC and collected ...

  17. Interference between f{sub 0}(980) and {rho}(770){sup 0} resonances in B{yields}{pi}{sup +}{pi}{sup -}K decays

    SciTech Connect

    El-Bennich, B.; Loiseau, B.; Furman, A.

    2006-12-01

    We study the contribution of the strong interactions between the two pions in S and P waves to the weak B{yields}{pi}{pi}K decay amplitudes. The interference between these two waves is analyzed in the {pi}{pi} effective-mass range of the {rho}(770){sup 0} and f{sub 0}(980) resonances. We use a unitary {pi}{pi} and KK coupled-channel model to describe the S-wave interactions and a Breit-Wigner function for the P-wave amplitude. The weak B-decay amplitudes, obtained from QCD factorization, are supplemented with charming penguin contributions in both waves. The four complex parameters of these long-distance terms are determined by fitting the model to the BABAR and Belle data on B{sup {+-}}{sup ,0}{yields}{pi}{sup +}{pi}{sup -}K{sup {+-}}{sup ,0} branching fractions, CP asymmetries, {pi}{pi} effective-mass and helicity-angle distributions. This set of data, and, in particular, the large direct CP asymmetry for B{sup {+-}}{yields}{rho}(770){sup 0}K{sup {+-}} decays, is well reproduced. The interplay of charming penguin amplitudes and the interference of S and P waves describes rather successfully the experimental S and A values of the CP-violating asymmetry for both B{sup 0}{yields}f{sub 0}(980)K{sub S}{sup 0} and B{sup 0}{yields}{rho}(770){sup 0}K{sub S}{sup 0} decays.

  18. Dense Molecular Gas Tracers in High Mass Star Formation Regions

    NASA Astrophysics Data System (ADS)

    Ma, Hongjun

    2015-08-01

    We report the FCRAO mapping observations of HCN (1-0), CS (2-1), HNC (1-0) and HCO+ (1-0) in ten high-mass star-forming cores associated with water masers. We present the contour maps of the four lines for these dense cores, compare their line profiles, and derive physical properties of these cores. We find that these four tracers trace similar area in these massive dense cores, and in most cases, the emissions of HCN and HCO+ are stronger than HNC and CS. We also use the line ratios of HCO+/HCN, HNC/HCN and HNC/HCO+ as the diagnostics to explore the environment of these high- mass star-forming regions, and find that most of cores agree with the model that a photo- dominated regions (PDRs) dominate the radiation field, except for W44, for which the radiation field is similar to a X-ray-dominated region (XDR).

  19. MAGNETIC FIELDS IN HIGH-MASS INFRARED DARK CLOUDS

    SciTech Connect

    Pillai, T.; Kauffmann, J.; Tan, J. C.; Goldsmith, P. F.; Carey, S. J.; Menten, K. M.

    2015-01-20

    High-mass stars are cosmic engines known to dominate the energetics in the Milky Way and other galaxies. However, their formation is still not well understood. Massive, cold, dense clouds, often appearing as infrared dark clouds (IRDCs), are the nurseries of massive stars. No measurements of magnetic fields in IRDCs in a state prior to the onset of high-mass star formation (HMSF) have previously been available, and prevailing HMSF theories do not consider strong magnetic fields. Here, we report observations of magnetic fields in two of the most massive IRDCs in the Milky Way. We show that IRDCs G11.11–0.12 and G0.253+0.016 are strongly magnetized and that the strong magnetic field is as important as turbulence and gravity for HMSF. The main dense filament in G11.11–0.12 is perpendicular to the magnetic field, while the lower density filament merging onto the main filament is parallel to the magnetic field. The implied magnetic field is strong enough to suppress fragmentation sufficiently to allow HMSF. Other mechanisms reducing fragmentation, such as the entrapment of heating from young stars via high-mass surface densities, are not required to facilitate HMSF.

  20. Search for high-mass states with one lepton plus missing transverse momentum in proton–proton collisions at ?s = 7 TeV with the ATLAS detector

    E-print Network

    Taylor, Frank E.

    The ATLAS detector is used to search for high-mass states, such as heavy charged gauge bosons (W?,W*), decaying to a charged lepton (electron or muon) and a neutrino. Results are presented based on the analysis of pp ...

  1. Search for Dilepton Resonances in pp Collisions at s=7TeV with the ATLAS Detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.

    2011-12-01

    This Letter reports on a search for narrow high-mass resonances decaying into dilepton final states. The data were recorded by the ATLAS experiment in pp collisions at s=7TeV at the Large Hadron Collider and correspond to a total integrated luminosity of 1.08 (1.21)fb-1 in the e+e- (?+?-) channel. No statistically significant excess above the standard model expectation is observed and upper limits are set at the 95% C.L. on the cross section times branching fraction of Z' resonances and Randall-Sundrum gravitons decaying into dileptons as a function of the resonance mass. A lower mass limit of 1.83 TeV on the sequential standard model Z' boson is set. A Randall-Sundrum graviton with coupling k/M¯Pl=0.1 is excluded at 95% C.L. for masses below 1.63 TeV.

  2. Search for Dilepton Resonances in pp Collisions at ?s=7 TeV with the ATLAS Detector

    DOE PAGESBeta

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; et al

    2011-12-29

    This Letter reports on a search for narrow high-mass resonances decaying into dilepton final states. The data were recorded by the ATLAS experiment in pp collisions at ?s=7 TeV at the Large Hadron Collider and correspond to a total integrated luminosity of 1.08 (1.21) fb?¹ in the e?e? (????) channel. No statistically significant excess above the standard model expectation is observed and upper limits are set at the 95% C.L. on the cross section times branching fraction of Z' resonances and Randall-Sundrum gravitons decaying into dileptons as a function of the resonance mass. A lower mass limit of 1.83 TeVmore »on the sequential standard model Z' boson is set. A Randall-Sundrum graviton with coupling k/M¯¯¯¯Pl=0.1 is excluded at 95% C.L. for masses below 1.63 TeV.« less

  3. Measurement of the D_s Decay Constant f_Ds and Observation of New Charm Resonances Decaying to D^(*)\\pi

    SciTech Connect

    Benitez, Jose

    2012-03-15

    The absolute branching fractions for the decays D{sub s}{sup -} {yields} {ell}{sup -}{bar {nu}}{sub {ell}} ({ell} = e, {mu}, or {tau}) are measured using a data sample corresponding to an integrated luminosity of 521 fb{sup -1} collected at center of mass energies near 10.58 GeV with the BABAR detector at the PEPII e{sup +}e{sup -} collider at SLAC. The number of D{sub s}{sup -} mesons is determined by reconstructing the recoiling system DKX{gamma} in events of the type e{sup +}e{sup -} {yields} DKXD*{sub s}{sup -}, where D*{sub s}{sup -} {yields} D{sub s}{sup -} {gamma} and X represents additional pions from fragmentation. The D{sub s}{sup -} {yields} {ell}{sup -}{nu}{sub {ell}} events are detected by full or partial reconstruction of the recoiling system DKX{gamma}{ell}. The following results are obtained: {Beta}(D{sub s}{sup -} {yields} {mu}{sup -}{nu}) = (6.02 {+-} 0.38 {+-} 0.34) x 10{sup -3}, {Beta}(D{sub s}{sup -} {yields} {tau}{sup -}{nu}) = (5.00 {+-} 0.35 {+-} 0.49) x 10{sup -2}, and B(D{sub s}{sup -} {yields} e{sup -}{nu}) < 2.8 x 10{sup -4} at 90% C.L., where the first uncertainty is statistical and the second is systematic. The branching fraction measurements are combined to determine the D{sub s}{sup -} decay constant f{sub D{sub s}} = (258.6 {+-} 6.4 {+-} 7.5) MeV. In addition, a study has been performed of the D{sup +}{pi}{sup -}, D{sup 0}{pi}{sup +}, and D*{sup +}{pi}{sup -} systems in inclusive e{sup +}e{sup -} {yields} c{bar c} interactions in a search for excited D meson states. The dataset used consists of {approx}454 fb{sup -1}. The mass spectra for these systems show, for the first time, candidates for the radial excitations of the D{sup 0}, D*{sup 0}, and D*{sup +}, as well as the L = 2 excited states of the D{sup 0} and D{sup +}, where L is the orbital angular momentum of the quarks. Finally, a prototype of a next generation Detector of Internally Reflected Cherenkov radiation (Focusing DIRC) has been tested using a 10 GeV electron beam at SLAC. The Focusing DIRC is based on the DIRC which was used in the BABAR detector, but has new pixel photon detectors which improve the resolution on the single photon time of propagation by about an order of magnitude allowing, for the first time, to correct the chromatic smearing in the Cherenkov angle. The Focusing DIRC may be used in a future Super-B factory.

  4. Search for Resonant Pair Production of Neutral Long-Lived Particles Decaying to bb-bar in pp-bar Collisions at s?=1.96??TeV

    E-print Network

    Baringer, Philip S.; Bean, Alice; Clutter, Justace Randall; Moulik, Tania; Wilson, Graham Wallace

    2009-08-13

    We report on a first search for resonant pair production of neutral long-lived particles (NLLP) which each decay to a bb-bar pair, using 3.6??fb(?1) of data recorded with the D0 detector at the Fermilab Tevatron collider. ...

  5. Statistical and direct aspects of 64Zn (?,n) and (?,np) decay channels in the giant dipole resonance and quasideuteron energy regions

    NASA Astrophysics Data System (ADS)

    Rodrigues, T.; Arruda-Neto, J.; Carvalheiro, Z.; Mesa, J.; Deppman, A.; Likhachev, V.; Martins, M.

    2003-07-01

    The investigation of statistical and direct aspects related to the (?,n) and (?,np) decay channels of 64Zn in the giant dipole resonance (GDR) and quasideuteron (QD) energy regions was performed by a trial function fitting to the respective (e,n) and (e,np) electrodisintegration yields measured by residual activity. The trial function incorporated the GDR and QD models to describe the initial photoabsorption mechanism and the geometry dependent hybrid exciton model used in the ALICE/LIVERMORE-82 code to calculate the relevant branching ratios, with the E1 virtual photon spectra being calculated in the distorted wave Born approximation. We compared our results for the (?,n) cross section with other existing experimental measurements, and the long-standing normalization issue among different laboratories was revisited and addressed. We obtained for the first time the absolute (?,np) cross section from threshold to 60 MeV. We succeeded in separating statistical and direct contributions of the (?,np) process, the latter being remarkably well described by the QD model in the interval 40 60 MeV. A possible direct contribution for the (?,n) decay in the GDR is also addressed. Finally, the total photoabsorption cross section of 64Zn was reevaluated up to 21 MeV, and the results were compared with previous estimates performed by other groups.

  6. An analytical method for estimating the {sup 14}N nuclear quadrupole resonance parameters of organic compounds with complex free induction decays for radiation effects studies

    SciTech Connect

    Iselin, L.H.

    1992-12-31

    The use of {sup 14}N nuclear quadrupole resonance (NQR) as a radiation dosimetry tool has only recently been explored. An analytical method for analyzing {sup 14}N NQR complex free induction decays is presented with the background necessary to conduct pulsed NQR experiments. The {sup 14}N NQR energy levels and possible transitions are derived in step-by-step detail. The components of a pulsed NQR spectrometer are discussed along with the experimental techniques for conducting radiation effects experiments using the spectrometer. Three data analysis techniques -- the power spectral density Fourier transform, state space singular value decomposition (HSVD), and nonlinear curve fitting (using the downhill simplex method of global optimization and the Levenberg-Marquart method) -- are explained. These three techniques are integrated into an analytical method which uses these numerical techniques in this order to determine the physical NQR parameters. Sample data sets of urea and guanidine sulfate data are used to demonstrate how these methods can be employed to analyze both simple and complex free induction decays. By determining baseline values for biologically significant organics, radiation effects on the NQR parameters can be studied to provide a link between current radiation dosimetry techniques and the biological effects of radiation.

  7. First observation and measurement of the resonant structure of the lambda_b->lambda_c pi-pi+pi- decay mode

    SciTech Connect

    Azzurri, P.; Barria, P.; Ciocci, M.A.; Donati, S.; Vataga, E.

    2009-12-01

    The authors present the first observation of the {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -} decay using data from an integrated luminosity of approximately 2.4 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. They also present the first observation of the resonant decays {Lambda}{sub b}{sup 0} {yields} {Sigma}{sub c}(2455){sup 0} {pi}{sup +}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, {Lambda}{sub b}{sup 0} {yields} {Sigma}{sub c}(2455){sup ++}{pi}{sup -}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2595){sup +}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -} and {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2625){sup +}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, and measure their relative branching ratios.

  8. Instantaneous normal modes, resonances, and decay channels in the vibrational relaxation of the amide I mode of N-methylacetamide-D in liquid deuterated water.

    PubMed

    Bastida, Adolfo; Soler, Miguel Angel; Zúñiga, José; Requena, Alberto; Kalstein, Adrián; Fernández-Alberti, Sebastián

    2010-06-14

    A nonequilibrium molecular dynamics (MD) study of the vibrational relaxation of the amide I mode of deuterated N-methylacetamide (NMAD) in aqueous (D(2)O) solution is carried out using instantaneous normal modes (INMs). The identification of the INMs as they evolve over time, which is necessary to analyze the energy fluxes, is made by using a novel algorithm which allows us to assign unequivocally each INM to an individual equilibrium normal mode (ENM) or to a group of ENMs during the MD simulations. The time evolution of the energy stored in each INM is monitored and the occurrence of resonances during the relaxation process is then investigated. The decay of the amide I mode, initially excited with one vibrational quantum, is confirmed to fit well to a biexponential function, implying that the relaxation process involves at least two mechanisms with different rate constants. By freezing the internal motions of the solvent, it is shown that the intermolecular vibration-vibration channel to the bending modes of the solvent is closed. The INM analysis reveals then the existence of a major and faster decay channel, which corresponds to an intramolecular vibrational redistribution process and a minor, and slower, decay channel which involves the participation of the librational motions of the solvent. The faster relaxation pathway can be rationalized in turn using a sequential kinetic mechanism of the type P-->M+L-->L, where P (parent) is the initially excited amide I mode, and M (medium) and L (low) are specific midrange and lower-frequency NMAD vibrational modes, respectively. PMID:20550402

  9. Instantaneous normal modes, resonances, and decay channels in the vibrational relaxation of the amide I mode of N-methylacetamide-D in liquid deuterated water

    NASA Astrophysics Data System (ADS)

    Bastida, Adolfo; Soler, Miguel Angel; Zúñiga, José; Requena, Alberto; Kalstein, Adrián; Fernández-Alberti, Sebastián

    2010-06-01

    A nonequilibrium molecular dynamics (MD) study of the vibrational relaxation of the amide I mode of deuterated N-methylacetamide (NMAD) in aqueous (D2O) solution is carried out using instantaneous normal modes (INMs). The identification of the INMs as they evolve over time, which is necessary to analyze the energy fluxes, is made by using a novel algorithm which allows us to assign unequivocally each INM to an individual equilibrium normal mode (ENM) or to a group of ENMs during the MD simulations. The time evolution of the energy stored in each INM is monitored and the occurrence of resonances during the relaxation process is then investigated. The decay of the amide I mode, initially excited with one vibrational quantum, is confirmed to fit well to a biexponential function, implying that the relaxation process involves at least two mechanisms with different rate constants. By freezing the internal motions of the solvent, it is shown that the intermolecular vibration-vibration channel to the bending modes of the solvent is closed. The INM analysis reveals then the existence of a major and faster decay channel, which corresponds to an intramolecular vibrational redistribution process and a minor, and slower, decay channel which involves the participation of the librational motions of the solvent. The faster relaxation pathway can be rationalized in turn using a sequential kinetic mechanism of the type P ?M+L?L, where P (parent) is the initially excited amide I mode, and M (medium) and L (low) are specific midrange and lower-frequency NMAD vibrational modes, respectively.

  10. The Effect of Feedback on the Formation of High Mass Stars: From High Mass Cores to Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Klein, Richard

    The formation of high mass stars remains one of the most significant unsolved problems in all of astrophysics. It is these stars that dominate energy injection into the interstellar medium (ISM) and eventually explode as supernovae, producing most of the heavy elements in the universe. Feedback from massive stars destroys the molecular clouds in which they are born and shape the evolution of galaxies. Observations of HII regions produced by massive stars are a prime tool for extragalactic astronomers to determine star formation rates and abundances in galaxies. Many low mass stars are born in clusters containing massive stars, and HST observations show that circumstellar disks around such stars are subject to destruction by photoevaporation. Massive stars thus lie at the center of the web of physical processes that has shaped the universe as we know it, yet the processes involved in their formation still remain elusive. The goal of our research is to fill that major gap in our understanding. In this successor grant we propose to continue our development of a comprehensive theory of high-mass star formation (HMSF) using our state of the art 3-D self-gravitational magneto-radiation-hydrodynamics adaptive mesh refinement (AMR) code ORION. Our current grant has enabled us to make significant progress in understanding the role of radiative heating, radiation pressure and protostellar outflow feedback in the formation of individual high mass stars, and we have first studies of high mass clusters with radiative feedback and the effects of radiation feedback on the environmental dependence of the IMF. We have also completed the development of 2 major technical thrusts: a fully parallelized magnetohydrodynamic (MHD) capability in our AMR framework capable of simulating highly magnetized, high Mach number turbulent cores, and a fully parallelized AMR adaptive ray trace capability for photoionization. With these powerful new additions to ORION, we propose to include both magnetic fields and photoionization into our simulations of HMSF together with radiative heating, radiation pressure and protostellar outflows. This will enable us to make the most complete study yet of how massive stars form, identify the critical mechanisms involved, and determine whether the formation process sets an upper limit on stellar masses. We shall also simulate the formation of high mass star clusters, determining the rate and efficiency with which gas is processed into stars, the initial mass function of the stars, and how these depend on the natal cloud's properties. We will for the first time simulate the formation of an entire star cluster, including fragmentation to produce the IMF and feedback to regulate the star formation rate and ultimately eject the remaining gas. By using a hierarchy of increasingly complex simulations, starting with radiative effects and outflows, then adding MHD and finally adding direct and diffuse ionizing radiation, we propose to develop the most comprehensive picture yet of high mass cluster formation. Our work is closely connected to NASA's goals of determining the origins of stars and planets, which it is pursuing with HST, SOFIA, Herschel and Kepler, and will pursue with JWST. A major goal of our work is to make quantitative predictions about massive protostars, high mass clusters and their environments that can be quantitatively compared to observations using these telescopes.

  11. Orbital Stability of Multi-Planet Systems: Behavior at High Masses

    NASA Astrophysics Data System (ADS)

    Morrison, Sarah J.; Kratter, Kaitlin M.

    2015-12-01

    We explore the relationships between planet separation, mass, and stability timescale in high mass multi-planet systems containing planet masses and multiplicities relevant for planetary systems detectable via direct imaging. Extrapolating empirically derived relationships between planet mass, separation, and stability timescale derived from lower mass planetary systems misestimate the stability timescales for higher mass planetary systems by more than an order of magnitude at close separations near the two body Hill stability limit. We also find that characterizing critical separations in terms of period ratio produces a linear relationship between log-timescale and separation with the same slope for planet-star mass ratios comparable to or exceeding Jupiter’s, but this slope steepens for lower mass planetary systems. We discuss possible mechanisms for instability that result in this behavior including perturbing adjacent planet pairs into an overlap regime between 1st and sometimes 2nd order mean motion resonances.

  12. Search for new resonances decaying via WZ to leptons in proton-proton collisions at ?{ s} = 8TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Kim, T. J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Liao, J.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Correa Martins Junior, M.; Dos Reis Martins, T.; Pol, M. E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.

    2015-01-01

    A search is performed in proton-proton collisions at ?{ s} = 8 TeV for exotic particles decaying via WZ to fully leptonic final states with electrons, muons, and neutrinos. The data set corresponds to an integrated luminosity of 19.5 fb-1. No significant excess is observed above the expected standard model background. Upper bounds at 95% confidence level are set on the production cross section of a W? boson as predicted by an extended gauge model, and on the W? WZ coupling. The expected and observed mass limits for a W? boson, as predicted by this model, are 1.55 and 1.47 TeV, respectively. Stringent limits are also set in the context of low-scale technicolor models under a range of assumptions for the model parameters.

  13. Neutral B Meson Decays to rho(0) K*(0), f(0)K*(0), and K*+ Including Higher K* Resonances

    NASA Astrophysics Data System (ADS)

    Lee-Boehm, Corry Louise

    2011-12-01

    The BABAR detector at the PEP-II asymmetric-energy e+e- collider at the SLAC National Accelerator Laboratory collected a sample of (471.0 +/- 2.8) x 106 BB¯ pairs during its operation from 1999--2008. The study of the branching fractions and angular distributions of B meson decays to hadronic final states without a charm quark probes the dynamics of both the weak and strong interactions, and plays an important role both in understanding CP violation in the quark sector and in searching for evidence for physics beyond the standard model. We present branching fraction measurements for the decays B0 ? rho0K* 0, B0 ? f 0K*0, and B 0 ? rho-K*+, where K* is a Kp* 0 or K*(892); we also measure B 0 ? f0 K*2 (1430)0. For the K*(892) channels, we report longitudinal polarizations (for rho final states) and direct CP-violation asymmetries. We observe rho 0K*(892)0, rho0 Kp*0 0 , f0K*(892)0, and rho-K*(892)+ with greater than 5sigma significance, including systematics; f 0K*(892)0, rho- K*(892)+, and rho0 Kp*0 0 are observed here for the first time. We present first evidence for f0 Kp*0 0 with 3.0sigma and f0 K*2 (1430)0 with 4.4sigma significance. We place an upper limit on rho- Kp*+ 0 . We find results consistent with no direct CP violation.

  14. High Mass Higgs Boson Searches at the Tevatron

    E-print Network

    Bjoern Penning

    2010-12-02

    We present results from CDF and D0 on direct searches for high mass standard model (SM) Higgs boson (H) in ppbar collisions at the Fermilab Tevatron at \\sqrt(s) = 1.96 TeV. Compared to previous Higgs boson Tevatron combinations, more data and new channels (H -> W+W- -> lnujj, H -> WW -> l+tau + X and trilepton final states) have been added. Most previously used channels have been reanalyzed to gain sensitivity. Analyzing 5.9 fb^-1 of data at CDF, and 5.4-6.7 fb^-1 at D0, the combination excludes with 95% C.L. a standard model Higgs boson in the mass range of m_H = 158-175 GeV/c2.

  15. NIR integral field spectroscopy of high mass young stellar objects

    NASA Astrophysics Data System (ADS)

    Murakawa, K.; Lumsden, S. L.; Oudmaijer, R. D.; Davies, B.; Hoare, M. G.

    2013-03-01

    We present K-band Integral Field Spectroscopy of six high mass young stellar objects (IRAS~18151-1208, AFGL~2136, S106~IRS4, V645 Cyg, IRAS~19065+0526, and G082.5682+ 00.4040) obtained using the adaptive optics assisted NIFS instrument mounted on the Gemini North telescope. The targets are chosen from the Red MSX Source survey led by University of Leeds. The data show the spectral features of Br?, H2, and gas phase CO emissions and absorptions with a spectral resolution of R ? 5500, which allow a three-dimensional spectro-astrometric analysis of the line emissions. We discuss the results of the ionized jets and winds, and rotating CO torus.

  16. Resonant Auger decay of Xe{sup *} 4d{sub 5/2}{sup -1}6p: A contribution to the complete experiment from fluorescence polarization studies

    SciTech Connect

    O'Keeffe, P.; Aloiese, S.; Meyer, M.; Lohmann, B.; Kleiman, U.; Grum-Grzhimailo, A. N.

    2004-07-01

    Fluorescence polarimetry has been used to determine the relative partial-wave Auger decay widths for transitions to states of the Xe II 5p{sup 4}6p multiplet after photoexcitation of the Xe{sup *} 4d{sub 5/2}{sup -1}6p(J{sup *}=1) resonance by linearly and circularly polarized synchrotron radiation. Combination with data on the angular distribution and spin polarization of the Auger electrons, providing information on the relative phases of the amplitudes, constitutes the complete experiment on the Auger decay. Multiconfiguration relativistic calculations of the amplitudes have been performed and compared to the measurements.

  17. Mass Discrimination in High-Mass MALDI-MS

    NASA Astrophysics Data System (ADS)

    Weidmann, Simon; Mikutis, Gediminas; Barylyuk, Konstantin; Zenobi, Renato

    2013-09-01

    In high-mass matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), the accessible m/z range is limited by the detector used. Therefore, special high-mass detectors based on ion conversion dynodes (ICDs) have been developed. Recently, we have found that mass bias may exist when such ICD detectors are used [Weidmann et al., Anal. Chem. 85(6), 3425-3432 (2013)]. In this contribution, the mass-dependent response of an ICD detector was systematically studied, the response factors for proteins with molecular weights from 35.9 to 129.9 kDa were determined, and the reasons for mass bias were identified. Compared with commonly employed microchannel plate detectors, we found that the mass discrimination is less pronounced, although ions with higher masses are weakly favored when using an ICD detector. The relative response was found to depend on the laser power used for MALDI; low-mass ions are discriminated against with higher laser power. The effect of mutual ion suppression in dependence of the proteins used and their molar ratio is shown. Mixtures consisting of protein oligomers that only differ in mass show less mass discrimination than mixtures consisting of different proteins with similar masses. Furthermore, mass discrimination increases for molar ratios far from 1. Finally, we present clear guidelines that help to choose the experimental parameters such that the response measured matches the actual molar fraction as closely as possible.

  18. B0 meson decays to ?0K*0, f0K*0, and ?-K*+, including higher K* resonances

    NASA Astrophysics Data System (ADS)

    Lees, J. P.; Poireau, V.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Prencipe, E.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Simi, G.; Dallapiccola, C.; Cowan, R.; Dujmic, D.; Sciolla, G.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Neri, N.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Taras, P.; De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Honscheid, K.; Kass, R.; Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.; Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Bünger, C.; Grünberg, O.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Aston, D.; Bard, D. J.; Bartoldus, R.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Benitez, J. F.; Burchat, P. R.; Miyashita, T. S.; Alam, M. S.

    2012-04-01

    We present branching fraction measurements for the decays B0??0K*0, B0?f0K*0, and B0??-K*+, where K* is an S-wave (K?)0* or a K*(892) meson; we also measure B0?f0K2*(1430)0. For the K*(892) channels, we report measurements of longitudinal polarization fractions (for ? final states) and direct CP violation asymmetries. These results are obtained from a sample of (471.0±2.8)×106 BB¯ pairs collected with the BABAR detector at the PEP-II asymmetric-energy e+e- collider at the SLAC National Accelerator Laboratory. We observe ?0K*(892)0, ?0(K?)0*0, f0K*(892)0, and ?-K*(892)+ with greater than 5? significance, including systematics. We report first evidence for f0(K?)0*0 and f0K2*(1430)0, and place an upper limit on ?-(K?)0*+. Our results in the K*(892) channels are consistent with no direct CP violation.

  19. Tetraquark resonances with the triple flip-flop potential, decays in the cherry in a broken glass approximation

    E-print Network

    Bicudo, Pedro

    2010-01-01

    We develop a unitarized formalism to study tetraquarks using the triple flip-flop potential, which includes two meson-meson potentials and the tetraquark four-body potential. This can be related to the Jaffe-Wilczek and to the Karliner-Lipkin tetraquark models, where we also consider the possible open channels, since the four quarks and antiquarks may at any time escape to a pair of mesons. Here we study a simplified two-variable toy model and explore the analogy with a cherry in a glass, but a broken one where the cherry may escape from. It is quite interesting to have our system confined or compact in one variable and infinite in the other variable. In this framework we solve the two-variable Schr\\"odinger equation in configuration space. With the finite difference method, we compute the spectrum, we search for localized states and we attempt to compute phase shifts. We then apply the outgoing spherical wave method to compute in detail the phase shifts and and to determine the decay widths. We explore the m...

  20. Accuracy and Precision of Head Motion Information in Multi-Channel Free Induction Decay Navigators for Magnetic Resonance Imaging.

    PubMed

    Babayeva, Maryna; Kober, Tobias; Knowles, Benjamin; Herbst, Michael; Meuli, Reto; Zaitsev, Maxim; Krueger, Gunnar

    2015-09-01

    Free induction decay (FID) navigators were found to qualitatively detect rigid-body head movements, yet it is unknown to what extent they can provide quantitative motion estimates. Here, we acquired FID navigators at different sampling rates and simultaneously measured head movements using a highly accurate optical motion tracking system. This strategy allowed us to estimate the accuracy and precision of FID navigators for quantification of rigid-body head movements. Five subjects were scanned with a 32-channel head coil array on a clinical 3T MR scanner during several resting and guided head movement periods. For each subject we trained a linear regression model based on FID navigator and optical motion tracking signals. FID-based motion model accuracy and precision was evaluated using cross-validation. FID-based prediction of rigid-body head motion was found to be with a mean translational and rotational error of 0.14±0.21 mm and 0.08±0.13°, respectively. Robust model training with sub-millimeter and sub-degree accuracy could be achieved using 100 data points with motion magnitudes of ±2 mm and ±1° for translation and rotation. The obtained linear models appeared to be subject-specific as inter-subject application of a "universal" FID-based motion model resulted in poor prediction accuracy. The results show that substantial rigid-body motion information is encoded in FID navigator signal time courses. Although, the applied method currently requires the simultaneous acquisition of FID signals and optical tracking data, the findings suggest that multi-channel FID navigators have a potential to complement existing tracking technologies for accurate rigid-body motion detection and correction in MRI. PMID:25781624

  1. Jets and decays of resonances: Two mechanisms responsible for reduction of elliptic flow at the CERN Large Hadron Collider (LHC) and restoration of constituent quark scaling

    SciTech Connect

    Eyyubova, G.; Bravina, L. V.; Zabrodin, E.; Korotkikh, V. L.; Lokhtin, I. P.; Malinina, L. V.; Petrushanko, S. V.; Snigirev, A. M.

    2009-12-15

    The formation and evolution of the elliptic flow pattern in Pb+Pb collisions at {radical}(s)=5.5A TeV and in Au+Au collisions at {radical}(s)=200A GeV are analyzed for different hadron species within the framework of the HYDJET++ Monte Carlo model. The model contains both hydrodynamic state and jets, thus allowing for a study of the interplay between the soft and hard processes. It is found that jets terminate the rise of the elliptic flow with increasing transverse momentum. Since jets are more influential at the Large Hadron Collider (LHC) than at the Relativistic Heavy Ion Collider (RHIC), the elliptic flow at LHC should be weaker than that at RHIC. The influence of resonance decays on particle elliptic flow is also investigated. These final state interactions enhance the low-p{sub T} part of the v{sub 2} of pions and light baryons and work toward the fulfillment of idealized constituent quark scaling.

  2. Filament fragmentation in high-mass star formation

    NASA Astrophysics Data System (ADS)

    Beuther, H.; Ragan, S. E.; Johnston, K.; Henning, Th.; Hacar, A.; Kainulainen, J. T.

    2015-12-01

    Context. Filamentary structures in the interstellar medium are crucial ingredients of the star formation process. They fragment to form individual star-forming cores, and at the same time they may also funnel gas toward the central gas cores, providing an additional gas reservoir. Aims: We want to resolve the length scales for filament formation and fragmentation (resolution ?0.1 pc), in particular the Jeans length and cylinder fragmentation scale. Methods: We have observed the prototypical high-mass star-forming filament IRDC 18223 with the Plateau de Bure Interferometer (PdBI) in the 3.2 mm continuum and N2H+(1-0) line emission in a ten-field mosaic at a spatial resolution of ~ 4'' (~14 000 au). Results: The dust continuum emission resolves the filament into a chain of at least 12 relatively regularly spaced cores. The mean separation between cores is ~0.40(± 0.18) pc. While this is approximately consistent with the fragmentation of an infinite, isothermal, and gravitationally bound gas cylinder, a high mass-to-length ratio of M/l ? 1000 M? pc-1 requires additional turbulent and/or magnetic support against radial collapse of the filament. The N2H+(1-0) data reveal a velocity gradient perpendicular to the main filament. Although rotation of the filament cannot be excluded, the data are also consistent with the main filament being comprised of several velocity-coherent subfilaments. Furthermore, this velocity gradient perpendicular to the filament resembles results toward Serpens south that are interpreted as signatures of filament formation within magnetized and turbulent sheet-like structures. Lower-density gas tracers ([CI] and C18O) reveal a similar red- and blueshifted velocity structure on scales around 60'' east and west of the filament. This may tentatively be interpreted as a signature of the large-scale cloud and the smaller scale filament being kinematically coupled. We do not identify a velocity gradient along the axis of the filament. This may be due to no significant gas flows along the filamentary axis, but it may also be partly caused by a low inclination angle of the filament with respect to the plane of the sky minimizing such a signature. Conclusions: The IRDC 18223 3.2 mm continuum data are consistent with thermal fragmentation of a gravitationally bound and compressible gas cylinder. However, the high mass-to-length ratio requires additional support - most likely turbulence and/or magnetic fields - against collapse. The N2H+ spectral line data indicate a kinematic origin of the filament, but we cannot conclusively differentiate whether it has formed out of (pre-existing) velocity-coherent subfilaments, whether magnetized converging gas flows, a larger-scale collapsing cloud, or even whether rotation played a significant role during filament formation. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Final reduced data cubes (FITS) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A67

  3. Search for $WW$ and $WZ$ resonances decaying to electron, missing $E_T$, and two jets in $p\\bar{p}$ collisions at $\\sqrt{s}=1.96$ TeV

    SciTech Connect

    Aaltonen, T.; Adelman, J.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.; Apresyan, A.; /Purdue U. /Waseda U.

    2010-04-01

    Using data from 2.9 fb{sup -1} of integrated luminosity collected with the CDF II detector at the Tevatron, we search for resonances decaying into a pair of on-shell gauge bosons, WW or WZ, where one W decays into an electron and a neutrino, and the other boson decays into two jets. We observed no statistically significant excess above the expected standard model background, and we set cross section limits at 95% confidence level on G* (Randall-Sundrum graviton), Z{prime}, and W{prime} bosons. By comparing these limits to theoretical cross sections, mass exclusion regions for the three particles are derived. The mass exclusion regions for Z{prime} and W{prime} are further evaluated as a function of their gauge coupling strength.

  4. The High Mass Stellar IMF in M31

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; PHAT

    2015-01-01

    I will present a progress report on our analysis of the high mass stellar initial mass (IMF) in M31 from the Panchromatic Hubble Andromeda Treasury program (PHAT), an 828-orbit HST survey of 1/3 of M31's star-forming disk. To date, we have measured the present day mass function (MF) above 2 M? for nearly 1000 young star clusters (< 300 Myr) by modeling their resolved star color-magnitude diagrams. The MF slopes of individual clusters show a tremendous degree of scatter, with some clusters differing substantially from Salpeter. There appears to be little correlation between physical properties of the clusters (e.g., mass, age) and their MF slopes. From analysis of the ensemble of clusters, we recover a global MF that is both steeper than Salpeter and one that exhibits a high degree of variance, which, if taken at face value, does not appear comapabilte with a universal IMF model. We are using an extensive suite of artificial clusters, designed to mimic observations, to investigate whether effects such as finite sampling statistics, dynamical evolution (e.g., mass segregation), stellar multiplicity, cluster membership, crowding, and/or completeness can be responsible for the observed MF properties, or if the M31 cluster population has an intrinsically non-universal IMF.

  5. Wind Absorption in High Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Hirsch, M.; Hell, N.; Nowak, M.; Pottschmidt, K.; Grinberg, V.; Wilms, J.; F"urst, F.; Tomsick, J.; Harrison, F.; Stern, D.

    2015-07-01

    The black hole binary Cygnus X-1 is one of the best studied wind accreting high mass X-ray binaries (HMXBs). Its soft X-ray light curve shows strong dips where clumps in the highly photoionized, focused wind of the donor star HDE 226868 pass our line of sight. Chandra HETGS observations allow for an investigation of the wind's properties. We present the evolution of Si and S K? spectra with four different dipping stages. As the inner part of the clumps is shielded from the X-rays, lower ionization stages appear during the deeper part of the dips. We also present first results from a joint XMM/NuSTAR campaign on the strongly absorbed neutron star X-ray binary IGR J16318-4848. The source has an N_{H} exceeding 10^{24} cm^{-2}. Its X-ray spectrum below 10 keV is dominated by strong fluorescent Fe K? emission, while the broad band 5-50 keV spectrum is dominated by Compton down scattering.

  6. Filament Fragmentation in High-Mass Star Formation

    E-print Network

    Beuther, H; Johnston, K; Henning, Th; Hacar, A; Kainulainen, J T

    2015-01-01

    Aims: We resolve the length-scales for filament formation and fragmentation (res. filament IRDC18223 with the Plateau de Bure Interferometer (PdBI) in the 3.2mm continuum and N2H+(1-0) line emission in a ten field mosaic at a spatial resolution of ~4'' (~14000AU). Results: The dust continuum emission resolves the filament into a chain of at least 12 relatively regularly spaced cores. The mean separation between cores is ~0.40(+-0.18)pc. While this is approximately consistent with the fragmentation of an infinite, isothermal, gravitationally bound gas cylinder, a high mass-to-length ratio of M/l~1000M_sun/pc requires additional turbulent and/or magnetic support against radial collapse of the filament. The N2H+(1-0) data reveal a velocity gradient perpendicular to the main filament. Although rotation of the filament cannot be excluded, the data are also consistent with the m...

  7. Molecular line tracers of high-mass star forming regions

    NASA Astrophysics Data System (ADS)

    Nagy, Zsofia; Van der Tak, Floris; Ossenkopf, Volker; Bergin, Edwin; Black, John; Faure, Alexandre; Fuller, Gary; Gerin, Maryvonne; Goicoechea, Javier; Joblin, Christine; Le Bourlot, Jacques; Le Petit, Franck; Makai, Zoltan; Plume, Rene; Roellig, Markus; Spaans, Marco; Tolls, Volker

    2013-07-01

    High-mass stars influence their environment in different ways including feedback via their FUV radiation. The penetration of FUV photons into molecular clouds creates Photon Dominated Regions (PDRs) with different chemical layers where the mainly ionized medium changes into mainly molecular. Different chemical layers in PDRs are traced by different species observable at sub-mm and Far Infrared wavelengths. In this poster we present results from two molecular line surveys. One of them is the James Clerk Maxwell Telescope (JCMT) Spectral Legacy Survey (SLS) toward the luminous (>10^7 L_Sun), massive (~10^6 M_Sun), and distant (11.4 kpc) star-forming region W49A. The SLS images a 2x2 arcminute field toward W49A in the 330-373 GHz frequency range. The detected molecular lines reveal a complex chemistry and the importance of FUV-irradiation in the heating and chemistry of the region. The other line survey presented in the poster is part of the HEXOS (Herschel observations of EXtra-Ordinary Sources, PI: E. Bergin) key program using the Herschel Space Observatory and is toward the nearby (~420 pc) prototypical edge-on Orion Bar PDR and the dense molecular condensation Orion S. Reactive ions, such as CH+, SH+, and CO+, detected as a part of this line survey trace the warm (~500-1000 K) surface region of PDRs. Spectrally resolved HIFI and spectrally unresolved PACS spectra give constraints on the chemistry and excitation of reactive ions in these regions.

  8. Molecular line tracers of high-mass star forming regions

    NASA Astrophysics Data System (ADS)

    Nagy, Zsofia

    2013-09-01

    High-mass stars influence their environment in different ways including feedback via their far-UV radiation and mechanical feedback via shocks and stellar winds. The penetration of FUV photons into molecular clouds creates Photon Dominated Regions (PDRs) with different chemical layers where the mainly ionized medium changes into mainly molecular. Different chemical layers in PDRs are traced by different species observable at sub-mm and far-infrared wavelengths. In this thesis we present results from two molecular line surveys. One of them is the James Clerk Maxwell Telescope (JCMT) Spectral Legacy Survey (SLS) toward the luminous (>10^7 L_Sun), massive (~10^6 M_Sun), and distant (11.4 kpc) star-forming region W49A. The SLS images a 2x2 arcminute field around W49A in the 330-373 GHz frequency range. The detected molecular lines reveal a complex chemistry and the importance of FUV-irradiation and shocks in the heating and chemistry of the region. The other line survey presented in this thesis is part of the HEXOS (Herschel observations of EXtra-Ordinary Sources) key program using the Herschel Space Observatory and is toward the nearby (~420 pc) prototypical edge-on Orion Bar PDR and the dense molecular condensation Orion S. Reactive ions, such as CH+, SH+, and CO+, detected as a part of this line survey trace the warm (~500-1000 K) surface region of PDRs. Spectroscopic data from the HIFI and PACS instruments of Herschel give constraints on the chemistry and excitation of reactive ions in these regions.

  9. Monitoring the formation and decay of transient photosensitized intermediates using pump-probe UV resonance Raman spectroscopy. I: Self-modeling curve resolution.

    PubMed

    Kleimeyer, James A; Harris, Joel M

    2003-04-01

    Resolution of transient excited-state Raman scattering from ground-state and solvent bands is a challenging spectroscopic measurement since excited-state spectral features are often of low intensity, overlapping the dominant ground-state and solvent bands. The Raman spectra of these intermediates can be resolved, however, by acquiring time-resolved data and using multidimensional data analysis methods. In the absence of a physical model describing the kinetic behavior of a reaction, resolution of the pure-component spectra from these data can be accomplished using self-modeling curve resolution, a factor analysis technique that relies on the correlation in the data along a changing composition dimension to resolve the component spectra. A two-laser UV pump-probe resonance-enhanced Raman instrument was utilized to monitor the kinetics of amine quenching of excited-triplet states of benzophenone. The formation and decay of transient intermediates were monitored over time, from 15 ns to 100 micros. Factor analysis of the time-resolved spectral data identified three significant components in the data. The time-resolved intensities at each Raman wavenumber shift were projected onto the three significant eigenvectors, and least-squares criteria were developed to find the common plane in the space of the eigenvectors that includes the observed data. Within that plane, the three pure-component spectra were resolved using geometric criteria of convex hull analysis. The resolved spectra were found to arise from benzophenone excited-triplet states, diphenylketyl radicals, and the solvent and ground-state benzophenone. PMID:14658641

  10. X-Ray Polarization from High-mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Kallman, T.; Dorodnitsyn, A.; Blondin, J.

    2015-12-01

    X-ray astronomy allows study of objects that may be associated with compact objects, i.e., neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically nonspherical, and likely noncircular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. Potential targets for future X-ray polarization observations are the high-mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early-type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature that depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.

  11. The CO ladder from low- to high-mass protostars

    NASA Astrophysics Data System (ADS)

    van Dishoeck, Ewine

    2015-08-01

    Young stars interact vigorously with their surroundings, as is evident from the highly rotationally excited CO (up to E_u = 6000 K) seen by Herschel in even low-luminosity embedded protostars. The detection of CO lines up to J=49-48 opens up an entirely new window on using this molecule as a probe of the physical structure. Here the results from a number of large Herschel programs with all three instruments are summarized (WISH, WILL, DIGIT), covering more than 100 sources from low (~1 LSun) to high mass (~105 LSun) sources [1-2, and refs cited]. Two components are universally found on CO rotational diagrams, with median temperatures of ~320 and ~700 K, respectively, and no significant trend with luminosity.Based on analysis of excitation and line profiles, the emission is found to be dominated by shocks: both non dissociative C-type shocks along the outflow cavity walls and dissociative J-type shocks located in spot shocks. The CO data, together with complementary H2O and OH observations, are tested against shock models from the literature. The observed line ratios are found to be remarkably similar and do not show variations with physical parameters of the sources (luminosity, envelope mass). The data show good agreement with models when line ratios of the same species are compared, constraining pre-shock density and shock velocity. However, the observations consistently show H2O-to-CO and H2O-to-OH line ratios that are one to two orders of magnitude lower than predicted by the existing shock models. This is most likely caused by an overabundance of H2O in the models. Illumination of the shocked material by UV photons produced either in the star-disk system or, more locally, in the shock, would decrease the H2O abundances and reconcile the models with observations.This contribution is on behalf of the WISH, WILL and DIGIT teams.[1.] Karska et al. 2014, A&A 562, A45; 2015 in preparation[2.] Karska et al. 2014, A&A 572, A9

  12. Properties of stellar clusters around high-mass young stars

    NASA Astrophysics Data System (ADS)

    Faustini, F.; Molinari, S.; Testi, L.; Brand, J.

    2009-09-01

    Context: Twenty-six high-luminosity IRAS sources believed to be collection of stars in the early phases of high-mass star formation have been observed in the near-IR (J, H, K_s) to characterize the clustering properties of their young stellar population and compare them with those of more evolved objects (e.g., Herbig Ae/Be stars) of comparable mass. All the observed sources possess strong continuum and/or line emission in the millimeter, being therefore associated with gas and dust envelopes. Nine sources have far-IR colors characteristic of UCHII regions, while the other 17 are probably experiencing an evolutionary phase that precedes the hot-cores, as suggested by a variety of evidence collected in the past decade. Aims: We attempt to gain insight into the initial conditions of star formation in these clusters (initial mass function [IMF], star formation history [SFH]), and to determine mean cluster ages. Methods: For each cluster, we complete aperture photometry. We derive stellar density profiles, color-color and color-magnitude diagrams, and color (HKCF) and luminosity (KLF) functions. These two functions are compared with simulated KLFs and HKCFs from a model that generates populations of synthetic clusters starting from assumptions about the IMF, SFH, and Pre-MS evolution, and using the average properties of the observed clusters as boundary conditions (bolometric luminosity, dust distribution, infrared excess, extinction). Results: Twenty-two sources show evidence of clustering with a stellar richness indicator that varies from a few up to several tens of objects, and a median cluster radius of 0.7 pc. A considerable number of cluster members present an infrared excess characteristic of young pre-main-sequence objects. For a subset of 9 detected clusters, we could perform a statistically significant comparison of the observed KLFs with those resulting from synthetic cluster models; for these clusters, we find that the median stellar age ranges between 2.5×105 and 5×106 years, with evidence of an age spread of the same entity within each cluster. We also find evidence that older clusters tend to be smaller in size, in agreement with our clusters being on average larger than those around relatively older Herbig Ae/Be stars. Our models allow us to explore the relationship between the mass of the most massive star in the cluster and both the cluster richness and the total stellar mass. Although these relationships are predicted by several classes of cluster formation models, their detailed analysis suggests that the properties of our modeled clusters may not be consistent with them resulting from random sampling of the IMF. Conclusions: Our results are consistent with star formation having occurred continuously over a period of time longer than the typical crossing time. Appendices are only available in electronic form at http://www.aanda.org Based on observations obtained at the Palomar Observatory and at the ESO La Silla Observatory (Chile), programme 65.I-0310(A).

  13. THE EARLIEST STAGES OF HIGH MASS STAR FORMATION METHANOL MASER INSIGHTS , P. Andr1

    E-print Network

    De Buizer, James Michael

    THE EARLIEST STAGES OF HIGH MASS STAR FORMATION ­ METHANOL MASER INSIGHTS V. Minier1 , P. André1 (>8 M ) star formation using methanol MASERs as astronomical probes. Methanol masers can provide form. Tracers of high mass star-forming complexes in the Galactic plane: The brightest methanol masers

  14. High-mass X-ray binaries in the Milky Way. A closer look with INTEGRAL

    NASA Astrophysics Data System (ADS)

    Walter, Roland; Lutovinov, Alexander A.; Bozzo, Enrico; Tsygankov, Sergey S.

    2015-08-01

    High-mass X-ray binaries are fundamental in the study of stellar evolution, nucleosynthesis, structure and evolution of galaxies and accretion processes. Hard X-rays observations by INTEGRAL and Swift have broadened significantly our understanding in particular for the super-giant systems in the Milky Way, whose number has increased by almost a factor of three. INTEGRAL played a crucial role in the discovery, study and understanding of heavily obscured systems and of fast X-ray transients. Most super-giant systems can now be classified into three categories: classical/obscured, eccentric and fast transient. The classical systems feature low eccentricity and variability factor of , mostly driven by hydrodynamic phenomena occurring on scales larger than the accretion radius. Among them, systems with short orbital periods and close to Roche-Lobe overflow or with slow winds appear highly obscured. In eccentric systems, the variability amplitude can reach even higher factors because of the contrast of the wind density along the orbit. Four super-giant systems, featuring fast outbursts, very short orbital periods and anomalously low accretion rates, are not yet understood. Simulations of the accretion processes on relatively large scales have progressed and reproduce parts of the observations. The combined effects of wind clumps, magnetic fields, neutron star rotation and eccentricity ought to be included in future modelling work. Observations with INTEGRAL in combination with other observatories were also important for detecting cyclotron resonant scattering features in spectra of X-ray pulsars, probing their variations and the geometry of the accretion column and emission regions. Finally, the unique characteristics of INTEGRAL and its long life time played a fundamental role for building a complete catalogue of HXMBs, to study the different populations of these systems in our Galaxy and to constrain some of the time scales and processes driving their birth and evolution.

  15. The rate and efficiency of high-mass star formation along the Hubble sequence

    NASA Technical Reports Server (NTRS)

    Devereux, Nicholas A.; Young, Judith S.

    1991-01-01

    Data obtained with IRAS are used to compare and contrast the global star formation rates for a galactic sample which represents essentially all known noninteracting spiral and lenticular galaxies within 40 Mpc. The distribution of 60 micron luminosity is similar for spirals of types Sa-Scd inclusively, although the luminosities of the very early and very late types are, on average, one order of magnitude lower. High-mass star formation rates are similar for early, intermediate, and late type spirals, and the average high-mass star formation rate per unit molecular gas mass is independent of type for spiral galaxies. A remarkable homogeneity exists in the high-mass star-forming capabilities of spiral galaxies, particularly among the Sa-Scd types. The Hubble sequence is therefore not a sequence in the present-day rate or production efficiency of high-mass stars.

  16. Dynamical coupled-channels model of K-p reactions. II. Extraction of ?* and ?* hyperon resonances

    NASA Astrophysics Data System (ADS)

    Kamano, H.; Nakamura, S. X.; Lee, T.-S. H.; Sato, T.

    2015-08-01

    Resonance parameters (pole masses and residues) associated with the excited states of hyperons, ?* and ?*, are extracted within a dynamical coupled-channels model developed recently by us [Phys. Rev. C 90, 065204 (2014)], 10.1103/PhysRevC.90.065204 through a comprehensive partial-wave analysis of the K-p ?K ¯N ,? ? ,? ? ,? ? ,K ? data up to invariant mass W =2.1 GeV. We confirm the existence of resonances corresponding to most, if not all, of the four-star resonances rated by the Particle Data Group. We also find several new resonances, and in particular propose a possible existence of a new narrow JP=3 /2+ ? resonance that couples strongly to the ? ? channel. The JP=1 /2- ? resonances located below the K ¯N threshold are also discussed. Comparing our extracted pole masses with the ones from a recent analysis by the Kent State University group, some significant differences in the extracted resonance parameters are found, suggesting the need of more extensive and accurate data of K-p reactions including polarization observables to eliminate such an analysis dependence of the resonance parameters. In addition, the determined large branching ratios of the decays of high-mass resonances to the ? ?* and K¯*N channels also suggest the importance of the data of 2 ?3 reactions such as K-p ?? ? ? and K-p ?? K ¯N . Experiments on measuring cross sections and polarization observables of these fundamental reactions are highly desirable at hadron beam facilities such as J-PARC for establishing the ?* and ?* spectrum.

  17. Dynamical coupled-channels model of $K^- p$ reactions (II): Extraction of $?^*$ and $?^*$ hyperon resonances

    E-print Network

    H. Kamano; S. X. Nakamura; T. -S. H. Lee; T. Sato

    2015-08-12

    Resonance parameters (pole masses and residues) associated with the excited states of hyperons, Lambda^* and Sigma^*, are extracted within a dynamical coupled-channels model developed recently by us [Phys. Rev. C 90, 065204 (2014)] through a comprehensive partial-wave analysis of the K^- p --> barK N, pi Sigma, pi Lambda, eta Lambda, K Xi data up to invariant mass W = 2.1 GeV. We confirm the existence of resonances corresponding to most, if not all, of the four-star resonances rated by the Particle Data Group. We also find several new resonances, and in particular propose a possible existence of a new narrow J^P=3/2^+ Lambda resonance that couples strongly to the eta Lambda channel. The J^P=1/2^- Lambda resonances located below the barK N threshold are also discussed. Comparing our extracted pole masses with the ones from a recent analysis by the Kent State University group, some significant differences in the extracted resonance parameters are found, suggesting the need of more extensive and accurate data of K^- p reactions including polarization observables to eliminate such an analysis dependence of the resonance parameters. In addition, the determined large branching ratios of the decays of high-mass resonances to the pi Sigma^* and barK^* N channels also suggest the importance of the data of 2 --> 3 reactions such as K^- p --> pi pi Lambda and K^- p --> pi barK N. Experiments on measuring cross sections and polarization observables of these fundamental reactions are highly desirable at hadron beam facilities such as J-PARC for establishing the Lambda^* and Sigma^* spectrum.

  18. Search for High-Mass States with One Lepton Plus Missing Transverse Momentum in Proton-Proton Collisions at $\\sqrt{s} with the ATLAS Detector

    SciTech Connect

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; /Freiburg U. /Oklahoma U. /Barcelona, IFAE /Geneva U. /Oxford U. /Baku, Inst. Phys. /Oklahoma State U. /Michigan State U. /Tel Aviv U. /Orsay, LAL /INFN, Milan /Milan U. /INFN, Udine /ICTP, Trieste /Brookhaven /Hampton U. /Yale U. /Heidelberg, Max Planck Inst. /Munich U. /Queen Mary, U. of London /Rutherford

    2012-06-20

    The ATLAS detector is used to search for high-mass states, such as heavy charged gauge bosons (W{prime},W*), decaying to a charged lepton (electron or muon) and a neutrino. Results are presented based on the analysis of ppcollisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 36 pb{sup -1}. No excess beyond standard model expectations is observed. A W{prime} with sequential standard model couplings is excluded at 95% confidence level for masses below 1.49 TeV, and a W* (charged chiral boson) for masses below 1.35 TeV.

  19. [MRO] Search for resonant diboson production in the WW/WZ???jj decay channels with the ATLAS detector at ?s=7??TeV

    E-print Network

    Taylor, Frank E.

    A search for resonant diboson production using a data sample corresponding to 4.7??fb[superscript -1] of integrated luminosity collected by the ATLAS experiment at the Large Hadron Collider in pp collisions at ?s=7??TeV ...

  20. Search for W' boson resonances decaying to a top and a bottom quark and probing anomalous Wtb couplings with 1 fb{sup -1} of D0 Data

    SciTech Connect

    Badaud, Frederique

    2008-11-23

    With the first evidence for single top quark production in the D0 detector at the Fermilab Tevatron pp-bar collider, the single top quark cross section is measured, limits on the masses of heavy W' boson resonances are set and anomalous Wtb couplings are studied.

  1. Configuration-interaction-induced dynamic spin polarization of the Ar*(2p{sub 1/2,3/2}{sup -1}4s{sub 1/2}){sub J=1} resonant Auger decay

    SciTech Connect

    Lohmann, B.; Langer, B.; Snell, G.; Canton, S.; Berrah, N.; Kleiman, U.; Becker, U.; Martins, M.

    2005-02-01

    Spin-resolved measurements of the Ar{sup *}(2p{sub 1/2,3/2}{sup -1}4s{sub 1/2}){sub J=1} resonantly excited L{sub 2,3}M{sub 2,3}M{sub 2,3} Auger decay have been performed. The low resolution Auger spectrum, which due to cancellation between different multiplet components should exhibit virtually zero dynamic spin polarization, reveals an unexpected nonvanishing polarization effect. Calculations within a relativistic distorted wave approximation explain this effect as configuration-interaction (CI) induced. The CI generates experimentally unresolved fine structure components with low and high total angular momentum, giving rise to asymmetric cases where the high J part of certain multiplets is suppressed by internal selection rules for diagram lines. In this case, only the low J components survive with no partner for spin-polarization cancellation.

  2. The NH3 Hyperfine Intensity Anomaly in High-Mass Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Camarata, Matthew A.; Jackson, James M.; Chambers, Edward

    2015-06-01

    Anomalous ammonia (NH3) spectra, exhibiting asymmetric hyperfine satellite intensity profiles in the (J,K) = (1, 1) inversion transition, have been observed in star-forming regions for over 35 years. We present a systematic study of this “hyperfine intensity anomaly” (HIA) toward a sample of 334 high-mass star forming regions: 310 high-mass (?100 {{M}? }) clumps and 24 infrared dark clouds. The HIA is ubiquitous in high-mass star forming regions. Although LTE excitation predicts that the intensity ratios of the outer satellites and inner satellites are exactly unity, for this sample the ensemble average ratios are 0.812 ± 0.004 and 1.125 ± 0.005, respectively. We have quantified the HIA and find no significant relationships between the HIA and temperature, line width, optical depth, and the stage of stellar evolution. The fact that HIAs are common in high-mass star-forming regions suggests that the conditions that lead to HIAs are ubiquitous in these regions. A possible link between HIAs and the predictions of the competitive accretion model of high-mass star formation is suggested; however, the expected trends of HIA strength with clump evolutionary stage, rotational temperature, and line width for evolving cores in competitive accretion models are not found. Thus, the exact gas structures that produce HIAs remain unknown. Turbulent gas structures are a possible explanation, but the details need to be explored.

  3. A Search for High-Mass Stars Forming in Isolation using CORNISH and ATLASGAL

    NASA Astrophysics Data System (ADS)

    Tremblay, Chenoa D.; Walsh, Andrew J.; Longmore, Steven N.; Urquhart, James S.; König, Carsten

    2015-12-01

    Theoretical models of high-mass star formation lie between two extreme scenarios. At one extreme, all the mass comes from an initially gravitationally bound core. At the other extreme, the majority of the mass comes from cluster scale gas, which lies far outside the initial core boundary. One way to unambiguously show high-mass stars can assemble their gas through the former route would be to find a high-mass star forming in isolation. Making use of recently available CORNISH and ATLASGAL Galactic plane survey data, we develop sample selection criteria to try and find such an object. From an initial list of approximately 200 sources, we identify the high-mass star-forming region G13.384 + 0.064 as the most promising candidate. The region contains a strong radio continuum source, that is powered by an early B-type star. The bolometric luminosity, derived from infrared measurements, is consistent with this. However, sub-millimetre continuum emission, measured in ATLASGAL, as well as dense gas tracers, such as HCO+(3-2) and N2H+(3-2) indicate that there is less than ~ 100 M? of material surrounding this star. We conclude that this region is indeed a promising candidate for a high-mass star forming in isolation.

  4. H1 search for a narrow baryonic resonance decaying to K{sub S}{sup 0}p(p-bar)

    SciTech Connect

    Risler, Christiane

    2005-10-06

    Preliminary results from the H1 experiment on the search for the production of a candidate for the strange pentaquark in the decay channel {theta}{sup +} {yields} K{sub s}{sup 0}p and its antiparticle in the invariant mass combinations of K{sub s}{sup 0} mesons with protons and antiprotons in deep-inelastic ep-scattering at HERA are presented.

  5. Low-threshold absolute two-plasmon decay instability in the second harmonic electron cyclotron resonance heating experiments in toroidal devices

    NASA Astrophysics Data System (ADS)

    Popov, A. Yu; Gusakov, E. Z.

    2015-02-01

    The effect of the X-mode parametric decay into two short wavelength upper hybrid (UH) plasmons propagating in opposite directions is analyzed. Due to the huge convective power loss of both the UH plasmons along the inhomogeneity direction, the power threshold of the convective parametric decay instability (PDI), which can be excited in the presence of a monotonous density profile is derived to exceed the gyrotron power range currently available. In the presence of the magnetic island possessing the local density maximum at its O-point the daughter UH plasmons can be trapped in the radial direction that suppresses their energy loss from the decay layer in full and makes the power threshold of the convective two-plasmon PDI drastically (three orders of magnitude) lower than in the previous case. The possibility of the absolute PDI being due to the finite size of the pump beam spot is demonstrated as well. The power threshold of the absolute instability is shown to be more than two orders of magnitude lower than the threshold of the convective instability at the monotonous density profile.

  6. Study of narrow baryon resonance decaying into $K^0_s p$ in $pA$-interactions at $70 GeV/c$ with SVD-2

    E-print Network

    A. Kubarovsky; V. Popov; V. Volkov

    2006-10-17

    The inclusive reaction $p A \\to pK^0_s + X$ was studied at IHEP accelerator with $70 GeV$ proton beam using SVD-2 detector. Two different samples of $K^0_s$, statistically independent and belonging to different phase space regions were used in the analyses and a narrow baryon resonance with the mass $M=1523\\pm 2(stat.)\\pm 3(syst.) MeV/c^2$ was observed in both samples of the data

  7. The Environmental Factor: Driving the Onset and Early Evolution of High-Mass Stars and Clusters

    NASA Astrophysics Data System (ADS)

    Rivera-Ingraham, Alana; Marston, Anthony; Martin, Peter; Ristorcelli, Isabelle; Juvela, Mika

    2015-08-01

    While the process leading to the formation of low-mass stars is reasonably well established, the origin of their high-mass counterparts, and in particular, the link with the properties and evolution of the parental structures, remains poorly understood. The key role that high-mass stars and massive clusters play in driving the evolution of the ISM, from planetary to galactic scales, makes this study, however, particularly critical.Here we present the latest results from an ongoing Herschel-based project of high-mass star formation in the Outer Galaxy, and which aims to quantify the complex dependence between the final characteristics of young high-mass stars and the early evolution of their local environment.Datasets from the Herschel imaging survey of OB Young Stellar objects (HOBYS; PI. F. Motte) and the Herschel infrared Galactic Plane Survey (Hi-Gal; PI. S. Molinari) Key Programmes are used as a base to carry out an in-depth examination of the cloud physical characteristics, compact source population, and star formation history of those regions with the potential for (and on-going) high-mass star and cluster formation. Results from this study are compelling evidence for the requirement of local external processes, such as stellar feedback (e.g., Convergent Constructive Feedback model; Rivera-Ingraham et al. 2013), in order to counteract the limitations of gravity in the formation and evolution of dense and exotic environments. We will describe how such processes could drive the formation and evolution of the parental host, and therefore influence the final characteristics of the young high-mass stars and clusters (Rivera-Ingraham, et al. 2015a; 2015b, in prep). Our conclusions are further supported by an extensive independent analysis of filamentary properties as a function of Galactic environment (Rivera-Ingraham et al. 2015c; subm), and which we will present as part of the Galactic Cold Cores Key Programme (PI. M. Juvela).

  8. CAFÉ-BEANS: An exhaustive hunt for high-mass binaries

    NASA Astrophysics Data System (ADS)

    Negueruela, I.; Maíz-Apellániz, J.; Simón-Díaz, S.; Alfaro, E. J.; Herrero, A.; Alonso, J.; Barbá, R.; Lorenzo, J.; Marco, A.; Monguió, M.; Morrell, N.; Pellerin, A.; Sota, A.; Walborn, N. R.

    2015-05-01

    CAFÉ-BEANS is an on-going survey running on the 2.2 m telescope at Calar Alto. For more than two years, CAFÉ-BEANS has been collecting high-resolution spectra of early-type stars with the aim of detecting and characterising spectroscopic binaries. The main goal of this project is a thorough characterisation of multiplicity in high-mass stars by detecting all spectroscopic and visual binaries in a large sample of Galactic O-type stars, and solving their orbits. Our final objective is eliminating all biases in the high-mass-star IMF created by undetected binaries.

  9. HIGH-MASS STAR FORMATION IN THE NEAR AND FAR 3 kpc ARMS

    SciTech Connect

    Green, J. A.; McClure-Griffiths, N. M.; Caswell, J. L.; Voronkov, M. A.; Ellingsen, S. P.; Fuller, G. A.; Quinn, L.

    2009-05-10

    We report on the presence of 6.7 GHz methanol masers, known tracers of high-mass star formation, in the 3 kpc arms of the inner Galaxy. We present 49 detections from the Methanol Multibeam Survey, the largest Galactic plane survey for 6.7 GHz methanol masers, which coincide in longitude, latitude, and velocity with the recently discovered far-side 3 kpc arm and the well-known near-side 3 kpc arm. The presence of these masers is significant evidence for high-mass star formation actively occurring in both 3 kpc arms.

  10. Exploring the high-mass components of humic acid by laser desorption ionization mass spectrometry.

    PubMed

    Chilom, Gabriela; Chilom, Ovidiu; Rice, James A

    2008-05-01

    Leonardite and Elliot soil humic acids have been analyzed by laser desorption ionization mass spectrometry (LDI MS) in the m/z 4000-200,000 range. Positive ion mass spectra for each humic acid obtained under optimum conditions showed a broad high-mass distribution between m/z 20,000 and 80,000. The dependence of the mass distribution on instrumental parameters and solution conditions was used to investigate the nature of the high-mass peaks from humic acid spectra. Our data suggests that macromolecular ions and humic acid aggregates have the same probability of occurrence while cluster ion formation has a low probability of occurrence. PMID:18421699

  11. A search for High Mass Stars Forming in Isolation using CORNISH & ATLASGAL

    E-print Network

    Tremblay, Chenoa D; Longmore, Steven N; Urquhart, James S; König, Carsten

    2015-01-01

    Theoretical models of high mass star formation lie between two extreme scenarios. At one extreme, all the mass comes from an initially gravitationally-bound core. At the other extreme, the majority of the mass comes from cluster scale gas, which lies far outside the initial core boundary. One way to unambiguously show high mass stars can assemble their gas through the former route would be to find a high mass star forming in isolation. Making use of recently available CORNISH and ATLASGAL Galactic plane survey data, we develop sample selection criteria to try and find such an object. From an initial list of approximately 200 sources, we identify the high mass star forming region G13.384+0.064 as the most promising candidate. The region contains a strong radio continuum source, that is powered by an early B-type star. The bolometric luminosity, derived from infrared measurements, is consistent with this. However, sub-millimetre continuum emission, measured in ATLASGAL, as well as dense gas tracers, such as HCO...

  12. The High-Mass Stellar Initial Mass Function in M31 Clusters

    E-print Network

    Weisz, Daniel R; Foreman-Mackey, Daniel; Dolphin, Andrew E; Beerman, Lori C; Williams, Benjamin F; Dalcanton, Julianne J; Rix, Hans-Walter; Hogg, David W; Fouesneau, Morgan; Johnson, Benjamin D; Bell, Eric F; Boyer, Martha L; Gouliermis, Dimitrios; Guhathakurta, Puragra; Kalirai, Jason S; Lewis, Alexia R; Seth, Anil C; Skillman, Evan D

    2015-01-01

    We have undertaken the largest systematic study of the high-mass stellar initial mass function (IMF) to date using the optical color-magnitude diagrams (CMDs) of 85 resolved, young (4 Myr 2 Msun. For the ensemble of clusters, the distribution of stellar MF slopes is best described by $\\Gamma=+1.45^{+0.03}_{-0.06}$ with a very small intrinsic scatter. The data also imply no significant dependencies of the MF slope on cluster age, mass, and size, providing direct observational evidence that the measured MF represents the IMF. This analysis implies that the high-mass IMF slope in M31 clusters is universal with a slope ($\\Gamma=+1.45^{+0.03}_{-0.06}$) that is steeper than the canonical Kroupa (+1.30) and Salpeter (+1.35) values. Using our inference model on select Milky Way (MW) and LMC high-mass IMF studies from the literature, we find $\\Gamma_{\\rm MW} \\sim+1.15\\pm0.1$ and $\\Gamma_{\\rm LMC} \\sim+1.3\\pm0.1$, both with intrinsic scatter of ~0.3-0.4 dex. Thus, while the high-mass IMF in the Local Group may be unive...

  13. New analysis on narrow baryon resonance decaying into $pK^0_s$ in $pA$-interactions at $70 GeV/c$ with SVD-2 setup

    E-print Network

    SVD Collaboration

    2008-03-31

    The inclusive reaction $p A \\to pK^0_s + X$ was studied at IHEP accelerator with $70 GeV/c$ proton beam using SVD-2 detector. Two different samples of $K^0_s$, statistically independent and belonging to different phase space regions, were used in the analyses and a narrow baryon resonance with the mass $M=1523\\pm 2(stat.)\\pm 3(syst.) MeV/c^2$ was observed in both samples of the data. The combined statistical significance was estimated to be of 8.0 (392 signal over 1990 background events). Using the part of events reconstructed with better accuracy the width of resonance was constrained to $\\Gamma \\approx 0.1$}, that qualitatively agrees to a Regge-based model predictions. A new cross section estimate of $\\sigma \\cdot BR(\\Theta^+ \\to pK^0) = 4.9 \\pm 1.0(stat.) \\pm 1.5(syst.) \\mu b/nucleon$ for $x_F > 0$ was obtained.

  14. First Detection of the Hatchett-McCray Effect in the High-Mass X-ray Binary

    NASA Technical Reports Server (NTRS)

    Sonneborn, G.; Iping, R. C.; Kaper, L.; Hammerschiag-Hensberge, G.; Hutchings, J. B.

    2004-01-01

    The orbital modulation of stellar wind UV resonance line profiles as a result of ionization of the wind by the X-ray source has been observed in the high-mass X-ray binary 4U1700-37/HD 153919 for the first time. Far-UV observations (905-1180 Angstrom, resolution 0.05 Angstroms) were made at the four quadrature points of the binary orbit with the Far Ultraviolet Spectroscopic Explorer (FUSE) in 2003 April and August. The O6.5 laf primary eclipses the X-ray source (neutron star or black hole) with a 3.41-day period. Orbital modulation of the UV resonance lines, resulting from X-ray photoionization of the dense stellar wind, the so-called Hatchett-McCray (HM) effect, was predicted for 4U1700-37/HD153919 (Hatchett 8 McCray 1977, ApJ, 211, 522) but was not seen in N V 1240, Si IV 1400, or C IV 1550 in IUE and HST spectra. The FUSE spectra show that the P V 1118-1128 and S IV 1063-1073 P-Cygni lines appear to vary as expected for the HM effect, weakest at phase 0.5 (X-ray source conjunction) and strongest at phase 0.0 (X-ray source eclipse). The phase modulation of the O VI 1032-1037 lines, however, is opposite to P V and S IV, implying that O VI may be a byproduct of the wind's ionization by the X-ray source. Such variations were not observed in N V, Si IV, and C IV because of their high optical depth. Due to their lower cosmic abundance, the P V and S IV wind lines are unsaturated, making them excellent tracers of the ionization conditions in the O star's wind.

  15. Observation of a resonance in the K$_s$p decay channel at a mass of 1765 MeV/c$^2$

    E-print Network

    WA89 Collaboration; M. I. Adamovich; Yu. A. Alexandrov; D. Barberis; M. Beck; C. Bérat; W. Beusch; M. Boss; S. Brons; W. Brückner; M. Buénerd; C. Busch; C. Büscher; F. Charignon; J. Chauvin; E. A. Chudakov; U. Dersch; F. Dropmann; J. Engelfried; F. Faller; A. Fournier; S. G. Gerassimov; M. Godbersen; P. Grafström; Th. Haller; M. Heidrich; E. Hubbard; R. B. Hurst; K. Königsmann; I. Konorov; N. Keller; K. Martens; Ph. Martin; S. Masciocchi; R. Michaels; U. Müller; H. Neeb; D. Newbold; C. Newsom; S. Paul; J. Pochodzalla; I. Potashnikova; B. Povh; Z. Ren; M. Rey-Campagnolle; G. Rosner; L. Rossi; H. Rudolph; C. Scheel; L. Schmitt; H. -W. Siebert; A. Simon; V. Smith; O. Thilmann; A. Trombini; E. Vesin; B. Volkemer; K. Vorwalter; Th. Walcher; G. Wälder; R. Werding; E. Wittmann; M. V. Zavertyaev

    2007-02-27

    We report on the observation of a K$_s$p resonance signal at a mass of 1765$\\pm$5 MeV/c$^2$, with intrinsic width $\\Gamma = 108\\pm 22$ MeV/c$^2$, produced inclusively in $\\Sigma^-$-nucleus interactions at 340 GeV/c in the hyperon beam experiment WA89 at CERN. The signal was observed in the kinematic region $x_F>0.7$, in this region its production cross section rises approximately linearly with $(1-x_F)$, reaching $BR(X\\to K_S p)\\cdot d\\sigma /dx_F = (5.2\\pm 2.3) \\mu b $ per nucleon at $x_F=0.8$. The hard \\xf spectrum suggests the presence of a strong leading particle effect in the production and hence the identification as a $\\Sigma^{*+}$ state. No corresponding peaks were observed in the $K^- p$ and $\\Lambda \\pi^{\\pm}$ mass spectra.

  16. The study of rare decays

    NASA Astrophysics Data System (ADS)

    Ju, Wan-Li; Wang, Guo-Li; Fu, Hui-Feng; Wang, Tian-Hong; Jiang, Yue

    2014-04-01

    In this paper, we study rare decays within the Standard Model. The penguin, box, annihilation, color-favored cascade and color-suppressed cascade contributions are included. Based on our calculation, the annihilation and color-favored cascade diagrams play important roles in the differential branching fractions, forward-backward asymmetries, longitudinal polarizations of the final vector mesons and leptonic longitudinal polarization asymmetries. More importantly, color-favored cascade decays largely enhance the resonance cascade contributions. To avoid the resonance cascade contribution pollution, new cutting regions are put forward.

  17. The High-mass Stellar Initial Mass Function in M31 Clusters

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Johnson, L. Clifton; Foreman-Mackey, Daniel; Dolphin, Andrew E.; Beerman, Lori C.; Williams, Benjamin F.; Dalcanton, Julianne J.; Rix, Hans-Walter; Hogg, David W.; Fouesneau, Morgan; Johnson, Benjamin D.; Bell, Eric F.; Boyer, Martha L.; Gouliermis, Dimitrios; Guhathakurta, Puragra; Kalirai, Jason S.; Lewis, Alexia R.; Seth, Anil C.; Skillman, Evan D.

    2015-06-01

    We have undertaken the largest systematic study of the high-mass stellar initial mass function (IMF) to date using the optical color-magnitude diagrams (CMDs) of 85 resolved, young (4 {Myr}\\lt t\\lt 25 {Myr}), intermediate mass star clusters (103-104 M?), observed as part of the Panchromatic Hubble Andromeda Treasury program. We fit each cluster’s CMD to measure its mass function (MF) slope for stars ?2 M?. By modeling the ensemble of clusters, we find the distribution of MF slopes is best described by ? = +{1.45}-0.06+0.03 with a very small intrinsic scatter and no drastic outliers. This model allows the MF slope to depend on cluster mass, size, and age, but the data imply no significant dependencies within this regime of cluster properties. The lack of an age dependence suggests that the MF slope has not significantly evolved over the first ˜25 Myr and provides direct observational evidence that the measured MF represents the IMF. Taken together, this analysis—based on an unprecedented large sample of young clusters, homogeneously constructed CMDs, well-defined selection criteria, and consistent principled modeling—implies that the high-mass IMF slope in M31 clusters is universal. The IMF has a slope (? = +{1.45}-0.06+0.03; statistical uncertainties) that is slightly steeper than the canonical Kroupa (+1.30) and Salpeter (+1.35) values, and our measurement of it represents a factor of ˜20 improvement in precision over the Kroupa IMF (+1.30 ± 0.7). Using our inference model on select Milky Way (MW) and LMC high-mass IMF studies from the literature, we find {? }{MW}˜ +1.15+/- 0.1 and {? }{LMC}˜ +1.3+/- 0.1, both with intrinsic scatter of ˜0.3-0.4 dex. Thus, while the high-mass IMF in the Local Group may be universal, systematics in the literature of IMF studies preclude any definitive conclusions; homogenous investigations of the high-mass IMF in the local universe are needed to overcome this limitation. Consequently, the present study represents the most robust measurement of the high-mass IMF slope to date. To facilitate practical use over the full stellar mass spectrum, we have grafted the M31 high-mass IMF slope onto widely used sub-solar mass Kroupa and Chabrier IMFs. The increased steepness in the M31 high-mass IMF slope implies that commonly used UV- and H?-based star formation rates should be increased by a factor of ˜1.3-1.5 and the number of stars with masses \\gt 8 M? is ˜25% fewer than expected for a Salpeter/Kroupa IMF. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #12055.

  18. Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry.

    PubMed

    Rauniyar, Navin

    2015-01-01

    The parallel reaction monitoring (PRM) assay has emerged as an alternative method of targeted quantification. The PRM assay is performed in a high resolution and high mass accuracy mode on a mass spectrometer. This review presents the features that make PRM a highly specific and selective method for targeted quantification using quadrupole-Orbitrap hybrid instruments. In addition, this review discusses the label-based and label-free methods of quantification that can be performed with the targeted approach. PMID:26633379

  19. Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry

    PubMed Central

    Rauniyar, Navin

    2015-01-01

    The parallel reaction monitoring (PRM) assay has emerged as an alternative method of targeted quantification. The PRM assay is performed in a high resolution and high mass accuracy mode on a mass spectrometer. This review presents the features that make PRM a highly specific and selective method for targeted quantification using quadrupole-Orbitrap hybrid instruments. In addition, this review discusses the label-based and label-free methods of quantification that can be performed with the targeted approach. PMID:26633379

  20. A Disk/outflow System around the High-mass Protostar IRAS 20126+4104

    NASA Astrophysics Data System (ADS)

    Zhang, Qizhou; Hunter, Todd R.; Sridharan, T. K.; Kawamura, J. H.

    1999-10-01

    We present images of a disk/outflow system around a high-mass protostar IRAS 20126+4104. In the NH3 (1,1) and (2,2) lines, we have resolved a flattened disk-like structure (6'' x 3'' or 10000 x 5000 AU). The disk rotates faster toward the center, consistent with the Keplerian motion. In the direction roughly perpendicular to the disk, there exists a warm bipolar CO (7-6) outflow and the shock excited NH3 (3,3). The CO (7-6) outflow is much more compact and appears in a different orientation from the arcminute-scale north-south flow seen in the CO (2-1). Since most of the high-mass stars are formed in cluster environment and are located at kiloparsec distances, sensitive and high resolution observations of high density and highly excited molecular transitions are crucial to pinpoint the massive objects. Designed to have those capabilities, ALMA will make a significant contribution to the understanding of the protostellar environment of high-mass stars.

  1. Mass detection using capacitive resonant silicon resonator employing LC resonant circuit technique.

    PubMed

    Kim, Sang-Jin; Ono, Takahito; Esashi, Masayoshi

    2007-08-01

    Capacitive resonant mass sensing using a single-crystalline silicon resonator with an electrical LC oscillator was demonstrated in ambient atmosphere. Using capacitive detection method, the detectable minimum mass of 1 x 10(-14) g was obtained in the self-oscillation of cantilever with a thickness of 250 nm. The noise amplitude of the sensor output corresponds to a vibration amplitude of 0.05 nm(Hz)(0.5) in the frequency domain compared with the actuation signal, which is equivalent to the detectable minimum capacitance variation of 2.4 x 10(-21) F. Using the capacitive detection method, mass/stress induced resonance frequency shift due to the adsorption of ethanol and moist vapor in a pure N(2) gas as a carrier is successfully demonstrated. These results show the high potential of capacitive silicon resonator for high mass/stress-sensitive sensor. PMID:17764351

  2. Measurement of the Mass and Width and Study of the Spin of the Xi(1690)0 Resonance from Lambdac+ --> Lambda anti-K0 K+ Decay at BaBar

    SciTech Connect

    Aubert, B.

    2006-09-25

    The {Xi}(1690){sup 0} resonance is observed in the {Lambda}{bar K}{sup 0} channel in the decay {Lambda}{sub c}{sup +} {yields} {Lambda}{bar K}{sup 0}K{sup +}, from a data sample corresponding to a total integrated luminosity of {approx} 200 fb{sup -1} recorded by the BABAR detector at the PEP-II asymmetric-energy e+e- collider operating at {approx} 10.58 GeV and {approx} 10.54 GeV center-of-mass energies. A fit to the Dalitz plot intensity distribution corresponding to the coherent superposition of amplitudes describing {Lambda}a{sub 0}(980){sup +} and {Xi}(1690){sup 0} K{sup +} production yields mass and width values of 1684.7 {+-} 1.3(stat.){sub -1.6}{sup +2.2}(syst.) MeV/c{sup 2}, and 8.1{sub -3.5}{sup +3.9}(stat.){sub -0.9}{sup +1.0}(syst.) MeV, respectively, for the {Xi}(1690){sup 0}, while the spin is found to be consistent with value of 1/2 on the basis of studies of the ({Lambda}K{sub S}) angular distribution.

  3. A Cluster in the Making: ALMA Reveals the Initial Conditions for High-mass Cluster Formation

    NASA Astrophysics Data System (ADS)

    Rathborne, J. M.; Longmore, S. N.; Jackson, J. M.; Alves, J. F.; Bally, J.; Bastian, N.; Contreras, Y.; Foster, J. B.; Garay, G.; Kruijssen, J. M. D.; Testi, L.; Walsh, A. J.

    2015-04-01

    G0.253+0.016 is a molecular clump that appears to be on the verge of forming a high-mass cluster: its extremely low dust temperature, high mass, and high density, combined with its lack of prevalent star formation, make it an excellent candidate for an Arches-like cluster in a very early stage of formation. Here we present new Atacama Large Millimeter/Sub-millimeter Array observations of its small-scale (?0.07 pc) 3 mm dust continuum and molecular line emission from 17 different species that probe a range of distinct physical and chemical conditions. The data reveal a complex network of emission features with a complicated velocity structure: there is emission on all spatial scales, the morphology of which ranges from small, compact regions to extended, filamentary structures that are seen in both emission and absorption. The dust column density is well traced by molecules with higher excitation energies and critical densities, consistent with a clump that has a denser interior. A statistical analysis supports the idea that turbulence shapes the observed gas structure within G0.253+0.016. We find a clear break in the turbulent power spectrum derived from the optically thin dust continuum emission at a spatial scale of ?0.1 pc, which may correspond to the spatial scale at which gravity has overcome the thermal pressure. We suggest that G0.253+0.016 is on the verge of forming a cluster from hierarchical, filamentary structures that arise from a highly turbulent medium. Although the stellar distribution within high-mass Arches-like clusters is compact, centrally condensed, and smooth, the observed gas distribution within G0.253+0.016 is extended, with no high-mass central concentration, and has a complex, hierarchical structure. If this clump gives rise to a high-mass cluster and its stars are formed from this initially hierarchical gas structure, then the resulting cluster must evolve into a centrally condensed structure via a dynamical process.

  4. Searching for the fourth family quarks through anomalous decays

    NASA Astrophysics Data System (ADS)

    Sahin, M.; Sultansoy, S.; Turkoz, S.

    2010-09-01

    The flavor democracy hypothesis predicts the existence of the fourth standard model family. Because of the high masses of the fourth family quarks, their anomalous decays could be dominant if certain criteria are met. This will drastically change the search strategy at hadron colliders. We show that the fourth standard model family down quarks with masses up to 400-450 GeV can be observed (or excluded) via anomalous decays by Tevatron.

  5. High Mass X-ray Binaries: A Hunt for Optical Variability and Periodicity A study on BD+53 2262

    E-print Network

    Hart, Gus

    High Mass X-ray Binaries: A Hunt for Optical Variability and Periodicity A study on BD+53 2262 By. Hintz #12;Introduction: High mass X-ray binaries systems consist of a giant O or B spectral type star. The X-ray signatures on these systems come mostly from the accretion disk around the compact object

  6. Electromagnetic production of hyperon resonances

    E-print Network

    K. Hicks; D. Keller; W. Tang

    2010-12-14

    The study of hyperon resonances has entered a new era of precision with advent of high-statistics photoproduction data from the CLAS detector at Jefferson Lab. These data have multi-particle final states, allowing clean identification of exclusive reactions associated with strange mesons and baryons. Examples of physics results are: evidence for isospin interference in the decay of the $\\Lambda(1405)$ resonance; a strong suggestion of meson cloud effects in the structure of the $\\Sigma(1385)$ resonance; data from $K^*$ photoproduction that will test the existence of the purported $K_0(800)$ meson. Properties of other hyperon resonances will also be studied in the near future.

  7. Hyperon Resonance Photoproduction at CLAS

    SciTech Connect

    K. Hicks, D. Keller, W. Tang

    2011-02-01

    The study of hyperon resonances has entered a new era of precision with advent of high-statistics photoproduction data from the CLAS detector at Jeffersonnext term Lab. These data have multi-particle final states, allowing clean identification of exclusive reactions associated with strange mesons and baryons. Examples of physics results are: evidence for isospin interference in the decay of the ?(1405) resonance; a strong suggestion of meson cloud effects in the structure of the Sigma (1385) resonance; data from Klow asterisk photoproduction that will test the existence of the purported K0(800) meson. Properties of other hyperon resonances will also be studied in the near future.

  8. Electromagnetic production of hyperon resonances

    SciTech Connect

    K. Hicks, D. Keller, W. Tang

    2011-10-01

    The study of hyperon resonances has entered a new era of precision with advent of high-statistics photoproduction data from the CLAS detector at Jefferson Lab. These data have multi-particle final states, allowing clean identification of exclusive reactions associated with strange mesons and baryons. Examples of physics results are: evidence for isospin interference in the decay of the {Lambda}(1405) resonance; a strong suggestion of meson cloud effects in the structure of the {Sigma}(1385) resonance; data from K* photoproduction that will test the existence of the purported K{sub 0}(800)$ meson. Properties of other hyperon resonances will also be studied in the near future.

  9. Spectrometers for Beta Decay Electrons

    NASA Astrophysics Data System (ADS)

    Jiang, Yong; Hirshfield, Jay

    2015-04-01

    Inspired by the neutrino mass direct measurement experiment Project 8, precision spectrometers are proposed to simultaneously measure energy and momentum of beta-decay electrons produced in rare nuclear events with improved energy resolution. For detecting single beta decay electrons near the end-point from a gaseous source such as tritium, one type of spectrometer is proposed to utilize stimulated cyclotron resonance interaction of microwaves with electrons in a waveguide immersed in a magnetic mirror. In the external RF fields, on-resonance electrons will satisfy both the cyclotron resonance condition and waveguide dispersion relationship. By correlating the resonances at two waveguide modes, one can associate the frequencies with both the energy and longitudinal momentum of an on-resonance electron to account for the Doppler shifts. For detecting neutrino-less double-beta decay, another spectrometer is proposed with thin foil of double-beta-allowed material immersed in a magnetic field, and RF antenna array for detection of synchrotron radiation from electrons. It utilizes the correlation between the antenna signals including higher harmonics of radiation to reconstruct the total energy distribution.

  10. Linking low- to high-mass young stellar objects with Herschel-HIFI observations of water

    NASA Astrophysics Data System (ADS)

    San José-García, I.; Mottram, J. C.; van Dishoeck, E. F.; Kristensen, L. E.; van der Tak, F. F. S.; Braine, J.; Herpin, F.; Johnstone, D.; van Kempen, T. A.; Wyrowski, F.

    2016-01-01

    Context. Water probes the dynamics in young stellar objects (YSOs) effectively, especially shocks in molecular outflows. It is therefore a key molecule for exploring whether the physical properties of low-mass protostars can be extrapolated to massive YSOs, an important step in understanding the fundamental mechanisms regulating star formation. Aims: As part of the WISH key programme, we investigate excited water line properties as a function of source luminosity, in particular the dynamics and the excitation conditions of shocks along the outflow cavity wall. Methods: Velocity-resolved Herschel-HIFI spectra of the H2O 202-111 (988 GHz), 211-202 (752 GHz) and 312-303 (1097 GHz) lines were analysed, together with 12CO J = 10-9 and 16-15, for 52 YSOs with bolometric luminosities ranging from <1 to >105 L?. The H2O and 12CO line profiles were decomposed into multiple Gaussian components which are related to the different physical structures of the protostellar system. The non-LTE radiative transfer code radex was used to constrain the excitation conditions of the shocks along the outflow cavity. Results: The profiles of the three excited water lines are similar, indicating that they probe the same gas. Two main emission components are seen in all YSOs: a broad component associated with non-dissociative shocks in the outflow cavity wall ("cavity shocks") and a narrow component associated with the quiescent envelope material. More than 60% of the total integrated intensity in the excited water lines comes from the broad cavity shock component, while the remaining emission comes mostly from the envelope for low-mass Class I, intermediate- and high-mass objects, and dissociative "spot shocks" for low-mass Class 0 protostars. The widths of the water lines are surprisingly similar from low- to high-mass YSOs, whereas 12CO J = 10-9 line widths increase slightly with Lbol. The excitation analysis of the cavity shock component shows stronger 752 GHz emission for high-mass YSOs, most likely due to pumping by an infrared radiation field. Finally, a strong correlation with slope unity is measured between the logarithms of the total H2O line luminosity, LH2O, and Lbol, which can be extrapolated to extragalactic sources. This linear correlation, also found for CO, implies that both species primarily trace dense gas directly related to star formation activity. Conclusions: The water emission probed by spectrally unresolved data is largely due to shocks. Broad water and high-J CO lines originate in shocks in the outflow cavity walls for both low- and high-mass YSOs, whereas lower-J CO transitions mostly trace entrained outflow gas. The higher UV field and turbulent motions in high-mass objects compared to their low-mass counterparts may explain the slightly different kinematical properties of 12CO J = 10-9 and H2O lines from low- to high-mass YSOs. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  11. Giant Molecular Clouds and High-Mass Star Formation in the Milky Way

    NASA Technical Reports Server (NTRS)

    1998-01-01

    We are conducting an extensive investigation of high-mass (OB) star formation within the dense cores of giant molecular clouds (GMCS) throughout the first Galactic quadrant of the Milky Way using enhanced resolution Infrared Astronomical Satellite (IRAS) images in combination with high-resolution ground-based observations in millimeter wave molecular transitions and radio continuum. As part of this investigation several resolution enhancement algorithms are applied to the IRAS data, including the HIgh RESolution (HIRES) algorithm developed at the IRAS Processing and Analysis Center (IPAC), as well as others ("pixon" image reconstruction). In addition, as part of a related study, we have completed a large survey of the CO emission in the first Galactic quadrant using the 15-element array detector (QUARRY) with the Five College Radio Astronomy Observatory (FCRAO) 14 m antenna, which provides sampling at an angular resolution of 50", comparable to that attained in the reprocessed IRAS data. Both of these data sets are compared with a sample of ultra-compact (UC) H II regions taken from a high-resolution multi-wavelength (6 and 20 cm) radio survey of the Galactic plane using the NRAO Very Large Array (VLA). Selected regions are observed in 1.3 mm continuum, which has proven to be particularly sensitive to the dust column density. Extensive observations of molecular clouds at high resolution in CO, CS and HCN are combined with the reprocessed IRAS high-resolution images to give a more complete picture of the physical conditions and kinematics of high-mass star forming GMCS. Our goals are to study in detail the morphology, structure, and rate of high-mass star formation within GMCs throughout the Galactic disk from the inner edge of the molecular ring to the outer Galaxy.

  12. Orbital parameters of the high-mass X-ray binary 4U 2206+54

    NASA Astrophysics Data System (ADS)

    Stoyanov, K. A.; Zamanov, R. K.; Latev, G. Y.; Abedin, A. Y.; Tomov, N. A.

    2014-12-01

    We present new radial velocities of the high-mass X-ray binary star 4U 2206+54 based on optical spectra obtained with the Coudé spectrograph at the 2 m RCC telescope of the Rozhen National Astronomical Observatory, Bulgaria in the period November 2011-July 2013. The radial velocity curve of the He I ?6678 Å line is modeled with an orbital period P_orb = 9.568 d and an eccentricity of e = 0.3. These new measurements of the radial velocity resolve the disagreements of the orbital period discussions. Based on observations obtained with the 2 m RCC telescope at Rozhen NAO, Bulgaria.

  13. DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY

    SciTech Connect

    Seward, F. D.; Charles, P. A.; Foster, D. L.; Dickel, J. R.; Romero, P. S.; Edwards, Z. I.; Perry, M.; Williams, R. M.

    2012-11-10

    A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a high-mass X-ray binary with an orbital period likely to be of the order of tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass >25 M {sub Sun}.

  14. Report on the ESO Workshop ''Stellar End Products: The Low-mass - High-mass Connection''

    NASA Astrophysics Data System (ADS)

    Walsh, J.; Humphreys, L.; Wittkowski, M.

    2015-09-01

    There are many similarities in the mass-loss processes between evolved low-mass and high-mass stars and the workshop brought together observers and theoreticians to compare and contrast the asymptotic giant branch and red supergiant evolutionary phases. Asymmetric and collimated mass loss, bipolarity, binarity, stellar rotation and magnetic fields were among the key topics explored. Many results were displayed from state-of-the-art high spatial resolution facilities, such as ALMA and the VLTI. A summary of the workshop topics is presented.

  15. Formation of recollimation shocks in jets of high-mass X-ray binaries

    E-print Network

    Zdziarski, Andrzej A; Heinz, Sebastian

    2015-01-01

    We study conditions for formation of recollimation shocks in jets interacting with stellar winds in high-mass X-ray binaries. We show the existence of a critical jet power, dependent on the wind rate and velocity and the jet velocity, above which a recollimation shock is not formed. For the jet power below critical, we derive the location of the shock. We test these prediction by 3-D numerical simulations, which confirm the existence and the value of the critical power. We apply our results to Cyg X-1 and Cyg X-3.

  16. VizieR Online Data Catalog: High-mass protostellar candidates (Williams+, 2004)

    NASA Astrophysics Data System (ADS)

    Williams, S. J.; Fuller, G. A.; Sridharan, T. K.

    2004-03-01

    The sample of High-Mass Protostellar Objects (HMPOs was observed at 850{mu}m and 450{mu}m between March 2000 and June 2000 using the Submillimetre Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope. The position and measured flux of the detections resolved by our JCMT observations. Positions are measured from the 450{mu}m "jiggle" maps wherever possible. Unless otherwise stated, 450{mu}m detections without corresponding 850{mu}m detections arise from the increased resolution of the 450{mu}m observations. (1 data file).

  17. A High-Mass Cold Core in the Auriga-California Giant Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Magnus McGehee, Peregrine; Paladini, Roberta; Pelkonen, Veli-Matti; Toth, Viktor; Sayers, Jack

    2015-08-01

    The Auriga-California Giant Molecular Cloud is noted for its relatively low star formation rate, especially at the high-mass end of the Initial Mass Function. We combine maps acquired by the Caltech Submillimeter Observatory's Multiwavelength Submillimeter Inductance Camera [MUSIC] in the wavelength range 0.86 to 2.00 millimeters with Planck and publicly-available Herschel PACS and SPIRE data in order to characterize the mass, dust properties, and environment of the bright core PGCC G163.32-8.41.

  18. SiO outflows in high-mass star forming regions: A potential chemical clock?

    NASA Astrophysics Data System (ADS)

    López-Sepulcre, A.; Walmsley, C. M.; Cesaroni, R.; Codella, C.; Schuller, F.; Bronfman, L.; Carey, S. J.; Menten, K. M.; Molinari, S.; Noriega-Crespo, A.

    2011-02-01

    Context. Some theoretical models propose that O-B stars form via accretion, in a similar fashion to low-mass stars. Jet-driven molecular outflows play an important role in this scenario, and their study can help to understand the process of high-mass star formation and the different evolutionary phases involved. Aims: Observations towards low-mass protostars so far favour an evolutionary picture in which jets are always associated with Class 0 objects while more evolved Class I/II objects show less evidence of powerful jets. The present study aims at checking whether an analogous picture can be found in the high-mass case. Methods: The IRAM 30-m telescope (Spain) has been used to perform single-pointing SiO(2-1) and (3-2) observations towards a sample of 57 high-mass molecular clumps in different evolutionary stages. Continuum data at different wavelengths, from mid-IR to 1.2 mm, have been gathered to build the spectral energy distributions of all the clumps and estimate their bolometric luminosities. Results: SiO emission at high velocities, characteristic of molecular jets, is detected in 88% of our sources, a very high detection rate indicating that there is ongoing star formation activity in most of the sources of our sample. The SiO(2-1) luminosity drops with Lbol/M, which suggests that jet activity declines as time evolves. This represents the first clear evidence of a decrease of SiO outflow luminosity with time in a homogeneous sample of high-mass molecular clumps in different evolutionary stages. The SiO(3-2) to SiO(2-1) integrated intensity ratio shows only minor changes with evolutionary state. Based on observations conducted with the IRAM 30-m telescope near Pico Veleta (Granada, Spain), and the Atacama Pathfinder Experiment (APEX) ESO project: 181.C-0885.. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.Appendices are only available in electronic form at http://www.aanda.org

  19. Understanding the X-ray luminosity function of high mass X-ray binaries

    E-print Network

    Bhadkakamkar, Harshal

    2010-01-01

    High mass X-ray binary luminosity function (XLF) is an important tool for studying binary evolution processes and also the mass loss and consequent evolution in massive stars. We calculate the XLF for neutron star binaries using the standard scenario for formation and evolution of these systems. A one to one relation between primordial binary parameters and the HMXB parameters is established. The probability density function is then transformed using the standard Jacobian formalism. It is shown that the model successfully explains some basic properties of the observed XLF.

  20. Suppressed Charmed B Decay

    SciTech Connect

    Snoek, Hella Leonie; /Vrije U., Amsterdam

    2011-11-28

    This thesis describes the measurement of the branching fractions of the suppressed charmed B{sup 0} {yields} D{sup (*)-} a{sub 0}{sup +} decays and the non-resonant B{sup 0} {yields} D{sup (*)-} {eta}{pi}{sup +} decays in approximately 230 million {Upsilon}(4S) {yields} B{bar B} events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B{sup 0} {yields} D{sup (*)-} a{sub 0}{sup +} decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10{sup -6}. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle {gamma}, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle {gamma} can be performed using the decays of neutral B mesons. The B{sup 0} {yields} D{sup (*)-} a{sub 0}{sup +} decay is sensitive to the angle {gamma} and, in comparison to the current decays that are being employed, could significantly enhance the measurement of this angle. However, the low expected branching fraction for the B{sup 0} {yields} D{sup (*)-} a{sub 0}{sup +} decay channels could severely impact the measurement. A prerequisite of the measurement of the CKM angle is the observation of the B{sup 0} {yields} D{sup (*)-} a{sub 0}{sup +} decay on which this thesis reports. The BABAR experiment consists of the BABAR detector and the PEP-II e{sup +}e{sup -} collider. The design of the experiment has been optimized for the study of CP violation in the decays of neutral B mesons but is also highly suitable for the search for rare B decays such as the B{sup 0} {yields} D{sup (*)-} a{sub 0}{sup +} decay. The PEP-II collider operates at the {Upsilon}(4S) resonance and is a clean source of B{bar B} meson pairs.

  1. Search for a low-mass scalar Higgs boson decaying to a tau pair in single-photon decays of ?(1S)

    E-print Network

    Cowan, Ray Franklin

    We search for a low-mass scalar CP-odd Higgs boson, A[superscript 0], produced in the radiative decay of the upsilon resonance and decaying into a ?[superscript +]?[superscript ?] pair: ?(1S) ? ?A[superscript 0]. The ...

  2. Ultra-high-mass mass spectrometry with charge discrimination using cryogenic detectors

    DOEpatents

    Frank, Matthias (Berkeley, CA); Mears, Carl A. (Oakland, CA); Labov, Simon E. (Berkeley, CA); Benner, W. Henry (Danville, CA)

    1999-01-01

    An ultra-high-mass time-of-flight mass spectrometer using a cryogenic particle detector as an ion detector with charge discriminating capabilities. Cryogenic detectors have the potential for significantly improving the performance and sensitivity of time-of-flight mass spectrometers, and compared to ion multipliers they exhibit superior sensitivity for high-mass, slow-moving macromolecular ions and can be used as "stop" detectors in time-of-flight applications. In addition, their energy resolving capability can be used to measure the charge state of the ions. Charge discrimination is very valuable in all time-of-flight mass spectrometers. Using a cryogenically-cooled Nb-Al.sub.2 O.sub.3 -Nb superconductor-insulator-superconductor (SIS) tunnel junction (STJ) detector operating at 1.3 K as an ion detector in a time-of-flight mass spectrometer for large biomolecules it was found that the STJ detector has charge discrimination capabilities. Since the cryogenic STJ detector responds to ion energy and does not rely on secondary electron production, as in the conventionally used microchannel plate (MCP) detectors, the cryogenic detector therefore detects large molecular ions with a velocity-independent efficiency approaching 100%.

  3. Kinematic and Thermal Structure at the onset of high-mass star formation

    E-print Network

    Bihr, S; Linz, H; Ragan, S E; Hennemann, M; Tackenberg, J; Smith, R J; Krause, O; Henning, Th

    2015-01-01

    We want to understand the kinematic and thermal properties of young massive gas clumps prior to and at the earliest evolutionary stages of high-mass star formation. Do we find signatures of gravitational collapse? Do we find temperature gradients in the vicinity or absence of infrared emission sources? Do we find coherent velocity structures toward the center of the dense and cold gas clumps? To determine kinematics and gas temperatures, we used ammonia, because it is known to be a good tracer and thermometer of dense gas. We observed the NH$_3$(1,1) and (2,2) lines within seven very young high-mass star-forming regions with the VLA and the Effelsberg 100m telescope. This allows us to study velocity structures, linewidths, and gas temperatures at high spatial resolution of 3-5$"$, corresponding to $\\sim$0.05 pc. We find on average cold gas clumps with temperatures in the range between 10 K and 30 K. The observations do not reveal a clear correlation between infrared emission peaks and ammonia temperature peak...

  4. Low virial parameters in molecular clouds: Implications for high-mass star formation and magnetic fields

    SciTech Connect

    Kauffmann, Jens; Pillai, Thushara; Goldsmith, Paul F. E-mail: tpillai@astro.caltech.edu

    2013-12-20

    Whether or not molecular clouds and embedded cloud fragments are stable against collapse is of utmost importance for the study of the star formation process. Only 'supercritical' cloud fragments are able to collapse and form stars. The virial parameter ? = M {sub vir}/M, which compares the virial mass to the actual mass, provides one way to gauge stability against collapse. Supercritical cloud fragments are characterized by ? ? 2, as indicated by a comprehensive stability analysis considering perturbations in pressure and density gradients. Past research has suggested that virial parameters ? ? 2 prevail in clouds. This would suggest that collapse toward star formation is a gradual and relatively slow process and that magnetic fields are not needed to explain the observed cloud structure. Here, we review a range of very recent observational studies that derive virial parameters <<2 and compile a catalog of 1325 virial parameter estimates. Low values of ? are in particular observed for regions of high-mass star formation (HMSF). These observations may argue for a more rapid and violent evolution during collapse. This would enable 'competitive accretion' in HMSF, constrain some models of 'monolithic collapse', and might explain the absence of high-mass starless cores. Alternatively, the data could point at the presence of significant magnetic fields ?1 mG at high gas densities. We examine to what extent the derived observational properties might be biased by observational or theoretical uncertainties. For a wide range of reasonable parameters, our conclusions appear to be robust with respect to such biases.

  5. Coupled Fluids-Radiation Analysis of a High-Mass Mars Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Palmer, Grant; Allen, Gary; Tang, Chun; Brown, Jim

    2011-01-01

    The NEQAIR line-by-line radiation code has been incorporated into the DPLR Navier-Stokes flow solver such that the NEQAIR subroutines are now callable functions of DPLR. The coupled DPLR-NEQAIR code was applied to compute the convective and radiative heating rates over high-mass Mars entry vehicles. Two vehicle geometries were considered - a 15 m diameter 70-degree sphere cone configuration and a slender, mid-L/D vehicle with a diameter of 5 m called an Ellipsled. The entry masses ranged from 100 to 165 metric tons. Solutions were generated for entry velocities ranging from 6.5 to 9.1 km/s. The coupled fluids-radiation solutions were performed at the peak heating location along trajectories generated by the Traj trajectory analysis code. The impact of fluids-radiation coupling is a function of the level of radiative heating and the freestream density and velocity. For the high-mass Mars vehicles examined in this study, coupling effects were greatest for entry velocities above 8.5 km/s where the surface radiative heating was reduced by up 17%. Generally speaking, the Ellipsled geometry experiences a lower peak radiative heating rate but a higher peak turbulent convective heating rate than the MSL-based vehicle.

  6. Aerocapture Guidance and Performance at Mars for High-Mass Systems

    NASA Technical Reports Server (NTRS)

    Zumwalt, Carlie H.; Sostaric, Ronald r.; Westhelle, Carlos H.; Cianciolo, Alicia Dwyer

    2010-01-01

    The objective of this study is to understand the performance associated with using the aerocapture maneuver to slow high-mass systems from an Earth-approach trajectory into orbit around Mars. This work is done in conjunction with the Mars Entry Descent and Landing Systems Analysis (EDL-SA) task to explore candidate technologies necessary for development in order to land large-scale payloads on the surface of Mars. Among the technologies considered include hypersonic inflatable aerodynamic decelerators (HIADs) and rigid mid-lift to drag (L/D) aeroshells. Nominal aerocapture trajectories were developed for the mid-L/D aeroshell and two sizes of HIADs, and Monte Carlo analysis was completed to understand sensitivities to dispersions. Additionally, a study was completed in order to determine the size of the larger of the two HIADs which would maintain design constraints on peak heat rate and diameter. Results show that each of the three aeroshell designs studied is a viable option for landing high-mass payloads as none of the three exceed performance requirements.

  7. Search for B??? decays

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Nakao, M.; Adachi, I.; Adamczyk, K.; Aihara, H.; Asner, D. M.; Aulchenko, V.; Aushev, T.; Bakich, A. M.; Belous, K.; Bhuyan, B.; Bischofberger, M.; Bondar, A.; Bonvicini, G.; Bozek, A.; Bra?ko, M.; Browder, T. E.; Chang, M.-C.; Chang, P.; Chekelian, V.; Chen, A.; Chen, P.; Cheon, B. G.; Chilikin, K.; Cho, I.-S.; Cho, K.; Choi, Y.; Dalseno, J.; Dingfelder, J.; Doležal, Z.; Drásal, Z.; Dutta, D.; Eidelman, S.; Farhat, H.; Fast, J. E.; Gaur, V.; Gabyshev, N.; Gillard, R.; Goh, Y. M.; Golob, B.; Haba, J.; Hara, T.; Hayasaka, K.; Hayashii, H.; Horii, Y.; Hoshi, Y.; Hou, W.-S.; Hsiung, Y. B.; Hyun, H. J.; Iijima, T.; Inami, K.; Ishikawa, A.; Itoh, R.; Iwabuchi, M.; Iwasaki, Y.; Iwashita, T.; Julius, T.; Kang, J. H.; Kawasaki, T.; Kichimi, H.; Kiesling, C.; Kim, H. J.; Kim, H. O.; Kim, J. B.; Kim, K. T.; Kim, Y. J.; Ko, B. R.; Kodyš, P.; Korpar, S.; Kouzes, R. T.; Krokovny, P.; Kuhr, T.; Kuzmin, A.; Kvasni?ka, P.; Kwon, Y.-J.; Lee, S.-H.; Li, J.; Li, Y.; Libby, J.; Lim, C.-L.; Liu, Y.; Liu, Z. Q.; Liventsev, D.; Louvot, R.; Miyabayashi, K.; Miyata, H.; Miyazaki, Y.; Mohanty, G. B.; Moll, A.; Muramatsu, N.; Nakano, E.; Natkaniec, Z.; Ng, C.; Nishida, S.; Nitoh, O.; Ohshima, T.; Okuno, S.; Olsen, S. L.; Pakhlova, G.; Park, C. W.; Park, H.; Park, H. K.; Pedlar, T. K.; Pestotnik, R.; Petri?, M.; Piilonen, L. E.; Ritter, M.; Ryu, S.; Sahoo, H.; Sakai, Y.; Sandilya, S.; Sanuki, T.; Schneider, O.; Schwanda, C.; Senyo, K.; Sevior, M. E.; Shapkin, M.; Shen, C. P.; Shibata, T.-A.; Shiu, J.-G.; Shwartz, B.; Sibidanov, A.; Simon, F.; Singh, J. B.; Smerkol, P.; Sohn, Y.-S.; Solovieva, E.; Stani?, S.; Stari?, M.; Sumihama, M.; Sumiyoshi, T.; Teramoto, Y.; Uchida, M.; Uglov, T.; Unno, Y.; Uno, S.; Urquijo, P.; Vanhoefer, P.; Varner, G.; Vorobyev, V.; Wang, P.; Watanabe, M.; Watanabe, Y.; Williams, K. M.; Won, E.; Yamamoto, H.; Yamashita, Y.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.

    2012-08-01

    We report on a search for the charmless decays B+???+ and B0???0 that are strongly suppressed in the standard model. The analysis is based on a data sample of 657×106 BB¯ pairs collected at the ?(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider. We find no significant signal and set upper limits of 3.3×10-7 for B+???+ and 1.5×10-7 for B0???0 at the 90% confidence level.

  8. Tooth Decay

    MedlinePLUS

    ... cavity. Your dentist calls it tooth decay or dental caries. They're all names for a hole ... or abscess. To help prevent cavities Brush your teeth every day with a fluoride toothpaste Clean between ...

  9. Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports

    SciTech Connect

    Sugime, Hisashi; Esconjauregui, Santiago; Yang, Junwei; D'Arsié, Lorenzo; Robertson, John; Oliver, Rachel A.; Bhardwaj, Sunil; Sincrotrone Trieste S.C.p.A., Strada Statale 14, Km 163.5, Trieste I-34149 ; Cepek, Cinzia

    2013-08-12

    We grow ultra-high mass density carbon nanotube forests at 450 °C on Ti-coated Cu supports using Co-Mo co-catalyst. X-ray photoelectron spectroscopy shows Mo strongly interacts with Ti and Co, suppressing both aggregation and lifting off of Co particles and, thus, promoting the root growth mechanism. The forests average a height of 0.38 ?m and a mass density of 1.6 g cm{sup ?3}. This mass density is the highest reported so far, even at higher temperatures or on insulators. The forests and Cu supports show ohmic conductivity (lowest resistance ?22 k?), suggesting Co-Mo is useful for applications requiring forest growth on conductors.

  10. Further properties of high-mass multijet events at the Fermilab proton-antiproton collider

    NASA Astrophysics Data System (ADS)

    Abe, F.; Akimoto, H.; Akopian, A.; Albrow, M. G.; Amendolia, S. R.; Amidei, D.; Antos, J.; Anway-Wiese, C.; Aota, S.; Apollinari, G.; Asakawa, T.; Ashmanskas, W.; Atac, M.; Azfar, F.; Azzi-Bacchetta, P.; Bacchetta, N.; Badgett, W.; Bagdasarov, S.; Bailey, M. W.; Bao, J.; de Barbaro, P.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barzi, E.; Bauer, G.; Baumann, T.; Bedeschi, F.; Behrends, S.; Belforte, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Benlloch, J.; Bensinger, J.; Benton, D.; Beretvas, A.; Berge, J. P.; Berryhill, J.; Bertolucci, S.; Bhatti, A.; Biery, K.; Binkley, M.; Bisello, D.; Blair, R. E.; Blocker, C.; Bodek, A.; Bokhari, W.; Bolognesi, V.; Bortoletto, D.; Boudreau, J.; Breccia, L.; Bromberg, C.; Bruner, N.; Buckley-Geer, E.; Budd, H. S.; Burkett, K.; Busetto, G.; Byon-Wagner, A.; Byrum, K. L.; Cammerata, J.; Campagnari, C.; Campbell, M.; Caner, A.; Carithers, W.; Carlsmith, D.; Castro, A.; Cauz, D.; Cen, Y.; Cervelli, F.; Chang, P. S.; Chang, P. T.; Chao, H. Y.; Chapman, J.; Cheng, M.-T.; Chiarelli, G.; Chikamatsu, T.; Chiou, C. N.; Christofek, L.; Cihangir, S.; Clark, A. G.; Cobal, M.; Contreras, M.; Conway, J.; Cooper, J.; Cordelli, M.; Couyoumtzelis, C.; Crane, D.; Cronin-Hennessy, D.; Culbertson, R.; Cunningham, J. D.; Daniels, T.; Dejongh, F.; Delchamps, S.; dell'agnello, S.; dell'orso, M.; Demina, R.; Demortier, L.; Denby, B.; Deninno, M.; Derwent, P. F.; Devlin, T.; Dittmann, J. R.; Donati, S.; Done, J.; Dorigo, T.; Dunn, A.; Eddy, N.; Einsweiler, K.; Elias, J. E.; Ely, R.; Engels, E.; Errede, D.; Errede, S.; Fan, Q.; Fiori, I.; Flaugher, B.; Foster, G. W.; Franklin, M.; Frautschi, M.; Freeman, J.; Friedman, J.; Frisch, H.; Fuess, T. A.; Fukui, Y.; Funaki, S.; Gagliardi, G.; Galeotti, S.; Gallinaro, M.; Garcia-Sciveres, M.; Garfinkel, A. F.; Gay, C.; Geer, S.; Gerdes, D. W.; Giannetti, P.; Giokaris, N.; Giromini, P.; Gladney, L.; Glenzinski, D.; Gold, M.; Gonzalez, J.; Gordon, A.; Goshaw, A. T.; Goulianos, K.; Grassmann, H.; Groer, L.; Grosso-Pilcher, C.; Guillian, G.; Guo, R. S.; Haber, C.; Hafen, E.; Hahn, S. R.; Hamilton, R.; Handler, R.; Hans, R. M.; Hara, K.; Hardman, A. D.; Harral, B.; Harris, R. M.; Hauger, S. A.; Hauser, J.; Hawk, C.; Hayashi, E.; Heinrich, J.; Hoffman, K. D.; Hohlmann, M.; Holck, C.; Hollebeek, R.; Holloway, L.; Hölscher, A.; Hong, S.; Houk, G.; Hu, P.; Huffman, B. T.; Hughes, R.; Huston, J.; Huth, J.; Hylen, J.; Ikeda, H.; Incagli, M.; Incandela, J.; Introzzi, G.; Iwai, J.; Iwata, Y.; Jensen, H.; Joshi, U.; Kadel, R. W.; Kajfasz, E.; Kambara, H.; Kamon, T.; Kaneko, T.; Karr, K.; Kasha, H.; Kato, Y.; Keaffaber, T. A.; Keeble, L.; Kelley, K.; Kennedy, R. D.; Kephart, R.; Kesten, P.; Kestenbaum, D.; Keup, R. M.; Keutelian, H.; Keyvan, F.; Kharadia, B.; Kim, B. J.; Kim, D. H.; Kim, H. S.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kirsch, L.; Koehn, P.; Kondo, K.; Konigsberg, J.; Kopp, S.; Kordas, K.; Korytov, A.; Koska, W.; Kovacs, E.; Kowald, W.; Krasberg, M.; Kroll, J.; Kruse, M.; Kuwabara, T.; Kuhlmann, S. E.; Kuns, E.; Laasanen, A. T.; Labanca, N.; Lammel, S.; Lamoureux, J. I.; Lecompte, T.; Leone, S.; Lewis, J. D.; Limon, P.; Lindgren, M.; Liss, T. M.; Lockyer, N.; Long, O.; Loomis, C.; Loreti, M.; Lu, J.; Lucchesi, D.; Lukens, P.; Lusin, S.; Lys, J.; Maeshima, K.; Maghakian, A.; Maksimovic, P.; Mangano, M.; Mansour, J.; Mariotti, M.; Marriner, J. P.; Martin, A.; Matthews, J. A.; Mattingly, R.; McIntyre, P.; Melese, P.; Menzione, A.; Meschi, E.; Metzler, S.; Miao, C.; Miao, T.; Michail, G.; Miller, R.; Minato, H.; Miscetti, S.; Mishina, M.; Mitsushio, H.; Miyamoto, T.; Miyashita, S.; Moggi, N.; Morita, Y.; Mueller, J.; Mukherjee, A.; Muller, T.; Murat, P.; Nakada, H.; Nakano, I.; Nelson, C.; Neuberger, D.; Newman-Holmes, C.; Ninomiya, M.; Nodulman, L.; Oh, S. H.; Ohl, K. E.; Ohmoto, T.; Ohsugi, T.; Oishi, R.; Okabe, M.; Okusawa, T.; Oliveira, R.; Olsen, J.; Pagliarone, C.; Paoletti, R.; Papadimitriou, V.; Pappas, S. P.; Park, S.; Parri, A.; Patrick, J.; Pauletta, G.; Paulini, M.; Perazzo, A.; Pescara, L.; Peters, M. D.; Phillips, T. J.; Piacentino, G.; Pillai, M.; Pitts, K. T.; Plunkett, R.; Pondrom, L.; Proudfoot, J.; Ptohos, F.; Punzi, G.; Ragan, K.; Ribon, A.; Rimondi, F.; Ristori, L.; Robertson, W. J.; Rodrigo, T.; Rolli, S.; Romano, J.; Rosenson, L.; Roser, R.; Sakumoto, W. K.; Saltzberg, D.; Sansoni, A.; Santi, L.; Sato, H.; Scarpine, V.; Schlabach, P.; Schmidt, E. E.; Schmidt, M. P.; Scribano, A.; Segler, S.; Seidel, S.; Seiya, Y.; Sganos, G.; Shapiro, M. D.; Shaw, N. M.; Shen, Q.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Siegrist, J.; Sill, A.; Sinervo, P.; Singh, P.; Skarha, J.; Sliwa, K.; Snider, F. D.; Song, T.; Spalding, J.; Speer, T.; Sphicas, P.; Spinella, F.; Spiropulu, M.; Spiegel, L.; Stanco, L.; Steele, J.; Stefanini, A.; Strahl, K.; Strait, J.

    1996-10-01

    The properties of high-mass multijet events produced at the Fermilab proton-antiproton collider are compared with leading order QCD matrix element predictions, QCD parton shower Monte Carlo predictions, and the predictions from a model in which events are distributed uniformly over the available multibody phase space. Multijet distributions corresponding to (4N-4) variables that span the N-body parameter space are found to be well described by the QCD calculations for inclusive three-jet, four-jet, and five-jet events. The agreement between data, QCD matrix element calculations, and QCD parton shower Monte Carlo predictions suggests that 2-->2 scattering plus gluon radiation provides a good first approximation to the full LO QCD matrix element for events with three, four, or even five jets in the final state.

  11. Ring shaped 6.7 GHz methanol maser emission around a young high-mass star

    E-print Network

    A. Bartkiewicz; M. Szymczak; H. J. van Langevelde

    2005-09-21

    We report on EVN imaging of the 6.7 GHz methanol maser emission from the candidate high-mass protostar G23.657-0.127. The masers originate in a nearly circular ring of 127 mas radius and 12 mas width. The ring structure points at a central exciting object which characteristics are typical for a young massive star; its bolometric luminosity is estimated to be <3.2*10^4 L_sun and <1.2*10^5 L_sun for near (5.1 kpc) and far (10.5 kpc) kinematic distances, respectively. However, the spatial geometry of the underlying maser region remains ambiguous. We consider scenarios in which the methanol masers originate in a spherical bubble or in a rotating disc seen nearly face-on.

  12. Silver Coating for High-Mass-Accuracy Imaging Mass Spectrometry of Fingerprints on Nanostructured Silicon.

    PubMed

    Guinan, Taryn M; Gustafsson, Ove J R; McPhee, Gordon; Kobus, Hilton; Voelcker, Nicolas H

    2015-11-17

    Nanostructure imaging mass spectrometry (NIMS) using porous silicon (pSi) is a key technique for molecular imaging of exogenous and endogenous low molecular weight compounds from fingerprints. However, high-mass-accuracy NIMS can be difficult to achieve as time-of-flight (ToF) mass analyzers, which dominate the field, cannot sufficiently compensate for shifts in measured m/z values. Here, we show internal recalibration using a thin layer of silver (Ag) sputter-coated onto functionalized pSi substrates. NIMS peaks for several previously reported fingerprint components were selected and mass accuracy was compared to theoretical values. Mass accuracy was improved by more than an order of magnitude in several cases. This straightforward method should form part of the standard guidelines for NIMS studies for spatial characterization of small molecules. PMID:26460234

  13. HIGH ANGULAR RESOLUTION OBSERVATIONS OF FOUR CANDIDATE BLAST HIGH-MASS STARLESS CORES

    SciTech Connect

    Olmi, Luca; Poventud, Carlos M.; Araya, Esteban D.; Chapin, Edward L.; Gibb, Andrew; Hofner, Peter; Martin, Peter G. E-mail: olmi@arcetri.astro.i

    2010-06-01

    We discuss high angular resolution observations of ammonia toward four candidate high-mass starless cores (HMSCs). The cores were identified by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) during its 2005 survey of the Vulpecula region where 60 compact sources were detected simultaneously at 250, 350, and 500 {mu}m. Four of these cores, with no IRAS-PSC or MSX counterparts, were mapped with the NRAO Very Large Array and observed with the Effelsberg 100 m telescope in the NH{sub 3}(1,1) and (2,2) spectral lines. Our observations indicate that the four cores are cold (T {sub k} < 16 K) and show a filamentary and/or clumpy structure. They also show a significant velocity substructure within {approx}1 km s{sup -1}. The four BLAST cores appear to be colder and more quiescent than other previously observed HMSC candidates, suggesting an earlier stage of evolution.

  14. ARE MOLECULAR OUTFLOWS AROUND HIGH-MASS STARS DRIVEN BY IONIZATION FEEDBACK?

    SciTech Connect

    Peters, Thomas; Klessen, Ralf S.; Klaassen, Pamela D.; Mac Low, Mordecai-Mark; Banerjee, Robi

    2012-11-20

    The formation of massive stars exceeding 10 M {sub Sun} usually results in large-scale molecular outflows. Numerical simulations, including ionization, of the formation of such stars show evidence for ionization-driven molecular outflows. Here we examine whether the outflows seen in these models reproduce the observations. We compute synthetic ALMA and CARMA maps of CO emission lines of the outflows, and compare their signatures to existing single-dish and interferometric data. We find that the ionization-driven models can only reproduce weak outflows around high-mass star-forming regions. We argue that expanding H II regions probably do not represent the dominant mechanism for driving observed outflows. We suggest instead that observed outflows are driven by the collective action of the outflows from the many lower-mass stars that inevitably form around young massive stars in a cluster.

  15. Methanol masers as tools to study high-mass star formation

    E-print Network

    Michele Pestalozzi

    2007-04-23

    In this contribution I will attempt to show that the study of galactic 6.7 and 12.2GHz methanol masers themselves, as opposed to the use of methanol masers as signposts, can yield important conclusions contributing to the understanding of high-mass star formation. Due to their exclusive association with star formation, methanol masers are the best tools to do this, and their large number allows to probe the entire Galaxy. In particular I will focus on the determination of the luminosity function of methanol masers and on the determination of an unambiguous signature for a circumstellar masing disc seen edge-on. Finally I will try to point out some future fields of research in the study of methanol masers.

  16. Methanol masers as tools to study high-mass star formation

    E-print Network

    Pestalozzi, Michele

    2007-01-01

    In this contribution I will attempt to show that the study of galactic 6.7 and 12.2GHz methanol masers themselves, as opposed to the use of methanol masers as signposts, can yield important conclusions contributing to the understanding of high-mass star formation. Due to their exclusive association with star formation, methanol masers are the best tools to do this, and their large number allows to probe the entire Galaxy. In particular I will focus on the determination of the luminosity function of methanol masers and on the determination of an unambiguous signature for a circumstellar masing disc seen edge-on. Finally I will try to point out some future fields of research in the study of methanol masers.

  17. Observations of water with Herschel/HIFI toward the high-mass protostar AFGL 2591

    NASA Astrophysics Data System (ADS)

    Choi, Y.; van der Tak, F. F. S.; van Dishoeck, E. F.; Herpin, F.; Wyrowski, F.

    2015-04-01

    Context. Water is an important chemical species in the process of star formation, and a sensitive tracer of physical conditions in star-forming regions because of its rich line spectrum and large abundance variations between hot and cold regions. Aims: We use spectrally resolved observations of rotational lines of H2O and its isotopologs to constrain the physical conditions of the water emitting region toward the high-mass protostar AFGL 2591. Methods: Herschel/HIFI spectra from 552 up to 1669 GHz show emission and absorption in 14 lines of H 2 O, H218O, and H217O. We decompose the line profiles into contributions from the protostellar envelope, the bipolar outflow, and a foreground cloud. We use analytical estimates and rotation diagrams to estimate excitation temperatures and column densities of H2O in these components. Furthermore, we use the non-local thermodynamic equilibrium (LTE) radiative transfer code RADEX to estimate the temperature and volume density of the H2O emitting gas. Results: Assuming LTE, we estimate an excitation temperature of ~42 K and a column density of ~2 × 1014 cm-2 for the envelope and ~45 K and 4 × 1013 cm-2 for the outflow, in beams of 4? and 30?, respectively. Non-LTE models indicate a kinetic temperature of ~60-230 K and a volume density of 7 × 106-108 cm-3 for the envelope, and a kinetic temperature of ~70-90 K and a gas density of ~107-108 cm-3 for the outflow. The ortho/para ratio of the narrow cold foreground absorption is lower than three (~1.9 ± 0.4), suggesting a low temperature. In contrast, the ortho/para ratio seen in absorption by the outflow is about 3.5 ± 1.0, as expected for warm gas. Conclusions: The water abundance in the outer envelope of AFGL 2591 is ~10-9 for a source size of 4?, similar to the low values found for other high-mass and low-mass protostars, suggesting that this abundance is constant during the embedded phase of high-mass star formation. The water abundance in the outflow is ~10-10 for a source size of 30?, which is ~10× lower than in the envelope and in the outflows of high-mass and low-mass protostars. Since beam size effects can only increase this estimate by a factor of 2, we suggest that the water in the AFGL 2591 outflow is affected by dissociating UV radiation as a result of the low extinction in the outflow lobe. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  18. High Mass X-ray Binaries: Progenitors of double neutron star systems

    E-print Network

    Chaty, Sylvain

    2015-01-01

    In this review I briefly describe the nature of the three kinds of High-Mass X-ray Binaries (HMXBs), accreting through: (i) Be circumstellar disc, (ii) supergiant stellar wind, and (iii) Roche lobe filling supergiants. A previously unknown population of HMXBs hosting supergiant stars has been revealed in the last years, with multi-wavelength campaigns including high energy (INTEGRAL, Swift, XMM, Chandra) and optical/infrared (mainly ESO) observations. This population is divided between obscured supergiant HMXBs, and supergiant fast X-ray transients (SFXTs), characterized by short and intense X-ray flares. I discuss the characteristics of these types of supergiant HMXBs, propose a scenario describing the properties of these high-energy sources, and finally show how the observations can constrain the accretion models (e.g. clumpy winds, magneto-centrifugal barrier, transitory accretion disc, etc). Because they are the likely progenitors of Luminous Blue Variables (LBVs), and also of double neutron star systems,...

  19. CHEMICAL EVOLUTION IN HIGH-MASS STAR-FORMING REGIONS: RESULTS FROM THE MALT90 SURVEY

    SciTech Connect

    Hoq, Sadia; Jackson, James M.; Foster, Jonathan B.; Sanhueza, Patricio; Claysmith, Christopher; Guzmán, Andrés; Whitaker, J. Scott; Rathborne, Jill M.; Vasyunina, Tatiana; Vasyunin, Anton E-mail: jackson@bu.edu E-mail: claysmit@bu.edu E-mail: aguzmanf@cfa.harvard.edu E-mail: rathborne@csiro.au E-mail: aiv3f@virginia.edu

    2013-11-10

    The chemical changes of high-mass star-forming regions provide a potential method for classifying their evolutionary stages and, ultimately, ages. In this study, we search for correlations between molecular abundances and the evolutionary stages of dense molecular clumps associated with high-mass star formation. We use the molecular line maps from Year 1 of the Millimetre Astronomy Legacy Team 90 GHz (MALT90) Survey. The survey mapped several hundred individual star-forming clumps chosen from the ATLASGAL survey to span the complete range of evolution, from prestellar to protostellar to H II regions. The evolutionary stage of each clump is classified using the Spitzer GLIMPSE/MIPSGAL mid-IR surveys. Where possible, we determine the dust temperatures and H{sub 2} column densities for each clump from Herschel/Hi-GAL continuum data. From MALT90 data, we measure the integrated intensities of the N{sub 2}H{sup +}, HCO{sup +}, HCN and HNC (1-0) lines, and derive the column densities and abundances of N{sub 2}H{sup +} and HCO{sup +}. The Herschel dust temperatures increase as a function of the IR-based Spitzer evolutionary classification scheme, with the youngest clumps being the coldest, which gives confidence that this classification method provides a reliable way to assign evolutionary stages to clumps. Both N{sub 2}H{sup +} and HCO{sup +} abundances increase as a function of evolutionary stage, whereas the N{sub 2}H{sup +} (1-0) to HCO{sup +} (1-0) integrated intensity ratios show no discernable trend. The HCN (1-0) to HNC(1-0) integrated intensity ratios show marginal evidence of an increase as the clumps evolve.

  20. The Detection of OH-MASER Satellite Lines in High Mass Star Forming Regions

    NASA Astrophysics Data System (ADS)

    Felli, Derek; Migenes, V.

    2010-05-01

    Microwave Amplification by Stimulated Emission of Radiation (MASER) originates from molecules which have been pumped to an excited state. MASERs on a galactic scale come from dense hot clumps of molecular gas. There are various very well known MASER species OH, H20, CH3OH, and CH2O to name some of the most common. MASERs are found in a number of astrophysical settings like Star Forming Regions, Supernova remnants, and Late-Type Stars. In the work we present the result of studying 44 galactic OH-MASERs using the Very Large Baseline Array (VLBA). Common transitions observed in OH-MASERs are the lines 1612 MHz, 1665 MHz, 1667 MHz, and 1720 MHz. The 1665 and 1667 MHz transitions are known as Main lines and are more common in Star Forming Regions while the 1612 and 1720 MHz transitions known as Satellite lines are common in Late-Type Stars. Generally Satellite lines are not found in Star Forming Regions. We studied the Main lines and Satellite lines of these OH-MASERs. Through the use of interferometric techniques we obtained high spatial and spectral resolution for our detections of MASER emission. This is the first time that high resolution observations have been done on many of these sources. We used this data and whether the Satellite lines appeared to study star formation processes in high-mass and low-mass Star Forming Regions. A correlation between satellite line emission and high-mass Star Forming Region could be helpful in the study of star formation processes.

  1. Modeling the water line emission from the high-mass star-forming region AFGL2591

    E-print Network

    D. R. Poelman; F. F. S. van der Tak

    2007-10-08

    Context: observations of water lines are a sensitive probe of the geometry, dynamics and chemical structure of dense molecular gas. The launch of Herschel with on board HIFI and PACS allow to probe the behaviour of multiple water lines with unprecedented sensitivity and resolution. Aims: we investigate the diagnostic value of specific water transitions in high-mass star-forming regions. As a test case, we apply our models to the AFGL2591 region. Results: in general, for models with a constant water abundance, the ground state lines, i.e., 1_(10)-1_(01), 1_(11)-0_(00), and 2_(12)-1_(01), are predicted in absorption, all the others in emission. This behaviour changes for models with a water abundance jump profile in that the line profiles for jumps by a factor of ~10-100 are similar to the line shapes in the constant abundance models, whereas larger jumps lead to emission profiles. Asymmetric line profiles are found for models with a cavity outflow and depend on the inclination angle. Models with an outflow cavity are favoured to reproduce the SWAS observations of the 1_(10)-1_(01) ground-state transition. PACS spectra will tell us about the geometry of these regions, both through the continuum and through the lines. Conclusions: it is found that the low-lying transitions of water are sensitive to outflow features, and represent the excitation conditions in the outer regions. High-lying transitions are more sensitive to the adopted density and temperature distribution which probe the inner excitation conditions. The Herschel mission will thus be very helpful to constrain the physical and chemical structure of high-mass star-forming regions such as AFGL2591.

  2. High Resolution, Long - Slit Spectroscopy of VY CMa: The Evidence for Localized High Mass Loss Events

    E-print Network

    Roberta M. Humphreys; Kris Davidson; Gerald Ruch; George Wallerstein

    2004-10-16

    High spatial and spectral resolution spectroscopy of the OH/IR supergiant VY CMa and its circumstellar ejecta reveals evidence for high mass loss events from localized regions on the star occurring over the past 1000 years. The reflected absorption lines and the extremely strong K I emission lines show a complex pattern of velocities in the ejecta. We show that the large, dusty NW arc, expanding at 50 km/sec with respect to the embedded star, is kinematically distinct from the surrounding nebulosity and was ejected about 400 years ago. Other large, more filamentary loops were probably expelled as much as 800 to 1000 years ago while knots and small arcs close to the star resulted from more recent events 100 to 200 years ago. The more diffuse, uniformly distributed gas and dust is surprisingly stationary with little or no velocity relative to the star. This is not what we would expect for the circumstellar material from an evolved red supergiant with a long history of mass loss. We therefore suggest that the high mass loss rate for VY CMa is a measure of the mass carried out by these specific ejections accompanied by streams or flows of gas through low density regions in the dust envelope. VY CMa may thus be our most extreme example of stellar activity, but our results also bring into question the evolutionary state of this famous star. In a separate Appendix, we discuss the origin of the very strong K I and other rare emission lines in its spectrum.

  3. G0.253+0.016: A centrally condensed, high-mass protocluster

    SciTech Connect

    Rathborne, J. M.; Contreras, Y.; Bressert, E.; Longmore, S. N.; Testi, L.; Jackson, J. M.; Foster, J. B.; Garay, G.; Alves, J. F.; Bally, J.; Bastian, N.; Kruijssen, J. M. D.

    2014-05-10

    Despite their importance as stellar nurseries and the building blocks of galaxies, very little is known about the formation of the highest mass clusters. The dense clump G0.253+0.016 represents an example of a clump that may form an Arches-like, high-mass cluster. Here we present molecular line maps toward G0.253+0.016 taken as part of the MALT90 molecular line survey, complemented with APEX observations. Combined, these data reveal the global physical properties and kinematics of G0.253+0.016. Recent Herschel data show that while the dust temperature is low (?19 K) toward its center, the dust temperature on the exterior is higher (?27 K) due to external heating. Our new molecular line data reveal that, overall, the morphology of dense gas detected toward G0.253+0.016 matches its IR extinction and dust continuum emission very well. An anticorrelation between the dust and gas column densities toward its center indicates that the clump is centrally condensed with a cold, dense interior in which the molecular gas is chemically depleted. The velocity field shows a strong gradient along the clump's major axis, with the blueshifted side at a higher Galactic longitude. The optically thick gas tracers are systematically redshifted with respect to the optically thin and hot gas tracers, indicating radial motions. The gas kinematics and line ratios support the recently proposed scenario in which G0.253+0.016 results from a tidal compression during a recent pericenter passage near Sgr A*. Because G0.253+0.016 represents an excellent example of a clump that may form a high-mass cluster, its detailed study should reveal a wealth of knowledge about the early stages of cluster formation.

  4. G0.253+0.016: A Centrally Condensed, High-mass Protocluster

    NASA Astrophysics Data System (ADS)

    Rathborne, J. M.; Longmore, S. N.; Jackson, J. M.; Foster, J. B.; Contreras, Y.; Garay, G.; Testi, L.; Alves, J. F.; Bally, J.; Bastian, N.; Kruijssen, J. M. D.; Bressert, E.

    2014-05-01

    Despite their importance as stellar nurseries and the building blocks of galaxies, very little is known about the formation of the highest mass clusters. The dense clump G0.253+0.016 represents an example of a clump that may form an Arches-like, high-mass cluster. Here we present molecular line maps toward G0.253+0.016 taken as part of the MALT90 molecular line survey, complemented with APEX observations. Combined, these data reveal the global physical properties and kinematics of G0.253+0.016. Recent Herschel data show that while the dust temperature is low (~19 K) toward its center, the dust temperature on the exterior is higher (~27 K) due to external heating. Our new molecular line data reveal that, overall, the morphology of dense gas detected toward G0.253+0.016 matches its IR extinction and dust continuum emission very well. An anticorrelation between the dust and gas column densities toward its center indicates that the clump is centrally condensed with a cold, dense interior in which the molecular gas is chemically depleted. The velocity field shows a strong gradient along the clump's major axis, with the blueshifted side at a higher Galactic longitude. The optically thick gas tracers are systematically redshifted with respect to the optically thin and hot gas tracers, indicating radial motions. The gas kinematics and line ratios support the recently proposed scenario in which G0.253+0.016 results from a tidal compression during a recent pericenter passage near Sgr A*. Because G0.253+0.016 represents an excellent example of a clump that may form a high-mass cluster, its detailed study should reveal a wealth of knowledge about the early stages of cluster formation.

  5. SMA Observations of C2H in High-mass Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Jiang, Xue-Jian; Liu, Hauyu Baobab; Zhang, Qizhou; Wang, Junzhi; Zhang, Zhi-Yu; Li, Juan; Gao, Yu; Gu, Qiusheng

    2015-08-01

    {{{C}}}2{{H}} is a representative hydrocarbon that is abundant and ubiquitous in the interstellar medium. To study its chemical properties, we present Submillimeter Array observations of the C2H N = 3-2 and HC3N J = 30-29 transitions and the 1.1 mm continuum emission toward four OB cluster-forming regions, AFGL 490, ON 1, W33 Main, and G10.6-0.4, which cover a bolometric luminosity range of ˜103-106 {L}? . We found that on large scales, the C2H emission traces the dense molecular envelope. However, for all observed sources, the peaks of C2H emission are offset by several times 104 AU from the peaks of 1.1 mm continuum emission, where the most luminous stars are located. By comparing the distribution and profiles of C2H hyperfine lines and the 1.1 mm continuum emission, we find that the C2H column density (and abundance) around the 1.1 mm continuum peaks is lower than those in the ambient gas envelope. Chemical models suggest that C2H might be transformed to other species owing to increased temperature and density thus, its reduced abundance could be the signpost of the heated molecular gas in the ˜104 AU vicinity around the embedded high-mass stars. Our results support such theoretical prediction for centrally embedded ˜103-106 {L}? OB star-forming cores, while future higher-resolution observations are required to examine the C2H transformation around the localized sites of high-mass star formation.

  6. A Survey of Large Molecules of Biological Interest toward Selected High Mass Star Forming Regions

    NASA Technical Reports Server (NTRS)

    Remijan, A.; Shiao, Y.-S.; Friedel, D. N.; Meier, D. S.; Snyder, L. E.

    2004-01-01

    We have surveyed three high mass Galactic star forming regions for interstellar methanol (CH3OH), formic acid (HCOOH), acetic acid (CH3COOH), methyl formate (HCOOCH3), methyl cyanide (CH3CN), and ethyl cyanide (CH3CH2CN) with the BIMA Array. From our observations, we have detected two new sources of interstellar HCOOH toward the hot core regions G19.61-0.23 and W75N. We have also made the first detections of CH3CH2CN and HCOOCH3 toward G19.61-0.23. The relative HCOOH/HCOOCH3 abundance ratio toward G19.61-0.23 is 0.18 which is comparable to the abundance ratios found by Liu and colleagues toward Sgr B2(N-LMH), Orion and W51(approximately 0.10). We have made the first detection of HCOOCH3 toward W75N. The relative HCOOH/HCOOCH3 abundance ratio toward W75N is 0.26 which is more than twice as large as the abundance ratios found by Liu and colleagues. Furthermore, the hot core regions around W75N show a chemical differentiation between the O and N cores similar to what is seen toward the Orion Hot Core and Compact Ridge and W3(OH) and W3(H2O). It is also apparent from our observations that the high mass star forming region G45.47+0.05 does not contain any compact hot molecular core and as a consequence its chemistry may be similar to cold dark clouds. Finally, the formation of CH3COOH appears to favor HMCs with well mixed N and O, despite the fact that CH3COOH does not contain a N atom. If proved to be true, this is an important constraint on CH3COOH formation and possibly other structurally similar biomolecules.

  7. High-Mass Star Formation in the Outer Scutum-Centaurus Arm

    NASA Astrophysics Data System (ADS)

    Armentrout, William P.; Anderson, Loren D.; Balser, Dana S.; Bania, Thomas M.; Dame, Thomas M.; Wenger, Trey

    2016-01-01

    The HII Region Discovery Survey (HRDS; Bania et al., 2010) has discovered nearly 1000 HII regions by detecting their radio recombination line (RRL) emission using the Green Bank Telescope (GBT) and the Arecibo Observatory. Observations of RRLs allow us to measure source velocities and determine positions within the Galaxy using a rotation curve model, but until recently our sample in the far outer Galaxy was incomplete. Using HI and CO data, Dame & Thaddeus (2011) identified an extension of the Scutum-Centaurus spiral arm, deemed the Outer Scutum-Centaurus arm, or OSC. This arm offers a new laboratory for the study of Galactic structure, high-mass star formation, and chemistry of the outer Galaxy. We searched for new Galactic HII regions in the OSC by targeting infrared-identified candidates that have an (l,b) location consistent with this arm. We have discovered 10 OSC HII regions thus far, using observations of: (1) VLA 9 GHz continuum to identify thermally emitting sources, (2) GBT RRLs to detect evolved HII regions, and (3) GBT NH3 to detect younger HII regions. Detected regions lie at an average Heliocentric distance of 20.0 ± 1.4 kpc and an average Galactocentric distance of 14.5 ± 1.4 kpc. The most distant region detected has a Heliocentric distance of 23.5 kpc and a Galactocentric distance of 17.0 kpc. These are the most distant known Galactic high-mass star formation regions. We will present the results of ongoing NH3 observations with the GBT, which will likely increase the sample of OSC HII regions further.

  8. SHARE: Statistical Hadronization with Resonances

    E-print Network

    Giorgio Torrieri; Steve Steinke; Wojciech Broniowski; Wojciech Florkowski; Jean Letessier; Johann Rafelski

    2004-07-22

    SHARE is a collection of programs designed for the statistical analysis of particle production in relativistic heavy-ion collisions. With the physical input of intensive statistical parameters, it generates the ratios of particle abundances. The program includes cascade decays of all confirmed resonances from the Particle Data Tables. The complete treatment of these resonances has been known to be a crucial factor behind the success of the statistical approach. An optional feature implemented is a Breit--Wigner type distribution for strong resonances. An interface for fitting the parameters of the model to the experimental data is provided.

  9. Kinematic and thermal structure at the onset of high-mass star formation

    NASA Astrophysics Data System (ADS)

    Bihr, S.; Beuther, H.; Linz, H.; Ragan, S. E.; Hennemann, M.; Tackenberg, J.; Smith, R. J.; Krause, O.; Henning, Th.

    2015-07-01

    Context. Even though high-mass stars are crucial for understanding a diversity of processes within our galaxy and beyond, their formation and initial conditions are still poorly constrained. Aims: We want to understand the kinematic and thermal properties of young massive gas clumps prior to and at the earliest evolutionary stages of high-mass star formation. Do we find signatures of gravitational collapse? Do we find temperature gradients in the vicinity or absence of infrared emission sources? Do we find coherent velocity structures toward the center of the dense and cold gas clumps? Methods: To determine kinematics and gas temperatures, we used ammonia, because it is known to be a good tracer and thermometer of dense gas. We observed the NH3 (1, 1) and (2, 2) lines within six very young high-mass star-forming regions comprised of infrared dark clouds (IRDCs), along with ISO-selected far-infrared emission sources (ISOSS) with the Karl G. Jansky Very Large Array (VLA) and the Effelsberg 100 m Telescope. Results: The molecular line data allows us to study velocity structures, linewidths, and gas temperatures at high spatial resolution of 3-5'', corresponding to ~0.05 pc at a typical source distance of 2.5 kpc. We find on average cold gas clumps with temperatures in the range between 10 K and 30 K. The observations do not reveal a clear correlation between infrared emission peaks and ammonia temperature peaks. Several infrared emission sources show ammonia temperature peaks up to 30 K, whereas other infrared emission sources show no enhanced kinetic gas temperature in their surrounding. We report an upper limit for the linewidth of ~1.3 km s-1, at the spectral resolution limit of our VLA observation. This indicates a relatively low level of turbulence on the scale of the observations. Velocity gradients are present in almost all regions with typical velocity differences of 1 to 2 km s-1 and gradients of 5 to 10 km s-1 pc-1. These velocity gradients are smooth in most cases, but there is one exceptional source (ISOSS23053), for which we find several velocity components with a steep velocity gradient toward the clump centers that is larger than 30 km s-1 pc-1. This steep velocity gradient is consistent with recent models of cloud collapse. Furthermore, we report a spatial correlation of ammonia and cold dust, but we also find decreasing ammonia emission close to infrared emission sources. FITS files of Figs. 1 to 6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/579/A51Appendix A is available in electronic form at http://www.aanda.org

  10. Water deuterium fractionation in the high-mass hot core G34.26+0.15

    NASA Astrophysics Data System (ADS)

    Liu, F.-C.; Parise, B.; Wyrowski, F.; Zhang, Q.; Güsten, R.

    2013-02-01

    Context. Water is an essential molecule in oxygen chemistry and the main constituent of grain icy mantles. The formation of water can be studied through the HDO/H2O ratio. Thanks to the launch of the Herschel satellite and the advance of sensitive submillimeter receivers on ground telescopes, many H2O and HDO transitions can now be observed, enabling more accurate studies of the level of water fractionation. Aims: Using these new technologies, we aim at revisiting the water fractionation studies toward massive star-forming regions. We present here a detailed study toward G34.26+0.15, a massive star-forming region associated with compact HII regions. Methods: We present observations of five HDO lines obtained with the APEX telescope. Two of those transitions are ground-state transitions. Two of the three high-excitation lines were additionally observed at higher angular resolution with the SMA. We analyzed these observations using the 1D radiative transfer code RATRAN and adopting different physical profiles from two different models. Results: Although the inner and outer fractional abundances relative to H2 can be best constrained to be XHDOin(T > 100 K) = (5-7) × 10-8(3?) and XHDOout(T ? 100 K) = (0.3-2) × 10-11(3?), the line profile of the 893 GHz ground transition cannot be well reproduced. This line profile is shown to be very sensitive to the velocity field. To better constrain the velocity field, it is necessary to observe the HDO line at 893 GHz with high angular resolution. The H2O abundance is deduced from one high-excitation and one ground transition {H_218}O line. The D/H ratios of water are 3.0 × 10-4 in the inner region and (1.9-4.9) × 10-4 in the outer region of the core. The HDO fractional abundance in the inner and outer regions are different by more than four orders, which implies that the sublimation is very similar in low- and high-mass protostars. The D/H ratios of water in G34.26 + 0.15 are close to the value obtained for the same source in a previous study, and similar to those in other high-mass sources, but lower than those in low-mass protostars, suggesting the possibility that the dense and cold pre-collapse phase is shorter for high-mass star-forming regions. Based on observations with the APEX telescope and the SMA. APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory. The Submillimeter Array (SMA) is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics, and is funded by the Smithsonian Institution and the Academia Sinica.Appendix A is available in electronic form at http://www.aanda.org

  11. Resonant Auger spectroscopy of metastable molecular oxygen

    SciTech Connect

    Farrokhpour, Hossein; Alagia, Michele; Coreno, Marcello; De Simone, Monica; Prince, Kevin C.; Richter, Robert; Stranges, Stefano; Tabrizchi, Mahmoud

    2006-03-15

    Resonant Auger spectra following O 1s-{sup 1}{pi}{sub u} excitation of metastable oxygen a {sup 1}{delta}{sub g} molecules have been measured at high resolution under resonant Raman conditions. By selectively monitoring various decay channels, the singlet manifold excitation spectrum has been separated from the dominating triplet excitation. The decay spectra have been analyzed using the lifetime-vibrational-interference model to give the spectroscopic parameters of the 1s excited {sup 1}{pi}{sub u} state of O{sub 2}. Singlet and triplet manifold Auger decay rates are also compared.

  12. Trigonometric parallaxes of high mass star forming regions: the structure and kinematics of the Milky Way

    SciTech Connect

    Reid, M. J.; Dame, T. M.; Menten, K. M.; Brunthaler, A.; Wu, Y.; Zhang, B.; Sanna, A.; Sato, M.; Choi, Y. K.; Immer, K.; Zheng, X. W.; Xu, Y.; Hachisuka, K.; Moscadelli, L.; Rygl, K. L. J.; Bartkiewicz, A.

    2014-03-10

    Over 100 trigonometric parallaxes and proper motions for masers associated with young, high-mass stars have been measured with the Bar and Spiral Structure Legacy Survey, a Very Long Baseline Array key science project, the European VLBI Network, and the Japanese VLBI Exploration of Radio Astrometry project. These measurements provide strong evidence for the existence of spiral arms in the Milky Way, accurately locating many arm segments and yielding spiral pitch angles ranging from about 7° to 20°. The widths of spiral arms increase with distance from the Galactic center. Fitting axially symmetric models of the Milky Way with the three-dimensional position and velocity information and conservative priors for the solar and average source peculiar motions, we estimate the distance to the Galactic center, R {sub 0}, to be 8.34 ± 0.16 kpc, a circular rotation speed at the Sun, ?{sub 0}, to be 240 ± 8 km s{sup –1}, and a rotation curve that is nearly flat (i.e., a slope of –0.2 ± 0.4 km s{sup –1} kpc{sup –1}) between Galactocentric radii of ?5 and 16 kpc. Assuming a 'universal' spiral galaxy form for the rotation curve, we estimate the thin disk scale length to be 2.44 ± 0.16 kpc. With this large data set, the parameters R {sub 0} and ?{sub 0} are no longer highly correlated and are relatively insensitive to different forms of the rotation curve. If one adopts a theoretically motivated prior that high-mass star forming regions are in nearly circular Galactic orbits, we estimate a global solar motion component in the direction of Galactic rotation, V {sub ?} = 14.6 ± 5.0 km s{sup –1}. While ?{sub 0} and V {sub ?} are significantly correlated, the sum of these parameters is well constrained, ?{sub 0} + V {sub ?} = 255.2 ± 5.1 km s{sup –1}, as is the angular speed of the Sun in its orbit about the Galactic center, (?{sub 0} + V {sub ?})/R {sub 0} = 30.57 ± 0.43 km s{sup –1} kpc{sup –1}. These parameters improve the accuracy of estimates of the accelerations of the Sun and the Hulse-Taylor binary pulsar in their Galactic orbits, significantly reducing the uncertainty in tests of gravitational radiation predicted by general relativity.

  13. Kinematic and Thermal Structure at the onset of high-mass star formation

    NASA Astrophysics Data System (ADS)

    Bihr, Simon; Beuther, Henrik

    2015-08-01

    Even though high-mass stars are crucial for understanding a diversity of processes within our galaxy and beyond, their formation and initial conditions are still poorly constrained. We want to understand the kinematic and thermal properties of young massive gas clumps prior to and at the earliest evolutionary stages. Do we find signatures of gravitational collapse? Do we find temperature gradients in the vicinity or absence of infrared emission sources? Do we find coherent velocity structures toward the centre of the dense and cold gas clumps?To determine kinematics and gas temperatures, we used ammonia, because it is known to be a good tracer and thermometer of dense gas. We observed the NH3 (1,1) and (2,2) lines within seven very young high-mass star-forming regions comprised of infrared dark clouds (IRDCs), along with ISO-selected far-infrared emission sources (ISOSS) with the VLA and the Effelsberg 100m telescope. The molecular line data allows us to study velocity structures, linewidths, and gas temperatures at high spatial resolution of 3-5'', corresponding to ~0.05pc at a typical source distance of 2.5kpc. We find on average cold gas clumps with temperatures in the range between 10K and 30K. The observations do not reveal a clear correlation between infrared emission peaks and ammonia temperature peaks. Several infrared emission sources show ammonia temperature peaks up to 30K, whereas other infrared emission sources show no enhanced kinetic gas temperature in their surrounding. We report an upper limit for the linewidth of ~1.3km/s, at the spectral resolution limit of our VLA observation. This indicates a relatively low level of turbulence on the scale of the observations. Velocity gradients are present in almost all regions with typical velocity differences of 1 to 2km/s and gradients of 5 to 10km/s/pc. These velocity gradients are smooth in most cases, but there is one exceptional source (ISOSS23053), for which we find several velocity components with a steep velocity gradient toward the clump centres that is larger than 30km/s/pc. This steep velocity gradient is consistent with recent models of cloud collapse.

  14. Custodial leptons and Higgs decays

    NASA Astrophysics Data System (ADS)

    Carmona, Adrián; Goertz, Florian

    2013-04-01

    We study the effects of extended fermion sectors, respecting custodial symmetry, on Higgs production and decay. The resulting protection for the Z ? b L b L and Z ? ? R ? R decays allows for potentially interesting signals in Higgs physics, while maintaining the good agreement of the Standard Model with precision tests, without significant fine-tuning. Although being viable setups on their own, the models we study can particularly be motivated as the low energy effective theories of the composite Higgs models MCHM5 and MCHM10 or the corresponding gauge-Higgs unification models. The spectra can be identified with the light custodians present in these theories. These have the potential to describe the relevant physics in their fermion sectors in a simplified and transparent way. In contrast to previous studies of composite models, we consider the impact of a realistic lepton sector on the Higgs decays. We find significant modifications in the decays to ? leptons and photons due to the new leptonic resonances. While from a pure low energy perspective an enhancement of the channel pp ? h ? ?? turns out to be possible, if one considers constraints on the parameters from the full structure of the composite models, the decay mode into photons is always reduced. We also demonstrate that taking into account the non-linearity of the Higgs sector does not change the qualitative picture for the decays into ? leptons or photons in the case of the dominant Higgs production mechanism.

  15. X-ray Polarization from High Mass X-ray Binaries

    E-print Network

    Kallman, T; Blondin, J

    2015-01-01

    X-ray astronomy allows study of objects which may be associated with compact objects, i.e. neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically non-spherical, and likely non-circular when projected on the sky. Polarization allows study of such geoemetric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. A class of potential targets for future X-ray polarization observations is the high mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early type star. In this paper ws show that X-ray polarization from HMXBs has a distinct signature which depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclips...

  16. The shadow wind in high-mass X-ray binaries

    NASA Technical Reports Server (NTRS)

    Blondin, John M.

    1994-01-01

    We present hydrodynamic simulations of the most X-ray luminous high-mass X-ray binary systems, such as Cen X-3 and SMC X-1. These models illustrate the presence of both a normal radiatively driven wind confined to the X-ray shadow of the primary star -- a shadow wind -- and a thermally driven wind excited by the X-ray heating of the primary's stellar surface -- an X-ray-excited wind. The X-ray flux in these systems is sufficiently intense that any circumstellar gas exposed to the X-ray source will be highly photoionized. These extreme ionization conditions prevent the formation of a normal radiatively driven wind from the irradiated surface of the primary, but such a wind can still form on the shadowed side of the primary. Orbital rotation can then bring this shadow wind into the line of sight toward the X-ray source, enhancing the column density of the wind seen near eclipse egress. Furthermore, such a high X-ray flux can also excite a thermal wind from the irradiated surface of the primary. Again, orbital rotation tends to deflect the wind, this time leading to an enhanced column density near eclipse ingress.

  17. Radio emission from the high-mass X-ray binary BP Crucis. First detection

    NASA Astrophysics Data System (ADS)

    Pestalozzi, M.; Torkelsson, U.; Hobbs, G.; López-Sánchez, Á. R.

    2009-11-01

    Context: BP Cru is a well known high-mass X-ray binary consisting of a late B hypergiant (Wray 977) and a neutron star, also observed as the X-ray pulsar GX 301-2. No information about emission from BP Cru in bands other than X-rays and optical has been reported. A massive X-ray binaries containing black holes can produce radio emission from a jet. Aims: To assess the presence of a radio jet, we searched for radio emission from BP Cru using the Australia Compact Array Telescope as part of a survey for radio emission from Be/X-ray transients. Methods: We probed the 41.5 d orbit of BP Cru with the Australia Telescope Compact Array, close to both periastron and apastron. Results: BP Cru was clearly detected in our data on 4, possibly 6, of 12 occasions at 4.8 and 8.6 GHz. Our data suggest that the spectral index of the radio emission is modulated either by the X-ray flux or the orbital phase of the system. Conclusions: We propose that the radio emission of BP Cru probably originates in two components: a persistent component, related to the mass donor Wray 977, and a periodic component, connected to accretion onto the neutron star, possibly originating from a (weak and short lived) jet.

  18. Infall through the evolution of high-mass star-forming clumps

    E-print Network

    Wyrowski, F; Menten, K M; Wiesemeyer, H; Csengeri, T; Heyminck, S; Klein, B; König, C; Urquhart, J S

    2015-01-01

    With the GREAT receiver at the Stratospheric Observatory for Infrared Astronomy (SOFIA), nine massive molecular clumps have been observed in the ammonia $3_{2+}- 2_{2-}$ line at 1.8~THz in a search for signatures of infall. The sources were selected from the ATLASGAL submillimeter dust continuum survey of our Galaxy. Clumps with high masses covering a range of evolutionary stages based on their infrared properties were chosen. The ammonia line was detected in all sources, leading to five new detections and one confirmation of a previous detection of redshifted absorption in front of their strong THz continuum as a probe of infall in the clumps. These detections include two clumps embedded in infrared dark clouds. The measured velocity shifts of the absorptions compared to optically thin \\CSEO\\ (3--2) emission are 0.3--2.8~km/s, corresponding to fractions of 3\\%\\ to 30\\% of the free-fall velocities of the clumps. The ammonia infall signature is compared with complementary data of different transitions of HCN, ...

  19. Testing quantum physics in space using high-mass matter-wave interferometry

    E-print Network

    Rainer Kaltenbaek

    2015-08-31

    Quantum superposition is central to quantum theory but challenges our concepts of reality and spacetime when applied to macroscopic objects like Schr\\"odinger's cat. For that reason, it has been a long-standing question whether quantum physics remains valid unmodified even for truly macroscopic objects. By now, the predictions of quantum theory have been confirmed via matter-wave interferometry for massive objects up to $10^4\\,$ atomic mass units (amu). The rapid development of new technologies promises to soon allow tests of quantum theory for significantly higher test masses by using novel techniques of quantum optomechanics and high-mass matter-wave interferometry. Such experiments may yield novel insights into the foundations of quantum theory, pose stringent limits on alternative theoretical models or even uncover deviations from quantum physics. However, performing experiments of this type on Earth may soon face principal limitations due to requirements of long times of flight, ultra-low vibrations, and extremely high vacuum. Here, we present a short overview of recent developments towards the implementation of the proposed space-mission MAQRO, which promises to overcome those limitations and to perform matter-wave interferometry in a parameter regime orders of magnitude beyond state-of-the-art.

  20. Shadow of a Large Disc Casts New Light on the Formation of High Mass Stars

    NASA Astrophysics Data System (ADS)

    2004-05-01

    Massive Star Observed that Forms through a Rotating Accretion Disc Summary Based on a large observational effort with different telescopes and instruments, mostly from the European Southern Observatory (ESO), a team of European astronomers [1] has shown that in the M 17 nebula a high mass star [2] forms via accretion through a circumstellar disc, i.e. through the same channel as low-mass stars. To reach this conclusion, the astronomers used very sensitive infrared instruments to penetrate the south-western molecular cloud of M 17 so that faint emission from gas heated up by a cluster of massive stars, partly located behind the molecular cloud, could be detected through the dust. Against the background of this hot region a large opaque silhouette, which resembles a flared disc seen nearly edge-on, is found to be associated with an hour-glass shaped reflection nebula. This system complies perfectly with a newly forming high-mass star surrounded by a huge accretion disc and accompanied by an energetic bipolar mass outflow. The new observations corroborate recent theoretical calculations which claim that stars up to 40 times more massive than the Sun can be formed by the same processes that are active during the formation of stars of smaller masses. PR Photo 15a/04: Stellar cluster and star-forming region M 17 (also available without text inside photo) PR Photo 15b/04: Silhouette disc seen in M 17 PR Photo 15c/04: Rotation of the disc in M 17. PR Photo 15d/04: Bipolar reflection nebula and silhouette disc of a young, massive star in M 17 PR Photo 15e/04: Optical spectrum of the bipolar nebula. PR Video 03/04: Zooming in onto the disc. The M 17 region ESO PR Photo 15a/04 ESO PR Photo 15a/04 [Preview - JPEG: 400 x 497 pix - 271k] [Normal - JPEG: 800 x 958 pix - 604k] ESO PR Photo 15a1/04 ESO PR Photo 15a/04 (without text within photo) [Preview - JPEG: 400 x 480 pix - 275k] [Normal - JPEG: 800 x 959 pix - 634k] [High-Res - JPEG: 3000 x 3597 pix - 3.8M] [Full-Res - JPEG: 3815 x 4574 pix - 5.4M] Caption: PR Photo 15a/04 is a reproduction of a three-colour composite of the sky region of M 17, a H II region excited by a cluster of young, hot stars. A large silhouette disc has been found to the south-west of the cluster centre. The area within the indicated square is shown in more detail in PR Photo 15b/04. The present image was obtained with the ISAAC near-infrared instrument at the 8.2-m VLT ANTU telescope at Paranal. In the left photo, the orientation and the scale at the distance of M 17 (7,000 light-years) are indicated, and the main regions are identified. To the right, this beautiful photo is available without text and in full resolution for reproduction purposes. While many details related to the formation and early evolution of low-mass stars like the Sun are now well understood, the basic scenario that leads to the formation of high-mass stars [2] still remains a mystery. Two possible scenarios for the formation of massive stars are currently being studied. In the first, such stars form by accretion of large amounts of circumstellar material; the infall onto the nascent star varies with time. Another possibility is formation by collision (coalescence) of protostars of intermediate masses, increasing the stellar mass in "jumps". In their continuing quest to add more pieces to the puzzle and help providing an answer to this fundamental question, a team of European astronomers [1] used a battery of telescopes, mostly at two of the European Southern Observatory's Chilean sites of La Silla and Paranal, to study in unsurpassed detail the Omega nebula. The Omega nebula, also known as the 17th object in the list of famous French astronomer Charles Messier, i.e. Messier 17 or M 17, is one of the most prominent star forming regions in our Galaxy. It is located at a distance of 7,000 light-years. M 17 is extremely young - in astronomical terms - as witnessed by the presence of a cluster of high-mass stars that ionise the surrounding hydrogen gas and create a so-called H II region. The total luminosity of these stars exceeds

  1. Compact Mid-IR Emission from High-Mass Protostellar Candidates

    NASA Astrophysics Data System (ADS)

    Campbell, M. F.; Sridharan, T. K.; Kassis, M.; Hora, J. L.; Deutsch, L. K.; Beuther, H.

    2003-12-01

    We used MIRSI on the IRTF to obtain 10 and 25 micron images and 10 micron grism spectra of candidate high-mass protostellar objects (HMPOs) from the list of 69 objects of Sridharan et al. (2002). Our main selection criteria within the list were that the sources appear relatively bright and compact in MSX bands C (12.1 microns) and E (21.3 microns), and have peaked emission the 1.2 mm maps of Beuther et al. (2002). A few sources were chosen as likely hot molecular core candidates. 80% of 22 sources were detected by MIRSI at the IRTF, and grism spectra were observed for about half of them. Typically, we detected single sources with sizes only marginally larger than the diffraction limited beams of about one arcsec. Only a few are multiple or extended. A sample source image and a spectrum are presented. References: Sridharan, T. K. et al. 2002 ApJ, 566, 931. Beuther, H. et al. 2002 ApJ, 566, 945.

  2. Radio emission from the high-mass X-ray binary BP Cru: first detection

    E-print Network

    Pestalozzi, M; Hobbs, G; Lopez-Sanchez, A R

    2009-01-01

    BP Cru is a well known high-mass X-ray binary composed of a late B hypergiant (Wray 977) and a neutron star, also observed as the X-ray pulsar GX 301-2. No information about emission from BP Cru in other bands than X-rays and optical has been reported to date in the literature, though massive X-ray binaries containing black holes can have radio emission from a jet. In order to assess the presence of a radio jet, we searched for radio emission towards BP Cru using the Australia Compact Array Telescope during a survey for radio emission from Be/X-ray transients. We probed the 41.5d orbit of BP Cru with the Australia Telescope Compact Array not only close to periastron but also close to apastron. BP Cru was clearly detected in our data on 4, possibly 6, of 12 occasions at 4.8 and 8.6 GHz. Our data suggest that the spectral index of the radio emission is modulated either by the X-ray flux or the orbital phase of the system. We propose that the radio emission of BP Cru probably arises from two components: a persis...

  3. A differentially rotating disc in a high-mass protostellar system

    E-print Network

    Pestalozzi, M; Conway, J

    2009-01-01

    A strong signature of a circumstellar disc around a high-mass protostar has been inferred from high resolution methanol maser observations in NGC7538-IRS1 N. This interpretation has however been challenged with a bipolar outflow proposed as an alternative explanation. We compare the two proposed scenarios for best consistency with the observations. Using a newly developed formalism we model the optical depth of the maser emission at each observed point in the map and LOS velocity for the two scenarios. We find that if the emission is symmetric around a central peak in both space and LOS velocity then it has to arise from an edge-on disc in sufficiently fast differential rotation. Disc models successfully fit ~100 independent measurement points in position-velocity space with 4 free parameters to an overall accuracy of 3-4%. Solutions for Keplerian rotation require a central mass of at least 4 solar masses. Close to best-fitting models are obtained if Keplerian motion is assumed around a central mass equaling ...

  4. OBSERVATIONS OF THE HIGH-MASS X-RAY BINARY A 0535+26 IN QUIESCENCE

    SciTech Connect

    Rothschild, Richard; Markowitz, Alex; Hemphill, Paul; Caballero, Isabel; Kuehnel, Matthias; Wilms, Joern; Fuerst, Felix; Doroshenko, Victor; Camero-Arranz, Ascension

    2013-06-10

    We have analyzed three observations of the high-mass X-ray binary A 0535+26 performed by the Rossi X-Ray Timing Explorer (RXTE) three, five, and six months after the last outburst in 2011 February. We detect pulsations only in the second observation. The 3-20 keV spectra can be fit equally well with either an absorbed power law or absorbed thermal bremsstrahlung model. Reanalysis of two earlier RXTE observations made 4 yr after the 1994 outburst, original BeppoSAX observations 2 yr later, reanalysis of four EXOSAT observations made 2 yr after the last 1984 outburst, and a recent XMM-Newton observation in 2012 reveal a stacked, quiescent flux level decreasing from {approx}2 to <1 Multiplication-Sign 10{sup -11} erg cm{sup -2} s{sup -1} over 6.5 yr after outburst. The detection of pulsations during half of the quiescent observations would imply that accretion onto the magnetic poles of the neutron star continues despite the fact that the circumstellar disk may no longer be present. The accretion could come from material built up at the corotation radius or from an isotropic stellar wind.

  5. CLUSTERING BETWEEN HIGH-MASS X-RAY BINARIES AND OB ASSOCIATIONS IN THE MILKY WAY

    SciTech Connect

    Bodaghee, A.; Tomsick, J. A.; Rodriguez, J.

    2012-01-10

    We present the first direct measurement of the spatial cross-correlation function of high-mass X-ray binaries (HMXBs) and active OB star-forming complexes in the Milky Way. This result relied on a sample containing 79 hard X-ray-selected HMXBs and 458 OB associations. Clustering between the two populations is detected with a significance above 7{sigma} for distances <1 kpc. Thus, HMXBs closely trace the underlying distribution of the massive star-forming regions that are expected to produce the progenitor stars of HMXBs. The average offset of 0.4 {+-} 0.2 kpc between HMXBs and OB associations is consistent with being due to natal kicks at velocities of the order of 100 {+-} 50 km s{sup -1}. The characteristic scale of the correlation function suggests an average kinematical age (since the supernova phase) of {approx}4 Myr for the HMXB population. Despite being derived from a global view of our Galaxy, these signatures of HMXB evolution are consistent with theoretical expectations as well as observations of individual objects.

  6. Stellar wind in state transitions of high-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    ?echura, J.; Hadrava, P.

    2015-03-01

    Aims: We have developed a new code for the three-dimensional time-dependent raditation hydrodynamic simulation of the stellar wind in interacting binaries to improve models of accretion in high-mass X-ray binaries and to quantitatively clarify the observed variability of these objects. We used the code to test the influence of various parameters on the structure and properties of circumstellar matter. Methods: Our code takes into account acceleration of the wind due to the Roche effective potential, Coriolis force, gas pressure, and (CAK-) radiative pressure in the lines and continuum of the supergiant radiation field that is modulated by its gravity darkening and by the photo-ionization caused by X-ray radiation from the compact companion. The parameters of Cygnus X-1 were used to test the properties of our model. Results: Both two- and three-dimensional numerical simulations show that the Coriolis force substantially influences the mass loss and consequently the accretion rate onto the compact companion. The gravitational field of the compact companion focuses the stellar wind, which leads to the formation of a curved cone-like gaseous tail behind the companion. The changes of X-ray photo-ionization of the wind material during X-ray spectral-state transitions significantly influence the wind structure and offer an explanation of the variability of Cygnus X-1 in optical observations (the H? emission).

  7. High-Mass X-ray binaries in the Small Magellanic Cloud

    E-print Network

    Haberl, Frank

    2015-01-01

    The last comprehensive catalogue of high-mass X-ray binaries in the Small Magellanic Cloud (SMC) was published about 10 years ago. Since then new such systems were discovered, mainly by X-ray observations with Chandra and XMM-Newton. For the majority of the proposed HMXBs in the SMC no X-ray pulsations were discovered yet and unless other properties of the X-ray source and/or the optical counterpart confirm their HMXB nature, they remain only candidate HMXBs. From a literature search we collect a catalogue of 148 confirmed and candidate HMXBs in the SMC and investigate their properties to shed light on their real nature. Based on the sample of well established HMXBs (the pulsars), we investigate which observed properties are most appropriate for a reliable classification. Using spectral and temporal characteristics of the X-ray sources and colour-magnitude diagrams from the optical to the infrared of their likely counterparts and taking into account the uncertainty in the X-ray position we define different le...

  8. The Formation of High-Mass Black Holes in Low Mass X-ray Binaries

    E-print Network

    G. E. Brown; C. -H. Lee; H. A. Bethe

    1999-04-19

    In this note we suggest that high-mass black holes; i.e., black holes of several solar masses, can be formed in binaries with low-mass main-sequence companions, provided that the hydrogen envelope of the massive star is removed in common envelope evolution which begins only after the massive star has finished He core burning. That is, the massive star is in the supergiant stage, which lasts only $\\sim 10^4$ years, so effects of mass loss by He winds are small. Since the removal of the hydrogen envelope of the massive star occurs so late, it evolves essentially as a single star, rather than one in a binary. Thus, we can use evolutionary calculations of Woosley & Weaver (1995) of single stars. We find that the black holes in transient sources can be formed from stars with ZAMS masses in the interval $20-35\\msun$. The black hole mass is only slightly smaller than the He core mass, typically $\\sim 7\\msun$.

  9. The superslow pulsation X-ray pulsars in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with ? spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with ? spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of ? spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.

  10. THE AGES OF HIGH-MASS X-RAY BINARIES IN NGC 2403 AND NGC 300

    SciTech Connect

    Williams, Benjamin F.; Binder, Breanna A.; Dalcanton, Julianne J.; Eracleous, Michael; Dolphin, Andrew E-mail: bbinder@astro.washington.edu E-mail: mce@astro.psu.edu

    2013-07-20

    We have examined resolved stellar photometry from HST imaging surrounding 18 high-mass X-ray binary (HMXB) candidates in NGC 300 and NGC 2403 as determined from combined Chandra/HST analysis. We have fit the color-magnitude distribution of the surrounding stars with stellar evolution models. All but one region in NGC 300 and two in NGC 2403 contain a population with an age between 20 and 70 Myr. One of the candidates is the ultraluminous X-ray source in NGC 2403, which we associate with a 60 {+-} 5 Myr old population. These age distributions provide additional evidence that 16 of these 18 candidates are HMXBs. Furthermore, our results suggest that the most common HMXB age in these galaxies is 40-55 Myr. This preferred age is similar to observations of HMXBs in the Small Magellanic Cloud, providing new evidence of this formation timescale, but in higher metallicity populations. We suggest that this preferred HMXB age is the result of the fortuitous combination of two physical effects. First, this is the age of a population when the greatest rate of core-collapse events should be occurring, maximizing neutron star production. Second, this is the age when B stars are most likely to be actively losing mass. We also discuss our results in the context of HMXB feedback in galaxies, confirming HMXBs as a potentially important source of energy for the interstellar medium in low-mass galaxies.

  11. VLA observations of ammonia in high-mass star formation regions

    E-print Network

    Lu, Xing; Liu, Hauyu Baobab; Wang, Junzhi; Gu, Qiusheng

    2014-01-01

    We report systematic mapping observations of the NH$_{3}$ (1,1) and (2,2) inversion lines towards 62 high-mass star-forming regions using VLA in its D and DnC array configurations. The VLA images cover a spatial dynamic range from 40$"$ to 3$"$, allowing us to trace gas kinematics from $\\sim$1 pc scales to $\\lesssim$0.1 pc scales. Based on the NH$_3$ morphology and the infrared nebulosity on 1\\,pc scales, we categorize three sub-classes in the sample: filaments, hot cores, and NH$_3$ dispersed sources. The ubiquitous gas filaments found on 1 pc scales have a typical width of $\\sim$0.1\\,pc and often contain regularly spaced fragments along the major axis. The spacing of the fragments and the column densities are consistent with the turbulent supported fragmentation of cylinders. Several sources show multiple filaments that converge toward a center, where the velocity field in the filaments is consistent with gas flows. We derive rotational temperature maps for the entire sample. For the three hot core sources,...

  12. CP Violation in Other Bs Decays

    E-print Network

    L. Zhang; for the LHCb Collaboration

    2012-08-24

    The recent experimental results of CP violation in Bs decays other than in the J/psi phi final state are discussed. Included are the resonant components and $\\phi_s$ determination in Bs -> J/psi pi+ pi-, CP asymmetries in Bs -> h+ h'- decays, and the Bs effective lifetimes in the CP-even state K+ K- and the CP-odd state J/psi f0(980).

  13. Classical decays in decoherent quantum maps.

    PubMed

    García-Mata, Ignacio; Saraceno, Marcos; Spina, María Elena

    2003-08-01

    The linear entropy and the Loschmidt echo have proved to be of interest recently in the context of quantum information and of the quantum to classical transitions. We study the asymptotic long-time behavior of these quantities for open quantum maps and relate the decays to the eigenvalues of a coarse-grained superoperator. In specific ranges of coarse graining, and for chaotic maps, these decay rates are given by the Ruelle-Pollicott resonances of the classical map. PMID:12935077

  14. Studies of penguin dominated B decays

    E-print Network

    Y. Yusa; for the Belle Collaboration

    2007-10-26

    We present measurements on penguin dominated B decays which are sensitive to new physics, such as CP-violation parameters and branching fractions in $b \\to s q\\bar{q}$ and $b \\to d q\\bar{q}$ gluonic and radiative decays using a large sample of $B\\bar{B}$ pairs recorded at the $\\Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric energy $e^+e^-$ collider.

  15. The near-field acoustic levitation of high-mass rotors

    SciTech Connect

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B.

    2014-10-15

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  16. The near-field acoustic levitation of high-mass rotors

    NASA Astrophysics Data System (ADS)

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B.

    2014-10-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  17. The near-field acoustic levitation of high-mass rotors.

    PubMed

    Hong, Z Y; Lü, P; Geng, D L; Zhai, W; Yan, N; Wei, B

    2014-10-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope. PMID:25362441

  18. B[superscript 0] meson decays to ?[superscript 0]K[superscript *0], f[subscript 0]K[superscript *0], and ?[superscript -]K[superscript *+], including higher K[superscript *] resonances

    E-print Network

    Cowan, Ray Franklin

    We present branching fraction measurements for the decays B[superscript 0]??[superscript 0]K[superscript *0], B[superscript 0]?f[subscript 0]K[superscript *0], and B[superscript 0]??[superscript -]K[superscript *+], where ...

  19. Observation of the Resonant Character of the Z(4430)[superscript ?] State

    E-print Network

    Counts, Ian Thomas Hunt

    Resonant structures in B[superscript 0] ? ?[superscript ?]?[superscript ?]K[superscript +] decays are analyzed by performing a four-dimensional fit of the decay amplitude, using pp collision data corresponding to ...

  20. High-mass X-ray binary populations. 1: Galactic modeling

    NASA Technical Reports Server (NTRS)

    Dalton, William W.; Sarazin, Craig L.

    1995-01-01

    Modern stellar evolutionary tracks are used to calculate the evolution of a very large number of massive binary star systems (M(sub tot) greater than or = 15 solar mass) which cover a wide range of total masses, mass ratios, and starting separations. Each binary is evolved accounting for mass and angular momentum loss through the supernova of the primary to the X-ray binary phase. Using the observed rate of star formation in our Galaxy and the properties of massive binaries, we calculate the expected high-mass X-ray binary (HMXRB) population in the Galaxy. We test various massive binary evolutionary scenarios by comparing the resulting HMXRB predictions with the X-ray observations. A major goal of this study is the determination of the fraction of matter lost from the system during the Roche lobe overflow phase. Curiously, we find that the total numbers of observable HMXRBs are nearly independent of this assumed mass-loss fraction, with any of the values tested here giving acceptable agreement between predicted and observed numbers. However, comparison of the period distribution of our HMXRB models with the observed period distribution does reveal a distinction among the various models. As a result of this comparison, we conclude that approximately 70% of the overflow matter is lost from a massive binary system during mass transfer in the Roche lobe overflow phase. We compare models constructed assuming that all X-ray emission is due to accretion onto the compact object from the donor star's wind with models that incorporate a simplified disk accretion scheme. By comparing the results of these models with observations, we conclude that the formation of disks in HMXRBs must be relatively common. We also calculate the rate of formation of double degenerate binaries, high velocity detached compact objects, and Thorne-Zytkow objects.

  1. THE SPATIAL DISTRIBUTION OF ORGANICS TOWARD THE HIGH-MASS YSO NGC 7538 IRS9

    SciTech Connect

    Oeberg, Karin I.; Boamah, Mavis D.; Fayolle, Edith C.; Garrod, Robin T.; Cyganowski, Claudia J.; Van der Tak, Floris

    2013-07-10

    Complex molecules have been broadly classified into three generations dependent on the mode of formation and the required formation temperature (<25, 25-100 K, and >100 K). Around massive young stellar objects (MYSOs), icy grain mantles and gas are exposed to increasingly higher temperatures as material accretes from the outer envelope in toward the central hot region. The combination of this temperature profile and the generational chemistry should result in a changing complex molecular composition with radius around MYSOs. We combine IRAM 30 m and Submillimeter Array observations to explore the spatial distribution of organic molecules around the high-mass young stellar object NGC 7538 IRS9, whose weak complex molecule emission previously escaped detection. We find that emission from N-bearing organics and CH{sub 3}OH present substantial increases in emission around 8000 AU and R < 3000 AU, while unsaturated O-bearing molecules and hydrocarbons do not. The increase in line flux for some complex molecules in the envelope, around 8000 AU or 25 K, is consistent with recent model predictions of an onset of complex ice chemistry at 20-30 K. The emission increase for many of the same molecules at R < 3000 AU suggests the presence of a weak hot core, where thermal ice evaporation and hot gas-phase reactions drive the chemistry. Complex organics thus form at all radii and temperatures around this protostar, but the composition changes dramatically as the temperature increases, which is used together with an adapted gas-grain astrochemical model to constrain the chemical generation(s) to which different classes of molecules belong.

  2. Very large array observations of ammonia in high-mass star formation regions

    SciTech Connect

    Lu, Xing; Gu, Qiusheng; Zhang, Qizhou; Liu, Hauyu Baobab; Wang, Junzhi

    2014-08-01

    We report systematic mapping observations of the NH{sub 3} (1, 1) and (2, 2) inversion lines toward 62 high-mass star-forming regions using the Very Large Array (VLA) in its D and DnC array configurations. The VLA images cover a spatial dynamic range from 40'' to 3'', allowing us to trace gas kinematics from ?1 pc scales to ?0.1 pc scales. Based on the NH{sub 3} morphology and the infrared nebulosity on 1 pc scales, we categorize three subclasses in the sample: filaments, hot cores, and NH{sub 3}-dispersed sources. The ubiquitous gas filaments found on 1 pc scales have a typical width of ?0.1 pc and often contain regularly spaced fragments along the major axis. The spacing of the fragments and the column densities is consistent with the turbulent supported fragmentation of cylinders. Several sources show multiple filaments that converge toward a center where the velocity field in the filaments is consistent with gas flows. We derive rotational temperature maps for the entire sample. For the three hot core sources, we find a projected radial temperature distribution that is best fit by power-law indices from –0.18 to –0.35. We identify 174 velocity-coherent ?0.1 pc scale dense cores from the entire sample. The mean physical properties for these cores are 1.1 km s{sup –1} in intrinsic linewidth, 18 K in NH{sub 3} rotational temperature, 2.3 × 10{sup 15} cm{sup –2} in NH{sub 3} gas column density, and 67 M{sub ?} in molecular mass. The dense cores identified from the filamentary sources are closer to being virialized. Dense cores in the other two categories of sources appear to be dynamically unstable.

  3. WATER ICE IN HIGH MASS-LOSS RATE OH/IR STARS

    SciTech Connect

    Suh, Kyung-Won; Kwon, Young-Joo

    2013-01-10

    We investigate water-ice features in spectral energy distributions (SEDs) of high mass-loss rate OH/IR stars. We use a radiative transfer code which can consider multiple components of dust shells to make model calculations for various dust species including water ice in the OH/IR stars. We find that the model SEDs are sensitively dependent on the location of the water-ice dust shell. For two sample stars (OH 127.8+0.0 and OH 26.5+0.6), we compare the detailed model results with the infrared observational data including the spectral data from the Infrared Space Observatory (ISO). For the two sample stars, we reproduce the crystalline water-ice features (absorption at 3.1 {mu}m and 11.5 {mu}m; emission at 44 and 62 {mu}m) observed by ISO using a separate component of the water-ice dust shell that condensed at about 84-87 K (r {approx} 1500-1800 AU) as well as the silicate dust shell that condensed at about 1000 K (r {approx} 19-25 AU). For a sample of 1533 OH/IR stars, we present infrared two-color diagrams (2CDs) using the Infrared Astronomical Satellite and AKARI data compared with theoretical model results. We find that the theoretical models clearly show the effects of the crystalline water-ice features (absorption at 11.5 {mu}m and emission at 62 {mu}m) on the 2CDs.

  4. Filaments, ridges and the origin of high-mass stars and clusters in Cygnus X

    NASA Astrophysics Data System (ADS)

    Bontemps, Sylvain; Schneider, Nicola; Motte, Frederique

    2015-08-01

    Recent Herschel findings on filaments in nearby low-mass star-forming clouds clearly points to a new paradigm to explain the formation of high density gas in turbulent clouds leading to the protostellar collapse. These filaments are the locations for core fragmentation at roughly the local Jeans mass. The formation of massive stars and of rich stellar clusters in this new paradigm is however not yet understood. Massive elongated/filamentary structures, referred as ridges, are massive filaments observed in regions of high-mass stars formation which may host the formation of massive stars. They have large average densities and show large velocity dispersion, and are roughly as cold as their low-mass counterparts. This may indicate that a larger effective Jeans mass in these ridges due to additional turbulent support could explain a core fragmentation extending up to higher stellar masses. The level of turbulent support in ridges is however difficult to measure due a high level of dynamics (flows, rotation, infall) which may not represent well the level of true support (isotropic) for Jeans fragmentation. More generally the structure and properties of ridges/massive filaments is not well known and requires dedicated studies.I will present our most recent results obtained with Herschel and the IRAM 30m towards the DR21 ridge in Cygnus X. Several massive protostars are actually observed in the DR21 ridge confirming it is the birth place of massive stars. I will show that the whole large scale region is compatible with a global collapse of a 15 pc cloud of several 10s of thousands of solar masses. The most recent IRAM 30m observations show that the ridge is made of several sub-filaments which are all more massive than their counterparts in low-mass star forming regions. I will discuss the implications of these results in the context of the origin of massive stars.

  5. EVIDENCE FOR INFLOW IN HIGH-MASS STAR-FORMING CLUMPS

    SciTech Connect

    Reiter, Megan; Shirley, Yancy L.; Wu Jingwen; Brogan, Crystal; Wootten, Alwyn; Tatematsu, Ken'ichi E-mail: yshirley@as.arizona.edu E-mail: cbrogan@nrao.edu E-mail: k.tatematsu@nao.ac.jp

    2011-10-10

    We analyze the HCO{sup +} 3-2 and H{sup 13}CO{sup +} 3-2 line profiles of 27 high-mass star-forming regions to identify asymmetries that are suggestive of mass inflow. Three quantitative measures of line asymmetry are used to indicate whether a line profile is blue, red, or neither-the ratio of the temperature of the blue and red peaks, the line skew, and the dimensionless parameter {delta}v. We find nine HCO{sup +} 3-2 line profiles with a significant blue asymmetry and four with significant red asymmetric profiles. Comparing our HCO{sup +} 3-2 results to HCN 3-2 observations from Wu et al., we find that eight of the blue and three of the red have profiles with the same asymmetry in HCN. The eight sources with blue asymmetries in both tracers are considered strong candidates for inflow. Quantitative measures of the asymmetry (e.g., {delta}v) tend to be larger for HCN. This, combined with possible HCO{sup +} abundance enhancements in outflows, suggests that HCN may be a better tracer of inflow. Understanding the behavior of common molecular tracers like HCO{sup +} in clumps of different masses is important for properly analyzing the line profiles seen in a sample of sources representing a broad range of clump masses. Such studies will soon be possible with the large number of sources with possible self-absorption seen in spectroscopic follow-up observations of clumps identified in the Bolocam Galactic Plane Survey.

  6. The Sensitivity of HAWC to High-Mass Dark Matter Annihilations

    E-print Network

    A. U. Abeysekara; R. Alfaro; C. Alvarez; J. D. Alvarez; R. Arceo; J. C. Arteaga-Velazquez; H. A. Ayala Solares; A. S. Barber; B. M. Baughman; N. Bautista-Elivar; J. Becerra Gonzalez; E. Belmont; S. Y. BenZvi; D. Berley; M. Bonilla Rosales; J. Braun; R. A. Caballero-Lopez; K. S. Caballero-Mora; A. Carraminana; M. Castillo; U. Cotti; J. Cotzomi; E. de la Fuente; C. De Leon; T. DeYoung; R. Diaz Hernandez; L. Diaz-Cruz; J. C. Diaz-Velez; B. L. Dingus; M. A. DuVernois; R. W. Ellsworth; S. F. E.; D. W. Fiorino; N. Fraija; A. Galindo; F. Garfias; M. M. Gonzalez; J. A. Goodman; V. Grabski; M. Gussert; Z. Hampel-Arias; J. P. Harding; C. M. Hui; P. Huentemeyer; A. Imran; A. Iriarte; P. Karn; D. Kieda; G. J. Kunde; A. Lara; R. J. Lauer; W. H. Lee; D. Lennarz; H. Leon Vargas; E. C. Linares; J. T. Linnemann; M. Longo; R. Luna-Garcia; A. Marinelli; H. Martinez; O. Martinez; J. Martinez-Castro; J. A. J. Matthews; J. McEnery; E. Mendoza Torres; P. Miranda-Romagnoli; E. Moreno; M. Mostafa; L. Nellen; M. Newbold; R. Noriega-Papaqui; T. Oceguera-Becerra; B. Patricelli; R. Pelayo; E. G. Perez-Perez; J. Pretz; C. Riviere; D. Rosa-Gonzalez; J. Ryan; H. Salazar; F. Salesa; A. Sandoval; M. Schneider; S. Silich; G. Sinnis; A. J. Smith; K. Sparks Woodle; R. W. Springer; I. Taboada; P. A. Toale; K. Tollefson; I. Torres; T. N. Ukwatta; L. Villasenor; T. Weisgarber; S. Westerhoff; I. G. Wisher; J. Wood; G. B. Yodh; P. W. Younk; D. Zaborov; A. Zepeda; H. Zhou; K. N. Abazajian

    2014-12-09

    The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in central Mexico at 19 degrees North latitude and 4100 m above sea level, HAWC will observe gamma rays and cosmic rays with an array of water Cherenkov detectors. The full HAWC array is scheduled to be operational in Spring 2015. In this paper, we study the HAWC sensitivity to the gamma-ray signatures of high-mass (multi- TeV) dark matter annihilation. The HAWC observatory will be sensitive to diverse searches for dark matter annihilation, including annihilation from extended dark matter sources, the diffuse gamma-ray emission from dark matter annihilation, and gamma-ray emission from non-luminous dark matter subhalos. Here we consider the HAWC sensitivity to a subset of these sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the Galactic center. We simulate the HAWC response to gamma rays from these sources in several well-motivated dark matter annihilation channels. If no gamma-ray excess is observed, we show the limits HAWC can place on the dark matter cross-section from these sources. In particular, in the case of dark matter annihilation into gauge bosons, HAWC will be able to detect a narrow range of dark matter masses to cross-sections below thermal. HAWC should also be sensitive to non-thermal cross-sections for masses up to nearly 1000 TeV. The constraints placed by HAWC on the dark matter cross-section from known sources should be competitive with current limits in the mass range where HAWC has similar sensitivity. HAWC can additionally explore higher dark matter masses than are currently constrained.

  7. Water emission from the high-mass star-forming region IRAS 17233-3606

    NASA Astrophysics Data System (ADS)

    Leurini, S.; Gusdorf, A.; Wyrowski, F.; Codella, C.; Csengeri, T.; van der Tak, F.; Beuther, H.; Flower, D. R.; Comito, C.; Schilke, P.

    2014-04-01

    We investigate the physical and chemical processes at work during the formation of a massive protostar based on the observation of water in an outflow from a very young object previously detected in H2 and SiO in the IRAS 17233-3606 region. We estimated the abundance of water to understand its chemistry, and to constrain the mass of the emitting outflow. We present new observations of shocked water obtained with the HIFI receiver onboard Herschel. We detected water at high velocities in a range similar to SiO. We self-consistently fitted these observations along with previous SiO data through a state-of-the-art, one-dimensional, stationary C-shock model. We found that a single model can explain the SiO and H2O emission in the red and blue wings of the spectra. Remarkably, one common area, similar to that found for H2 emission, fits both the SiO and H2O emission regions. This shock model subsequently allowed us to assess the shocked water column density, NH2O = 1.2 × 1018 cm-2, mass, MH2O = 12.5 M?, and its maximum fractional abundance with respect to the total density, xH2O = 1.4 × 10-4. The corresponding water abundance in fractional column density units ranges between 2.5 × 10-5 and 1.2 × 10-5, in agreement with recent results obtained in outflows from low- and high-mass young stellar objects. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices are available in electronic form at http://www.aanda.org

  8. {psi}'' Decays to charmless final states

    SciTech Connect

    Rosner, Jonathan L. . E-mail: rosner@hep.uchicago.edu

    2005-09-01

    The importance of measuring the non-DD-bar decays of the {psi}''={psi}(3770) resonance is discussed. These decays can shed light on a possible discrepancy between the total and DD-bar cross-sections at the {psi}'', and on a proposed mechanism for enhancement of penguin amplitudes in B meson decays through charm-anticharm annihilation. Measurements (including the {psi}'' line shape) in states of definite G-parity and in inclusive charmless final states such as {eta}'+X are found to be particularly important.

  9. Evolution of Nova TrA 2008 into a high mass-accretion rate Frederick M. Walter1

    E-print Network

    Walter, Frederick M.

    Evolution of Nova TrA 2008 into a high mass-accretion rate post-nova Frederick M. Walter1 1Stony Brook University, Stony Brook, NY, USA; frederick.walter@stonybrook.edu Abstract. NR TrA (Nova TrA 2008) was a normal slow Fe II novae for its first year of evolution. During its third year eclipses appeared

  10. N-pi Decays of Baryons in a Relativized Model

    SciTech Connect

    Capstick, Simon; Roberts, Winston

    1992-08-01

    We calculate teh N pi decay amplitudes of baryon resonances ina semi-relativistic version of the 3P0 model of hadron decays. We use relativized wave functions for the baryons and mesons, and include an intuitive modification of the usual 3P0 model. Our results are in reasonable agreement with the reported amplitudes for all known non-strange resonances, and confirm a proposed solution to the mystery of the 'missing' states.

  11. Looking for high-mass young stellar objects: H2O and OH masers in ammonia cores

    NASA Astrophysics Data System (ADS)

    Codella, C.; Cesaroni, R.; López-Sepulcre, A.; Beltrán, M. T.; Furuya, R.; Testi, L.

    2010-02-01

    Context. The earliest stages of high-mass star formation have yet to be characterised well, because high-angular resolution observations are required to infer the properties of the molecular gas hosting the newly formed stars. Aims: We search for high-mass molecular cores in a large sample of 15 high-mass star-forming regions that are observed at high-angular resolution, extending a pilot survey based on a smaller number of objects. Methods: The sample was chosen from surveys of H2O and OH masers to favour the earliest phases of high-mass star formation. Each source was first observed with the 32-m single-dish Medicina antenna in the (1, 1) and (2, 2) inversion transitions at 1.3 cm of ammonia, which is an excellent tracer of dense gas. High-resolution maps in the NH3(2, 2) and (3, 3) lines and the 1.3 cm continuum were obtained successively with the VLA interferometer. Results: We detect continuum emission in almost all the observed star-forming regions, which corresponds to extended and UCHii regions created by young stellar objects with typical luminosities of ˜10^4~L?. However, only in three cases do we find a projected overlap between Hii regions and H2O and OH maser spots. On the other hand, the VLA images detect eight ammonia cores closely associated with the maser sources. The ammonia cores have sizes of ˜10^4 AU, and high masses (up to 104M?), and are very dense (from ˜10^6 to a few ×10^9 cm-3). The typical relative NH3 abundance is ?10-7, in agreement with previous measurements in high-mass star-forming regions. Conclusions: The statistical analysis of the distribution between H2O and OH masers, NH3 cores, and Hii regions confirms that the earliest stages of high-mass star formation are characterised by high-density molecular cores with temperatures of on average ?30 K, either without a detectable ionised region or associated with a hypercompact Hii region.

  12. Penguin-mediated B Decays at Belle

    E-print Network

    Akimasa Ishikawa

    2002-05-16

    We report on the results of penguin-mediated B decays at the Belle experiment. The analyses were based on approximately 32 million $B\\bar{B}$ events collected at the $\\Upsilon(4S)$ resonance with the Belle detector at the KEKB $e^+e^-$ storage ring. The $b \\to s \\gamma$ transition was studied through exclusive decays: $B \\to K^{*} \\gamma$, $B^0 \\to K_{2}^{*}(1430)^0 \\gamma$, $B^+ \\to K^+\\pi^-\\pi^- \\gamma$, $B^+ \\to K^{*0} \\pi^+ \\gamma$ and $B^+ \\to K^+\\rho^0 \\gamma$. The $b \\to s \\ell^+ \\ell^-$ transition was searched through both exclusive decays, $B \\to K^{(*)} \\ell^+ \\ell^-$, and inclusive decay, $B \\to X_{s} \\ell^+ \\ell^-$. We observed the decay processes $B^+ \\to K^+\\pi^+\\pi^- \\gamma$ and $B \\to K \\ell^+ \\ell^-$ for the first time.

  13. HERSCHEL OBSERVATIONS OF THE W3 GMC: CLUES TO THE FORMATION OF CLUSTERS OF HIGH-MASS STARS

    SciTech Connect

    Rivera-Ingraham, A.; Martin, P. G.; Luong, Q. Nguyen; Roy, A.; Polychroni, D.; Motte, F.; Schneider, N.; Hennemann, M.; Men'shchikov, A.; Andre, Ph.; Arzoumanian, D.; Hill, T.; Minier, V.; Bernard, J.-Ph.; Di Francesco, J.; Fallscheer, C.; Elia, D.; Pezzuto, S.; Li, J. Z.; and others

    2013-04-01

    The W3 GMC is a prime target for the study of the early stages of high-mass star formation. We have used Herschel data from the HOBYS key program to produce and analyze column density and temperature maps. Two preliminary catalogs were produced by extracting sources from the column density map and from Herschel maps convolved to 500 {mu}m resolution. Herschel reveals that among the compact sources (FWHM < 0.45 pc), W3 East, W3 West, and W3 (OH) are the most massive and luminous and have the highest column density. Considering the unique properties of W3 East and W3 West, the only clumps with ongoing high-mass star formation, we suggest a 'convergent constructive feedback' scenario to account for the formation of a cluster with decreasing age and increasing system/source mass toward the innermost regions. This process, which relies on feedback by high-mass stars to ensure the availability of material during cluster formation, could also lead to the creation of an environment suitable for the formation of Trapezium-like systems. In common with other scenarios proposed in other HOBYS studies, our results indicate that an active/dynamic process aiding in the accumulation, compression, and confinement of material is a critical feature of the high-mass star/cluster formation, distinguishing it from classical low-mass star formation. The environmental conditions and availability of triggers determine the form in which this process occurs, implying that high-mass star/cluster formation could arise from a range of scenarios: from large-scale convergence of turbulent flows to convergent constructive feedback or mergers of filaments.

  14. A mirrorless spinwave resonator

    PubMed Central

    Pinel, Olivier; Everett, Jesse L.; Hosseini, Mahdi; Campbell, Geoff T.; Buchler, Ben C.; Lam, Ping Koy

    2015-01-01

    Optical resonance is central to a wide range of optical devices and techniques. In an optical cavity, the round-trip length and mirror reflectivity can be chosen to optimize the circulating optical power, linewidth, and free-spectral range (FSR) for a given application. In this paper we show how an atomic spinwave system, with no physical mirrors, can behave in a manner that is analogous to an optical cavity. We demonstrate this similarity by characterising the build-up and decay of the resonance in the time domain, and measuring the effective optical linewidth and FSR in the frequency domain. Our spinwave is generated in a 20?cm long Rb gas cell, yet it facilitates an effective FSR of 83?kHz, which would require a round-trip path of 3.6?km in a free-space optical cavity. Furthermore, the spinwave coupling is controllable enabling dynamic tuning of the effective cavity parameters. PMID:26655839

  15. Two-proton radioactivity and three-body decay. III. Integral formulae for decay widths in a simplified semianalytical approach

    E-print Network

    L. V. Grigorenko; M. V. Zhukov

    2007-04-06

    Three-body decays of resonant states are studied using integral formulae for decay widths. Theoretical approach with a simplified Hamiltonian allows semianalytical treatment of the problem. The model is applied to decays of the first excited $3/2^{-}$ state of $^{17}$Ne and the $3/2^{-}$ ground state of $^{45}$Fe. The convergence of three-body hyperspherical model calculations to the exact result for widths and energy distributions are studied. The theoretical results for $^{17}$Ne and $^{45}$Fe decays are updated and uncertainties of the derived values are discussed in detail. Correlations for the decay of $^{17}$Ne $3/2^-$ state are also studied.

  16. Compact Mid-IR Emission from High-Mass Protostellar Candidates

    NASA Astrophysics Data System (ADS)

    Campbell, M. F.; Kassis, M.; Adams, J. D.; Hora, J. L.; Deutsch, L. K.

    2003-05-01

    We used MIRSI on the IRTF to make 10 and 20 \\micron images of four candidate high-mass protosetllar objects (HMPOs) from the sample of Sridharan et al. (2002). These candidate HMPOs were selected from the IRAS database using FIR color criteria derived for UCHIIs. The HMPOs had been detected in CS, but not in 5 GHz radio continuum single dish surveys above 25 mJy. Most were detected in the MSX mid-IR survey. Beuther et al. (2002) presented maps of 1.2 mm dust emission of the sample of HMPOs. Our selection criteria were that the sources appear compact in MSX bands C (12.1 \\micron) and E (21.3 \\micron), and in the 1.2 mm maps. Three sources were detected by MIRSI at the IRTF at both 10 \\micron (47% width 10.6 \\micron, N band or a 10% width 11.6 \\micron filter) and 20 \\micron (42% width 20.9 \\micron filter): IRAS 22134+5834, 23033+5951, and 23151+5912. Their sizes are marginally larger than the diffraction limited beams of about one arcsec. The MIRSI flux densities are significant fractions of those observed in larger beams on IRAS and MSX. The MIRSI high resolution flux densities for these sources at 10 \\micron are between about 4 and 20 Jy, 1/3 to 1/2 the IRAS 12 \\micron PSC flux densities. The MIRSI 20 \\micron flux densities are between 20 and 120 Jy, 1/3 to 2/3 of those in the IRAS PSC, and between 1/2 and 9/10 of the MSX band E flux densities. The source IRAS 22570+5912 was detected at only 1 Jy at 10 \\micron, and was not detected at 20 \\micron; its MSX flux densities were 11 and 75 Jy in bands C and E. Each of the sources detected at both mid-IR bands has the appearance of an obscured cluster in the 2MASS survey. References: Sridharan, T. K. et al. 2002 ApJ, 566, 931. Beuther, H. et al. 2002 ApJ, 566, 945. This material is based upon work supported by NASA under Cooperative Agreement NCC 5-538 issued through the OSS Planetary Astronomy Program.

  17. Water in high-mass pre- and proto-stellar cores from Hi-GAL

    NASA Astrophysics Data System (ADS)

    Persson, Carina M.; Olmi, Luca; Codella, Claudio

    2015-08-01

    As a part of our on-going investigation of the earliest phases of massive star formation, we present Herschel-HIFI data of H2O, NH3 and N2H+ towards a sample of high-mass starless cores and proto-stellar objects in two galactic fields, each containing objects in different evolutionary stages. We observed 17 sources in the l = 30° galactic field, and 35 sources in the l = 59° field. The clumps in the l = 59°region have lower luminosity and mass than the l = 30° objects. We find that the sources with detections have much higher mean luminosities than compared to the sources with no detection of any line, but the mean masses are similar. Most sources with detections are proto-stellar, and at least two of the detected sources in the l = 59° region are in a more advanced stage of evolution. For the l = 30° sources no preferential evolutionary phase is evident. None of these sources, however, appear to belong to the late phase of envelope dispersal.The detections show complex line shapes from the protostellar envelopes, molecular outflows and infall. All detections in the l = 59° field show similar water line profiles with broad outflows, whereas towards l = 30° no outflows are detected and all sources display very different line shapes. Both water and ammonia are also often self-absorbed, sometimes saturated, and some sources show an inverse or a regular P-Cygni line profile. N2H+ do not exhibit line asymmetries or absorption. The integrated intensities of the three lines are correlated, and we also find correlations between the water line luminosity and continuum temperature. The typical water luminosity towards the l = 30° sources is lower than compared to l = 59° sources, but their continuum temperature is higher, which may suggest a later evolutionary stage.In the sight-lines towards 11 sources in the l = 30° field, among which four have no detections in the star-forming regions, we also detect H2O and NH3 in absorption from interstellar gas. Since ammonia mainly traces the denser components of the interstellar gas, the H2O/NH3 ratio varies substantially; when both species are detected the ratio is typically ~2-5.

  18. Hierarchical fragmentation and collapse signatures in a high-mass starless region

    NASA Astrophysics Data System (ADS)

    Beuther, H.; Henning, Th.; Linz, H.; Feng, S.; Ragan, S. E.; Smith, R. J.; Bihr, S.; Sakai, T.; Kuiper, R.

    2015-09-01

    Aims: We study the fragmentation and collapse properties of the dense gas during the onset of high-mass star formation. Methods: We observed the massive (~800 M?) starless gas clump IRDC 18310-4 with the Plateau de Bure Interferometer (PdBI) at subarcsecond resolution in the 1.07 mm continuum and N2H+(3-2) line emission. Results: Zooming from a single-dish low-resolution map to previous 3 mm PdBI data, and now the new 1.07 mm continuum observations, the substructures hierarchically fragment on the increasingly smaller spatial scales. While the fragment separations may still be roughly consistent with pure thermal Jeans fragmentation, the derived core masses are almost two orders of magnitude larger than the typical Jeans mass at the given densities and temperatures. However, the data can be reconciled with models using non-homogeneous initial density structures, turbulence, and/or magnetic fields. While most subcores remain (far-)infrared dark even at 70 ?m, we identify weak 70 ?m emission toward one core with a comparably low luminosity of ~16 L?, supporting the notion of the general youth of the region. The spectral line data always exhibit multiple spectral components toward each core with comparably small line widths for the individual components (in the 0.3 to 1.0 km s-1 regime). Based on single-dish C18O(2-1) data we estimate a low virial-to-gas-mass ratio ? 0.25. We propose that the likely origin of these spectral properties may be the global collapse of the original gas clump that results in multiple spectral components along each line of sight. Even within this dynamic picture the individual collapsing gas cores appear to have very low levels of internal turbulence. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).The continuum and spectral line data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A119

  19. Optical resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  20. Chiral Light-Matter Interaction in Optical Resonators

    NASA Astrophysics Data System (ADS)

    Yoo, SeokJae; Park, Q.-Han

    2015-05-01

    The Purcell effect explains the modification of the spontaneous decay rate of quantum emitters in a resonant cavity. For quantum emitters such as chiral molecules, however, the cavity modification of the spontaneous decay rate has been little known. Here we extend Purcell's work to the chiral light-matter interaction in optical resonators and find the differential spontaneous decay rate of chiral molecules coupled to left and right circularly polarized resonator modes. We determine the chiral Purcell factor, which characterizes the ability of optical resonators to enhance chiroptical signals, by the quality factor and the chiral mode volume of a resonator, representing, respectively, the temporal confinement of light and the spatial confinement of the helicity of light. We show that the chiral Purcell effect can be applied to chiroptical spectroscopy. Specifically, we propose a realistic scheme to achieve resonator enhanced chiroptical spectroscopy that uses the double fishnet structure as a nanoscale cuvette supporting the chiral Purcell effect.

  1. Chiral Light-Matter Interaction in Optical Resonators.

    PubMed

    Yoo, SeokJae; Park, Q-Han

    2015-05-22

    The Purcell effect explains the modification of the spontaneous decay rate of quantum emitters in a resonant cavity. For quantum emitters such as chiral molecules, however, the cavity modification of the spontaneous decay rate has been little known. Here we extend Purcell's work to the chiral light-matter interaction in optical resonators and find the differential spontaneous decay rate of chiral molecules coupled to left and right circularly polarized resonator modes. We determine the chiral Purcell factor, which characterizes the ability of optical resonators to enhance chiroptical signals, by the quality factor and the chiral mode volume of a resonator, representing, respectively, the temporal confinement of light and the spatial confinement of the helicity of light. We show that the chiral Purcell effect can be applied to chiroptical spectroscopy. Specifically, we propose a realistic scheme to achieve resonator enhanced chiroptical spectroscopy that uses the double fishnet structure as a nanoscale cuvette supporting the chiral Purcell effect. PMID:26047227

  2. Resonance scraping

    SciTech Connect

    Collins, T.

    1986-06-01

    Protons lost in a ring leave at a few preferred locations, determined by some non-linear property of the dipoles. This paper suggests taking control of lost protons by beating the magnets at their own game - by means of a designed resonance used as a beam scraper. It is a study of suitable resonances, including estimates of the required multipole element strengths. The appropriate resonances are two-dimensional. A large number of figures is included.

  3. Search for Resonant Pair Production of long-lived particles decaying to b anti-b in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Aguilo, E.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; /Michigan U. /Northeastern U.

    2009-06-01

    We report on a first search for production of Higgs bosons decaying into neutral long-lived particles (NLLP) which each decay to a b{bar b} pair, using 3.6 fb{sup -1} of data recorded with the D0 detector at the Fermilab Tevatron collider. We search for pairs of displaced vertices in the tracking detector at radii in the range 1.6-20 cm from the beam axis. No significant excess is observed above background, and upper limits are set on the production rate in a hidden-valley benchmark model for a range of Higgs boson masses and NLLP masses and lifetimes.

  4. Radiative penguin Bs decays at Belle

    E-print Network

    J. Wicht

    2007-11-02

    We report searches for the radiative penguin decays Bs to phi gamma and Bs to gamma gamma based on a 23.6 fb-1 data sample collected with the Belle detector at the KEKB e+e- energy-asymmetric collider operating at the Upsilon(5S) resonance.

  5. High mass resolution breath analysis using secondary electrospray ionization mass spectrometry assisted by an ion funnel.

    PubMed

    Meier, Lukas; Berchtold, Christian; Schmid, Stefan; Zenobi, Renato

    2012-12-01

    In this study, we used secondary electrospray ionization mass spectrometry assisted by an ion funnel (IF) operating at ambient pressure to find compounds in the mass range of 100-500 m/z in online breath fingerprinting experiments. In low-resolution experiments conducted on an ion trap instrument, we found that pyridine is present in breath of individuals long after drinking coffee. In high-resolution experiments conducted on a Fourier transform ion cyclotron resonance, we found more than 30 compounds in the mass range of 100-500 m/z in analogous online breath experiments. More than a third of these compounds have molecular weights above 200 Daltons and have not been mentioned in previous studies. In low-resolution experiments as well as experiments without the IF, these compounds could not be detected. PMID:23280745

  6. Recent Calculations of Electromagnetic and Strong Decays of N*

    E-print Network

    A. Leviatan; R. Bijker

    1997-01-03

    We report on recent calculations of electromagnetic elastic form factors, helicity amplitudes and strong decay widths of N* resonances. The calculations are done in a collective constituent model for the nucleon, in which the resonances are interpreted as rotations and vibrations of an oblate top with a prescribed distribution of charges and magnetization.

  7. Star and jet multiplicity in the high-mass star forming region IRAS 05137+3919

    NASA Astrophysics Data System (ADS)

    Cesaroni, R.; Massi, F.; Arcidiacono, C.; Beltrán, M. T.; Persi, P.; Tapia, M.; Molinari, S.; Testi, L.; Busoni, L.; Riccardi, A.; Boutsia, K.; Bisogni, S.; McCarthy, D.; Kulesa, C.

    2015-09-01

    Context. We present a study of the complex high-mass star forming region IRAS 05137+3919 (also known as Mol8), where multiple jets and a rich stellar cluster have been described in previous works. Aims: Our goal is to determine the number of jets and shed light on their origin, and thus determine the nature of the young stars powering these jets. We also wish to analyse the stellar clusters by resolving the brightest group of stars. Methods: The star forming region was observed in various tracers and the results were complemented with ancillary archival data. The new data represent a substantial improvement over previous studies both in resolution and frequency coverage. In particular, adaptive optics provides us with an angular resolution of 80 mas in the near IR, while new mid- and far-IR data allow us to sample the peak of the spectral energy distribution and thus reliably estimate the bolometric luminosity. Results: Thanks to the near-IR continuum and millimetre line data we can determine the structure and velocity field of the bipolar jets and outflows in this star forming region. We also find that the stars are grouped into three clusters and the jets originate in the richest of these, whose luminosity is ~ 2.4 × 104L?. Interestingly, our high-resolution near-IR images allow us to resolve one of the two brightest stars (A and B) of the cluster into a double source (A1+A2). Conclusions: We confirm that there are two jets and establish that they are powered by B-type stars belonging to cluster C1. On this basis and on morphological and kinematical arguments, we conclude that the less extended jet is almost perpendicular to the line of sight and that it originates in the brightest star of the cluster, while the more extended one appears to be associated with the more extincted, double source A1+A2. We propose that this is not a binary system, but a small bipolar reflection nebula at the root of the large-scale jet, outlining a still undetected circumstellar disk. The gas kinematics on a scale of ~0.2 pc seems to support our hypothesis, because it appears to trace rotation about the axis of the associated jet. Based on observations carried out with the Large Binocular Telescope. The LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.Appendix A is available in electronic form at http://www.aanda.org

  8. New aspect of hadron resonances

    SciTech Connect

    Torres, A. Martinez; Oset, E.; Khemchamdani, K. P.

    2010-08-05

    In this talk we show our recent results for the study of three-hadron systems. The systems which we discuss here are made of two mesons and a baryon to give total strangeness -1, 0 and 1. The motivation for these studies comes from the data on many baryon resonances, especially the ones with J{sup {pi}}= 1/2{sup +}, which show a large branching ratio to two meson-one baryon decay channels. On solving the Faddeev equations with the input two body interactions obtained from the chiral Lagrangians, we find that many resonances couple strongly to three-hadron systems.

  9. Decays of Zb??? via triangle diagrams in heavy meson molecules

    NASA Astrophysics Data System (ADS)

    Ohkoda, S.; Yasui, S.; Hosaka, A.

    2014-04-01

    Bottomoniumlike resonances Zb(10610) and Zb'(10650) are good candidates to be hadronic molecules composed of BB ¯* (or B*B ¯) and B*B ¯*, respectively. In this paper, considering Zb(') as heavy meson molecules, we investigate the decays of Zb(')+??(nS)?+ in terms of the heavy meson effective theory. We find that the intermediate B(*) and B ¯(*) meson loops and the form factors play a significant role in reproducing the experimental values of the decay widths. We also predict the decay widths of Zc+?J/??+ and ?(2S)?+ for a charmoniumlike resonance Zc, which has recently been reported in experiments.

  10. Herschel Observations of the W3 GMC (II): Clues to the Formation of Clusters of High-mass Stars

    NASA Astrophysics Data System (ADS)

    Rivera-Ingraham, A.; Martin, P. G.; Polychroni, D.; Schneider, N.; Motte, F.; Bontemps, S.; Hennemann, M.; Men'shchikov, A.; Nguyen Luong, Q.; Zavagno, A.; André, Ph.; Bernard, J.-Ph.; Di Francesco, J.; Fallscheer, C.; Hill, T.; Könyves, V.; Marston, A.; Pezzuto, S.; Rygl, K. L. J.; Spinoglio, L.; White, G. J.

    2015-08-01

    The W3 giant molecular cloud is a prime target for investigating the formation of high-mass stars and clusters. This second study of W3 within the HOBYS Key Program provides a comparative analysis of subfields within W3 to further constrain the processes leading to the observed structures and stellar population. Probability density functions (PDFs) and cumulative mass distributions (CMDs) were created from dust column density maps, quantified as extinction {A}{{V}}. The shape of the PDF, typically represented with a lognormal function at low {A}{{V}} “breaking” to a power-law tail at high {A}{{V}}, is influenced by various processes including turbulence and self-gravity. The breaks can also be identified, often more readily, in the CMDs. The PDF break from lognormal ({A}{{V}}(SF) ? \\6-10 mag) appears to shift to higher {A}{{V}} by stellar feedback, so that high-mass star-forming regions tend to have higher PDF breaks. A second break at {A}{{V}}\\gt 50 mag traces structures formed or influenced by a dynamic process. Because such a process has been suggested to drive high-mass star formation in W3, this second break might then identify regions with potential for hosting high-mass stars/clusters. Stellar feedback appears to be a major mechanism driving the local evolution and state of regions within W3. A high initial star formation efficiency in a dense medium could result in a self-enhancing process, leading to more compression and favorable star formation conditions (e.g., colliding flows), a richer stellar content, and massive stars. This scenario would be compatible with the “convergent constructive feedback” model introduced in our previous Herschel study.

  11. First Measurements of 15N Fractionation in N2H+ toward High-mass Star-forming Cores

    NASA Astrophysics Data System (ADS)

    Fontani, F.; Caselli, P.; Palau, A.; Bizzocchi, L.; Ceccarelli, C.

    2015-08-01

    We report on the first measurements of the isotopic ratio 14N/15N in N2H+ toward a statistically significant sample of high-mass star-forming cores. The sources belong to the three main evolutionary categories of the high-mass star formation process: high-mass starless cores, high-mass protostellar objects, and ultracompact H ii regions. Simultaneous measurements of the 14N/15N ratio in CN have been made. The 14N/15N ratios derived from N2H+ show a large spread (from ?180 up to ?1300), while those derived from CN are in between the value measured in the terrestrial atmosphere (?270) and that of the proto-solar nebula (?440) for the large majority of the sources within the errors. However, this different spread might be due to the fact that the sources detected in the N2H+ isotopologues are more than those detected in the CN ones. The 14N/15N ratio does not change significantly with the source evolutionary stage, which indicates that time seems to be irrelevant for the fractionation of nitrogen. We also find a possible anticorrelation between the 14N/15N (as derived from N2H+) and the H/D isotopic ratios. This suggests that 15N enrichment could not be linked to the parameters that cause D enrichment, in agreement with the prediction by recent chemical models. These models, however, are not able to reproduce the observed large spread in 14N/15N, pointing out that some important routes of nitrogen fractionation could be still missing in the models. Based on observations carried out with the IRAM-30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  12. Electron Dynamics of Interatomic Coulombic Decay in Quantum Dots: Singlet Initial State

    NASA Astrophysics Data System (ADS)

    Bande, Annika; Pont, Federico M.; Dolbundalchok, Praphasiri; Gokhberg, Kirill; Cederbaum, Lorenz S.

    2013-03-01

    In this paper we investigated the interatomic Coulombic decay (ICD) of a resonance singlet state in a model potential for two few-electron semiconductor quantum dots (QDs) by means of electron dynamics. We demonstrate that ICD is the major decay process of the resonance for the singlet wave function and compare the total and partial decay widths as a function of the QD separation with that from our previous study on the corresponding triplet states [1].

  13. DNC/HNC RATIO OF MASSIVE CLUMPS IN EARLY EVOLUTIONARY STAGES OF HIGH-MASS STAR FORMATION

    SciTech Connect

    Sakai, Takeshi; Sakai, Nami; Yamamoto, Satoshi; Furuya, Kenji; Aikawa, Yuri; Hirota, Tomoya

    2012-03-10

    We have observed the HN{sup 13}C J = 1-0 and DNC J = 1-0 lines toward 18 massive clumps, including infrared dark clouds (IRDCs) and high-mass protostellar objects (HMPOs), by using the Nobeyama Radio Observatory 45 m telescope. We have found that the HN{sup 13}C emission is stronger than the DNC emission toward all of the observed sources. The averaged DNC/HNC ratio is indeed lower toward the observed high-mass sources (0.009 {+-} 0.005) than toward the low-mass starless and star-forming cores (0.06). The kinetic temperature derived from the NH{sub 3} (J, K) = (1, 1) and (2, 2) line intensities is higher toward the observed high-mass sources than toward the low-mass cores. However, the DNC/HNC ratio of some IRDCs involving the Spitzer 24 {mu}m sources is found to be lower than that of HMPOs, although the kinetic temperature of the IRDCs is lower than that of the HMPOs. This implies that the DNC/HNC ratio does not depend only on the current kinetic temperature. With the aid of chemical model simulations, we discuss how the DNC/HNC ratio decreases after the birth of protostars. We suggest that the DNC/HNC ratio in star-forming cores depends on the physical conditions and history in their starless-core phase, such as its duration time and the gas kinetic temperature.

  14. Dental Caries (Tooth Decay)

    MedlinePLUS

    ... Find Data by Topic > Dental Caries (Tooth Decay) Dental Caries (Tooth Decay) Main Content Dental caries (tooth decay) remains the most prevalent chronic ... important source of information on oral health and dental care in the United States since the early ...

  15. SHARE: Statistical hadronization with resonances

    NASA Astrophysics Data System (ADS)

    Torrieri, G.; Steinke, S.; Broniowski, W.; Florkowski, W.; Letessier, J.; Rafelski, J.

    2005-05-01

    SHARE is a collection of programs designed for the statistical analysis of particle production in relativistic heavy-ion collisions. With the physical input of intensive statistical parameters, it generates the ratios of particle abundances. The program includes cascade decays of all confirmed resonances from the Particle Data Tables. The complete treatment of these resonances has been known to be a crucial factor behind the success of the statistical approach. An optional feature implemented is the Breit-Wigner distribution for strong resonances. An interface for fitting the parameters of the model to the experimental data is provided. Program summaryTitle of the program:SHARE, October 2004, version 1.2 Catalogue identifier: ADVD Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVD Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: PC, Pentium III, 512 MB RAM (not hardware dependent) Operating system: Linux: RedHat 6.1, 7.2, FEDORA, etc. (not system dependent) Programming language:FORTRAN77: g77, f77 as well as Mathematica, ver. 4 or 5, for the case of full chemical equilibrium and particle widths set to zero Size of the package: 645 KB directory including example programs (87 KB compressed distribution archive) External routines: KERNLIB, MATHLIB and PACKLIB from the CERN Program Library (see http://cernlib.web.cern.ch for download and installation instructions) Distribution format: tar.gz Number of lines in distributed program, including test data, etc.: 15 277 Number of bytes in distributed program, including test data, etc.: 88 522 Computer: Any computer with an f77 compiler Nature of the physical problem: Statistical analysis of particle production in relativistic heavy-ion collisions involves the formation and the subsequent decays of a large number of resonances. With the physical input of thermal parameters, such as the temperature and fugacities, and considering cascading decays, along with weak interaction feed-down corrections, the observed hadron abundances are obtained. SHARE incorporates diverse physical approaches, with a flexibility of choice of the details of the statistical hadronization model, including the selection of a chemical (non-)equilibrium condition. SHARE also offers evaluation of the extensive properties of the source of particles, such as energy, entropy, baryon number, strangeness, as well as the determination of the best intensive input parameters fitting a set of experimental yields. This allows exploration of a proposed physical hypothesis about hadron production mechanisms and the determination of the properties of their source. Method of solving the problem: Distributions at freeze-out of both the stable particles and the hadronic resonances are set according to a statistical prescription, technically calculated via a series of Bessel functions, using CERN library programs. We also have the option of including finite particle widths of the resonances. While this is computationally expensive, it is necessary to fully implement the essence of the strong interaction dynamics within the statistical hadronization picture. In fact, including finite width has a considerable effect when modeling directly detectable short-lived resonances ( ?(1520),K, etc.), and is noticeable in fits to experimentally measured yields of stable particles. After production, all hadronic resonances decay. Resonance decays are accomplished by addition of the parent abundances to the daughter, normalized by the branching ratio. Weak interaction decays receive a special treatment, where we introduce daughter particle acceptance factors for both strongly interacting decay products. An interface for fitting to experimental particle ratios of the statistical model parameters with the help of MINUIT[1] is provided. The ? function is defined in the standard way. For an investigated quantity f and experimental error ? f, ?=((N=N-N. (note that systematic and statistical errors are independent, since the systematic error is not a random variable). Aside of ?, the pr

  16. Algebraic decay in hierarchical graphs

    E-print Network

    Felipe Barra; Thomas Gilbert

    2002-04-23

    We study the algebraic decay of the survival probability in open hierarchical graphs. We present a model of a persistent random walk on a hierarchical graph and study the spectral properties of the Frobenius-Perron operator. Using a perturbative scheme, we derive the exponent of the classical algebraic decay in terms of two parameters of the model. One parameter defines the geometrical relation between the length scales on the graph, and the other relates to the probabilities for the random walker to go from one level of the hierarchy to another. The scattering resonances of the corresponding hierarchical quantum graphs are also studied. The width distribution shows the scaling behavior $P(\\Gamma) \\sim 1/\\Gamma$.

  17. A Search for New Physics with High Mass Tau Pairs in proton anti-proton collisions at s**(1/2) = 1.96-TeV at CDF

    SciTech Connect

    Wan, Zong-ru

    2005-04-01

    We present the results of a search for new particles decaying to tau pairs using the data corresponding to an integrated luminosity of 195 pb{sup -1} collected from March 2002 to September 2003 with the CDF detector at the Tevatron. Hypothetical particles, such as Z' and MSSM Higgs bosons can potentially produce the tau pair final state. We discuss the method of tau identification, and show the signal acceptance versus new particle mass. The low-mass region, dominated by Z {yields} {tau}{tau}, is used as a control region. In the high-mass region, we expect 2.8 {+-} 0.5 events from known background sources, and observe 4 events in the data sample. Thus no significant excess is observed, and we set upper limits on the cross section times branching ratio as a function of the masses of heavy scalar and vector particles.

  18. The decay of highly excited open strings

    NASA Technical Reports Server (NTRS)

    Mitchell, D.; Turok, N.; Wilkinson, R.; Jetzer, P.

    1988-01-01

    The decay rates of leading edge Regge trajectory states are calculated for very high level number in open bosonic string theories, ignoring tachyon final states. The optical theorem simplifies the analysis while enabling identification of the different mass level decay channels. The main result is that (in four dimensions) the greatest single channel is the emission of a single photon and a state of the next mass level down. A simple asymptotic formula for arbitrarily high level number is given for this process. Also calculated is the total decay rate exactly up to N=100. It shows little variation over this range but appears to decrease for larger N. The formalism is checked in examples and the decay rate of the first excited level calculated for open superstring theories. The calculation may also have implications for high spin meson resonances.

  19. Magnetic Resonance

    Cancer.gov

    Focus Group on Magnetic Resonance Spectroscopy (MRS) in Clinical Oncology(April 1999) To explore the technical requirements for MRS and the application of hydrogen and multinuclear spectroscopy for tumor response to therapy.

  20. Semileptonic Decays

    SciTech Connect

    Luth, Vera G.; /SLAC

    2012-10-02

    The following is an overview of the measurements of the CKM matrix elements |V{sub cb}| and |V{sub ub}| that are based on detailed studies of semileptonic B decays by the BABAR and Belle Collaborations and major advances in QCD calculations. In addition, a new and improved measurement of the ratios R(D{sup (*)}) = {Beta}({bar B} {yields} D{sup (*)}{tau}{sup -}{bar {nu}}{sub {tau}})/{Beta}({bar B} {yields} D{sup (*)}{ell}{sup -}{bar {nu}}{sub {ell}}) is presented. Here D{sup (*)} refers to a D or a D* meson and {ell} is either e or {mu}. The results, R(D) = 0.440 {+-} 0.058 {+-} 0.042 and R(D*) = 0.332 {+-} 0.024 {+-} 0.018, exceed the Standard Model expectations by 2.0{sigma} and 2.7{sigma}, respectively. Taken together, they disagree with these expectations at the 3.4{sigma} level. The excess of events cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model.

  1. Determination of Delta resonance parameters from lattice QCD

    E-print Network

    C. Alexandrou; J. W. Negele; M. Petschlies; A. Strelchenko; A. Tsapalis

    2013-05-27

    A method suitable for extracting resonance parameters of unstable baryons in lattice QCD is examined. The method is applied to the strong decay of the Delta to a pion-nucleon state, extracting the pion-nucleon - Delta coupling constant and Delta decay width.

  2. Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars

    NASA Astrophysics Data System (ADS)

    Smartt, S. J.

    2015-04-01

    Over the last 15 years, the supernova community has endeavoured to directly identify progenitor stars for core-collapse supernovae discovered in nearby galaxies. These precursors are often visible as resolved stars in high-resolution images from space-and ground-based telescopes. The discovery rate of progenitor stars is limited by the local supernova rate and the availability and depth of archive images of galaxies, with 18 detections of precursor objects and 27 upper limits. This review compiles these results (from 1999 to 2013) in a distance-limited sample and discusses the implications of the findings. The vast majority of the detections of progenitor stars are of type II-P, II-L, or IIb with one type Ib progenitor system detected and many more upper limits for progenitors of Ibc supernovae (14 in all). The data for these 45 supernovae progenitors illustrate a remarkable deficit of high-luminosity stars above an apparent limit of logL/L? ? 5.1 dex. For a typical Salpeter initial mass function, one would expect to have found 13 high-luminosity and high-mass progenitors by now. There is, possibly, only one object in this time- and volume-limited sample that is unambiguously high-mass (the progenitor of SN2009ip) although the nature of that supernovae is still debated. The possible biases due to the influence of circumstellar dust, the luminosity analysis, and sample selection methods are reviewed. It does not appear likely that these can explain the missing high-mass progenitor stars. This review concludes that the community's work to date shows that the observed populations of supernovae in the local Universe are not, on the whole, produced by high-mass (M ? 18 M?) stars. Theoretical explosions of model stars also predict that black hole formation and failed supernovae tend to occur above an initial mass of M ? 18 M?. The models also suggest there is no simple single mass division for neutron star or black-hole formation and that there are islands of explodability for stars in the 8-120 M? range.The observational constraints are quite consistent with the bulk of stars above M ? 18 M? collapsing to form black holes with no visible supernovae.

  3. Calculating Resonance Positions and Widths Using the Siegert Approximation Method

    ERIC Educational Resources Information Center

    Rapedius, Kevin

    2011-01-01

    Here, we present complex resonance states (or Siegert states) that describe the tunnelling decay of a trapped quantum particle from an intuitive point of view that naturally leads to the easily applicable Siegert approximation method. This can be used for analytical and numerical calculations of complex resonances of both the linear and nonlinear…

  4. On the neutrinoless double ?{sup +}/EC decays

    SciTech Connect

    Suhonen, Jouni

    2013-12-30

    The neutrinoless double positron-emission/electron-capture (0??{sup +}/EC) decays are studied for the magnitudes of the involved nuclear matrix elements (NMEs). Decays to the ground state, 0{sub gs}{sup +}, and excited 0{sup +} states are discussed. The participant many-body wave functions are evaluated in the framework of the quasiparticle random-phase approximation (QRPA). Effective, G-matrix-derived nuclear forces are used in realistic single-particle model spaces. The channels ?{sup +}?{sup +}, ?{sup +}EC, and the resonant neutrinoless double electron capture (R0?ECEC) are discussed.

  5. Search for Lepton Flavor Violation in ? Decays

    NASA Astrophysics Data System (ADS)

    Love, William

    2006-04-01

    Using the data collected with the CLEO III detector at CESR we report on the first search for Lepton Flavor Violation in the decays of the ?(1S), ?(2S), and ?(3S) resonances. After describing the various components of our unbinned maximum-likelihood fit, we present fits to background data, signal Monte Carlo, and signal data. The discovery of LFV in ? decays could be explained by low-mass quantum gravity, Abdus-Salam leptoquarks, or neutrino oscillations arising in SUSY models.

  6. Search for a heavy resonance decaying into a Z+jet final state in pp-bar collisions at s?=1.96??TeV using the D0 detector

    E-print Network

    Baringer, Philip S.; Bean, Alice; Coppage, Don; Gardner, J.; Hensel, Carsten; Moulik, Tania; Wilson, Graham Wallace

    2006-07-17

    is nearly at rest. The SM background does not exhibit a similar structure, as it is shown in Fig. 3. In addition, finite width and mass reso- lutions wash out the correlation between pTZ and MZj1. We therefore considered events around the peak values McZj1... 100 200 300 400 500 600 700 800 [G eV ] TZp 0 50 100 150 200 250 300 350 400 =500 GeVq*M SM background FIG. 3. pTZ vs MZj1 distributions for a resonance of mass of 500 GeV with ? ? 1 (dots) and for the SM background (crosses). Both the signal...

  7. Decay Spectroscopy for Nuclear Astrophysics: {beta}-delayed Proton Decay

    SciTech Connect

    Trache, L.; Simmons, E.; Spiridon, A.; McCleskey, M.; Roeder, B. T.; Tribble, R. E.; Saastamoinen, A.; Jokinen, A.; Aysto, J.; Davinson, T.; Woods, P. J.; Pollacco, E.; Kebbiri, M.

    2011-11-30

    Decay spectroscopy is one of the oldest indirect methods in nuclear astrophysics. We have developed at TAMU techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. These allowed us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measure gamma-rays up to 8 MeV with high resolution HPGe detectors. We have studied the decay of {sup 23}Al, {sup 27}P, {sup 31}Cl, all important for understanding explosive H-burning in novae. The technique has shown a remarkable selectivity to beta-delayed charged-particle emission and works even at radioactive beam rates of a few pps. The states populated are resonances for the radiative proton capture reactions {sup 22}Na(p,{gamma}){sup 23}Mg(crucial for the depletion of {sup 22}Na in novae), {sup 26m}Al(p,{gamma}){sup 27}Si and {sup 30}P(p,{gamma}){sup 31}S(bottleneck in novae and XRB burning), respectively. More recently we have radically improved the technique using a gas based detector we call AstroBox.

  8. Radiative Leptonic B Decays

    SciTech Connect

    Chen, Edward Tann

    2008-10-06

    We present the results of a search for B{sup +} meson decays into {gamma}{ell}{sup +}{nu}{sub {ell}}, where {ell} = e,{mu}. We use a sample of 232 million B{bar B} meson pairs recorded at the {Upsilon}(4S) resonance with the BABAR detector at the PEP-II B factory. We measure a partial branching fraction {Delta}{beta} in a restricted region of phase space that reduces the effect of theoretical uncertainties, requiring the lepton energy to be in the range 1.875 and 2.850 GeV, the photon energy to be in the range 0.45 and 2.35 GeV, and the cosine of the angle between the lepton and photon momenta to be less than -0.36, with all quantities computed in the {Upsilon}(4S) center-of-mass frame. We find {Delta}{Beta}(B{sup +} {yields} {gamma}{ell}{sup +}{nu}{sub {ell}}) = (-0.3{sub 1.5}{sup +1.3}(statistical){sub -0.6}{sup +0.6}(systematic) {+-} 0.1(theoretical)) x 10{sup -6}, under the assumption of lepton universality. Interpreted as a 90% confidence-level Bayesian upper limit, the result corresponds to 1.7 x 10{sup -6} for a prior at in amplitude, and 2.3 x 10{sup -6} for a prior at in branching fraction.

  9. Zooming in on high-mass star formation with combined VLTI near-infrared interferometry and ATCA millimeter interferometry

    NASA Astrophysics Data System (ADS)

    Kraus, Stefan; Menten, Karl; Schilke, Peter; Wyrowski, Friedrich; Bergin, Edwin; Weigelt, Gerd

    2010-04-01

    In spite of its importance for astrophysics, the process through which massive stars form is only poorly understood. In a recent study, we resolved the inner environment around the high-mass protostar IRAS13481-6124 (G310.0135+00.3892) using VLTI near-infrared (2 micrometer) long-baseline interferometry and detected a compact (11 AU) disk-like structure, whose size is consistent with the expected dust sublimation radius. Perpendicular to the disk plane, we detect two bow shocks in Spitzer/IRAC images, suggesting the presence of a collimated bipolar outflow. The outflow was also detected in molecular line emission using the APEX single-dish telescope. In order to study the inner-most outflow regions and to measure the collimation angle, we propose interferometric observations in SiO, HCO+, and in the 3mm continuum emission. We also aim to resolve the thermal emission of the circumstellar dust, providing important constraints on the radial dust density profile. For the physical interpretation of the obtained data, we will simultaneously fit the SED and VLTI&ATCA visibilities using 2-D radiative transfer modeling, enabling us to characterize the global structure of the putative disk around this high-mass protostar.

  10. Statistical distributions of mean motion resonances and near-resonances in multiplanetary systems

    E-print Network

    Marian C. Ghilea

    2015-02-25

    The orbits of the confirmed exoplanets from all multiple systems known to date are investigated. Observational data from 1890 objects, of which 1176 are found in multiplanetary systems, are compiled and analyzed. Mean motion resonances and near-resonances up to the outer/inner orbital period ratio's value of 5 and the denominator 4 are tested for all adjacent exoplanet orbits. Each host star's snow line is calculated using a simple algorithm. The planets are reclassified into categories as a function of the semimajor axis size relative to the snow line location and the semimajor axis vs mass distribution. The fraction of planets in/near resonance is then plotted as a function of both resonance number and resonance order for all the exoplanet population and, separately, for each planet type. In the resonance number plot it appears that the 2/1 and 3/2 resonances and near-resonances are dominant overall and for the giant planets, but the observed distribution profile changes significantly with each planet category, with terrestrial planets, neptunes and mini-neptunes showing the largest variation. Resonances/near resonances around the value 5/3 were dominant for mini neptunes and terrestrial planets. In the order-based resonance/near-resonance plot, the observed distribution appears to follow an exponential decay for the general population and its profile appears to be influenced by the planet type. Approximate methods to estimate resonance/near resonance distributions are also attempted for the systems with unknown planet mass or with unknown star and/or planet mass and compared with the distribution of the planets with all the parameters known. A separate study of the resonance/near resonance fraction distribution as a function of mass is also attempted, but the low statistical data at very high planetary masses prevent the finding of an accurate equation to describe such a dependency.

  11. Damping and decoherence of Fock states in a nanomechanical resonator due to two-level systems

    NASA Astrophysics Data System (ADS)

    Remus, Laura G.; Blencowe, Miles P.

    2012-11-01

    We numerically investigate the decay of initial quantum Fock states and their superpositions for a mechanical resonator mode coupled to an environment comprising interacting, damped tunneling two-level system (TLS) defects. The cases of one, three, and six near-resonant, interacting TLS's are considered in turn, and it is found that, with even as few as three TLS's, the resonator's quantum decay behavior is indistinguishable from that due to coupling to an Ohmic oscillator bath.

  12. Observation of the Resonant Character of the Z(4430)- State

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Bauer, Th.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani', S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hartmann, T.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jezabek, M.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.

    2014-06-01

    Resonant structures in B0??'?-K+ decays are analyzed by performing a four-dimensional fit of the decay amplitude, using pp collision data corresponding to 3 fb-1 collected with the LHCb detector. The data cannot be described with K +?- resonances alone, which is confirmed with a model-independent approach. A highly significant Z(4430)-??'?- component is required, thus confirming the existence of this state. The observed evolution of the Z(4430)- amplitude with the ? '?- mass establishes the resonant nature of this particle. The mass and width measurements are substantially improved. The spin parity is determined unambiguously to be 1+.

  13. Observation of the resonant character of the Z(4430)(-) state.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Bauer, Th; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Giani', S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jezabek, M; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Manzali, M; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D

    2014-06-01

    Resonant structures in B^{0}??^{'}?^{-}K^{+} decays are analyzed by performing a four-dimensional fit of the decay amplitude, using pp collision data corresponding to 3??fb^{-1} collected with the LHCb detector. The data cannot be described with K^{+}?^{-} resonances alone, which is confirmed with a model-independent approach. A highly significant Z(4430)^{-}??^{'}?^{-} component is required, thus confirming the existence of this state. The observed evolution of the Z(4430)^{-} amplitude with the ?^{'}?^{-} mass establishes the resonant nature of this particle. The mass and width measurements are substantially improved. The spin parity is determined unambiguously to be 1^{+}. PMID:24949760

  14. Dark Matter Annihilation Decay at The LHC

    E-print Network

    Tsai, Yuhsin; Zhao, Yue

    2015-01-01

    Collider experiments provide an opportunity to shed light on dark matter (DM) self-interactions. In this work, we study the possibility of generating DM bound states -- the Darkonium -- at the LHC and discuss how the annihilation decay of the Darkonium produces force carriers. We focus on two popular scenarios that contain large DM self-couplings: the Higgsinos in the $\\lambda$-SUSY model, and self-interacting DM (SIDM) framework. After forming bound states, the DM particles annihilate into force mediators, which decay into the standard model particles either through a prompt or displaced process. This generates interesting signals for the heavy resonance search. We calculate the production rate of bound states and study the projected future constraints from the existing heavy resonance searches.

  15. Pentaquarks from intrinsic charms in ?b decays

    NASA Astrophysics Data System (ADS)

    Hsiao, Y. K.; Geng, C. Q.

    2015-12-01

    We study the three-body ?b decays of ?b ? J / ?pM with M =K- and ?-. The two new states Pc1 ?Pc(4380) + and Pc2 ?Pc(4450) + observed recently as the resonances in the J / ?p invariant mass spectrum of ?b ? J / ?pK- can be identified to consist of five quarks, uudc c bar, being consistent with the existence of the pentaquark states. We argue that, in the doubly charmful ?b decays of ?b ? J / ?pK- through b ? c c bar s, apart from those through the non-resonant ?b ? pK- and resonant ?b ??* ? pK- transitions, the third contribution with the non-factorizable effects is not the dominant part for the resonant ?b ?K-P c 1, c 2, P c 1, c 2 ? J / ?p processes, such that we propose that the P c 1, c 2 productions are mainly from the charmless ?b decays through b ? u bar us, in which the c c bar content in P c 1, c 2 arises from the intrinsic charms within the ?b baryon. We hence predict the observables related to the branching ratios and the direct CP violating asymmetries to be B (?b ??- (P c 1, c 2 ?) J / ?p) / B (?b ?K- (P c 1, c 2 ?) J / ?p) = 0.58 ± 0.05, ACP (?b ??- (P c 1, c 2 ?) J / ?p) = (- 7.4 ± 0.9)%, and ACP (?b ?K- (P c 1, c 2 ?) J / ?p) = (+ 6.3 ± 0.2)%, which can alleviate the inconsistency between the theoretical expectations from the three contributions in the doubly charmful ?b decays and the observed data.

  16. A SEYFERT-2-LIKE SPECTRUM IN THE HIGH-MASS X-RAY BINARY MICROQUASAR V4641 SGR

    SciTech Connect

    Morningstar, Warren R.; Miller, Jon M.; Reynolds, M. T.; Maitra, Dipankar E-mail: jonmm@umich.edu

    2014-05-10

    We present an analysis of three archival Chandra observations of the black hole V4641 Sgr, performed during a decline into quiescence. The last two observations in the sequence can be modeled with a simple power law. The first spectrum, however, is remarkably similar to spectra observed in Seyfert-2 active galactic nuclei, which arise through a combination of obscuration and reflection from distant material. This spectrum of V4641 Sgr can be fit extremely well with a model including partial-covering absorption and distant reflection. This model recovers a ? ? 2.0 power-law incident spectrum, typical of black holes at low Eddington fractions. The implied geometry is plausible in a high-mass X-ray binary like V4641 Sgr, and may be as compelling as explanations invoking Doppler-split line pairs in a jet, and/or unusual Comptonization. We discuss potential implications and means of testing these models.

  17. Molecular gas kinematics and high-mass star formation in the spiral arms of the Milky Way

    NASA Astrophysics Data System (ADS)

    Luna, A.; Carrasco, L.; Ortega, L.; Bronfman, L.; Yam, O.

    2004-08-01

    We study the kinematic of the molecular gas using observations of the rotational line 12CO(J=1 to 0), and also the star formation traced by Ultra-Compact HII regions in the IV galactic quadrant (270 o ? l ? 360°). Our results show that there is a connection between 1) high-mass star formation in the spiral arms of the Milky Way, 2) molecular gas of high column density, and 3) the large-scale rigid-body-like motion of the gas. The large-scale rigid-body-like motions observed in the arms imply that there is less angular momentum to dissipate in the formation processes of stellar systems. We show a multiple stellar system under study, embedded in its parent molecular cloud in the Carina arm region.

  18. SiO and CH3CCH abundances and dust emission in high-mass star-forming cores

    E-print Network

    O. Miettinen; J. Harju; L. K. Haikala; C. Pomren

    2006-09-01

    Aims. The main goal of the present study is to determine the fractional SiO abundance in high-mass star-forming cores, and to investigate its dependence on the physical conditions. In this way we wish to provide constraints on the chemistry models concerning the formation of SiO in the gas phase or via grain mantle evaporation. The work addresses also CH3CCH chemistry as the kinetic temperature is determined using this molecule. Methods. We estimate the physical conditions of 15 high-mass star-forming cores and derive the fractional SiO and CH3CCH abundances in them by using spectral line and dust continuum observations with the SEST. Results. The kinetic temperatures as derived from CH3CCH range from 25 to 39 K. The SiO emission regions are extended and typically half of the integrated line emission comes from the velocity range traced out by CH3CCH emission. The upper limit of SiO abundance in this 'quiescent' gas component is ~10^-10. The average CH3CCH abundance is about 7 x 10^-9. It shows a shallow, positive correlation with the temperature, whereas SiO shows the opposite tendency. Conclusions. We suggest that the high CH3CCH abundance and its possible increase when the clouds get warmer is related to the intensified desorption of the chemical precursors of the molecule from grain surfaces. In contrast, the observed tendency of SiO does not support the idea that the evaporation of Si-containing species from the grain mantles would be important, and it contradicts with the models where neutral reactions with activation barriers dominate the SiO production. A possible explanation for the decrease is that warmer cores represent more evolved stages of core evolution with fewer high-velocity shocks and thus less efficient SiO replenishment.

  19. MULTIDIMENSIONAL CHEMICAL MODELING OF YOUNG STELLAR OBJECTS. II. IRRADIATED OUTFLOW WALLS IN A HIGH-MASS STAR-FORMING REGION

    SciTech Connect

    Bruderer, S.; Benz, A.O.; Doty, S. D.; Van Dishoeck, E. F.; Bourke, T. L.

    2009-07-20

    Observations of the high-mass star-forming region AFGL 2591 reveal a large abundance of CO{sup +}, a molecule known to be enhanced by far-ultraviolet (FUV) and X-ray irradiation. In chemical models assuming a spherically symmetric envelope, the volume of gas irradiated by protostellar FUV radiation is very small due to the high extinction by dust. The abundance of CO{sup +} is thus underpredicted by orders of magnitude. In a more realistic model, FUV photons can escape through an outflow region and irradiate gas at the border to the envelope. Thus, we introduce the first two-dimensional axisymmetric chemical model of the envelope of a high-mass star-forming region to explain the CO{sup +} observations as a prototypical FUV tracer. The model assumes an axisymmetric power-law density structure with a cavity due to the outflow. The local FUV flux is calculated by a Monte Carlo radiative transfer code taking scattering on dust into account. A grid of precalculated chemical abundances, introduced in the first part of this series of papers, is used to quickly interpolate chemical abundances. This approach allows us to calculate the temperature structure of the FUV-heated outflow walls self-consistently with the chemistry. Synthetic maps of the line flux are calculated using a raytracer code. Single-dish and interferometric observations are simulated and the model results are compared to published and new JCMT and Submillimeter Array (SMA) observations. The two-dimensional model of AFGL 2591 is able to reproduce the JCMT single-dish observations and also explains the nondetection by the SMA. We conclude that the observed CO{sup +} line flux and its narrow width can be interpreted by emission from the warm and dense outflow walls irradiated by protostellar FUV radiation.

  20. Envelope overshooting in low-metallicity intermediate- and high-mass stars: a test with the Sagittarius dwarf irregular galaxy

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Bressan, Alessandro; Slemer, Alessandra; Marigo, Paola; Girardi, Leo; Bianchi, Luciana; Rosenfield, Phil; Momany, Yazan

    2016-01-01

    We check the performance of the Padova TRieste Stellar Evolution Code (PARSEC) tracks in reproducing the blue loops of intermediate age and young stellar populations at very low metallicity. We compute new evolutionary PARSEC tracks of intermediate- and high-mass stars from 2 to 350 M? with enhanced envelope overshooting (EO), EO = 2HP and 4HP, for very low metallicity, Z = 0.0005. The input physics, including the mass-loss rate, has been described in PARSEC, version V1.2. By comparing the synthetic colour-magnitude diagrams (CMDs) obtained from the different sets of models with EO = 0.7HP (the standard PARSEC tracks), 2HP and 4HP, with deep observations of the Sagittarius dwarf irregular galaxy (SagDIG), we find that the overshooting scale EO = 2HP best reproduces the observed loops. This result is consistent with that obtained by Tang et al. for Z in the range 0.001-0.004. We also discuss the dependence of the blue loop extension on the adopted instability criterion. Contrary to what has been stated in the literature, we find that the Schwarzschild criterion, instead of the Ledoux criterion, favours the development of blue loops. Other factors that could affect the CMD comparisons, such as differential internal extinction or the presence of binary systems, are found to have negligible effects on the results. Thus, we confirm that, in the presence of core overshooting during the H-burning phase, a large EO is needed to reproduce the main features of the central He-burning phase of intermediate- and high-mass stars.

  1. Tooth decay - early childhood

    MedlinePLUS

    Bottle mouth; Bottle carries; Baby bottle tooth decay; Early childhood caries (ECC) ... your baby. It keeps the inside of your baby's mouth healthy and prevents tooth decay. If you are bottle-feeding your baby: ...

  2. Tooth decay - early childhood

    MedlinePLUS

    Bottle mouth; Bottle carries; Baby bottle tooth decay; Early childhood caries (ECC) ... milk by itself is the healthiest food for babies’ teeth. It tends ... the rate of tooth decay can be faster than with sugar alone. ...

  3. Decay of Resonaces in Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Filip, Peter

    2015-08-01

    We suggest that decay properties (branching ratios) of hadronic resonances may become modified in strong external magnetic field. The behavior of K±*, K0* vector mesons as well as ?* (1520) and ?0* baryonic states is considered in static fields 1013-1015 T. In particular, n = 0 Landau level energy increase of charged particles in the external magnetic field, and the interaction of hadron magnetic moments with the field is taken into account. We suggest that enhanced yield of dileptons and photons from ?0(770) mesons may occur if strong decay channel ?0 ? ?+?- is significantly suppressed. CP - violating ?+?- decays of pseudoscalar ?c and ?(547) mesons in the magnetic field are discussed, and superpositions of quarkonium states ?c,b and ?c,b(nP) with ?(nS), ?(nS) mesons in the external field are considered.

  4. Magnetorotational decay instability in Keplerian disks.

    PubMed

    Shtemler, Yuri; Liverts, Edward; Mond, Michael

    2013-12-01

    The saturation of the magnetorotational instability (MRI) in thin Keplerian disks through three-wave resonant interactions is introduced and discussed. That mechanism is a natural generalization of the fundamental decay instability discovered five decades ago for infinite, homogeneous, and immovable plasmas. The decay instability relies on the energy transfer from the MRI to stable slow Alfvén-Coriolis as well as magnetosonic waves. A second-order forced Duffing amplitude equation for the initially unstable MRI as well as two first-order equations for the other two waves are derived. The solutions of those equations exhibit bounded bursty nonlinear oscillations for the MRI as well as unbounded growth for the linearly stable slow Alfvén-Coriolis and magnetosonic perturbations, thus giving rise to the magnetorotational decay instability. PMID:24476249

  5. Search for Lepton Flavor Violation in Upsilon Decays

    NASA Astrophysics Data System (ADS)

    Love, Bill

    2005-04-01

    With the data collected with the CLEO III detector at CESR we report the first search for Lepton Flavor Violation in the decays of ?(1S), ?(2S), and ?(3S) resonances. We present the analysis technique, Monte Carlo simulation studies, the background calibration method based on data, and preliminary results of our analysis. If discovered, LFV in ? decays could be explained by low-mass quantum gravity, Abdus-Salam leptoquarks or neutrino oscillations arising in SUSY models.

  6. Remarkable Features of Decaying Hagedorn States

    NASA Astrophysics Data System (ADS)

    Beitel, M.; Gallmeister, K.; Greiner, C.

    2014-09-01

    Hagedorn states (HS) are a tool to model the hadronization process which occurs in the phase transition phase between the quark gluon plasma (QGP) and the hadron resonance gas (HRG). Their abundance is believed to appear near the Hagedorn temperature TH which in our understanding equals the critical temperature Tc. These hadron-like resonances are characterized by being very massive and by not being limited to quantum numbers of known hadrons. To generate a whole zoo of such new states we solve the covariantly formulated bootstrap equation by regarding energy conservation and conservation of the baryon number B, strangeness S and electric charge Q. To investigate their decay properties decay chain calculations of HS were conducted. One single (heavy) HS with certain quantum numbers decays by various two-body decay channels subsequently into final stable hadrons. Multiplicities of these stable hadrons, their ratios and their energy distributions are presented. Strikingly the final energy spectra of resulting hadrons show a thermal-like distribution with the characteristic Hagedorn temperature TH. All hadronic properties like masses, spectral functions etc. are taken from the hadronic transport model Ultra Relativistic Quantum Molecular Dynamics (UrQMD).

  7. Remarkable Features of Decaying Hagedorn States

    E-print Network

    M. Beitel; K. Gallmeister; C. Greiner

    2014-07-02

    Hagedorn states (HS) are a tool to model the hadronization process which occurs in the phase transition phase between the quark gluon plasma (QGP) and the hadron resonance gas (HRG). Their abundance is believed to appear near the Hagedorn temperature $T_H$ which in our understanding equals the critical temperature $T_c$. These hadron-like resonances are characterized by being very massive and by not being limited to quantum numbers of known hadrons. To generate a whole zoo of such new states we solve the covariantly formulated bootstrap equation by regarding energy conservation and conservation of the baryon number $B$, strangeness $S$ and electric charge $Q$. To investigate their decay properties decay chain calculations of HS were conducted. One single (heavy) HS with certain quantum numbers decays by various two-body decay channels subsequently into final stable hadrons. Multiplicities of these stable hadrons, their ratios and their energy distributions are presented. Strikingly the final energy spectra of resulting hadrons show a thermal-like distribution with the characteristic Hagedorn temperature $T_H$. All hadronic properties like masses, spectral functions etc. are taken from the hadronic transport model Ultra Relativistic Quantum Molecular Dynamics (UrQMD).

  8. LHC dijet constraints on double beta decay

    NASA Astrophysics Data System (ADS)

    Helo, J. C.; Hirsch, M.

    2015-10-01

    We use LHC dijet data to derive constraints on neutrinoless double beta decay. Upper limits on cross sections for the production of "exotic" resonances, such as a right-handed W boson or a diquark, can be converted into lower limits on the double beta decay half-life for fixed choices of other parameters. Constraints derived from run-I data are already surprisingly strong and complementary to results from searches using same-sign dileptons plus jets. For the case of the left-right symmetric model, in case no new resonance is found in future runs of the LHC and assuming gL=gR, we estimate a lower limit on the double beta decay half-life larger than 1027 yr can be derived from future dijet data, except in the window of relatively light right-handed neutrino masses in the range 0.5 MeV to 50 GeV. Part of this mass window will be tested in the upcoming SHiP experiment. We also discuss current and future limits on possible scalar diquark contributions to double beta decay that can be derived from dijet data.

  9. Anatomy of three-body decay III. Energy distributions

    E-print Network

    E. Garrido; D. V. Fedorov; A. S. Jensen; H. O. U. Fynbo

    2005-12-01

    We address the problem of calculating momentum distributions of particles emerging from the three-body decay of a many-body resonance. We show that these distributions are determined by the asymptotics of the coordinate-space complex-energy wave-function of the resonance. We use the hyperspherical adiabatic expansion method where all lengths are proportional to the hyperradius. The structures of the resonances are related to different decay mechanisms. For direct decay all inter-particle distances increase proportional to the hyperradius at intermediate and large distances. Sequential three-body decay proceeds via spatially confined quasi-stationary two-body configurations. Then two particles remain close while the third moves away. The wave function may contain mixtures which produce coherence effects at small distances, but the energy distributions can still be added incoherently. Two-neutron halos are discussed in details and illustrated by the $2^+$ resonance in $^{6}$He. The dynamic evolution of the decay process is discussed.

  10. A clumpy stellar wind and luminosity-dependent cyclotron line revealed by the first Suzaku observation of the high-mass X-ray binary 4U 1538–522

    SciTech Connect

    Hemphill, Paul B.; Rothschild, Richard E.; Markowitz, Alex; Fürst, Felix; Pottschmidt, Katja; Wilms, Jörn

    2014-09-01

    We present results from the first Suzaku observation of the high-mass X-ray binary 4U 1538–522. The broadband spectral coverage of Suzaku allows for a detailed spectral analysis, characterizing the cyclotron resonance scattering feature at 23.0 ± 0.4 keV and the iron K? line at 6.426 ± 0.008 keV, as well as placing limits on the strengths of the iron K? line and the iron K edge. We track the evolution of the spectral parameters both in time and in luminosity, notably finding a significant positive correlation between cyclotron line energy and luminosity. A dip and spike in the light curve is shown to be associated with an order-of-magnitude increase in column density along the line of sight, as well as significant variation in the underlying continuum, implying the accretion of a overdense region of a clumpy stellar wind. We also present a phase-resolved analysis, with most spectral parameters of interest showing significant variation with phase. Notably, both the cyclotron line energy and the iron K? line intensity vary significantly with phase, with the iron line intensity significantly out of phase with the pulse profile. We discuss the implications of these findings in the context of recent work in the areas of accretion column physics and cyclotron resonance scattering feature formation.

  11. Search for the decay D[superscript 0] ? ?[superscript +]?[superscript -]?[superscript +]?[superscript -

    E-print Network

    Williams, Michael

    A search for the D[superscript 0]??[superscript +]?[superscript ?]?[superscript +]?[superscript ?] decay, where the muon pair does not originate from a resonance, is performed using proton–proton collision data corresponding ...

  12. If It's Resonance, What is Resonating?

    ERIC Educational Resources Information Center

    Kerber, Robert C.

    2006-01-01

    The phenomenon under the name "resonance," which, is based on the mathematical analogy between mechanical resonance and the behavior of wave functions in quantum mechanical exchange phenomena was described. The resonating system does not have a structure intermediate between those involved in the resonance, but instead a structure which is further…

  13. Vibrational Resonance in the Morse Oscillator

    E-print Network

    K. Abirami; S. Rajasekar; M. A. F. Sanjuan

    2013-04-15

    We investigate the occurrence of vibrational resonance in both classical and quantum mechanical Morse oscillators driven by a biharmonic force. The biharmonic force consists of two forces of widely different frequencies \\omega and \\Omega with \\Omega>>\\omega. In the damped and biharmonically driven classical Morse oscillator applying a theoretical approach we obtain an analytical expression for the response amplitude at the low-frequency \\omega. We identify the conditions on the parameters for the occurrence of the resonance. The system shows only one resonance and moreover at resonance the response amplitude is 1/(d\\omega) where d is the coefficient of linear damping. When the amplitude of the high-frequency force is varied after resonance the response amplitude does not decay to zero but approaches a nonzero limiting value. We have observed that vibrational resonance occurs when the sinusoidal force is replaced by a square-wave force. We also report the occurrence of resonance and anti-resonance of transition probability of quantum mechanical Morse oscillator in the presence of the biharmonic external field.

  14. Search for CP Violation in D± Meson Decays to ??±

    DOE PAGESBeta

    Stari?, M.; Aihara, H.; Arinstein, K.; Asner, D. M.; Aushev, T.; Bakich, A. M.; Bay, A.; Bhardwaj, V.; Bhuyan, B.; Bozek, A.; et al

    2012-02-13

    We search for CP violation in Cabibbo-suppressed charged D meson decays by measuring the difference between the CP-violating asymmetries for the Cabibbo-suppressed decays D±?K?K??± and the Cabibbo-favored decays D±s?K?K??± in the K?K? mass region of the ? resonance. Using 955 fb?¹ of data collected with the Belle detector, we obtain AD?????CP=(+0.51±0.28±0.05)%. The measurement improves the sensitivity of previous searches by more than a factor of 5. We find no evidence for direct CP violation.

  15. The mass function of hydrogen-rich white dwarfs: robust observational evidence for a distinctive high-mass excess near 1 M?

    NASA Astrophysics Data System (ADS)

    Rebassa-Mansergas, A.; Rybicka, M.; Liu, X.-W.; Han, Z.; García-Berro, E.

    2015-09-01

    The mass function of hydrogen-rich atmosphere white dwarfs has been frequently found to reveal a distinctive high-mass excess near 1 M?. However, a significant excess of massive white dwarfs has not been detected in the mass function of the largest white dwarf catalogue to date from the Sloan Digital Sky Survey (SDSS). Hence, whether a high-mass excess exists or not has remained an open question. In this work, we build the mass function of the latest catalogue of data release ten SDSS hydrogen-rich white dwarfs, including the cool and faint population (i.e. effective temperatures 6000 ? Teff ? 12 000 K, equivalent to 12 mag ? M_{bol} ? 13 mag). We show that the high-mass excess is clearly present in our mass function, and that it disappears only if the hottest (brightest) white dwarfs (those with Teff ? 12 000 K, M_{bol} ? 12 mag) are considered. This naturally explains why previous SDSS mass functions failed at detecting a significant excess of high-mass white dwarfs. Thus, our results provide additional and robust observational evidence for the existence of a distinctive high-mass excess near 1 M?. We investigate possible origins of this feature and argue that the most plausible scenario that may lead to an observed excess of massive white dwarfs is the merger of the degenerate core of a giant star with a main-sequence or a white dwarf companion during or shortly after a common envelope event.

  16. Fano theory for hadronic resonances: the rho meson and the pionic continuum

    E-print Network

    N. E. Ligterink

    2002-03-20

    We develop a model-independent analysis of hadronic scattering data in the resonance region, where the resonance shape follows from the matrix elements of a Hamiltonian. We investigate the rho meson in the tau decay. We demonstrate that the rho meson resonance in the two-pion decay of the tau lepton is described well through the coupling of a bare rho meson to the two-pion and the four-pion continuum. Furthermore, this four-pion continuum corresponds with the data of the four-pion decay channel of the tau lepton at energies up to 1.1 GeV.

  17. $?$ and $?'$ decays into lepton pairs

    E-print Network

    Pere Masjuan; Pablo Sanchez-Puertas

    2015-12-31

    In this work, we calculate the branching ratios for the $\\eta(\\eta')\\rightarrow\\bar{\\ell}\\ell$ decays, where $\\ell = e,\\mu$. These processes have tiny rates in the standard model due to spin flip, loop, and electromagnetic suppression, for what they could be sensitive to new physics effects. In order to provide a reliable input for the standard model, we use the machinery of Canterbury approximants to provide a systematic description for the underlying hadronic physics in a model-independent fashion. We carefully discuss the role of the resonant region and comment on the reliability of $\\chi$PT calculations. Finally, we discuss the kind of new physics which would be relevant in these processes given the experimental discrepancies.

  18. Radiative Penguin decays at Belle

    E-print Network

    Jin Li

    2008-10-17

    We present recent progresses in radiative penguin decays of $B$ meson using a large sample of $B\\bar{B}$ pairs recorded at the $\\Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric energy $e^+e^-$ collider. We report precise measurement of inclusive $b\\to s\\gamma$ branching ratio with cut $E_\\gamma > 1.7$ GeV, first measurement of time-dependent CP-violation in $B^0\\to K_s\\rho^0\\gamma$, measurement of $B^+\\to K^+\\eta'\\gamma$ branching fraction, and improved branching fraction results for $B^0\\to(\\rho,\\omega)\\gamma$ with new CP and isospin violation results in the mode.

  19. Challenging shock models with SOFIA OH observations in the high-mass star-forming region Cepheus A

    NASA Astrophysics Data System (ADS)

    Gusdorf, A.; Güsten, R.; Menten, K. M.; Flower, D. R.; Pineau des Forêts, G.; Codella, C.; Csengeri, T.; Gómez-Ruiz, A. I.; Heyminck, S.; Jacobs, K.; Kristensen, L. E.; Leurini, S.; Requena-Torres, M. A.; Wampfler, S. F.; Wiesemeyer, H.; Wyrowski, F.

    2016-01-01

    Context. OH is a key molecule in H2O chemistry, a valuable tool for probing physical conditions, and an important contributor to the cooling of shock regions around high-mass protostars. OH participates in the re-distribution of energy from the protostar towards the surrounding Interstellar Medium. Aims: Our aim is to assess the origin of the OH emission from the Cepheus A massive star-forming region and to constrain the physical conditions prevailing in the emitting gas. We thus want to probe the processes at work during the formation of massive stars. Methods: We present spectrally resolved observations of OH towards the protostellar outflows region of Cepheus A with the GREAT spectrometer onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope. Three triplets were observed at 1834.7 GHz, 1837.8 GHz, and 2514.3 GHz (163.4 ?m, 163.1 ?m between the 2?1/2 J = 1/2 states, and 119.2 ?m, a ground transition between the 2?3/2 J = 3/2 states), at angular resolutions of 16.?3, 16.?3, and 11.?9, respectively. We also present the CO (16-15) spectrum at the same position. We compared the integrated intensities in the redshifted wings to the results of shock models. Results: The two OH triplets near 163 ?m are detected in emission, but with blending hyperfine structure unresolved. Their profiles and that of CO (16-15) can be fitted by a combination of two or three Gaussians. The observed 119.2 ?m triplet is seen in absorption, since its blending hyperfine structure is unresolved, but with three line-of-sight components and a blueshifted emission wing consistent with that of the other lines. The OH line wings are similar to those of CO, suggesting that they emanate from the same shocked structure. Conclusions: Under this common origin assumption, the observations fall within the model predictions and within the range of use of our model only if we consider that four shock structures are caught in our beam. Overall, our comparisons suggest that all the observations might be consistently fitted by a J-type shock model with a high pre-shock density (nH> 105 cm-3), a high shock velocity (?s ? 25 km s-1), and with a filling factor of the order of unity. Such a high pre-shock density is generally found in shocks associated to high-mass protostars, contrary to low-mass ones.

  20. H{sub 2}D{sup +} IN THE HIGH-MASS STAR-FORMING REGION CYGNUS X

    SciTech Connect

    Pillai, T.; Lis, D. C.; Caselli, P.; Kauffmann, J.; Zhang, Q.; Thompson, M. A.

    2012-06-01

    H{sub 2}D{sup +} is a primary ion that dominates the gas-phase chemistry of cold dense gas. Therefore, it is hailed as a unique tool in probing the earliest, prestellar phase of star formation. Observationally, its abundance and distribution is, however, just beginning to be understood in low-mass prestellar and cluster-forming cores. In high-mass star-forming regions, H{sub 2}D{sup +} has been detected only in two cores, and its spatial distribution remains unknown. Here, we present the first map of the ortho-H{sub 2}D{sup +} J{sub k{sup +},k{sup -}} = 1{sub 1,0} {yields} 1{sub 1,1} and N{sub 2}H{sup +} 4-3 transition in the DR21 filament of Cygnus X with the James Clerk Maxwell Telescope, and N{sub 2}D{sup +} 3-2 and dust continuum with the Submillimeter Array. We have discovered five very extended ({<=}34, 000 AU diameter) weak structures in H{sub 2}D{sup +} in the vicinity of, but distinctly offset from, embedded protostars. More surprisingly, the H{sub 2}D{sup +} peak is not associated with either a dust continuum or N{sub 2}D{sup +} peak. We have therefore uncovered extended massive cold dense gas that was undetected with previous molecular line and dust continuum surveys of the region. This work also shows that our picture of the structure of cores is too simplistic for cluster-forming cores and needs to be refined: neither dust continuum with existing capabilities nor emission in tracers like N{sub 2}D{sup +} can provide a complete census of the total prestellar gas in such regions. Sensitive H{sub 2}D{sup +} mapping of the entire DR21 filament is likely to discover more of such cold quiescent gas reservoirs in an otherwise active high-mass star-forming region.

  1. Measurement of the polarization observables I(s) and I(c) for gamma-proton decaying to proton-pion-antipion using the CLAS spectrometer

    NASA Astrophysics Data System (ADS)

    Hanretty, Charles

    Predictions regarding the excited baryon spectrum provided by symmetric quark models called Constituent Quark Models (CQMs) show good agreement with experimental measurements in the low-energy region (less than ? 1.8 GeV). The mass region above ? 1.8 GeV, however, contains many resonances which are predicted to exist by these models but have not been experimentally verified [1, 2]. This describes a well known problem in Baryon Spectroscopy, the issue of missing resonances. These resonances are considered missing as the mass measurements made regarding these resonances are either absent or fairly large in their uncertainties [1]. This discrepancy between the theoretical predictions and the experimental measurements can be attributed to several sources. Firstly, the majority of the data regarding the excited baryon spectrum originates from pion-nucleon or kaon-nucleon scattering (which the missing resonances may only weakly couple to). Therefore, as suggested by recent quark model calculations, a study of reactions involving photoproduction (gammap ) may present a better opportunity for the production of these missing resonances [3]. In addition, previous analyses involved unpolarized data. This absence of polarization leads to ambiguous analysis results, therefore a constraint such as the polarization of the photons can be used in order to further constrain the kinematics of the reaction(s). The analysis of polarized photoproduction data ( g?p or g?p? ) in the low-energy region (< 1.8 GeV) presents the opportunity to further study previously observed resonances, possibly resolving currently unanswered questions about their properties. An analysis of polarized photoproduction data in the high-mass region (> 1.8 GeV) allows for a study of the resonances contributions, providing insight into the issue of the missing resonances. The study of a photoproduced 3-body final state (such as g?p ? p pi+pi-) has been indicated as a promising method for detecting the effects of the missing resonances as this final state topology accounts for most of the cross section above ? 1 GeV. A study of double-meson final states very well may fill the holes in the experimental data as the majority of analyses regarding this issue have come from the analysis of quasi 2-body final states (such as Npi, Neta, No, K?, and KSigma). It is also likely that these missing resonances decay to high mass intermediate states instead of directly into a meson and a ground state nucleon. Therefore the decay of these resonances is more of a chain (resulting in a two-meson-one-ground-state-nucleon state) than a direct decay. Presented in this work are the first ever measurements of the polarization observable Is for a final state with two pions and the first ever measurements of Ic for a final state containing charged pions (let alone the first measurements of both observables for the specialized case of g?p ? p pi+pi- reactions). The presented measurements were made using the high-statistics data available in the CLAS g8b data set. This data were taken at the Thomas Jefferson National Accelerator Facility (JLab) from July 20 th to September 1st of 2005 using linearly polarized photons, an unpolarized liquid hydrogen (LH 2 target), and the CEBAF Large Acceptance Spectrometer (CLAS). The highly-polarized photons were produced via bremsstrahlung using an unpolarized electron beam provided by the Continuous Electron Beam Accelerator Facility (CEBAF) accelerator and a well-oriented diamond radiator. These polarized photons were produced at five different coherent edge energies: 1.3 GeV, 1.5 GeV, 1.7 GeV, 1.9 GeV, and 2.1 GeV. Considering the 200 MeV-wide window of highly polarized photons whose upper limit is the coherent edge energy, and the five different coherent edge energies used, highly polarized photons were produced covering an total energy range of 1 GeV. These data along with the utilized analysis tools have lead to clean, continuous, low-error measurements of Is and Ic which will aide the hadronic physics community in its search

  2. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators

    NASA Astrophysics Data System (ADS)

    Gyüre, B.; Márkus, B. G.; Bernáth, B.; Murányi, F.; Simon, F.

    2015-09-01

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connes (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.

  3. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators.

    PubMed

    Gyüre, B; Márkus, B G; Bernáth, B; Murányi, F; Simon, F

    2015-09-01

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connes (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation. PMID:26429462

  4. Leptonic B Decays at BaBar

    SciTech Connect

    Baracchini, Elisabetta; /Rome U. /INFN, Rome

    2011-11-10

    We will present the most recent results on leptonic B decays B{sup {+-}(0)} {yields} K*{sup {+-}(0)}{nu}{bar {nu}} and B{sup {+-}} {yields} {mu}{sup {+-}}{nu}, based on the data collected by the BaBar detector at PEP-II, an asymmetric e{sup +}e{sup -} collider at the center of mass energy of the {Upsilon}(4S) resonance. Rare B decays have always been a standard probe for New Physics (NP) searches. The very low Standard Model (SM) rate of these decays often make them unaccessible with the present experimental datasets, unless NP effects enhance the rate up to the current experimental sensitivity. Moreover, as NP effects can modify the decay kinematic, particular attention must be paid in order to perform a model independent analysis. A B-Factory provides an unique environment to investigate these processes. The high number of B{bar B} pairs produced by a B-Factory often allows to approach the needed experimental sensitivity. Moreover, the clean environment and the closed kinematic of the initial state enable to obtaining a very pure sample where to look for these decays.

  5. Leptonic B Decays at BaBar

    SciTech Connect

    Monorchio, Diego; /INFN, Naples /Naples U.

    2011-09-13

    The authors will present the most recent results on leptonic B decays B{sup {+-}(0)} {yields} K*{sup {+-}(0)} {nu}{bar {nu}} and B{sup {+-}} {yields} {mu}{sup {+-}}{nu}, based on the data collected by the BaBar detector at PEP-II, an asymmetric e{sup +}e{sup -} collider at the center of mass energy of the {Upsilon}(4S) resonance. Rare B decays have always been a standard probe for New Physics (NP) searches. The very low Standard Model (SM) rate of these decays often make them unaccessible with the present experimental datasets, unless NP effects enhance the rate up to the current experimental sensitivity. Moreover, as NP effects can modify the decay kinematic, particular attention must be payed in order to perform a model independent analysis. A B-Factory provides an unique environment where to investigate these processes. The high number of B{bar B} pairs produced by a B-Factory often allows to approach the needed experimental sensitivity. Moreover, the clean environment and the closed kinematic of the initial state enable to obtaining a very pure sample where to look for these decays.

  6. Search for rare B(0)((s))??(+)?(-)?(+)?(-) decays.

    PubMed

    Aaij, R; Abellan Beteta, C; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dickens, J; Dijkstra, H; Dogaru, M; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lohn, S; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Mazurov, A; McCarthy, J; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nisar, S; Nomerotski, A; Novoselov, A

    2013-05-24

    A search for the decays B(0)((s))??(+)?(-)?(+)?(-) and B(0)??(+)?(-)?(+)?(-) is performed using data, corresponding to an integrated luminosity of 1.0 fb(-1), collected with the LHCb detector in 2011. The number of candidates observed is consistent with the expected background and, assuming phase-space models of the decays, limits on the branching fractions are set: B(B(s)(0)??(+)?(-)?(+)?(-))<1.6(1.2)×10(-8) and B(B(0)??(+)?(-)?(+)?(-))<6.6(5.3)×10(-9) at 95% (90%) confidence level. In addition, limits are set in the context of a supersymmetric model which allows for the B((s))(0) meson to decay into a scalar (S) and pseudoscalar particle (P), where S and P have masses of 2.5 GeV/c and 214.3 MeV/c, respectively, both resonances decay into ?(+)?(-). The branching fraction limits for these decays are B(B(s)(0)?SP)<1.6(1.2)×10(-8) and B(B(0)?SP)<6.3(5.1)×10(-9) at 95% (90%) confidence level. PMID:23745860

  7. Search for High Mass Top Quark Production in pp¯ Collisions at s = 1.8 TeV

    NASA Astrophysics Data System (ADS)

    Abachi, S.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Álvarez, G.; Alves, G. A.; Amidi, E.; Amos, N.; Anderson, E. W.; Aronson, S. H.; Astur, R.; Avery, R. E.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Bantly, J.; Bartlett, J. F.; Bazizi, K.; Behnke, T.; Bendich, J.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Bischoff, A.; Biswas, N.; Blazey, G.; Blessing, S.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Borders, J.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Callot, O.; Casey, D.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Chevalier, L.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M.; Cussonneau, J. P.; Cutts, D.; Dahl, O. I.; de, K.; Demarteau, M.; Demina, R.; Denisenko, K.; Denisenko, N.; Denisov, D.; Denisov, S. P.; Dharmaratna, W.; Diehl, H. T.; Diesburg, M.; Dixon, R.; Draper, P.; Drinkard, J.; Ducros, Y.; Durston-Johnson, S.; Eartly, D.; Edmunds, D.; Efimov, A. O.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahey, S.; Fahland, T.; Fatyga, M.; Fatyga, M. K.; Featherly, J.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Yu.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Franzini, P.; Fredriksen, S.; Fuess, S.; Gallas, E.; Gao, C. S.; Geld, T. L.; Genik, R. J., II; Genser, K.; Gerber, C. E.; Gibbard, B.; Glebov, V.; Glenn, S.; Glicenstein, J. F.; Gobbi, B.; Goforth, M.; Goldschmidt, A.; Gomez, B.; Good, M. L.; Gordon, H.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J.; Greenlee, H.; Grossman, N.; Grudberg, P.; Grünendahl, S.; Guida, J. A.; Guida, J. M.; Guryn, W.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hu, Ting; Hu, Tong; Hubbard, J. R.; Huehn, T.; Igarashi, S.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johari, H.; Johns, K.; Johnson, M.; Johnstad, H.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kang, J. S.; Kehoe, R.; Kelly, M.; Kernan, A.; Kerth, L.; Kim, C. L.; Klatchko, A.; Klima, B.; Klochkov, B. I.; Klopfenstein, C.; Klyukhin, V. I.; Kochetkov, V. I.; Kohli, J. M.; Koltick, D.; Kotcher, J.; Kourlas, J.; Kozelov, A. V.; Kozlovski, E. A.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kunori, S.; Lami, S.; Landsberg, G.; Lanou, R. E.; Lebrat, J.-F.; Lee-Franzini, J.; Leflat, A.; Li, H.; Li, J.; Li, R. B.; Li, Y. K.; Li-Demarteau, Q. Z.; Lima, J. G.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Y. C.; Lobkowicz, F.; Loch, P.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Mangeot, Ph.; Mani, S.; Manning, I.; Mansoulié, B.; Mao, H. S.; Margulies, S.; Markeloff, R.; Markosky, L.; Marshall, T.; Martin, M. I.; Marx, M.; May, B.; Mayorov, A. A.; McCarthy, R.; McKibben, T.; McKinley, J.; Melanson, H. L.; de Mello Neto, J. R.; Meng, X. C.; Merritt, K. W.; Miettinen, H.; Milder, A.; Milner, C.; Mincer, A.; de Miranda, J. M.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; Mudan, M.; Murphy, C.; Murphy, C. T.; Nang, F.; Narain, M.; Narasimham, V. S.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Neši?, D.; Norman, D.; Oesch, L.; Oguri, V.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Pang, M.; Para, A.; Park, C. H.; Partridge, R.; Paterno, M.; Peryshkin, A.; Peters, M.; Pi, B.; Piekarz, H.; Pizzuto, D.; Pluquet, A.; Podstavkov, V. M.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Pušelji?, D.; Qian, J.; Que, Y.-K.; Quintas, P. Z.; Rahal-Callot, G.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rao, M. V.; Rasmussen, L.; Read, A. L.; Reucroft, S.; Rijssenbeek, M.; Roe, N. A.; Roldan, J. M.; Rubinov, P.; Ruchti, R.; Rusin, S.; Rutherfoord, J.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Schmid, D.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shao, Y.; Shivpuri, R. K.; Shupe, M.; Singh, J. B.; Sirotenko, V.; Skeens, J.; Smart, W.; Smith, A.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snyder, S.; Solomon, J.; Sood, P. M.; Sosebee, M.; Souza, M.; Spadafora, A. L.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stocker, F.; Stoianova, D. A.; Stoker, D.; Streets, K.; Strovink, M.; Taketani, A.; Tamburello, P.; Tartaglia, M.; Taylor, T. L.; Teiger, J.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varnes, E. W.; Virador, P. R.; Volkov, A. A.

    1995-03-01

    We present new results on the search for the top quark in pp¯ collisions at s = 1.8 TeV with an integrated luminosity of 13.5+/-1.6 pb-1. We have considered tt¯ production in the standard model using electron and muon dilepton decay channels ( tt¯-->e? + jets, ee + jets, and ?? + jets) and single-lepton decay channels ( tt¯-->e + jets and ? + jets) with and without tagging of b quark jets. From all channels we have nine events with an expected background of 3.8+/-0.9. If we assume that the excess is due to tt¯ production, and assume a top mass of 180 GeV/ c2, we obtain a cross section of 8.2+/-5.1 pb.

  8. Herschel observations of dust around the high-mass X-ray binary GX 301-2

    E-print Network

    Servillat, Mathieu; Chaty, Sylvain; Rahoui, Farid; Heras, Juan Antonio Zurita

    2014-01-01

    We aim at characterising the structure of the gas and dust around the high mass X-ray binary GX 301-2, a highly obscured X-ray binary hosting a hypergiant star and a neutron star, in order to better constrain its evolution. We used Herschel PACS to observe GX 301-2 in the far infrared and completed the spectral energy distribution of the source using published data or catalogs, from the optical to the radio range (0.4 to 4x10^4 micrometer). GX 301-2 is detected for the first time at 70 and 100 micrometer. We fitted different models of circumstellar environments to the data. All tested models are statistically acceptable, and consistent with a hypergiant star at ~3 kpc. We found that the addition of a free-free emission component from the strong stellar wind is required and could dominate the far infrared flux. Through comparisons with similar systems and discussion on the estimated model parameters, we favour a disk-like circumstellar environment of ~8 AU that would enshroud the binary system. The temperature...

  9. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    SciTech Connect

    Andersen, T.; Jensen, R.; Christensen, M. K.; Chorkendorff, I.; Pedersen, T.; Hansen, O.

    2012-07-15

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/{Delta}m > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH{sub 3}.

  10. Envelope Overshooting in Low Metallicity Intermediate- and High-mass Stars: a test with the Sagittarius Dwarf Irregular Galaxy

    E-print Network

    Tang, Jing; Slemer, Alessandra; Marigo, Paola; Girardi, Leo; Bianchi, Luciana; Rosnfield, Phil; Momany, Yazan

    2015-01-01

    We check the performance of the {\\sl\\,PARSEC} tracks in reproducing the blue loops of intermediate age and young stellar populations at very low metallicity. We compute new evolutionary {\\sl\\,PARSEC} tracks of intermediate- and high-mass stars from 2\\Msun to 350\\Msun with enhanced envelope overshooting (EO), EO=2\\HP and 4\\HP, for very low metallicity, Z=0.0005. The input physics, including the mass-loss rate, has been described in {\\sl\\,PARSEC}~V1.2 version. By comparing the synthetic color-magnitude diagrams (CMDs) obtained from the different sets of models with envelope overshooting EO=0.7\\HP (the standard {\\sl\\,PARSEC} tracks), 2\\HP and 4\\HP, with deep observations of the Sagittarius dwarf irregular galaxy (SagDIG), we find an overshooting scale EO=2\\HP to best reproduce the observed loops. This result is consistent with that obtained by \\citet{Tang_etal14} for Z in the range 0.001-0.004. We also discuss the dependence of the blue loop extension on the adopted instability criterion and find that, contrary ...

  11. Associations of water and methanol masers at milli-arcsec angular resolution in two high-mass young stellar objects

    E-print Network

    C. Goddi; L. Moscadelli; A. Sanna; R. Cesaroni; V. Minier

    2006-10-16

    Most previous high-angular (water or methanol masers. While high-angular resolution observations have clarified that water masers originate from shocks associated with protostellar jets, different environments have been proposed in several sources to explain the origin of methanol masers. Tha aim of the paper is to investigate the nature of the methanol maser birthplace in SFRs and the association between the water and methanol maser emission in the same young stellar object. We have conducted phase-reference Very Long Baseline Interferometry (VLBI) observations of water and methanol masers toward two high-mass SFRs, Sh 2-255 IR and AFGL 5142. In Sh 2-255 IR water masers are aligned along a direction close to the orientation of the molecular outflow observed on angular scales of 1-10 arcsec, tracing possibly the disk-wind emerging from the disk atmosphere. In AFGL 5142 water masers trace expansion at the base of a protostellar jet, whilst methanol masers are more probably tracing infalling than outflowing gas. The results for AFGL 5142 suggest that water and methanol masers trace different kinematic structures in the circumstellar gas.

  12. X-ray emission from star-forming galaxies - I. High-mass X-ray binaries

    E-print Network

    Mineo, S; Sunyaev, R

    2011-01-01

    Based on a homogeneous set of X-ray, infrared and ultraviolet observations from Chandra, Spitzer, GALEX and 2MASS archives, we study populations of high-mass X-ray binaries (HMXBs) in a sample of 29 nearby star-forming galaxies and their relation with the star formation rate (SFR). In agreement with previous results, we find that HMXBs are a good tracer of the recent star formation activity in the host galaxy and their collective luminosity and number scale with the SFR, in particular, L_X ~ 2.5*10^{39}*SFR. However, the scaling relations still bear a rather large dispersion of rms~0.4 dex, which we believe is of a physical origin. We present the catalog of 1057 X-ray sources detected within the D25 ellipse for galaxies of our sample and construct the average X-ray luminosity function (XLF) of HMXBs with substantially improved statistical accuracy and better control of systematic effects than achieved in previous studies. The XLF follows a power law with slope of 1.6 in the log(L_X)~35-40 luminosity range wit...

  13. Common envelope mechanisms: constraints from the X-ray luminosity function of high-mass X-ray binaries

    SciTech Connect

    Zuo, Zhao-Yu; Li, Xiang-Dong E-mail: lixd@nju.edu.cn

    2014-12-10

    We use the measured X-ray luminosity function (XLF) of high-mass X-ray binaries (HMXBs) in nearby star-forming galaxies to constrain the common envelope (CE) mechanisms, which play a key role in governing the binary evolution. We find that the XLF can be reproduced quite closely under both CE mechanisms usually adopted, i.e., the ?{sub CE} formalism and the ? algorithm, with a reasonable range of parameters considered. Provided that the parameter combination is the same, the ? algorithm is likely to produce more HMXBs than the ?{sub CE} formalism, by a factor of up to ?10. In the framework of the ?{sub CE} formalism, a high value of ?{sub CE} is required to fit the observed XLF, though it does not significantly affect the global number of the HMXB populations. We present the detailed components of the HMXB populations under the ? algorithm and compare them with those in Zuo et al. and observations. We suggest the distinct observational properties, as well as period distributions of HMXBs, may provide further clues to discriminate between these two types of CE mechanisms.

  14. Superorbital periodic modulation in wind-accretion high-mass X-ray binaries from swift burst alert telescope observations

    SciTech Connect

    Corbet, Robin H. D.; Krimm, Hans A.

    2013-11-20

    We report the discovery using data from the Swift-Burst Alert Telescope (BAT) of superorbital modulation in the wind-accretion supergiant high-mass X-ray binaries 4U 1909+07 (= X 1908+075), IGR J16418–4532, and IGR J16479–4514. Together with already known superorbital periodicities in 2S 0114+650 and IGR J16493–4348, the systems exhibit a monotonic relationship between superorbital and orbital periods. These systems include both supergiant fast X-ray transients and classical supergiant systems, and have a range of inclination angles. This suggests an underlying physical mechanism which is connected to the orbital period. In addition to these sources with clear detections of superorbital periods, IGR J16393–4643 (= AX J16390.4–4642) is identified as a system that may have superorbital modulation due to the coincidence of low-amplitude peaks in power spectra derived from BAT, Rossi X-Ray Timing Explorer Proportional Counter Array, and International Gamma-Ray Astrophysics Laboratory light curves. 1E 1145.1–6141 may also be worthy of further attention due to the amount of low-frequency modulation of its light curve. However, we find that the presence of superorbital modulation is not a universal feature of wind-accretion supergiant X-ray binaries.

  15. A Hi-GAL study of the high-mass star-forming region G29.96-0.02

    E-print Network

    Beltran, M T; Cesaroni, R; Schisano, E; Elia, D; Molinari, S; Di Giorgio, A M; Kirk, J M; Mottram, J C; Pestalozzi, M; Testi, L; Thompson, M A

    2013-01-01

    Context. G29.96-0.02 is a high-mass star-forming cloud observed at 70, 160, 250, 350, and 500 microns as part of the Herschel survey of the Galactic Plane during the Science Demonstration Phase. Aims. We wish to conduct a far-infrared study of the sources associated with this star-forming region by estimating their physical properties and evolutionary stage, and investigating the clump mass function, the star formation efficiency and rate in the cloud. Methods. We have identified the Hi-GAL sources associated with the cloud, searched for possible counterparts at centimeter and infrared wavelengths, fitted their spectral energy distribution and estimated their physical parameters. Results. A total of 198 sources have been detected in all 5 Hi-GAL bands, 117 of which are associated with 24 microns emission and 87 of which are not associated with 24 microns emission. We called the former sources 24 microns-bright and the latter ones 24 microns-dark. The [70-160] color of the 24 microns-dark sources is smaller th...

  16. High Mass Star Formation in the Vicinity of a Young Massive Protocluster IRAS 04073+5102 (SH 209)

    NASA Astrophysics Data System (ADS)

    Chibueze, James

    2015-08-01

    IRAS 04073+5102 (SH 209) is a massive high mass star forming regions hosting massive protoclusters. Star formation in the vicinity of expanding HII region could toll different path from those of pristine environment. IRAS 04073+5102 (SH 209) provides an ideal region to study the influence of expanding region on the star formation activities in a region. We performed a 15-pointing mosaic observation of the region at 230 GHz with submillimeter array (SMA) and detected dust continuum emissions, 12CO, 13CO, C18O and SO. We used SMA dust continuum and CO data to identify and characterize the major filaments and cores in the complex. The brightest mm clump of 4000 M? observed at low resolution fragments into just three cores and the prominent core is an excellent candidate for a massive protocluster. Comparing of SMA images with Spitzer images, we could isolate very young filaments containing pre-protoclusters that would likely form clusters. The expanding HII region may have contributed to the formation of the observed filamentary structures and in triggering star formation in the region. We performed core-core velocity dispersion analysis of the region. Scaling the distance of our target to the distance of Orion molecular cloud (OMC), we compared star formation in both regions.

  17. Focused winds in high mass X-ray binaries: the case of Cyg X-1/HDE 226868

    NASA Astrophysics Data System (ADS)

    Grinberg, V.; Leutenegger, M.; Hell, N.; Pottschmidt, K.; B"ock, M.; García, J.; Nowak, M.; Sundqvist, J.; Townsend, R.; Wilms, J.

    2015-07-01

    As persistent sources, high mass X-ray binaries (HMXB) are ideal objects for observations aimed at deciphering properties of accretion and ejections flows. However, HMXBs are also strongly affected by the presence of strong, line-driven winds from the hot, massive companion stars. These winds drive the accretion towards the compact object, but also interact with both the radiation and the outflows produced in the inner regions, and have been suggested to majorly influence state transitions. The strongly variable absorption from the wind material has to be taken into account when analyzing HMXB observations. Here we use ˜ 5 Msec of RXTE observations of the HMXB Cygnus X-1 to constrain the orbital variability of the companion wind throughout different X-ray states. The variability can only be explained if we account for the presence of cold, dense clumps embedded in a tenuous hot gas. We put constraints on the porosity of such a two-component wind. We also show that even given the RXTE's limited coverage of the soft X-ray bandpass, we can only constrain the spectro-timing evolution of the source if we simultaneously account for the variable wind absorption.

  18. On shocks driven by high-mass planets in radiatively inefficient disks. II. Three-dimensional global disk simulations

    E-print Network

    Lyra, Wladimir; Boley, Aaron; Turner, Neal; Mac Low, Mordecai-Mark; Okuzumi, Satoshi; Flock, Mario

    2015-01-01

    Recent high-resolution, near-infrared images of protoplanetary disks have shown that these disks often present spiral features. Spiral arms are among the structures predicted decades ago by numerical simulations of disk-planet interaction and thus it is tempting to suspect that planetary perturbers are responsible for the observed signatures. However, such interpretation is not free of problems. The spirals are found to have large pitch angles, and in at least one case the spiral feature appears effectively unpolarized, which implies thermal emission at roughly 1000 K. We have recently shown in two-dimensional models that shock dissipation in the supersonic wake of high-mass planets can lead to significant heating if the disk is sufficiently adiabatic. In this paper we extend this analysis to three dimensions in thermodynamically evolving disks. We use the Pencil Code in spherical coordinates for our models, with a prescription for thermal cooling based on the optical depth of the local vertical gas column. W...

  19. High-mass star formation at high luminosities: W31 at >10^6 L_sun

    E-print Network

    Beuther, H; Henning, Th; Bik, A; Wyrowski, F; Schuller, F; Schilke, P; Thorwirth, S; Kim, K -T

    2011-01-01

    Context: High-mass star formation has been a very active field over the last decade, however, most studies targeted regions of luminosities between 10^4 and 10^5 L_sun. Methods: We selected the W31 star-forming complex with a total luminosity of ~6x10^6 L_sun for a multi-wavelength spectral line and continuum study covering wavelengths from the near- and mid-infrared via (sub)mm wavelength observations to radio data in the cm regime. Results: While the overall structure of the multi-wavelength continuum data resembles each other well, there are several intriguing differences. The 24mum emission stemming largely from small dust grains follows tightly the spatial structure of the cm emission tracing the ionized free-free emission. Hence warm dust resides in regions that are spatially associated with the ionized hot gas (~10^4 K) of the HII regions. Furthermore, we find several evolutionary stages within the same complexes, ranging from infrared-observable clusters, via deeply embedded regions associated with ac...

  20. Superorbital Periodic Modulation in Wind-Accretion High-Mass X-Ray Binaries from Swift Burst Alert Telescope Observations

    NASA Technical Reports Server (NTRS)

    Corbet, Robin H. D.; Krimm, Hans A.

    2013-01-01

    We report the discovery using data from the Swift-Burst Alert Telescope (BAT) of superorbital modulation in the wind-accretion supergiant high-mass X-ray binaries 4U 1909+07 (= X 1908+075), IGR J16418-4532, and IGR J16479-4514. Together with already known superorbital periodicities in 2S 0114+650 and IGR J16493-4348, the systems exhibit a monotonic relationship between superorbital and orbital periods. These systems include both supergiant fast X-ray transients and classical supergiant systems, and have a range of inclination angles. This suggests an underlying physical mechanism which is connected to the orbital period. In addition to these sources with clear detections of superorbital periods, IGR J16393-4643 (= AX J16390.4-4642) is identified as a system that may have superorbital modulation due to the coincidence of low-amplitude peaks in power spectra derived from BAT, Rossi X-Ray Timing Explorer Proportional Counter Array, and International Gamma-Ray Astrophysics Laboratory light curves. 1E 1145.1-6141 may also be worthy of further attention due to the amount of low-frequency modulation of its light curve. However, we find that the presence of superorbital modulation is not a universal feature of wind-accretion supergiant X-ray binaries.

  1. Superorbital Modulation and Orbital Parameters of the Eclipsing High-Mass X-ray Pulsar IGR J16493-4348

    NASA Astrophysics Data System (ADS)

    Pearlman, Aaron B.; Corbet, R.; Pottschmidt, K.

    2013-01-01

    Previous infrared studies of the X-ray pulsar IGR J16493-4348 classified the system as a supergiant high-mass X-ray binary (HMXB). A ~6.78 d orbital period was discovered from Swift Burst Alert Telescope (BAT) and Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) Galactic Bulge scan observations. A coherent signal at ~20.07 d was also found using the PCA and BAT instruments, suggestive of superorbital behavior within the system. Using well-sampled PCA archival pointed data (2.5-25 keV) spanning 9.5 d, we find strong evidence for a pulse period at ~1093 s from pulse arrival time analysis and the power spectrum of the light curve after removal of low frequency noise. We present an eclipse model for the folded PCA scan and BAT 66-month snapshot light curves, which constrains the system's behavior during orbital transitions. Pulse arrival times are derived using the PCA pointed light curve, and circular and eccentric orbital solutions are provided. A 14.0 ± 2.3 M? mass function is determined, which further confirms the designation of IGR J16493-4348 as a supergiant HMXB.

  2. Strong Decay widths and Coupling Constant of Recent Charm Meson States

    E-print Network

    Batra, Meenakshi

    2015-01-01

    Using an effective Lagrangian approach based on heavy quark symmetry and chiral dynamics, we explore the strong decay widths and branching ratios of various resonances and suggest their JP find the coupling constants involved in the strong decays through pseudoscalar mesons. The present work also discusses about the possible spin-parity assignments of recently observed states by LHCb collaboration.

  3. Measurement of Semileptonic B Decays into Orbitally Excited Charmed Mesons

    E-print Network

    Zhao, M.

    We present a study of B decays into semileptonic final states containing charged and neutral D1(2420) and D2*(2460). The analysis is based on a data sample of 208??fb-1 collected at the ?(4S) resonance with the BABAR ...

  4. A new Levinson's theorem for potentials with critical decay

    E-print Network

    Jia, Xiaoyao; Wang, Xue Ping

    2010-01-01

    We study the low-energy asymptotics of the spectral shift function for Schr\\"odinger operators with potentials decaying like $O(\\frac{1}{|x|^2})$. We prove a generalized Levinson's for this class of potentials in presence of zero eigenvalue and zero resonance.

  5. Coulomb corrections to superallowed beta decay in nuclei

    E-print Network

    N. Auerbach

    2008-11-28

    Corrections to the superallowed beta decay matrix elements are evaluated in perturbation theory using the notion of the isovector monopole resonance. The calculation avoids the separation into different contributions and thus presents a consistent, systematic and more transparent approach. Explicit expressions for the Coulomb correction as a function of mass number A, are given.

  6. Radiative neutrino decay in a strong magnetic field

    SciTech Connect

    Anikin, R. A. Mikheev, N. V.

    2013-12-15

    The radiative decay of neutrinos in a strong magnetic field that have relatively high energies, E ? m{sub e}, is studied with allowance for positronium contribution to the photon polarization operator in the vicinity of the cyclotron resonance. It is shown that the probability for the process ? ? ?? increases substantially upon taking into account the positronium contribution.

  7. Charmless Hadronic Three Body B Decays at BaBar

    SciTech Connect

    Perez, Alejandro; /Paris U., VI-VII

    2011-11-22

    We report on recent measurements of branching fractions and CP violation observables of selected charmless hadronic B decays obtained from data collected with the BABAR detector at the PEP-II asymmetric-energy collider, operating at the {Upsilon}(4S) resonance.

  8. Charmonium decays of Y(4260), psi(4160), and psi(4040)

    E-print Network

    Besson, David Zeke

    2006-04-01

    Using data collected with the CLEO detector operating at the CESR e(+)e(-) collider at root s = 3.97-4.26 GeV, we investigate 15 charmonium decay modes of the psi(4040), psi(4160), and Y(4260) resonances. We confirm, at 11 sigma significance...

  9. Gallium nitride nanowire electromechanical resonators

    NASA Astrophysics Data System (ADS)

    Gray, Jason Michael

    Nanoscale mechanical resonators are of great interest for high-resolution sensing applications, where the small resonator mass and high quality factor (Q, defined as resonance frequency f0 over full width at half maximum power) lead to unprecedented sensitivity. Here, we investigate gallium nitride (GaN) nanowire (NW) resonators. The single-crystal, c-axis NWs are 5 mum -- 20 mum long, with diameters from 50 nm -- 500 nm, and grow essentially free of defects. Our initial experiments involve measuring the resonances of as-grown NWs in a scanning electron microscope, where we observe exceptionally high Q values of 10 4 -- 105, one to two orders of magnitude higher than most NWs of comparable size. Using a single NW as a mass sensor, we then demonstrate a sub-attogram mass sensitivity. To provide a more flexible measurement technique that avoids electron-microscope detection, we fabricate doubly clamped NWs with an entirely electronic drive and readout scheme using a combination of lithographic patterning and dielectrophoresis. An electrostatic gate induces vibration, while readout utilizes the piezoresistivity of GaN. Observed resonances range from 9--36 MHz with Q values typically around 103 at room temperature and 10 -4 Pa. We use the behavior of f0 and Q to sense the NW's local environment, such as the additional sources of energy dissipation not present in the as-grown NWs. By cooling the device to 8 K, Q increases by an order of magnitude to above 104, with a highest value to date of 26,000 under vacuum. We explore additional NW properties through the thermal noise in the NW's mechanical motion and the exponential decay of mechanical motion in the presence of burst drive. Finally, we investigate the low-frequency 1/f parameter noise displayed by f0. We show that the noise in f0 is consistent with noise in the NW's resistance leading to temperature noise from local Joule heating, which in turn generates resonance frequency noise. For sensor applications, there will be optimal drive conditions that balance the f 0 noise with the signal-to-noise ratio of the system. With these insights, along with the simple drive and readout technique, these GaN-NW doubly clamped resonators have significant potential for high-resolution sensing applications.

  10. Some problems in heavy-quarkonium decays

    NASA Astrophysics Data System (ADS)

    Achasov, N. N.; Kiselev, A. V.; Kozhevnikov, A. A.; Shestakov, G. N.

    2015-05-01

    Problems proposed by the present authors for studies at c- ?, b, super- c- ?, and super- b factories are formulated. First, a comparison of the mechanisms of light-scalar-meson production in the process with the mechanisms of light-pseudoscalar-meson production in the process reveals that the transition is negligible in relation to the transition . As for f 0(980), is not more than 30% of . It is proposed to study light scalar mesons in the semileptonic decays of D +( D -) , B +( B -), and . Second, interference phenomena observed in the ?(3770)-resonance region in the reaction are described on the basis of models satisfying the elastic-unitarity requirement. As a model, we propose the model of mixed ?(3770) and ?(2 S) resonances. In order to select theoretical models, it is proposed to employ non- decay channels such as e + e - ? ?(3770) ? ?? c0, J/ ??, and ??. Third, branching ratios are calculated for ?(3770) and ?(10580) decays proceeding to light (non- and non-) hadrons owing to the contributions of real and intermediate states. The predictions obtained for these branching ratios lie in the range of 1% ? BR ? 15%. The lower boundary of this range is ten times higher than the branching ratio for annihilation to three gluons.

  11. Regenerative feedback resonant circuit

    DOEpatents

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  12. A Comparative Astrochemical Study of the High-mass Protostellar Objects NGC 7538 IRS 9 and IRS 1

    NASA Astrophysics Data System (ADS)

    Barentine, John C.; Lacy, John H.

    2012-10-01

    We report the results of a spectroscopic study of the high-mass protostellar object NGC 7538 IRS 9 and compare our observations to published data on the nearby object NGC 7538 IRS 1. Both objects originated in the same molecular cloud and appear to be at different points in their evolutionary histories, offering an unusual opportunity to study the temporal evolution of envelope chemistry in objects sharing a presumably identical starting composition. Observations were made with the Texas Echelon Cross Echelle Spectrograph, a sensitive, high spectral resolution (R = ?/?? ~= 100,000) mid-infrared grating spectrometer. Forty-six individual lines in vibrational modes of the molecules C2H2, CH4, HCN, NH3, and CO were detected, including two isotopologues (13CO, 12C18O) and one combination mode (?4 + ?5 C2H2). Fitting synthetic spectra to the data yielded the Doppler shift, excitation temperature, Doppler b parameter, column density, and covering factor for each molecule observed; we also computed column density upper limits for lines and species not detected, such as HNCO and OCS. We find differences among spectra of the two objects likely attributable to their differing radiation and thermal environments. Temperatures and column densities for the two objects are generally consistent, while the larger line widths toward IRS 9 result in less saturated lines than those toward IRS 1. Finally, we compute an upper limit on the size of the continuum-emitting region (~2000 AU) and use this constraint and our spectroscopy results to construct a schematic model of IRS 9.

  13. Herschel Observations of Dust around the High-mass X-Ray Binary GX 301-2

    NASA Astrophysics Data System (ADS)

    Servillat, M.; Coleiro, A.; Chaty, S.; Rahoui, F.; Zurita Heras, J. A.

    2014-12-01

    We aim at characterizing the structure of the gas and dust around the high-mass X-ray binary GX 301-2, a highly obscured X-ray binary hosting a hypergiant (HG) star and a neutron star, in order to better constrain its evolution. We used Herschel PACS to observe GX 301-2 in the far infrared and completed the spectral energy distribution of the source using published data or catalogs from the optical to the radio range (0.4 to 4 × 104 ?m). GX 301-2 is detected for the first time at 70 and 100 ?m. We fitted different models of circumstellar (CS) environments to the data. All tested models are statistically acceptable, and consistent with an HG star at ~3 kpc. We found that the addition of a free-free emission component from the strong stellar wind is required and could dominate the far-infrared flux. Through comparisons with similar systems and discussion on the estimated model parameters, we favor a disk-like CS environment of ~8 AU that would enshroud the binary system. The temperature goes down to ~200 K at the edge of the disk, allowing for dust formation. This disk is probably a rimmed viscous disk with an inner rim at the temperature of the dust sublimation temperature (~1500 K). The similarities between the HG GX 301-2, B[e] supergiants, and the highly obscured X-ray binaries (particularly IGR J16318-4848) are strengthened. GX 301-2 might represent a transition stage in the evolution of massive stars in binary systems, connecting supergiant B[e] systems to luminous blue variables.

  14. THE INTEGRAL SOURCE IGR J16328-4726: A HIGH-MASS X-RAY BINARY FROM THE BEPPOSAX ERA

    SciTech Connect

    Fiocchi, M.; Bazzano, A.; Natalucci, L.; Persi, P.; Piro, L.; Ubertini, P.; Bird, A. J.; Drave, S. P.

    2013-01-01

    We report on temporal and spectral analysis of the INTEGRAL fast transient candidate IGR J16328-4726 observed with BeppoSAX in 1998 and more recently with INTEGRAL. The MECS X-ray data show a frequent microactivity typical of the intermediate state of supergiant fast X-ray transients and a weak flare with a duration of {approx}4.6 ks. The X-ray emission in the 1.5-10 keV energy range is well described through the different time intervals by an absorbed power-law model. Comparing spectra from the lower emission level up to the peak of the flare, we note that while the power-law photon index was constant ({approx}2), the absorption column density varied by a factor of up to {approx}6-7, reaching a value of {approx}2 Multiplication-Sign 10{sup 23} cm{sup -2} at the peak of the flare. Analysis of the long-term INTEGRAL/IBIS light curve confirms and refines the proposed {approx}10.07 day period, and the derived ephemeris places the BeppoSAX observations away from periastron. Using the near- and the mid-IR available observations, we constructed a spectral infrared distribution for the counterpart of IGR J16328-4726, allowing us to identify its counterpart as a high-mass OB type star and to classify this source as a firm HMXB. Following the standard clumpy wind theory, we estimated the mass and the radius of the clump responsible for the flare. The obtained values of M {sub cl} {approx_equal} 4 Multiplication-Sign 10{sup 22}g and R{sub cl} {approx_equal} 4.4 Multiplication-Sign 10{sup 6} km are in agreement with expected values from theoretical predictions.

  15. A COMPARATIVE ASTROCHEMICAL STUDY OF THE HIGH-MASS PROTOSTELLAR OBJECTS NGC 7538 IRS 9 AND IRS 1

    SciTech Connect

    Barentine, John C.; Lacy, John H.

    2012-10-01

    We report the results of a spectroscopic study of the high-mass protostellar object NGC 7538 IRS 9 and compare our observations to published data on the nearby object NGC 7538 IRS 1. Both objects originated in the same molecular cloud and appear to be at different points in their evolutionary histories, offering an unusual opportunity to study the temporal evolution of envelope chemistry in objects sharing a presumably identical starting composition. Observations were made with the Texas Echelon Cross Echelle Spectrograph, a sensitive, high spectral resolution (R {lambda}/{Delta}{lambda} {approx_equal} 100,000) mid-infrared grating spectrometer. Forty-six individual lines in vibrational modes of the molecules C{sub 2}H{sub 2}, CH{sub 4}, HCN, NH{sub 3}, and CO were detected, including two isotopologues ({sup 13}CO, {sup 12}C{sup 18}O) and one combination mode ({nu}{sub 4} + {nu}{sub 5} C{sub 2}H{sub 2}). Fitting synthetic spectra to the data yielded the Doppler shift, excitation temperature, Doppler b parameter, column density, and covering factor for each molecule observed; we also computed column density upper limits for lines and species not detected, such as HNCO and OCS. We find differences among spectra of the two objects likely attributable to their differing radiation and thermal environments. Temperatures and column densities for the two objects are generally consistent, while the larger line widths toward IRS 9 result in less saturated lines than those toward IRS 1. Finally, we compute an upper limit on the size of the continuum-emitting region ({approx}2000 AU) and use this constraint and our spectroscopy results to construct a schematic model of IRS 9.

  16. The Mass Surface Density Distribution of a High-Mass Protocluster forming from an IRDC and GMC

    NASA Astrophysics Data System (ADS)

    Lim, Wanggi; Tan, Jonathan C.; Kainulainen, Jouni; Ma, Bo; Butler, Michael

    2016-01-01

    We study the probability distribution function (PDF) of mass surface densities of infrared dark cloud (IRDC) G028.36+00.07 and its surrounding giant molecular cloud (GMC). Such PDF analysis has the potential to probe the physical processes that are controlling cloud structure and star formation activity. The chosen IRDC is of particular interest since it has almost 100,000 solar masses within a radius of 8 parsecs, making it one of the most massive, dense molecular structures known and is thus a potential site for the formation of a high-mass, "super star cluster". We study mass surface densities in two ways. First, we use a combination of NIR, MIR and FIR extinction maps that are able to probe the bulk of the cloud structure that is not yet forming stars. This analysis also shows evidence for flattening of the IR extinction law as mass surface density increases, consistent with increasing grain size and/or growth of ice mantles. Second, we study the FIR and sub-mm dust continuum emission from the cloud, especially utlizing Herschel PACS and SPIRE images. We first subtract off the contribution of the foreground diffuse emission that contaminates these images. Next we examine the effects of background subtraction and choice of dust opacities on the derived mass surface density PDF. The final derived PDFs from both methods are compared, including also with other published studies of this cloud. The implications for theoretical models and simulations of cloud structure, including the role of turbulence and magnetic fields, are discussed.

  17. Herschel OBSERVATIONS OF DUST AROUND THE HIGH-MASS X-RAY BINARY GX 301-2

    SciTech Connect

    Servillat, M.; Coleiro, A.; Chaty, S.; Rahoui, F.; Zurita Heras, J. A.

    2014-12-20

    We aim at characterizing the structure of the gas and dust around the high-mass X-ray binary GX 301-2, a highly obscured X-ray binary hosting a hypergiant (HG) star and a neutron star, in order to better constrain its evolution. We used Herschel PACS to observe GX 301-2 in the far infrared and completed the spectral energy distribution of the source using published data or catalogs from the optical to the radio range (0.4 to 4 × 10{sup 4} ?m). GX 301-2 is detected for the first time at 70 and 100 ?m. We fitted different models of circumstellar (CS) environments to the data. All tested models are statistically acceptable, and consistent with an HG star at ?3 kpc. We found that the addition of a free-free emission component from the strong stellar wind is required and could dominate the far-infrared flux. Through comparisons with similar systems and discussion on the estimated model parameters, we favor a disk-like CS environment of ?8 AU that would enshroud the binary system. The temperature goes down to ?200 K at the edge of the disk, allowing for dust formation. This disk is probably a rimmed viscous disk with an inner rim at the temperature of the dust sublimation temperature (?1500 K). The similarities between the HG GX 301-2, B[e] supergiants, and the highly obscured X-ray binaries (particularly IGR J16318-4848) are strengthened. GX 301-2 might represent a transition stage in the evolution of massive stars in binary systems, connecting supergiant B[e] systems to luminous blue variables.

  18. HIGH-MASS, FOUR-PLANET CONFIGURATIONS FOR HR 8799: CONSTRAINING THE ORBITAL INCLINATION AND AGE OF THE SYSTEM

    SciTech Connect

    Sudol, Jeffrey J.; Haghighipour, Nader E-mail: nader@ifa.hawaii.edu

    2012-08-10

    Debates regarding the age and inclination of the planetary system orbiting HR 8799, and the release of additional astrometric data following the discovery of the fourth planet, prompted us to examine the possibility of constraining these two quantities by studying the long-term stability of this system at different orbital inclinations and in its high-mass configuration (7-10-10-10 M{sub Jup}). We carried out {approx}1.5 million N-body integrations for different combinations of orbital elements of the four planets. The most dynamically stable combinations survived less than {approx}5 Myr at inclinations of 0 Degree-Sign and 13 Degree-Sign , and 41, 46, and 31 Myr at 18 Degree-Sign , 23 Degree-Sign , and 30 Degree-Sign , respectively. Given such short lifetimes and the location of the system on the age-luminosity diagram for low-mass objects, the most reasonable conclusion of our study is that the planetary masses are less than 7-10-10-10 M{sub Jup} and the system is quite young. Two trends to note from our work are as follows. (1) In the most stable systems, the higher the inclination, the more the coordinates for planets b and c diverge from the oldest archival astrometric data (released after we completed our N-body integrations), suggesting that either these planets are in eccentric orbits or have lower orbital inclinations than that of planet d. (2) The most stable systems place planet e closer to the central star than is observed, supporting the conclusion that the planets are more massive and the system is young. We present the details of our simulations and discuss the implications of the results.

  19. Resonances in photon-photon scattering

    SciTech Connect

    Chanowitz, M.S.

    1984-11-01

    A quantity called stickiness is introduced which should be largest for J not equal to 0 glueballs and can be measured in two photon scattering and radiative J/psi decay. An argument is reviewed suggesting that light J = 0 glueballs may have large couplings to two photons. The analysis of radiative decays of eta and eta' is reviewed and a plea made to desist from false claims that they are related to GAMMA(..pi../sup 0/ ..-->.. ..gamma gamma..) by SU(3) symmetry. It is shown that two photon studies can refute the difficult-to-refute hypothesis that xi(2220) or zeta(8320) are Higgs bosons. A gallery of rogue resonances and resonance candidates is presented which would usefully be studied in ..gamma gamma.. scattering, including especially the low mass dipion. 34 references.

  20. Production and decay of the Lambda c charmed baryon from Fermilab E791

    SciTech Connect

    Brian Meadows

    2001-12-11

    Results are presented for the 500 GeV/c pion production asymmetry and polarization of the {Lambda}{sub c} ({bar {Lambda}}{sub c}) charmed baryon from Fermilab experiment E791. An analysis of the decay to the p{bar K}{pi} final state is described. Resonant sub-channel fractions and phases are given and possible resonant effects in the low mass p{bar K} system discussed. Significant decay to {Lambda}{sub c} {yields} {Delta}{sup 2}K{sup -} establishes for the first time the importance of a W exchange mechanism in charmed baryon decay.

  1. The Fourier Transform in Chemistry. Part 1. Nuclear Magnetic Resonance: Introduction.

    ERIC Educational Resources Information Center

    King, Roy W.; Williams, Kathryn R.

    1989-01-01

    Using fourier transformation methods in nuclear magnetic resonance has made possible increased sensitivity in chemical analysis. This article describes these methods as they relate to magnetization, the RF magnetic field, nuclear relaxation, the RF pulse, and free induction decay. (CW)

  2. Search for resonant diphoton production with the D0 detector.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Andrieu, B; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Avila, C; Backusmayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blekman, F; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calfayan, P; Calpas, B; Calvet, S; Cammin, J; Carrasco-Lizarraga, M A; Carrera, E; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cuplov, V; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Devaughan, K; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dutt, S; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Escalier, M; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kozelov, A V; Kraus, J; Kuhl, T; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lellouch, J; Li, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Maravin, Y; Martin, B; McCarthy, R; Meijer, M M; Melnitchouk, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Mitrevski, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osman, N; Osta, J; Otec, R; Otero Y Garzón, G J; Owen, M; Padilla, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D

    2009-06-12

    We present a search for a narrow resonance in the inclusive diphoton final state using approximately 2.7 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron pp Collider. We observe good agreement between the data and the background prediction, and set the first 95% C.L. upper limits on the production cross section times the branching ratio for decay into a pair of photons for resonance masses between 100 and 150 GeV. This search is also interpreted in the context of several models of electroweak symmetry breaking with a Higgs boson decaying into two photons. PMID:19658922

  3. Electroproduction of the {Delta}(1232) Resonance at High Momentum Transfer

    SciTech Connect

    Frolov, V.V.; Adams, G.S.; Davidson, R.M.; Klusman, M.; Mukhopadhyay, N.C.; Napolitano, J.; Nozar, M.; Price, J.W.; Stoler, P.; Witkowski, M.; Bosted, P.; Armstrong, C.S.; Meekins, D.; Assamagan, K.; Avery, S.; Baker, O.K.; Eden, T.; Gaskell, D.; Gueye, P.; Hinton, W.; Keppel, C.; Madey, R.; Niculescu, G.; Niculescu, I.; Tang, L.; Ahmidouch, A.; Madey, R.; Kim, W.; Baker, O.K.; Burkert, V.; Carlini, R.; Dunne, J.; Ent, R.; Keppel, C.; Mack, D.; Mitchell, J.; Tang, L.; Wood, S.; Koltenuk, D.; Minehart, R.; Mkrtchyan, H.; Tadevosian, V.

    1999-01-01

    We studied the electroproduction of the {Delta}(1232) resonance via the reaction p(e,thinspe{sup {prime}}p){pi}{sup 0} at four-momentum transfers Q{sup 2}=2.8 and 4.0 GeV{sup 2} . This is the highest Q{sup 2} for which exclusive resonance electroproduction has ever been observed. Decay angular distributions for {Delta}{r_arrow}p{pi}{sup 0} were measured over a wide range of barycentric energies covering the resonance. The N{endash}{Delta} transition form factor G{sup {asterisk}}{sub M} and ratios of resonant multipoles E{sub 1+}/M{sub 1+} and S{sub 1+}/M{sub 1+} were extracted from the decay angular distributions. These ratios remain small, indicating that perturbative QCD is not applicable for this reaction at these momentum transfers. {copyright} {ital 1998} {ital The American Physical Society }

  4. Reheating dynamics affects non-perturbative decay of spectator fields

    SciTech Connect

    Enqvist, Kari; Lerner, Rose N.; Rusak, Stanislav E-mail: rose.lerner@helsinki.fi

    2013-11-01

    The behaviour of oscillating scalar spectator fields after inflation depends on the thermal background produced by inflaton decay. Resonant decay of the spectator is often blocked by large induced thermal masses. We account for the finite decay width of the inflaton and the protracted build-up of the thermal bath to determine the early evolution of a homogeneous spectator field ? coupled to the Higgs Boson ? through the term g{sup 2}?{sup 2}?{sup 2}, the only renormalisable coupling of a new scalar to the Standard Model. We find that for very large higgs-spectator coupling g?>10{sup ?3}, the resonance is not always blocked as was previously suggested. As a consequence, the oscillating spectator can decay quickly. For other parameter values, we find that although qualitative features of the thermal blocking still hold, the dynamics are altered compared to the instant decay case. These findings are important for curvaton models, where the oscillating field must be relatively long lived in order to produce the curvature perturbation. They are also relevant for other spectator fields, which must decay sufficiently early to avoid spoiling the predictions of baryogenesis and nucleosynthesis.

  5. Study of the D0 ---> pi- pi+ pi- pi+ decay

    SciTech Connect

    Link, J.M.; Yager, P.M.; Anjos, J.C.; Bediaga, I.; Castromonte, C.; Machado, A.A.; Magnin, J.; Massafferri, A.; de Miranda, J.M.; Pepe, I.M.; Polycarpo, E.; /Rio de Janeiro, CBPF /CINVESTAV, IPN /Colorado U. /Fermilab /Frascati /Guanajuato U. /Illinois U., Urbana /Indiana U. /Korea U. /Kyungpook Natl. U. /INFN, Milan /Milan U.

    2007-01-01

    Using data from the FOCUS (E831) experiment at Fermilab, they present new measurements for the Cabbibo-suppressed decay mode D{sup 0} {yields} {pi}{sup -}{pi}{sup +}{pi}{sup -}{pi}{sup +}. They measure the branching ratio {Lambda}(D{sup 0} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -})/{Lambda}(D{sup 0} {yields} K{sup -} {pi}{sup +}{pi}{sup -}{pi}{sup +}) = 0.0914 {+-} 0.0018 {+-} 0.0022. An amplitude analysis has been performed, a first for this channel, in order to determine the resonant substructure of this decay mode. The dominant component is the decay D{sup 0} {yields} a{sub 1}(1260){sup +}{pi}{sup -}, accounting for 60% of the decay rate. The second most dominant contribution comes from the decay D{sup 0} {yields} {rho}(770){sup 0}{rho}(770){sup 0}, with a fraction of 25%. They also study the a{sub 1}(1260) line shape and resonant substructure. Using the helicity formalism for the angular distribution of the decay D{sup 0} {yields} {rho}(770){sup 0}{rho}(770){sup 0}, they measure a longitudinal polarization of P{sub L} = (71 {+-} 4 {+-} 2)%.

  6. Time as a dynamical variable in quantum decay

    E-print Network

    Rafael de la Madrid

    2013-06-21

    We present a theoretical analysis of quantum decay in which the survival probability is replaced by a decay rate that is equal to the absolute value squared of the wave function in the time representation. The wave function in the time representation is simply the Fourier transform of the wave function in the energy representation, and it is also the probability amplitude generated by the Positive Operator Valued Measure of a time operator. The present analysis endows time with a dynamical character in quantum decay, and it is applicable only when the unstable system is monitored continuously while it decays. When the analysis is applied to the Gamow state, one recovers the exponential decay law. The analysis allows us to interpret the oscillations in the decay rate of the GSI anomaly, of neutral mesons, and of fluorescence quantum beats as the result of the interference of two resonances in the time representation. In addition, the analysis allows us to show that the time of flight of a resonance coincides with its lifetime.

  7. Rare Hadronic B Decays

    SciTech Connect

    Bevan, A.J.

    2006-06-07

    Rare hadronic B-meson decays allow us to study CP violation. The class of B-decays final states containing two vector mesons provides a rich set of angular correlation observables to study. This article reviews some of the recent experimental results from the BABAR and Belle collaborations.

  8. Radioactive Decay - An Analog.

    ERIC Educational Resources Information Center

    McGeachy, Frank

    1988-01-01

    Presents an analog of radioactive decay that allows the student to grasp the concept of half life and the exponential nature of the decay process. The analog is devised to use small, colored, plastic poker chips or counters. Provides the typical data and a graph which supports the analog. (YP)

  9. Perspective Molecular Tooth Decay

    E-print Network

    DeSalle, Rob

    Perspective Molecular Tooth Decay Rob DeSalle* American Museum of Natural History, New York, New.0), is used as an indicator of functionality. Brush Your Branches-- Molecular Tooth Decay When the branches in tooth structure, as it forms the outer cap of teeth. It preserves extremely well in the fossil record

  10. Small Molecule Immunosensing Using Surface Plasmon Resonance

    PubMed Central

    Mitchell, John

    2010-01-01

    Surface plasmon resonance (SPR) biosensors utilize refractive index changes to sensitively detect mass changes at noble metal sensor surface interfaces. As such, they have been extensively applied to immunoassays of large molecules, where their high mass and use of sandwich immunoassay formats can result in excellent sensitivity. Small molecule immunosensing using SPR is more challenging. It requires antibodies or high-mass or noble metal labels to provide the required signal for ultrasensitive assays. Also, it can suffer from steric hindrance between the small antigen and large antibodies. However, new studies are increasingly meeting these and other challenges to offer highly sensitive small molecule immunosensor technologies through careful consideration of sensor interface design and signal enhancement. This review examines the application of SPR transduction technologies to small molecule immunoassays directed to different classes of small molecule antigens, including the steroid hormones, toxins, drugs and explosives residues. Also considered are the matrix effects resulting from measurement in chemically complex samples, the construction of stable sensor surfaces and the development of multiplexed assays capable of detecting several compounds at once. Assay design approaches are discussed and related to the sensitivities obtained. PMID:22163605

  11. Evidence for a Second F35 Pion-Nucleon Resonance near 2000 MeV

    NASA Astrophysics Data System (ADS)

    Manley, D. Mark

    1984-06-01

    A recent isobar-model, partial-wave analysis of ?N-->??N finds strong indications of the F35 pion-nucleon resonance belonging to the (70,L=2+) baryon multiplet. This conclusion is drawn from recent predictions of baryon decays obtained with baryon compositions determined by the Isgur-Karl quark model. The highly inelastic F35 resonance is observed through its dominant p-wave decay to ?N.

  12. Topical applications of resonance internal conversion in laser produced plasma

    NASA Astrophysics Data System (ADS)

    Karpeshin, F. F.

    2007-04-01

    Physical aspects of resonance effects arising in plasma due to interactions of nuclei with the electrons are considered. Among them are resonance conversion (TEEN) and the reverse process of NEET. These processes are of great importance for pumping the excited nuclear states (isomers) and for accelerating their decay. Experiment is discussed on studying the unique 3.5-eV 229m Th nuclide.

  13. Two-photon mediated resonance production in e+e- collisions cross sections and density matrices

    E-print Network

    Berends, F A

    2002-01-01

    Earlier described model amplitudes are used in this paper to evaluate both cross sections and density matrices for two-photon mediated resonance production in e^+e^- collisions. All 25 q\\bar{q} low-lying ^1S_0, ^3P_J and ^1D_2 resonances can thus be treated. Two independent methods are described to obtain the resonance production density matrices and cross sections. These density matrices combined with a resonance decay density matrix give the detailed angular distributions of the resonance decay products. For two particular decays, \\chi_{c2},\\chi_{c1}\\to\\gamma J/\\psi the details are given. Several numerical results are presented as well.

  14. Resonance searches with the $t\\overline{t}$ Invariant Mass Distribution measured with the D\\O\\, Experiment at $\\sqrt{s}=1.96\\,\\textrm{TeV}

    SciTech Connect

    Schliephake, Thorsten Dirk; /Wuppertal U.

    2010-06-01

    Understanding the universe, its birth and its future is one of the biggest motivations in physics. In order to understand the cosmos, the fundamental particles forming the universe, the components our matter is built of need to be known and understood. Over time physicists have built a theory which describes the physics of the known fundamental particles very well: the Standard Model (SM) of particle physics. The SM describes the particles, their interactions and phenomena with high precision. So far no proven deviations from the SM have been found, though recently evidence for possible physics beyond the SM has been observed. The SM is not describing the mass of the elementary particles however and even with the addition of the Higgs mechanism giving mass to the particles, we have no full theory for all four fundamental forces. We know the model needs to be extended or replaced by another one, as gravitation is not included in the SM. Having a theory which describes all fundamental particles found so far and all but one fundamental interaction is a great success. However, all this describes about 4% of the universe we live in. 23% is dark matter and 73% is dark energy. Dark matter is believed to interact only through gravity and maybe the weak force, which makes it hardly observable. Dark energy is even more elusive. Among other theories the cosmologic constant and scalar fields are discussed to describe it. One should also note that other models exist which for example modify the Newtonian law of gravity. The Higgs mechanism has become the most popular model for mass generation. Alternative theories like Super Symmetry (SUSY), large Extra Dimensions, Technicolor, String Theory, to name just a few, have spread to describe the necessary mass generation or new particles. As proof for new physics beyond the SM has not been found yet, one assumes that new physics will manifest itself at a larger energy scale and therefore a higher particle mass. Particles with high masses are therefore presumed to be a window to test the SM for deviations caused by new physics. The heaviest fundamental particle which is in our reach is the top quark. Its mass is almost as large as that of a complete tungsten atom. It is so heavy, that it decays faster than it can hadronize. It seems the perfect probe to study new physics at the moment. In this analysis the top quark is used as a probe to search for a new resonance, whose properties are similar to a SM Z boson but is much more massive. This analysis will study t{bar t} decays to search for an excess in the invariant mass distribution of the t{bar t} pairs. Resonant states are suggested for massive Z-like bosons in extended gauge theories, Kaluza Klein states of the gluon or Z, axigluons, topcolor, and other beyond the Standard Model theories. Independent of the exact model a resonant production mechanism should be visible in the t{bar t} invariant mass distribution. In this thesis a model-independent search for a narrow-width heavy resonance X decaying into t{bar t} is performed. In the SM, the top quark decays into a W boson and a b quark nearly 100% of the time, which has been proven experimentally, too. The t{bar t} event signature is fully determined by the W boson decay modes. In this analysis, only the lepton+jets final state, which results from the leptonic decay of one of the W bosons and the hadronic decay of the other, is considered. The event signature is an isolated electron or muon with high transverse momentum, large transverse energy imbalance due to the undetected neutrino, and at least three jets, two of which result from the hadronization of b quarks.

  15. Evidence for Semileptonic B??pp¯???¯? Decays

    SciTech Connect

    Tien, Kai-Jen; Wang, M. Z.; Adachi, I.; Aihara, H.; Asner, David M.; Aulchenko, V.; Aushev, T.; Bakich, A. M.; Bala, Anu; Bhuyan, Bipul; Bozek, A.; Bracko, Marko; Browder, Thomas E.; Chang, P.; Chekelian, V.; Chen, A.; Chen, P.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, I- S.; Cho, K.; Chobanova, V.; Choi, Y.; Cinabro, David A.; Dalseno, J.; Danilov, M.; Dolezal, Z.; Drasal, Z.; Dutta, Deepanwita; Eidelman, S.; Farhat, H.; Fast, James E.; Ferber, T.; Gaur, Vipin; Ganguly, Sudeshna; Gillard, R.; Goh, Y. M.; Golob, B.; Haba, J.; Hayashii, H.; Horii, Y.; Hoshi, Y.; Hou, W. S.; Hsiung, Y. B.; Huschle, Matthias J.; Hyun, H. J.; Iijima, T.; Ishikawa, A.; Itoh, R.; Iwasaki, Y.; Julius, T.; Kah, D. H.; Kang, J. H.; Kato, E.; Kawasaki, T.; Kichimi, H.; Kiesling, C.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, J. H.; Kim, Y. J.; Klucar, Jure; Ko, Byeong Rok; Kodys, P.; Korpar, S.; Krizan, P.; Krokovny, Pavel; Kronenbitter, B.; Kuhr, T.; Kuzmin, A.; Kwon, Y. J.; Lee, S. H.; Li, J.; Li, Y.; Libby, J.; Liu, C.; Liu, Yang; Liventsev, Dmitri; Lukin, P.; Miyabayashi, K.; Miyata, H.; Mohanty, G. B.; Moll, A.; Mussa, R.; Nakano, E.; Nakao, M.; Natkaniec, Z.; Nayak, Minakshi; Nedelkovska, E.; Ng, C.; Nisar, N. K.; Nishida, S.; Nitoh, O.; Ogawa, S.; Okuno, S.; Olsen, Stephen L.; Ostrowicz, W.; Oswald, Christian; Park, C. W.; Park, H.; Park, H. K.; Pedlar, Todd; Pestotnik, Rok; Petric, Marko; Piilonen, Leo E.; Ritter, M.; Rohrken, M.; Sahoo, Himansu B.; Saito, Tomoyuki; Sakai, Yoshihide; Sandilya, Saurabh; Santel, Daniel; Santelj, Luka; Sanuki, T.; Sato, Yutaro; Savinov, Vladimir; Schneider, O.; Schnell, G.; Schwanda, C.; Semmler, D.; Senyo, K.; Seon, O.; Sevior, Martin E.; Shapkin, M.; Shen, C. P.; Shibata, T. A.; Shiu, Jing-Ge; Sibidanov, A.; Sohn, Young-Soo; Sokolov, A.; Stanic, S.; Stanic, M.; Steder, M.; Sumihama, M.; Sumiyoshi, T.; Tanida, K.; Tatishvili, Gocha; Teramoto, Y.; Uchida, M.; Uehara, S.; Uglov, T.; Unno, Yuji; Uno, S.; Urquijo, P.; Vahsen, Sven E.; Van Hulse, C.; Vanhoefer, P.; Varner, Gary; Varvell, K. E.; Vinokurova, A.; Vorobyev, V.; Wagner, M. N.; Wang, C. H.; Wang, P.; Watanabe, M.; Watanabe, Y.; Williams, K. M.; Won, Eun Il; Yamaoka, J.; Yamashita, Y.; Yashchenko, S.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.

    2014-01-09

    We find evidence for the semileptonic baryonic decay B??pp¯???¯? (?=e, ?), based on a data sample of 772 million BB¯ pairs collected at the ?(4S) resonance with the Belle detector at the KEKB asymmetric-energy electron-positron collider. A neural-network based hadronic B-meson tagging method is used in this study. The branching fraction of B??pp¯???¯? is measured to be (5.8+2.4?2.1(stat)±0.9(syst))×10?6 with a significance of 3.2?, where lepton universality is assumed. We also estimate the corresponding upper limit: B(B??pp¯???¯?)<9.6×10?6 at the 90% confidence level. This measurement helps constrain the baryonic transition form factor in B decays

  16. Baryon Production in Jet Fragmentation and ?-Decay

    NASA Astrophysics Data System (ADS)

    Andersson, B.; Gustafson, G.; Sjöstrand, T.

    1985-12-01

    The sizable baryon-antibaryon production, observed in quark and gluon jets, has been considered in different phenomenological contexts in particular in terms of diquark-antidiquark ("tunneling") production along the colour field or by means of colour fluctuations in the field. We show that when the colour fluctuations are treated by means of the uncertainty relation, the two frameworks become very similar and that the resulting "effective diquark" model presents a stable and useful phenomenological tool for treating the properties of baryon-antibaryon production. We also present an analysis of the gluonic decays of the ?-resonances which strongly suppoerts the notion of gluons as excitations on the stringlike colour triplet forcefield.

  17. Observation of the Decay B??Ds(*)+K?l????l

    DOE PAGESBeta

    del Amo Sanchez, P.; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; et al

    2011-07-22

    We report the observation of the decay B??Ds(*)+K?l??¯l based on 342fb?¹ of data collected at the ?(4S) resonance with the BABAR detector at the PEP-II e?e? storage rings at SLAC. A simultaneous fit to three D+s decay chains is performed to extract the signal yield from measurements of the squared missing mass in the B meson decay. We observe the decay B??Ds(*)+K?l??¯l with a significance greater than 5 standard deviations (including systematic uncertainties) and measure its branching fraction to be B(B??Ds(*)+K?l??¯l)=[6.13+1.04-1.03(stat)±0.43(syst)±0.51(B(Ds))]×10??, where the last error reflects the limited knowledge of the Ds branching fractions.

  18. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations.

    PubMed

    Koloren?, P?emysl; Sisourat, Nicolas

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green's function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states. PMID:26671378

  19. Decay-Assisted Laser Spectroscopy of Neutron-Deficient Francium

    E-print Network

    Lynch, K M; Bissell, M L; Budincevic, I; Cocolios, T E; De Groote, R P; De Schepper, S; Fedosseev, V N; Flanagan, K T; Franchoo, S; Garcia Ruiz, R F; Heylen, H; Marsh, B A; Neyens, G; Procter, T J; Rossel, R E; Rothe, S; Strashnov, I; Stroke, H H; Wendt, K D A

    2014-01-01

    This paper reports on the hyperfine-structure and radioactive-decay studies of the neutron-deficient francium isotopes $^{202-206}$Fr performed with the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at the ISOLDE facility, CERN. The high resolution innate to collinear laser spectroscopy is combined with the high efficiency of ion detection to provide a highly-sensitive technique to probe the hyperfine structure of exotic isotopes. The technique of decay-assisted laser spectroscopy is presented, whereby the isomeric ion beam is deflected to a decay spectroscopy station for alpha-decay tagging of the hyperfine components. Here, we present the first hyperfine-structure measurements of the neutron-deficient francium isotopes $^{202-206}$Fr, in addition to the identification of the low-lying states of $^{202,204}$Fr performed at the CRIS experiment.

  20. Decay-Assisted Laser Spectroscopy of Neutron-Deficient Francium

    NASA Astrophysics Data System (ADS)

    Lynch, K. M.; Billowes, J.; Bissell, M. L.; Budin?evi?, I.; Cocolios, T. E.; De Groote, R. P.; De Schepper, S.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Heylen, H.; Marsh, B. A.; Neyens, G.; Procter, T. J.; Rossel, R. E.; Rothe, S.; Strashnov, I.; Stroke, H. H.; Wendt, K. D. A.

    2014-01-01

    This paper reports on the hyperfine-structure and radioactive-decay studies of the neutron-deficient francium isotopes Fr202-206 performed with the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at the ISOLDE facility, CERN. The high resolution innate to collinear laser spectroscopy is combined with the high efficiency of ion detection to provide a highly sensitive technique to probe the hyperfine structure of exotic isotopes. The technique of decay-assisted laser spectroscopy is presented, whereby the isomeric ion beam is deflected to a decay-spectroscopy station for alpha-decay tagging of the hyperfine components. Here, we present the first hyperfine-structure measurements of the neutron-deficient francium isotopes Fr202-206, in addition to the identification of the low-lying states of Fr202,204 performed at the CRIS experiment.

  1. New shape resonances in one dimension

    NASA Astrophysics Data System (ADS)

    Ahmed, Zafar; Pavaskar, Shashin; Prakash, Lakshmi

    2015-07-01

    Hitherto, a finitely thick barrier next to a well or a rigid wall has been considered the potential of simplest shape giving rise to resonances (metastable states) in one dimension: x?(-?, ?). In such a potential, there are three real turning points at an energy below the barrier. Resonances are Gamow’s (time-wise) decaying states with discrete complex energies ({{E}n}={{E}n}-i{{? }n}/2). These are also spatially catastrophic states that manifest as peaks/wiggles in Wigner’s reflection time delay at E={{? }n}? {{E}n}. Here we explore potentials with simpler shapes giving rise to resonances—two-piece rising potentials having just one-turning point. We demonstrate our point by using rising exponential profile in various ways.

  2. The LHC diphoton resonance and dark matter

    E-print Network

    Mambrini, Yann; Djouadi, Abdelhak

    2015-01-01

    A Higgs-like resonance with a mass of approximately 750 GeV has recently been observed at the LHC in its diphoton decay. If this state is not simply a statistical fluctuation which will disappear with more data, it will have important implications not only for particle physics but also for cosmology. In this note, we analyze the implications of such a resonance for the dark matter (DM). Assuming a spin 1/2 DM particle, we first verify that indeed the correct relic density can be obtain for a wide range of the particle mass and weak scale coupling that are compatible with present data. We then show that the combination of near future direct and indirect detection experiments will allow to probe the CP-nature of the mediator resonance, i.e. check whether it is a scalar or a pseudoscalar like particle.

  3. Origin of coda waves: earthquake source resonance

    E-print Network

    Liu, Yinbin

    2015-01-01

    Seismic coda in local earthquake exhibits the characteristics of uniform spatial distribution energy, selective frequency, and slow temporal decay oscillation. It is usually assumed to be the incoherent waves scattered from random heterogeneity in the earth's lithosphere. Here I show by wave field modeling for 1D heterogeneity that seismic coda is related to the natural resonance of earthquake source around the earthquake's focus. This natural resonance is a kind of wave coherent scattering enhancement phenomenon or coupling oscillations happened in steady state regime in strong small-scale heterogeneity. Its resonance frequency is inversely proportional to the heterogeneous scale and contrast and will shift toward lower frequency with increasing random heterogeneous scale and velocity fluctuations. Its energy weakens with decreasing impedance contrast and increasing random heterogeneous scale and velocity fluctuations.

  4. Spin-3/2 Pentaquark Resonance Signature

    SciTech Connect

    Ben Lasscock; John Hedditch; Derek Leinweber; Anthony Williams; Waseem Kamleh; Wolodymyr Melnitchouk; Anthony Thomas; Ross Young; James Zanotti

    2005-09-29

    We search for the standard lattice resonance signature of attraction between the resonance constituents which leads to a bound state at quark masses near the physical regime. We study a variety of spin-1/2 interpolators and for the first time, interpolators providing access to spin-3/2 pentaquark states. In looking for evidence of binding, a precise determination of the mass splitting between the pentaquark state and its lowest-lying decay channel is performed by constructing the effective mass splitting from the various two-point correlation functions. While the binding of the pentaquark state is not a requirement, the observation of such binding would provide compelling evidence for the existence of the theta+ pentaquark resonance. Evidence of binding is observed in the isoscalar spin-3/2 positive parity channel, making it an interesting state for further research.

  5. Study of {sup 24}Mg resonances relevant for carbon burning nucleosynthesis

    SciTech Connect

    Toki?, V.; Soi?, N.; Blagus, S.; Fazini?, S.; Jelavi?-Malenica, D.; Miljani?, D.; Prepolec, L.; Skukan, N.; Szilner, S.; Uroi?, M.; Milin, M.; Di Pietro, A.; Figuera, P.; Fisichella, M.; Lattuada, M.; Scuderi, V.; Strano, E.; Torresi, D.; Freer, M.; Ziman, V.; and others

    2014-05-09

    We have studied decays of resonances in {sup 24}Mg at excitation energies above the {sup 12}C+{sup 12}C decay threshold, using {sup 12}C({sup 16}O,?){sup 24}Mg* reaction. This experiment has been performed at INFNLNS, using Tandem accelerator beam of 16O at E = 94 MeV. Some preliminary results are presented.

  6. Separation of particles leading to decay and unlimited growth of energy in a driven stadium-like billiard

    E-print Network

    André L. P. Livorati; Matheus S. Palmero; Carl P. Dettmann; Iberê L. Caldas; Edson D. Leonel

    2015-07-01

    A competition between decay and growth of energy in a time-dependent stadium billiard is discussed giving emphasis in the decay of energy mechanism. A critical resonance velocity is identified for causing of separation between ensembles of high and low energy and a statistical investigation is made using ensembles of initial conditions both above and below the resonance velocity. For high initial velocity, Fermi acceleration is inherent in the system. However for low initial velocity, the resonance allies with stickiness hold the particles in a regular or quasi-regular regime near the fixed points, preventing them from exhibiting Fermi acceleration. Also, a transport analysis along the velocity axis is discussed to quantify the competition of growth and decay of energy and making use distributions of histograms of frequency, and we set that the causes of the decay of energy are due to the capture of the orbits by the resonant fixed points.

  7. Fermi's ?-DECAY Theory

    NASA Astrophysics Data System (ADS)

    Yang, Chen Ning

    2013-05-01

    Throughout his lifetime Enrico Fermi (1901-1954) had considered his 1934 ?-decay theory as his most important contribution to theoretical physics. E. Segrè (1905-1989) had vividly written about an episode at the inception of that paper:1...

  8. RARE KAON DECAYS.

    SciTech Connect

    LITTENBERG, L.

    2005-07-19

    Lepton flavor violation (LFV) experiments have probed sensitivities corresponding to mass scales of well over 100 TeV, making life difficult for models predicting accessible LFV in kaon decay and discouraging new dedicated experiments of this type.

  9. Radiative B Decays

    SciTech Connect

    Bard, D.; /Imperial Coll., London

    2011-11-23

    I discuss recent results in radiative B decays from the Belle and BaBar collaborations. I report new measurements of the decay rate and CP asymmetries in b {yields} s{gamma} and b {yields} d{gamma} decays, and measurements of the photon spectrum in b {yields} s{gamma}. Radiative penguin decays are flavour changing neutral currents which do not occur at tree level in the standard model (SM), but must proceed via one loop or higher order diagrams. These transitions are therefore suppressed in the SM, but offer access to poorlyknown SM parameters and are also a sensitive probe of new physics. In the SM, the rate is dominated by the top quark contribution to the loop, but non-SM particles could also contribute with a size comparable to leading SM contributions. The new physics effects are potentially large which makes them theoretically very interesting, but due to their small branching fractions they are typically experimentally challenging.

  10. ? decay of Au176

    NASA Astrophysics Data System (ADS)

    Andreyev, A. N.; Antalic, S.; Ackermann, D.; Cocolios, T. E.; Elseviers, J.; Franchoo, S.; Heinz, S.; Heßberger, F. P.; Hofmann, S.; Huyse, M.; Khuyagbaatar, J.; Kindler, B.; Lommel, B.; Mann, R.; Page, R. D.; Van Duppen, P.; Venhart, M.

    2014-10-01

    The isotope Au176 has been studied in the complete fusion reaction Ca40+Pr141 ? 176Au+5n at the velocity filter SHIP (GSI, Darmstadt). The complex fine-structure ? decay of two isomeric states in Au176 feeding several previously unknown excited states in the daughter nucleus Ir172 is presented. An ?-decay branching ratio of b?=9.5(11)% was deduced for the high-spin isomer in Ir172.

  11. Search for the decay

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gastaldi, U.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.

    2015-08-01

    A search for decays is performed using 3 .0 fb1- of pp collision data recorded by the LHCb experiment during 2011 and 2012. The f 0(980) meson is reconstructed through its decay to the ? + ? - final state in the mass window 900 MeV /c 2 < m( ? + ? -) < 1080 MeV /c 2. No significant signal is observed. The first upper limits on the branching fraction of are set at 90 % (95 %) confidence level. [Figure not available: see fulltext.

  12. Baryonic B Meson Decays

    E-print Network

    M. Z. Wang

    2007-05-21

    Recent results on baryonic B decays from the two b-factories, BABAR and Belle, are presented. These include studies of B+ to p pbar pi+, B+ to p Lambdabar gamma and B0 to p Lambdabar pi-; observations of B+ to p Lambdabar pi0, B to Lambda_c+ Lambda_c- K, and B+ to Xibar0_c Lambda_c+; and study of the inclusive B decays to Lambda_c.

  13. Stabilizing a Bell state by engineering collective photon decay

    NASA Astrophysics Data System (ADS)

    Lin, Jie; Shen, Li-Tuo; Wu, Huai-Zhi; Yang, Zhen-Biao

    2015-11-01

    We propose a dissipation-engineering method for generation and stabilization of a Bell state for two superconducting qubits in coupled circuit quantum electrodynamics architecture. In the scheme, the large dispersive qubit-resonator interaction and resonant photon hopping between resonators jointly induce asymmetric energy gaps in the dressed state subspaces for the qubits and the collective resonator photon modes. The target steady state is reached and protected by applying each qubit with two microwave drives, that perturbatively induce the specific dressed state transition, while simultaneously by employing the decay of the collective photon modes. Numerical simulation verifies that high-fidelity and long-lived two-qubit Bell state can be obtained (based on the recently available experimental parameters) and is robust against the potential fluctuation of the system parameters.

  14. HIghMass - High HI Mass, HI-rich Galaxies at 0 (Sample Definition, Optical and H? Imaging, and Star Formation Properties)

    NASA Astrophysics Data System (ADS)

    Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo; Hallenbeck, Gregory; Jones, Michael; Adams, Elizabeth A.; Brinchmann, Jarle; Chengalur, Jayaram N.; Hunt, Leslie K; Masters, Karen; Matsushita, Satoki; Saintonge, Amelie; Spekkens, Kristine

    2014-06-01

    We present first results of the study of a set of exceptional HI sources identified in the 40% ALFALFA extragalactic HI survey catalog ?.40 as being both extremely HI massive (MHI > 1010 M?) and having high gas fractions for their stellar masses: the HIghMass galaxy sample. We analyze UV- and optical- broadband and H? images to understand the nature of their relatively underluminous disks in optical and to test whether their high gas fractions can be tracked to higher dark matter halo spin parameters or late gas accretion. Estimates of their star formation rates (SFRs) based on SED-fitting agree within uncertainties with the H? luminosity inferred current massive SFRs. The HII region luminosity functions, parameterized as dN/dlogL ? L?, have standard slopes at the luminous end (? ~ -1). The global SFRs demonstrate that the HIghMass galaxies exhibit active ongoing star formation (SF) with moderate SF efficiency, but relative to normal spirals, a lower integrated SFR in the past. Because the SF activity in these systems is spread throughout their extended disks, they have overall lower SFR surface densities and lower surface brightness in the optical bands. Relative to normal disk galaxies, the majority of HIghMass galaxies have higher H? equivalent widths and are bluer in their outer disks, implying an inside-out disk growth scenario. Downbending double exponential disks are more frequent than upbending disks among the gas-rich galaxies, suggesting that SF thresholds exist in the downbending disks, probably as a result of concentrated gas distribution. Future observations of the HIghMass galaxies will study the HI-to-H2 transition and the empirical Kennicutt-Schmidt (KS) relation in more detail to explore how such massive HI disks can exist without having converted the bulk of gas into stars yet.

  15. Decay strength distributions in {sup 12}C({sup 12}C,{gamma}) radiative capture

    SciTech Connect

    Jenkins, D. G.; Fulton, B. R.; Marley, P.; Fox, S. P.; Glover, R.; Wadsworth, R.; Watson, D. L.; Courtin, S.; Haas, F.; Lebhertz, D.; Beck, C.; Papka, P.; Rousseau, M.; Sanchez i Zafra, A.; Hutcheon, D. A.; Davis, C.; Ottewell, D.; Pavan, M. M.; Pearson, J.; Ruiz, C.

    2007-10-15

    The heavy-ion radiative capture reaction, {sup 12}C({sup 12}C,{gamma}), has been investigated at energies both on- and off-resonance, with a particular focus on known resonances at E{sub c.m.}=6.0, 6.8, 7.5, and 8.0 MeV. Gamma rays detected in a BGO scintillator array were recorded in coincidence with {sup 24}Mg residues at the focal plane of the DRAGON recoil separator at TRIUMF. In this manner, the relative strength of all decay pathways through excited states up to the particle threshold could be examined for the first time. Isovector M1 transitions are found to be a important component of the radiative capture from the E{sub c.m.}=6.0 and 6.8 MeV resonances. Comparison with Monte Carlo simulations suggests that these resonances may have either J=0 or 2, with a preference for J=2. The higher energy resonances at E{sub c.m.}=7.5 and 8.0 MeV have a rather different decay pattern. The former is a clear candidate for a J=4 resonance, whereas the latter has a dominant J=4 character superposed on a J=2 resonant component underneath. The relationship between these resonances and the well-known quasimolecular resonances as well as resonances in breakup and electrofission of {sup 24}Mg into two {sup 12}C nuclei are discussed.

  16. High-Spatial and High-Mass Resolution Imaging of Surface Metabolites of Arabidopsis thaliana by Laser Desorption-Ionization Mass Spectrometry Using Colloidal Silver

    SciTech Connect

    Jun, Ji Hyun; Song, Zhihong; Liu, Zhenjiu; Nikolau, Basil J.; Yeung, Edward S.; and Lee, Young Jin

    2010-03-17

    High-spatial resolution and high-mass resolution techniques are developed and adopted for the mass spectrometric imaging of epicuticular lipids on the surface of Arabidopsis thaliana. Single cell level spatial resolution of {approx}12 {micro}m was achieved by reducing the laser beam size by using an optical fiber with 25 {micro}m core diameter in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer and improved matrix application using an oscillating capillary nebulizer. Fine chemical images of a whole flower were visualized in this high spatial resolution showing substructure of an anther and single pollen grains at the stigma and anthers. The LTQ-Orbitrap with a MALDI ion source was adopted to achieve MS imaging in high mass resolution. Specifically, isobaric silver ion adducts of C29 alkane (m/z 515.3741) and C28 aldehyde (m/z 515.3377), indistinguishable in low-resolution LTQ, can now be clearly distinguished and their chemical images could be separately constructed. In the application to roots, the high spatial resolution allowed molecular MS imaging of secondary roots and the high mass resolution allowed direct identification of lipid metabolites on root surfaces.

  17. Higgs-Z-photon Coupling from Effect of Composite Resonances

    E-print Network

    Haiying Cai

    2014-03-14

    We explore the Higgs-Z-photon coupling in the Minimal Composite Higgs Model with vector and axial resonances. The electroweak precision measurement, i.e. S and T, is estimated for this model. We calculate the signal strength for Higgs decay into Z-photon and notable enhancement is found in certain EWPT allowed parameter region.

  18. Ruelle resonances for Anosov diffeomorphisms (after Faure, Roy, and Sjostrand)

    E-print Network

    Vasy, András

    , the spectral properties of the Koopman opera- tor, and the decay of correlations in terms of Ruelle resonances of semistable states. The same approach, in a technically much simpler fashion, works for the Koopman operator calculus of Bony-Chemin. The Koopman operator gains some compactness properties and its properties are easy

  19. Improving identification of dijet resonances at hadron colliders.

    PubMed

    Izaguirre, Eder; Shuve, Brian; Yavin, Itay

    2015-01-30

    The experimental detection of resonances has played a vital role in the development of subatomic physics. The overwhelming multijet backgrounds at the Large Hadron Collider (LHC) necessitate the invention of new techniques to identify resonances decaying into a pair of partons. In this Letter we introduce an observable that achieves a significant improvement in several key measurements at the LHC: the Higgs boson decay to a pair of b quarks; W±/Z0 vector-boson hadronic decay; and extensions of the standard model (SM) with a new hadronic resonance. Measuring the Higgs decay to b quarks is a central test of the fermion mass generation mechanism in the SM, whereas the W±/Z0 production rates are important observables of the electroweak sector. Our technique is effective in large parts of phase space where the resonance is mildly boosted and is particularly well suited for experimental searches dominated by systematic uncertainties, which is true of many analyses in the high-luminosity running of the LHC. PMID:25679886

  20. Integral resonator gyroscope

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)

    2008-01-01

    The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.

  1. Quantum Electrodynamics of Atomic Resonances

    NASA Astrophysics Data System (ADS)

    Ballesteros, Miguel; Faupin, Jérémy; Fröhlich, Jürg; Schubnel, Baptiste

    2015-07-01

    A simple model of an atom interacting with the quantized electromagnetic field is studied. The atom has a finite mass m, finitely many excited states and an electric dipole moment, , where and is proportional to the elementary electric charge. The interaction of the atom with the radiation field is described with the help of the Ritz Hamiltonian, , where is the electric field, cut off at large frequencies. A mathematical study of the Lamb shift, the decay channels and the life times of the excited states of the atom is presented. It is rigorously proven that these quantities are analytic functions of the momentum of the atom and of the coupling constant , provided and and are sufficiently small. The proof relies on a somewhat novel inductive construction involving a sequence of `smooth Feshbach-Schur maps' applied to a complex dilatation of the original Hamiltonian, which yields an algorithm for the calculation of resonance energies that converges super-exponentially fast.

  2. Color Discriminant Variable to Separate Dijet Resonances at the LHC

    E-print Network

    Pawin Ittisamai; R. Sekhar Chivukula; Kirtimaan Mohan; Elizabeth H. Simmons

    2015-10-29

    A narrow resonance decaying to dijets could be discovered at the 14 TeV run of the LHC. To quickly identify its color structure in a model-independent manner, we introduced a method based on a color discriminant variable, determined from the measurements of the resonance's production cross section, mass and width. This talk introduces a more transparent theoretical formulation of the color discriminant variable that highlights its relationship to the branching ratios of the resonance into incoming and outgoing partons and to the properties of those partons. The formulation makes it easier to predict the value of the variable for a given class of resonance. We show that this method applies well to color-triplet and color-sextet scalar diquarks, distinguishing them clearly from other candidate resonances.

  3. Measurement of CP asymmetry in Cabibbo suppressed D0 decays

    E-print Network

    M. Staric; for the Belle Collaboration

    2008-07-01

    We measure the CP-violating asymmetries in decays to the D0 -> K+K- and D0 -> pi+pi- CP eigenstates using 540 fb^{-1} of data collected with the Belle detector at or near the Upsilon(4S) resonance. Cabibbo-favored D0 -> K-pi+ decays are used to correct for systematic detector effects. The results, A_{CP}^{KK} = (-0.43 +- 0.30 +- 0.11)% and A_{CP}^{pipi} = (+0.43 +- 0.52 +- 0.12)%, are consistent with no CP violation.

  4. Searches for Leptonic B Decays at BaBar

    SciTech Connect

    De Nardo, Guglielmo; /Naples U.

    2011-11-11

    The authors present the most recent results on the leptonic B decays B {yields} lv, B {yields} lv{gamma}, based on the data collected by the BABAR experiment at PEP-II, an asymmetric e{sup +}e{sup -} collider at the center of mass energy of the {Upsilon}(4S) resonance. Leptonic B decays are an excellent probe for new Physics, branching fraction measurements being complementary to the direct searches at high energy machines. Current experimental measurements are in agreement with Standard Model expectations, but, being already capable to constrain parameters of New Physics models today, they will be golden channels for the foreseen super flavor factories.

  5. Chiral approach to phi radiative decays

    E-print Network

    Deirdre Black; Masayasu Harada; Joseph Schechter

    2006-01-06

    The radiative decays of the phi meson are known to be a good source of information about the a0(980) and f0(980) scalar mesons. We discuss these decays starting from a non-linear model Lagrangian which maintains the (broken) chiral symmetry for the pseudoscalar (P), scalar (S) and vector (V) nonets involved. The characteristic feature is derivative coupling for the SPP interaction. In an initial approximation which models all the scalar nonet radiative processes together with the help of a point like vertex, it is noted that the derivative coupling prevents the a0 and f0 resonance peaks from getting washed out (by falling phase space). However, the shapes of the two final PP mass distributions do not agree well with the experimental ones. For improving the situation we verify that the inclusion of the charged K meson loop diagrams in the model does reproduce the experimental spectrum shapes in the resonance region. The derivative coupling introduces quadratic as well as logaritmic divergneces in this calculation. Using dimensional regularization we show that these divergences actually cancel out among the four diagrams, as expected from gauge invariance. We point out the features which are expected to be important for further work on this model and for learning more about the puzzling scalar mesons.

  6. Chiral approach to phi radiative decays

    SciTech Connect

    Black, Deirdre; Harada, Masayasu; Schechter, Joseph

    2006-03-01

    The radiative decays of the phi meson are known to be a good source of information about the a{sub 0}(980) and f{sub 0}(980) scalar mesons. We discuss these decays starting from a nonlinear model Lagrangian which maintains the (broken) chiral symmetry for the pseudoscalar (P), scalar (S) and vector (V) nonets involved. The characteristic feature is derivative coupling for the SPP interaction. In an initial approximation which models all the scalar nonet radiative processes together with the help of a pointlike vertex, it is noted that the derivative coupling prevents the a{sub 0} and f{sub 0} resonance peaks from getting washed out (by falling phase space). However, the shapes of the invariant two final PP mass distributions do not agree well with the experimental ones. For improving the situation we verify that inclusion of the charged K meson loop diagrams in the model does reproduce the experimental spectrum shapes in the resonance region. The derivative coupling introduces quadratic as well as logarithmic divergences in this calculation. Using dimensional regularization we show in detail that these divergences actually cancel out among the four diagrams, as expected from gauge invariance. We point out the features which are expected to be important for further work on this model and for learning more about the puzzling scalar mesons.

  7. Resonances in barred galaxies

    NASA Astrophysics Data System (ADS)

    Ceverino, D.; Klypin, A.

    2007-08-01

    The inner parts of many spiral galaxies are dominated by bars. These are strong non-axisymmetric features which significantly affect orbits of stars and dark matter particles. One of the main effects is the dynamical resonances between galactic material and the bar. We detect and characterize these resonances in N-body models of barred galaxies by measuring angular and radial frequencies of individual orbits. We found narrow peaks in the distribution of orbital frequencies with each peak corresponding to a specific resonance. We found five different resonances in the stellar disc and two in the dark matter. The corotation resonance (CR) and the inner and outer Lindblad resonances are the most populated. The spatial distributions of particles near resonances are wide. For example, the inner Lindblad resonance is not localized at a given radius. Particles near this resonance are mainly distributed along the bar and span a wide range of radii. On the other hand, particles near the CR are distributed in two broad areas around the two stable Lagrange points. The distribution resembles a wide ring at the corotation radius. Resonances capture disc and halo material in near-resonant orbits. Our analysis of orbits in both N-body simulations and simple analytical models indicates that resonances tend to prevent the dynamical evolution of this trapped material. Only if the bar evolves as a whole, resonances drift through the phase space. In this case particles anchored near resonant orbits track the resonance shift and evolve. The criteria to ensure a correct resonant behaviour discussed by Weinberg and Katz can be achieved with few millions particles because the regions of trapped orbits near resonances are large and evolving.