Science.gov

Sample records for high-performance alkaline polymer

  1. High performance polymer development

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1991-01-01

    The term high performance as applied to polymers is generally associated with polymers that operate at high temperatures. High performance is used to describe polymers that perform at temperatures of 177 C or higher. In addition to temperature, other factors obviously influence the performance of polymers such as thermal cycling, stress level, and environmental effects. Some recent developments at NASA Langley in polyimides, poly(arylene ethers), and acetylenic terminated materials are discussed. The high performance/high temperature polymers discussed are representative of the type of work underway at NASA Langley Research Center. Further improvement in these materials as well as the development of new polymers will provide technology to help meet NASA future needs in high performance/high temperature applications. In addition, because of the combination of properties offered by many of these polymers, they should find use in many other applications.

  2. High Performance Polymers

    NASA Technical Reports Server (NTRS)

    Venumbaka, Sreenivasulu R.; Cassidy, Patrick E.

    2003-01-01

    This report summarizes results from research on high performance polymers. The research areas proposed in this report include: 1) Effort to improve the synthesis and to understand and replicate the dielectric behavior of 6HC17-PEK; 2) Continue preparation and evaluation of flexible, low dielectric silicon- and fluorine- containing polymers with improved toughness; and 3) Synthesis and characterization of high performance polymers containing the spirodilactam moiety.

  3. Tough, High-Performance, Thermoplastic Addition Polymers

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Proctor, K. Mason; Gleason, John; Morgan, Cassandra; Partos, Richard

    1991-01-01

    Series of addition-type thermoplastics (ATT's) exhibit useful properties. Because of their addition curing and linear structure, ATT polymers have toughness, like thermoplastics, and easily processed, like thermosets. Work undertaken to develop chemical reaction forming stable aromatic rings in backbone of ATT polymer, combining high-temperature performance and thermo-oxidative stability with toughness and easy processibility, and minimizing or eliminating necessity for tradeoffs among properties often observed in conventional polymer syntheses.

  4. High performance polymer tandem solar cell

    NASA Astrophysics Data System (ADS)

    da Silva, Wilson Jose; Schneider, Fabio Kurt; Mohd Yusoff, Abd. Rashid Bin; Jang, Jin

    2015-12-01

    A power conversion efficiency of 9.02% is obtained for a fully solution-processed polymer tandem solar cell, based on the diketopyrrolopyrrole unit polymer as a low bandgap photoactive material in the rear subcell, in conjunction with a new robust interconnecting layer. This interconnecting layer is optically transparent, electrically conductive, and physically strong, thus, the charges can be collected and recombined in the interconnecting layer under illumination, while the charge is generated and extracted under dark conditions. This indicates that careful interface engineering of the charge-carrier transport layer is a useful approach to further improve the performance of polymer tandem solar cells.

  5. Radiation effects on high performance polymers

    NASA Technical Reports Server (NTRS)

    Orwoll, R. A.

    1986-01-01

    Polymer matrix materials are candidates for use in large space antennas and space platforms that may be deployed in geosynchronous orbit 22,500 miles above the Earth. A principal concern is the long term effects of an environment that is hostile to organic polymers, including high energy electromagnetic radiation, bombardment by charged particles, and large abrupt changes in temperature. Two polyarylene ethers which might be utilized as models for polymers in space applications were subjected to dosages of 70 keV electrons up to 3.4 x 10 to the 10th power rad. The irradiated films were then examined to determine the effects of the high-energy electrons.

  6. High performance polymer tandem solar cell

    PubMed Central

    da Silva, Wilson Jose; Schneider, Fabio Kurt; Mohd Yusoff, Abd. Rashid bin; Jang, Jin

    2015-01-01

    A power conversion efficiency of 9.02% is obtained for a fully solution-processed polymer tandem solar cell, based on the diketopyrrolopyrrole unit polymer as a low bandgap photoactive material in the rear subcell, in conjunction with a new robust interconnecting layer. This interconnecting layer is optically transparent, electrically conductive, and physically strong, thus, the charges can be collected and recombined in the interconnecting layer under illumination, while the charge is generated and extracted under dark conditions. This indicates that careful interface engineering of the charge-carrier transport layer is a useful approach to further improve the performance of polymer tandem solar cells. PMID:26669577

  7. New monomers for high performance polymers

    NASA Technical Reports Server (NTRS)

    Gratz, Roy F.

    1993-01-01

    This laboratory has been concerned with the development of new polymeric materials with high thermo-oxidative stability for use in the aerospace and electronics industries. Currently, there is special emphasis on developing matrix resins and composites for the high speed civil transport (HSCT) program. This application requires polymers that have service lifetimes of 60,000 hr at 350 F (177 C) and that are readily processible into void-free composites, preferably by melt-flow or powder techniques that avoid the use of high boiling solvents. Recent work has focused on copolymers which have thermally stable imide groups separated by flexible arylene ether linkages, some with trifluoromethyl groups attached to the aromatic rings. The presence of trifluoromethyl groups in monomers and polymers often improves their solubility and processibility. The goal of this research was to synthesize several new monomers containing pendant trifluoromethyl groups and to incorporate these monomers into new imide/arylene ether copolymers. Initially, work was begun on the synthesis of three target compounds. The first two, 3,5-dihydroxybenzo trifluoride and 3-amino 5-hydroxybenzo trifluoride, are intermediates in the synthesis of more complex monomers. The third, 3,5-bis (3-amino-phenoxy) benzotrifluoride, is an interesting diamine that could be incorporated into a polyimide directly.

  8. Solvent processible, high-performance partially fluorinated copoly(arylene ether) alkaline ionomers for alkaline electrodes

    NASA Astrophysics Data System (ADS)

    Zhou, Junfeng; Ünlü, Murat; Anestis-Richard, Irene; Kim, Hyea; Kohl, Paul A.

    2011-10-01

    A solvent processable, low water uptake, partially fluorinated copoly(arylene ether) functionalized with pendant quaternary ammonium groups (QAPAE) was synthesized and uses as the ionomer in alkaline electrodes on fuel cells. The quaternized polymers containing fluorinated biphenyl groups were synthesized via chloromethylation of copoly(arylene ether) followed by amination with trimethylamine. The resulting ionomers were very soluble in polar, aprotic solvents. Highly aminated ionomers had conductivities approaching 10 mS cm-1 at room temperature. Compared to previous ionomers based on quaternized poly(arylene ether sulfone) (QAPSF) with similar ion exchange capacity (IEC), the water uptake of QAPAE was significantly less due to the hydrophobic octafluoro-biphenyl groups in the backbone. The performance of the fuel cell electrodes made with the QAPAE ionomers was evaluated as the cathode on a hybrid AEM/PEM fuel cell. The QAPAE alkaline ionomer electrode with IEC = 1.22 meq g-1 had superior performance to the electrodes prepared with QAPSF, IEC = 1.21 meq g-1 at 25 and 60 °C in a H2/O2 fuel cell. The peak power densities at 60 °C were 315 mW cm-2 for QAPAE electrodes and 215 mW cm-2 for QAPSF electrodes.

  9. Simulated space environmental effects on some experimental high performance polymers

    NASA Technical Reports Server (NTRS)

    Connell, John W.

    1993-01-01

    High performance polymers for potential space applications were evaluated under simulated space environmental conditions. Experimental resins from blends of acetylene terminated materials, poly(arylene ether)s and low color polyimides were exposed to high energy electron and ultraviolet radiation in an attempt to simulate space environmental effects. Thin films, neat resin moldings, and carbon fiber reinforced composites were exposed, and the effect on certain polymer properties were determined. Recent research involving the effects of various radiation exposures on the physical, optical, and mechanical properties of several experimental polymer systems is reviewed.

  10. High Performance Polymers and Composites (HiPPAC) Center

    NASA Technical Reports Server (NTRS)

    Mintz, Eric A.; Veazie, David

    2005-01-01

    NASA University Research Centers funding has allowed Clark Atlanta University (CAU) to establish a High Performance Polymers and Composites (HiPPAC) Research Center. Clark Atlanta University, through the HiPPAC Center has consolidated and expanded its polymer and composite research capabilities through the development of research efforts in: (1) Synthesis and characterization of polymeric NLO, photorefractive, and piezoelectric materials; (2) Characterization and engineering applications of induced strain smart materials; (3) Processable polyimides and additives to enhance polyimide processing for composite applications; (4) Fabrication and mechanical characterization of polymer based composites.

  11. High-Performance, Semi-Interpenetrating Polymer Network

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Lowther, Sharon E.; Smith, Janice Y.; Cannon, Michelle S.; Whitehead, Fred M.; Ely, Robert M.

    1992-01-01

    High-performance polymer made by new synthesis in which one or more easy-to-process, but brittle, thermosetting polyimides combined with one or more tough, but difficult-to-process, linear thermoplastics to yield semi-interpenetrating polymer network (semi-IPN) having combination of easy processability and high tolerance to damage. Two commercially available resins combined to form tough, semi-IPN called "LaRC-RP49." Displays improvements in toughness and resistance to microcracking. LaRC-RP49 has potential as high-temperature matrix resin, adhesive, and molding resin. Useful in aerospace, automotive, and electronic industries.

  12. Developing Flexible, High Performance Polymers with Self-Healing Capabilities

    NASA Technical Reports Server (NTRS)

    Jolley, Scott T.; Williams, Martha K.; Gibson, Tracy L.; Caraccio, Anne J.

    2011-01-01

    Flexible, high performance polymers such as polyimides are often employed in aerospace applications. They typically find uses in areas where improved physical characteristics such as fire resistance, long term thermal stability, and solvent resistance are required. It is anticipated that such polymers could find uses in future long duration exploration missions as well. Their use would be even more advantageous if self-healing capability or mechanisms could be incorporated into these polymers. Such innovative approaches are currently being studied at the NASA Kennedy Space Center for use in high performance wiring systems or inflatable and habitation structures. Self-healing or self-sealing capability would significantly reduce maintenance requirements, and increase the safety and reliability performance of the systems into which these polymers would be incorporated. Many unique challenges need to be overcome in order to incorporate a self-healing mechanism into flexible, high performance polymers. Significant research into the incorporation of a self-healing mechanism into structural composites has been carried out over the past decade by a number of groups, notable among them being the University of I1linois [I]. Various mechanisms for the introduction of self-healing have been investigated. Examples of these are: 1) Microcapsule-based healant delivery. 2) Vascular network delivery. 3) Damage induced triggering of latent substrate properties. Successful self-healing has been demonstrated in structural epoxy systems with almost complete reestablishment of composite strength being achieved through the use of microcapsulation technology. However, the incorporation of a self-healing mechanism into a system in which the material is flexible, or a thin film, is much more challenging. In the case of using microencapsulation, healant core content must be small enough to reside in films less than 0.1 millimeters thick, and must overcome significant capillary and surface

  13. High-Performance Polymers Having Low Melt Viscosities

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.

    2005-01-01

    High-performance polymers that have improved processing characteristics, and a method of making them, have been invented. One of the improved characteristics is low (relative to corresponding prior polymers) melt viscosities at given temperatures. This characteristic makes it possible to utilize such processes as resin-transfer molding and resin-film infusion and to perform autoclave processing at lower temperatures and/or pressures. Another improved characteristic is larger processing windows that is, longer times at low viscosities. Other improved characteristics include increased solubility of uncured polymer precursors that contain reactive groups, greater densities of cross-links in cured polymers, improved mechanical properties of the cured polymers, and greater resistance of the cured polymers to chemical attack. The invention is particularly applicable to poly(arylene ether)s [PAEs] and polyimides [PIs] that are useful as adhesives, matrices of composite materials, moldings, films, and coatings. PAEs and PIs synthesized according to the invention comprise mixtures of branched, linear, and star-shaped molecules. The monomers of these polymers can be capped with either reactive end groups to obtain thermosets or nonreactive end groups to obtain thermoplastics. The synthesis of a polymeric mixture according to the invention involves the use of a small amount of a trifunctional monomer. In the case of a PAE, the trifunctional monomer is a trihydroxy- containing compound for example, 1,3,5-trihydroxybenzene (THB). In the case of a PI, the trifunctional monomer is a triamine for example, triamino pyrimidine or melamine. In addition to the aforementioned trifunctional monomer, one uses the difunctional monomers of the conventional formulation of the polymer in question (see figure). In cases of nonreactive end caps, the polymeric mixtures of the invention have melt viscosities and melting temperatures lower than those of the corresponding linear polymers of equal

  14. Tough, high performance, addition-type thermoplastic polymers

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1992-01-01

    A tough, high performance polyimide is provided by reacting a triple bond conjugated with an aromatic ring in a bisethynyl compound with the active double bond in a compound containing a double bond activated toward the formation of a Diels-Adler type adduct, especially a bismaleimide, a biscitraconimide, or a benzoquinone, or mixtures thereof. Addition curing of this product produces a high linear polymeric structure and heat treating the highly linear polymeric structure produces a thermally stable aromatic addition-type thermoplastic polyimide, which finds utility in the preparation of molding compounds, adhesive compositions, and polymer matrix composites.

  15. Simulated space environmental effects on some experimental high performance polymers

    NASA Technical Reports Server (NTRS)

    Connell, John W.

    1991-01-01

    Organic polymeric materials are currently being considered for long term use (more than 10 years) in structural (adhesives and composite matrices) and functional (films and coatings) applications on spacecraft. Although organic polymers have been utilized successfully in short term missions, the long term durability of these materials in space is of concern. As part of a NASA effort on high performance polymers for potential space applications, various experimental polymeric materials recently synthesized at NASA Langley Research Center were evaluated under simulated space environmental conditions. Experimental resins from blends of acetylene terminated materials, poly(arylene ether)s and low color polyimides were exposed to high energy electron and ultraviolet radiation in an attempt to simulate space environmental effects. Thin films, neat resin moldings and carbon fiber reinforced composites were exposed and the effect on certain polymer properties were determined. This paper reviews recent research involving the effects of various radiation exposures on the physical, optical and mechanical properties of several experimental polymer systems.

  16. Deformation and fracture toughness in high-performance polymers

    SciTech Connect

    Pater, R.H.; Soucek, M.D.; Jang, B.Z.

    1993-12-31

    A systematic study was made of 10 principal high-performance thermoplastics and two semiinterpenetrating polymer networks (semi-IPNs). The fundamental tendency to undergo localized crazing or shear banding, as opposed to a more diffuse homogeneous shear-yielding deformation, was evaluated. Amorphous thermoplastics exhibited crazing as the primary mode of deformation. In contrast, semi-crystalline materials displayed both crazing and shear banding. Increasing the crystallinity increased diffuse shear yielding at the expense of craze growth. Another effect was an enlargement of the deformation zone. Some ordered polymers showed only diffuse shear yielding, whereas others displayed a combination of weak crazes and diffuse shear yielding. For a semi-IPN, increasing the degree of cross-linking decreased crazing, deformation zone size, and fracture toughness of an amorphous thermoplastic. Thus, crystallinity acts like cross-linking in reducing crazing, but, exerts the opposite effect on changing the size of the deformation zone. These results suggest that the reduction in fracture toughness by crystallinity is mainly due to decreased crazing, whereas reduction by cross-linking arises from both decreased crazing and diminished deformation zone. 43 refs., 42 figs., 1 tab.

  17. Stacked Polymer nanofiber array for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Shiren; Qiu, Jenny

    2015-03-01

    The vertically aligned polyaniline (PANI) nanowires arrays and monolayer graphene sheets were layer-by-layered deposited to specific substrate for tailored structures. Driven by external voltage, aniline molecules and graphene oxide were alternatively assembled for hierarchical porous three-dimensional nanostructures while graphene oxide was in-situ reduced to graphene during the assembly process. As-produced stacked arrays were used as the electrodes of an ultra-capacitor, and an unusual electrochemical behavior was discovered. The capacitance increases as the stack of nanowire arrays increases, resulting in high energy density and high power density at same time. Further analysis found that the distinctive electrochemical behavior originates from the electrode/electrolyte interactions and the dependence on the diffusion and charge transferring process. The specific energy density was as high as 137 Wh/Kg while power density is in excess of 2000 W/Kg. This work pointed a simple pathway to tailor polymer structure and electrochemistry for robust design of high-performance ultra-capacitor at a limited lateral size. National Science Foundation.

  18. High-performance polymer/layered silicate nanocomposites

    NASA Astrophysics Data System (ADS)

    Heidecker, Matthew J.

    High-performance layered-silicate nanocomposites of Polycarbonate (PC), poly(ethylene terephthalate) (PET), and their blends were produced via conventional melt-blending techniques. The focus of this thesis was on the fundamentals of dispersion, control of thermal stability, maintenance of melt-blending processing conditions, and on optimization of the composites' mechanical properties via the design of controlled and thermodynamically favorable nano-filler dispersions within the polymer matrices. PET and PC require high temperatures for melt-processing, rendering impractical the use of conventional/commercial organically-modified layered-silicates, since the thermal degradation temperatures of their ammonium surfactants lies below the typical processing temperatures. Thus, different surfactant chemistries must be employed in order to develop melt-processable nanocomposites, also accounting for polymer matrix degradation due to water (PET) or amine compounds (PC). Novel high thermal-stability surfactants were developed and employed in montmorillonite nanocomposites of PET, PC, and PC/PET blends, and were compared to the respective nanocomposites based on conventional quaternary-ammonium modified montmorillonites. Favorable dispersion was achieved in all cases, however, the overall material behavior -- i.e., the combination of crystallization, mechanical properties, and thermal degradation -- was better for the nanocomposites based on the thermally-stable surfactant fillers. Studies were also done to trace, and ultimately limit, the matrix degradation of Polycarbonate/montmorillonite nanocomposites, through varying the montmorillonite surfactant chemistry, processing conditions, and processing additives. Molecular weight degradation was, maybe surprisingly, better controlled in the conventional quaternary ammonium based nanocomposites -- even though the thermal stability of the organically modified montmorillonites was in most cases the lowest. Dependence of the

  19. Quantifying phytate in dairy digesta and feces: alkaline extraction and high-performance ion chromatography.

    PubMed

    Ray, P P; Shang, C; Maguire, R O; Knowlton, K F

    2012-06-01

    Development of an analytical method with appropriate combination of extraction and quantification approaches for undigested phytate in ruminant feces and digesta will advance knowledge of phytate degradation in ruminants and help to reduce phosphorus excretion. Established quantification methods give satisfactory results for feedstuffs and nonruminant manure but recovery of phytate is incomplete for ruminant feces and digesta because of their complex sample matrix and low ratio of phytate to inorganic P. The objective was to develop a robust, accurate, sensitive, and inexpensive method to extract and quantify phytate in feeds, ruminant feces, and digesta. Diets varying in phytate content were fed to dairy heifers, dry cows, and lactating cows to generate digesta and fecal samples of varying composition to challenge extraction and quantification methods. Samples were extracted with 0.5 M HCl or 0.25 M NaOH + 0.05 M EDTA. Acid extracts were mixed with 20% NaCl, alkaline extracts were acidified to final pH < 2, and then both extracts were clarified with C₁₈ cartridges and 0.2-μm filters. High-performance ion chromatography (HPIC) was used to quantify phytate. In feed samples, the measured phytate was comparable in alkaline and acid extracts (2,965 vs. 3,085 μg/g of DM). In digesta and fecal samples, alkaline extraction yielded greater estimates of phytate content than did acid extraction (40.7 vs. 33.6 and 202.9 vs. 144.4 μg/g of DM for digesta and fecal samples, respectively). Analysis of alkaline extracts by HPIC is usually not possible because of sample matrix interferences; acidification and C(18)-cartridge elution of alkaline extracts prevented this interference. Pure phytate added to dry samples before extraction was almost completely recovered (88 to 105%), indicating high extraction efficiency, no adverse effect of extract clean-up procedures, and accurate quantification of phytate. The proposed method is rapid, inexpensive, robust, and combines the

  20. Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications.

    PubMed

    Robertson, Nicholas J; Kostalik, Henry A; Clark, Timothy J; Mutolo, Paul F; Abruña, Héctor D; Coates, Geoffrey W

    2010-03-17

    Fuel cells are energy conversion devices that show great potential in numerous applications ranging from automobiles to portable electronics. However, further development of fuel cell components is necessary for them to become commercially viable. One component critical to their performance is the polymer electrolyte membrane, which is an ion conductive medium separating the two electrodes. While proton conducting membranes are well established (e.g., Nafion), hydroxide conducting membranes (alkaline anion exchange membranes, AAEMs) have been relatively unexplored by comparison. Operating under alkaline conditions offers significant efficiency benefits, especially for the oxygen reduction reaction; therefore, effective AAEMs could significantly advance fuel cell technologies. Here we demonstrate the use of ring-opening metathesis polymerization to generate new cross-linked membrane materials exhibiting high hydroxide ion conductivity and good mechanical properties. Cross-linking allows for increased ion incorporation, which, in turn supports high conductivities. This facile synthetic approach enables the preparation of cross-linked materials with the potential to meet the demands of hydrogen-powered fuel cells as well as direct methanol fuel cells. PMID:20178312

  1. Tunable High Performance Cross-Linked Alkaline Anion Exchange Membranes for Fuel Cell Applications

    SciTech Connect

    Robertson, Nicholas J.; Kostalik, IV, Henry A.; Clark, Timothy J.; Mutolo, Paul F.; Abruña, Héctor D.; Coates, Geoffrey W.

    2010-02-23

    Fuel cells are energy conversion devices that show great potential in numerous applications ranging from automobiles to portable electronics. However, further development of fuel cell components is necessary for them to become commercially viable. One component critical to their performance is the polymer electrolyte membrane, which is an ion conductive medium separating the two electrodes. While proton conducting membranes are well established (e.g., Nafion), hydroxide conducting membranes (alkaline anion exchange membranes, AAEMs) have been relatively unexplored by comparison. Operating under alkaline conditions offers significant efficiency benefits, especially for the oxygen reduction reaction; therefore, effective AAEMs could significantly advance fuel cell technologies. Here we demonstrate the use of ring-opening metathesis polymerization to generate new cross-linked membrane materials exhibiting high hydroxide ion conductivity and good mechanical properties. Cross-linking allows for increased ion incorporation, which, in turn supports high conductivities. This facile synthetic approach enables the preparation of cross-linked materials with the potential to meet the demands of hydrogen-powered fuel cells as well as direct methanol fuel cells.

  2. Probing the electrochemical properties of biopolymer modified EMD nanoflakes through electrodeposition for high performance alkaline batteries.

    PubMed

    Biswal, Avijit; Minakshi, Manickam; Tripathy, Bankim Chandra

    2016-04-01

    In the present work, a novel biopolymer approach has been made to electrodeposit manganese dioxide from manganese sulphate in a sulphuric acid bath containing chitosan in the absence and presence of glutaraldehyde as a cross-linking agent. Galvanostatically synthesised electrolytic manganese dioxide (EMD) nanoflakes were used as electrode materials and their electrochemical properties with the influence of biopolymer chitosan were systematically characterized. The structural determination, surface morphology and porosity of nanostructured EMD were evaluated using X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and nitrogen adsorption-desorption techniques. The results obtained were compared with that of blank EMD (polymer free). The results indicated that the EMD having chitosan cross-linked with glutaraldehyde possesses a reduced particle size and more porous structure than the blank and EMDs synthesized in the presence of chitosan but without glutaraldehyde. The results revealed that chitosan was unable to play any significant role on its own but chitosan in the presence of glutaraldehyde forms a cross-linking structure, which in turn influences the nucleation and growth of the EMDs during electrodeposition. EMDs obtained in the presence of chitosan (1 g dm(-3)) and glutaraldehyde (1% glutaraldehyde) exhibited a reversible and better discharge capacity upon cycling than the blank which showed its typical capacity fading behaviour with cycling. In addition, EMD synthesized in the presence of 1 g dm(-3) chitosan and 2% glutaraldehyde exhibited a superior electrochemical performance than the blank and lower amounts (1%; 1.5%) of glutaraldehyde, showing a stable discharge capacity of 60 mA h g(-1) recorded up to 40 cycles in alkaline KOH electrolyte for a Zn-MnO2 system. Our results demonstrate the potential of using polymer modified EMDs as a new generation of alkaline battery materials. The XPS data show that

  3. Main chain type benzoxaine polymers for high performance applications

    NASA Astrophysics Data System (ADS)

    Chernykh, Andrey

    A new polymer with benzoxazine group in the main chain has been synthesized through the Mannich condensation of a difunctional phenol, formaldehyde and a diamine. Obtained polymer has weight average molecular weight of approximately 10,000 Da and a moderately broad polydispersity index. The new polymer is used to manufacturer self-supporting film of thermosetting resins. Aiming to obtain higher molecular weight, click chemistry approach has been applied to synthesize linear benzoxazine polymers. Three types of polymers have been prepared from dipropargyl- and novel diazide-functionalized benzoxazine monomers, showing a tremendous flexibility for applying click reaction to obtain various polymer architectures. The weight average molecular weight is estimated to be in the range from 50,000 to 100,000 Da which is significantly higher than the benzoxazine polymers which have been chain extended via Mannich reaction. Further developing approach of polycondensation of the monomers containing ozaxine rings, the oxidative coupling approach has been utilized in order to couple benzoxazines with terminal acetylene groups. A model benzoxazine compound containing diacetylene linkage exhibits unexpectedly low exothermic peak with the onset around 140°C, which is significantly lower than the temperature of conventional benzoxazine polymerization. The initial model studies have been made in order to understand this phenomenon and preliminary explanation is given. Extending this pathway to the difunctional propargyl- and ethynyl-functionalized benzoxazine monomers, a series of novel benzoxazine polymers containing diacetylene groups in the main chain have been synthesized. The weight average molecular weight of the polymers is achieved to be up to 50,000 Da. The effect of diacetylene moiety on the benzoxazine crosslinking behavior is even more pronounced for the obtained linear polymers showing exothermic peak with the onset at around 125°C and its maximum at 185°C. Upon

  4. Thermodynamics of water sorption in high performance glassy thermoplastic polymers

    PubMed Central

    Scherillo, Giuseppe; Petretta, Mauro; Galizia, Michele; La Manna, Pietro; Musto, Pellegrino; Mensitieri, Giuseppe

    2014-01-01

    Sorption thermodynamics of water in two glassy polymers, polyetherimide (PEI) and polyetheretherketone (PEEK), is investigated by coupling gravimetry and on line FTIR spectroscopy in order to gather information on the total amount of sorbed water as well as on the different species of water molecules absorbed within the polymers, addressing the issue of cross- and self-interactions occurring in the polymer/water systems. Water sorption isotherms have been determined at temperatures ranging from 30 to 70°C while FTIR spectroscopy has been performed only at 30°C. The experimental analysis provided information on the groups present on the polymer backbones involved in hydrogen bonding interactions with absorbed water molecules. Moreover, it also supplied qualitative indications about the different “populations” of water molecules present within the PEEK and a quantitative assessment of these “populations” in the case of PEI. The results of the experimental analysis have been interpreted using an equation of state theory based on a compressible lattice fluid model for the Gibbs energy of the polymer-water mixture, developed by extending to the case of out of equilibrium glassy polymers a previous model intended for equilibrium rubbery polymers. The model accounts for the non-equilibrium nature of glassy polymers as well as for mean field and for hydrogen bonding interactions, providing a satisfactory quantitative interpretation of the experimental data. PMID:24860802

  5. Significantly Increasing the Ductility of High Performance Polymer Semiconductors through Polymer Blending.

    PubMed

    Scott, Joshua I; Xue, Xiao; Wang, Ming; Kline, R Joseph; Hoffman, Benjamin C; Dougherty, Daniel; Zhou, Chuanzhen; Bazan, Guillermo; O'Connor, Brendan T

    2016-06-01

    Polymer semiconductors based on donor-acceptor monomers have recently resulted in significant gains in field effect mobility in organic thin film transistors (OTFTs). These polymers incorporate fused aromatic rings and have been designed to have stiff planar backbones, resulting in strong intermolecular interactions, which subsequently result in stiff and brittle films. The complex synthesis typically required for these materials may also result in increased production costs. Thus, the development of methods to improve mechanical plasticity while lowering material consumption during fabrication will significantly improve opportunities for adoption in flexible and stretchable electronics. To achieve these goals, we consider blending a brittle donor-acceptor polymer, poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiadiazolo[3,4-c]pyridine] (PCDTPT), with ductile poly(3-hexylthiophene). We found that the ductility of the blend films is significantly improved compared to that of neat PCDTPT films, and when the blend film is employed in an OTFT, the performance is largely maintained. The ability to maintain charge transport character is due to vertical segregation within the blend, while the improved ductility is due to intermixing of the polymers throughout the film thickness. Importantly, the application of large strains to the ductile films is shown to orient both polymers, which further increases charge carrier mobility. These results highlight a processing approach to achieve high performance polymer OTFTs that are electrically and mechanically optimized. PMID:27200458

  6. Iptycenes in the design of high performance polymers.

    PubMed

    Swager, Timothy M

    2008-09-01

    This Account details the use of building blocks known as iptycene units, which are particularly useful in the design of advanced materials because of their three-dimensional, noncompliant structures. Iptycenes are built upon [2,2,2]-ring systems in which the bridges are aromatic rings, and the simplest member of this class of compounds is triptycene. Iptycenes can provide steric blocking, which can prevent strong interactions between polymeric chromophores that have a strong tendency to form nonemissive exciplex complexes. Iptycene-containing conjugated polymers are exceptionally stable and display solution-like emissive spectra and quantum yields in the solid state. This application of iptycenes has enabled new vapor detection methods for ultratrace detection of high explosives that are now used by the U.S. military. The three-dimensional shape of iptycenes creates interstitial space (free volume) around the molecules. This space can confer size selectivity in sensory responses and also promotes alignment in oriented polymers and liquid crystals. Specifically, the iptycene-containing polymers and molecules align in the anisotropic host material in a way that minimizes the free volume. This effect can be used to align molecules contrary to what would be predicted by conventional models on the basis of aspect ratios. In one demonstration, we show that an iptycene polymer aligns orthogonally to the host polymer when stretched, and these structures approximate molecular versions of woven cloth. In liquid crystal solutions, the conjugated iptycene-containing polymers exhibit greater electronic delocalization, and the transport of excited states along the polymer backbone is observed. Structures that preserve high degrees of internal free volume can also be designed to create low dielectric constant insulators. These materials have high temperature stability (>500 degrees C) and hardness that make them potential interlayer dielectric materials for integrated circuits

  7. Strategies, linkers and coordination polymers for high-performance sorbents

    DOEpatents

    Matzger, Adam J.; Wong-Foy, Antek G.; Lebel, Oliver

    2015-09-15

    A linking ligand compound includes three bidentate chemical moieties distributed about a central chemical moiety. Another linking ligand compound includes a bidentate linking ligand and a monodentate chemical moiety. Coordination polymers include a plurality of metal clusters linked together by residues of the linking ligand compounds.

  8. Automated Fabrication Technologies for High Performance Polymer Composites

    NASA Technical Reports Server (NTRS)

    Shuart , M. J.; Johnston, N. J.; Dexter, H. B.; Marchello, J. M.; Grenoble, R. W.

    1998-01-01

    New fabrication technologies are being exploited for building high graphite-fiber-reinforced composite structure. Stitched fiber preforms and resin film infusion have been successfully demonstrated for large, composite wing structures. Other automatic processes being developed include automated placement of tacky, drapable epoxy towpreg, automated heated head placement of consolidated ribbon/tape, and vacuum-assisted resin transfer molding. These methods have the potential to yield low cost high performance structures by fabricating composite structures to net shape out-of-autoclave.

  9. High performance carbon nanotube - polymer nanofiber hybrid fabrics

    NASA Astrophysics Data System (ADS)

    Yildiz, Ozkan; Stano, Kelly; Faraji, Shaghayegh; Stone, Corinne; Willis, Colin; Zhang, Xiangwu; Jur, Jesse S.; Bradford, Philip D.

    2015-10-01

    Stable nanoscale hybrid fabrics containing both polymer nanofibers and separate and distinct carbon nanotubes (CNTs) are highly desirable but very challenging to produce. Here, we report the first instance of such a hybrid fabric, which can be easily tailored to contain 0-100% millimeter long CNTs. The novel CNT - polymer hybrid nonwoven fabrics were created by simultaneously electrospinning nanofibers onto aligned CNT sheets which were drawn and collected on a grounded, rotating mandrel. Due to the unique properties of the CNTs, the hybrids show very high tensile strength, very small pore size, high specific surface area and electrical conductivity. In order to further examine the hybrid fabric properties, they were consolidated under pressure, and also calendered at 70 °C. After calendering, the fabric's strength increased by an order of magnitude due to increased interactions and intermingling with the CNTs. The hybrids are highly efficient as aerosol filters; consolidated hybrid fabrics with a thickness of 20 microns and areal density of only 8 g m-2 exhibited ultra low particulate (ULPA) filter performance. The flexibility of this nanofabrication method allows for the use of many different polymer systems which provides the opportunity for engineering a wide range of nanoscale hybrid materials with desired functionalities.Stable nanoscale hybrid fabrics containing both polymer nanofibers and separate and distinct carbon nanotubes (CNTs) are highly desirable but very challenging to produce. Here, we report the first instance of such a hybrid fabric, which can be easily tailored to contain 0-100% millimeter long CNTs. The novel CNT - polymer hybrid nonwoven fabrics were created by simultaneously electrospinning nanofibers onto aligned CNT sheets which were drawn and collected on a grounded, rotating mandrel. Due to the unique properties of the CNTs, the hybrids show very high tensile strength, very small pore size, high specific surface area and electrical

  10. A high performance ceramic-polymer separator for lithium batteries

    NASA Astrophysics Data System (ADS)

    Kumar, Jitendra; Kichambare, Padmakar; Rai, Amarendra K.; Bhattacharya, Rabi; Rodrigues, Stanley; Subramanyam, Guru

    2016-01-01

    A three-layered (ceramic-polymer-ceramic) hybrid separator was prepared by coating ceramic electrolyte [lithium aluminum germanium phosphate (LAGP)] over both sides of polyethylene (PE) polymer membrane using electron beam physical vapor deposition (EB-PVD) technique. Ionic conductivities of membranes were evaluated after soaking PE and LAGP/PE/LAGP membranes in a 1 Molar (1M) lithium hexafluroarsenate (LiAsF6) electrolyte in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethylmethyl carbonate (EMC) in volume ratio (1:1:1). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were employed to evaluate morphology and structure of the separators before and after cycling performance tests to better understand structure-property correlation. As compared to regular PE separator, LAGP/PE/LAGP hybrid separator showed: (i) higher liquid electrolyte uptake, (ii) higher ionic conductivity, (iii) lower interfacial resistance with lithium and (iv) lower cell voltage polarization during lithium cycling at high current density of 1.3 mA cm-2 at room temperature. The enhanced performance is attributed to higher liquid uptake, LAGP-assisted faster ion conduction and dendrite prevention. Optimization of density and thickness of LAGP layer on PE or other membranes through manipulation of PVD deposition parameters will enable practical applications of this novel hybrid separator in rechargeable lithium batteries with high energy, high power, longer cycle life, and higher safety level.

  11. Imaging Carbon Nanotubes in High Performance Polymer Composites via Magnetic Force Microscope

    NASA Technical Reports Server (NTRS)

    Lillehei, Peter T.; Park, Cheol; Rouse, Jason H.; Siochi, Emilie J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Application of carbon nanotubes as reinforcement in structural composites is dependent on the efficient dispersion of the nanotubes in a high performance polymer matrix. The characterization of such dispersion is limited by the lack of available tools to visualize the quality of the matrix/carbon nanotube interaction. The work reported herein demonstrates the use of magnetic force microscopy (MFM) as a promising technique for characterizing the dispersion of nanotubes in a high performance polymer matrix.

  12. Implant- and Tooth-Supported Fixed Prostheses Using a High-Performance Polymer (Pekkton) Framework.

    PubMed

    Han, Kyeong-Hwan; Lee, Jeong-Yol; Shin, Sang Wan

    2016-01-01

    The type of prosthetic restoration used in implant rehabilitation greatly contributes to the recovery of masticatory function as well as quality of life in patients. Frameworks for implant-supported prostheses are typically made by casting metal or milling either titanium or zirconia. Recently, nonmetal, polymer-type materials were suggested as framework materials. Polyetherketoneketone (PEKK), a high-performance polymer, was recently introduced in the dental field with potentially wide-ranging applications. This case history report describes implant- and tooth-supported fixed prostheses created using a new high performance polymer (Pekkton, Cendres+Metaux) framework for a fully edentulous maxilla and partially edentulous mandible. PMID:27611747

  13. Morphology-Driven High-Performance Polymer Transistor-based Ammonia Gas Sensor.

    PubMed

    Yu, Seong Hoon; Cho, Jangwhan; Sim, Kyu Min; Ha, Jae Un; Chung, Dae Sung

    2016-03-01

    Developing high-performance gas sensors based on polymer field-effect transistors (PFETs) requires enhancing gas-capture abilities of polymer semiconductors without compromising their high charge carrier mobility. In this work, cohesive energies of polymer semiconductors were tuned by strategically inserting buffer layers, which resulted in dramatically different semiconductor surface morphologies. Elucidating morphological and structural properties of polymer semiconductor films in conjunction with FET studies revealed that surface morphologies containing large two-dimensional crystalline domains were optimal for achieving high surface areas and creating percolation pathways for charge carriers. Ammonia molecules with electron lone pairs adsorbed on the surface of conjugated semiconductors can serve as efficient trapping centers, which negatively shift transfer curves for p-type PFETs. Therefore, morphology optimization of polymer semiconductors enhances their gas sensing abilities toward ammonia, leading to a facile method of manufacturing high-performance gas sensors. PMID:26927929

  14. Fabrication of high-performance flexible alkaline batteries by implementing multiwalled carbon nanotubes and copolymer separator.

    PubMed

    Wang, Zhiqian; Wu, Zheqiong; Bramnik, Natalia; Mitra, Somenath

    2014-02-12

    A flexible alkaline battery with multiwalled carbon nanotube (MWCNT) enhanced composite electrodes and polyvinyl alcohol (PVA)-poly (acrylic acid) (PAA) copolymer separator has been developed. Purified MWCNTs appear to be the most effective conductive additive, while the flexible copolymer separator not only enhances flexibility but also serves as electrolyte storage. PMID:24510667

  15. High performance nickel-palladium nanocatalyst for hydrogen generation from alkaline hydrous hydrazine at room temperature

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Debaleena; Mandal, Kaustab; Dasgupta, Subrata

    2015-08-01

    Room temperature synthesized highly active bimetallic Ni60Pd40 nanocatalyst with large surface area (150 m2g-1) exerts 100% selectivity towards hydrogen generation (3 equivalents of gas in 60 min) from hydrous hydrazine under alkaline and ambient reaction conditions. This low noble metal content catalyst offers a new prospect for on-board hydrogen production system.

  16. Optimization of molecular organization and nanoscale morphology for high performance low bandgap polymer solar cells

    NASA Astrophysics Data System (ADS)

    He, Ming; Wang, Mengye; Lin, Changjian; Lin, Zhiqun

    2014-03-01

    Rational design and synthesis of low bandgap (LBG) polymers with judiciously tailored HOMO and LUMO levels have emerged as a viable route to high performance polymer solar cells with power conversion efficiencies (PCEs) exceeding 10%. In addition to engineering the energy-level of LBG polymers, the photovoltaic performance of LBG polymer-based solar cells also relies on the device architecture, in particular the fine morphology of the photoactive layer. The nanoscale interpenetrating networks composed of nanostructured donor and acceptor phases are the key to providing a large donor-acceptor interfacial area for maximizing the exciton dissociation and offering a continuous pathway for charge transport. In this Review Article, we summarize recent strategies for tuning the molecular organization and nanoscale morphology toward an enhanced photovoltaic performance of LBG polymer-based solar cells.

  17. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts

    PubMed Central

    Lu, Shanfu; Pan, Jing; Huang, Aibin; Zhuang, Lin; Lu, Juntao

    2008-01-01

    In recent decades, fuel cell technology has been undergoing revolutionary developments, with fundamental progress being the replacement of electrolyte solutions with polymer electrolytes, making the device more compact in size and higher in power density. Nowadays, acidic polymer electrolytes, typically Nafion, are widely used. Despite great success, fuel cells based on acidic polyelectrolyte still depend heavily on noble metal catalysts, predominantly platinum (Pt), thus increasing the cost and hampering the widespread application of fuel cells. Here, we report a type of polymer electrolyte fuel cells (PEFC) employing a hydroxide ion-conductive polymer, quaternary ammonium polysulphone, as alkaline electrolyte and nonprecious metals, chromium-decorated nickel and silver, as the catalyst for the negative and positive electrodes, respectively. In addition to the development of a high-performance alkaline polymer electrolyte particularly suitable for fuel cells, key progress has been achieved in catalyst tailoring: The surface electronic structure of nickel has been tuned to suppress selectively the surface oxidative passivation with retained activity toward hydrogen oxidation. This report of a H2–O2 PEFC completely free from noble metal catalysts in both the positive and negative electrodes represents an important advancement in the research and development of fuel cells.

  18. Insights into the Mechanism and Kinetics of Thermo-Oxidative Degradation of HFPE High Performance Polymer.

    PubMed

    Kunnikuruvan, Sooraj; Parandekar, Priya V; Prakash, Om; Tsotsis, Thomas K; Nair, Nisanth N

    2016-06-01

    The growing requisite for materials having high thermo-oxidative stability makes the design and development of high performance materials an active area of research. Fluorination of the polymer backbone is a widely applied strategy to improve various properties of the polymer, most importantly the thermo-oxidative stability. Many of these fluorinated polymers are known to have thermo-oxidative stability up to 700 K. However, for space and aerospace applications, it is important to improve its thermo-oxidative stability beyond 700 K. Molecular-level details of the thermo-oxidative degradation of such polymers can provide vital information to improve the polymer. In this spirit, we have applied quantum mechanical and microkinetic analysis to scrutinize the mechanism and kinetics of the thermo-oxidative degradation of a fluorinated polymer with phenylethenyl end-cap, HFPE. This study gives an insight into the thermo-oxidative degradation of HFPE and explains most of the experimental observations on the thermo-oxidative degradation of this polymer. Thermolysis of C-CF3 bond in the dianhydride component (6FDA) of HFPE is found to be the rate-determining step of the degradation. Reaction pathways that are responsible for the experimentally observed weight loss of the polymer is also scrutinized. On the basis of these results, we propose a modification of HFPE polymer to improve its thermo-oxidative stability. PMID:27187246

  19. Ultra-high performance supercritical fluid chromatography of lignin-derived phenols from alkaline cupric oxide oxidation.

    PubMed

    Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta; Turner, Charlotta

    2016-08-01

    Traditional chromatographic methods for the analysis of lignin-derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra-high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin-derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5-2.5 μM, a limit of quantification of 2.5-5.0 μM, and a dynamic range of 5.0-2.0 mM (R(2) > 0.997). The new ultra-high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin-derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin-derived phenols in complex environmental samples. PMID:27452148

  20. High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature

    NASA Astrophysics Data System (ADS)

    Mindemark, Jonas; Sun, Bing; Törmä, Erik; Brandell, Daniel

    2015-12-01

    Incorporation of carbonate repeating units in a poly(ε-caprolactone) (PCL) backbone used as a host material in solid polymer electrolytes is found to not only suppress crystallinity in the polyester material, but also give higher ionic conductivity in a wide temperature range exceeding the melting point of PCL crystallites. Combined with high cation transference numbers, this electrolyte material has sufficient lithium transport properties to be used in battery cells that are operational at temperatures down to below 23 °C, thus clearly demonstrating the potential of using non-polyether electrolytes in high-performance all-solid lithium polymer batteries.

  1. High performance all polymer solar cells fabricated via non-halogenated solvents (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Bao, Zhenan

    2015-10-01

    The performance of organic solar cells consisting of a donor/acceptor bulk heterojunction (BHJ) has rapidly improved over the past few years.1. Major efforts have been focused on developing a variety of donor materials to gain access to different regions of the solar spectrum as well as to improve carrier transport properties.2 On the other hand, the most utilized acceptors are still restricted to the fullerene family, which includes PC61BM, PC71BM and ICBA.2b, 3 All-polymer solar cells, consisting of polymers for both the donor and acceptor, gained significantly increased interests recently, because of their ease of solution processing, potentially low cost, versatility in molecular design, and their potential for good chemical and morphological stability due to entanglement of polymers. Unlike small molecular fullerene acceptors, polymer acceptors can benefit from the high mobility of intra-chain charge transport and exciton generation by both donor and acceptor. Despite extensive efforts on all-polymer solar cells in the past decade, the fundamental understanding of all-polymer solar cells is still in its inceptive stage regarding both the materials chemistry and structure physics.4 Thus, rational design rules must be utilized to enable fundamental materials understanding of the all polymer solar cells. We report high performance all-polymer solar cells employing polymeric donors based on isoindigo and acceptor based on perylenedicarboximide. The phase separation domain length scale correlates well with the JSC and is found to be highly sensitive to the aromatic co-monomer structures used in the crystalline donor polymers. With the PS polymer side chain engineering, the phase separation domain length scale decreased by more than 45%. The PCE and JSC of the devices increased accordingly by more than 20%. A JSC as high as 10.0 mA cm-2 is obtained with the donor-acceptor pair despite of a low LUMO-LUMO energy offset of less than 0.1 eV. All the factors such as

  2. High-Performance Carbon Nanotube/Polymer Composite Fiber from Layer-by-Layer Deposition.

    PubMed

    Wu, Min Le; Chen, Yun; Zhang, Liang; Zhan, Hang; Qiang, Lei; Wang, Jian Nong

    2016-03-30

    So far, preparation of high-performance carbon nanotube (CNT)/polymer composites still faces big challenges mainly due to the limited control of CNT dispersion, fraction, and alignment in polymers. Here, a new "layer-by-layer deposition" method is put forward for preparing CNT/polymer composite fibers using poly(vinyl alcohol) (PVA) as an exemplary polymer. This is based on the continuous production of a hollow cylindrical CNT assembly from a high temperature reactor and its shrinking by a PVA-containing solution and deposition on a removable substrate wire. The in situ mixing of the two composite components at the molecular level allows CNTs to disperse and PVA to infiltrate into the fiber efficiently. As a result, remarkable effects of the CNT reinforcement on the PVA matrix are observed, including a strength improvement from ∼50 to 1255 MPa and electrical conductivity from ∼0 to 1948 S cm(-1). The new method offers good controllability of CNT dispersion and fraction in the polymer matrix, variability for making composite fibers using different polymers, and suitability for scaled up production. This study thus provides a new research direction for preparing CNT-reinforced composites and future performance maximization. PMID:26959406

  3. High-performance polymer semiconducting heterostructure devices by nitrene-mediated photocrosslinking of alkyl side chains.

    PubMed

    Png, Rui-Qi; Chia, Perq-Jon; Tang, Jie-Cong; Liu, Bo; Sivaramakrishnan, Sankaran; Zhou, Mi; Khong, Siong-Hee; Chan, Hardy S O; Burroughes, Jeremy H; Chua, Lay-Lay; Friend, Richard H; Ho, Peter K H

    2010-02-01

    Heterostructures are central to the efficient manipulation of charge carriers, excitons and photons for high-performance semiconductor devices. Although these can be formed by stepwise evaporation of molecular semiconductors, they are a considerable challenge for polymers owing to re-dissolution of the underlying layers. Here we demonstrate a simple and versatile photocrosslinking methodology based on sterically hindered bis(fluorophenyl azide)s. The photocrosslinking efficiency is high and dominated by alkyl side-chain insertion reactions, which do not degrade semiconductor properties. We demonstrate two new back-infiltrated and contiguous interpenetrating donor-acceptor heterostructures for photovoltaic applications that inherently overcome internal recombination losses by ensuring path continuity to give high carrier-collection efficiency. This provides the appropriate morphology for high-efficiency polymer-based photovoltaics. We also demonstrate photopatternable polymer-based field-effect transistors and light-emitting diodes, and highly efficient separate-confinement-heterostructure light-emitting diodes. These results open the way to the general development of high-performance polymer semiconductor heterostructures that have not previously been thought possible. PMID:19966791

  4. Molecular weight: Property relationships of high performance polymers used for adhesives and composites

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D.

    1975-01-01

    Degradation of high performance polyimide precursor resins was investigated by measuring the molecular weight of the polymers in solution, using a membrane osmometer. It was found that polyimide precursor resins composed of BTDA and ODPA combined with DABP and MDA were unstable in DMAC. The degradation rate was found to depend upon the chemical nature of the isomeric diamine and the geometric structure about the amide linkage. The polymers of DABP were less susceptible to degradation than those of MDA and p,p'-compounds were more stable than m,m'-compounds. These results suggest that degradation is correlated with the basicity of the diamine. That is, the rate of the degradation reaction increases with the basicity of the diamine group in the polyimide precursor resin. The presence of water and a higher temperature increased the degradation rate of the polymers.

  5. High performance polymers and polymer matrix composites for spacecraft structural applications

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.; Connell, J. W.

    1992-01-01

    A program implemented by NASA Langley Research Center to develop and evaluate new polymers and polymer matrix composites for spacecraft structural applications is examined. Various polymeric films, moldings, and adhesives are evaluated for resistance to atomic oxygen and high energy electron and UV radiation. Thin films from the poly(arylene ether)s containing phenylphosphine oxide groups and the siloxane-epoxies exhibited minor weight loss compared to Kapton polyimide after exposure. Large doses (greater than 10 exp 9 rads) of electron radiation, simulating 30 yr of exposure in GEO, are found to alter the chemical structure of epoxies by both chain scission and cross-linking. The thermal cycling representative of both LEO and GEO environments can cause microcracking in composites which can in turn affect the dimensional stability and produce mechanical property reductions. The processing and fabrication issues associated with precision composite spacecraft components are also addressed.

  6. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect

    Malcolm Pitts; Jie Qui; Dan Wilson; Phil Dowling

    2004-05-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding in the swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to the naturally fractured reservoirs or those with thief zones because much of the injected solution bypasses the target pore space containing oil. The objective of this work is to investigate whether combining these two technologies could broaden the applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium--polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values of 9.2 to 12.9.

  7. FeS/C composite as high-performance anode material for alkaline nickel-iron rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Shangguan, Enbo; Li, Fei; Li, Jing; Chang, Zhaorong; Li, Quanmin; Yuan, Xiao-Zi; Wang, Haijiang

    2015-09-01

    FeS and its composite, FeS/C, are synthesized via a simple calcination method followed by a co-precipitation process. The electrochemical properties of the bare FeS and FeS/C composite as anode materials for alkaline nickel-iron batteries are investigated. The results show that the FeS/C-3wt%Bi2O3-mixed electrode delivers a high specific capacity of 325 mAh g-1 at a current density of 300 mA g-1 with a faradaic efficiency of 90.3% and retains 99.2% of the initial capacity after 200 cycles. For the first time, it is demonstrated that even at a discharge rate as high as 1500 mA g-1 (5C) the FeS/C-3wt%Bi2O3-mixed electrode delivers a specific capacity of nearly 230 mAh g-1. SEM results confirm that after 200 discharge-charge cycles, the size of FeS/C particles reduces from 5 to 15 μm to less than 300 nm in diameter and the particles are highly dispersed on the surface of carbon black, which is likely caused by the dissolution-deposition process of Fe(OH)2 and Fe via intermediate iron species. As a result, the FeS/C composite exhibits considerably high charge efficiency, high discharge capacities, excellent rate capability and superior cycling stability. We believe that this composite is a potential candidate of high-performance anode materials for alkaline iron-based rechargeable batteries.

  8. Smart polymer nanoparticles for high-performance water-borne coatings.

    PubMed

    Piçarra, Susana; Fidalgo, Alexandra; Fedorov, Aleksander; Martinho, José M G; Farinha, José Paulo S

    2014-10-21

    Poly(butyl methacrylate) nanoparticles encapsulating a silica precursor, tetraethoxysilane (TEOS), were synthesized by a two-step emulsion polymerization process. We show that TEOS remains mostly unreacted inside the nanoparticles in water but acts both as a plasticizer and cross-linker in films cast from the dispersions. The diffusion-enhancing plasticizing effect is dominant at annealing temperatures closer to the glass-transition temperature of the polymer, and sol-gel cross-linking reactions predominate at higher temperatures. By choosing an appropriate annealing temperature, we were able to balance polymer interdiffusion and silica cross-linking to obtain films with good mechanical properties and excellent chemical resistance. The hybrid cross-linked films produced from these novel "smart" nanoparticles can be used in water-borne environmentally friendly coatings for high-performance applications. PMID:25247636

  9. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls or 3.3% OOIP when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls or 6.5% OOIP. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl or 16.4% OOIP more oil than only water injection. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls or 9.9% OOIP when a gel was placed in the B sand.

  10. Titanium Dioxide-Grafted Copper Complexes: High-Performance Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Media.

    PubMed

    Wang, Fei-Fei; Wei, Ping-Jie; Yu, Guo-Qiang; Liu, Jin-Gang

    2016-01-01

    The sluggish kinetics of the oxygen reduction reaction (ORR) at the cathodes of fuel cells significantly hampers fuel cell performance. Therefore, the development of high-performance, non-precious-metal catalysts as alternatives to noble metal Pt-based ORR electrocatalysts is highly desirable for the large-scale commercialization of fuel cells. TiO2 -grafted copper complexes deposited on multiwalled carbon nanotubes (CNTs) form stable and efficient electrocatalysts for the ORR. The optimized catalyst composite CNTs@TiO2 -ZA-[Cu(phen${{^{{\\rm NO}{_{2}}}}}$)(BTC)] shows surprisingly high selectivity for the 4 e(-) reduction of O2 to water (approximately 97 %) in alkaline solution with an onset potential of 0.988 V vs. RHE, and demonstrates superior stability and excellent tolerance for the methanol crossover effect in comparison to a commercial Pt/C catalyst. The copper complexes were grafted onto the surface of TiO2 through coordination of an imidazole-containing ligand, zoledronic acid (ZA), which binds to TiO2 through its bis-phosphoric acid anchoring group. Rational optimization of the copper catalyst's ORR performance was achieved by using an electron-deficient ligand, 5-nitro-1,10-phenanthroline (phen${{^{{\\rm NO}{_{2}}}}}$), and bridging benzene-1,3,5-tricarboxylate (BTC). This facile approach to the assembly of copper catalysts on TiO2 with rationally tuned ORR activity will have significant implications for the development of high-performance, non-precious-metal ORR catalysts. PMID:26602327

  11. Liver- and bone-derived isoenzymes of alkaline phosphatase in serum as determined by high-performance affinity chromatography.

    PubMed

    Anderson, D J; Branum, E L; O'Brien, J F

    1990-02-01

    To separate liver and bone alkaline phosphatase (ALP) isoenzymes in human serum, we used high-performance affinity chromatography (HPAC) on a column of wheat-germ lectin conjugated to 7-microns-diameter silica particles and an eluent containing N-acetyl-D-glucosamine (NAG). On-line spectrophotometric detection of ALP involved pumping diethanolamine-buffered p-nitrophenyl phosphate solution post-column. Bone and liver isoenzymes could be separated into two peaks with only 10% overlap when an exponential gradient was used. A linear-step gradient separated 80.9% of liver ALP and 91.6% of bone ALP in two distinct peaks. True bone and liver ALP peak areas for the linear-step gradient were determined by using correction factors, because each peak contained a co-eluted portion of the other ALP isoenzyme. The detection limit improved 10-fold over those of other techniques for ALP isoenzymes, owing to the relatively large sample that could be applied to the column. Correlation with a urea-inactivation procedure was reasonable for patients' serum samples (r = 0.98 and 0.79 for liver ALP and bone ALP, respectively). PMID:2302767

  12. Kinetic study on the degradation of meclophenoxate hydrochloride in alkaline aqueous solutions by high performance liquid chromatography.

    PubMed

    El-Bardicy, Mohammad Galal; Lotfy, Hayam Mahmoud; El-Sayed, Mohammad Abdalla; El-Tarras, Mohammad Fayez

    2007-01-01

    A high performance liquid chromatographic method was developed and validated for determination of meclophenoxate hydrochloride (I) in the presence of its degradation product (p-chlorophenoxy acetic acid) (II). Separation of (I) from (II) was performed using a ZORBAX ODS column with a mobile phase consisting of 0.2% triethylamine in 0.01 M ammonium carbonate: acetonitrile (70:30 v/v). The method showed high sensitivity with good linearity over the concentration range of 50 to 400 mug/ml. The method was successfully applied to the analysis of a pharmaceutical formulation containing (I) with excellent recovery. A kinetics investigation of the alkaline hydrolysis of (I) was carried out in sodium hydroxide solutions of 1, 1.5 and 2 N by monitoring the parent compound itself. The reaction order of (I) followed pseudo-first order kinetics. The activation energy could be estimated from the Arrhenius plot and it was found to be 12.331 kcal/mole. PMID:17202800

  13. High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer.

    PubMed

    Tan, Zhan'ao; Li, Shusheng; Wang, Fuzhi; Qian, Deping; Lin, Jun; Hou, Jianhui; Li, Yongfang

    2014-01-01

    Low-work-function active metals are commonly used as cathode in polymer solar cells (PSCs), but sensitivity of the active metals towards moisture and oxygen results in poor stability of the devices. Therefore, solution-proceessable and stable cathode buffer layer is of great importance for the application of PSCs. Here we demonstrate high performance PSCs by employing as-prepared zirconium acetylacetonate (a-ZrAcac) film spin-cast from its ethanol solution as cathode buffer layer. The PSCs based on a low bandgap polymer PBDTBDD as donor and PC60BM as acceptor with a-ZrAcac/Al cathode demonstrated an average power conversion efficiency (PCE) of 8.75% which is significantly improved than that of the devices with traditional Ca/Al cathode. The improved photovoltaic performance is benefitted from the decreased series resistance and enhanced light harvest of the PSCs with the a-ZrAcac/Al cathode. The results indicate that a-ZrAcac is a promising high performance cathode buffer layer for fabricating large area flexible PSCs. PMID:24732976

  14. p-Type polymer-hybridized high-performance piezoelectric nanogenerators.

    PubMed

    Lee, Keun Young; Kumar, Brijesh; Seo, Ju-Seok; Kim, Kwon-Ho; Sohn, Jung Inn; Cha, Seung Nam; Choi, Dukhyun; Wang, Zhong Lin; Kim, Sang-Woo

    2012-04-11

    Enhancing the output power of a nanogenerator is essential in applications as a sustainable power source for wireless sensors and microelectronics. We report here a novel approach that greatly enhances piezoelectric power generation by introducing a p-type polymer layer on a piezoelectric semiconducting thin film. Holes at the film surface greatly reduce the piezoelectric potential screening effect caused by free electrons in a piezoelectric semiconducting material. Furthermore, additional carriers from a conducting polymer and a shift in the Fermi level help in increasing the power output. Poly(3-hexylthiophene) (P3HT) was used as a p-type polymer on piezoelectric semiconducting zinc oxide (ZnO) thin film, and phenyl-C(61)-butyric acid methyl ester (PCBM) was added to P3HT to improve carrier transport. The ZnO/P3HT:PCBM-assembled piezoelectric power generator demonstrated 18-fold enhancement in the output voltage and tripled the current, relative to a power generator with ZnO only at a strain of 0.068%. The overall output power density exceeded 0.88 W/cm(3), and the average power conversion efficiency was up to 18%. This high power generation enabled red, green, and blue light-emitting diodes to turn on after only tens of times bending the generator. This approach offers a breakthrough in realizing a high-performance flexible piezoelectric energy harvester for self-powered electronics. PMID:22409420

  15. Novel inorganic materials for polymer electrolyte and alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Tadanaga, Kiyoharu

    2012-06-01

    Inorganic materials with high ionic conductivity must have big advantages for the thermal and long term stability when the materials are used as the electrolyte of fuel cells. In the present paper, novel ionic conductive inorganic materials for polymer electrolyte fuel cells (PEFCs) and all solid state alkaline fuel cells (AFCs) that have been developed by our group have been reviewed. PEFCs which can operate in temperature range from 100 to 200 °C are intensively studied because of some advantages such as reduction of CO poisoning of Pt catalyst and acceleration of electrode reactions. We showed that the fuel cells using the composite membranes prepared from phosphosilicate gel powder and polyimide precursor can operate in the temperature range from 30 to 180 °C. We also found that the inorganic-organic hybrid membranes with acid-base pairs from 3-aminopropyl triethoxy silane and H2SO4 or H3PO4 show high proton conductivity under dry atmosphere, and the membranes are thermally stable at intermediate temperatures. On the other hand, because the use of noble platinum is the serious problem for the commercialization of PEFCs and because oxidation reactions are usually faster than those of acid-type fuel cells, alkaline type fuel cells, in which a nonplatinum catalyst can be used, are attractive. Recently, we have proposed an alkaline-type direct ethanol fuel cell (DEFC) using a natural clay electrolyte with non-platinum catalysts. So-called hydrotalcite clay, Mg-Al layered double hydroxide intercalated with CO32- (Mg-Al CO32- LDH), has been proved to be a hydroxide ion conductor. An alkalinetype DEFC using Mg-Al CO32- LDH as the electrolyte and aqueous solution of ethanol and potassium hydroxide as a source of fuel exhibited excellent electrochemical performance.

  16. Improving processing and toughness of a high performance composite matrix through an interpenetrating polymer network. VI

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.

    1990-01-01

    The use of a semiinterpenetrating polymer network (SIPN) of the high-performance polyimide NR-150B2 to reduce brittleness and improve processability in the highly crosslinked acetylene-terminated polyimides Thermid LR-600, AL-600, MC-600, and FA-700 is described. The theoretical basis of the SIPN process is reviewed; the preparation and characterization of the neat SIPN resins and unidirectional graphite-fiber composites are explained; and the results are presented in extensive tables, graphs, and micrographs and discussed in detail. Significant increases in fracture energy were observed with SIPN, from 93 J/sq m for unmodified LR-600 to 283-603 J/sq m for the SIPN materials; the room-temperature flexural strength of the unidirectional composites also increased, from 1344 MPa for an unmodified MC-600 composite to 2020-1751 MPa for the SIPN composites. The potential applicability of SIPN-based composites to aerospace structures and electronic components is indicated.

  17. Metal chloride-treated graphene oxide to produce high-performance polymer solar cells

    SciTech Connect

    Choi, Eun-Su; Noh, Yong-Jin; Kwon, Sung-Nam; Na, Seok-In; Jeon, Ye-Jin; Kim, Seok-Soon; Kim, Tae-Wook

    2015-07-13

    We introduce a simple but effective graphene oxide (GO) modification with metal chloride treatments to produce high-performance polymer solar cells (PSCs). The role of various metal chlorides on GO and their effects on device performances of PSCs was investigated. X-ray photoelectron spectroscopy, ultraviolet photoemission spectroscopy, and current-voltage measurement studies demonstrated that metal chloride can induce a p-doping effect and increase the GO work-function, thus resulting in an improved built-in potential and interfacial resistance in PSCs. The resultant PSCs with metal chloride exhibited improved device efficiency than those with the neat GO. Furthermore, with the metal chloride-doped GO, we finally achieved an excellent PSC-efficiency of 6.58% and a very desirable device stability, which constitute a highly similar efficiency but much better PSC life-time to conventional device with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). This study could be a valuable way to produce various PEDOT:PSS alternatives and beneficial for producing high-performance and cost-efficient polymeric devices.

  18. Alcohol-soluble Star-shaped Oligofluorenes as Interlayer for High Performance Polymer Solar Cells

    PubMed Central

    Zou, Yang; He, Zhicai; Zhao, Baofeng; Liu, Yuan; Yang, Chuluo; Wu, Hongbin; Cao, Yong

    2015-01-01

    Two star-shaped oligofluorenes with hexakis(fluoren-2-yl)benzene as core are designed and sythesized for interfacial materials in polymer solar cell. Diethanolamino groups are attached to the side chain of fluorene units for T0-OH and T1-OH to enable the alcohol solubility, and additional hydrophobic n-hexyl chains are also grafted on the increased fluorene arms for T1-OH. In conventional device with PCDTBT/PC71BM as active layer, a 50% enhanced PCE is obtained by incorporating T0-OH and T1-OH as the interlayer compared with device without interlayer. By optimizing the active material with PTB7 and with the inverted device structure, a maximum PCE of 9.30% is achieved, which is among the highest efficiencies for PTB7 based polymer solar cells. The work function of modified electrode, the surface morphology and the suraface properties are systematically studied. By modifying the structures of the star-shaped molecules, a balance between the hydrophobic and hydrophilic property is finely tuned, and thus facilitate the interlayer for high performance of PSCs. PMID:26612688

  19. High electron mobility ZnO film for high-performance inverted polymer solar cells

    SciTech Connect

    Lv, Peiwen; Chen, Shan-Ci; Zheng, Qingdong; Huang, Feng Ding, Kai

    2015-04-20

    High-quality ZnO films (ZnO-MS) are prepared via magnetron sputtering deposition with a high mobility of about 2 cm{sup 2}/(V·s) and are used as electron transport layer for inverted polymer solar cells (PSCs) with polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′] dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]:[6,6]-phenyl C71-butyric acid methyl ester as the active layer. A significant improvement of J{sub SC}, about 20% enhancement in contrast to the devices built on sol-gel derived ZnO film (ZnO-Sol), is found in the ZnO-MS based device. High performance ZnO-MS based PSCs exhibit power conversion efficiency (PCE) up to 8.55%, which is much better than the device based on ZnO-Sol (PCE = 7.78%). Further research on cathode materials is promising to achieve higher performance.

  20. High electron mobility ZnO film for high-performance inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Lv, Peiwen; Chen, Shan-Ci; Zheng, Qingdong; Huang, Feng; Ding, Kai

    2015-04-01

    High-quality ZnO films (ZnO-MS) are prepared via magnetron sputtering deposition with a high mobility of about 2 cm2/(V.s) and are used as electron transport layer for inverted polymer solar cells (PSCs) with polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]:[6,6]-phenyl C71-butyric acid methyl ester as the active layer. A significant improvement of JSC, about 20% enhancement in contrast to the devices built on sol-gel derived ZnO film (ZnO-Sol), is found in the ZnO-MS based device. High performance ZnO-MS based PSCs exhibit power conversion efficiency (PCE) up to 8.55%, which is much better than the device based on ZnO-Sol (PCE = 7.78%). Further research on cathode materials is promising to achieve higher performance.

  1. High-performance hole transport layers for polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Yan, He

    One key component in more advanced multilayer polymer light-emitting diode (PLED) structures is the hole transport layer (HTL). Conventional PLED conductive polymer HTLs exhibit serious drawbacks such as corrosion of anodes, significant absorption in visible region, and mediating oxidative doping of polyfluorene emissive layers (EMLs). In addition, the question still remains as to whether conventional PLED HTLs have the electron-blocking capacity required to achieve high-performance PLEDs. If not, the question arises as to how a PLED structure can be modified to afford greater electron-blocking at the HTL/EML interface. In the present thesis work, three generations of PLED HTLs were developed based on a siloxane-derivatized, crosslinkable, hole-transporting material, 4,4'-bis[(p-trichlorosilylpropylphenyl)phenylamino]biphenyl, TPDSi2. The first generation is the self-assembled monolayer (SAM) of TPDSi2, which can increase the work function of indium tin oxide (ITO) anode, enhance ITO anode hole injection, and hence improve PLED performance. The second generation is the spin-coated blend of TPDSi2 and a hole transporting polymer TFB on ITO, which forms an insoluble crosslinked network that can be used as a PLED HTL. The third generation is a double-layer HTL with the TPDSi2 + TFB on top of a conventional PLED HTL, which combines the hole injection capacity of conventional PLED HTLs and the electron-blocking capacity of the TPDSi2 + TFB blend. PLED devices based on these new HTLs exhibit comparable or superior performance compared to those based on conventional HTLs; high current efficiencies of ˜17 cd/A and maximum luminance of ˜140,000 cd/m2 have been achieved. These siloxane-based HTLs not only enhance PLED anode hole-injection by chemically bonding the HTL to the ITO anode, they also exhibit great electron-blocking capacity. The present organosiloxane HTL approach offers many other attractions such as convenience of fabrication, flexibility in choosing HTL

  2. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson

    2004-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Neither aluminum citrate-polyacrylamide nor silicate-polyacrylamide gel systems produced significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested

  3. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  4. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-04-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent

  5. n-Type Water/Alcohol-Soluble Naphthalene Diimide-Based Conjugated Polymers for High-Performance Polymer Solar Cells.

    PubMed

    Wu, Zhihong; Sun, Chen; Dong, Sheng; Jiang, Xiao-Fang; Wu, Siping; Wu, Hongbin; Yip, Hin-Lap; Huang, Fei; Cao, Yong

    2016-02-17

    With the demonstration of small-area, single-junction polymer solar cells (PSCs) with power conversion efficiencies (PCEs) over the 10% performance milestone, the manufacturing of high-performance large-area PSC modules is becoming the most critical issue for commercial applications. However, materials and processes that are optimized for fabricating small-area devices may not be applicable for the production of high-performance large-area PSC modules. One of the challenges is to develop new conductive interfacial materials that can be easily processed with a wide range of thicknesses without significantly affecting the performance of the PSCs. Toward this goal, we report two novel naphthalene diimide-based, self-doped, n-type water/alcohol-soluble conjugated polymers (WSCPs) that can be processed with a broad thickness range of 5 to 100 nm as efficient electron transporting layers (ETLs) for high-performance PSCs. Space charge limited current and electron spin resonance spectroscopy studies confirm that the presence of amine or ammonium bromide groups on the side chains of the WSCP can n-dope PC71BM at the bulk heterojunction (BHJ)/ETL interface, which improves the electron extraction properties at the cathode. In addition, both amino functional groups can induce self-doping to the WSCPs, although by different doping mechanisms, which leads to highly conductive ETLs with reduced ohmic loss for electron transport and extraction. Ultimately, PSCs based on the self-doped WSCP ETLs exhibit significantly improved device performance, yielding PCEs as high as 9.7% and 10.11% for PTB7-Th/PC71BM and PffBT4T-2OD/PC71BM systems, respectively. More importantly, with PffBT4T-2OD/PC71BM BHJ as an active layer, a prominent PCE of over 8% was achieved even when a thick ETL of 100 nm was used. To the best of our knowledge, this is the highest efficiency demonstrated for PSCs with a thick interlayer and light-harvesting layer, which are important criteria for eventually making

  6. Electrically engineered polymer-carbon hybrid heterojunction for high-performance printed transistors

    NASA Astrophysics Data System (ADS)

    Kim, Do Hwan; Kang, Gyu Won; Shin, Hyeon-Jin; Kim, Woo-Jae

    2014-10-01

    Molecularly hybridized materials composed of polymer semiconductors (PSCs) and single-walled carbon nanotubes (SWNTs) may provide a new platform to exploit an advantageous combination of semiconductors, which yields electrical properties that are not available in a single component system. In this talk, we demonstrate high-performance ink-jet printed hybrid transistors with an electrically engineered heterostructure by using specially designed PSCs and semiconducting SWNTs (sc-SWNTs) whose system achieved a high mobility of 0.23 cm2V-1s-1, no Von shift, a low off-current, and good bias-stability. We also revealed that binding energy between PSCs and sc-SWNT was strongly affected by side-chain length of PSCs, leading to the formation of homogeneous nanohybrid film. Eventually, understanding of electrostatic interactions in the heterostructure and experimental results suggest criteria for the design of nanohybrid heterostructures. Acknowledgement. This work was supported by a grant (Code No. 2011-0031628) from the Center for Advanced Soft Electronics under the Global Frontier Research Program of the Ministry of Science, ICT and Future Planning, Korea. The authors acknowledge Prof. Kilwon Cho for collaboration on the analysis of x-ray diffraction.

  7. Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells

    PubMed Central

    Hedley, Gordon J.; Ward, Alexander J.; Alekseev, Alexander; Howells, Calvyn T.; Martins, Emiliano R.; Serrano, Luis A.; Cooke, Graeme; Ruseckas, Arvydas; Samuel, Ifor D. W.

    2013-01-01

    The morphology of bulk heterojunction organic photovoltaic cells controls many of the performance characteristics of devices. However, measuring this morphology is challenging because of the small length-scales and low contrast between organic materials. Here we use nanoscale photocurrent mapping, ultrafast fluorescence and exciton diffusion to observe the detailed morphology of a high-performance blend of PTB7:PC71BM. We show that optimized blends consist of elongated fullerene-rich and polymer-rich fibre-like domains, which are 10–50 nm wide and 200–400 nm long. These elongated domains provide a concentration gradient for directional charge diffusion that helps in the extraction of charge pairs with 80% efficiency. In contrast, blends with agglomerated fullerene domains show a much lower efficiency of charge extraction of ~45%, which is attributed to poor electron and hole transport. Our results show that the formation of narrow and elongated domains is desirable for efficient bulk heterojunction solar cells. PMID:24343223

  8. Novel hybrid columns made of ultra-high performance concrete and fiber reinforced polymers

    NASA Astrophysics Data System (ADS)

    Zohrevand, Pedram

    The application of advanced materials in infrastructure has grown rapidly in recent years mainly because of their potential to ease the construction, extend the service life, and improve the performance of structures. Ultra-high performance concrete (UHPC) is one such material considered as a novel alternative to conventional concrete. The material microstructure in UHPC is optimized to significantly improve its material properties including compressive and tensile strength, modulus of elasticity, durability, and damage tolerance. Fiber-reinforced polymer (FRP) composite is another novel construction material with excellent properties such as high strength-to-weight and stiffness-to-weight ratios and good corrosion resistance. Considering the exceptional properties of UHPC and FRP, many advantages can result from the combined application of these two advanced materials, which is the subject of this research. The confinement behavior of UHPC was studied for the first time in this research. The stress-strain behavior of a series of UHPC-filled fiber-reinforced polymer (FRP) tubes with different fiber types and thicknesses were tested under uniaxial compression. The FRP confinement was shown to significantly enhance both the ultimate strength and strain of UHPC. It was also shown that existing confinement models are incapable of predicting the behavior of FRP-confined UHPC. Therefore, new stress-strain models for FRP-confined UHPC were developed through an analytical study. In the other part of this research, a novel steel-free UHPC-filled FRP tube (UHPCFFT) column system was developed and its cyclic behavior was studied. The proposed steel-free UHPCFFT column showed much higher strength and stiffness, with a reasonable ductility, as compared to its conventional reinforced concrete (RC) counterpart. Using the results of the first phase of column tests, a second series of UHPCFFT columns were made and studied under pseudo-static loading to study the effect of column

  9. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  10. Solution-Processed 8-Hydroquinolatolithium as Effective Cathode Interlayer for High-Performance Polymer Solar Cells.

    PubMed

    Liu, Wenqing; Liang, Tao; Chen, Qi; Yu, Zhikai; Zhang, Yingying; Liu, Yujing; Fu, Weifei; Tang, Feng; Chen, Liwei; Chen, Hongzheng

    2016-04-13

    Solution-processed 8-hydroxyquinolinatolithium (s-Liq) was successfully applied as an efficient cathode interlayer in bulk heterojunction polymer solar cells (PSCs), giving rise to enhancement in device performance. The ultraviolet photoelectron spectra results revealed that the presence of s-Liq could lower work function of Al cathode, allowing for the ohmic contacts with the fullerene acceptor for better electron extraction and also a larger work function difference between the two electrodes, which leads to an increase in open-circuit voltage (V(oc)). Scanning Kelvin probe microscopy study on the surface potential of active layers suggested that an interfacial dipole was formed in the s-Liq interlayer between the active layer and the Al cathode, which enhanced the intrinsic built-in potential in the device for better charge transportation and extraction. Consequently, the V(oc), fill factor, and current density of the device can be improved by the introduction of s-Liq interlayer, leading to a power conversion efficiency (PCE) improvement. With PTB7 (or PTB7-Th) as the donor and PC71BM as the acceptor, the s-Liq-based PSC devices exhibited a PCE of 8.37% (or 9.04%), much higher than those of devices with the evaporated Liq (7.62%) or commonly used PFN (8.14%) as the cathode interlayer. Moreover, the s-Liq-based devices showed good stability, maintaining 75% (in N2) and 45% (in air) of the initial PCE after 7 days, respectively. These results suggest the great potential of s-Liq as cathode interlayer material for high-performance solar cells application. PMID:27015527

  11. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent

  12. High performance nano-Ni/Graphite electrode for electro-oxidation in direct alkaline ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Soliman, Ahmed B.; Abdel-Samad, Hesham S.; Abdel Rehim, Sayed S.; Ahmed, Mohamed A.; Hassan, Hamdy H.

    2016-09-01

    Ni/Graphite electrocatalysts (Ni/G) are successfully prepared through electrodeposition of Ni from acidic (pH = 0.8) and feebly acidic (pH = 5.5) aqueous Ni (II) baths. The efficiencies of such electrodes are investigated as anodes for direct alkaline ethanol fuel cells through their ethanol electrooxidation cyclic voltammetric (CV) response in alkaline medium. A direct proportionality between the amount of the electrodeposited Ni and its CV response is found. The amounts of the deposited Ni from the two baths are recorded using the Electrochemical Quartz Crystal Microbalance (eQCM). The Ni/G electrodes prepared from the feebly acidic bath show a higher electrocatalytic response than those prepared from the acidic bath. Surface morphology of the Ni particles electrodeposited from feebly acidic bath appears in a nano-scale dimension. Various electrochemical experiments are conducted to confirm that the Ni/G ethanol electrooxidation CV response greatly depends on the pH rather than nickel ion concentration of the deposition bath. The eQCM technique is used to detect the crystalline phases of nickel as α-Ni(OH)2/γ-NiOOH and β-Ni(OH)2/β-NiOOH and their in-situ inter-transformations during the potentiodynamic polarization.

  13. High Performance All-Polymer Solar Cells by Synergistic Effects of Fine-Tuned Crystallinity and Solvent Annealing.

    PubMed

    Li, Zhaojun; Xu, Xiaofeng; Zhang, Wei; Meng, Xiangyi; Ma, Wei; Yartsev, Arkady; Inganäs, Olle; Andersson, Mats R; Janssen, René A J; Wang, Ergang

    2016-08-31

    Growing interests have been devoted to the design of polymer acceptors as potential replacement for fullerene derivatives for high-performance all polymer solar cells (all-PSCs). One key factor that is limiting the efficiency of all-PSCs is the low fill factor (FF) (normally <0.65), which is strongly correlated with the mobility and film morphology of polymer:polymer blends. In this work, we find a facile method to modulate the crystallinity of the well-known naphthalene diimide (NDI) based polymer N2200, by replacing a certain amount of bithiophene (2T) units in the N2200 backbone by single thiophene (T) units and synthesizing a series of random polymers PNDI-Tx, where x is the percentage of the single T. The acceptor PNDI-T10 is properly miscible with the low band gap donor polymer PTB7-Th, and the nanostructured blend promotes efficient exciton dissociation and charge transport. Solvent annealing (SA) enables higher hole and electron mobilities, and further suppresses the bimolecular recombination. As expected, the PTB7-Th:PNDI-T10 solar cells attain a high PCE of 7.6%, which is a 2-fold increase compared to that of PTB7-Th:N2200 solar cells. The FF of 0.71 reaches the highest value among all-PSCs to date. Our work demonstrates a rational design for fine-tuned crystallinity of polymer acceptors, and reveals the high potential of all-PSCs through structure and morphology engineering of semicrystalline polymer:polymer blends. PMID:27479751

  14. Positron Annihilation Spectroscopy of High Performance Polymer Films under CO2 Pressure

    SciTech Connect

    C.A. Quarles; John R. Klaehn; Eric S. Peterson; Jagoda M. Urban-Klaehn

    2010-08-01

    Positron annihilation Lifetime and Doppler broadening measurements are reported for six polymer films as a function of carbon dioxide absolute pressure ranging from 0 to 45 psi. Since the polymer films were thin and did not absorb all positrons, corrections were made in the lifetime analysis for the absorption of positrons in the positron source and sample holder using the Monte Carlo transport code MCNP. Different polymers are found to behave differently. Some polymers studied form positronium and some, such as the polyimide structures, do not. For those samples that form positronium an interpretation in terms of free volume is possible; for those that don’t form positronium, further work is needed to determine how best to describe the behavior in terms of the bulk positron annihilation parameters. Some polymers exhibit changes in positron lifetime and intensity under CO2 pressure which may be described by the Henry or Langmuir sorption models, while the positron response of other polymers is rather insensitive to the CO2 pressure. The results demonstrate the usefulness of positron annihilation spectroscopy in investigating the sorption of CO2 into various polymers at pressures up to about 3 atm.

  15. Design of semiconducting indacenodithiophene polymers for high performance transistors and solar cells.

    PubMed

    McCulloch, Iain; Ashraf, Raja Shahid; Biniek, Laure; Bronstein, Hugo; Combe, Craig; Donaghey, Jenny E; James, David I; Nielsen, Christian B; Schroeder, Bob C; Zhang, Weimin

    2012-05-15

    The prospect of using low cost, high throughput material deposition processes to fabricate organic circuitry and solar cells continues to drive research towards improving the performance of the semiconducting materials utilized in these devices. Conjugated aromatic polymers have emerged as a leading candidate semiconductor material class, due to their combination of their amenability to processing and reasonable electrical and optical performance. Challenges remain, however, to further improve the charge carrier mobility of the polymers for transistor applications and the power conversion efficiency for solar cells. This optimization requires a clear understanding of the relationship between molecular structure and both electronic properties and thin film morphology. In this Account, we describe an optimization process for a series of semiconducting polymers based on an electron rich indacenodithiophene aromatic backbone skeleton. We demonstrate the effect of bridging atoms, alkyl chain functionalization, and co-repeating units on the morphology, molecular orbital energy levels, charge carrier mobility, and solar cell efficiencies. This conjugated unit is extremely versatile with a coplanar aromatic ring structure, and the electron density can be manipulated by the choice of bridging group between the rings. The functionality of the bridging group also plays an important role in the polymer solubility, and out of plane aliphatic chains present in both the carbon and silicon bridge promote solubility. This particular polymer conformation, however, typically suppresses long range organization and crystallinity, which had been shown to strongly influence charge transport. In many cases, polymers exhibited both high solubility and excellent charge transport properties, even where there was no observable evidence of polymer crystallinity. The optical bandgap of the polymers can be tuned by the combination of the donating power of the bridging unit and the electron

  16. Novel nature-inspired conjugated polymers for high performance transistors and solar cells (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Bronstein, Hugo A.; Falon, Kealan; Yaacobi-Gross, Nir; Ashraf, Raja Shahid; McCulloch, Iain; Anthopoulos, Thomas D.

    2015-10-01

    Novel, extremely narrow band-gap polymer with a structure based on natural indigo has been synthesised and exhibits high crystallinity, high ambipolar transport in OFET devices, and OPV device efficiencies up to 2.35% with light absorbance up to 950 nm, demonstrating potential in near-IR photovoltaics. We demonstrate that the use of a potentially bio-sustainable monomer unit in a conjugated polymer can give balanced ambipolar OFET mobilities in excess of 0.5 cm2/Vs. This novel monomer, and polymers are synthesized by rigidifying the structure of indigo by condensation with an aromatic acidic acid. The materials display high crystallinity which can be further enhanced by annealing and demonstrate that it can be used as a potentially biosustainable alternative to the commonly used DPP and iso-indigo monomers. We believe this is the first attempt to tackle the issue of sustainability in conjugated polymer synthesis.

  17. Alkaline composite PEO-PVA-glass-fibre-mat polymer electrolyte for Zn-air battery

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Lin, Sheng-Jen

    An alkaline composite PEO-PVA-glass-fibre-mat polymer electrolyte with high ionic conductivity (10 -2 S cm -1) at room temperature has been prepared and applied to solid-state primary Zn-air batteries. The electrolyte shows excellent mechanical strength. The electrochemical characteristics of the batteries were experimentally investigated by means of ac impedance spectroscopy and galvanostatic discharge. The results indicate that the PEO-PVA-glass-fibre-mat composite polymer electrolyte is a promising candidate for application in alkaline primary Zn-air batteries.

  18. Morphology evolution in high-performance polymer solar cells processed from nonhalogenated solvent

    DOE PAGESBeta

    Cai, Wanzhu; Liu, Peng; Jin, Yaocheng; Xue, Qifan; Liu, Feng; Russell, Thomas P.; Huang, Fei; Yip, Hin -Lap; Cao, Yong

    2015-05-26

    A new processing protocol based on non-halogenated solvent and additive is developed to produce polymer solar cells with power conversion efficiencies better than those processed from commonly used halogenated solvent-additive pair. Morphology studies show that good performance correlates with a finely distributed nanomorphology with a well-defined polymer fibril network structure, which leads to balanced charge transport in device operation.

  19. Three-dimensional nanoporous gold-cobalt oxide electrode for high-performance electroreduction of hydrogen peroxide in alkaline medium

    NASA Astrophysics Data System (ADS)

    Li, Zhihao; He, Yanghua; Ke, Xi; Gan, Lin; Zhao, Jie; Cui, Guofeng; Wu, Gang

    2015-10-01

    Using a simple hydrothermal method combined with a post-annealing treatment, cobalt oxide (Co3O4) nanosheet arrays are grown on three-dimensional (3D) nanoporous gold (NPG) film supported on Ni foam substrates, in which NPG is fabricated by chemically dealloying electrodeposited Au-Sn alloy films. The morphology and structure of the Co3O4@NPG/Ni foam hybrids are characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical activity of the Co3O4@NPG/Ni foam electrode toward hydrogen peroxide electroreduction in alkaline medium is studied by cyclic voltammetry (CV), linear sweep voltammetry (LSV), and chronoamperometry (CA). The results demonstrate that the Co3O4@NPG/Ni foam electrode possesses exceptionally high catalytic activity and excellent stability for the peroxide electroreduction, resulting mainly from the unique electrode architecture. The combined 3D hierarchical porous structures of NPG/Ni foam with the open and porous structures of Co3O4 nanosheet arrays facilitate the mass transport and charge transfer. Therefore, the metal oxides supported on 3D hierarchical porous NPG/Ni foam framework may hold great promise to be effective electrodes for electrocatalytic reduction of peroxide and other electrochemical reactions.

  20. Investigations of non-linear polymers as high performance lubricant additives

    SciTech Connect

    Robinson, Joshua W.; Bhattacharya, Priyanka; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia

    2015-03-22

    Off-the-shelf available engine oils contain an assortment of additives that increase the performance of base oils and maximize the overall efficiency of the machine. With ever increasing requirements for fuel efficiency, the demand for novel materials that outperform older generations is also on the rise. One approach towards increasing overall efficiency is to reduce internal friction and wear in an engine. From an additive approach, this is typically achieved by altering the bulk oil’s viscosity at high temperatures via polymers. In general, the hydrodynamic volume of polymers increase (expand) at elevated temperatures and decrease (contract/deflate) with declining temperatures and this effect is enhanced be carefully designing specific structures and architectures. The natural thinning tendency of base oil with increasing temperatures is in part mitigated by the expansion of the macromolecules added, and the overall effect is decreasing the viscosity losses at high temperatures. Traditional polymer architectures vary from linear to dendritic, where linear polymers of the same chemical composition and molecular weight to its dendritic counterpart will undergo a more significant free volume change in solution with regards to temperature changes. This advantage has been exploited in the literature towards the production of viscosity modifiers. However, one major disadvantage of linear polymers is degradation due to mechanical shear forces and high temperatures causing a shorter additive lifetime. Dendrimers on the other hand are known to demonstrate superior robustness to shear degradation when compared to their respective linear counterparts. An additional advantage of the dendritic architecture is the ability to tailor the peripheral end-groups towards influencing polymer-solvent and/or polymer-surface interactions. Comb-burst hyperbranched polymers are a hybrid of the aforementioned architectures and provide several compromises between the traditional

  1. Importance of Having Low-Density Functional Groups for Generating High-Performance Semiconducting Polymer Dots

    PubMed Central

    Zhang, Xuanjun; Yu, Jiangbo; Wu, Changfeng; Jin, Yuhui; Rong, Yu; Ye, Fangmao

    2012-01-01

    Semiconducting polymers with low-density side-chain carboxylic acid groups were synthesized to form stable, functionalized, and highly fluorescent polymer dots (Pdots). The influence of the molar fraction of hydrophilic side-chains on Pdot properties and performance was systematically investigated. Our results show that the density of side-chain carboxylic acid groups significantly affects Pdot stability, internal structure, fluorescence brightness, and nonspecific binding in cellular labeling. Fluorescence spectroscopy, single-particle imaging, and a dye-doping method were employed to investigate the fluorescence brightness and the internal structure of the Pdots. The results of these experiments indicate that semiconducting polymers with low density of side-chain functional groups can form stable, compact, and highly bright Pdots as compared to those with high density of hydrophilic side-chains. The functionalized polymer dots were conjugated to streptavidin (SA) by carbodiimide-catalyzed coupling and the Pdot-SA probes effectively and specifically labeled the cancer cell-surface marker Her2 in human breast cancer cells. The carboxylate-functionalized polymer could also be covalently modified with small functional molecules to generate Pdot probes for click chemistry-based bioorthogonal labeling. This study presents a promising approach for further developing functional Pdot probes for biological applications. PMID:22607220

  2. Development of toughened epoxy polymers for high performance composite and ablative applications

    NASA Technical Reports Server (NTRS)

    Allen, V. R.

    1982-01-01

    A survey of current procedures for the assessment of state of cure in epoxy polymers and for the evaluation of polymer toughness as related to nature of the crosslinking agent was made to facilitate a cause-effect study of the chemical modification of epoxy polymers. Various conformations of sample morphology were examined to identify testing variables and to establish optimum conditions for the selected physical test methods. Dynamic viscoelasticity testing was examined in conjunction with chemical analyses to allow observation of the extent of the curing reaction with size of the crosslinking agent the primary variable. Specifically the aims of the project were twofold: (1) to consider the experimental variables associated with development of "extent of cure" analysis, and (2) to assess methodology of fracture energy determination and to prescribe a meaningful and reproducible procedure. The following is separated into two categories for ease of presentation.

  3. Unsubstituted Benzodithiophene-Based Conjugated Polymers for High-Performance Organic Field-Effect Transistors and Organic Solar Cells.

    PubMed

    Chen, Weichao; Xiao, Manjun; Han, Liangliang; Zhang, Jidong; Jiang, Huanxiang; Gu, Chuantao; Shen, Wenfei; Yang, Renqiang

    2016-08-01

    Unsubstituted benzo[1,2-b:4,5-b']dithiophene (BDT) was used to construct a high-performance conjugated polymer with 5,6-difluoro-4,7-bis[4-(2-octyldodecyl)thiophene-2-yl]benzo[c][1,2,5] thiadiazole (DTFFBT), named PBDT-DTFFBT. The polymer shows the low-lying highest occupied molecular orbital (HOMO) energy level (-5.40 eV) and a broad absorption spectra with strong vibronic absorption peak. Pure polymer films exhibit good crystallinity and edge-on orientation, partially attributed to the BDT units without any side chains, and as a result, the corresponding thin-film transistor showed excellent hole mobility over 1 cm(2) V(-1) s(-1). Interestingly, a well-distributed nanofibrillar polymer aggregation with face-on orientation was obviously formed when blending with PC71BM, which was in favor of the charge transportation. Consequently, the bulk heterojunction polymer solar cells based on the blends showed high power conversion efficiency of 9.29% with large short-current density (14.56 mA cm(-2)) and high fill factor (0.751) without any process additives or thermal annealing. PMID:27403850

  4. High performance shape memory polymer networks based on rigid nanoparticle cores

    PubMed Central

    Song, Jie

    2010-01-01

    Smart materials that can respond to external stimuli are of widespread interest in biomedical science. Thermal-responsive shape memory polymers, a class of intelligent materials that can be fixed at a temporary shape below their transition temperature (Ttrans) and thermally triggered to resume their original shapes on demand, hold great potential as minimally invasive self-fitting tissue scaffolds or implants. The intrinsic mechanism for shape memory behavior of polymers is the freezing and activation of the long-range motion of polymer chain segments below and above Ttrans, respectively. Both Ttrans and the extent of polymer chain participation in effective elastic deformation and recovery are determined by the network composition and structure, which are also defining factors for their mechanical properties, degradability, and bioactivities. Such complexity has made it extremely challenging to achieve the ideal combination of a Ttrans slightly above physiological temperature, rapid and complete recovery, and suitable mechanical and biological properties for clinical applications. Here we report a shape memory polymer network constructed from a polyhedral oligomeric silsesquioxane nanoparticle core functionalized with eight polyester arms. The cross-linked networks comprising this macromer possessed a gigapascal-storage modulus at body temperature and a Ttrans between 42 and 48 °C. The materials could stably hold their temporary shapes for > 1 year at room temperature and achieve full shape recovery ≤ 51 °C in a matter of seconds. Their versatile structures allowed for tunable biodegradability and biofunctionalizability. These materials have tremendous promise for tissue engineering applications. PMID:20375285

  5. Freeze-drying for morphological control of high performance semi-interpenetrating polymer networks. III

    NASA Technical Reports Server (NTRS)

    Hsiung, H. J.; Hansen, M. G.; Pater, R. H.

    1991-01-01

    The feasibility of using a freeze-drying (solvent removal by sublimation) approach for controlling the morphology of a high-performance semi-IPN is assessed. A high-performance thermoplastic polyimide and commercially available 4,4'-bismaleimide diphenylenemethane were dissolved in a solvent, 1,3,5-trioxane. The solvent was removed from the constituents by freeze-drying. For purposes of comparison, the constituents were dissolved in a high-boiling-point solvent, N,N-dimethylformamide. The solvent was removed from the solution by evaporation. The physical and mechanical properties and phase morphology of the neat resins and composites prepared by freeze-drying and traditional solution methods are presented and compared. It is concluded that the TG is higher and that the magnitude of minor constituent separation is less in the freeze-dry processed materials than for the processed solution.

  6. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes.

    PubMed

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-01-01

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs. PMID:26041586

  7. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    DOE PAGESBeta

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increasedmore » hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.« less

  8. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    SciTech Connect

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.

  9. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    PubMed Central

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-01-01

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs. PMID:26041586

  10. Layered conductive polymer on nylon membrane templates for high performance, thin-film supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Shi, HaoTian Harvey; Naguib, Hani E.

    2016-04-01

    Flexible Thin-film Electrochemical Capacitors (ECs) are emerging technology that plays an important role as energy supply for various electronics system for both present era and the future. Intrinsically conductive polymers (ICPs) are promising pseudo-capacitive materials as they feature both good electrical conductivity and high specific capacitance. This study focuses on the construction and characterization of ultra-high surface area porous electrodes based on coating of nano-sized conductive polymer materials on nylon membrane templates. Herein, a novel nano-engineered electrode material based on nylon membranes was presented, which allows the creation of super-capacitor devices that is capable of delivering competitive performance, while maintaining desirable mechanical characteristics. With the formation of a highly conductive network with the polyaniline nano-layer, the electrical conductivity was also increased dramatically to facilitate the charge transfer process. Cyclic voltammetry and specific capacitance results showed promising application of this type of composite materials for future smart textile applications.

  11. Surface-Engineered Graphene Quantum Dots Incorporated into Polymer Layers for High Performance Organic Photovoltaics

    PubMed Central

    Kim, Jung Kyu; Kim, Sang Jin; Park, Myung Jin; Bae, Sukang; Cho, Sung-Pyo; Du, Qing Guo; Wang, Dong Hwan; Park, Jong Hyeok; Hong, Byung Hee

    2015-01-01

    Graphene quantum dots (GQDs), a newly emerging 0-dimensional graphene based material, have been widely exploited in optoelectronic devices due to their tunable optical and electronic properties depending on their functional groups. Moreover, the dispersibility of GQDs in common solvents depending on hydrophobicity or hydrophilicity can be controlled by chemical functionalization, which is particularly important for homogeneous incorporation into various polymer layers. Here we report that a surface-engineered GQD-incorporated polymer photovoltaic device shows enhanced power conversion efficiency (PCE), where the oxygen-related functionalization of GQDs enabled good dispersity in a PEDOT:PSS hole extraction layer, leading to significantly improved short circuit current density (Jsc) value. To maximize the PCE of the device, hydrophobic GQDs that are hydrothermally reduced (rGQD) were additionally incorporated in a bulk-heterojunction layer, which is found to promote a synergistic effect with the GQD-incorporated hole extraction layer. PMID:26392211

  12. Composite-Based High Performance Electroactive Polymers For Remotely Controlled Mechanical Manipulations in NASA Applications

    NASA Technical Reports Server (NTRS)

    Zhang, Q. M.

    2003-01-01

    This program supported investigation of an all-polymer percolative composite which exhibits very high dielectric constant (less than 7,000). The experimental results show that the dielectric behavior of this new class of percolative composites follows the prediction of the percolation theory and the analysis of the conductive percolation phenomena. The very high dielectric constant of the all-polymer composites which are also very flexible and possess elastic modulus not very much different from that of the insulation polymer matrix makes it possible to induce a high electromechanical response under a much reduced electric field (a strain of 2.65% with an elastic energy density of 0.18 J/cu cm can be achieved under a field of 16 MV/m). Data analysis also suggests that in these composites, the non-uniform local field distribution as well as interface effects can significantly enhance the strain responses. Furthermore, the experimental data as well as the data analysis indicate that the conduction loss in these composites will not affect the strain hysteresis.

  13. Achieving high performance polymer optoelectronic devices for high efficiency, long lifetime and low fabrication cost

    NASA Astrophysics Data System (ADS)

    Huang, Jinsong

    This thesis described three types of organic optoelectronic devices: polymer light emitting diodes (PLED), polymer photovoltaic solar cell, and organic photo detector. The research in this work focuses improving their performance including device efficiency, operation lifetime simplifying fabrication process. With further understanding in PLED device physics, we come up new device operation model and improved device architecture design. This new method is closely related to understanding of the science and physics at organic/metal oxide and metal oxide/metal interface. In our new device design, both material and interface are considered in order to confine and balance all injected carriers, which has been demonstrated very be successful in increasing device efficiency. We created two world records in device efficiency: 18 lm/W for white emission fluorescence PLED, 22 lm/W for red emission phosphorescence PLED. Slow solvent drying process has been demonstrated to significantly increase device efficiency in poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C 61-butyric acid methyl ester (PCBM) mixture polymer solar cell. From the mobility study by time of flight, the increase of efficiency can be well correlated to the improved carrier transport property due to P3HT crystallization during slow solvent drying. And it is found that, similar to PLED, balanced carrier mobility is essential in high efficient polymer solar cell. There is also a revolution in our device fabrication method. A unique device fabrication method is presented by an electronic glue based lamination process combined with interface modification as a one-step polymer solar cell fabrication process. It can completely skip the thermal evaporation process, and benefit device lifetime by several merits: no air reactive. The device obtained is metal free, semi-transparent, flexible, self-encapsulated, and comparable efficiency with that by regular method. We found the photomultiplication (PM) phenomenon in C

  14. Potential approaches to the spectroscopic characterization of high performance polymers exposed to energetic protons and heavy ions

    NASA Technical Reports Server (NTRS)

    Suleman, Naushadalli K.

    1991-01-01

    A potential limitation to human activity on the lunar surface or in deep space is the exposure of the crew to unacceptably high levels of penetrating space radiations. The radiations of most concerns for such missions are high-energy protons emitted during solar flares, and galactic cosmic rays which are high-energy ions ranging from protons to iron. The development of materials for effective shielding from energetic space radiations will clearly require a greater understanding of the underlying mechanisms of radiation-induced damage in bulk materials. This can be accomplished in part by the detailed spectroscopic characterization of bulk materials that were exposed to simulated space radiations. An experimental data base thus created can then be used in conjunction with existing radiation transport codes in the design and fabrication of effective radiation shielding materials. Electron Paramagnetic Resonance Spectroscopy was proven very useful in elucidating radiation effects in polymers (high performance polymers are often an important components of structural composites).

  15. High performance hyperbranched polymers for improved processing and mechanical properties in thermoset composites

    NASA Astrophysics Data System (ADS)

    Marsh, Timothy

    Hyperbranched polymers, specifically hyperbranched poly(arylene ether ketone imide)s (HBPAEKI), are here studied as blend additives in thermoset composites to improve processing and ultimate performance properties of the composite. Monomer synthesis for HBPAEKI was further advanced in this work leading to higher yields, fewer reactions, and shorter production times. A five step synthetic method with an overall yield of 12% was reduced to a three step process with an overall yield of 38%. Polymer was synthesized under varying conditions and end group chemistry for use in thermoset blends. NMR characterization allowed for the assignment of chemical shifts in monomer and cataloguing of shifts in polymer for use in future work to characterize degree of branching. Cure kinetics of blends of HBPAEKI are explored through the use of differential scanning calorimetry (DSC) and chemorheology using small angle oscillatory shear. In a phenylethynyl terminated imide oligomer (PETI) thermoset resin, reactive phenylethynyl endcapped PAEKI (PEPAEKI) was found to retard cure while non reactive alkyl endcapped PAEKI was found to accelerate cure in DGEBA/DAH epoxy systems. Minimal effect was seen on early stage blend viscosity. Composite properties tested focused on the effect on bulk fracture and interfacial shear strength. No significant effect was seen in fracture toughness by SENB. XPS was used to verify that PEPAEKI was surface active to DGEBA/DDS epoxy/air interfaces to the complete exclusion of the epoxy at the surface. Evidence was also seen consistent with surface activity in alkyl endcapped PAEKI in DGEBA/DAH systems, although the contrast is much lower. Effect of alkyl endcapped HBPAEKI on interfacial shear strength was examined through the use of t-peel and single fiber fracture (SFF) techniques. In some systems, t-peel indicates a clear improvement in peel force, proportional to the blend concentration. In SFF, interfacial shear strength was found to be equal or slightly

  16. Polymer-assisted direct deposition of uniform carbon nanotube bundle networks for high performance transparent electrodes.

    PubMed

    Hellstrom, Sondra L; Lee, Hang Woo; Bao, Zhenan

    2009-06-23

    Flexible transparent electrodes are crucial for touch screen, flat panel display, and solar cell technologies. While carbon nanotube network electrodes show promise, characteristically poor dispersion properties have limited their practicality. We report that addition of small amounts of conjugated polymer to nanotube dispersions enables straightforward fabrication of uniform network electrodes by spin-coating and simultaneous tuning of parameters such as bundle size and density. After treatment in thionyl chloride, electrodes have sheet resistances competitive with other reported carbon nanotube based transparent electrodes to date. PMID:19422197

  17. High-performance dual-action polymer-TiO2 nanocomposite films via melting processing.

    PubMed

    Kubacka, Anna; Serrano, Cristina; Ferrer, Manuel; Lünsdorf, Heinrich; Bielecki, Piotr; Cerrada, María Luisa; Fernández-García, Marta; Fernández-García, Marcos

    2007-08-01

    The incorporation of TiO2 nanoparticles into (ethylene-vinyl alcohol)-based food packaging copolymers affords an opportunity to synthesize polymer-based nanocomposite materials with novel and powerful biocidal and photodegradability properties, resulting in the production of an advanced, environmentally friendly system prepared using a cost-effective synthesis method via a simple melt compounding without the need of a coupling agent incorporation. The presented materials display an unprecedented performance in the killing of both Gram positive and negative bacteria without the necessity of being release to the media and an easy degradation under sunlight which favorably competes with biodegradation procedures. PMID:17625905

  18. Covalently Functionalized Graphene by Radical Polymers for Graphene-Based High-Performance Cathode Materials.

    PubMed

    Li, Yongjun; Jian, Zukai; Lang, Meidong; Zhang, Chunming; Huang, Xiaoyu

    2016-07-13

    Polymer-functionalized graphene sheets play an important role in graphene-containing composite materials. Herein, functionalized graphene sheets covalently linked with radical polymer, graphene-graft-poly(2,2,6,6-tetramethylpiperidin-1-oxyl-4-yl methacrylate) (G-g-PTMA), were prepared via surface-initiated atom transfer radical polymerization (SI-ATRP). A composite cathode with G-g-PTMA as major active material and reduced graphene oxide (RGO) as conductive additive was fabricated via a simple dispersing-depositing process, and this composite cathode exhibited a relatively high specific capacity up to 466 mAh g(-1) based on the mass of PTMA, which is much higher than the theoretical capacity of PTMA. This extraordinary electrochemical performance is attributed to the fast one-electron redox reaction of G-g-PTMA and surface Faradaic reaction of RGO boosted by G-g-PTMA, which suggested that G-g-PTMA sheets play a dual role in the composite materials, that is, on the one hand provided the fast one-electron redox reaction of PTMA and on the other hand worked as nanofiller for facilitating the surface Faradaic reaction-based lithium storage of RGO. PMID:27328986

  19. High performance NH 3 gas sensor based on ordered conducting polymer ultrathin film

    NASA Astrophysics Data System (ADS)

    Xu, Jianhua; Jiang, Yadong; Yu, Junsheng; Yang, Yajie; Ying, Zhihua

    2008-02-01

    Conducting polymer ultrathin film shows promising future for gas sensor application due to their high conductivity and excellent doping/dedoping performance. In this work, based on an modified Langmuir-Blodgett film method, ultrathin conducting poly(3,4-ethylene dioxythiophene) (PEDOT) film was fabricated. The PEDOT ultathin film was characterized by UV-Vis absorption spectrum, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) techniques. The results showed small PEDOT grains distributed in polymer LB films after the polymerization of monomer. This ultrathin film exhibited an electrical conductivity about 1.2 Scm -1, and the conductivity increased and decreased to 16.8 and 0.03 Scm -1 after doping and dedoping treatment. The interaction or response of films coated QCM to NH 3 have been tested and it has been found that sensitivity of the composite films on QCM showed better sensitivity than bulk material. To the same analyte concentration, it increased with the increasing number of LB layers coated onto QCMS before 80 layers, and then a decrease of sensitivity of QCM was observed after the layer number exceeded 80 layers. The interaction mechanisms between the ultrathin film and analyte vapor were also included.

  20. Upgrading low-quality natural gas by means of highly performing polymer membranes

    SciTech Connect

    Stern, S.A.

    1995-04-01

    The objective of the present study is to assess the potential usefulness of membrane separation processes for removing acid gases (CO{sub 2} and H{sub 2}S) from low-quality natural gas. Nonporous {open_quotes}dense{close_quotes} (homogeneous) membranes made from new, highly gas-selective polymers are being evaluated for this purpose. The project comprises gas permeability and separation measurements with CH{sub 4}/CO{sub 2} and CH{sub 4}/CO{sub 2}/H{sub 2}S mixtures having compositions in ranges found in low-quality natural gas. Process design studies and economic evaluations are also being made to determine the cost of upgrading low-quality natural gas with the most promising membranes. Until recently, the membranes used in this study were made from new types of polyimides synthesized in our laboratory. The polyimide membranes were found to exhibit a very high CO{sub 2}/CH{sub 4} selectivity but a relatively low H{sub 2}S/CH{sub 4} selectivity. Therefore, different types of polymers that exhibit a high H{sub 2}S/CH{sub 4} selectivity are also being evaluated.

  1. High performance radiation-grafted membranes and electrodes for polymer electrolyte fuel cells

    SciTech Connect

    Nezu, Shinji; Seko, Hideo; Gondo, Masaki; Ito, Naoki

    1996-12-31

    Polymer electrolyte fuel cells (PEFC) have attracted much attention for stationary and electric vehicle applications. Much progress has been made to improve their performance recently. However there are still several problems to overcome for commercialization. Among them, the cost of polymer electrolyte membranes seems to be rather critical, because a cost estimate of a practical fuel cell stack shows that the membrane cost must be reduced at least by two orders of magnitude based on current perfluorosulfonic acid membranes eg. Nafion{reg_sign}. Thus the development of new membrane materials is strongly desired. Styrene grafted tetrafluoroethylene-hexafluoropropylene copolymer (FEP) membranes have been studied for a fuel cell application by G. Scherer et al. These authors showed that membranes obtained by radiation grafting served as an alternative membrane for fuel cells although there were several problems to overcome in the future. These problems include shorter life time which was concluded to result from the decomposition of grafted polystyrene side chains. We report here the performance of our fuel cells which were fabricated from our radiation grafted membranes (IMRA MEMBRANE) and gas diffusion electrodes.

  2. Polymer-sorted semiconducting carbon nanotube networks for high-performance ambipolar field-effect transistors.

    PubMed

    Schiessl, Stefan P; Fröhlich, Nils; Held, Martin; Gannott, Florentina; Schweiger, Manuel; Forster, Michael; Scherf, Ullrich; Zaumseil, Jana

    2015-01-14

    Efficient selection of semiconducting single-walled carbon nanotubes (SWNTs) from as-grown nanotube samples is crucial for their application as printable and flexible semiconductors in field-effect transistors (FETs). In this study, we use atactic poly(9-dodecyl-9-methyl-fluorene) (a-PF-1-12), a polyfluorene derivative with asymmetric side-chains, for the selective dispersion of semiconducting SWNTs with large diameters (>1 nm) from plasma torch-grown SWNTs. Lowering the molecular weight of the dispersing polymer leads to a significant improvement of selectivity. Combining dense semiconducting SWNT networks deposited from an enriched SWNT dispersion with a polymer/metal-oxide hybrid dielectric enables transistors with balanced ambipolar, contact resistance-corrected mobilities of up to 50 cm(2)·V(-1)·s(-1), low ohmic contact resistance, steep subthreshold swings (0.12-0.14 V/dec) and high on/off ratios (10(6)) even for short channel lengths (<10 μm). These FETs operate at low voltages (<3 V) and show almost no current hysteresis. The resulting ambipolar complementary-like inverters exhibit gains up to 61. PMID:25493421

  3. High Performance Electroactive Polymer Actuators Based on Sulfonated Block Copolymers Comprising Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Kim, Onnuri; Park, Moon Jeong

    2015-03-01

    Electroactive polymer (EAP) actuators that show reversible deformation under external electric stimulus have attracted great attention toward a range of biomimetic applications such as microsensors and artificial muscles. Key challenges to advance the technologies can be placed on the achievement of fast response time, low driving voltage, and durable operation in air. In present study, we are motivated to solve these issues by employing self-assembled block copolymers containing ionic liquids (ILs) as polymer layers in the actuator based on knowledge of factors affecting electromechanical properties of actuators. By controlling the block architecture and molecular weight of block copolymers, bending strain and durability were controlled in a straightforward manner. It has also been revealed that the type of IL makes impact on the EAP actuator performance by determining ion migration dynamics. Our actuators demonstrated large bending strains (up to 4%) under low voltages of 1-3V, which far exceeds the best performance of other EAP actuators reported in the literature. To underpin the molecular-level understanding of actuation mechanisms underlying the improved performance, we carried out in situ spectroscopy and in situ scattering experiments under actuation.

  4. Polymer-Sorted Semiconducting Carbon Nanotube Networks for High-Performance Ambipolar Field-Effect Transistors

    PubMed Central

    2014-01-01

    Efficient selection of semiconducting single-walled carbon nanotubes (SWNTs) from as-grown nanotube samples is crucial for their application as printable and flexible semiconductors in field-effect transistors (FETs). In this study, we use atactic poly(9-dodecyl-9-methyl-fluorene) (a-PF-1-12), a polyfluorene derivative with asymmetric side-chains, for the selective dispersion of semiconducting SWNTs with large diameters (>1 nm) from plasma torch-grown SWNTs. Lowering the molecular weight of the dispersing polymer leads to a significant improvement of selectivity. Combining dense semiconducting SWNT networks deposited from an enriched SWNT dispersion with a polymer/metal-oxide hybrid dielectric enables transistors with balanced ambipolar, contact resistance-corrected mobilities of up to 50 cm2·V–1·s–1, low ohmic contact resistance, steep subthreshold swings (0.12–0.14 V/dec) and high on/off ratios (106) even for short channel lengths (<10 μm). These FETs operate at low voltages (<3 V) and show almost no current hysteresis. The resulting ambipolar complementary-like inverters exhibit gains up to 61. PMID:25493421

  5. Free-Standing Conducting Polymer Films for High-Performance Energy Devices.

    PubMed

    Li, Zaifang; Ma, Guoqiang; Ge, Ru; Qin, Fei; Dong, Xinyun; Meng, Wei; Liu, Tiefeng; Tong, Jinhui; Jiang, Fangyuan; Zhou, Yifeng; Li, Ke; Min, Xue; Huo, Kaifu; Zhou, Yinhua

    2016-01-18

    Thick, uniform, easily processed, highly conductive polymer films are desirable as electrodes for solar cells as well as polymer capacitors. Here, a novel scalable strategy is developed to prepare highly conductive thick poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (HCT-PEDOT:PSS) films with layered structure that display a conductivity of 1400 S cm(-1) and a low sheet resistance of 0.59 ohm sq(-1). Organic solar cells with laminated HCT-PEDOT:PSS exhibit a performance comparable to the reference devices with vacuum-deposited Ag top electrodes. More importantly, the HCT-PEDOT:PSS film delivers a specific capacitance of 120 F g(-1) at a current density of 0.4 A g(-1). All-solid-state flexible symmetric supercapacitors with the HCT-PEDOT:PSS films display a high volumetric energy density of 6.80 mWh cm(-3) at a power density of 100 mW cm(-3) and 3.15 mWh cm(-3) at a very high power density of 16160 mW cm(-3) that outperforms previous reported solid-state supercapacitors based on PEDOT materials. PMID:26630234

  6. New Approach to Ceramic/Metal-Polymer Multilayered Coatings for High Performance Dry Sliding Applications

    NASA Astrophysics Data System (ADS)

    Rempp, A.; Killinger, A.; Gadow, R.

    2012-06-01

    The combination of thermally sprayed hard coatings with a polymer based top coat leads to multilayered coating systems with tailored functionalities concerning wear resistance, friction, adhesion, wettability or specific electrical properties. The basic concept is to combine the mechanical properties of the hard base coating with the tribological or chemical abilities of the polymer top coat suitable for the respective application. This paper gives an overview of different types of recently developed multilayer coatings and their application in power transmission under dry sliding conditions. State of the art coatings for dry sliding applications in power transmission are mostly based on thin film coatings like diamond-like carbon or solid lubricants, e.g. MoS2. A new approach is the combination of thin film coatings with combined multilayer coatings. To evaluate the capability of these tribological systems, a multi-stage investigation has been carried out. In the first stage the performance of the sliding lacquers and surface topography of the steel substrate has been evaluated. In the following stage thermally sprayed hard coatings were tested in combination with different sliding lacquers. Wear resistance and friction coefficients of combined coatings were determined using a twin disc test-bed.

  7. High-performance inverted polymer solar cells based on thin copper film

    NASA Astrophysics Data System (ADS)

    Luo, Guoping; Cheng, Xiaoping; He, Zhicai; Wu, Hongbin; Cao, Yong

    2015-01-01

    We report the fabrication of cost-effective indium-free polymer solar cells (PSCs) with an inverted structure that incorporates an ultrathin copper (Cu) film as a bottom cathode via thermal evaporation. The average optical transmittance of the 15-nm Cu coated glass substrate in the visible region of the spectrum was found to be around 80% with a highest value of 84.5%. The Cu electrode was modified by an interfacial layer of an alcohol-/water-soluble conjugated polymer, poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) interlayer to ensure a very smooth surface. Upon the use of the PFN interfacial layer, the work function of Cu was decreased from 4.68 to 4.31 eV, which can form an Ohmic contact with photoactive layer and facilitate electrode transport and extraction. As a result, a power conversion efficiency of 3.6% was achieved when poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] and a [6,6]-phenyl C71-butyric acid methyl ester blend were utilized as the photoactive layers, demonstrating that the thermally evaporated Cu thin-film electrode can be a promising candidate to replace indium tin oxide for highly efficient PSCs.

  8. High-performance polymers from nature: catalytic routes and processes for industry.

    PubMed

    Walther, Guido

    2014-08-01

    It is difficult to imagine life today without polymers. However, most chemicals are almost exclusively synthesized from petroleum. With diminishing oil reserves, establishing an industrial process to transform renewables into high-value chemicals may be more challenging than running a car without gasoline. This is due to the difficulty in setting up processes that are novel, profitable, and environmentally benign at the same time. Additionally, the quest for sustainability of renewable resources should be based on incorporating ethical considerations in the development of plans that utilize feedstocks intended for human nutrition and health. Thus, it is important to use bio-energy containing renewable resources in the most efficient way. This Concept goes beyond the synthesis of monomers and provides insights for establishing an industrial process that transforms renewable resources into high-value chemicals, and it describes careful investigations that are of paramount importance, including evaluations from an economical and an ecological perspective. The synthesis of monomers suitable for polymer production from renewable resources would ideally be accompanied by a reduction in CO2 emission and waste, through the complete molecular utilization of the feedstock. This Concept advocates the drop-in strategy, and is guided by the example of catalytically synthesized dimethyl 1,19-nonadecanedioate and its α,ω-functionalized derivatives. With respect to the Twelve Principles of Green Chemistry, this Concept describes a technological leap forward for a sustainable green chemical industry. PMID:25049162

  9. A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, Tianchi; Shao, Rong; Chen, Song; He, Xuemei; Qiao, Jinli; Zhang, Jiujun

    2015-10-01

    The past two decades have witnessed many efforts to develop radiation-grafted alkaline membranes for alkaline PEM fuel cell applications, as such membranes have certain advantages over other kinds of alkaline membranes, including well-controlled composition, functionality, and other promising properties. To facilitate research and development in this area, the present paper reviews radiation-grafted alkaline membranes. We examine their synthesis/fabrication/characterization, membrane material selection, and theoretical approaches for fundamental understanding. We also present detailed examinations of their application in fuel cell in terms of the working principles of the radiation grafting process, the fabrication of MEAs using radiation-grafted membranes, the membranes' corresponding performance in alkaline PEM fuel cells, as well as performance optimization. The paper also summarizes the challenges and mitigation strategies for radiation-grafted alkaline membranes and their application in PEM fuel cells, presenting an overall picture of the technology as it presently stands.

  10. Thermodynamic study of molecularly imprinted polymer used as the stationary phase in high performance liquid chromatography.

    PubMed

    Denderz, Natalia; Lehotay, Jozef; Cižmárik, Jozef; Cibulková, Zuzana; Simon, Peter

    2012-04-27

    Molecularly imprinted polymer (MIP) and non-imprinted polymer (NIP) on the base of methacrylic acid prepared by a bulk polymerization were used as stationary phases for the HPLC analysis. The thermodynamic processes were carried out to investigate the temperature effects during sorption processes of potential local anaesthetics - morpholinoethyl esters of alkoxy-substituted phenylcarbamic acid (MEsP), local anaesthetic - diperodon, flavonoid - quercetin in methanol, acetonitrile and toluene (porogen) as mobile phases. Mobile phases and corresponding solvents were selected according to the solubility of each analyte. The template was chosen from the set of homologous of MEsP - 2-(morpholin-4-yl)ethyl (2-methoxyphenyl)carbamate. Values of retention factors were measured over the temperature range of 20-60°C. There were determined van't Hoff curves - dependences between logarithms of the retention factors (lnk) and the inverse value of the temperature (1/T). Observed graphs were linear directly indicating that there were no changes of interaction mechanisms in the studied range of temperature. Selectivities (evaluated by the separation factors, α) and sorption selectivities (evaluated by the imprinting factors, IFs) of the MIP and the NIP toward template, related and not-related structures with the template were evaluated chromatographically. The highest separation factors and the imprinting factors (IF=4.73 ± 0.35 for the template) were observed in methanol, not in porogen. Only in the case of quercetin the highest IF was observed in ACN (1.88 ± 0.13). Contrary to expectations, the driving force for the affinity of the target molecules for both of polymers was enthalpic term (with an average of 54%, 82% and 84% contribution of enthalpic term for MeOH, ACN and toluene, respectively on the MIP and 53%, 57% and 65% for MeOH, ACN and toluene, respectively on the NIP). The MIP and NIP were also characterized by attenuated total reflectance analysis Fourier transform

  11. Improving processing and toughness of a high performance composite matrix through an interpenetrating polymer network. VI

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.

    1990-01-01

    A simultaneous semi-interpenetrating polymer network (semi-IPN) concept is presented which combines easy-to-process, but brittle, thermosetting polyimides with tough, but difficult to process, linear thermoplastic polyimides. The combination results in a semi-IPN with the easy processability of a thermoset and good toughness of a thermoplastic. Four simultaneous semi-IPN systems were developed from commercially available NR-150B2 combined with each of the four Thermid materials (LR-600, AL-600, MC-600, and FA-700). It is concluded that there is a significant improvement in resin fracture toughness of Thermid-polyimide-based semi-IPN systems and some improvement in composite microcracking resistance compared to Thermid LR-600. Excellent composite mechanical properties have been achieved. These new semi-IPN materials have the potential to be used as composite matrices, adhesives, and molding materials.

  12. High performance of inverted polymer solar cells with cobalt oxide as hole-transporting layer

    NASA Astrophysics Data System (ADS)

    Wang, Xiangdong; Peng, Qing; Zhu, Weiguo; Lei, Gangtie

    2015-05-01

    Cobalt oxide (II, III) (CoOx) was inserted as efficient hole-transporting interlayer between the active layer and top electrode in inverted polymer solar cells (PSCs) with titanium (diisopropoxide) bis(2, 4-pentanedionate) (TIPD) as an electron selective layer. The work function of CoOx was measured by Kelvin probe and the device performances with different thicknesses of cobalt oxide were studied. The device with CoOx exhibited a remarkable improvement in power conversion efficiency compared with that without CoOx, which indicated that CoOx efficiently prevented the recombination of charge carriers at the organic/top electrode interface. The performance improvement was attributed to the fact that the CoOx thin film can module the Schottky barrier and form an ohmic contact at the organic/metal interface, which makes it a promising hole-transporting layer.

  13. Assessment of microcapsule—catalyst particles healing system in high performance fibre reinforced polymer composite

    NASA Astrophysics Data System (ADS)

    Bolimowski, P. A.; Wass, D. F.; Bond, I. P.

    2016-08-01

    Autonomous self-healing in carbon fibre reinforced polymer (CFRP) is demonstrated using epoxy resin filled microcapsules and a solid-state catalyst. Microcapsules filled with oligomeric epoxy resin (20–450 μm) and particles of Sc(OTf)3 are embedded in an interleave region of a unidirectional CFRP laminate and tested under mode I loading. Double cantilever beam (DCB) test specimens containing variable concentrations of microcapsules and catalyst were prepared, tested and compared to those healed by manual injection with corresponding healing resin formulation. The healing efficiency was evaluated by comparing the maximum peak load recorded on load–displacement curves for pristine and healed specimens. A 44% maximum recovery was observed for specimens containing 10 wt% of solid phase catalyst and 11 wt% of epoxy microcapsules. However, a significant (80%) decrease in initial strain energy release rate (G IC) was observed for specimens with the embedded healing chemistries.

  14. Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors.

    PubMed

    Nielsen, Christian B; Giovannitti, Alexander; Sbircea, Dan-Tiberiu; Bandiello, Enrico; Niazi, Muhammad R; Hanifi, David A; Sessolo, Michele; Amassian, Aram; Malliaras, George G; Rivnay, Jonathan; McCulloch, Iain

    2016-08-17

    The organic electrochemical transistor (OECT), capable of transducing small ionic fluxes into electronic signals in an aqueous environment, is an ideal device to utilize in bioelectronic applications. Currently, most OECTs are fabricated with commercially available conducting poly(3,4-ethylenedioxythiophene) (PEDOT)-based suspensions and are therefore operated in depletion mode. Here, we present a series of semiconducting polymers designed to elucidate important structure-property guidelines required for accumulation mode OECT operation. We discuss key aspects relating to OECT performance such as ion and hole transport, electrochromic properties, operational voltage, and stability. The demonstration of our molecular design strategy is the fabrication of accumulation mode OECTs that clearly outperform state-of-the-art PEDOT-based devices, and show stability under aqueous operation without the need for formulation additives and cross-linkers. PMID:27444189

  15. Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors

    PubMed Central

    2016-01-01

    The organic electrochemical transistor (OECT), capable of transducing small ionic fluxes into electronic signals in an aqueous environment, is an ideal device to utilize in bioelectronic applications. Currently, most OECTs are fabricated with commercially available conducting poly(3,4-ethylenedioxythiophene) (PEDOT)-based suspensions and are therefore operated in depletion mode. Here, we present a series of semiconducting polymers designed to elucidate important structure–property guidelines required for accumulation mode OECT operation. We discuss key aspects relating to OECT performance such as ion and hole transport, electrochromic properties, operational voltage, and stability. The demonstration of our molecular design strategy is the fabrication of accumulation mode OECTs that clearly outperform state-of-the-art PEDOT-based devices, and show stability under aqueous operation without the need for formulation additives and cross-linkers. PMID:27444189

  16. Lignin-based monomers: Utilization in high-performance polymers and the effects of their structures on polymer properties

    NASA Astrophysics Data System (ADS)

    Stanzione, Joseph F., III

    With the uncertainty of petroleum reserves and future crude oil prices, lignocellulosic biomass is becoming an increasingly valuable resource for the sustainable development of fuels, chemicals, and materials, including vinyl ester resins (VERs). Petroleum-based VERs are used to produce polymer composites for a wide variety of commercial applications. Although possessing relatively high moduli, strengths, and glass transition temperatures, commercial VERs typically contain high concentrations of a reactive diluent, such as styrene. However, these reactive diluents are often considered hazardous air pollutants (HAPs), volatile organic compounds (VOCs), and anticipated carcinogens. Moreover, bisphenol-A, which has gained considerable attention due to potential associated health-related issues, is utilized as a precursor in the synthesis of VERs. A green chemistry and engineering approach in the development of new VERs and renewable reactive diluents that are based on lignin is presented in this dissertation. Lignin, which is currently an abundant, renewable waste product of the paper and pulping industry, is primarily burned as a low value fuel. However, lignin has the potential to be a low cost feedstock in future lignocellulosic biorefineries that could yield highly valuable aromatic chemicals (lignin model compounds, LMCs) when strategically depolymerized. The incorporation of aromaticity in a resin's chemical structure is known to improve overall polymer composite performance and the high aromatic content found in lignin is ideal for novel resin development. Highlighted in this dissertation are three projects: (1) the synthesis and characterization of a lignin-based bio-oil resin/reactive diluent, (2) the use of functionalized LMCs as styrene replacements in VERs, and (3) the synthesis and characterization of a vanillin-based resin. Through the use of traditional and new polymer theory coupled with spectroscopic, thermal, and mechanical techniques, structure

  17. Lithium-doped zinc oxide nanowires-polymer composite for high performance flexible piezoelectric nanogenerator.

    PubMed

    Shin, Sung-Ho; Kim, Young-Hwan; Lee, Min Hyung; Jung, Joo-Yun; Seol, Jae Hun; Nah, Junghyo

    2014-10-28

    We present a method to develop high performance flexible piezoelectric nanogenerators (NGs) by employing Li-doped ZnO nanowires (NWs). We synthesized Li-doped ZnO NWs and adopted them to replace intrinsic ZnO NWs with a relatively low piezoelectric coefficient. When we exploited the ferroelectric phase transition induced in Li-doped ZnO NWs, the performance of the NGs was significantly improved and the NG fabrication process was greatly simplified. In addition, our approach can be easily expanded for large-scale NG fabrication. Consequently, the NGs fabricated by our simple method exhibit the excelling output voltage and current, which are stable and reproducible during periodic bending/releasing measurement over extended cycles. In addition, output voltage and current up to ∼ 180 V and ∼ 50 μA, respectively, were obtained in the large-scale NG. The approach introduced here extends the performance limits of ZnO-based NGs and their potentials in practical applications. PMID:25265473

  18. Recycling high-performance carbon fiber reinforced polymer composites using sub-critical and supercritical water

    NASA Astrophysics Data System (ADS)

    Knight, Chase C.

    Carbon fiber reinforced plastics (CFRP) are composite materials that consist of carbon fibers embedded in a polymer matrix, a combination that yields materials with properties exceeding the individual properties of each component. CFRP have several advantages over metals: they offer superior strength to weight ratios and superior resistance to corrosion and chemical attack. These advantages, along with continuing improvement in manufacturing processes, have resulted in rapid growth in the number of CFRP products and applications especially in the aerospace/aviation, wind energy, automotive, and sporting goods industries. Due to theses well-documented benefits and advancements in manufacturing capabilities, CFRP will continue to replace traditional materials of construction throughout several industries. However, some of the same properties that make CFRP outstanding materials also pose a major problem once these materials reach the end of service life. They become difficult to recycle. With composite consumption in North America growing by almost 5 times the rate of the US GDP in 2012, this lack of recyclability is a growing concern. As consumption increases, more waste will inevitably be generated. Current composite recycling technologies include mechanical recycling, thermal processing, and chemical processing. The major challenge of CFRP recycling is the ability to recover materials of high-value and preserve their properties. To this end, the most suitable technology is chemical processing, where the polymer matrix can be broken down and removed from the fiber, with limited damage to the fibers. This can be achieved using high concentration acids, but such a process is undesirable due to the toxicity of such materials. A viable alternative to acid is water in the sub-critical and supercritical region. Under these conditions, the behavior of this abundant and most environmentally friendly solvent resembles that of an organic compound, facilitating the breakdown

  19. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding.

    PubMed

    Yousefi, Nariman; Sun, Xinying; Lin, Xiuyi; Shen, Xi; Jia, Jingjing; Zhang, Biao; Tang, Benzhong; Chan, Mansun; Kim, Jang-Kyo

    2014-08-20

    Nanocomposites that contain reinforcements with preferred orientation have attracted significant attention because of their promising applications in a wide range of multifunctional fields. Many efforts have recently been focused on developing facile methods for preparing aligned graphene sheets in solvents and polymers because of their fascinating properties including liquid crystallinity and highly anisotropic characteristics. Self-aligned in situ reduced graphene oxide (rGO)/polymer nanocomposites are prepared using an all aqueous casting method. A remarkably low percolation threshold of 0.12 vol% is achieved in the rGO/epoxy system owing to the uniformly dispersed, monolayer graphene sheets with extremely high aspect ratios (>30000). The self-alignment into a layered structure at above a critical filler content induces a unique anisotropy in electrical and mechanical properties due to the preferential formation of conductive and reinforcing networks along the alignment direction. Accompanied by the anisotropic electrical conductivities are exceptionally high dielectric constants of over 14000 with 3 wt% of rGO at 1 kHz due to the charge accumulation at the highly-aligned conductive filler/insulating polymer interface according to the Maxwell-Wagner-Sillars polarization principle. The highly dielectric rGO/epoxy nanocomposites with the engineered structure and properties present high performance electromagnetic interference shielding with a remarkable shilding efficiency of 38 dB. PMID:24715671

  20. Carbon nanotube buckypaper to improve fire retardancy of high-temperature/high-performance polymer composites

    NASA Astrophysics Data System (ADS)

    Fu, Xiang; Zhang, Chuck; Liu, Tao; Liang, Richard; Wang, Ben

    2010-06-01

    Mixed single-walled and multi-walled carbon nanotube membrane (buckypaper) was incorporated onto the surface of polyimide/carbon fibre composites via a compression moulding process. Flammability was investigated by cone calorimeter tests under an external radiant heat flux of 50 kW m - 2. The burning residue was analysed with scanning electron microscopy and thermogravimetric analysis. The buckypaper survived the burning test and decreased the peak heat release rate by 40%, reduced the total heat release by 26%, produced 82% less smoke release and resulted in 33% less mass loss. The directly mixed carbon nanotubes (5 wt% multi-walled carbon nanotubes) yielded 38% less peak heat release rate, only 3.7% less total heat release, 28% more smoke release and no change in mass loss. Compared to direct mixing of carbon nanotubes into the resin, the use of buckypaper is more efficient in fire retardancy improvement; it yielded further delay of ignition, lower heat release rate, further reduced heat release, lower mass loss and less smoke release. The buckypaper worked as an excellent physical barrier, obstructing the flow of heat and oxygen to the inner polymer resin. The as-prepared buckypaper greatly improved the fire retardancy of polyimide matrix carbon fibre composites.

  1. Carbon nanotube buckypaper to improve fire retardancy of high-temperature/high-performance polymer composites.

    PubMed

    Fu, Xiang; Zhang, Chuck; Liu, Tao; Liang, Richard; Wang, Ben

    2010-06-11

    Mixed single-walled and multi-walled carbon nanotube membrane (buckypaper) was incorporated onto the surface of polyimide/carbon fibre composites via a compression moulding process. Flammability was investigated by cone calorimeter tests under an external radiant heat flux of 50 kW m(-2). The burning residue was analysed with scanning electron microscopy and thermogravimetric analysis. The buckypaper survived the burning test and decreased the peak heat release rate by 40%, reduced the total heat release by 26%, produced 82% less smoke release and resulted in 33% less mass loss. The directly mixed carbon nanotubes (5 wt% multi-walled carbon nanotubes) yielded 38% less peak heat release rate, only 3.7% less total heat release, 28% more smoke release and no change in mass loss. Compared to direct mixing of carbon nanotubes into the resin, the use of buckypaper is more efficient in fire retardancy improvement; it yielded further delay of ignition, lower heat release rate, further reduced heat release, lower mass loss and less smoke release. The buckypaper worked as an excellent physical barrier, obstructing the flow of heat and oxygen to the inner polymer resin. The as-prepared buckypaper greatly improved the fire retardancy of polyimide matrix carbon fibre composites. PMID:20463386

  2. Synergistic Ultrathin Functional Polymer-Coated Carbon Nanotube Interlayer for High Performance Lithium-Sulfur Batteries.

    PubMed

    Kim, Joo Hyun; Seo, Jihoon; Choi, Junghyun; Shin, Donghyeok; Carter, Marcus; Jeon, Yeryung; Wang, Chengwei; Hu, Liangbing; Paik, Ungyu

    2016-08-10

    Lithium-sulfur (Li-S) batteries have been intensively investigated as a next-generation rechargeable battery due to their high energy density of 2600 W·h kg(-1) and low cost. However, the systemic issues of Li-S batteries, such as the polysulfide shuttling effect and low Coulombic efficiency, hinder the practical use in commercial rechargeable batteries. The introduction of a conductive interlayer between the sulfur cathode and separator is a promising approach that has shown the dramatic improvements in Li-S batteries. The previous interlayer work mainly focused on the physical confinement of polysulfides within the cathode part, without considering the further entrapment of the dissolved polysulfides. Here, we designed an ultrathin poly(acrylic acid) coated single-walled carbon nanotube (PAA-SWNT) film as a synergic functional interlayer to address the issues mentioned above. The designed interlayer not only lowers the charge transfer resistance by the support of the upper current collector but also localizes the dissolved polysulfides within the cathode part by the aid of a physical blocking and chemical bonding. With the synergic combination of PAA and SWNT, the sulfur cathode with a PAA-SWNT interlayer maintained higher capacity retention over 200 cycles and achieved better rate retention than the sulfur cathode with a SWNT interlayer. The proposed approach of combining a functional polymer and conductive support material can provide an optimiztic strategy to overcome the fundamental challenges underlying in Li-S batteries. PMID:27437758

  3. Recycling high-performance carbon fiber reinforced polymer composites using sub-critical and supercritical water

    NASA Astrophysics Data System (ADS)

    Knight, Chase C.

    Carbon fiber reinforced plastics (CFRP) are composite materials that consist of carbon fibers embedded in a polymer matrix, a combination that yields materials with properties exceeding the individual properties of each component. CFRP have several advantages over metals: they offer superior strength to weight ratios and superior resistance to corrosion and chemical attack. These advantages, along with continuing improvement in manufacturing processes, have resulted in rapid growth in the number of CFRP products and applications especially in the aerospace/aviation, wind energy, automotive, and sporting goods industries. Due to theses well-documented benefits and advancements in manufacturing capabilities, CFRP will continue to replace traditional materials of construction throughout several industries. However, some of the same properties that make CFRP outstanding materials also pose a major problem once these materials reach the end of service life. They become difficult to recycle. With composite consumption in North America growing by almost 5 times the rate of the US GDP in 2012, this lack of recyclability is a growing concern. As consumption increases, more waste will inevitably be generated. Current composite recycling technologies include mechanical recycling, thermal processing, and chemical processing. The major challenge of CFRP recycling is the ability to recover materials of high-value and preserve their properties. To this end, the most suitable technology is chemical processing, where the polymer matrix can be broken down and removed from the fiber, with limited damage to the fibers. This can be achieved using high concentration acids, but such a process is undesirable due to the toxicity of such materials. A viable alternative to acid is water in the sub-critical and supercritical region. Under these conditions, the behavior of this abundant and most environmentally friendly solvent resembles that of an organic compound, facilitating the breakdown

  4. Side Chain Engineering of Naphthalenediimide-Based N-type Polymer for High-Performance All-Polymer Solar Cell near 6% Efficiency

    NASA Astrophysics Data System (ADS)

    Lee, Changyeon; Kang, Hyunbum; Lee, Wonho; Kim, Taesu; Kim, Ki-Hyun; Woo, Han Young; Wang, Cheng; Kim, Bumjoon; Pusan National University (PNU) Collaboration; Lawrence Berkeley National Laboratory Collaboration

    2015-03-01

    Despite the attractive features of all-polymer solar cells (all-PSCs), i.e., enhanced absorption coefficients, the tunability of their energetic and chemical properties and their thermal and mechanical stabilities, they still face the great challenge of having significantly low power conversion efficiency (PCE) values of only 3-5%. The prominent origins of the poor efficiency of all-PSCs are the undesirable features of the bulk-heterojunction (BHJ) blend morphology including the phase-separated large-scale domain size, reduced ordering of the polymer chains. Tuning side alkyl chains of conjugated polymers is an effective route for manipulating the blend morphology in BHJ type solar cells. However, the role of side chains in all-PSCs is poorly understood. Herein, we report high-performing all-PSCs with 5.96% efficiency by developing a series of naphthalenediimide (NDI)-based polymer acceptors with different alkyl side chains. We demonstrated that the use of the PNDIT with hexyldecyl side chains produced highly-ordered polymer stackings with strong face-on geometry and at the same time, forming the optimal BHJ morphology with finely separated phase domains, all of which contributed together to induce well-balanced μe/ μh ratio and generate efficient all-PSCs with PCEs near 6%.

  5. A novel multicomponent redox polymer nanobead based high performance non-enzymatic glucose sensor.

    PubMed

    Gopalan, A I; Muthuchamy, N; Komathi, S; Lee, K-P

    2016-10-15

    The fabrication of a highly sensitive electrochemical non-enzymatic glucose sensor based on copper nanoparticles (Cu NPs) dispersed in a graphene (G)-ferrocene (Fc) redox polymer multicomponent nanobead (MCNB) is reported. The preparation of MCNB involves three major steps, namely: i) the preparation of a poly(aniline-co-anthranilic acid)-grafted graphene (G-PANI(COOH), ii) the covalent linking of ferrocene to G-PANI(COOH) via a polyethylene imine (PEI), and iii) the electrodeposition of Cu NPs. The prepared MCNB (designated as G-PANI(COOH)-PEI-Fc/Cu-MCNB), contains a conductive G-PANI(COOH), electron mediating Fc, and electrocatalytic Cu NPs that make it suitable for ultrasensitive non-enzymatic electrochemical sensing. The morphology, structure, and electro activities of MCNB were characterized. Electrochemical measurements showed that the G-PANI(COOH)-PEI-Fc/Cu-MCNB/GCE modified electrode exhibited good electrocatalytic behavior towards the detection of glucose in a wide linear range (0.50 to 15mM), with a low detection limit (0.16mM) and high sensitivity (14.3µAmM(-1)cm(-2)). Besides, the G-PANI(COOH)-PEI-Fc/Cu-MCNB/GCE sensor electrode did not respond to the presence of electroactive interferrants (such as uric acid, ascorbic acid, and dopamine) and saccharides or carbohydrates (fructose, lactose, d-isoascorbic acid, and dextrin), demonstrating its selectivity towards glucose. The fabricated NEG sensor exhibited high precision for measuring glucose in serum samples, with an average RSD of 4.3% and results comparable to those of commercial glucose test strips. This reliability and stability of glucose sensing indicates that G-PANI(COOH)-PEI-Fc/Cu-MCNB/GCE would be a promising material for the non-enzymatic detection of glucose in physiological fluids. PMID:26584775

  6. High-Performance Electrochromic Devices Based on Poly[Ni(salen)]-Type Polymer Films.

    PubMed

    Nunes, Marta; Araújo, Mariana; Fonseca, Joana; Moura, Cosme; Hillman, Robert; Freire, Cristina

    2016-06-01

    We report the application of two poly[Ni(salen)]-type electroactive polymer films as new electrochromic materials. The two films, poly[Ni(3-Mesalen)] (poly[1]) and poly[Ni(3-MesaltMe)] (poly[2]), were successfully electrodeposited onto ITO/PET flexible substrates, and their voltammetric characterization revealed that poly[1] showed similar redox profiles in LiClO4/CH3CN and LiClO4/propylene carbonate (PC), while poly[2] showed solvent-dependent electrochemical responses. Both films showed multielectrochromic behavior, exhibiting yellow, green, and russet colors according to their oxidation state, and promising electrochromic properties with high electrochemical stability in LiClO4/PC supporting electrolyte. In particular, poly[1] exhibited a very good electrochemical stability, changing color between yellow and green (λ = 750 nm) during 9000 redox cycles, with a charge loss of 34.3%, an optical contrast of ΔT = 26.2%, and an optical density of ΔOD = 0.49, with a coloration efficiency of η = 75.55 cm(2) C(-1). On the other hand, poly[2] showed good optical contrast for the color change from green to russet (ΔT = 58.5%), although with moderate electrochemical stability. Finally, poly[1] was used to fabricate a solid-state electrochromic device using lateral configuration with two figures of merit: a simple shape (typology 1) and a butterfly shape (typology 2); typology 1 showed the best performance with optical contrast ΔT = 88.7% (at λ = 750 nm), coloration efficiency η = 130.4 cm(2) C(-1), and charge loss of 37.0% upon 3000 redox cycles. PMID:27175794

  7. Alkaline degradation studies of anion exchange polymers to enable new membrane designs

    NASA Astrophysics Data System (ADS)

    Nunez, Sean Andrew

    Current performance targets for anion-exchange membrane (AEM) fuel cells call for greater than 95% alkaline stability for 5000 hours at temperatures up to 120 °C. Using this target temperature of 120 °C, an incisive 1H NMR-based alkaline degradation method to identify the degradation products of n-alkyl spacer tetraalkylammonium cations in various AEM polymers and small molecule analogs. Herein, the degradation mechanisms and rates of benzyltrimethylammonium-, n-alkyl interstitial spacer- and n-alkyl terminal pendant-cations are studied on several architectures. These findings demonstrate that benzyltrimethylammonium- and n-alkyl terminal pendant cations are more labile than an n-alkyl interstitial spacer cation and conclude that Hofmann elimination is not the predominant mechanism of alkaline degradation. Additionally, the alkaline stability of an n-alkyl interstitial spacer cation is enhanced when combined with an n-alkyl terminal pendant. Interestingly, at 120 °C, an inverse trend was found in the overall alkaline stability of AEM poly(styrene) and AEM poly(phenylene oxide) samples than was previously shown at 80 °C. Successive small molecule studies suggest that at 120 °C, an anion-induced 1,4-elimination degradation mechanism may be activated on styrenic AEM polymers bearing an acidic alpha-hydrogen. In addition, an ATR-FTIR based method was developed to assess the alkaline stability of solid membranes and any added resistance to degradation that may be due to differential solubilities and phase separation. To increase the stability of anion exchange membranes, Oshima magnesate--halogen exchange was demonstrated as a method for the synthesis of new anion exchange membranes that typically fail in the presence of organolithium or Grignard reagents alone. This new chemistry, applied to non-resinous polymers for the first time, proved effective for the n-akyl interstitial spacer functionalization of poly(phenylene oxide) and poly(styrene- co

  8. Bottom-up synthesis of high-performance nitrogen-enriched transition metal/graphene oxygen reduction electrocatalysts both in alkaline and acidic solution

    NASA Astrophysics Data System (ADS)

    Lai, Qingxue; Gao, Qingwen; Su, Qi; Liang, Yanyu; Wang, Yuxi; Yang, Zhi

    2015-08-01

    Oxygen reduction electrocatalysts with low cost and excellent performance are urgently required for large-scale application in fuel cells and metal-air batteries. Though nitrogen-enriched transition metal/graphene hybrids (N-TM/G, TM = Fe, Co, and Ni and related compounds) have been developed as novel substitutes for precious metal catalysts (PMCs) towards oxygen reduction reaction (ORR), a significant challenge still remains for simple and efficient synthesis of N-TM/G catalysts with satisfactory electrocatalytic behavior. Herein, we demonstrate a universal bottom-up strategy for efficient fabrication of strongly-coupled N-TM/G catalysts. This strategy is implemented via direct polymerization of transition metal phthalocyanine (TMPc) in the two-dimensional confined space of in situ generated g-C3N4 and a subsequent pyrolysis. Such a space-confined bottom-up synthesis route successfully constructs a strongly-coupled triple junction of transition metal-graphitic carbon-nitrogen-doped graphene (TM-GC-NG) with extensive controllability over the specific surface area, nitrogen content/types as well as the states of metal. As a result, the optimized N-Fe/G materials have promising potential as high-performance NPMCs towards ORR both in alkaline and acidic solution.Oxygen reduction electrocatalysts with low cost and excellent performance are urgently required for large-scale application in fuel cells and metal-air batteries. Though nitrogen-enriched transition metal/graphene hybrids (N-TM/G, TM = Fe, Co, and Ni and related compounds) have been developed as novel substitutes for precious metal catalysts (PMCs) towards oxygen reduction reaction (ORR), a significant challenge still remains for simple and efficient synthesis of N-TM/G catalysts with satisfactory electrocatalytic behavior. Herein, we demonstrate a universal bottom-up strategy for efficient fabrication of strongly-coupled N-TM/G catalysts. This strategy is implemented via direct polymerization of transition

  9. Bottom-up synthesis of high-performance nitrogen-enriched transition metal/graphene oxygen reduction electrocatalysts both in alkaline and acidic solution.

    PubMed

    Lai, Qingxue; Gao, Qingwen; Su, Qi; Liang, Yanyu; Wang, Yuxi; Yang, Zhi

    2015-09-21

    Oxygen reduction electrocatalysts with low cost and excellent performance are urgently required for large-scale application in fuel cells and metal-air batteries. Though nitrogen-enriched transition metal/graphene hybrids (N-TM/G, TM = Fe, Co, and Ni and related compounds) have been developed as novel substitutes for precious metal catalysts (PMCs) towards oxygen reduction reaction (ORR), a significant challenge still remains for simple and efficient synthesis of N-TM/G catalysts with satisfactory electrocatalytic behavior. Herein, we demonstrate a universal bottom-up strategy for efficient fabrication of strongly-coupled N-TM/G catalysts. This strategy is implemented via direct polymerization of transition metal phthalocyanine (TMPc) in the two-dimensional confined space of in situ generated g-C3N4 and a subsequent pyrolysis. Such a space-confined bottom-up synthesis route successfully constructs a strongly-coupled triple junction of transition metal-graphitic carbon-nitrogen-doped graphene (TM-GC-NG) with extensive controllability over the specific surface area, nitrogen content/types as well as the states of metal. As a result, the optimized N-Fe/G materials have promising potential as high-performance NPMCs towards ORR both in alkaline and acidic solution. PMID:26282404

  10. Combined capillary electrophoresis and high performance liquid chromatography studies on the kinetics and mechanism of the hydrogen peroxide-thiocyanate reaction in a weakly alkaline solution.

    PubMed

    Hu, Ying; Song, Yanan; Horváth, Attila K; Cui, Yin; Ji, Chen; Zhao, Yuemin; Gao, Qingyu

    2014-03-01

    The hydrogen peroxide-thiocyanate reaction has been reinvestigated by means of capillary electrophoresis and high performance liquid chromatography under weakly alkaline conditions at 25.0±0.1 °C. Concentration-time series of thiocyanate, sulfate and cyanate have been followed by capillary electrophoresis as well as that of thiocyanate and hydrogen peroxide by HPLC. It has been clearly demonstrated that OxSCN(-) (where x=1, 2 and 3) cannot be accumulated in detectable amount in contrast to the results of Christy and Egeberg, hence these species can only be regarded as short-lived intermediates. It has been shown that the overall rate law is first-order with respect to both reactants, but no pH-dependence was observed within the pH range of 8.86-10.08. A simple kinetic model has been proposed to fit all the concentration-time curves simultaneously at five different pHs demonstrating the powerful combination of the experimental techniques CE and HPLC with simultaneous evaluation of kinetic curves. It is also enlightened that the quality of the buffer strongly affects the rate of the overall reaction that increases in the order of application of ammonia, phosphate, carbonate and borate, respectively at a constant ionic strength and pH. PMID:24468335

  11. Polymer Microchips Integrating Solid Phase Extraction and High Performance Liquid Chromatography Using Reversed-Phase Polymethacrylate Monoliths

    PubMed Central

    Liu, Jikun; Chen, C. F.; Tsao, C. W.; Chang, C. C.; Chu, C. C.; DeVoe, D. L.

    2009-01-01

    Polymer microfluidic chips employing in situ photopolymerized polymethacrylate monoliths for high performance liquid chromatography separations of peptides is described. The integrated chip design employs a 15 cm long separation column containing a reversed-phase polymethacrylate monolith as a stationary phase, with its front end seamlessly coupled to a 5 mm long methacrylate monolith which functions as a solid phase extraction (SPE) element for sample cleanup and enrichment, serving to increase both detection sensitivity and separation performance. In addition to sample concentration and separation, solvent splitting is also performed on-chip, allowing the use of a conventional LC pump for the generation of on-chip nano-flow solvent gradients. The integrated platform takes advantage of solvent bonding and a novel high-pressure needle interface which together enable the polymer chips to withstand internal pressures above 20 MPa (~2,900 psi) for efficient pressure-driven HPLC separations. Gradient reversed-phase separation of fluorescein-labeled model peptides and BSA tryptic digest are demonstrated using the microchip HPLC system. On-line removal of free fluorescein and enrichment of labeled proteins are simultaneously achieved using the on-chip SPE column, resulting in a 150-fold improvement in sensitivity and a 10-fold reduction in peak width in the following microchip gradient LC separation. PMID:19267447

  12. High performance p-type organic thin film transistors with an intrinsically photopatternable, ultrathin polymer dielectric layer☆

    PubMed Central

    Petritz, Andreas; Wolfberger, Archim; Fian, Alexander; Krenn, Joachim R.; Griesser, Thomas; Stadlober, Barbara

    2013-01-01

    A high-performing bottom-gate top-contact pentacene-based oTFT technology with an ultrathin (25–48 nm) and electrically dense photopatternable polymeric gate dielectric layer is reported. The photosensitive polymer poly((±)endo,exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE) is patterned directly by UV-exposure (λ = 254 nm) at a dose typical for conventionally used negative photoresists without the need for any additional photoinitiator. The polymer itself undergoes a photo-Fries rearrangement reaction under UV illumination, which is accompanied by a selective cross-linking of the macromolecules, leading to a change in solubility in organic solvents. This crosslinking reaction and the negative photoresist behavior are investigated by means of sol–gel analysis. The resulting transistors show a field-effect mobility up to 0.8 cm2 V−1 s−1 at an operation voltage as low as −4.5 V. The ultra-low subthreshold swing in the order of 0.1 V dec−1 as well as the completely hysteresis-free transistor characteristics are indicating a very low interface trap density. It can be shown that the device performance is completely stable upon UV-irradiation and development according to a very robust chemical rearrangement. The excellent interface properties, the high stability and the small thickness make the PNDPE gate dielectric a promising candidate for fast organic electronic circuits. PMID:24748853

  13. Stability in alkaline aqueous electrolyte of air electrode protected with fluorinated interpenetrating polymer network membrane

    NASA Astrophysics Data System (ADS)

    Bertolotti, Bruno; Messaoudi, Houssam; Chikh, Linda; Vancaeyzeele, Cédric; Alfonsi, Séverine; Fichet, Odile

    2015-01-01

    We developed original anion exchange membranes to protect air electrodes operating in aqueous lithium-air battery configuration, i.e. supplied with atmospheric air and in concentrated aqueous lithium hydroxide. These protective membranes have an interpenetrating polymer network (IPN) architecture combining a hydrogenated cationic polyelectrolyte network based on poly(epichlorohydrin) (PECH) and a fluorinated neutral network based on perfluoropolyether (Fluorolink® MD700). Two phases, each one rich in one of the polymer, are co-continuous in the materials. This morphology allows combining their properties according to the weight proportions of each polymer. Thus, PECH/Fluorolink IPNs show ionic conductivity varying from 1 to 2 mS cm-1, water uptake from 30 to 90 wt.% and anionic transport number from 0.65 to 0.80 when the PECH proportion varies from 40 to 90 wt.%. These membranes have been systematically assembled on air electrodes. Air electrode protected with PECH/Fluorolink 70/30 IPN shows outstanding stability higher than 1000 h, i.e. a 20-fold increase in the lifetime of the non-modified electrode. This efficient membrane/air electrode assembly is promising for development of alkaline electrolyte based storage or production energy systems, such as metal air batteries or alkaline fuel cells.

  14. Interface-designed Membranes with Shape-controlled Patterns for High-performance Polymer Electrolyte Membrane Fuel Cells

    PubMed Central

    Jeon, Yukwon; Kim, Dong Jun; Koh, Jong Kwan; Ji, Yunseong; Kim, Jong Hak; Shul, Yong-Gun

    2015-01-01

    Polymer electrolyte membrane fuel cell is a promising zero-emission power generator for stationary/automotive applications. However, key issues, such as performance and costs, are still remained for an economical commercialization. Here, we fabricated a high-performance membrane electrode assembly (MEA) using an interfacial design based on well-arrayed micro-patterned membranes including circles, squares and hexagons with different sizes, which are produced by a facile elastomeric mold method. The best MEA performance is achieved using patterned Nafion membrane with a circle 2 μm in size, which exhibited a very high power density of 1906 mW/cm2 at 75 °C and Pt loading of 0.4 mg/cm2 with 73% improvement compared to the commercial membrane. The improved performance are attributed to the decreased MEA resistances and increased surface area for higher Pt utilization of over 80%. From these enhanced properties, it is possible to operate at lower Pt loading of 0.2 mg/cm2 with an outstanding performance of 1555 mW/cm2 and even at air/low humidity operations. PMID:26552839

  15. Determination of 5-hydroxymethylfurfural using derivatization combined with polymer monolith microextraction by high-performance liquid chromatography.

    PubMed

    Wu, Jian-Yuan; Shi, Zhi-Guo; Feng, Yu-Qi

    2009-05-27

    A simple and sensitive method for the determination of 5-hydroxymethylfurfural (HMF) in coffee, honey, beer, Coke, and urine by high-performance liquid chromatography (HPLC) is presented. This method is based on the formation of the 2,4-dinitrophenylhydrazone of HMF and subsequent polymer monolith microextraction (PMME) of this derivative. A poly(methacrylic acid-co-ethylene glycol dimethacrylate) (MAA-co-EGDMA) monolithic capillary column was selected as the extraction medium. Several parameters affecting the derivatization of HMF with 2,4-dinitrophenylhydrazine (DNPH) followed by extraction of the derivative were optimized. The procedure is simple and offers high sensitivity and specificity since the derivative of HMF is well preconcentrated by PMME with poly(MAA-co-EGDMA) monolith and well separated from the other components of the samples under examination. The recoveries in coffee, honey, beer, Coke, and urine samples were in the range of 83.9-110.8% spiked at different levels with HMF. The inter- and intraday precisions were less than 10%. The LOD (S/N = 3) and LOQ (S/N = 10) for HMF were 1.0 ng/mL and 3.4 ng/mL, respectively. PMID:19397264

  16. Interface-designed Membranes with Shape-controlled Patterns for High-performance Polymer Electrolyte Membrane Fuel Cells.

    PubMed

    Jeon, Yukwon; Kim, Dong Jun; Koh, Jong Kwan; Ji, Yunseong; Kim, Jong Hak; Shul, Yong-Gun

    2015-01-01

    Polymer electrolyte membrane fuel cell is a promising zero-emission power generator for stationary/automotive applications. However, key issues, such as performance and costs, are still remained for an economical commercialization. Here, we fabricated a high-performance membrane electrode assembly (MEA) using an interfacial design based on well-arrayed micro-patterned membranes including circles, squares and hexagons with different sizes, which are produced by a facile elastomeric mold method. The best MEA performance is achieved using patterned Nafion membrane with a circle 2 μm in size, which exhibited a very high power density of 1906 mW/cm(2) at 75 °C and Pt loading of 0.4 mg/cm(2) with 73% improvement compared to the commercial membrane. The improved performance are attributed to the decreased MEA resistances and increased surface area for higher Pt utilization of over 80%. From these enhanced properties, it is possible to operate at lower Pt loading of 0.2 mg/cm(2) with an outstanding performance of 1555 mW/cm(2) and even at air/low humidity operations. PMID:26552839

  17. Interface-designed Membranes with Shape-controlled Patterns for High-performance Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Jeon, Yukwon; Kim, Dong Jun; Koh, Jong Kwan; Ji, Yunseong; Kim, Jong Hak; Shul, Yong-Gun

    2015-11-01

    Polymer electrolyte membrane fuel cell is a promising zero-emission power generator for stationary/automotive applications. However, key issues, such as performance and costs, are still remained for an economical commercialization. Here, we fabricated a high-performance membrane electrode assembly (MEA) using an interfacial design based on well-arrayed micro-patterned membranes including circles, squares and hexagons with different sizes, which are produced by a facile elastomeric mold method. The best MEA performance is achieved using patterned Nafion membrane with a circle 2 μm in size, which exhibited a very high power density of 1906 mW/cm2 at 75 °C and Pt loading of 0.4 mg/cm2 with 73% improvement compared to the commercial membrane. The improved performance are attributed to the decreased MEA resistances and increased surface area for higher Pt utilization of over 80%. From these enhanced properties, it is possible to operate at lower Pt loading of 0.2 mg/cm2 with an outstanding performance of 1555 mW/cm2 and even at air/low humidity operations.

  18. The effect of polymer-surfactant interaction on the rheological properties of surfactant enhanced alkaline flooding formulations

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1993-02-01

    Surfactant-enhanced, lower pH (weak) alkaline chemicals are effective for mobilizing residual oil. Polymer is used for mobility control because if mobility control is lost, then oil recovery is reduced. The ability to maintain mobility control during surfactant-alkaline flooding can be adversely affected by chemical interaction. In this work, interaction between polymers and surfactants was shown to be affected by pH, ionic strength, crude oil, and the properties of the polymers and surfactants. Polymer-surfactant interaction (phase separation, precipitation, and viscosity loss) occurred between most of the polymers and surfactants that were tested. Polymer-surfactant interaction is difficult to eliminate, and no method was found for completely eliminating interaction. Polymer-surfactant interaction occurred at optimal salinity and below optimal salinity. Polymer-surfactant interaction had an adverse effect on polymer rheology; however, the adverse effect of interaction on polymer rheology was lessened when oil was present. Increasing the pH of chemical systems further reduced the adverse effects of interaction on polymer rheology.

  19. Detailed evaluation of the West Kiehl alkaline-surfactant-polymer field project and it`s application to mature Minnelusa waterfloods. Technical progress report, July--September 1993

    SciTech Connect

    Pitts, M.J.; Surkalo, H.

    1993-01-07

    The objective of ``Detailed Evaluation of the West Kiehl Alkaline-Surfactant-Polymer Field Project and It`s Application to Mature Minnelusa Waterfloods`` is to (1) quantify the incremental oil produced from the West Kiehl alkaline-surfactant-polymer project by classical engineering and numerical simulation techniques, (2) to quantify the effect of chemical slug volume injection on incremental oil in the two swept areas of the field, (3) to determine the economic ramifications of the application of the alkaline-surfactant-polymer technology, (4) to forecast the results of injecting an alkaline-surfactant-polymer solution to mature waterfloods and polymer floods, and (5) to provide the basis for independent operators to book additional oil reserves by using the alkaline-surfactant-polymer technology. This report documents the initial geological and reservoir engineering data gathering. In addition, some of the initial laboratory results are discussed. Some evaluation of the West Kiehl has been published.

  20. Synthesis and characterization of alkaline polyvinyl alcohol and poly(epichlorohydrin) blend polymer electrolytes and performance in electrochemical cells

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Lin, Sheng-Jen; Hsu, Sung-Ting

    Alkaline SPE was obtained from a blend of polyvinyl alcohol (PVA) and poly(epichlorohydrin) (PECH), PVA-PECH, by a solution-cast technique. The PVA host polymer is blended with PECH polymer to provide a polymer electrolyte with improved chemical and mechanical properties. The ionic conductivity of the PVA-PECH polymer electrolytes is between 10 -2 and 10 -3 S cm -1 at room temperature when the blend ratio is varied from 1:0.2 to 1:1. The PVA-PECH polymer was characterized by means of scanning electron microscopy, X-ray diffraction, stress-strain test, cyclic voltammetry, and a.c. impedance spectroscopy. It is found that the polymer electrolytes exhibit good mechanical strength and excellent chemical stability. The electrochemical performance of solid-state Zn-air batteries with various types of the blended polymer electrolyte films is examined by a galvanostatic discharge method.

  1. Determining the role of polymer molecular weight for high-performance all-polymer solar cells: its effect on polymer aggregation and phase separation.

    PubMed

    Kang, Hyunbum; Uddin, Mohammad Afsar; Lee, Changyeon; Kim, Ki-Hyun; Nguyen, Thanh Luan; Lee, Wonho; Li, Yuxiang; Wang, Cheng; Woo, Han Young; Kim, Bumjoon J

    2015-02-18

    The molecular weight of a conjugated polymer is one of the key factors determining the electrical, morphological, and mechanical properties as well as its solubility in organic solvents and miscibility with other polymers. In this study, a series of semicrystalline poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)] (PPDT2FBT) polymers with different number-average molecular weights (M(n)'s) (PPDT2FBT(L), M(n) = 12 kg/mol; PPDT2FBT(M), M(n) = 24 kg/mol; PPDT2FBT(H), M(n) = 40 kg/mol) were synthesized, and their photovoltaic properties as electron donors for all-polymer solar cells (all-PSCs) with poly[[N,N'-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)] (P(NDI2OD-T2)) acceptor were studied. The M(n) effect of PPDT2FBT on the structural, morphological, electrical, and photovoltaic properties was systematically investigated. In particular, tuning the M(n) induced dramatic effects on the aggregation behaviors of the polymers and their bulk heterojunction morphology of all-PSCs, which was thoroughly examined by grazing incident X-ray scattering, resonant soft X-ray scattering, and other microscopy measurements. High M(n) PPDT2FBT(H) promoted a strong "face-on" geometry in the blend film, suppressed the formation of an excessively large crystalline domain, and facilitated molecularly intermixed phases with P(NDI2OD-T2). Therefore, the optimized all-PSCs based on PPDT2FBT(H)/P(NDI2OD-T2) showed substantially higher hole and electron mobilities than those of PPDT2FBT(L)/P(NDI2OD-T2), leading to a power conversion efficiency exceeding 5%, which is one of the highest values for all-PSCs reported thus far. PMID:25605316

  2. High-Performance Polymer Solar Cells with PCE of 10.42% via Al-Doped ZnO Cathode Interlayer.

    PubMed

    Liu, Xiaohui; Li, Xiaodong; Li, Yaru; Song, Changjian; Zhu, Liping; Zhang, Wenjun; Wang, Hai-Qiao; Fang, Junfeng

    2016-09-01

    High-performance polymer solar cells incorporating a low-temperature-processed aluminum-doped zinc oxide (AZO) cathode interlayer are constructed with power conversion efficiency (PCE) of 10.42% based on PTB7-Th:PC71 BM blends (insensitive to the AZO thickness). Moreover, flexible devices on poly(ethylene terephthalate)/indium tin oxide substrates with PCE of 8.93% are also obtained, and welldistributed efficiency and good device stability are demonstrated as well. PMID:27309840

  3. Importance of Solubilizing Group and Backbone Planarity in Low Band Gap Polymers for High Performance Ambipolar field-effect Transistors

    SciTech Connect

    Lee, Joong Suk; Son, Seon Kyoung; Song, Sanghoon; Kim, Hyunjung; Lee, Dong Ryoul; Kim, Kyungkon; Ko, Min Jae; Choi, Dong Hoon; Kim, BongSoo; Cho, Jeong Ho

    2012-06-13

    We investigated the performance of ambipolar field-effect transistors based on a series of alternating low band gap polymers of oligothiophene and diketopyrrolopyrrole (DPP). The polymers contain oligothiophene units of terthiophene [T3] and thiophene-thienothiophene-thiophene [T2TT] and DPP units carrying branched alkyl chains of 2-hexyldecyl [HD] or 2-octyldodecyl [OD]. The structural variation allows us to do a systematic study on the relationship between the interchain stacking/ordering of semiconducting polymers and their resulting device performance. On the basis of synchrotron X-ray diffraction and atomic force microscopy measurements on polymer films, we found that longer branched alkyl side chains, i.e., OD, and longer and more planar oligothiophene, i.e., T2TT, generate the more crystalline structures. Upon thermal annealing, the crystallinity of the polymers was largely improved, and polymers containing a longer branched alkyl chain responded faster because longer alkyl chains have larger cohesive forces than shorter chains. For all the polymers, excellent ambipolar behavior was observed with a maximum hole and electron mobility of 2.2 and 0.2 cm{sup 2} V{sup -1} s{sup -1}, respectively.

  4. Thermo-Controlled in Situ Phase Transition of Polymer-Peptides on Cell Surfaces for High-Performance Proliferative Inhibition.

    PubMed

    Qiao, Sheng-Lin; Wang, Yi; Lin, Yao-Xin; An, Hong-Wei; Ma, Yang; Li, Li-Li; Wang, Lei; Wang, Hao

    2016-07-13

    We herein report a thermocontrolled strategy for realizing in situ conformational transition of polymer-peptide conjugates at cell surfaces to manipulate and monitor HER2 receptor clustering, which finally result in effective breast cancer cell proliferation inhibition. Functional paring motifs (HBP) are covalently linked to a synthetic thermoresponsive polymer PNIPAAm to incorporate temperature control properties to HER2 targeting peptide. At 40 °C, the PNIPAAm polymers collapse and act as a "shield" to block the aggregation of HBP. Upon cooling to 35 °C, polymers are in their extended state and HBP are expose in aqueous and aggregate subsequently with enhanced fluorescence, allowing for promoting and in situ monitoring of receptor clustering. Ultimately, HER2 receptor clustering leads to cytoplasmic domain phosphorylation, which further results in effective cancer cell proliferation inhibition. We envision that this useful approach has the potential to be applied for molecule-targeted tumor therapy. PMID:27348260

  5. Porous silica particles grafted with an amphiphilic side-chain polymer as a stationary phase in reversed-phase high-performance liquid chromatography.

    PubMed

    Shahruzzaman, Md; Takafuji, Makoto; Ihara, Hirotaka

    2015-07-01

    The amphiphilic polymer-grafted silica was newly prepared as a stationary phase in high-performance liquid chromatography. Poly(4-vinylpyridine) with a trimethoxysilyl group at one end was grafted onto porous silica particles and the pyridyl side chains were quaternized with 1-bromooctadecane. The obtained poly(octadecylpyridinium)-grafted silica was characterized by elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy and Brunauer-Emmett-Teller analysis. The degree of quaternization of the pyridyl groups on the obtained stationary phase was estimated to be 70%. The selective retention behaviors of polycyclic aromatic hydrocarbons including some positional isomers were investigated using poly(octadecylpyridinium)-grafted silica as an amphiphilic polymer stationary phase in high-performance liquid chromatography and results were compared with commercially available polymeric octadecylated silica and phenyl-bonded silica columns. The results indicate that the selectivity toward polycyclic aromatic hydrocarbons exhibited by the amphiphilic polymer stationary phase is higher than the corresponding selectivity exhibited by a conventional phenyl-bonded silica column. However, compared with the polymeric octadecylated silica phase, the new stationary phase presents similar retention behavior for polycyclic aromatic hydrocarbons but different retention behavior particularly for positional isomers of disubstituted benzenes as the aggregation structure of amphiphilic polymers on the surface of silica substrate has been altered during mobile phase variation. PMID:25944152

  6. Pilot test of alkaline surfactant polymer flooding in Daqing Oil Field

    SciTech Connect

    Wang Demin; Zhang Zhenhua; Cheng Jiecheng; Yang Jingchun; Gao Shutang; Li Lin

    1996-12-31

    After the success of polymer flooding in Daqing, two alkaline-surfactant-polymer (ASP) floods have been conducted to (1) increase oil recovery further (2) study the feasibility of ASP flooding (3) provide technical and practical experience for expanding the ASP pilots. Inverted five spot pattern is adopted in both pilots. Pilot 1 (PO) is located in the West Central area of Daqing Oil Field and consists of 4 injectors and 9 producers. Pilot 2 (XF) is located in the South area of Daqing Oil Field and has 1 injector and 4 producers. The crude oil of both pilots have high paraffin content and low acid value. Compared to PO, XF has characteristics of lower heterogeneity, lighter oil and higher recovery by water flooding. For each pilot, after extensive screening, an ASP system has been determined. The ASP systems all feature very low surfactant concentration and wide range of ultra low interfacial tension with change of concentration of any of the three components. Core flooding and numerical simulation show more than 20% OOIP incremental recovery by ASP over water flooding for both pilots. By the end of May, 1995, 100% of ASP slug and 100% of the polymer buffer have been injected in the pilots. Production wells showed good responses in terms of large decrease in water cut and increase in oil production. The performance of each pilot has followed the numerical simulation predication very well, or even a bit better. Emulsions showed up in producers, but the emulsions are easy to be broken by a special de-emulsifier. No formation damage and scaling have been detected. The ASP flood pilot tests are technically successful and, based on the preliminary evaluation, economically feasible. Therefore, in the near future, much larger scale ASP flood field tests are going to be performed at several districts in Daqing Oil Field.

  7. Rational material, interface, and device engineering for high-performance polymer and perovskite solar cells (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Jen, Alex K.

    2015-10-01

    The performance of polymer and hybrid solar cells is also strongly dependent on their efficiency in harvesting light, exciton dissociation, charge transport, and charge collection at the metal/organic/metal oxide or the metal/perovskite/metal oxide interfaces. Our laboratory employs a molecular engineering approach to develop processible low band-gap polymers with high charge carrier mobility that can enhance power conversion efficiency of the single junction solar cells to values as high as ~11%. We have also developed several innovative strategies to modify the interface of bulk-heterojunction devices and create new device architectures to fully explore their potential for solar applications. In this talk, the integrated approach of combining material design, interface, and device engineering to significantly improve the performance of polymer and hybrid perovskite photovoltaic cells will be discussed. Specific emphasis will be placed on the development of low band-gap polymers with reduced reorganizational energy and proper energy levels, formation of optimized morphology of active layer, and minimized interfacial energy barriers using functional conductive surfactants. At the end, several new device architectures and optical engineering strategies to make tandem cells and semitransparent solar cells will be discussed to explore the full promise of polymer and perovskite hybrid solar cells.

  8. Detailed evaluation of the West Kiehl alkaline-surfactant-polymer field project and it`s application to mature Minnelusa waterfloods. Technical progress report, January--March 1993

    SciTech Connect

    Pitts, M.J.

    1993-06-01

    The objective of this report is to (1) quantify the incremental oil produced from the West Kiehl alkaline-surfactant-polymer project by classical engineering and numerical simulation techniques,(2) to quantify the effect of chemical slug volume injection on incremental oil in the two swept areas of the field, (3) to determine the economic ramifications of the application of the alkaline-surfactant-polymer technology, (4) to forecast the results of injecting an alkaline-surfactant-polymer solution to mature waterfloods and polymer floods, and (5) to provide the basis for independent operators to book additional oil, reserves by using the alkaline-surfactant-polymer technology. This report document the initial geological and reservoir engineering data gathering. In addition, some of the initial laboratory results are discussed. Some evaluation of the West Kiehl has been published.

  9. Detailed evaluation of the West Kiehl alkaline-surfactant-polymer field project and it`s application to mature Minnelusa waterfloods. Technical progress report, July--September, 1994

    SciTech Connect

    Pitts, M.J.

    1994-12-31

    The objective is to (1) quantify the incremental oil produced from the West Kiehl alkaline-surfactant-polymer project by classical engineering and numerical simulation techniques, (2) quantify the effect of chemical slug volume on incremental oil in the two swept areas of the field, (3) determine the economics of the application of the alkaline-surfactant-polymer technology, (4) forecast the results of injecting an alkaline-surfactant-polymer solution to mature waterfloods and polymer floods, and (5) provide the basis for independent operators to book additional oil reserves by using the alkaline-surfactant-polymer technology. A geological study of 72 Minnelusa field surrounding the West Kiehl is complete. Of the 72 fields, 35 were studied in detail and, from these 35 fields, Prairie Creek South and Simpson Ranch were selected for numerical simulation as representative of Minnelusa waterfloods and polymer floods, respectively. This report documents the numerical simulation waterflood, polymer flood, alkaline-surfactant flood and alkaline-surfactant-polymer flood predictions from the West Kiehl, Simpson Ranch and Prairie Creek South fields.

  10. High Performance and Long-Term Stability in Ambiently Fabricated Segmented Solid-State Polymer Electrochromic Displays.

    PubMed

    Remmele, Julian; Shen, D Eric; Mustonen, Tero; Fruehauf, Norbert

    2015-06-10

    This work reports on the performance of a segmented polymer electrochromic display that was fabricated with solution-based processes in ambient atmosphere. An encapsulation process and the combination of structured wells for the polymer electrochrome and electrolyte layers as well as the use of a preoxidized counter polymer yields high contrasts and fast switching speeds. Asymmetric driving-with respect to time-of the display is investigated for the first time and the degradation effects in the electrochrome layer are analyzed and addressed to yield a stable device exceeding 100,000 switching cycles. A printed circuit board was integrated with the display, allowing the device to be run as a clock, where the segments only required short pulses to switch without the need for a constant current to maintain its state. Such an application pairs well with the advantages of electrochromic polymers, drawing on its high contrast, stability, and ability to maintain its colored or colorless state without the need for a constant power supply, to demonstrate the promise as well as the challenges of developing more sophisticated electrochromic devices. PMID:25978306

  11. Synthesis of Two-dimensional Microporous Carbonaceous Polymer Nanosheets and Their Application as High-performance CO2 Capture Sorbent.

    PubMed

    Zhang, Miao; Liu, Lin; He, Teng; Wu, Guotao; Chen, Ping

    2016-06-21

    The synthesis of two-dimensional (2D) polymer nanosheets with a well-defined microporous structure remains challenging in materials science. Here, a new kind of 2D microporous carbonaceous polymer nanosheets was synthesized through polymerization of a very low concentration of 1,4-dicyanobenzene in molten zinc chloride at 400-500 °C. This type of nanosheets has a thickness in the range of 3-20 nm, well-defined microporosity, a high surface area (∼537 m(2)  g(-1) ), and a large micropore volume (∼0.45 cm(3)  g(-1) ). The microporous carbonaceous polymer nanosheets exhibit superior CO2 sorption capability (8.14 wt % at 298 K and 1 bar) and a relatively high CO2 selectivity toward N2 (25.6). Starting from different aromatic nitrile monomers, a variety of 2D carbonaceous polymer nanosheets can be obtained showing a certain universality of the ionothermal method reported herein. PMID:27124013

  12. High-performance 193-nm photoresist materials based on a new class of polymers containing spaced ester finctionalities

    NASA Astrophysics Data System (ADS)

    Khojasteh, Mahmoud; Chen, K. Rex; Kwong, Ranee W.; Lawson, Margaret C.; Varanasi, Pushkara R.; Patel, Kaushal S.; Kobayashi, Eiichi

    2003-06-01

    ArF lithography has been selected as the imaging method for the 90 nm technology node. Manufacturing related issues will have to be addressed when designing advanced 193 nm resists that are production worthy. Post exposure bake (PEB) sensitivity, dissolution properties and process window are some issues that need continuous improvement. Initially our investigation focused on a cyclic olefin (CO) platform which led us to a better understanding of the relationship between polymer structure and physical properties and how to improve cyclic olefin resist performance. Since then we have developed a new class of acrylate polymers with pendant "spaced ester" functionality. We have investigated the potential use of "spaced ester" functionality on improving the lithographic performance of CO and acrylate resist platforms. We have found that with "spaced ester" as pending group in CO polymer structures, it can lower the Tg and improve the dissolution properties of the CO resists. Resists formulated with acrylate containing "spaced ester" group exhibit excellent PEB temperature sensitivity (1 nm/°C), and are soluble in PGMEA. In addition, we have demonstrated sub-100 nm resolution with excellent process window through formulation optimization for acrylate based resists. This paper will focus on the "spaced ester" based polymer design, material properties; resist characteristics, and the lithographic performance for logic dense line applications.

  13. Determination of Proanthocyanidin A2 Content in Phenolic Polymer Isolates by Reversed-Phase High Performance Liquid Chromatography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article summarizes the development of an analytical method for the determination of proanthocyanidin (PAC) A2 in phenolic polymer isolates following acid-catalyzed degradation in the presence of excess phloroglucinol. Isolates from cranberry juice concentrate (CJC) were extensively characterize...

  14. High-Performance Flexible Solid-State Supercapacitor with an Extended Nanoregime Interface through in Situ Polymer Electrolyte Generation.

    PubMed

    Anothumakkool, Bihag; Torris A T, Arun; Veeliyath, Sajna; Vijayakumar, Vidyanand; Badiger, Manohar V; Kurungot, Sreekumar

    2016-01-20

    Here, we report an efficient strategy by which a significantly enhanced electrode-electrolyte interface in an electrode for supercapacitor application could be accomplished by allowing in situ polymer gel electrolyte generation inside the nanopores of the electrodes. This unique and highly efficient strategy could be conceived by judiciously maintaining ultraviolet-triggered polymerization of a monomer mixture in the presence of a high-surface-area porous carbon. The method is very simple and scalable, and a prototype, flexible solid-state supercapacitor could even be demonstrated in an encapsulation-free condition by using the commercial-grade electrodes (thickness = 150 μm, area = 12 cm(2), and mass loading = 7.3 mg/cm(2)). This prototype device shows a capacitance of 130 F/g at a substantially reduced internal resistance of 0.5 Ω and a high capacitance retention of 84% after 32000 cycles. The present system is found to be clearly outperforming a similar system derived by using the conventional polymer electrolyte (PVA-H3PO4 as the electrolyte), which could display a capacitance of only 95 F/g, and this value falls to nearly 50% in just 5000 cycles. The superior performance in the present case is credited primarily to the excellent interface formation of the in situ generated polymer electrolyte inside the nanopores of the electrode. Further, the interpenetrated nature of the polymer also helps the device to show a low electron spin resonance and power rate and, most importantly, excellent shelf-life in the unsealed flexible conditions. Because the nature of the electrode-electrolyte interface is the major performance-determining factor in the case of many electrochemical energy storage/conversion systems, along with the supercapacitors, the developed process can also find applications in preparing electrodes for the devices such as lithium-ion batteries, metal-air batteries, polymer electrolyte membrane fuel cells, etc. PMID:26697922

  15. Class-specific molecularly imprinted polymers for the selective extraction and determination of sulfonylurea herbicides in maize samples by high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    She, Yong-Xin; Cao, Wei-Qiang; Shi, Xiao-Mei; Lv, Xiao-Ling; Liu, Jia-Jia; Wang, Rong-Yan; Jin, Fen; Wang, Jing; Xiao, Hang

    2010-08-01

    A novel method based on the molecularly imprinted solid-phase extraction (MISPE) procedure has been developed for the simultaneous determination of concentrations of sulfonylurea herbicides such as chlorsulfuron (CS), monosulfuron (MNS), and thifensulfuron methyl (TFM) in maize samples by liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS). The molecularly imprinted polymer (MIP) for sulfonylurea herbicides was synthesized by precipitation polymerization using chlorsulfuron as the template molecule, 2-(diethylamino)ethyl methacrylate (DEAMA) as the functional monomer, and trimethylolpropane trimethacrylate (TRIM) as the cross-linker. The selectivities of the chlorsulfuron template and its analogs on the molecularly imprinted polymer were evaluated by high-performance liquid chromatography (HPLC). The extraction and purification procedures for the solid-phase extraction (SPE) cartridge with a molecularly imprinted polymer as the adsorbent for the selected sulfonylurea herbicides were then established. A molecularly imprinted solid-phase extraction method followed by high-performance liquid chromatography-tandem mass spectrometry for the determination of chlorsulfuron, monosulfuron, and thifensulfuron methyl was also established. The mean recoveries of these compounds in maize were in the range 75-110% and the limits of detection (LOD) of chlorsulfuron, monosulfuron, and thifensulfuron methyl were 0.02, 0.75, and 1.45 microg kg(-1), respectively. It was demonstrated that the MISPE-HPLC-MS/MS method could be applied to the determination of chlorsulfuron, monosulfuron, and thifensulfuron methyl in maize samples. PMID:20598653

  16. Syntheses, structural analyses and luminescent property of four alkaline-earth coordination polymers

    SciTech Connect

    Zhang, Sheng; Qu, Xiao-Ni; Xie, Gang; Wei, Qing; Chen, San-Ping

    2014-02-15

    Four alkaline-earth coordination polymers, [Ba(Pzdc)(H{sub 2}O)]{sub n} (1), [Ba(Pzdc)]{sub n} (2), [AgSr(Pzdc)(NO{sub 3})(H{sub 2}O)]{sub n} (3), [Ag{sub 2}Ca(Pzdc){sub 2}(H{sub 2}O)]{sub n} (4) (H{sub 2}Pzdc=2, 3-pyrazinedicarboxylic acid) have been synthesized and characterized by single-crystal X-ray diffraction. Compounds 1 and 2 afford 2D layer networks generated by one-dimensional chains containing the [Ba{sub 2}O{sub 11}N] units. Compound 3 is of 2D mixed-metal coordination network formed by one-dimensional chain units, while 4 is of a 3D heterometallic framework. Interestingly, 1 and 2 can undergo reversible SCSC structural transformation upon dehydration/rehydration of coordinated water molecules. In addition, the π–π stacking interactions dominate fluorescent properties of compounds 1 and 2. - Graphical abstract: Four new coordination polymers [Ba(Pzdc)(H{sub 2}O)]{sub n} (1), [Ba(Pzdc)]{sub n} (2), [AgSr(Pzdc)(NO{sub 3})(H{sub 2}O)]{sub n} (3), [Ag{sub 2}Ca(Pzdc){sub 2}(H{sub 2}O)]{sub n} (4) (H{sub 2}Pzdc=2, 3-pyrazinedicarboxylic acid) have been synthesized. Compounds 1–3 display 2D topology structures and compound 4 exhibits a 3D topology structure. Fortunately, 1 and 2 undergo reversible dehydration/rehydration of coordinated water molecules. Display Omitted - Highlights: • All structures are generated by 1D chains. • 1 and 2 show reversible dehydration/rehydration of coordinated water molecules. • The π–π stacking interactions dominate fluorescent properties of compounds 1 and 2.

  17. Development of critical molecular weight-property specifications for high performance polymers used as adhesives and composites

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D. E.

    1982-01-01

    The polyimide resin, LARC-160, was prepared from diethyl-3, 3', 4,4'-benzophenone tetracarboxylate, ethyl-5-norbornene-2,3-dicarboxylate and Jeffamine AP-22. The imidization reactions of NE and BTDE were studied by HPLC, C-13-NMR and IR. NE imidizes slowly at 12 C; BTDE imidizes when the resin is heated above 100 C. Both imidization reactions proceed directly to the imide. Neither amic acid is present in significant quantities at any stage of the imidization reactions. The monomer mixture was stored at 12 C for periods up to 14 months. The effects of resin aging at this temperature on the chemical composition of the resin monomer mixture and the imidized polymer formed on curing were investigated. Aging the resin monomer mixture has the effect of partially advancing the imidization reaction. The average size of the cured polymer increases slightly with resin age.

  18. Influence of Hydration Level on Polymer and Water Dynamics in Alkaline Anion Exchange Fuel Cell Membranes

    NASA Astrophysics Data System (ADS)

    Tarver, Jacob; Kim, Jenny; Tyagi, Madhu; Soles, Christopher; Tsai, Tsung-Han; Coughlin, Bryan

    2015-03-01

    Triblock copolymers based on poly(chloromethylstyrene)-b-poly(ethylene)-b-poly(chloromethylstyrene) can be quaternized to different extents to yield anion exchange membranes for alkaline fuel cells. In the absence of moisture, these membranes demonstrate bilayer lamellar morphology. Upon high levels of hydration, however, in-situ small angle neutron scattering reveals the emergence of higher-order diffraction peaks. This phenomena has previously been observed in analogous diblock copolymer-based membranes and has been attributed to the induction of a multilayer lamellar morphology in which selective striping of water occurs in the center of the ion-rich domain. By conducting humidity-resolved quasielastic neutron scattering (QENS) measurements using deuterated water, we are able to isolate differences in the pico- to nanosecond timescale dynamics of the hydrogenated membrane upon hydration. QENS measurements in the presence of a hydrogenated water source subsequently permit deconvolution and isolation of the translational and rotational dynamics of water as a function of relative humidity, revealing spatial and temporal changes in polymer and water motion at high levels of hydration.

  19. C-S@PANI composite with a polymer spherical network structure for high performance lithium-sulfur batteries.

    PubMed

    Wang, Junkai; Yue, Kaiqiang; Zhu, Xiaodan; Wang, Kang L; Duan, Lianfeng

    2016-01-01

    A unique C-S@PANI composite with a conductive polymer spherical network (PSN) has been successfully designed and synthesized by a simple processing approach. The PSN framework is formed at the surface of the oxidized carbon black by conductive polymer self-assembly and grafting, followed by pouring elemental sulfur into the pores of the polymer matrix. As the cathode material for lithium-sulfur batteries, the C-S@PANI composite delivered a high specific capacity of 1453 mA h g(-1) at a 0.1 C current rate and a stable cycling performance of 948 mA h g(-1) after 200 cycles. The composite also demonstrated high capacities of 922 and 581 mA h g(-1) at 50 °C and 0 °C, respectively, after 200 cycles. The conductive PANI coatings were connected with the C-S core-shell composites to form a three-dimensional conducting network, which improves the utilization of the active mass and dual conduction of Li(+) and electrons, while at the same time encapsulating sulfur into the PANI hollow spherical network. The structure effectively inhibits the dissolution and migration of polysulfides into the electrolyte, while improving the cycling stability and the coulombic efficiency of the electrode at high current rates, especially the low temperature electrochemical properties of Li-S batteries. PMID:26608624

  20. One-step Conjugation of Glycyrrhetinic Acid to Cationic Polymers for High-performance Gene Delivery to Cultured Liver Cell.

    PubMed

    Cong, Yue; Shi, Bingyang; Lu, Yiqing; Wen, Shihui; Chung, Roger; Jin, Dayong

    2016-01-01

    Gene therapies represent a promising therapeutic route for liver cancers, but major challenges remain in the design of safe and efficient gene-targeting delivery systems. For example, cationic polymers show good transfection efficiency as gene carriers, but are hindered by cytotoxicity and non-specific targeting. Here we report a versatile method of one-step conjugation of glycyrrhetinic acid (GA) to reduce cytotoxicity and improve the cultured liver cell -targeting capability of cationic polymers. We have explored a series of cationic polymer derivatives by coupling different ratios of GA to polypropylenimine (PPI) dendrimer. These new gene carriers (GA-PPI dendrimer) were systematically characterized by UV-vis,(1)H NMR titration, electron microscopy, zeta potential, dynamic light-scattering, gel electrophoresis, confocal microscopy and flow cytometry. We demonstrate that GA-PPI dendrimers can efficiently load and protect pDNA, via formation of nanostructured GA-PPI/pDNA polyplexes. With optimal GA substitution degree (6.31%), GA-PPI dendrimers deliver higher liver cell transfection efficiency (43.5% vs 22.3%) and lower cytotoxicity (94.3% vs 62.5%, cell viability) than the commercial bench-mark DNA carrier bPEI (25kDa) with cultured liver model cells (HepG2). There results suggest that our new GA-PPI dendrimer are a promising candidate gene carrier for targeted liver cancer therapy. PMID:26902258

  1. Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors

    PubMed Central

    Lei, Yanlian; Deng, Ping; Li, Jun; Lin, Ming; Zhu, Furong; Ng, Tsz-Wai; Lee, Chun-Sing; Ong, Beng S.

    2016-01-01

    Organic field-effect transistors (OFETs) represent a low-cost transistor technology for creating next-generation large-area, flexible and ultra-low-cost electronics. Conjugated electron donor-acceptor (D-A) polymers have surfaced as ideal channel semiconductor candidates for OFETs. However, high-molecular weight (MW) D-A polymer semiconductors, which offer high field-effect mobility, generally suffer from processing complications due to limited solubility. Conversely, the readily soluble, low-MW D-A polymers give low mobility. We report herein a facile solution process which transformed a lower-MW, low-mobility diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene (I) into a high crystalline order and high-mobility semiconductor for OFETs applications. The process involved solution fabrication of a channel semiconductor film from a lower-MW (I) and polystyrene blends. With the help of cooperative shifting motion of polystyrene chain segments, (I) readily self-assembled and crystallized out in the polystyrene matrix as an interpenetrating, nanowire semiconductor network, providing significantly enhanced mobility (over 8 cm2V−1s−1), on/off ratio (107), and other desirable field-effect properties that meet impactful OFET application requirements. PMID:27091315

  2. Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Lei, Yanlian; Deng, Ping; Li, Jun; Lin, Ming; Zhu, Furong; Ng, Tsz-Wai; Lee, Chun-Sing; Ong, Beng S.

    2016-04-01

    Organic field-effect transistors (OFETs) represent a low-cost transistor technology for creating next-generation large-area, flexible and ultra-low-cost electronics. Conjugated electron donor-acceptor (D-A) polymers have surfaced as ideal channel semiconductor candidates for OFETs. However, high-molecular weight (MW) D-A polymer semiconductors, which offer high field-effect mobility, generally suffer from processing complications due to limited solubility. Conversely, the readily soluble, low-MW D-A polymers give low mobility. We report herein a facile solution process which transformed a lower-MW, low-mobility diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene (I) into a high crystalline order and high-mobility semiconductor for OFETs applications. The process involved solution fabrication of a channel semiconductor film from a lower-MW (I) and polystyrene blends. With the help of cooperative shifting motion of polystyrene chain segments, (I) readily self-assembled and crystallized out in the polystyrene matrix as an interpenetrating, nanowire semiconductor network, providing significantly enhanced mobility (over 8 cm2V‑1s‑1), on/off ratio (107), and other desirable field-effect properties that meet impactful OFET application requirements.

  3. Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors.

    PubMed

    Lei, Yanlian; Deng, Ping; Li, Jun; Lin, Ming; Zhu, Furong; Ng, Tsz-Wai; Lee, Chun-Sing; Ong, Beng S

    2016-01-01

    Organic field-effect transistors (OFETs) represent a low-cost transistor technology for creating next-generation large-area, flexible and ultra-low-cost electronics. Conjugated electron donor-acceptor (D-A) polymers have surfaced as ideal channel semiconductor candidates for OFETs. However, high-molecular weight (MW) D-A polymer semiconductors, which offer high field-effect mobility, generally suffer from processing complications due to limited solubility. Conversely, the readily soluble, low-MW D-A polymers give low mobility. We report herein a facile solution process which transformed a lower-MW, low-mobility diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene (I) into a high crystalline order and high-mobility semiconductor for OFETs applications. The process involved solution fabrication of a channel semiconductor film from a lower-MW (I) and polystyrene blends. With the help of cooperative shifting motion of polystyrene chain segments, (I) readily self-assembled and crystallized out in the polystyrene matrix as an interpenetrating, nanowire semiconductor network, providing significantly enhanced mobility (over 8 cm(2)V(-1)s(-1)), on/off ratio (10(7)), and other desirable field-effect properties that meet impactful OFET application requirements. PMID:27091315

  4. One-step Conjugation of Glycyrrhetinic Acid to Cationic Polymers for High-performance Gene Delivery to Cultured Liver Cell

    PubMed Central

    Cong, Yue; Shi, Bingyang; Lu, Yiqing; Wen, Shihui; Chung, Roger; Jin, Dayong

    2016-01-01

    Gene therapies represent a promising therapeutic route for liver cancers, but major challenges remain in the design of safe and efficient gene-targeting delivery systems. For example, cationic polymers show good transfection efficiency as gene carriers, but are hindered by cytotoxicity and non-specific targeting. Here we report a versatile method of one-step conjugation of glycyrrhetinic acid (GA) to reduce cytotoxicity and improve the cultured liver cell -targeting capability of cationic polymers. We have explored a series of cationic polymer derivatives by coupling different ratios of GA to polypropylenimine (PPI) dendrimer. These new gene carriers (GA-PPI dendrimer) were systematically characterized by UV-vis,1H NMR titration, electron microscopy, zeta potential, dynamic light-scattering, gel electrophoresis, confocal microscopy and flow cytometry. We demonstrate that GA-PPI dendrimers can efficiently load and protect pDNA, via formation of nanostructured GA-PPI/pDNA polyplexes. With optimal GA substitution degree (6.31%), GA-PPI dendrimers deliver higher liver cell transfection efficiency (43.5% vs 22.3%) and lower cytotoxicity (94.3% vs 62.5%, cell viability) than the commercial bench-mark DNA carrier bPEI (25kDa) with cultured liver model cells (HepG2). There results suggest that our new GA-PPI dendrimer are a promising candidate gene carrier for targeted liver cancer therapy. PMID:26902258

  5. High-Performance of PEI/Nafion/ox-MWCNT Composite Membranes Based on Semi-Interpenetrating Polymer Networks for PEMFCs.

    PubMed

    Kim, Hee Jin; Talukdar, Krishan; Kim, Young Ho; Lee, Ho-Chang; Choi, Sang-June

    2015-11-01

    Polymer electrolyte membrane fuel cells (PEMFCs) are an up-and-coming technology for green and efficient power generation and offer a clean alternative to current technologies that use hydrocarbon fuel sources. In this paper, a reinforcing membrane was fabricated by Polyethylenimine polymer. Oxidized multiwalled carbon nanotube was dispersed into the PEI/Nafion membranes to achieve additional strength. The membranes were acidified via absorption of phosphoric acid from aqueous solution to make semi-interpenetrating polymer network (s-IPNs) which increases the proton conductivity by producing proton channel in the membrane. The PEI/Nafion/ox-MWCNT composite membranes show excellent phosphoric acid retention and high humidity, which impart a high ion exchange capacity (IEC) as well as improved proton conductivity. The surface morphologies and cross-sections of the resulting H3PO4 treated PEI/Nafion/ox-MWCNT composite membranes were observed using optical microscopy and scanning electron microscopy (SEM). The improvements in the thermal properties of the prepared PEI/Nafion/ox-MWCNT composite membranes were determined using thermogravimetric analysis (TGA). These performance results combined with the low inexpensive synthetic approach substantiate the potential for the new membrane to be used in PEMFCs. PMID:26726601

  6. Synthesis of caffeic acid molecularly imprinted polymer microspheres and high-performance liquid chromatography evaluation of their sorption properties.

    PubMed

    Valero-Navarro, Angel; Gómez-Romero, María; Fernández-Sánchez, Jorge F; Cormack, Peter A G; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2011-10-14

    In the current work, a molecularly imprinted polymer (MIP) has been synthesised and used to enable the extraction of a naturally-occurring antioxidant from complex media. More specifically, we describe the first example of a caffeic acid (CA) MIP which has been synthesised in the form of well-defined polymer microspheres, and its use for the extraction of CA from fruit juice sample. The CA MIP was synthesised by precipitation polymerisation using 4-vinylpyridine as functional monomer, divinylbenzene-80 as crosslinker and acetonitrile:toluene (75/25, v/v) as porogen. The particle sizing and morphological characterisation of the polymers was carried out by means of scanning electron microscopy (narrow particle size distribution; ∼5 and 1.5 μm particle diameters for the MIP and NIP [non-imprinted polymer], respectively) and nitrogen sorption porosimetry (specific surface areas of 340 and 350 m(2)g(-1), and specific pore volumes of 0.17 and 0.19 cm(3)g(-1) for the MIP and NIP, respectively). The polymers were evaluated further by batch rebinding experiments, and from the derived isotherms their binding capacity and binding strength were determined (number of binding sites (N(K))=0.6 and 0.3 mmol g(-1) for the MIP and NIP, respectively, and apparent average adsorption constant (K(N))=10.0 and 1.6L mmol(-1) for the MIP and NIP, respectively). To evaluate the molecular recognition character of the MIP it was packed into a stainless steel column (50 mm × 4.6 mm i.d.) and evaluated as an HPLC-stationary phase. The mobile phase composition, flow rate, and the elution profile were then optimised in order to improve the peak shape without negatively affecting the imprinting factor (IF). Very interesting, promising properties were revealed. The imprinting factor (IF) under the optimised conditions was 11.9. Finally, when the imprinted LC column was used for the selective recognition of CA over eight related compounds, very good selectivity was obtained. This outcome enabled

  7. Joint Strength Control at the Fiber/Matrix Interface during the Production of Polymer Composite Materials Reinforced with High Performance Fibers

    NASA Astrophysics Data System (ADS)

    Kudinov, Vladimir V.; Korneeva, Natalia V.

    2010-06-01

    The paper presents the results obtained in the study of the joint strength between polymer matrix and high performance polyethylene fiber. The fiber/matrix joints simulate the unit cell of the fiber-reinforced composite materials. Effect of heat treatment on the composite properties at the interface was estimated by a multifilament wet-pull-out method. It was found that the joint strength may be increased with the help of extra heart treatment. Both the energy to peak load and the energy to failure for CM joints at various stages of loading were determined.

  8. High performance and bifunctional cobalt-embedded nitrogen doped carbon/nanodiamond electrocatalysts for oxygen reduction and oxygen evolution reactions in alkaline media

    NASA Astrophysics Data System (ADS)

    Wu, Yanzhuo; Zang, Jianbing; Dong, Liang; Zhang, Yan; Wang, Yanhui

    2016-02-01

    A bifunctional noble metal-free catalyst with a cobalt-embedded nitrogen doped graphitized carbon shell covering a nanodiamond (ND) core (Co-N-C/ND) is synthesized. The resulting Co-N-C/ND exhibits excellent catalytic activities for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media. The average electron transfer number of ORR on the Co-N-C/ND is 3.82 between -0.4 and -0.7 V (vs. Hg/HgO), indicating a near four-electron transfer mechanism for ORR. Moreover, the catalytic activity of the Co-N-C/ND for ORR is comparable to the 20 wt% Pt reference catalyst supported on carbon black. The OER onset potential on the Co-N-C/ND is 0.43 V (vs. Hg/HgO) and the current density at 0.7 V is 3.19 mA cm-2, demonstrating excellent catalytic activity for OER. In comparison to the Co-N-C derived from carbon black, the Co-N-C/ND exhibits better durability. The superior electrocatalytic performance of the Co-N-C/ND could be attributed to the synergistic effect of the Co-N moieties in the carbon shell and the high stability could be ascribed to the ND core.

  9. New M- and V-shaped perylene diimide small molecules for high-performance nonfullerene polymer solar cells.

    PubMed

    Park, Gi Eun; Kim, Hyung Jong; Choi, Suna; Lee, Dae Hee; Uddin, Mohammad Afsar; Woo, Han Young; Cho, Min Ju; Choi, Dong Hoon

    2016-07-01

    New M- and V-shaped perylene diimide (PDI)-based small molecules using a non-conjugated 1,1-diphenylcyclohexane linker (CP-M and CP-V, respectively) were designed and synthesized as new n-type acceptors for nonfullerene-based polymer solar cells. The blended film with poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)] (PPDT2FBT) and CP-V displayed a higher power conversion efficiency of 5.28% due to higher short circuit current and fill factor values. PMID:27351371

  10. Using of molecularly imprinted polymers for determination of gallic and protocatechuic acids in red wines by high performance liquid chromatography.

    PubMed

    Denderz, Natalia; Lehotay, Jozef

    2014-10-31

    The sorption capacities of gallic- and protocatechuic acid-molecularly imprinted polymers (GA-MIP and PCA-MIP, respectively) and non-imprinted polymer (NIP) have been determined on the piston columns by the frontal analyses (FAs). Mobile phases consisted of MeOH, MeOH/H2O (1:1), 12.5% EtOH or ACN. Solutes concentrations used in FAs were 1μg/mL and 50μg/mL. All sorption capacities were depended on analyte and solvent used. Results obtained from the FAs have shown that both imprinted polymers almost always were preferentially recognized PCA molecule. Only in MeOH, the GA-MIP had ability to recognize its template molecule positively. Surprisingly, in some cases, also the NIP exhibited higher sorption capacities than the MIPs for their templates, e.g. in ACN for GA or in MeOH for PCA. This behaviour indicates that in some solvents, the low affinity sites of the blank polymer can act as strong interacting sites. In the next, prepared MIPs were successfully used as the SPE-sorbents for the extraction and purification of chosen phenolic acids from red wine samples. The recoveries both of MIPs were the highest for PCA, what was in agreement with the experiments carried out in 12.5% EtOH during FAs. Prepared MIP-beads allowed the purification of chosen red wine samples with satisfactory selectivities and high recoveries. The linearity of the method was in the range from 10μg/mL to 70μg/mL and 0.1μg/mL to 4.5μg/mL for GA and PCA, respectively, with the determination coefficients ranging from 0.996-0.999. The LODs (S/N=3) ranged from 0.1μg/mL to 0.4μg/mL. The RSDs for the recoveries varied from 4.0% to 8.1%. The PAs-MIPs and corresponding NIP were also characterized by attenuated total reflectance analysis Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron analysis (SEM). PMID:25468500

  11. Correlation between Hierarchical Structure and Processing Control of Large-area Spray-coated Polymer Solar Cells toward High Performance

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Ching; Tsao, Cheng-Si; Cha, Hou-Chin; Chuang, Chih-Min; Su, Chun-Jen; Jeng, U.-Ser; Chen, Charn-Ying

    2016-01-01

    The formation mechanism of a spray-coated film is different from that of a spin-coated film. This study employs grazing incidence small- and wide-angle X-ray Scattering (GISAXS and GIWAXS, respectively) quantitatively and systematically to investigate the hierarchical structure and phase-separated behavior of a spray-deposited blend film. The formation of PCBM clusters involves mutual interactions with both the P3HT crystal domains and droplet boundary. The processing control and the formed hierarchical structure of the active layer in the spray-coated polymer/fullerene blend film are compared to those in the spin-coated film. How the different post-treatments, such as thermal and solvent vapor annealing, tailor the hierarchical structure of the spray-coated films is quantitatively studied. Finally, the relationship between the processing control and tailored BHJ structures and the performance of polymer solar cell devices is established here, taking into account the evolution of the device area from 1 × 0.3 and 1 × 1 cm2. The formation and control of the special networks formed by the PCBM cluster and P3HT crystallites, respectively, are related to the droplet boundary. These structures are favorable for the transverse transport of electrons and holes.

  12. Correlation between Hierarchical Structure and Processing Control of Large-area Spray-coated Polymer Solar Cells toward High Performance

    PubMed Central

    Huang, Yu-Ching; Tsao, Cheng-Si; Cha, Hou-Chin; Chuang, Chih-Min; Su, Chun-Jen; Jeng, U-Ser; Chen, Charn-Ying

    2016-01-01

    The formation mechanism of a spray-coated film is different from that of a spin-coated film. This study employs grazing incidence small- and wide-angle X-ray Scattering (GISAXS and GIWAXS, respectively) quantitatively and systematically to investigate the hierarchical structure and phase-separated behavior of a spray-deposited blend film. The formation of PCBM clusters involves mutual interactions with both the P3HT crystal domains and droplet boundary. The processing control and the formed hierarchical structure of the active layer in the spray-coated polymer/fullerene blend film are compared to those in the spin-coated film. How the different post-treatments, such as thermal and solvent vapor annealing, tailor the hierarchical structure of the spray-coated films is quantitatively studied. Finally, the relationship between the processing control and tailored BHJ structures and the performance of polymer solar cell devices is established here, taking into account the evolution of the device area from 1 × 0.3 and 1 × 1 cm2. The formation and control of the special networks formed by the PCBM cluster and P3HT crystallites, respectively, are related to the droplet boundary. These structures are favorable for the transverse transport of electrons and holes. PMID:26817585

  13. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance.

    PubMed

    Liao, Sih-Hao; Jhuo, Hong-Jyun; Cheng, Yu-Shan; Chen, Show-An

    2013-09-14

    Modification of a ZnO cathode by doping it with a hydroxyl-containing derivative - giving a ZnO-C60 cathode - provides a fullerene-derivative-rich surface and enhanced electron conduction. Inverted polymer solar cells with the ZnO-C60 cathode display markedly improved power conversion efficiency compared to those with a pristine ZnO cathode, especially when the active layer includes the low-bandgap polymer PTB7-Th. PMID:23939927

  14. Analysis of Cocoa Proanthocyanidins Using Reversed Phase High-Performance Liquid Chromatography and Electrochemical Detection: Application to Studies on the Effect of Alkaline Processing.

    PubMed

    Stanley, Todd H; Smithson, Andrew T; Neilson, Andrew P; Anantheswaran, Ramaswamy C; Lambert, Joshua D

    2015-07-01

    Flavan-3-ols and proanthocyanidins play a key role in the health beneficial effects of cocoa. Here, we developed a new reversed phased high-performance liquid chromatography-electrochemical detection (HPLC-ECD) method for the analysis of flavan-3-ols and proanthocyanidins of degree of polymerization (DP) 2-7. We used this method to examine the effect of alkalization on polyphenol composition of cocoa powder. Treatment of cocoa powder with NaOH (final pH 8.0) at 92 °C for up to 1 h increased catechin content by 40%, but reduced epicatechin and proanthocyanidins by 23-66%. Proanthocyanidin loss could be modeled using a two-phase exponential decay model (R(2) > 0.7 for epicatchin and proanthocyanidins of odd DP). Alkalization resulted in a significant color change and 20% loss of total polyphenols. The present work demonstrates the first use of HPLC-ECD for the detection of proanthocyanidins up to DP 7 and provides an initial predictive model for the effect of alkali treatment on cocoa polyphenols. PMID:26042917

  15. Process for controlling morphology and improving thermal-mechanical performance of high performance interpenetrating and semi-interpenetrating polymer networks

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor); Hansen, Marion G. (Inventor)

    1997-01-01

    In the process of the present invention, a non-polar, aprotic solvent is removed from an oligomer/polymer solution by freeze-drying in order to produce IPNs and semi-IPNs. By thermally quenching the solution to a solid in a short length of time, the size of the minor constituent-rich regions is greatly reduced as they are excluded along with the major constituent from the regions of crystallizing solvent. The use of this process sequence of controlling phase morphology provides IPNs and semi-IPNs with improved fracture toughness, microcracking resistance, and other physical-mechanical properties as compared to IPNs and semi-IPNs formed when the solvent is evaporated rather than sublimed.

  16. Process for controlling morphology and improving thermal mechanical performance of high performance interpenetrating and semiinterpenetrating polymer networks

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor); Hansen, Marion G. (Inventor)

    1998-01-01

    In the process of the present invention, a non-polar, aprotic solvent is removed from an oligomer/polymer solution by freeze-drying in order to produce IPNs and semi-IPNs. By thermally quenching the solution to a solid in a short length of time, the size of the minor constituent-rich regions is greatly reduced as they are excluded along with the major constituent from the regions of crystallizing solvent. The use of this process sequence of controlling phase morphology provides IPNs and semi-IPNs with improved fracture toughness, microcracking resistance, and other physical-mechanical properties as compared to IPNs and semi-IPNs formed when the solvent is evaporated rather than sublimed.

  17. High performance of transferring lithium ion for polyacrylonitrile-interpenetrating crosslinked polyoxyethylene network as gel polymer electrolyte.

    PubMed

    Kuo, Ping-Lin; Wu, Ching-An; Lu, Chung-Yu; Tsao, Chin-Hao; Hsu, Chun-Han; Hou, Sheng-Shu

    2014-03-12

    A polyacrylonitrile (PAN)-interpenetrating cross-linked polyoxyethylene (PEO) network (named XANE) was synthesized acting as separator and as gel polymer electrolytes simultaneously. SEM images show that the surface of the XANE membrane is nonporous, comparing to the surface of the commercial separator to be porous. This property results in excellent electrolyte uptake amount (425 wt %), and electrolyte retention for XANE membrane, significantly higher than that of commercial separator (200 wt %). The DSC result indicates that the PEO crystallinity is deteriorated by the cross-linked process and was further degraded by the interpenetration of the PAN. The XANE membrane shows significantly higher ionic conductivity (1.06-8.21 mS cm(-1)) than that of the commercial Celgard M824 separator (0.45-0.90 mS cm(-1)) ascribed to the high electrolyte retention ability of XANE (from TGA), the deteriorated PEO crystallinity (from DSC) and the good compatibility between XANE and electrode (from measuring the interfacial-resistance). For battery application, under all charge/discharge rates (from 0.1 to 3 C), the specific half-cell capacities of the cell composed of the XANE membrane are all higher than those of the aforementioned commercial separator. More specifically, the cell composed of the XANE membrane has excellent cycling stability, that is, the half-cell composed of the XANE membrane still exhibited more than 97% columbic efficiency after 100 cycles at 1 C. The above-mentioned advantageous properties and performances of the XANE membrane allow it to act as both an ionic conductor as well as a separator, so as to work as separator-free gel polymer electrolytes. PMID:24521309

  18. Detailed evaluation of the West Kiehl alkaline-surfactant-polymer field project and it`s application to mature Minnelusa waterfloods. Technical progress report for the period of April--June, 1994

    SciTech Connect

    Pitts, M.J.

    1994-09-01

    The objective of this study of the West Kiehl is to (1) quantify the incremental oil produced from the West Kiehl alkaline-surfactant-polymer project by classical engineering and numerical simulation techniques, (2) quantify the effect of chemical slug volume on incremental oil in the two swept areas of the field, (3) determine the economics of the application of the alkaline-surfactant-polymer technology, (4) forecast the results of injecting an alkaline--surfactant-polymer solution to mature waterfloods and polymer floods, and (5) provide the basis for independent operators to book additional oil reserves by using the alkaline-surfactant-polymer technology. This report will document the numerical simulation waterflood, polymer flood, alkaline-surfactant flood and alkaline-surfactant-polymer flood predictions from the West Kiehl and Prairie Creek South fields.

  19. Characterization of local electrochemical doping of high performance conjugated polymer for photovoltaics using scanning droplet cell microscopy☆

    PubMed Central

    Gasiorowski, Jacek; Mardare, Andrei Ionut; Sariciftci, Niyazi Serdar; Hassel, Achim Walter

    2013-01-01

    The electrochemical oxidation of a next generation low bandgap high performance photovoltaic material namely poly[4,8-bis-substituted-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-4-substituted-thieno[3,4-b] thiophene-2,6-diyl] (PBDTTT-c) thin film was investigated using a scanning droplet cell microscope. Cyclic voltammetry was used for the basic characterization of the oxidation/doping of PBDTTT-c. Application of the different final potentials during the electrochemical study provides a close look to the oxidation kinetics. The electrical properties of both doped and undoped PBDTTT-c were analyzed in situ by electrochemical impedance spectroscopy giving the possibility to correlate the changes in the doping level with the subsequent changes in the resistance and capacitance. As a result one oxidation peak was found during the cyclic voltammetry and in potentiostatic measurements. From Mott–Schottky analysis a donor concentration of 2.3 × 1020 cm−3 and a flat band potential of 1.00 V vs. SHE were found. The oxidation process resulted in an increase of the conductivity by two orders of magnitude reaching a maximum for the oxidized form of 1.4 S cm−1. PMID:25843970

  20. High Performance Transparent Transistor Memory Devices Using Nano-Floating Gate of Polymer/ZnO Nanocomposites

    PubMed Central

    Shih, Chien-Chung; Lee, Wen-Ya; Chiu, Yu-Cheng; Hsu, Han-Wen; Chang, Hsuan-Chun; Liu, Cheng-Liang; Chen, Wen-Chang

    2016-01-01

    Nano-floating gate memory devices (NFGM) using metal nanoparticles (NPs) covered with an insulating polymer have been considered as a promising electronic device for the next-generation nonvolatile organic memory applications NPs. However, the transparency of the device with metal NPs is restricted to 60~70% due to the light absorption in the visible region caused by the surface plasmon resonance effects of metal NPs. To address this issue, we demonstrate a novel NFGM using the blends of hole-trapping poly (9-(4-vinylphenyl) carbazole) (PVPK) and electron-trapping ZnO NPs as the charge storage element. The memory devices exhibited a remarkably programmable memory window up to 60 V during the program/erase operations, which was attributed to the trapping/detrapping of charge carriers in ZnO NPs/PVPK composite. Furthermore, the devices showed the long-term retention time (>105 s) and WRER test (>200 cycles), indicating excellent electrical reliability and stability. Additionally, the fabricated transistor memory devices exhibited a relatively high transparency of 90% at the wavelength of 500 nm based on the spray-coated PEDOT:PSS as electrode, suggesting high potential for transparent organic electronic memory devices. PMID:26831222

  1. Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young

    2014-04-01

    As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries.

  2. Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries

    PubMed Central

    Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young

    2014-01-01

    As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries. PMID:24710575

  3. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications

    PubMed Central

    Houchins, Cassidy; Kleen, Greg J.; Spendelow, Jacob S.; Kopasz, John; Peterson, David; Garland, Nancy L.; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C.

    2012-01-01

    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed. PMID:24958432

  4. High Performance Transparent Transistor Memory Devices Using Nano-Floating Gate of Polymer/ZnO Nanocomposites

    NASA Astrophysics Data System (ADS)

    Shih, Chien-Chung; Lee, Wen-Ya; Chiu, Yu-Cheng; Hsu, Han-Wen; Chang, Hsuan-Chun; Liu, Cheng-Liang; Chen, Wen-Chang

    2016-02-01

    Nano-floating gate memory devices (NFGM) using metal nanoparticles (NPs) covered with an insulating polymer have been considered as a promising electronic device for the next-generation nonvolatile organic memory applications NPs. However, the transparency of the device with metal NPs is restricted to 60~70% due to the light absorption in the visible region caused by the surface plasmon resonance effects of metal NPs. To address this issue, we demonstrate a novel NFGM using the blends of hole-trapping poly (9-(4-vinylphenyl) carbazole) (PVPK) and electron-trapping ZnO NPs as the charge storage element. The memory devices exhibited a remarkably programmable memory window up to 60 V during the program/erase operations, which was attributed to the trapping/detrapping of charge carriers in ZnO NPs/PVPK composite. Furthermore, the devices showed the long-term retention time (>105 s) and WRER test (>200 cycles), indicating excellent electrical reliability and stability. Additionally, the fabricated transistor memory devices exhibited a relatively high transparency of 90% at the wavelength of 500 nm based on the spray-coated PEDOT:PSS as electrode, suggesting high potential for transparent organic electronic memory devices.

  5. Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries.

    PubMed

    Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young

    2014-01-01

    As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries. PMID:24710575

  6. High-performance organic/inorganic hybrid heterojunction based on Gallium Arsenide (GaAs) substrates and a conjugated polymer

    NASA Astrophysics Data System (ADS)

    Jameel, D. A.; Felix, J. F.; Aziz, M.; Al Saqri, N.; Taylor, D.; de Azevedo, W. M.; da Silva, E. F.; Albalawi, H.; Alghamdi, H.; Al Mashary, F.; Henini, M.

    2015-12-01

    In this paper, we present an extensive study of the electrical properties of organic-inorganic hybrid heterojunctions. Polyaniline (PANI) thin films were deposited by a very simple technique on (1 0 0) and (3 1 1)B n-type Gallium Arsenide (GaAs) substrates to fabricate hybrid devices with excellent electrical properties. The hybrid devices were electrically characterized using current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) measurements in the temperature range 20-440 K. The analysis of I-V characteristics based on the thermionic emission mechanism has shown a decrease of the barrier height and an increase of the ideality factor at lower temperatures for both hybrid devices. The interface states were analyzed by series resistance obtained using the C-G-V methods. The interface state density (Dit) of PANI/(1 0 0) GaAs devices is approximately one order of magnitude higher than that of PANI/(3 1 1)B GaAs devices. This behaviour is attributed to the effect of crystallographic orientation of the substrates, and was confirmed by DLTS results as well. Additionally, the devices show excellent air stability, with rectification ratio values almost unaltered after two years of storage under ambient conditions, making the polyaniline an interesting conductor polymer for future devices applications.

  7. Conjunction of Conducting Polymer Nanostructures with Macroporous Structured Graphene Thin Films for High-Performance Flexible Supercapacitors.

    PubMed

    Memon, Mushtaque A; Bai, Wei; Sun, Jinhua; Imran, Muhammad; Phulpoto, Shah Nawaz; Yan, Shouke; Huang, Yong; Geng, Jianxin

    2016-05-11

    Fabrication of hybridized structures is an effective strategy to promote the performances of graphene-based composites for energy storage/conversion applications. In this work, macroporous structured graphene thin films (MGTFs) are fabricated on various substrates including flexible graphene papers (GPs) through an ice-crystal-induced phase separation process. The MGTFs prepared on GPs (MGTF@GPs) are recognized with remarkable features such as interconnected macroporous configuration, sufficient exfoliation of the conductive RGO sheets, and good mechanical flexibility. As such, the flexible MGTF@GPs are demonstrated as a versatile conductive platform for depositing conducting polymers (CPs), e.g., polyaniline (PAn), polypyrrole, and polythiophene, through in situ electropolymerization. The contents of the CPs in the composite films are readily controlled by varying the electropolymerization time. Notably, electrodeposition of PAn leads to the formation of nanostructures of PAn nanofibers on the walls of the macroporous structured RGO framework (PAn@MGTF@GPs): thereafter, the PAn@MGTF@GPs display a unique structural feature that combine the nanostructures of PAn nanofibers and the macroporous structures of RGO sheets. Being used as binder-free electrodes for flexible supercapacitors, the PAn@MGTF@GPs exhibit excellent electrochemical performance, in particular a high areal specific capacity (538 mF cm(-2)), high cycling stability, and remarkable capacitive stability to deformation, due to the unique electrode structures. PMID:27110720

  8. Polydopamine as a promising candidate for the design of high performance and corrosion-tolerant polymer electrolyte fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Long, Hongtao; Del Frari, Doriane; Martin, Arnaud; Didierjean, Joffrey; Ball, Vincent; Michel, Marc; Ahrach, Hicham Ibn El

    2016-03-01

    Carbon materials such as carbon black or nanotubes suffer from degradation when subjected to harsh conditions occurring in a Polymer Electrolyte Membrane Fuel Cells (PEMFCs) electrode. Hence, nowadays it is more and more important to search for alternative support materials. The present work shows the results for the incorporation of alternative materials into PEMFCs electrode architectures. Commercially available Multi-Walled NanoTubes (MWNTs) are used as a support for Pt nanoparticles in combination with Polydopamine (PDA). The role of MWNTs is to confer a high electronic conductivity and help to form a porous network. On the other side the role of polydopamine is both to promote the proton conductivity similarly to ionomers such as Nafion and to protect the MWNTs against corrosion. The fuel cell polarization test shows a maximum power density of 780 mW cm-2 and a Pt utilization of 6051 mW mg(Pt)-1. The Pt utilization reached in this work is almost three times higher than for Pt/MWNTs electrodes containing the same Pt loading. Beside this, it is also shown for the first time that PDA serves as protective layer against carbon corrosion.

  9. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications.

    PubMed

    Houchins, Cassidy; Kleen, Greg J; Spendelow, Jacob S; Kopasz, John; Peterson, David; Garland, Nancy L; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C

    2012-01-01

    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed. PMID:24958432

  10. Preparation of styrene-co-4-vinylpyridine magnetic polymer beads by microwave irradiation for analysis of trace 24-epibrassinolide in plant samples using high performance liquid chromatography.

    PubMed

    Zhang, Zhuomin; Zhang, Yi; Tan, Wei; Li, Gongke; Hu, Yuling

    2010-10-15

    In the study, a kind of novel styrene-co-4-vinylpyridine (St-co-4-VP) porous magnetic polymer beads was prepared by microwave irradiation using suspension polymerization. Microwave heating preparation greatly reduced the polymerization time to 1h. Physical characteristic tests suggested that these beads were cross-linking and possessed spherical shape, good magnetic response and porous morphologies with a narrow diameter distribution of 70-180 μm. Therefore, these beads displayed the long-term stability after undergoing 100-time extractions. Then, an analytical method for the determination of trace 24-epiBR in plant samples was developed by magnetic polymer bead extraction coupled with high performance liquid chromatography-fluorescence detection. St-co-4-VP magnetic polymer beads demonstrated the higher extraction selectivity for 24-epiBR than other reference compounds. Linear range was 10.00-100.0 μg/L with a relative standard deviation (RSD) of 6.7%, and the detection limit was 6.5 μg/kg. This analytical method was successfully applied to analyze the trace 24-epiBR in cole and breaking-wall rape pollen samples with recoveries of 77.2-90.0% and 72.3-83.4%, respectively, and RSDs were less than 4.1%. The amount of 24-epiBR in real breaking-wall rape pollen samples was found to be 26.2 μg/kg finally. This work proposed a sensitive, rapid, reliable and convenient analytical method for the determination of trace brassinosteroids in complicated plant samples by the use of St-co-4-VP magnetic polymer bead extraction coupled with chromatographic method. PMID:20846659

  11. High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Jeong, Gisu; Kim, MinJoong; Han, Junyoung; Kim, Hyoung-Juhn; Shul, Yong-Gun; Cho, EunAe

    2016-08-01

    Although high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) have a high carbon monoxide tolerance and allow for efficient water management, their practical applications are limited due to their lower performance than conventional low-temperature PEMFCs. Herein, we present a high-performance membrane-electrode assembly (MEA) with an optimal polytetrafluoroethylene (PTFE) content for HT-PEMFCs. Low or excess PTFE content in the electrode leads to an inefficient electrolyte distribution or severe catalyst agglomeration, respectively, which hinder the formation of triple phase boundaries in the electrodes and result in low performance. MEAs with PTFE content of 20 wt% have an optimal pore structure for the efficient formation of electrolyte/catalyst interfaces and gas channels, which leads to high cell performance of approximately 0.5 A cm-2 at 0.6 V.

  12. Application of high performance computing to automotive design and manufacturing: Composite materials modeling task technical manual for constitutive models for glass fiber-polymer matrix composites

    SciTech Connect

    Simunovic, S; Zacharia, T

    1997-11-01

    This report provides a theoretical background for three constitutive models for a continuous strand mat (CSM) glass fiber-thermoset polymer matrix composite. The models were developed during fiscal years 1994 through 1997 as a part of the Cooperative Research and Development Agreement, "Application of High-Performance Computing to Automotive Design and Manufacturing." The full derivation of constitutive relations in the framework of the continuum program DYNA3D and have been used for the simulation and impact analysis of CSM composite tubes. The analysis of simulation and experimental results show that the model based on strain tensor split yields the most accurate results of the three implemented models. The parameters used in the models and their derivation from the physical tests are documented.

  13. High performance liquid level monitoring system based on polymer fiber Bragg gratings embedded in silicone rubber diaphragms

    NASA Astrophysics Data System (ADS)

    Marques, Carlos A. F.; Peng, Gang-Ding; Webb, David J.

    2015-05-01

    Liquid-level sensing technologies have attracted great prominence, because such measurements are essential to industrial applications, such as fuel storage, flood warning and in the biochemical industry. Traditional liquid level sensors are based on electromechanical techniques; however they suffer from intrinsic safety concerns in explosive environments. In recent years, given that optical fiber sensors have lots of well-established advantages such as high accuracy, costeffectiveness, compact size, and ease of multiplexing, several optical fiber liquid level sensors have been investigated which are based on different operating principles such as side-polishing the cladding and a portion of core, using a spiral side-emitting optical fiber or using silica fiber gratings. The present work proposes a novel and highly sensitive liquid level sensor making use of polymer optical fiber Bragg gratings (POFBGs). The key elements of the system are a set of POFBGs embedded in silicone rubber diaphragms. This is a new development building on the idea of determining liquid level by measuring the pressure at the bottom of a liquid container, however it has a number of critical advantages. The system features several FBG-based pressure sensors as described above placed at different depths. Any sensor above the surface of the liquid will read the same ambient pressure. Sensors below the surface of the liquid will read pressures that increase linearly with depth. The position of the liquid surface can therefore be approximately identified as lying between the first sensor to read an above-ambient pressure and the next higher sensor. This level of precision would not in general be sufficient for most liquid level monitoring applications; however a much more precise determination of liquid level can be made by linear regression to the pressure readings from the sub-surface sensors. There are numerous advantages to this multi-sensor approach. First, the use of linear regression using

  14. High performance polymeric foams

    SciTech Connect

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-08-28

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy.

  15. ALKALINE-SURFACTANT-POLYMER FLOODING AND RESERVOIR CHARACTERIZATION OF THE BRIDGEPORT AND CYPRESS RESERVOIRS OF THE LAWRENCE FIELD

    SciTech Connect

    Malcolm Pitts; Ron Damm; Bev Seyler

    2003-03-01

    Feasibility of alkaline-surfactant-polymer flood for the Lawrence Field in Lawrence County, Illinois is being studied. Two injected formulations are being designed; one for the Bridgeport A and Bridgeport B reservoirs and one for Cypress and Paint Creek reservoirs. Fluid-fluid and coreflood evaluations have developed a chemical solution that produces incremental oil in the laboratory from the Cypress and Paint Creek reservoirs. A chemical formulation for the Bridgeport A and Bridgeport B reservoirs is being developed. A reservoir characterization study is being done on the Bridgeport A, B, & D sandstones, and on the Cypress sandstone. The study covers the pilot flood area and the Lawrence Field.

  16. ALKALINE-SURFACTANT-POLYMER FLOODING AND RESERVOIR CHARACTERIZATION OF THE BRIDGEPORT AND CYPRESS RESERVOIRS OF THE LAWRENCE FIELD

    SciTech Connect

    Malcolm Pitts; Ron Damm; Bev Seyler

    2003-04-01

    Feasibility of alkaline-surfactant-polymer flood for the Lawrence Field in Lawrence County, Illinois is being studied. Two injected formulations are being designed; one for the Bridgeport A and Bridgeport B reservoirs and one for Cypress and Paint Creek reservoirs. Fluid-fluid and coreflood evaluations have developed a chemical solution that produces incremental oil in the laboratory from the Cypress and Paint Creek reservoirs. A chemical formulation for the Bridgeport A and Bridgeport B reservoirs is being developed. A reservoir characterization study is being done on the Bridgeport A, B, & D sandstones, and on the Cypress sandstone. The study covers the pilot flood area and the Lawrence Field.

  17. Magnetic molecularly imprinted polymer for the efficient and selective preconcentration of diazinon before its determination by high-performance liquid chromatography.

    PubMed

    Zare, Fahimeh; Ghaedi, Mehrorang; Daneshfar, Ali; Ostovan, Abbas

    2015-08-01

    A molecularly imprinted polymer was selectively applied for solid-phase extraction and diazinon residues enrichment before high-performance liquid chromatography. Diazinon was thermally copolymerized with Fe3 O4 @polyethyleneglycol nanoparticles, methacrylic acid (functional monomer), 2-hydroxyethyl methacrylate (co-monomer), and ethylene glycol dimethacrylate (cross-linking monomer) in the presence of acetonitrile (porogen) and 2,2-azobisisobutyronitrile (initiator). Then, the imprinted diazinon was reproducibly eluted with methanol/acetic acid (9:1, v/v). The sorbent particles were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The comprehensive study of variables through experimental design showed that the maximum performance was achieved under these conditions: pH 7, 10 mL sample volume, 15 mg sorbent, 10 min vortex time, 5 min ultrasonic time, 200 μL methanol/acetic acid (9:1, v/v) as eluent, and 5 min desorption time. Under optimized conditions, the molecularly imprinted polymer solid-phase extraction method demonstrated a linear range (0.02-5 g/mL), a correlation coefficient of 0.997, and 0.005 g/mL detection limit. PMID:26082081

  18. Preparation of porous polymer monolithic column using functionalized graphene oxide as a functional crosslinker for high performance liquid chromatography separation of small molecules.

    PubMed

    Li, Yaping; Qi, Li; Ma, Huimin

    2013-09-21

    A newly developed porous polymer monolith was prepared through copolymerization of 3-(trimethoxysilyl)propylmethacrylate modified graphene oxide with glycidyl methacrylate and ethylene dimethacrylate as a functional crosslinker, which was synthesized through silanization reaction of graphene oxide prepared by Hummers method with 3-(trimethoxysilyl)propylmethacrylate. The monolith was characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, mercury intrusion porosimetry and nitrogen adsorption measurement. The monolith column was applied as the stationary phase of high performance liquid chromatography and its chromatographic performance was evaluated by separation of small molecules in the isocratic reversed-phase mode. The chromatograms of hydrophobic steroids and polar aromatic amines on the prepared monolith displayed the enhanced separation performance over those on the parent monolith. The reproducibility of the column was less than 3.5% in terms of relative standard deviation of retention time. The results demonstrate that copolymerization of functionalized graphene oxide into porous polymer monolith was an effective tool for chromatography separation enhancement of small molecules in an isocratic mode. PMID:23884304

  19. Synthesis of molecular imprinted polymers for selective extraction of domperidone from human serum using high performance liquid chromatography with fluorescence detection.

    PubMed

    Salehi, Simin; Rasoul-Amini, Sara; Adib, Noushin; Shekarchi, Maryam

    2016-08-01

    In this study a novel method is described for selective quantization of domperidone in biological matrices applying molecular imprinted polymers (MIPs) as a sample clean up procedure using high performance liquid chromatography coupled with a fluorescence detector. MIPs were synthesized with chloroform as the porogen, ethylene glycol dimethacrylate as the crosslinker, methacrylic acid as the monomer, and domperidone as the template molecule. The new imprinted polymer was used as a molecular sorbent for separation of domperidone from serum. Molecular recognition properties, binding capacity and selectivity of MIPs were determined. The results demonstrated exceptional affinity for domperidone in biological fluids. The domperidone analytical method using MIPs was verified according to validation parameters, such as selectivity, linearity (5-80ng/mL, r(2)=0.9977), precision and accuracy (10-40ng/mL, intra-day=1.7-5.1%, inter-day=4.5-5.9%, and accuracy 89.07-98.9%).The limit of detection (LOD) and quantization (LOQ) of domperidone was 0.0279 and 0.092ng/mL, respectively. The simplicity and suitable validation parameters makes this a highly valuable selective bioequivalence method for domperidone analysis in human serum. PMID:27288934

  20. Molecularly imprinted polymer cartridges coupled on-line with high performance liquid chromatography for simple and rapid analysis of human insulin in plasma and pharmaceutical formulations.

    PubMed

    Moein, Mohammad Mahdi; Javanbakht, Mehran; Akbari-adergani, Behrouz

    2014-04-01

    In this paper, a novel method is described for automated determination of human insulin in biological fluids using principle of sequential injection on a molecularly imprinted solid-phase extraction (MISPE) cartridge as a sample clean-up technique combined with high performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker, chloroform as a porogen and insulin as a template molecule. The imprinted polymers were then employed as the solid-phase extraction sorbent for on-line extraction of insulin from human plasma samples. To achieve the best condition, influential parameters on the extraction efficiency were thoroughly investigated. Rapid and simple analysis of the hormone was successfully accomplished through the good selectivity of the prepared sorbent coupled with HPLC. Limits of detection (LOD) and quantification (LOQ) of 0.2 ng mL(-1), 0.7 ng mL(-1), and 0.03 ng mL(-1), 0.1 ng mL(-1) were obtained in plasma and urine respectively. The obtained data exhibited the great recoveries for extraction of insulin from human plasma and pharmaceutical samples, higher than 87%. PMID:24607106

  1. Adhesion of novel high-performance polymers to carbon fibers: Fiber surface treatment, characterization, and microbond single fiber pull-out test. Ph.D. Thesis

    SciTech Connect

    Heisey, C.L.

    1993-12-31

    The adhesion of carbon fibers to several high performance polymers, including a phosphorus-containing bismaleimite, a cyanate ester resin, and a pyridine-containing thermoplastic, was evaluated using the microbond single fiber pull-out test. The objective was to determine the chemical and mechanical properties of the fiber and the polymer which affect the fiber/polymer adhesion in a given composite system. Fiber/matrix adhesion is of interest since the degree of adhesion and the nature of the fiber/matrix interphase has a major influence on the mechanical properties of a composite. The surface chemical composition, topography, tensile strength, and surface energy of untreated AU-4 and commercially surface treated AS-4 carbon fibers were evaluated using x-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), single fiber tensile tests, and dynamic contact angle analysis. The commercial surface treatment which converted the AU-4 to the AS-4 fiber oxidized the carbon fiber surface. The surface of the AS-4 carbon fiber was further modified using air, oxygen, ammonia, and ethylene plasmas. The AS-4 fiber tow was also characterized following exposure to the aqueous poly(amic acid) solution used to disperse the matrix powder during aqueous suspension prepregging of thermoplastic matrix composites. The air and oxygen plasma treatments significantly oxidized and roughened the surface of the AS-4 carbon fibers. In addition, the air and oxygen plasma increased the polar component of the AS-4 fiber surface energy. The ammonia plasma increased the concentration of nitrogen on the fiber surface, without significantly altering the fiber topography (at a magnification of 50,000X). The atomic oxygen present in the air and oxygen plasma treatments is capable of reacting with both the edge and basal planes in the carbon fiber structure. As a result, the oxygen-containing plasmas progressively ablated the organic material in the carbon fiber surface.

  2. Detailed evaluation of the West Kiehl alkaline-surfactant-polymer field project and its application to mature Minnelusa waterfloods. Annual report for the period January 1993--December 1993

    SciTech Connect

    Pitts, M.J.; Surkalo, H.; Mundorf, W.R.

    1994-11-01

    The combination of an interfacial tension agent and a mobility control agent has the potential to produce additional oil beyond a waterflood. The West Kiehl alkaline-surfactant-polymer project is the most advanced application of this chemical enhanced oil recovery technique. The West Kiehl alkaline-surfactant-polymer flood was initiated in September 1987 as a secondary application after primary recovery. A preliminary analysis of the West Kiehl alkaline-surfactant-polymer flood indicates that incremental oil of 20% of the original stock tank oil in place will be produced above waterflooding. The cost of the incremental oil will be less than $2.50 per incremental barrel. A statistical analysis of approximately 120 Minnelusa oil fields in the Powder River Basin indicates that the original stock tank oil in place exceeds one billion barrels. If the enhanced oil recovery technology implemented at West Kiehl field could be successfully applied to these fields, the potential incremental oil recovery would approach 200 million barrels. {open_quotes}Detailed Evaluation of the West Kiehl Alkaline-Surfactant-Polymer Field Project and Its Application to Mature Minnelusa Waterfloods{close_quotes} objective is to evaluate both the field performance of the alkaline-surfactant-polymer enhanced oil recovery technology as well as its potential application to other Minnelusa oil fields.

  3. Detailed evaluation of the West Kiehl alkaline-surfactant-polymer field project and its application to mature Minnelusa waterfloods. Final report

    SciTech Connect

    Pitts, M.J.; Surkalo, H.

    1995-03-01

    The combination of an interfacial tension agent and a mobility control agent has the potential to produce additional oil beyond a waterflood. The West Kiehl alkaline-surfactant-polymer project is the first application of this chemical enhanced oil recovery technique. The West Kiehl alkaline-surfactant-polymer flood was initiated in September 1987 as a secondary application after primary recovery. The following analysis of the West Kiehl alkaline-surfactant-polymer flood indicates that incremental oil greater than waterflooding was produced at a cost of less than $2.00 per incremental barrel. A analysis of approximately 120 Minnelusa oil fields in the Powder River Basin indicates that the total original stock tank oil in place exceeds one billion barrels. If the enhanced oil recovery technology implemented at West Kiehl field could be successfully applied to these fields, the potential incremental oil recovery would approach 130 million barrels. The goals of ``Detailed Evaluation of the West Kield Alkaline-Surfactant-Polymer Field Project and It`s Application to Mature Minnelusa Waterfloods`` are to evaluate both the field performance of the alkaline-surfactant-polymer enhanced oil recovery technology as well as its potential application to other Minnelusa oil fields.

  4. The effect of polymer-surfactant interaction on the rheological properties of surfactant enhanced alkaline flooding formulations. [Phase separation, precipitation and viscosity loss

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1993-02-01

    Surfactant-enhanced, lower pH (weak) alkaline chemicals are effective for mobilizing residual oil. Polymer is used for mobility control because if mobility control is lost, then oil recovery is reduced. The ability to maintain mobility control during surfactant-alkaline flooding can be adversely affected by chemical interaction. In this work, interaction between polymers and surfactants was shown to be affected by pH, ionic strength, crude oil, and the properties of the polymers and surfactants. Polymer-surfactant interaction (phase separation, precipitation, and viscosity loss) occurred between most of the polymers and surfactants that were tested. Polymer-surfactant interaction is difficult to eliminate, and no method was found for completely eliminating interaction. Polymer-surfactant interaction occurred at optimal salinity and below optimal salinity. Polymer-surfactant interaction had an adverse effect on polymer rheology; however, the adverse effect of interaction on polymer rheology was lessened when oil was present. Increasing the pH of chemical systems further reduced the adverse effects of interaction on polymer rheology.

  5. High performance rolling element bearing

    NASA Technical Reports Server (NTRS)

    Bursey, Jr., Roger W. (Inventor); Olinger, Jr., John B. (Inventor); Owen, Samuel S. (Inventor); Poole, William E. (Inventor); Haluck, David A. (Inventor)

    1993-01-01

    A high performance rolling element bearing (5) which is particularly suitable for use in a cryogenically cooled environment, comprises a composite cage (45) formed from glass fibers disposed in a solid lubricant matrix of a fluorocarbon polymer. The cage includes inserts (50) formed from a mixture of a soft metal and a solid lubricant such as a fluorocarbon polymer.

  6. One step grafting of iron phthalocyanine containing flexible chains on Fe3O4 nanoparticles towards high performance polymer magnetic composites

    NASA Astrophysics Data System (ADS)

    Pu, Zejun; Zhou, Xuefei; Yang, Xulin; Jia, Kun; Liu, Xiaobo

    2015-07-01

    To develop high-performance inorganic particles/polymer composites, the interfacial interaction and dispersion of inorganic particles are the two essential issues to be considered. Herein, we report an effective approach to graft iron phthalocyanine containing flexible chains (NP-ph) on Fe3O4 nanoparticles (NP-ph@Fe3O4). The hybrids were monodispersed solid nanoparticles with the average diameter of about 250 nm. About 16.8% of the phthalocyanine oligomer was incorporated into the resulting NP-ph@Fe3O4 nanoparticles. The NP-ph@Fe3O4 nanoparticles were subsequently used as the novel filler for preparation of high performance poly(arylene ether nitrile)s (PAEN) composites. The scanning electron microscopy (SEM) investigation showed that the NP-ph@Fe3O4 nanoparticles present better dispersion and interfacial compatibility with PAEN matrix than that of raw Fe3O4, which was further confirmed by rheological study. Consequently, the improved thermal stability and enhanced mechanical properties were obtained from composites using NP-ph@Fe3O4. Vibrating sample magnetometer (VSM) results showed that the prepared PAEN composites exhibited higher saturation magnetization and soft magnetic properties. Meanwhile, the saturation magnetization (Ms) of the PAEN/NP-ph@Fe3O4 composite films increased with the increase of the hybrid nanoparticles loading. Thus, the PAEN/NP-ph@Fe3O4 composite would find potential applications in organic magnetic films fields due to their high thermal stability, excellent flexibility and tunable magnetic properties

  7. A novel solid-phase microextraction method based on polymer monolith frit combining with high-performance liquid chromatography for determination of aldehydes in biological samples.

    PubMed

    Xu, Hui; Wang, Shuyu; Zhang, Ganbing; Huang, Shiqiang; Song, Dandan; Zhou, Yanping; Long, Guangdou

    2011-03-25

    In this work, a polypropylene frit with porous network structure (20 μm pole size) was first utilized as the mould of polymer monolithic material, poly(methacrylic acid-co-ethylene glycol dimethacrylate) (MAA-co-EDMA) monolith was synthesized within channels and macropores of the frit. A simple and sensitive solid-phase microextraction method based on polymer monolith frit coupled with high-performance liquid chromatography (HPLC) was established and applied to analysis of hexanal and heptanal in biological samples (human urine and serum). In the method, small molecule metabolites (aldehydes) in biological samples derivatized with 2,4-dinitrophenylhydrazine (DNPH), and the formed hydrazones were extracted simultaneously on the monolithic frit and thereafter ultrasound-assisted desorbed with acetonitrile as elution solvent. The experimental parameters with regard to polymerization, derivatization and extraction were investigated. Under the optimal conditions, the linearity was in the range of 0.02-5.0 μmol L(-1) (r=0.9994) for both hexanal and heptanal and the limits of detection (S/N=3) were 0.81 nmol L(-1) for hexanal and 0.76 nmol L(-1) for heptanal. The relative standard deviations (RSDs, n=5) were less than 6.5% for the same monolithic frit and less than 8.9% for the different monolithic frits. Satisfactory recoveries ranging from 70.71% to 88.73% were obtained for the urine samples. The method possesses many advantages including simple setup, fast analysis, low cost, sufficient sensitivity, good biological compatibility and less organic solvent consumption. The proposed method is a useful assistant tool in the clinical early diagnosis of lung disease by monitoring aldehyde biomarker candidates in complex biological samples. PMID:21414440

  8. Determination of Polymer Additives-Antioxidants, Ultraviolet Stabilizers, Plasticizers and Photoinitiators in Plastic Food Package by Accelerated Solvent Extraction Coupled with High-Performance Liquid Chromatography.

    PubMed

    Li, Bo; Wang, Zhi-Wei; Lin, Qin-Bao; Hu, Chang-Ying; Su, Qi-Zhi; Wu, Yu-Mei

    2015-07-01

    An analytical method for the quantitative determination of 4 antioxidants, 9 ultraviolet (UV) stabilizers, 12 phthalate plasticizers and 2 photoinitiators in plastic food package using accelerated solvent extraction (ASE) coupled with high-performance liquid chromatography-photodiode array detector (HPLC-PDA) has been developed. Parameters affecting the efficiency in the process such as extraction and chromatographic conditions were studied in order to determine operating conditions. The analytical method of ASE-HPLC showed good linearity with good correlation coefficients (R ≥ 0.9833). The limits of detection and quantification were between 0.03 and 0.30 µg mL(-1) and between 0.10 and 1.00 µg mL(-1) for 27 analytes. Average spiked recoveries for most analytes in samples were >70.4% at 10, 20 and 40 µg g(-1) spiked levels, except UV-9 and Irganox 1010 (58.6 and 64.0% spiked at 10 µg g(-1), respectively), the relative standard deviations were in the range from 0.4 to 15.4%. The methodology has been proposed for the analysis of 27 polymer additives in plastic food package. PMID:25472804

  9. Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties

    SciTech Connect

    Lassinantti Gualtieri, Magdalena

    2015-01-15

    Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for construction purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties. -- Highlights: •Geopolymerization of laterite is promising for fabrication of building materials. •Both phosphoric acid and alkaline sodium silicate solution can be used for activation. •Thermally activated redox properties of the inorganic polymers were observed.

  10. An effective approach for alleviating cation-induced backbone degradation in aromatic ether-based alkaline polymer electrolytes.

    PubMed

    Han, Juanjuan; Liu, Qiong; Li, Xueqi; Pan, Jing; Wei, Ling; Wu, Ying; Peng, Hanqing; Wang, Ying; Li, Guangwei; Chen, Chen; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2015-02-01

    Aromatic ether-based alkaline polymer electrolytes (APEs) are one of the most popular types of APEs being used in fuel cells. However, recent studies have demonstrated that upon being grafted by proximal cations some polar groups in the backbone of such APEs can be attacked by OH(-), leading to backbone degradation in an alkaline environment. To resolve this issue, we performed a systematic study on six APEs. We first replaced the polysulfone (PS) backbone with polyphenylsulfone (PPSU) and polyphenylether (PPO), whose molecular structures contain fewer polar groups. Although improved stability was seen after this change, cation-induced degradation was still obvious. Thus, our second move was to replace the ordinary quaternary ammonia (QA) cation, which had been closely attached to the polymer backbone, with a pendant-type QA (pQA), which was linked to the backbone through a long side chain. After a stability test in a 1 mol/L KOH solution at 80 °C for 30 days, all pQA-type APEs (pQAPS, pQAPPSU, and pQAPPO) exhibited as low as 8 wt % weight loss, which is close to the level of the bare backbone (5 wt %) and remarkably lower than those of the QA-type APEs (QAPS, QAPPSU, and QAPPO), whose weight losses under the same conditions were >30%. The pQA-type APEs also possessed clear microphase segregation morphology, which led to ionic conductivities that were higher, and water uptakes and degrees of membrane swelling that were lower, than those of the QA-type APEs. These observations unambiguously indicate that designing pendant-type cations is an effective approach to increasing the chemical stability of aromatic ether-based APEs. PMID:25594224

  11. Water-compatible graphene oxide/molecularly imprinted polymer coated stir bar sorptive extraction of propranolol from urine samples followed by high performance liquid chromatography-ultraviolet detection.

    PubMed

    Fan, Wenying; He, Man; You, Linna; Zhu, Xuewei; Chen, Beibei; Hu, Bin

    2016-04-22

    Due to the high selectivity and stability, molecularly imprinted polymers (MIPs) have been successfully applied in stir bar sorptive extraction (SBSE) as a special coating to improve the selective extraction capability for target analytes. However, traditional MIPs usually suffer from incompatibility in aqueous media and low adsorption capacity, which limit the application of MIP coated stir bar in aqueous samples. To solve these problems, a water-compatible graphene oxides (GO)/MIP composite coated stir bar was prepared in this work by in situ polymerization. The prepared water-compatible GO/MIP coated stir bar presented good mechanical strength and chemical stability, and its recognition ability in aqueous samples was improved due to the polymerization of MIP in water environment, the adsorption capacity for target analytes was also increased by the addition of GO in MIP pre-polymer solution. Based on it, a method of water-compatible GO/MIP coated stir bar sorptive extraction combined with high performance liquid chromatography-ultraviolet detector (HPLV-UV) was proposed for the analysis of propranolol (PRO) in aqueous solution. The influencing factors of SBSE, such as sample pH, salt effect, stirring rate, extraction time, desorption solvent and desorption time, were optimized, and the analytical performance of the developed SBSE-HPLC-UV method was evaluated under the optimized conditions. The limit of detection (LOD) of the proposed method for PRO was about 0.37 μg L(-1), and the enrichment factor (EF) was 59.7-fold (theoretical EF was 100-fold). The reproducibility was also investigated at concentrations of 5 μg L(-1) and the relative standard deviation (RSD) was found to be 7.3% (n=7). The proposed method of GO/MIP coating-SBSE-HPLC-UV was successfully applied for the assay of the interested PRO drug in urine samples, and further extended to the investigation of the excretion of the drugs by monitoring the variation of the concentration of PRO in urine

  12. Tough high performance composite matrix

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor); Johnston, Norman J. (Inventor)

    1994-01-01

    This invention is a semi-interpentrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. Provided is an improved high temperature matrix resin which is capable of performing in the 200 to 300 C range. This resin has significantly improved toughness and microcracking resistance, excellent processability, mechanical performance, and moisture and solvent resistances.

  13. Solution processed single-emission layer white polymer light-emitting diodes with high color quality and high performance from a poly(N-vinyl)carbazole host.

    PubMed

    Ye, Shang-Hui; Hu, Tian-Qing; Zhou, Zhou; Yang, Min; Quan, Mei-Han; Mei, Qun-Bo; Zhai, Bang-Cheng; Jia, Zhen-Hong; Lai, Wen-Yong; Huang, Wei

    2015-04-14

    Low cost and high performance white polymer light-emitting diodes (PLEDs) are very important as solid-state lighting sources. In this research three commercially available phosphors were carefully chosen, bis[2-(4,6-difluorophenyl)pyridinato-N,C(2)](picolinate)iridium(III) (FIrpic), bis[2-(2-pyridinyl-N)phenyl-C](2,4-pentanedionato-O(2),O(4))iridium(III) [Ir(ppy)2(acac)], and bis(2-phenyl-benzothiazole-C(2),N)(acetylacetonate)iridium(III) [Ir(bt)2(acac)], plus a home-made red phosphor of tris[1-(2,6-dimethylphenoxy)-4-(4-chlorophenyl)phthalazine]iridium(III) [Ir(MPCPPZ)3], and their photophysical and morphological properties were systematically studied as well as their applications in single-emission layer white PLEDs comprising poly(N-vinylcarbazole) as host. Additionally, the electrochemical properties and energy level alignment, possible energy transfer process, and thin-film morphology were also addressed. The binary blue/orange complementary white PLEDs exhibit stable electroluminescence spectra, wide spectrum-covering region range from 380-780 nm, and high color rendering index (CRI) over 70 with Commission Internationale de l'Eclairage coordinates x,y (CIEx,y) of (0.388, 0.440), correlated color temperature (CCT) of around 4400, plus high efficiency of 25.5 cd A(-1). The optimized red-green-blue white PLEDs showed a satisfactory CRI of around 82.4, maximum current efficiency of 20.0 cd A(-1) and external quantum efficiency (EQE) of 10.8%, corresponding to a CCT of 3700-2800, which is a warm-white hue. At last, stable and high color quality, red-green-orange-blue four component white PLEDs, with a CRI of over 82, a high efficiency of 24.0 cd A(-1), EQE of 11.5%, and high brightness of 43,569.9 cd m(-2) have been obtained. PMID:25742776

  14. Development of magnetic molecularly imprinted polymers for solid phase extraction of cocaine and metabolites in urine before high performance liquid chromatography - tandem mass spectrometry.

    PubMed

    Sánchez-González, Juan; Jesús Tabernero, María; Bermejo, Ana María; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2016-01-15

    A magnetic molecularly imprinted polymer (MMIP) has been synthesized and applied for cocaine (COC) and metabolites (benzoylecgonine, BZE; cocaethylene, CE; and ecgonine methyl ester, EME) recognition/pre-concentration in urine samples. The MMIP has been prepared using COC as a template molecule, ethylene dimethacrylate (EDMA) as a functional monomer, divinylbenzene (DVB) as a cross-linker, Fe3O4 magnetite as a magnetic component, and 2,2'-azobisisobutyronitrile (AIBN) as an initiator. The best results (MIP layer on the surface of the magnetic nanoparticles) and physical properties of the prepared MMIP were obtained when assisting the synthesis procedure with ultrasounds (325W, 37kHz, 30°C, 4h). After solid phase extraction (SPE) with the prepared adsorbent material, analytes were determined by high performance liquid chromatography - tandem mass spectrometry (HPLC-MS/MS). Variables affecting the SPE process (batch mode) were fully evaluated. Optimum retention of analytes (1.8mL of urine and 50mg of MMIP) was achieved by fixing the urine pH at 5.5 (use of a KH2PO4/NaOH, pH 5.5 buffer solution), and magnetic stirring (25°C, 700rpm) for 10min. Elution was performed by using 2mL of a dichloromethane/2-propanol/ammonium hydroxide (75:20:5) mixture under ultrasounds (325W, 35kHz, room temperature) for 5min. The method was validated according to the guidance for bioanalytical method validation of the US Department of Health and Human Services, Food and Drug Administration. The detection limits were in the range of 0.39-1.4ngL(-1). The relative standard deviations of intra- and inter-day tests ranged from 5 to 11% and from 3 to 11%, respectively. Analytical recoveries were in the range of 79-106% when spiking drug-free urine samples at three concentration levels. Good results were also obtained after analyzing an FDT +25% control material. The applicability of the method was proved for screening/quantifying COC, BZE, CE and EME in several samples from poly-drug abusers

  15. Detailed evaluation of the West Kiehl alkaline-surfactant-polymer field project and it`s application to mature Minnelusa waterfloods. Annual technical report, January 1993--December 1993

    SciTech Connect

    Pitts, M.J.

    1995-02-01

    The combination of an interfacial tension agent and a mobility control agent has the potential to produce additional oil beyond a waterflood. The West Kiehl alkaline-surfactant-polymer project is the most advanced application of this chemical enhanced oil recovery technique. The West Kiehl alkaline-surfactant-polymer flood was initiated in September 1987 as a secondary application after primary recovery. A preliminary analysis of the West Kiehl alkaline-surfactant-polymer flood indicates that incremental oil of 20% of the original stock tank oil in place will be produced above waterflooding. The cost of the incremental oil will be less than $2.50 per incremental barrel. A statistical analysis of approximately 120 Minnelusa oil fields in the Powder River Basin indicates that the original stock tank oil in place exceeds one billion barrels. If the enhanced oil recovery technology implemented at West Kiehl field could be successfully applied to these fields, the potential incremental oil recovery would approach 200 million barrels. This project (1) evaluates the geological deposition environment of West Kiehl and adjacent Minneluse sand reservoirs; (2) compares the production performance results of the best geologic and reservoir performance analogs and select two fields for future study; (3) compares the two best field analogs to the west Kiehl field using numerical simulation; (4) predict results of applying the enhancement technology on two mature Minneluse waterflood analog units using engineering and numerical simulation; (5) predict waterflood and polymer flood performance of the West Kiehl field using numerical simulation.

  16. Panelized high performance multilayer insulation

    NASA Technical Reports Server (NTRS)

    Burkley, R. A.; Shriver, C. B.; Stuckey, J. M.

    1968-01-01

    Multilayer insulation coverings with low conductivity foam spacers are interleaved with quarter mil aluminized polymer film radiation shields to cover flight type liquid hydrogen tankage of space vehicles with a removable, structurally compatible, lightweight, high performance cryogenic insulation capable of surviving extended space mission environments.

  17. All-solid-state Al-air batteries with polymer alkaline gel electrolyte

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Zuo, Chuncheng; Liu, Zihui; Yu, Ying; Zuo, Yuxin; Song, Yu

    2014-04-01

    Aluminum-air (Al-air) battery is one of the most promising candidates for next-generation energy storage systems because of its high capacity and energy density, and abundance. The polyacrylic acid (PAA)-based alkaline gel electrolyte is used in all-solid-state Al-air batteries instead of aqueous electrolytes to prevent leakage. The optimal gel electrolyte exhibits an ionic conductivity of 460 mS cm-1, which is close to that of aqueous electrolytes. The Al-air battery peak capacity and energy density considering only Al can reach 1166 mAh g-1-Al and 1230 mWh g-1-Al, respectively, during constant current discharge. The battery prototype also exhibits a high power density of 91.13 mW cm-2. For the battery is a laminated structure, area densities of 29.2 mAh cm-2 and 30.8 mWh cm-2 are presented to appraise the performance of the whole cell. A novel design to inhibit anodic corrosion is proposed by separating the Al anode from the gel electrolyte when not in use, thereby effectively maintaining the available capacity of the battery.

  18. High performance weak donor-acceptor polymers in thin film transistors: effect of the acceptor on electronic properties, ambipolar conductivity, mobility, and thermal stability.

    PubMed

    Yuen, Jonathan D; Fan, Jian; Seifter, Jason; Lim, Bogyu; Hufschmid, Ryan; Heeger, Alan J; Wudl, Fred

    2011-12-28

    We have studied the electronic, physical, and transistor properties of a family of donor-acceptor polymers consisting of diketopyrrolopyrrole (DPP) coupled with different accepting companion units in order to determine the effects of donor-acceptor interaction. Using the electronically neutral benzene (B), the weakly accepting benzothiadiazole (BT), and the strongly accepting benzobisthiadiazole (BBT), the accepting strength of the companion unit was systematically modulated. All polymers exhibited excellent transistor performance, with mobilities above 0.1 cm(2)V(-1)s(-1), even exceeding 1 cm(2)V(-1)s(-1) for one of the BBT-containing polymers. We find that the BBT is the strongest acceptor, enabling the BBT-containing polymers to be strongly ambipolar. The BBT moiety also strengthens interchain interactions, which provides higher thermal stability and performance for transistors with BBT-containing polymers as the active layer. PMID:22043809

  19. Steric hindrance regulated supramolecular assembly between β-cyclodextrin polymer and pyrene for alkaline phosphatase fluorescent sensing

    NASA Astrophysics Data System (ADS)

    Song, Chunxia; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Liu, Jianbo; Huang, Jin; Zhou, Maogui; Guo, Xiaochen

    2016-03-01

    We herein report a strategy for sensitive alkaline phosphatase (ALP) fluorescent sensing based on steric hindrance regulated supramolecular assembly between β-cyclodextrin polymer (polyβ-CD) and pyrene. The fluorescence of pyrene was enhanced more than 10 times through supramolecular assembly with polyβ-CD. The 5‧-phosphorylated dsDNA probe with pyrene attached on the 3‧-terminal could be cleaved by λ exonuclease (λ exo), yielding pyrene attached on mononucleotides. Pyrene attached on mononucleotides could easily enter the cavity of polyβ-CD, resulting in fluorescence enhancement. When ALP was introduced, it could remove 5‧-phosphate groups from dsDNA and then prevented the cleavage of dsDNA. Pyrene attached on dsDNA was difficult to enter the cavity of polyβ-CD because of steric hindrance, resulting in an inconspicuous fluorescence enhancement. Owing to the excellent fluorescence enhancement during steric hindrance regulated supramolecular assembly, excellent performance of the assay method was achieved for ALP with a detection limit of 0.04 U mL- 1. The detection limit was superior or comparable with the reported methods. Besides, this method was simple in design, avoiding double-labeling of probe.

  20. Fine tuning of the PCDTBT-OR:PC71BM blend nanoscale phase separation via selective solvent annealing toward high-performance polymer photovoltaics

    NASA Astrophysics Data System (ADS)

    Meng, Bin; Fang, Gang; Fu, Yingying; Xie, Zhiyuan; Wang, Lixiang

    2013-12-01

    Solution-processable polymer solar cells show great promise for providing a cost-effective route to create lightweight and flexible solar energy conversion devices. The photoactive layer comprising the conjugated polymer donor and fullerene derivative acceptor must be optimized to form bicontinuous nanoscale phase separation in order for efficient exciton dissociation and charge collection due to the short exciton diffusion length of organic semiconductors. The donor polymer poly[9-(heptadecan-9-yl)-9H-carbazole- 2,7-diyl-alt-(5,6-bis(hexyloxy)-4,7-di(thiophen-2- yl)benzo[c][1,2,5]thiadiazole)-5,5-diyl] (PCDTBT-OR) has a deeper highest occupied molecular orbital level compared to its counterpart PCDTBT, and shows promise in increasing the open-circuit voltage and power conversion efficiency (PCE) of polymer solar cells. The phase separation evolution of the PCDTBT-OR:PC71BM blend with various weight ratios under tetrahydrofuran (THF) vapor annealing and its influence on the photovoltaic performance is investigated in detail. It is found that THF vapor annealing can promote the acceptor PC71BM aggregation from the donor PCDTBT-OR matrix to form nanoscale donor/acceptor phase separation for efficient exciton dissociation and charge collection depending on the donor/acceptor weight ratio and the annealing time. The THF vapor-annealed PCDTBT-OR:PC71BM solar cells exhibit remarkable enhancement, with a PCE of 7.01% compared to 3.25% of the as-cast solar cells with the same active layer thickness. This work provides a general methodology to construct nano-interpenetrating networks for homogeneous polymer/fullerene blends and is potentially applicable to the roll-to-roll manufacturing of polymer solar cells.

  1. Cross-linked branching nanohybrid polymer electrolyte with monodispersed TiO2 nanoparticles for high performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Cheng; Zhang, Jinfang; Xu, Mingquan; Xia, Qingbing; Liu, Jiatu; Zhao, Shuai; Chen, Libao; Pan, Anqiang; Ivey, Douglas G.; Wei, Weifeng

    2016-06-01

    Nanohybrid polymer electrolytes (NHPE) with ceramic particles have attracted significant attention owing to their improvement in electrochemical performance. However, particle aggregation and weak nanoparticle/polymer matrix interaction restrict their further application in lithium-ion batteries (LIBs). We demonstrate a facile in-situ polymerization/crystallization method to synthesize a homogeneous TiO2-grafted NHPE with a cross-linked branching structure, comprised of ion-conducting poly(ethylene glycol) methyl ether methacrylate (PEGMEM) and non-polar stearyl methacrylate (SMA). This technique is different from existing methods of blending functionalized ceramic particles into the polymer matrix. Highly monodispersed TiO2 nanocrystals enhance the effective interfacial interactions between particles and polymer matrix, which suppress the crystallization of ethylene oxide (EO) groups and facilitate forming continuously interconnected ion-conducting channels. Moreover, an increased dissociation degree of Li salt can also be achieved. The TiO2-grafted NHPE exhibits superior electrochemical properties with an ionic conductivity of 1.1 × 10-4 S cm-1 at 30 °C, a high lithium ion transference number and excellent interfacial compatibility with the lithium electrode. In particular, a lithium-ion battery based on TiO2-grafted NHPE demonstrates good C-rate performance, as well as excellent cycling stability with an initial discharge capacity of 153.5 mAh g-1 and a capacity retention of 96% after 300 cycles at 1 C (80 °C).

  2. Broad Bandgap D-A Copolymer Based on Bithiazole Acceptor Unit for Application in High-Performance Polymer Solar Cells with Lower Fullerene Content.

    PubMed

    Wang, Kun; Guo, Xia; Guo, Bing; Li, Wanbin; Zhang, Maojie; Li, Yongfang

    2016-07-01

    A new broad bandgap and 2D-conjugated D-A copolymer, PBDTBTz-T, based on bithienyl-benzodithiophene donor unit and bithiazole (BTz) acceptor unit, is designed and synthesized for the application as donor material in polymer solar cells (PSCs). The polymer possesses highly coplanar and crystalline structure with a higher hole mobility and lower HOMO energy level which is beneficial to achieve higher open circuit voltage (Voc ) of the PSCs with the polymer as donor. The PSCs based on PBDTBTz-T:PC71 BM blend film with a lower PC71 BM content of 40% demonstrate a power conversion efficiency (PCE) of 6.09% with a relatively higher Voc of 0.92 V. These results indicate that the lower HOMO energy level of the BTz-based D-A copolymer is beneficial to a high Voc of the PSCs. The polymer, with highly coplanar and crystalline structure, can effectively reduce the content of fullerene acceptor in the active layer and can enhance the absorption and PCE of the PSCs. PMID:27174683

  3. High performance dielectric materials development

    NASA Technical Reports Server (NTRS)

    Piche, Joe; Kirchner, Ted; Jayaraj, K.

    1994-01-01

    The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.

  4. Preconcentration and Determination of Mefenamic Acid in Pharmaceutical and Biological Fluid Samples by Polymer-grafted Silica Gel Solid-phase Extraction Following High Performance Liquid Chromatography

    PubMed Central

    Bagheri Sadeghi, Hayedeh; Panahi, Homayon Ahmad; Mahabadi, Mahsa; Moniri, Elham

    2015-01-01

    Mefenamic acid is a nonsteroidal anti-inflammatory drug (NSAID) that has analgesic, anti-infammatory and antipyretic actions. It is used to relieve mild to moderate pains. Solid-phase extraction of mefenamic acid by a polymer grafted to silica gel is reported. Poly allyl glycidyl ether/iminodiacetic acid-co-N, N-dimethylacrylamide was synthesized and grafted to silica gel and was used as an adsorbent for extraction of trace mefenamic acid in pharmaceutical and biological samples. Different factors affecting the extraction method were investigated and optimum conditions were obtained. The optimum pH value for sorption of mefenamic acid was 4.0. The sorption capacity of grafted adsorbent was 7.0 mg/g. The best eluent solvent was found to be trifluoroacetic acid-acetic acid in methanol with a recovery of 99.6%. The equilibrium adsorption data of mefenamic acid by grafted silica gel was analyzed by Langmuir model. The conformation of obtained data to Langmuir isotherm model reveals the homogeneous binding sites of grafted silica gel surface. Kinetic study of the mefenamic acid sorption by grafted silica gel indicates the good accessibility of the active sites in the grafted polymer. The sorption rate of the investigated mefenamic acid on the grafted silica gel was less than 5 min. This novel synthesized adsorbent can be successfully applied for the extraction of trace mefenamic acid in human plasma, urine and pharmaceutical samples. PMID:26330865

  5. High-Performing Thin-Film Transistors in Large Spherulites of Conjugated Polymer Formed by Epitaxial Growth on Removable Organic Crystalline Templates.

    PubMed

    Kim, Jae Yoon; Yang, Da Seul; Shin, Jicheol; Bilby, David; Chung, Kyeongwoon; Um, Hyun Ah; Chun, Jaehee; Pyo, Seungmoon; Cho, Min Ju; Kim, Jinsang; Choi, Dong Hoon

    2015-06-24

    Diketopyrrolopyrrole (DPP)-based conjugated polymer PDTDPPQT was synthesized and was used to perform epitaxial polymer crystal growth on removable 1,3,5-trichlorobenzene crystallite templates. A thin-film transistor (TFT) was successfully fabricated in well-grown large spherulites of PDTDPPQT. The charge carrier mobility along the radial direction of the spherulites was measured to be 5.46-12.04 cm(2) V(-1) s(-1), which is significantly higher than that in the direction perpendicular to the radial direction. The dynamic response of charge transport was also investigated by applying a pulsed bias to TFTs loaded with a resistor (∼20 MΩ). The charge-transport behaviors along the radial direction and perpendicular to the radial direction were investigated by static and dynamic experiments through a resistor-loaded (RL) inverter. The RL inverter made of PDTDPPQT-based TFT operates well, maintaining a fairly high switching voltage ratio (Vout(ON)/Vout(OFF)) at a relatively high frequency when the source-drain electrodes are aligned parallel to the radial direction. PMID:26030474

  6. Computational design and fabrication of core-shell magnetic molecularly imprinted polymer for dispersive micro-solid-phase extraction coupled with high-performance liquid chromatography for the determination of rhodamine 6G.

    PubMed

    Xie, Jin; Xie, Jie; Deng, Jian; Fang, Xiangfang; Zhao, Haiqing; Qian, Duo; Wang, Hongjuan

    2016-06-01

    A novel core-shell magnetic nano-adsorbent with surface molecularly imprinted polymer coating was fabricated and then applied to dispersive micro-solid-phase extraction followed by determination of rhodamine 6G using high-performance liquid chromatography. The molecularly imprinted polymer coating was prepared by copolymerization of dopamine and m-aminophenylboronic acid (functional monomers), in the presence of rhodamine 6G (template). The selection of the suitable functional monomers was based on the interaction between different monomers and the template using the density functional theory. The ratios of the monomers to template were further optimized by an OA9 (3(4) ) orthogonal array design. The binding performances of the adsorbent were evaluated by static, kinetic, and selective adsorption experiments. The results reveal that the adsorbent possesses remarkable affinity and binding specificity for rhodamine 6G because of the enhanced Lewis acid-base interaction between the B(Ш) embedded in the imprinted cavities and the template. The nano-adsorbent was successfully applied to dispersive micro-solid-phase extraction coupled to high-performance liquid chromatography for the trace determination of rhodamine 6G in samples with a detection limit of 2.7 nmol/L. Spiked recoveries ranged from 93.0-99.1, 89.5-92.7, and 86.9-105% in river water, matrimony vine and paprika samples, respectively, with relative standard deviations of less than 4.3%. PMID:27120290

  7. High performance Cu adhesion coating

    SciTech Connect

    Lee, K.W.; Viehbeck, A.; Chen, W.R.; Ree, M.

    1996-12-31

    Poly(arylene ether benzimidazole) (PAEBI) is a high performance thermoplastic polymer with imidazole functional groups forming the polymer backbone structure. It is proposed that upon coating PAEBI onto a copper surface the imidazole groups of PAEBI form a bond with or chelate to the copper surface resulting in strong adhesion between the copper and polymer. Adhesion of PAEBI to other polymers such as poly(biphenyl dianhydride-p-phenylene diamine) (BPDA-PDA) polyimide is also quite good and stable. The resulting locus of failure as studied by XPS and IR indicates that PAEBI gives strong cohesive adhesion to copper. Due to its good adhesion and mechanical properties, PAEBI can be used in fabricating thin film semiconductor packages such as multichip module dielectric (MCM-D) structures. In these applications, a thin PAEBI coating is applied directly to a wiring layer for enhancing adhesion to both the copper wiring and the polymer dielectric surface. In addition, a thin layer of PAEBI can also function as a protection layer for the copper wiring, eliminating the need for Cr or Ni barrier metallurgies and thus significantly reducing the number of process steps.

  8. Method of manufacturing a polymer-consolidated cadmium electrode for an alkaline storage cell, and an electrode obtained by the method

    SciTech Connect

    Brezillon, J.L.; Dauchier, J.M.

    1987-09-01

    A method is described of manufacturing a polymer-consolidated cadmium electrode for an alkaline storage cell, the method comprising the steps of: mixing the following ingredients in water: a gelling agent; cadmium and cadmium oxide in powder form constituting the active material; and a copolymer of carboxylated styrene-butadiene at a concenration lying in the range 0.5% to 3% by weight of active materials; coating the resulting paste one a metal current collector; drying the coated current collector; and subjecting the resulting assembly to a temperature lying in the range 120/sup 0/C to 150/sup 0/C for a period of a few minutes in order to cause the polymer to cross-link.

  9. Quest for organic polymer-based monolithic columns affording enhanced efficiency in high performance liquid chromatography separations of small molecules in isocratic mode

    PubMed Central

    Svec, Frantisek

    2011-01-01

    The separations of small molecules using columns containing porous polymer monoliths invented two decades ago went a long way from the very modest beginnings to the current capillary columns with efficiencies approaching those featured by their silica-based counterparts. This review article presents a variety of techniques that have been used to form capillary formats of monolithic columns with enhanced separation performance in isocratic elutions. The following text first describes the traditional approaches used for the preparation of efficient monoliths comprising variations in polymerization conditions including temperature as well as composition of monomers and porogenic solvents. Encouraging results of these experiments fueled research of completely new preparation methods such as polymerization to an incomplete conversion, use of single crosslinker, hypercrosslinking, and incorporation of carbon nanotubes that are described in the second part of the text. PMID:21816401

  10. A novel restricted access material combined to molecularly imprinted polymers for selective solid-phase extraction and high performance liquid chromatography determination of 2-methoxyestradiol in plasma samples.

    PubMed

    Du, Bin; Qu, Tiantian; Chen, Zheng; Cao, Xiaohui; Han, Shuping; Shen, Guopeng; Wang, Lei

    2014-11-01

    A feasibility study was performed in order to ensure the possibilities in using a restricted access material combined to molecularly imprinted polymers (RAM-MIP) as sorbent material in solid phase extraction (SPE) for clean-up of 2-methoxyestradiol (2-ME) from plasma samples. The MIP with hydrophilic external layer was designed by precipitation polymerization. The polymer was characterized by thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The use of analogs of 2-ME as templates, in combination with a chromatographic separation of the analytes in the sample, overcame the problem of the template bleeding. To demonstrate the property of the RAM-MIP obtained, a comparison of commercially available C18 SPE was performed. The results showed that the RAM-MISPE recoveries were significantly higher than that of C18 SPE for 2-ME in trace concentration. During the extraction process, 2-ME was sufficiently cleaned for further chromatographic analysis with no interferences from template leakage and matrix. Good linearity was obtained from 0.06 to 20 μg mL(-1) with the correlation coefficient r>0.9991. The coefficient of variation of the inter-assay precision was less than 11.9%. The recoveries of 2-ME in rat plasma at three spiked levels were in the range of 99.10-101.00%. Based on the analytical validation results, the proposed method (RAM-MIP off-line SPE/HPLC) can be a useful tool to determine 2-ME in rat plasma samples. PMID:25127620

  11. High-performance a MoS2 nanosheet-based nonvolatile memory transistor with a ferroelectric polymer and graphene source-drain electrode

    NASA Astrophysics Data System (ADS)

    Lee, Young Tack; Hwang, Do Kyung; Im, Seongil

    2015-11-01

    Two-dimensional (2D) van der Waals (vdWs) materials are a class of new materials due to their unique physical properties. Of the many 2D vdWs materials, molybdenum disulfide (MoS2) is a representative n-type transition-metal dichalcogenide (TMD) semiconductor. Here, we report on a high-performance MoS2 nanosheet-based nonvolatile memory transistor with a poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) ferroelectric top gate insulator. In order to enhance the ohmic contact property, we use graphene flakes as source/drain electrodes prepared by using the direct imprinting method with an elastomer stamp. The MoS2 ferroelectric field-effect transistor (FeFET) shows the highest linear electron mobility value of 175 cm2/Vs with a high on/off current ratio of more than 107, and a very clear memory window of more than 15 V. The program and erase dynamics and the static retention properties are also well demonstrated.

  12. High-performance hybrid (electrostatic double-layer and faradaic capacitor-based) polymer actuators incorporating nickel oxide and vapor-grown carbon nanofibers.

    PubMed

    Terasawa, Naohiro; Asaka, Kinji

    2014-12-01

    The electrochemical and electromechanical properties of polymeric actuators prepared using nickel peroxide hydrate (NiO2·xH2O) or nickel peroxide anhydride (NiO2)/vapor-grown carbon nanofibers (VGCF)/ionic liquid (IL) electrodes were compared with actuators prepared using solely VGCFs or single-walled carbon nanotubes (SWCNTs) and an IL. The electrode in these actuator systems is equivalent to an electrochemical capacitor (EC) exhibiting both electrostatic double-layer capacitor (EDLC)- and faradaic capacitor (FC)-like behaviors. The capacitance of the metal oxide (NiO2·xH2O or NiO2)/VGCF/IL electrode is primarily attributable to the EDLC mechanism such that, at low frequencies, the strains exhibited by the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators primarily result from the FC mechanism. The VGCFs in the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators strengthen the EDLC mechanism and increase the electroconductivity of the devices. The mechanism underlying the functioning of the NiO2·xH2O/VGCF/IL actuator in which NiO2·xH2O/VGCF = 1.0 was found to be different from that of the devices produced using solely VGCFs or SWCNTs, which exhibited only the EDLC mechanism. In addition, it was found that both NiO2 and VGCFs are essential with regard to producing actuators that are capable of exhibiting strain levels greater than those of SWCNT-based polymer actuators and are thus suitable for practical applications. Furthermore, the frequency dependence of the displacement responses of the NiO2·xH2O/VGCF and NiO2/VGCF polymer actuators were successfully simulated using a double-layer charging kinetic model. This model, which accounted for the oxidization and reduction reactions of the metal oxide, can also be applied to SWCNT-based actuators. The results of electromechanical response simulations for the NiO2·xH2O/VGCF and NiO2/VGCF actuators predicted the strains at low frequencies as well as the time constants of the devices, confirming that the model is applicable

  13. Molecularly imprinted polymer as efficient sorbent of solid-phase extraction for determination of gonyautoxin 1,4 in seawater followed by high-performance liquid chromatography-fluorescence detection.

    PubMed

    Mei, Xiao-Qi; He, Xiu-Ping; Wang, Jiang-Tao

    2016-08-01

    A kind of new molecularly imprinted polymer (MIP) was synthesized by bulk polymerization using guanosine as dummy template molecule, α-methacrylic acid as functional monomer and ethylene glycol dimethyl acrylic ester as crosslinker. Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) showed that the MIP had homogenous and uniform-sized cavities. It was confirmed that the MIP had higher binding affinity and selectivity towards gonyautoxins 1,4 (GTX 1,4) than the non-imprinted polymer (NIP) according to the static equilibrium adsorption. An off-line molecularly imprinted solid-phase extraction (MISPE) method followed by high-performance liquid chromatography with fluorescence detection (HPLC-FLD) was established for the analysis of GTX 1,4. 0.1 mol/L acetic acid and 95:5 (v:v) methanol/water were optimized as the washing and elution solutions, respectively. The recoveries of spiked cultured seawater samples were satisfactory, as high as 88 %. Using this method, the concentrations of GTX 1,4 from cultured seawater samples of Alexandrium minutum and Alexandrium tamarense were detected to be 1.10 μg/L and 0.99 μg/L, respectively. Graphical Abstract The synthesis of molecularly imprinted polymer and molecularly imprinted solid-phase extraction analysis for gonyautoxin 1,4. PMID:27317255

  14. Performance Enhancement of Silicon Alloy-Based Anodes Using Thermally Treated Poly(amide imide) as a Polymer Binder for High Performance Lithium-Ion Batteries.

    PubMed

    Yang, Hwi Soo; Kim, Sang-Hyung; Kannan, Aravindaraj G; Kim, Seon Kyung; Park, Cheolho; Kim, Dong-Won

    2016-04-01

    The development of silicon-based anodes with high capacity and good cycling stability for next-generation lithium-ion batteries is a very challenging task due to the large volume changes in the electrodes during repeated cycling, which results in capacity fading. In this work, we synthesized silicon alloy as an active anode material, which was composed of silicon nanoparticles embedded in Cu-Al-Fe matrix phases. Poly(amide imide)s, (PAI)s, with different thermal treatments were used as polymer binders in the silicon alloy-based electrodes. A systematic study demonstrated that the thermal treatment of the silicon alloy electrodes at high temperature made the electrodes mechanically strong and remarkably enhanced the cycling stability compared to electrodes without thermal treatment. The silicon alloy electrode thermally treated at 400 °C initially delivered a discharge capacity of 1084 mAh g(-1) with good capacity retention and high Coulombic efficiency. This superior cycling performance was attributed to the strong adhesion of the PAI binder resulting from enhanced secondary interactions, which maintained good electrical contacts between the active materials, electronic conductors, and current collector during cycling. These findings are supported by results from X-ray photoelectron spectroscopy, scanning electron microscopy, and a surface and interfacial cutting analysis system. PMID:27008091

  15. A new strategy for designing high-performance sulfonated poly(ether ether ketone) polymer electrolyte membranes using inorganic proton conductor-functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, Chunli; Zheng, Xuan; Liu, Hai; Wang, Guangjin; Cheng, Fan; Zheng, Genwen; Wen, Sheng; Law, Wing-Cheung; Tsui, Chi-Pong; Tang, Chak-Yin

    2016-09-01

    Remarkable progress has been made on the use of polymer electrolyte membranes (PEMs) for renewable-energy-related research. In particular, carbon nanotubes (CNTs) have emerged as versatile nanomaterials to modify PEMs. However, the inert ionic conduction ability and possible short-circuiting risk are the two major obstacles to their further development. In this work, CNTs are firstly functionalized with an inorganic proton conductor, boron phosphate (BPO4), using a facile polydopamine-assisted sol-gel method to yield BPO4@CNTs. This new additive is then used to modify sulfonated poly(ether ether ketone) (SPEEK). Polydopamine coating layer can act as an extraordinary glue to homogeneously adhere BPO4 nanoparticles on CNTs, thereby not only reducing the risk of short-circuiting, but also fabricating new proton-conducting pathways in the composite membranes. A comprehensive characterization reveals that the thermal stability, tensile properties, and dimensional stability of PEMs are significantly improved. Compared with pure SPEEK, the proton conductivity of SPEEK/BPO4@CNTs-2 is improved by 45% and 150% at 20 °C and at 80 °C, respectively. Furthermore, the H2/O2 cell performance of SPEEK/BPO4@CNTs-2 membrane exhibits a peak power density of 340.7 mW cm-2 at 70 °C, which is significantly better than that of pure SPEEK (254.2 mW cm-2), demonstrating the great potential of proton conductors-functionalized CNTs in PEMs.

  16. Human exposure assessment to a large set of polymer additives through the analysis of urine by solid phase extraction followed by ultra high performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Pouech, Charlène; Kiss, Agneta; Lafay, Florent; Léonard, Didier; Wiest, Laure; Cren-Olivé, Cécile; Vulliet, Emmanuelle

    2015-12-01

    Polymer items are extensively present in the human environment. Humans may be consequently exposed to some compounds, such as additives, incorporated in these items. The objective of this work is to assess the human exposure to the main additives such as those authorized in the packaging for pharmaceutical products. The urinary matrix was selected to optimally answer this challenge because it has already been proven that the exposure to chemicals can be revealed by the analysis of this biological matrix. A multi-residue analytical method for the trace analysis at ng/mL in human urine was developed, and consisted of an extraction of analytes from urine by solid phase extraction (SPE) and an analysis by ultra-high performance liquid chromatography coupled to a tandem mass spectrometer (UHPLC-MS/MS). Even if the quantification of these compounds was an analytical challenge because of (i) the presence of these substances in the analytical process, (ii) the diversity of their physicochemical properties, and (iii) the complexity of the matrix, the optimized method exhibited quantification limits lower than 25ng/mL and recoveries between 51% and 120% for all compounds. The method was validated and applied to 52 human urines. To the best of our knowledge, this work presents the first study allowing the assessment of the occurrence of more than twenty polymer additives at ng/mL in human urine. PMID:26554294

  17. Synthesis and characterization of NiFe2O4 electrocatalyst for the hydrogen evolution reaction in alkaline water electrolysis using different polymer binders

    NASA Astrophysics Data System (ADS)

    Chanda, Debabrata; Hnát, Jaromír; Paidar, Martin; Schauer, Jan; Bouzek, Karel

    2015-07-01

    NiFe2O4 electrocatalyst for the hydrogen evolution reaction (HER) has been synthesized using the co-precipitation method of the respective metal ions from water solution. After calcination of the precipitate, the resulting electrocatalyst was characterized by a broad range of techniques to obtain information on its crystallographic structure, specific surface area, morphology and chemical composition. The electrocatalytic activity towards HER in alkaline water electrolysis was investigated by means of linear sweep voltammetry. The catalyst showed promising electrocatalytic properties. Subsequently three types of binders were used to prepare a cathode catalytic layer based on a catalyst synthesized on top of a nickel foam support, namely an anion-selective quaternized poly(phenylene oxide) (qPPO) ionomer, an electroneutral polymer polytetrafluoroethylene and cation-selective Nafion®. The resulting membrane-electrode assemblies (MEAs), based on an anion-selective membrane, were tested in an alkaline water electrolyzer. In a single-cell test the MEA with a qPPO ionomer exhibited higher HER activity compared to the remaining binders tested. The current density obtained using a MEA containing qPPO binder attained a value of 125 mA cm-2 at a cell voltage of 1.85 V. The stability of the MEA containing qPPO binder was examined by continuous operation for 143 h, followed by 55 h intermittent electrolysis.

  18. High performance systems

    SciTech Connect

    Vigil, M.B.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  19. High performance parallel architectures

    SciTech Connect

    Anderson, R.E. )

    1989-09-01

    In this paper the author describes current high performance parallel computer architectures. A taxonomy is presented to show computer architecture from the user programmer's point-of-view. The effects of the taxonomy upon the programming model are described. Some current architectures are described with respect to the taxonomy. Finally, some predictions about future systems are presented. 5 refs., 1 fig.

  20. High-Performance Happy

    ERIC Educational Resources Information Center

    O'Hanlon, Charlene

    2007-01-01

    Traditionally, the high-performance computing (HPC) systems used to conduct research at universities have amounted to silos of technology scattered across the campus and falling under the purview of the researchers themselves. This article reports that a growing number of universities are now taking over the management of those systems and…

  1. Novel cathode interlayers based on neutral alcohol-soluble small molecules with a triphenylamine core featuring polar phosphonate side chains for high-performance polymer light-emitting and photovoltaic devices.

    PubMed

    Chen, Dongcheng; Zhou, Hu; Liu, Ming; Zhao, Wei-Ming; Su, Shi-Jian; Cao, Yong

    2013-04-12

    A new family of neutral alcohol-soluble small molecular materials comprised of electron-rich triphenylamine (TPA) and fluorene featuring phosphonate side chains (FEP) is reported, namely 3TPA-FEP, 2TPA-2FEP and TPA-3FEP, which have different TPA and FEP contents. Due to their good solubility in polar solvents like alcohol, multilayer devices can be fabricated by a wet process from orthogonal solvents. Polymer light-emitting devices with these materials as a cathode interlayer and Al as the cathode show greatly enhanced efficiencies in contrast to control devices without such a cathode interlayer, and their efficiencies are comparable with or even higher than devices with the low work-function metal Ba/Al as the cathode. In addition, high-performance polymer solar cells based on the poly[N-9''-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT):[6,6]-phenyl C71 -butyric acid methyl ester (PC71 BM) system are also achieved with power conversion efficiencies of 7.21%, 6.90% and 6.89%, by utilizing 3TPA-FEP, 2TPA-2FEP and TPA-3FEP as the cathode interlayer, respectively. These efficiencies are also much higher than those for control devices without the cathode interlayer. Although TPA is well-known as a hole-transport unit, the current findings indicate that alcohol-soluble TPA-based small molecules are also a promising cathode interlayer for both electron injection and extraction. PMID:23386362

  2. Alkaline flooding injection strategy

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1992-03-01

    The objective of this project is to improved alkali-surfactant flooding methods, and this includes determining the proper design of injection strategy. Several different injection strategies have been used or suggested for recovering heavy oils with surfactant-enhanced alkaline flooding methods. Oil recovery was compared for four different injection strategies: (1) surfactant followed by polymer, (2) surfactant followed by alkaline polymer, (3) alkaline surfactant followed by polymer, and (4) alkali, surfactant, and polymer mixed in a single formulation. The effect of alkaline preflush was also studied under two different conditions. All of the oil recovery experiments were conducted under optimal conditions with a viscous, non-acidic oil from Hepler (KS) oil field. The coreflood experiments were conducted with Berea sandstone cores since field core was not available in sufficient quantity for coreflood tests. The Tucker sand of Hepler field is a Class I fluvial dominated deltaic reservoir, as classified by the Department of Energy, which has been selected as the site of a DOE-sponsored field pilot test.

  3. High Performance, Dependable Multiprocessor

    NASA Technical Reports Server (NTRS)

    Ramos, Jeremy; Samson, John R.; Troxel, Ian; Subramaniyan, Rajagopal; Jacobs, Adam; Greco, James; Cieslewski, Grzegorz; Curreri, John; Fischer, Michael; Grobelny, Eric; George, Alan; Aggarwal, Vikas; Patel, Minesh; Some, Raphael

    2006-01-01

    With the ever increasing demand for higher bandwidth and processing capacity of today's space exploration, space science, and defense missions, the ability to efficiently apply commercial-off-the-shelf (COTS) processors for on-board computing is now a critical need. In response to this need, NASA's New Millennium Program office has commissioned the development of Dependable Multiprocessor (DM) technology for use in payload and robotic missions. The Dependable Multiprocessor technology is a COTS-based, power efficient, high performance, highly dependable, fault tolerant cluster computer. To date, Honeywell has successfully demonstrated a TRL4 prototype of the Dependable Multiprocessor [I], and is now working on the development of a TRLS prototype. For the present effort Honeywell has teamed up with the University of Florida's High-performance Computing and Simulation (HCS) Lab, and together the team has demonstrated major elements of the Dependable Multiprocessor TRLS system.

  4. Honeycomb-shaped coordination polymers based on the self-assembly of long flexible ligands and alkaline-earth ions

    NASA Astrophysics Data System (ADS)

    Lian, Chen; Liu, Liu; Guo, Xu; Long, Yinshuang; Jia, Shanshan; Li, Huanhuan; Yang, Lirong

    2016-01-01

    Two novel coordination polymers, namely, [Ca(NCP)2]∞ (I) and [Sr(NCP)2]∞ (II) were synthesized under hydrothermal conditions based on 2-(4-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline (HNCP) and characterized by elemental analysis, infrared spectrometry, X-ray powder diffraction and single crystal X-ray diffraction. Findings indicate that I and II are isomorphous and isostructural, containing the unit of M(NCP-)4 (M=Ca(II) and Sr(II)), based on which to assemble into three-dimensional (3D) porous 4-fold interpenetration honeycomb-shaped neutral coordination polymers (CPs). Between the adjacent lamellar structures in I and II, there exist π-π interactions between the pyridine rings belonging to phenanthroline of NCP- which stabilize the frameworks. Both I and II display stronger fluorescence emissions as well as high thermal stability.

  5. High Performance FORTRAN

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush

    1994-01-01

    High performance FORTRAN is a set of extensions for FORTRAN 90 designed to allow specification of data parallel algorithms. The programmer annotates the program with distribution directives to specify the desired layout of data. The underlying programming model provides a global name space and a single thread of control. Explicitly parallel constructs allow the expression of fairly controlled forms of parallelism in particular data parallelism. Thus the code is specified in a high level portable manner with no explicit tasking or communication statements. The goal is to allow architecture specific compilers to generate efficient code for a wide variety of architectures including SIMD, MIMD shared and distributed memory machines.

  6. High performance steam development

    SciTech Connect

    Duffy, T.; Schneider, P.

    1995-12-31

    DOE has launched a program to make a step change in power plant to 1500 F steam, since the highest possible performance gains can be achieved in a 1500 F steam system when using a topping turbine in a back pressure steam turbine for cogeneration. A 500-hour proof-of-concept steam generator test module was designed, fabricated, and successfully tested. It has four once-through steam generator circuits. The complete HPSS (high performance steam system) was tested above 1500 F and 1500 psig for over 102 hours at full power.

  7. High Performance Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Talcott, Stephen

    High performance liquid chromatography (HPLC) has many applications in food chemistry. Food components that have been analyzed with HPLC include organic acids, vitamins, amino acids, sugars, nitrosamines, certain pesticides, metabolites, fatty acids, aflatoxins, pigments, and certain food additives. Unlike gas chromatography, it is not necessary for the compound being analyzed to be volatile. It is necessary, however, for the compounds to have some solubility in the mobile phase. It is important that the solubilized samples for injection be free from all particulate matter, so centrifugation and filtration are common procedures. Also, solid-phase extraction is used commonly in sample preparation to remove interfering compounds from the sample matrix prior to HPLC analysis.

  8. High pressure pyrolyzed non-precious metal oxygen reduction catalysts for alkaline polymer electrolyte membrane fuel cells.

    PubMed

    Sanetuntikul, Jakkid; Shanmugam, Sangaraju

    2015-05-01

    Non-precious metal catalysts, such as metal-coordinated to nitrogen doped-carbon, have shown reasonable oxygen reduction reaction (ORR) performances in alkaline fuel cells. In this report, we present the development of a highly active, stable and low-cost non-precious metal ORR catalyst by direct synthesis under autogenic-pressure conditions. Transmission electron microscopy studies show highly porous Fe-N-C and Co-N-C structures, which were further confirmed by Brunauer-Emmett-Teller surface area measurements. The surface areas of the Fe-N-C and Co-N-C catalysts were found to be 377.5 and 369.3 m(2) g(-1), respectively. XPS results show the possible existence of N-C and M-Nx structures, which are generally proposed to be the active sites in non-precious metal catalysts. The Fe-N-C electrocatalyst exhibits an ORR half-wave potential 20 mV higher than the reference Pt/C catalyst. The cycling durability test for Fe-N-C over 5000 cycles shows that the half-wave potential lost only 4 mV, whereas the half-wave potential of the Pt/C catalyst lost about 50 mV. The Fe-N-C catalyst exhibited an improved activity and stability compared to the reference Pt/C catalyst and it possesses a direct 4-electron transfer pathway for the ORR process. Further, the Fe-N-C catalyst produces extremely low HO2(-) content, as confirmed by the rotating ring-disk electrode measurements. In the alkaline fuel single cell tests, maximum power densities of 75 and 80 mW cm(-2) were observed for the Fe-N-C and Pt/C cathodes, respectively. Durability studies (100 h) showed that decay of the fuel cell current was more prominent for the Pt/C cathode catalyst compared to the Fe-N-C cathode catalyst. Therefore, the Fe-N-C catalyst appears to be a promising new class of non-precious metal catalysts prepared by an autogenic synthetic method. PMID:25833146

  9. High Performance Buildings Database

    DOE Data Explorer

    The High Performance Buildings Database is a shared resource for the building industry, a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses. The database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site.

  10. High Performance Window Retrofit

    SciTech Connect

    Shrestha, Som S; Hun, Diana E; Desjarlais, Andre Omer

    2013-12-01

    The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2 F h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.