Science.gov

Sample records for high-performance carbon nanotube

  1. Flexible high-performance carbon nanotube integrated circuits.

    PubMed

    Sun, Dong-ming; Timmermans, Marina Y; Tian, Ying; Nasibulin, Albert G; Kauppinen, Esko I; Kishimoto, Shigeru; Mizutani, Takashi; Ohno, Yutaka

    2011-03-01

    Carbon nanotube thin-film transistors are expected to enable the fabrication of high-performance, flexible and transparent devices using relatively simple techniques. However, as-grown nanotube networks usually contain both metallic and semiconducting nanotubes, which leads to a trade-off between charge-carrier mobility (which increases with greater metallic tube content) and on/off ratio (which decreases). Many approaches to separating metallic nanotubes from semiconducting nanotubes have been investigated, but most lead to contamination and shortening of the nanotubes, thus reducing performance. Here, we report the fabrication of high-performance thin-film transistors and integrated circuits on flexible and transparent substrates using floating-catalyst chemical vapour deposition followed by a simple gas-phase filtration and transfer process. The resulting nanotube network has a well-controlled density and a unique morphology, consisting of long (~10 µm) nanotubes connected by low-resistance Y-shaped junctions. The transistors simultaneously demonstrate a mobility of 35 cm(2) V(-1) s(-1) and an on/off ratio of 6 × 10(6). We also demonstrate flexible integrated circuits, including a 21-stage ring oscillator and master-slave delay flip-flops that are capable of sequential logic. Our fabrication procedure should prove to be scalable, for example, by using high-throughput printing techniques. PMID:21297625

  2. Imaging Carbon Nanotubes in High Performance Polymer Composites via Magnetic Force Microscope

    NASA Technical Reports Server (NTRS)

    Lillehei, Peter T.; Park, Cheol; Rouse, Jason H.; Siochi, Emilie J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Application of carbon nanotubes as reinforcement in structural composites is dependent on the efficient dispersion of the nanotubes in a high performance polymer matrix. The characterization of such dispersion is limited by the lack of available tools to visualize the quality of the matrix/carbon nanotube interaction. The work reported herein demonstrates the use of magnetic force microscopy (MFM) as a promising technique for characterizing the dispersion of nanotubes in a high performance polymer matrix.

  3. High performance transistors via aligned polyfluorene-sorted carbon nanotubes

    SciTech Connect

    Brady, Gerald J.; Joo, Yongho; Singha Roy, Susmit; Gopalan, Padma; Arnold, Michael S.

    2014-02-24

    We evaluate the performance of exceptionally electronic-type sorted, semiconducting, aligned single-walled carbon nanotubes (s-SWCNTs) in field effect transistors (FETs). High on-conductance and high on/off conductance modulation are simultaneously achieved at channel lengths which are both shorter and longer than individual s-SWCNTs. The s-SWCNTs are isolated from heterogeneous mixtures using a polyfluorene-derivative as a selective agent and aligned on substrates via dose-controlled, floating evaporative self-assembly at densities of ∼50 s-SWCNTs μm{sup −1}. At a channel length of 9 μm the s-SWCNTs percolate to span the FET channel, and the on/off ratio and charge transport mobility are 2.2 × 10{sup 7} and 46 cm{sup 2} V{sup −1} s{sup −1}, respectively. At a channel length of 400 nm, a large fraction of the s-SWCNTs directly span the channel, and the on-conductance per width is 61 μS μm{sup −1} and the on/off ratio is 4 × 10{sup 5}. These results are considerably better than previous solution-processed FETs, which have suffered from poor on/off ratio due to spurious metallic nanotubes that bridge the channel. 4071 individual and small bundles of s-SWCNTs are tested in 400 nm channel length FETs, and all show semiconducting behavior, demonstrating the high fidelity of polyfluorenes as selective agents and the promise of assembling s-SWCNTs from solution to create high performance semiconductor electronic devices.

  4. Nickel clusters embedded in carbon nanotubes as high performance magnets.

    PubMed

    Shiozawa, Hidetsugu; Briones-Leon, Antonio; Domanov, Oleg; Zechner, Georg; Sato, Yuta; Suenaga, Kazu; Saito, Takeshi; Eisterer, Michael; Weschke, Eugen; Lang, Wolfgang; Peterlik, Herwig; Pichler, Thomas

    2015-01-01

    Ensembles of fcc nickel nanowires have been synthesized with defined mean sizes in the interior of single-wall carbon nanotubes. The method allows the intrinsic nature of single-domain magnets to emerge with large coercivity as their size becomes as small as the exchange length of nickel. By means of X-ray magnetic circular dichroism we probe electronic interactions at nickel-carbon interfaces where nickel exhibit no hysteresis and size-dependent spin magnetic moment. A manifestation of the interacting two subsystems on a bulk scale is traced in the nanotube's magnetoresistance as explained within the framework of weak localization. PMID:26459370

  5. Nickel clusters embedded in carbon nanotubes as high performance magnets

    PubMed Central

    Shiozawa, Hidetsugu; Briones-Leon, Antonio; Domanov, Oleg; Zechner, Georg; Sato, Yuta; Suenaga, Kazu; Saito, Takeshi; Eisterer, Michael; Weschke, Eugen; Lang, Wolfgang; Peterlik, Herwig; Pichler, Thomas

    2015-01-01

    Ensembles of fcc nickel nanowires have been synthesized with defined mean sizes in the interior of single-wall carbon nanotubes. The method allows the intrinsic nature of single-domain magnets to emerge with large coercivity as their size becomes as small as the exchange length of nickel. By means of X-ray magnetic circular dichroism we probe electronic interactions at nickel-carbon interfaces where nickel exhibit no hysteresis and size-dependent spin magnetic moment. A manifestation of the interacting two subsystems on a bulk scale is traced in the nanotube’s magnetoresistance as explained within the framework of weak localization. PMID:26459370

  6. Nickel clusters embedded in carbon nanotubes as high performance magnets

    NASA Astrophysics Data System (ADS)

    Shiozawa, Hidetsugu; Briones-Leon, Antonio; Domanov, Oleg; Zechner, Georg; Sato, Yuta; Suenaga, Kazu; Saito, Takeshi; Eisterer, Michael; Weschke, Eugen; Lang, Wolfgang; Peterlik, Herwig; Pichler, Thomas

    2015-10-01

    Ensembles of fcc nickel nanowires have been synthesized with defined mean sizes in the interior of single-wall carbon nanotubes. The method allows the intrinsic nature of single-domain magnets to emerge with large coercivity as their size becomes as small as the exchange length of nickel. By means of X-ray magnetic circular dichroism we probe electronic interactions at nickel-carbon interfaces where nickel exhibit no hysteresis and size-dependent spin magnetic moment. A manifestation of the interacting two subsystems on a bulk scale is traced in the nanotube’s magnetoresistance as explained within the framework of weak localization.

  7. Flexible carbon nanotube films for high performance strain sensors.

    PubMed

    Kanoun, Olfa; Müller, Christian; Benchirouf, Abderahmane; Sanli, Abdulkadir; Dinh, Trong Nghia; Al-Hamry, Ammar; Bu, Lei; Gerlach, Carina; Bouhamed, Ayda

    2014-01-01

    Compared with traditional conductive fillers, carbon nanotubes (CNTs) have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon nanomaterials as conductive filler can be deposited on a flexible substrate of choice and this leads to mechanically flexible layers. Such sensors allow the strain measurement for both integral measurement on a certain surface and local measurement at a certain position depending on the sensor geometry. Strain sensors based on carbon nanostructures can overcome several limitations of conventional strain sensors, e.g., sensitivity, adjustable measurement range and integral measurement on big surfaces. The novel technology allows realizing strain sensors which can be easily integrated even as buried layers in material systems. In this review paper, we discuss the dependence of strain sensitivity on different experimental parameters such as composition of the carbon nanomaterial/polymer layer, type of polymer, fabrication process and processing parameters. The insights about the relationship between film parameters and electromechanical properties can be used to improve the design and fabrication of CNT strain sensors. PMID:24915183

  8. Flexible Carbon Nanotube Films for High Performance Strain Sensors

    PubMed Central

    Kanoun, Olfa; Müller, Christian; Benchirouf, Abderahmane; Sanli, Abdulkadir; Dinh, Trong Nghia; Al-Hamry, Ammar; Bu, Lei; Gerlach, Carina; Bouhamed, Ayda

    2014-01-01

    Compared with traditional conductive fillers, carbon nanotubes (CNTs) have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon nanomaterials as conductive filler can be deposited on a flexible substrate of choice and this leads to mechanically flexible layers. Such sensors allow the strain measurement for both integral measurement on a certain surface and local measurement at a certain position depending on the sensor geometry. Strain sensors based on carbon nanostructures can overcome several limitations of conventional strain sensors, e.g., sensitivity, adjustable measurement range and integral measurement on big surfaces. The novel technology allows realizing strain sensors which can be easily integrated even as buried layers in material systems. In this review paper, we discuss the dependence of strain sensitivity on different experimental parameters such as composition of the carbon nanomaterial/polymer layer, type of polymer, fabrication process and processing parameters. The insights about the relationship between film parameters and electromechanical properties can be used to improve the design and fabrication of CNT strain sensors. PMID:24915183

  9. High performance carbon nanotube - polymer nanofiber hybrid fabrics

    NASA Astrophysics Data System (ADS)

    Yildiz, Ozkan; Stano, Kelly; Faraji, Shaghayegh; Stone, Corinne; Willis, Colin; Zhang, Xiangwu; Jur, Jesse S.; Bradford, Philip D.

    2015-10-01

    Stable nanoscale hybrid fabrics containing both polymer nanofibers and separate and distinct carbon nanotubes (CNTs) are highly desirable but very challenging to produce. Here, we report the first instance of such a hybrid fabric, which can be easily tailored to contain 0-100% millimeter long CNTs. The novel CNT - polymer hybrid nonwoven fabrics were created by simultaneously electrospinning nanofibers onto aligned CNT sheets which were drawn and collected on a grounded, rotating mandrel. Due to the unique properties of the CNTs, the hybrids show very high tensile strength, very small pore size, high specific surface area and electrical conductivity. In order to further examine the hybrid fabric properties, they were consolidated under pressure, and also calendered at 70 °C. After calendering, the fabric's strength increased by an order of magnitude due to increased interactions and intermingling with the CNTs. The hybrids are highly efficient as aerosol filters; consolidated hybrid fabrics with a thickness of 20 microns and areal density of only 8 g m-2 exhibited ultra low particulate (ULPA) filter performance. The flexibility of this nanofabrication method allows for the use of many different polymer systems which provides the opportunity for engineering a wide range of nanoscale hybrid materials with desired functionalities.Stable nanoscale hybrid fabrics containing both polymer nanofibers and separate and distinct carbon nanotubes (CNTs) are highly desirable but very challenging to produce. Here, we report the first instance of such a hybrid fabric, which can be easily tailored to contain 0-100% millimeter long CNTs. The novel CNT - polymer hybrid nonwoven fabrics were created by simultaneously electrospinning nanofibers onto aligned CNT sheets which were drawn and collected on a grounded, rotating mandrel. Due to the unique properties of the CNTs, the hybrids show very high tensile strength, very small pore size, high specific surface area and electrical

  10. High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cao, Yu; Che, Yuchi; Seo, Jung-Woo T.; Gui, Hui; Hersam, Mark C.; Zhou, Chongwu

    2016-06-01

    In this paper, we report the high-performance radio-frequency transistors based on the single-walled semiconducting carbon nanotubes with a refined average diameter of ˜1.6 nm. These diameter-separated carbon nanotube transistors show excellent transconductance of 55 μS/μm and desirable drain current saturation with an output resistance of ˜100 KΩ μm. An exceptional radio-frequency performance is also achieved with current gain and power gain cut-off frequencies of 23 GHz and 20 GHz (extrinsic) and 65 GHz and 35 GHz (intrinsic), respectively. These radio-frequency metrics are among the highest reported for the carbon nanotube thin-film transistors. This study provides demonstration of radio frequency transistors based on carbon nanotubes with tailored diameter distributions, which will guide the future application of carbon nanotubes in radio-frequency electronics.

  11. Carbon nanotube high-performance logic technology - challenges and current progress

    NASA Astrophysics Data System (ADS)

    Han, Shu-Jen

    2015-03-01

    In the last four decades, we have witnessed a tremendous information technology revolution originated from the relentless scaling of Si complementary metal-oxide semiconductor (CMOS) devices. CMOS scaling provides ever-improved transistor performance, density, power and cost, and will continue to bring new applications and functions to our daily life. However, the conventional homogeneous scaling of silicon devices has become very difficult, firstly due to the unsatisfactory electrostatic control from the gate dielectric. In addition, as we look forward to the technology nodes with sub-10 nm channel length, non-Si based channel materials will be required to provide continuous carrier velocity enhancement when the conventional strained-Si techniques run out of steam. Single-walled carbon nanotubes are promising to replace silicon as the channel material for high-performance electronics near the end of silicon scaling roadmap, with their superb electrical properties, intrinsic ultrathin body, and nearly transparent contact with certain metals. This talk discusses recent advances in modeling and experimental works that reveal the properties and potential of ultra-scaled nanotube transistors, separation and assembly techniques for forming nanotube arrays with high semiconducting nanotube purity and tight pitch separation, and engineering aspects of their implementation in integrated circuits and functional systems. A concluding discussion highlights most significant challenges from technology points of view, and provides perspectives on the future of carbon nanotube based nanoelectronics.

  12. Soft-Templated Mesoporous Carbon-Carbon Nanotube Composites for High Performance Lithium-ion Batteries

    SciTech Connect

    Guo, Bingkun; Wang, Xiqing; Fulvio, Pasquale F.; Chi, Miaofang; Mahurin, Shannon M.; Sun, Xiao-Guang; Dai, Sheng

    2011-09-13

    Mesoporous carbon with homogeneously dispersed multi-walled carbon nanotubes (MWNTs) are synthesized via a one-step "brick and mortar" soft-templating approach. Nanocomposites exhibit a reversible lithium storage capacity of 900 mA h g⁻¹ and a good rate performance. Such homogeneous nanocomposites are ideal candidates for electric vehicle applications where high power and energy density are primary requirements.

  13. High-performance carbon nanotube-implanted mesoporous carbon spheres for supercapacitors with low series resistance

    SciTech Connect

    Yi, Bin; Chen, Xiaohua; Guo, Kaimin; Xu, Longshan; Chen, Chuansheng; Yan, Haimei; Chen, Jianghua

    2011-11-15

    Research highlights: {yields} CNTs-implanted porous carbon spheres are prepared by using gelatin as soft template. {yields} Homogeneously distributed CNTs form a well-develop network in carbon spheres. {yields} CNTs act as a reinforcing backbone assisting the formation of pore structure. {yields} CNTs improve electrical conductivity and specific capacitance of supercapacitor. -- Abstract: Carbon nanotube-implanted mesoporous carbon spheres were prepared by an easy polymerization-induced colloid aggregation method using gelatin as a soft template. Scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption measurements reveal that the materials are mesoporous carbon spheres, with a diameter of {approx}0.5-1.0 {mu}m, a specific surface area of 284 m{sup 2}/g and average pore size of 3.9 nm. Using the carbon nanotube-implanted mesoporous carbon spheres as electrode material for supercapacitors in an aqueous electrolyte solution, a low equivalent series resistance of 0.83 {Omega} cm{sup 2} and a maximum specific capacitance of 189 F/g with a measured power density of 8.7 kW/kg at energy density of 6.6 Wh/kg are obtained.

  14. Three-dimensional porous carbon nanotube sponges for high-performance anodes of microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Erbay, Celal; Yang, Gang; de Figueiredo, Paul; Sadr, Reza; Yu, Choongho; Han, Arum

    2015-12-01

    Highly-porous, light-weight, and inexpensive three-dimensional (3D) sponges consisting of interconnected carbon nanotubes (CNTs) without base materials are synthesized with a facile and scalable one-step chemical vapor deposition process as anode of microbial fuel cells (MFCs). The MFCs generates higher power densities of 2150 W m-3 (per anode volume) or 170 W m-3 (per anode chamber volume), comparable to those of commercial 3D carbon felt electrodes under the same conditions. The high performances are due to excellent charge transfer between CNTs and microbes owing to 13 times lower charge transfer resistance compared to that of carbon felt. The material cost of producing these CNT sponge estimates to be ∼0.1/gCNT, significantly lower than that of other methods. In addition, the high production rate of about 3.6 g h-1 compared to typical production rate of 0.02 g h-1 of other CNT-based materials makes this process economically viable. The one-step synthesis method allowing self-assembly of 3D CNT sponges as they grow is low cost and scalable, making this a promising method for manufacturing high-performance anodes of MFCs, with broad applicability to microbial electrochemical systems in general.

  15. Fabrication of graphene foam supported carbon nanotube/polyaniline hybrids for high-performance supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Yang, Hongxia; Wang, Nan; Xu, Qun; Chen, Zhimin; Ren, Yumei; Razal, Joselito M.; Chen, Jun

    2014-12-01

    A large-scale, high-powered energy storage system is crucial for addressing the energy problem. The development of high-performance materials is a key issue in realizing the grid-scale applications of energy-storage devices. In this work, we describe a simple and scalable method for fabricating hybrids (graphene-pyrrole/carbon nanotube-polyaniline (GPCP)) using graphene foam as the supporting template. Graphene-pyrrole (G-Py) aerogels are prepared via a green hydrothermal route from two-dimensional materials such as graphene sheets, while a carbon nanotube/polyaniline (CNT/PANI) composite dispersion is obtained via the in situ polymerization method. The functional nanohybrid materials of GPCP can be assembled by simply dipping the prepared G-py aerogels into the CNT/PANI dispersion. The morphology of the obtained GPCP is investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed that the CNT/PANI was uniformly deposited onto the surfaces of the graphene. The as-synthesized GPCP maintains its original three-dimensional hierarchical porous architecture, which favors the diffusion of the electrolyte ions into the inner region of the active materials. Such hybrid materials exhibit significant specific capacitance of up to 350 F g-1, making them promising in large-scale energy-storage device applications.

  16. High performance electrochemical and electrothermal artificial muscles from twist-spun carbon nanotube yarn

    NASA Astrophysics Data System (ADS)

    Lee, Jae Ah; Baughman, Ray H.; Kim, Seon Jeong

    2015-04-01

    High performance torsional and tensile artificial muscles are described, which utilize thermally- or electrochemically-induced volume changes of twist-spun, guest-filled, carbon nanotube (CNT) yarns. These yarns were prepared by incorporating twist in carbon nanotube sheets drawn from spinnable CNT forests. Inserting high twist into the CNT yarn results in yarn coiling, which can dramatically amplify tensile stroke and work capabilities compared with that for the non-coiled twisted yarn. When electrochemically driven in a liquid electrolyte, these artificial muscles can generate a torsional rotation per muscle length that is over 1000 times higher than for previously reported torsional muscles. All-solid-state torsional electrochemical yarn muscles have provided a large torsional muscle stroke (53° per mm of yarn length) and a tensile stroke of up to 1.3% when lifting loads that are ~25 times heavier than can be lifted by the same diameter human skeletal muscle. Over a million torsional and tensile actuation cycles have been demonstrated for thermally powered CNT hybrid yarns muscles filled with paraffin wax, wherein a muscle spins a rotor at an average 11,500 revolutions/minute or delivers 3% tensile contraction at 1200 cycles/minute. At lower actuation rates, these thermally powered muscles provide tensile strokes of over 10%.

  17. Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances.

    PubMed

    Weng, Wei; Sun, Qian; Zhang, Ye; Lin, Huijuan; Ren, Jing; Lu, Xin; Wang, Min; Peng, Huisheng

    2014-06-11

    Inspired by the fantastic and fast-growing wearable electronics such as Google Glass and Apple iWatch, matchable lightweight and weaveable energy storage systems are urgently demanded while remaining as a bottleneck in the whole technology. Fiber-shaped energy storage devices that can be woven into electronic textiles may represent a general and effective strategy to overcome the above difficulty. Here a coaxial fiber lithium-ion battery has been achieved by sequentially winding aligned carbon nanotube composite yarn cathode and anode onto a cotton fiber. Novel yarn structures are designed to enable a high performance with a linear energy density of 0.75 mWh cm(-1). A wearable energy storage textile is also produced with an areal energy density of 4.5 mWh cm(-2). PMID:24831023

  18. Multiwalled carbon nanotube/polydimethylsiloxane composite films as high performance flexible electric heating elements

    SciTech Connect

    Yan, Jing; Jeong, Young Gyu

    2014-08-04

    High performance elastomeric electric heating elements were prepared by incorporating various contents of pristine multiwalled carbon nanotube (MWCNT) in polydimethylsiloxane (PDMS) matrix by using an efficient solution-casting and curing technique. The pristine MWCNTs were identified to be uniformly dispersed in the PDMS matrix and the electrical percolation of MWCNTs was evaluated to be at ∼0.27 wt. %, where the electrical resistivity of the MWCNT/PDMS composite films dropped remarkably. Accordingly, the composite films with higher MWCNT contents above 0.3 wt. % exhibit excellent electric heating performance in terms of temperature response rapidity and electric energy efficiency at constant applied voltages. In addition, the composite films, which were thermally stable up to 250 °C, showed excellent heating-cooling cyclic performance, which was associated with operational stability in actual electric heating applications.

  19. Coaxial carbon/metal oxide/aligned carbon nanotube arrays as high-performance anodes for lithium ion batteries.

    PubMed

    Lou, Fengliu; Zhou, Haitao; Tran, Trung Dung; Melandsø Buan, Marthe Emelie; Vullum-Bruer, Fride; Rønning, Magnus; Walmsley, John Charles; Chen, De

    2014-05-01

    Coaxial carbon/metal oxide/aligned carbon nanotube (ACNT) arrays over stainless-steel foil are reported as high-performance binder-free anodes for lithium ion batteries. The coaxial arrays were prepared by growth of ACNTs over stainless-steel foil followed by coating with metal oxide and carbon. The carbon/manganese oxide/ACNT arrays can deliver an initial capacity of 738 mAh g(-1) with 99.9 % capacity retention up to 100 cycles and a capacity of 374 mAh g(-1) at a high current density of 6000 mA g(-1). The external carbon layer was recognized as a key component for high performance, and the mechanism of performance enhancement was investigated by electrochemical impedance spectroscopy, electron microscopy, and X-ray diffraction analysis. The layer increases rate capability by enhancing electrical conductivity and maintaining a low mass-transfer resistance and also improves cyclic stability by avoiding aggregation of metal-oxide particles and stabilizing the solid electrolyte interface. The resultant principle of rational electrode design was applied to an iron oxide-based system, and similar improvements were found. These coaxial nanotube arrays present a promising strategy for the rational design of high-performance binder-free anodes for lithium ion batteries. PMID:24578068

  20. Elastic-resilience-induced dispersion of carbon nanotubes: a novel way of fabricating high performance elastomer.

    PubMed

    Wu, Siwu; Lin, Tengfei; Guo, Baochun

    2013-11-22

    State-of-the-art processes cannot achieve rubber/multi-walled carbon nanotube (MWCNT) composites with satisfactory performance by using pristine MWCNTs and conventional processing equipment. In this work, high performance rubber/MWCNT composites featuring a combination of good mechanical properties, electrical and thermal conductivities and damping capacity over a wide temperature range are fabricated based on a well-developed master batch process. It is demonstrated that the MWCNTs are dispersed homogeneously due to the disentanglement induced by well-wetting and shearing, and the elastic-resilience-induced dispersion of the MWCNTs by rubber chains via the novel processing method. To further enhance the efficacy of elastic-resilience-induced dispersion for MWCNTs, a slightly pre-crosslinked network is constructed in the master batch. Consequently, we obtain rubber/MWCNT composites with unprecedented performance by amplifying the reinforcing effect of relatively low MWCNT loading. This work provides a novel insight into the fabrication of high performance functional elastomeric composites with pristine CNTs by taking advantage of the unique elastic resilience of rubber chains as the driving force for the disentanglement of CNTs. PMID:24164916

  1. Micropatterned single-walled carbon nanotube electrodes for use in high-performance transistors and inverters.

    PubMed

    Kang, Woonggi; Kim, Nam Hee; Lee, Dong Yun; Chang, Suk Tai; Cho, Jeong Ho

    2014-06-25

    We demonstrated the solution-processed single-walled carbon nanotube (SWNT) source-drain electrodes patterned using a plasma-enhanced detachment patterning method for high-performance organic transistors and inverters. The high-resolution SWNT electrode patterning began with the formation of highly uniform SWNT thin films on a hydrophobic silanized substrate. The SWNT source-drain patterns were then formed by modulating the interfacial energies of the prepatterned elastomeric mold and the SWNT thin film using oxygen plasma. The SWNT films were subsequently selectively delaminated using a rubber mold. The patterned SWNTs could be used as the source-drain electrodes for both n-type PTCDI-C8 and p-type pentacene field-effect transistors (FETs). The n- and p-type devices exhibited good and exactly matched electrical performances, with a field-effect mobility of around 0.15 cm(2) V(-1) s(-1) and an ON/OFF current ratio exceeding 10(6). The single electrode material was used for both the n and p channels, permitting the successful fabrication of a high-performance complementary inverter by connecting a p-type pentacene FET to an n-type PTCDI-C8 FET. This patterning technique was simple, inexpensive, and easily scaled for the preparation of large-area electrode micropatterns for flexible microelectronic device fabrication. PMID:24915751

  2. Elastic-resilience-induced dispersion of carbon nanotubes: a novel way of fabricating high performance elastomer

    NASA Astrophysics Data System (ADS)

    Wu, Siwu; Lin, Tengfei; Guo, Baochun

    2013-11-01

    State-of-the-art processes cannot achieve rubber/multi-walled carbon nanotube (MWCNT) composites with satisfactory performance by using pristine MWCNTs and conventional processing equipment. In this work, high performance rubber/MWCNT composites featuring a combination of good mechanical properties, electrical and thermal conductivities and damping capacity over a wide temperature range are fabricated based on a well-developed master batch process. It is demonstrated that the MWCNTs are dispersed homogeneously due to the disentanglement induced by well-wetting and shearing, and the elastic-resilience-induced dispersion of the MWCNTs by rubber chains via the novel processing method. To further enhance the efficacy of elastic-resilience-induced dispersion for MWCNTs, a slightly pre-crosslinked network is constructed in the master batch. Consequently, we obtain rubber/MWCNT composites with unprecedented performance by amplifying the reinforcing effect of relatively low MWCNT loading. This work provides a novel insight into the fabrication of high performance functional elastomeric composites with pristine CNTs by taking advantage of the unique elastic resilience of rubber chains as the driving force for the disentanglement of CNTs.

  3. High performance bulk metallic glass/carbon nanotube composite cathodes for electron field emission

    SciTech Connect

    Hojati-Talemi, Pejman; Gibson, Mark A.; East, Daniel; Simon, George P.

    2011-11-07

    We report the preparation of new nanocomposites based on a combination of bulk metallic glass and carbon nanotubes for electron field emission applications. The use of bulk metallic glass as the matrix ensures high electrical and thermal conductivity, high thermal stability, and ease of processing, whilst the well dispersed carbon nanotubes act as highly efficient electron emitters. These advantages, alongside excellent electron emission properties, make these composites one of the best reported options for electron emission applications to date.

  4. Polymer-assisted direct deposition of uniform carbon nanotube bundle networks for high performance transparent electrodes.

    PubMed

    Hellstrom, Sondra L; Lee, Hang Woo; Bao, Zhenan

    2009-06-23

    Flexible transparent electrodes are crucial for touch screen, flat panel display, and solar cell technologies. While carbon nanotube network electrodes show promise, characteristically poor dispersion properties have limited their practicality. We report that addition of small amounts of conjugated polymer to nanotube dispersions enables straightforward fabrication of uniform network electrodes by spin-coating and simultaneous tuning of parameters such as bundle size and density. After treatment in thionyl chloride, electrodes have sheet resistances competitive with other reported carbon nanotube based transparent electrodes to date. PMID:19422197

  5. Fabrication of high-performance supercapacitors based on transversely oriented carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Markoulidis, F.; Lei, C.; Lekakou, C.

    2013-04-01

    High-performance supercapacitors with organic electrolyte 1 M TEABF4 (tetraethyl ammonium tetrafluoroborate) in PC (propylene carbonate) were fabricated and tested, based on multiwall carbon nanotubes (MWNTs) deposited by electrophoresis on three types of alternative substrates: aluminium foil, ITO (indium tin oxide) coated PET (polyethylene terephthalate) film and PET film. In all cases, SEM (scanning electron microscopy) and STEM (scanning transmission electron microscopy) micrographs demonstrated that protruding, transversely oriented MWNT structures were formed, which should increase the transverse conductivity of these MWNT electrodes. The best supercapacitor cell of MWNT electrodes deposited on aluminium foil displayed good transverse orientation of the MWNT structures as well as an in-plane MWNT network at the feet of the protruding structures, which ensured good in-plane conductivity. Capacitor cells with MWNT electrodes deposited either on ITO-coated PET film or on PET film demonstrated lower but still very good performance due to the high density of transversely oriented MWNT structures (good transverse conductivity) but some in-plane inhomogeneities. Capacitor cells with drop-printed MWNTs on aluminium foil, without any transverse orientation, had 16-30 times lower specific capacitance and 5-40 times lower power density than the capacitor cells with the electrophoretically deposited MWNT electrodes.

  6. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells.

    PubMed

    Xie, Xing; Hu, Liangbing; Pasta, Mauro; Wells, George F; Kong, Desheng; Criddle, Craig S; Cui, Yi

    2011-01-12

    Microbial fuel cells (MFCs) harness the metabolism of microorganisms, converting chemical energy into electrical energy. Anode performance is an important factor limiting the power density of MFCs for practical application. Improving the anode design is thus important for enhancing the MFC performance, but only a little development has been reported. Here, we describe a biocompatible, highly conductive, two-scale porous anode fabricated from a carbon nanotube-textile (CNT-textile) composite for high-performance MFCs. The macroscale porous structure of the intertwined CNT-textile fibers creates an open 3D space for efficient substrate transport and internal colonization by a diverse microflora, resulting in a 10-fold-larger anolyte-biofilm-anode interfacial area than the projective surface area of the CNT-textile. The conformally coated microscale porous CNT layer displays strong interaction with the microbial biofilm, facilitating electron transfer from exoelectrogens to the CNT-textile anode. An MFC equipped with a CNT-textile anode has a 10-fold-lower charge-transfer resistance and achieves considerably better performance than one equipped with a traditional carbon cloth anode: the maximum current density is 157% higher, the maximum power density is 68% higher, and the energy recovery is 141% greater. PMID:21158405

  7. High-Performance Carbon Nanotube/Polymer Composite Fiber from Layer-by-Layer Deposition.

    PubMed

    Wu, Min Le; Chen, Yun; Zhang, Liang; Zhan, Hang; Qiang, Lei; Wang, Jian Nong

    2016-03-30

    So far, preparation of high-performance carbon nanotube (CNT)/polymer composites still faces big challenges mainly due to the limited control of CNT dispersion, fraction, and alignment in polymers. Here, a new "layer-by-layer deposition" method is put forward for preparing CNT/polymer composite fibers using poly(vinyl alcohol) (PVA) as an exemplary polymer. This is based on the continuous production of a hollow cylindrical CNT assembly from a high temperature reactor and its shrinking by a PVA-containing solution and deposition on a removable substrate wire. The in situ mixing of the two composite components at the molecular level allows CNTs to disperse and PVA to infiltrate into the fiber efficiently. As a result, remarkable effects of the CNT reinforcement on the PVA matrix are observed, including a strength improvement from ∼50 to 1255 MPa and electrical conductivity from ∼0 to 1948 S cm(-1). The new method offers good controllability of CNT dispersion and fraction in the polymer matrix, variability for making composite fibers using different polymers, and suitability for scaled up production. This study thus provides a new research direction for preparing CNT-reinforced composites and future performance maximization. PMID:26959406

  8. Carbon nanotube buckypaper to improve fire retardancy of high-temperature/high-performance polymer composites

    NASA Astrophysics Data System (ADS)

    Fu, Xiang; Zhang, Chuck; Liu, Tao; Liang, Richard; Wang, Ben

    2010-06-01

    Mixed single-walled and multi-walled carbon nanotube membrane (buckypaper) was incorporated onto the surface of polyimide/carbon fibre composites via a compression moulding process. Flammability was investigated by cone calorimeter tests under an external radiant heat flux of 50 kW m - 2. The burning residue was analysed with scanning electron microscopy and thermogravimetric analysis. The buckypaper survived the burning test and decreased the peak heat release rate by 40%, reduced the total heat release by 26%, produced 82% less smoke release and resulted in 33% less mass loss. The directly mixed carbon nanotubes (5 wt% multi-walled carbon nanotubes) yielded 38% less peak heat release rate, only 3.7% less total heat release, 28% more smoke release and no change in mass loss. Compared to direct mixing of carbon nanotubes into the resin, the use of buckypaper is more efficient in fire retardancy improvement; it yielded further delay of ignition, lower heat release rate, further reduced heat release, lower mass loss and less smoke release. The buckypaper worked as an excellent physical barrier, obstructing the flow of heat and oxygen to the inner polymer resin. The as-prepared buckypaper greatly improved the fire retardancy of polyimide matrix carbon fibre composites.

  9. Carbon nanotube buckypaper to improve fire retardancy of high-temperature/high-performance polymer composites.

    PubMed

    Fu, Xiang; Zhang, Chuck; Liu, Tao; Liang, Richard; Wang, Ben

    2010-06-11

    Mixed single-walled and multi-walled carbon nanotube membrane (buckypaper) was incorporated onto the surface of polyimide/carbon fibre composites via a compression moulding process. Flammability was investigated by cone calorimeter tests under an external radiant heat flux of 50 kW m(-2). The burning residue was analysed with scanning electron microscopy and thermogravimetric analysis. The buckypaper survived the burning test and decreased the peak heat release rate by 40%, reduced the total heat release by 26%, produced 82% less smoke release and resulted in 33% less mass loss. The directly mixed carbon nanotubes (5 wt% multi-walled carbon nanotubes) yielded 38% less peak heat release rate, only 3.7% less total heat release, 28% more smoke release and no change in mass loss. Compared to direct mixing of carbon nanotubes into the resin, the use of buckypaper is more efficient in fire retardancy improvement; it yielded further delay of ignition, lower heat release rate, further reduced heat release, lower mass loss and less smoke release. The buckypaper worked as an excellent physical barrier, obstructing the flow of heat and oxygen to the inner polymer resin. The as-prepared buckypaper greatly improved the fire retardancy of polyimide matrix carbon fibre composites. PMID:20463386

  10. High performance carbon nanocomposites for ultracapacitors

    DOEpatents

    Lu, Wen

    2012-10-02

    The present invention relates to composite electrodes for electrochemical devices, particularly to carbon nanotube composite electrodes for high performance electrochemical devices, such as ultracapacitors.

  11. Fabrication of high-performance flexible alkaline batteries by implementing multiwalled carbon nanotubes and copolymer separator.

    PubMed

    Wang, Zhiqian; Wu, Zheqiong; Bramnik, Natalia; Mitra, Somenath

    2014-02-12

    A flexible alkaline battery with multiwalled carbon nanotube (MWCNT) enhanced composite electrodes and polyvinyl alcohol (PVA)-poly (acrylic acid) (PAA) copolymer separator has been developed. Purified MWCNTs appear to be the most effective conductive additive, while the flexible copolymer separator not only enhances flexibility but also serves as electrolyte storage. PMID:24510667

  12. 'Bucky gel' of multiwalled carbon nanotubes as electrodes for high performance, flexible electric double layer capacitors.

    PubMed

    Singh, Manoj K; Kumar, Yogesh; Hashmi, S A

    2013-11-22

    We report the preparation of a gelled form of multiwalled carbon nanotubes (MWCNTs) with an ionic liquid 1-butyl-1-methyl pyrrolidinium bis(trifluoromethane sulfonyl)imide (BMPTFSI)), referred to as 'bucky gel', to be used as binderless electrodes in electrical double layer capacitors (EDLCs). The characteristics of gelled MWCNTs are compared with pristine MWCNTs using transmission electron microscopy, x-ray diffraction and Raman studies. A gel polymer electrolyte film consisting of a blend of poly(vinylidene fluoride-co-hexafluoropropylene) and BMPTFSI, exhibiting a room temperature ionic conductivity of 1.5 × 10(-3) S cm(-1), shows its suitability as an electrolyte/separator in flexible EDLCs. The performance of EDLCs, assembled with bucky gel electrodes, using impedance spectroscopy, cyclic voltammetry and charge-discharge analyses, are compared with those fabricated with pristine MWCNT-electrodes. An improvement in specific capacitance (from 19.6 to 51.3 F g(-1)) is noted when pristine MWCNTs are replaced by gelled MWCNT-binderless electrodes. Although the rate performance of the EDLCs with gelled MWCNT-electrodes is reduced, the pulse power of the device is sufficiently high (~10.5 kW kg(-1)). The gelled electrodes offer improvements in energy and power densities from 2.8 to 8.0 Wh kg(-1) and 2.0 to 4.7 kW kg(-1), respectively. Studies indicate that the gel formation of MWCNTs with ionic liquid is an excellent route to obtain high-performance EDLCs. PMID:24157648

  13. Carbon hybridized halloysite nanotubes for high-performance hydrogen storage capacities.

    PubMed

    Jin, Jiao; Fu, Liangjie; Yang, Huaming; Ouyang, Jing

    2015-01-01

    Hybrid nanotubes of carbon and halloysite nanotubes (HNTs) with different carbon:HNTs ratio were hydrothermally synthesized from natural halloysite and sucrose. The samples display uniformly cylindrical hollow tubular structure with different morphologies. These hybrid nanotubes were concluded to be promising medium for physisorption-based hydrogen storage. The hydrogen adsorption capacity of pristine HNTs was 0.35% at 2.65 MPa and 298 K, while that of carbon coated HNTs with the pre-set carbon:HNTs ratio of 3:1 (3C-HNTs) was 0.48% under the same condition. This carbon coated method could offer a new pattern for increasing the hydrogen adsorption capacity. It was also possible to enhance the hydrogen adsorption capacity through the spillover mechanism by incorporating palladium (Pd) in the samples of HNTs (Pd-HNTs) and 3C-HNTs (Pd-3C-HNTs and 3C-Pd-HNTs are the samples with different location of Pd nanoparticles). The hydrogen adsorption capacity of the Pd-HNTs was 0.50% at 2.65 MPa and 298 K, while those of Pd-3C-HNTs and 3C-Pd-HNTs were 0.58% and 0.63%, respectively. In particular, for this spillover mechanism of Pd-carbon-HNTs ternary system, the bidirectional transmission of atomic and molecular hydrogen (3C-Pd-HNTs) was concluded to be more effective than the unidirectional transmission (Pd-3C-HNTs) in this work for the first time. PMID:26201827

  14. Synergistic fusion of vertical graphene nanosheets and carbon nanotubes for high-performance supercapacitor electrodes.

    PubMed

    Seo, Dong Han; Yick, Samuel; Han, Zhao Jun; Fang, Jing Hua; Ostrikov, Kostya Ken

    2014-08-01

    Graphene and carbon nanotubes (CNTs) are attractive electrode materials for supercapacitors. However, challenges such as the substrate-limited growth of CNTs, nanotube bundling in liquid electrolytes, under-utilized basal planes, and stacking of graphene sheets have so far impeded their widespread application. Here we present a hybrid structure formed by the direct growth of CNTs onto vertical graphene nanosheets (VGNS). VGNS are fabricated by a green plasma-assisted method to break down and reconstruct a natural precursor into an ordered graphitic structure. The synergistic combination of CNTs and VGNS overcomes the challenges intrinsic to both materials. The resulting VGNS/CNTs hybrids show a high specific capacitance with good cycling stability. The charge storage is based mainly on the non-Faradaic mechanism. In addition, a series of optimization experiments were conducted to reveal the critical factors that are required to achieve the demonstrated high supercapacitor performance. PMID:24828784

  15. Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Kanninen, Petri; Dang Luong, Nguyen; Hoang Sinh, Le; Anoshkin, Ilya V.; Tsapenko, Alexey; Seppälä, Jukka; Nasibulin, Albert G.; Kallio, Tanja

    2016-06-01

    Transparent and flexible energy storage devices have garnered great interest due to their suitability for display, sensor and photovoltaic applications. In this paper, we report the application of aerosol synthesized and dry deposited single-walled carbon nanotube (SWCNT) thin films as electrodes for an electrochemical double-layer capacitor (EDLC). SWCNT films exhibit extremely large specific capacitance (178 F g‑1 or 552 μF cm‑2), high optical transparency (92%) and stability for 10 000 charge/discharge cycles. A transparent and flexible EDLC prototype is constructed with a polyethylene casing and a gel electrolyte.

  16. Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films.

    PubMed

    Kanninen, Petri; Luong, Nguyen Dang; Sinh, Le Hoang; Anoshkin, Ilya V; Tsapenko, Alexey; Seppälä, Jukka; Nasibulin, Albert G; Kallio, Tanja

    2016-06-10

    Transparent and flexible energy storage devices have garnered great interest due to their suitability for display, sensor and photovoltaic applications. In this paper, we report the application of aerosol synthesized and dry deposited single-walled carbon nanotube (SWCNT) thin films as electrodes for an electrochemical double-layer capacitor (EDLC). SWCNT films exhibit extremely large specific capacitance (178 F g(-1) or 552 μF cm(-2)), high optical transparency (92%) and stability for 10 000 charge/discharge cycles. A transparent and flexible EDLC prototype is constructed with a polyethylene casing and a gel electrolyte. PMID:27122323

  17. High-performance carbon nanotube thin-film transistors on flexible paper substrates

    SciTech Connect

    Liu, Na; Yun, Ki Nam; Yu, Hyun-Yong; Lee, Cheol Jin; Shim, Joon Hyung

    2015-03-09

    Single-walled carbon nanotubes (SWCNTs) are promising materials as active channels for flexible transistors owing to their excellent electrical and mechanical properties. However, flexible SWCNT transistors have never been realized on paper substrates, which are widely used, inexpensive, and recyclable. In this study, we fabricated SWCNT thin-film transistors on photo paper substrates. The devices exhibited a high on/off current ratio of more than 10{sup 6} and a field-effect mobility of approximately 3 cm{sup 2}/V·s. The proof-of-concept demonstration indicates that SWCNT transistors on flexible paper substrates could be applied as low-cost and recyclable flexible electronics.

  18. Role of HF in oxygen removal from carbon nanotubes: implications for high performance carbon electronics.

    PubMed

    Li, Xiaokai; Huang, Jing-Shun; Nejati, Siamak; McMillon, Lyndsey; Huang, Su; Osuji, Chinedum O; Hazari, Nilay; Taylor, André D

    2014-11-12

    Oxygen removal from SWNTs is crucial for many carbon electronic devices. This work shows that HF treatment followed by current stimulation is a very effective method for oxygen removal. Using a procedure involving HF treatment, current stimulation and spin-casting AgNWs onto a SWNT thin film, record high efficiency SWNT/p-Si solar cells have been developed. PMID:25286024

  19. High-performance carbon-nanotube-based complementary field-effect-transistors and integrated circuits with yttrium oxide

    SciTech Connect

    Liang, Shibo; Zhang, Zhiyong Si, Jia; Zhong, Donglai; Peng, Lian-Mao

    2014-08-11

    High-performance p-type carbon nanotube (CNT) transistors utilizing yttrium oxide as gate dielectric are presented by optimizing oxidization and annealing processes. Complementary metal-oxide-semiconductor (CMOS) field-effect-transistors (FETs) are then fabricated on CNTs, and the p- and n-type devices exhibit symmetrical high performances, especially with low threshold voltage near to zero. The corresponding CMOS CNT inverter is demonstrated to operate at an ultra-low supply voltage down to 0.2 V, while displaying sufficient voltage gain, high noise margin, and low power consumption. Yttrium oxide is proven to be a competitive gate dielectric for constructing high-performance CNT CMOS FETs and integrated circuits.

  20. Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors

    NASA Astrophysics Data System (ADS)

    Liu, Yuanda; Wang, Fengqiu; Wang, Xiaomu; Wang, Xizhang; Flahaut, Emmanuel; Liu, Xiaolong; Li, Yao; Wang, Xinran; Xu, Yongbing; Shi, Yi; Zhang, Rong

    2015-10-01

    Graphene has emerged as a promising material for photonic applications fuelled by its superior electronic and optical properties. However, the photoresponsivity is limited by the low absorption cross-section and ultrafast recombination rates of photoexcited carriers. Here we demonstrate a photoconductive gain of ~105 electrons per photon in a carbon nanotube-graphene hybrid due to efficient photocarriers generation and transport within the nanostructure. A broadband photodetector (covering 400-1,550 nm) based on such hybrid films is fabricated with a high photoresponsivity of >100 A W-1 and a fast response time of ~100 μs. The combination of ultra-broad bandwidth, high responsivities and fast operating speeds affords new opportunities for facile and scalable fabrication of all-carbon optoelectronic devices.

  1. High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets

    PubMed Central

    Chen, Tao; Peng, Huisheng; Durstock, Michael; Dai, Liming

    2014-01-01

    By using highly aligned carbon nanotube (CNT) sheets of excellent optical transmittance and mechanical stretchability as both the current collector and active electrode, high-performance transparent and stretchable all-solid supercapacitors with a good stability were developed. A transmittance up to 75% at the wavelength of 550 nm was achieved for a supercapacitor made from a cross-over assembly of two single-layer CNT sheets. The transparent supercapacitor has a specific capacitance of 7.3 F g−1 and can be biaxially stretched up to 30% strain without any obvious change in electrochemical performance even over hundreds stretching cycles. PMID:24402400

  2. Polymer-sorted semiconducting carbon nanotube networks for high-performance ambipolar field-effect transistors.

    PubMed

    Schiessl, Stefan P; Fröhlich, Nils; Held, Martin; Gannott, Florentina; Schweiger, Manuel; Forster, Michael; Scherf, Ullrich; Zaumseil, Jana

    2015-01-14

    Efficient selection of semiconducting single-walled carbon nanotubes (SWNTs) from as-grown nanotube samples is crucial for their application as printable and flexible semiconductors in field-effect transistors (FETs). In this study, we use atactic poly(9-dodecyl-9-methyl-fluorene) (a-PF-1-12), a polyfluorene derivative with asymmetric side-chains, for the selective dispersion of semiconducting SWNTs with large diameters (>1 nm) from plasma torch-grown SWNTs. Lowering the molecular weight of the dispersing polymer leads to a significant improvement of selectivity. Combining dense semiconducting SWNT networks deposited from an enriched SWNT dispersion with a polymer/metal-oxide hybrid dielectric enables transistors with balanced ambipolar, contact resistance-corrected mobilities of up to 50 cm(2)·V(-1)·s(-1), low ohmic contact resistance, steep subthreshold swings (0.12-0.14 V/dec) and high on/off ratios (10(6)) even for short channel lengths (<10 μm). These FETs operate at low voltages (<3 V) and show almost no current hysteresis. The resulting ambipolar complementary-like inverters exhibit gains up to 61. PMID:25493421

  3. Polymer-Sorted Semiconducting Carbon Nanotube Networks for High-Performance Ambipolar Field-Effect Transistors

    PubMed Central

    2014-01-01

    Efficient selection of semiconducting single-walled carbon nanotubes (SWNTs) from as-grown nanotube samples is crucial for their application as printable and flexible semiconductors in field-effect transistors (FETs). In this study, we use atactic poly(9-dodecyl-9-methyl-fluorene) (a-PF-1-12), a polyfluorene derivative with asymmetric side-chains, for the selective dispersion of semiconducting SWNTs with large diameters (>1 nm) from plasma torch-grown SWNTs. Lowering the molecular weight of the dispersing polymer leads to a significant improvement of selectivity. Combining dense semiconducting SWNT networks deposited from an enriched SWNT dispersion with a polymer/metal-oxide hybrid dielectric enables transistors with balanced ambipolar, contact resistance-corrected mobilities of up to 50 cm2·V–1·s–1, low ohmic contact resistance, steep subthreshold swings (0.12–0.14 V/dec) and high on/off ratios (106) even for short channel lengths (<10 μm). These FETs operate at low voltages (<3 V) and show almost no current hysteresis. The resulting ambipolar complementary-like inverters exhibit gains up to 61. PMID:25493421

  4. High-performance air-stable n-type carbon nanotube transistors with erbium contacts.

    PubMed

    Shahrjerdi, Davood; Franklin, Aaron D; Oida, Satoshi; Ott, John A; Tulevski, George S; Haensch, Wilfried

    2013-09-24

    So far, realization of reproducible n-type carbon nanotube (CNT) transistors suitable for integrated digital applications has been a difficult task. In this work, hundreds of n-type CNT transistors from three different low work function metals-erbium, lanthanum, and yttrium-are studied and benchmarked against p-type devices with palladium contacts. The crucial role of metal type and deposition conditions is elucidated with respect to overall yield and performance of the n-type devices. It is found that high oxidation rates and sensitivity to deposition conditions are the major causes for the lower yield and large variation in performance of n-type CNT devices with low work function metal contacts. Considerable improvement in device yield is attained using erbium contacts evaporated at high deposition rates. Furthermore, the air-stability of our n-type transistors is studied in light of the extreme sensitivity of these metals to oxidation. PMID:24006886

  5. Inkjet printing of flexible high-performance carbon nanotube transparent conductive films by ``coffee ring effect''

    NASA Astrophysics Data System (ADS)

    Shimoni, Allon; Azoubel, Suzanna; Magdassi, Shlomo

    2014-09-01

    Transparent and flexible conductors are a major component in many modern optoelectronic devices, such as touch screens for smart phones, displays, and solar cells. Carbon nanotubes (CNTs) offer a good alternative to commonly used conductive materials, such as metal oxides (e.g. ITO) for flexible electronics. The production of transparent conductive patterns, and arrays composed of connected CNT ``coffee rings'' on a flexible substrate poly(ethylene terephthalate), has been reported. Direct patterning is achieved by inkjet printing of an aqueous dispersion of CNTs, which self-assemble at the rim of evaporating droplets. After post-printing treatment with hot nitric acid, the obtained TCFs are characterized by a sheet resistance of 156 Ω sq-1 and transparency of 81% (at 600 nm), which are the best reported values obtained by inkjet printing of conductive CNTs. This makes such films very promising as transparent conductors for various electronic devices, as demonstrated by using an electroluminescent device.

  6. Multiwalled carbon nanotubes anchored with maghemite nanocrystals for high-performance lithium storage

    SciTech Connect

    Wu, Ping Xie, Kongwei; Xu, Xiali; Li, Jianping; Tang, Yawen; Zhou, Yiming Lu, Tianhong

    2015-04-15

    Highlights: • γ-Fe{sub 2}O{sub 3} nanocrystals uniformly anchored on MWCNT via facile layer-by-layer technique. • The hybrid exhibits enhanced structural stability and charge transport capability. • Superior lithium storage performance by virtue of unique structural characteristics. - Abstract: In this paper, we have anchored maghemite (γ-Fe{sub 2}O{sub 3}) nanocrystals compactly and uniformly on multiwalled carbon nanotubes (MWCNT) via a polyelectrolyte-assisted layer-by-layer assembly approach based on electrostatic attraction. When evaluated as an anode for lithium-ion batteries (LIBs), the as-synthesized MWCNT-γ-Fe{sub 2}O{sub 3} nanohybrid displays high reversible capacities, remarkable cycling stability, and magnificent high rate capability, facilitating its application as an advanced anode for high-energy, long-life, and high-power LIBs.

  7. High-performance flexible nanoporous Si-carbon nanotube paper anodes for micro-battery applications

    NASA Astrophysics Data System (ADS)

    Biserni, Erika; Scarpellini, Alice; Li Bassi, Andrea; Bruno, Paola; Zhou, Yun; Xie, Ming

    2016-06-01

    Nanoporous Si has been grown by pulsed laser deposition on a free-standing carbon nanotube (CNT) paper sheet for micro-battery anodes. The Si deposition shows conformal coverage on the CNT paper, and the Si-CNT paper anodes demonstrate high areal capacity of ∼1000 μAh cm‑2 at a current density of 54 μA cm‑2, while 69% of its initial capacity is preserved when the current density is increased by a factor 10. Excellent stability without capacity decay up to 1000 cycles at a current density of 1080 μA cm‑2 is also demonstrated. After bending along the diameter of the circular paper disc many times, the Si-CNT paper anodes preserve the same morphology and show promising electrochemical performance, indicating that nanoporous Si-CNT paper anodes can find application for flexible micro-batteries.

  8. Inkjet printing of flexible high-performance carbon nanotube transparent conductive films by "coffee ring effect".

    PubMed

    Shimoni, Allon; Azoubel, Suzanna; Magdassi, Shlomo

    2014-10-01

    Transparent and flexible conductors are a major component in many modern optoelectronic devices, such as touch screens for smart phones, displays, and solar cells. Carbon nanotubes (CNTs) offer a good alternative to commonly used conductive materials, such as metal oxides (e.g. ITO) for flexible electronics. The production of transparent conductive patterns, and arrays composed of connected CNT "coffee rings" on a flexible substrate poly(ethylene terephthalate), has been reported. Direct patterning is achieved by inkjet printing of an aqueous dispersion of CNTs, which self-assemble at the rim of evaporating droplets. After post-printing treatment with hot nitric acid, the obtained TCFs are characterized by a sheet resistance of 156 Ω sq(-1) and transparency of 81% (at 600 nm), which are the best reported values obtained by inkjet printing of conductive CNTs. This makes such films very promising as transparent conductors for various electronic devices, as demonstrated by using an electroluminescent device. PMID:25014193

  9. Control of geometrical properties of carbon nanotube electrodes towards high-performance microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Erbay, Celal; Pu, Xiong; Choi, Woongchul; Choi, Mi-Jin; Ryu, Yeontack; Hou, Huijie; Lin, Furong; de Figueiredo, Paul; Yu, Choongho; Han, Arum

    2015-04-01

    In microbial fuel cells (MFCs), physical and electrochemical interactions between microbes and electrode surfaces are critical to performance. Nanomaterial-based electrodes have shown promising performances, however their unique characteristics have not been fully utilized. The developed electrodes here consist of multi-wall carbon nanotubes (MWCNTs) directly grown in the radial direction from the wires of stainless steel (SS) meshes, providing extremely large three-dimensional surfaces while ensuring minimal ohmic loss between CNTs and SS meshes, fully utilizing the advantages of CNTs. Systematic studies on how different lengths, packing densities, and surface conditions of CNTs affect MFC power output revealed that long and loosely packed CNTs without any amorphous carbon show the highest power production performance. The power density of this anode is 7.4-fold higher compared to bare carbon cloth, which is the highest reported improvement for MFCs with nanomaterial-decorated electrodes. The results of this study offer great potential for advancing the development of microbial electrochemical systems by providing a highly efficient nanomaterial-based electrode that delivers large surface area, high electrochemical activity, and minimum ohmic loss, as well as provide design principles for next-generation nanomaterial-based electrodes that can be broadly applicable for highly efficient microbial electrochemical cells.

  10. Low voltage, high performance inkjet printed carbon nanotube transistors with solution processed ZrO2 gate insulator

    NASA Astrophysics Data System (ADS)

    Kim, Bongjun; Jang, Seonpil; Prabhumirashi, Pradyumna L.; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth

    2013-08-01

    High-performance single-walled carbon nanotube (SWCNT) thin-film transistors are fabricated by single-pass inkjet printing of SWCNTs on high-κ solution-processed ZrO2 gate dielectric. We demonstrate that an ultraviolet ozone treatment of the ZrO2 substrate is critical in achieving a uniform dispersion of sorted SWCNTs in the semiconducting channel. The resulting devices exhibit excellent performance with mobility and on/off current ratio exceeding 30 cm2 V-1 s-1 and 105, respectively, at low operating voltages (<5 V). The single-pass inkjet printing process demonstrated in this letter shows great promise as a reliable and scalable method for SWCNT based high performance electronics.

  11. Synthesis of multiwall carbon nanotube wrapped Co(OH)2 flakes: A high-performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Mondal, Chanchal; Ghosh, Debasis; Ganguly, Mainak; Sasmal, Anup Kumar; Roy, Anindita; Pal, Tarasankar

    2015-12-01

    The problem of poor electron conductivity is always associated with pseudocapacitive electrode material that deters full utilization of the active material. To have a viable solution to this problem, we report fabrication of a composite material bringing highly conductive carbon nanotube (CNT) wrapped pseudocapacitive with Co(OH)2 nanoflakes. An in situ growth route evolves the supercapacitor via our laboratory developed modified hydrothermal reaction condition (MHT). An electrochemical investigation substantiates that the composite material electrode is highly active, which delivers a maximum specific capacitance of 603 F g-1 (at 1 mV s-1 scan rate), outstanding long-term cyclic stability with 96% retention at a constant current density of 1.5 A g-1 after 1000 cycles of operation. Thus it offers almost an effortless approach to fabricate high-power and high-energy density supercapacitors. By virtue of having high-capacity of pseudocapacitive hydroxides and desirable conductivity of carbon-based materials, the as-synthesized material could be a promising candidate for the development of supercapacitor electrode material.

  12. Hierarchical, porous CuS microspheres integrated with carbon nanotubes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Liu, Xianming; Wang, Weixiao; Cheng, Jinbing; Yan, Hailong; Tang, Chengchun; Kim, Jang-Kyo; Luo, Yongsong

    2015-11-01

    Carbon nanotubes (CNTs) incorporated porous 3-dimensional (3D) CuS microspheres have been successfully synthesized via a simple refluxing method assisted by PVP. The composites are composed of flower-shaped CuS secondary microspheres, which in turn are assembled with primary nanosheets of 15-30 nm in thickness and fully integrated with CNT. The composites possess a large specific surface area of 189.6 m2 g-1 and a high conductivity of 0.471 S cm-1. As electrode materials for supercapacitors, the nanocomposites show excellent cyclability and rate capability and deliver an average reversible capacitance as high as 1960 F g-1 at a current density of 10 mA cm-2 over 10000 cycles. The high electrochemical performance can be attributed to the synergistic effect of CNTs and the unique microstructure of CuS. The CNTs serve as not only a conductive agent to accelerate the transfer of electrons in the composites, but also as a buffer matrix to restrain the volume change and stabilize the electrode structure during the charge/discharge process. The porous structure of CuS also helps to stabilize the electrode structure and facilitates the transport for electrons.

  13. Hierarchical, porous CuS microspheres integrated with carbon nanotubes for high-performance supercapacitors

    PubMed Central

    Lu, Yang; Liu, Xianming; Wang, Weixiao; Cheng, Jinbing; Yan, Hailong; Tang, Chengchun; Kim, Jang-Kyo; Luo, Yongsong

    2015-01-01

    Carbon nanotubes (CNTs) incorporated porous 3-dimensional (3D) CuS microspheres have been successfully synthesized via a simple refluxing method assisted by PVP. The composites are composed of flower-shaped CuS secondary microspheres, which in turn are assembled with primary nanosheets of 15–30 nm in thickness and fully integrated with CNT. The composites possess a large specific surface area of 189.6 m2 g−1 and a high conductivity of 0.471 S cm−1. As electrode materials for supercapacitors, the nanocomposites show excellent cyclability and rate capability and deliver an average reversible capacitance as high as 1960 F g−1 at a current density of 10 mA cm−2 over 10000 cycles. The high electrochemical performance can be attributed to the synergistic effect of CNTs and the unique microstructure of CuS. The CNTs serve as not only a conductive agent to accelerate the transfer of electrons in the composites, but also as a buffer matrix to restrain the volume change and stabilize the electrode structure during the charge/discharge process. The porous structure of CuS also helps to stabilize the electrode structure and facilitates the transport for electrons. PMID:26568518

  14. Hierarchical, porous CuS microspheres integrated with carbon nanotubes for high-performance supercapacitors.

    PubMed

    Lu, Yang; Liu, Xianming; Wang, Weixiao; Cheng, Jinbing; Yan, Hailong; Tang, Chengchun; Kim, Jang-Kyo; Luo, Yongsong

    2015-01-01

    Carbon nanotubes (CNTs) incorporated porous 3-dimensional (3D) CuS microspheres have been successfully synthesized via a simple refluxing method assisted by PVP. The composites are composed of flower-shaped CuS secondary microspheres, which in turn are assembled with primary nanosheets of 15-30 nm in thickness and fully integrated with CNT. The composites possess a large specific surface area of 189.6 m(2) g(-1) and a high conductivity of 0.471 S cm(-1). As electrode materials for supercapacitors, the nanocomposites show excellent cyclability and rate capability and deliver an average reversible capacitance as high as 1960 F g(-1) at a current density of 10 mA cm(-2) over 10000 cycles. The high electrochemical performance can be attributed to the synergistic effect of CNTs and the unique microstructure of CuS. The CNTs serve as not only a conductive agent to accelerate the transfer of electrons in the composites, but also as a buffer matrix to restrain the volume change and stabilize the electrode structure during the charge/discharge process. The porous structure of CuS also helps to stabilize the electrode structure and facilitates the transport for electrons. PMID:26568518

  15. Synergistic Ultrathin Functional Polymer-Coated Carbon Nanotube Interlayer for High Performance Lithium-Sulfur Batteries.

    PubMed

    Kim, Joo Hyun; Seo, Jihoon; Choi, Junghyun; Shin, Donghyeok; Carter, Marcus; Jeon, Yeryung; Wang, Chengwei; Hu, Liangbing; Paik, Ungyu

    2016-08-10

    Lithium-sulfur (Li-S) batteries have been intensively investigated as a next-generation rechargeable battery due to their high energy density of 2600 W·h kg(-1) and low cost. However, the systemic issues of Li-S batteries, such as the polysulfide shuttling effect and low Coulombic efficiency, hinder the practical use in commercial rechargeable batteries. The introduction of a conductive interlayer between the sulfur cathode and separator is a promising approach that has shown the dramatic improvements in Li-S batteries. The previous interlayer work mainly focused on the physical confinement of polysulfides within the cathode part, without considering the further entrapment of the dissolved polysulfides. Here, we designed an ultrathin poly(acrylic acid) coated single-walled carbon nanotube (PAA-SWNT) film as a synergic functional interlayer to address the issues mentioned above. The designed interlayer not only lowers the charge transfer resistance by the support of the upper current collector but also localizes the dissolved polysulfides within the cathode part by the aid of a physical blocking and chemical bonding. With the synergic combination of PAA and SWNT, the sulfur cathode with a PAA-SWNT interlayer maintained higher capacity retention over 200 cycles and achieved better rate retention than the sulfur cathode with a SWNT interlayer. The proposed approach of combining a functional polymer and conductive support material can provide an optimiztic strategy to overcome the fundamental challenges underlying in Li-S batteries. PMID:27437758

  16. Lightweight, flexible, high-performance carbon nanotube cables made by scalable flow coating

    DOE PAGESBeta

    Mirri, Francesca; Orloff, Nathan D.; Forser, Aaron M.; Ashkar, Rana; Headrick, Robert J.; Bengio, E. Amram; Long, Christian J.; Choi, April; Luo, Yimin; Hight Walker, Angela R.; et al

    2016-01-21

    Coaxial cables for data transmission are ubiquitous in telecommunications, aerospace, automotive, and robotics industries. Yet, the metals used to make commercial cables are unsuitably heavy and stiff. These undesirable traits are particularly problematic in aerospace applications, where weight is at a premium and flexibility is necessary to conform with the distributed layout of electronic components in satellites and aircraft. The cable outer conductor (OC) is usually the heaviest component of modern data cables; therefore, exchanging the conventional metallic OC for lower weight materials with comparable transmission characteristics is highly desirable. Carbon nanotubes (CNTs) have recently been proposed to replace themore » metal components in coaxial cables; however, signal attenuation was too high in prototypes produced so far. Here, we fabricate the OC of coaxial data cables by directly coating a solution of CNTs in chlorosulfonic acid (CSA) onto the cable inner dielectric. This coating has an electrical conductivity that is approximately 2 orders of magnitude greater than the best CNT OC reported in the literature to date. In conclusion, this high conductivity makes CNT coaxial cables an attractive alternative to commercial cables with a metal (tin-coated copper) OC, providing comparable cable attenuation and mechanical durability with a 97% lower component mass.« less

  17. Thermal conductivity of high performance carbon nanotube yarn-like fibers

    SciTech Connect

    Mayhew, Eric; Prakash, Vikas

    2014-05-07

    In the present paper, we present results of thermal conductivity measurements in free standing carbon nanotube (CNT) yarn-like fibers. The measurements are made using a T-type experimental configuration utilizing a Wollaston-wire hot probe inside a scanning electron microscope. In this technique, a suspended platinum wire is used both as a heater and a thermal sensor. A low frequency alternating current source is used to heat the probe wire while the third harmonic voltage across the wire is measured by a lock-in amplifier. The conductivity is deduced from an analytical model that relates the drop in the spatially averaged temperature of the wire to that of the sample. The average thermal conductivity of the neat CNT fibers and the CNT –polymer composite fibers is found to be 448 W/m-K and 225 W/m-K, respectively. These values for conductivity are amongst the highest measured for CNT yarn-like fibers fabricated using a dry spinning process from vertically aligned CNT arrays. The enhancement in thermal conductivity is understood to be due to an increase in the CNT fiber elastic stiffness during the draw and twist operations, lower CNT thermal contact resistance due to increase in CNT contact area, and better alignment of the CNT fibrils along the length of the fiber.

  18. Lightweight, Flexible, High-Performance Carbon Nanotube Cables Made by Scalable Flow Coating.

    PubMed

    Mirri, Francesca; Orloff, Nathan D; Forster, Aaron M; Ashkar, Rana; Headrick, Robert J; Bengio, E Amram; Long, Christian J; Choi, April; Luo, Yimin; Walker, Angela R Hight; Butler, Paul; Migler, Kalman B; Pasquali, Matteo

    2016-02-01

    Coaxial cables for data transmission are ubiquitous in telecommunications, aerospace, automotive, and robotics industries. Yet, the metals used to make commercial cables are unsuitably heavy and stiff. These undesirable traits are particularly problematic in aerospace applications, where weight is at a premium and flexibility is necessary to conform with the distributed layout of electronic components in satellites and aircraft. The cable outer conductor (OC) is usually the heaviest component of modern data cables; therefore, exchanging the conventional metallic OC for lower weight materials with comparable transmission characteristics is highly desirable. Carbon nanotubes (CNTs) have recently been proposed to replace the metal components in coaxial cables; however, signal attenuation was too high in prototypes produced so far. Here, we fabricate the OC of coaxial data cables by directly coating a solution of CNTs in chlorosulfonic acid (CSA) onto the cable inner dielectric. This coating has an electrical conductivity that is approximately 2 orders of magnitude greater than the best CNT OC reported in the literature to date. This high conductivity makes CNT coaxial cables an attractive alternative to commercial cables with a metal (tin-coated copper) OC, providing comparable cable attenuation and mechanical durability with a 97% lower component mass. PMID:26791337

  19. High Performance Carbon Nanotube Yarn Supercapacitors with a Surface-Oxidized Copper Current Collector.

    PubMed

    Zhang, Daohong; Wu, Yunlong; Li, Ting; Huang, Yin; Zhang, Aiqing; Miao, Menghe

    2015-11-25

    Threadlike linear supercapacitors have demonstrated high potential for constructing fabrics to power electronic textiles (eTextiles). To improve the cyclic electrochemical performance and to produce power fabrics large enough for practical applications, a current collector has been introduced into the linear supercapcitors to transport charges produced by active materials along the length of the supercapacitor with high efficiency. Here, we first screened six candidate metal filaments (Pt, Au, Ag, AuAg, PtCu, and Cu) as current collectors for carbon nanotube (CNT) yarn-based linear supercapacitors. Although all of the metal filaments significantly improved the electrochemical performance of the linear supercapacitor, two supercapacitors constructed from Cu and PtCu filaments, respectively, demonstrate far better electrochemical performance than the other four supercapacitors. Further investigation shows that the surfaces of the two Cu-containing filaments are oxidized by the surrounding polymer electrolyte in the electrode. While the unoxidized core of the Cu-containing filaments remains highly conductive and functions as a current collector, the resulting CuO on the surface is an electrochemically active material. The linear supercapacitor architecture incorporating dual active materials CNT + Cu extends the potential window from 1.0 to 1.4 V, leading to significant improvement to the energy density and power density. PMID:26523943

  20. Highly Conductive Aromatic Functionalized Multi-Walled Carbon Nanotube for Inkjet Printable High Performance Supercapacitor Electrodes

    PubMed Central

    Attri, Pankaj

    2015-01-01

    We report the functionalization of multiwalled carbon nanotubes (MWCNT) via the 1,3-dipolar [3+2] cycloaddition of aromatic azides, which resulted in a detangled CNT as shown by transmission electron microscopy (TEM). Carboxylic moieties (-COOH) on aromatic azide result in highly stable aqueous dispersion (max. conc. ~ 10 mg/mL H2O), making the suitable for inkjet printing. Printed patterns on polyethylene terephthalate (PET) flexible substrate exhibit low sheet resistivity ~65 Ω. cm, which is attributed to enhanced conductivity. Fabricated Supercapacitors (SC) assembled using these printed substrates exhibit good electrochemical performance in organic as well as aqueous electrolytes. High energy and power density (57.8 Wh/kg and 0.85 kW/kg) in 1M H2SO4 aqueous electrolyte demonstrate the excellent performance of the proposed supercapacitor. Capacitive retention varies from ~85–94% with columbic efficiency ~95% after 1000 charge/discharge cycles in different electrolytes, demonstrating the excellent potential of the device for futuristic power applications. PMID:26153688

  1. Omnidirectionally Stretchable High-Performance Supercapacitor Based on Isotropic Buckled Carbon Nanotube Films.

    PubMed

    Yu, Jiali; Lu, Weibang; Pei, Shaopeng; Gong, Ke; Wang, Liyun; Meng, Linghui; Huang, Yudong; Smith, Joseph P; Booksh, Karl S; Li, Qingwen; Byun, Joon-Hyung; Oh, Youngseok; Yan, Yushan; Chou, Tsu-Wei

    2016-05-24

    The emergence of stretchable electronic devices has attracted intensive attention. However, most of the existing stretchable electronic devices can generally be stretched only in one specific direction and show limited specific capacitance and energy density. Here, we report a stretchable isotropic buckled carbon nanotube (CNT) film, which is used as electrodes for supercapacitors with low sheet resistance, high omnidirectional stretchability, and electro-mechanical stability under repeated stretching. After acid treatment of the CNT film followed by electrochemical deposition of polyaniline (PANI), the resulting isotropic buckled acid treated CNT@PANI electrode exhibits high specific capacitance of 1147.12 mF cm(-2) at 10 mV s(-1). The supercapacitor possesses high energy density from 31.56 to 50.98 μWh cm(-2) and corresponding power density changing from 2.294 to 28.404 mW cm(-2) at the scan rate from 10 to 200 mV s(-1). Also, the supercapacitor can sustain an omnidirectional strain of 200%, which is twice the maximum strain of biaxially stretchable supercapacitors based on CNT assemblies reported in the literature. Moreover, the capacitive performance is even enhanced to 1160.43-1230.61 mF cm(-2) during uniaxial, biaxial, and omnidirectional elongations. PMID:27096412

  2. Toward high performance thermoset/carbon nanotube sheet nanocomposites via resistive heating assisted infiltration and cure.

    PubMed

    Kim, Jae-Woo; Sauti, Godfrey; Siochi, Emilie J; Smith, Joseph G; Wincheski, Russell A; Cano, Roberto J; Connell, John W; Wise, Kristopher E

    2014-11-12

    Thermoset/carbon nanotube (CNT) sheet nanocomposites were successfully fabricated by resistive heating assisted infiltration and cure (RHAIC) of the polymer matrix resin. Resistive heating takes advantage of the electrical and thermal conductivity of CNTs to rapidly and uniformly introduce heat into the CNT sheet. Heating the CNT sheet reduces the viscosity of the polymer resin due to localized temperature rise in close proximity to the resin, which enhances resin flow, penetration, and wetting of the CNT reinforcement. Once the resin infusion process is complete, the applied power is increased to raise the temperature of the CNT sheet, which rapidly cures the polymer matrix. Tensile tests were used to evaluate the mechanical properties of the processed thermoset/CNT sheet nanocomposites. The improved wetting and adhesion of the polymer resin to the CNT reinforcement yield significant improvement of thermoset/CNT nanocomposite mechanical properties. The highest specific tensile strength of bismaleimide(BMI)/CNT sheet nanocomposites was obtained to date was 684 MPa/(g/cm(3)), using 4 V (2 A) for resin infiltration, followed by precure at 10 V (6 A) for 10 min and post curing at 240 °C for 6 h in an oven. The highest specific Young's modulus of BMI/CNT sheet nanocomposite was 71 GPa/(g/cm(3)) using resistive heating infiltration at 8.3 V (4.7 A) for 3 min followed by resistive heating cure at 12.5 V (7 A) for 30 min. In both cases, the CNT sheets were stretched and held in tension to prevent relaxation of the aligned CNTs during the course of RHAIC. PMID:25325388

  3. High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite.

    PubMed

    Inukai, Shigeki; Cruz-Silva, Rodolfo; Ortiz-Medina, Josue; Morelos-Gomez, Aaron; Takeuchi, Kenji; Hayashi, Takuya; Tanioka, Akihiko; Araki, Takumi; Tejima, Syogo; Noguchi, Toru; Terrones, Mauricio; Endo, Morinobu

    2015-01-01

    Clean water obtained by desalinating sea water or by purifying wastewater, constitutes a major technological objective in the so-called water century. In this work, a high-performance reverse osmosis (RO) composite thin membrane using multi-walled carbon nanotubes (MWCNT) and aromatic polyamide (PA), was successfully prepared by interfacial polymerization. The effect of MWCNT on the chlorine resistance, antifouling and desalination performances of the nanocomposite membranes were studied. We found that a suitable amount of MWCNT in PA, 15.5 wt.%, not only improves the membrane performance in terms of flow and antifouling, but also inhibits the chlorine degradation on these membranes. Therefore, the present results clearly establish a solid foundation towards more efficient large-scale water desalination and other water treatment processes. PMID:26333385

  4. High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite

    NASA Astrophysics Data System (ADS)

    Inukai, Shigeki; Cruz-Silva, Rodolfo; Ortiz-Medina, Josue; Morelos-Gomez, Aaron; Takeuchi, Kenji; Hayashi, Takuya; Tanioka, Akihiko; Araki, Takumi; Tejima, Syogo; Noguchi, Toru; Terrones, Mauricio; Endo, Morinobu

    2015-09-01

    Clean water obtained by desalinating sea water or by purifying wastewater, constitutes a major technological objective in the so-called water century. In this work, a high-performance reverse osmosis (RO) composite thin membrane using multi-walled carbon nanotubes (MWCNT) and aromatic polyamide (PA), was successfully prepared by interfacial polymerization. The effect of MWCNT on the chlorine resistance, antifouling and desalination performances of the nanocomposite membranes were studied. We found that a suitable amount of MWCNT in PA, 15.5 wt.%, not only improves the membrane performance in terms of flow and antifouling, but also inhibits the chlorine degradation on these membranes. Therefore, the present results clearly establish a solid foundation towards more efficient large-scale water desalination and other water treatment processes.

  5. High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite

    PubMed Central

    Inukai, Shigeki; Cruz-Silva, Rodolfo; Ortiz-Medina, Josue; Morelos-Gomez, Aaron; Takeuchi, Kenji; Hayashi, Takuya; Tanioka, Akihiko; Araki, Takumi; Tejima, Syogo; Noguchi, Toru; Terrones, Mauricio; Endo, Morinobu

    2015-01-01

    Clean water obtained by desalinating sea water or by purifying wastewater, constitutes a major technological objective in the so-called water century. In this work, a high-performance reverse osmosis (RO) composite thin membrane using multi-walled carbon nanotubes (MWCNT) and aromatic polyamide (PA), was successfully prepared by interfacial polymerization. The effect of MWCNT on the chlorine resistance, antifouling and desalination performances of the nanocomposite membranes were studied. We found that a suitable amount of MWCNT in PA, 15.5 wt.%, not only improves the membrane performance in terms of flow and antifouling, but also inhibits the chlorine degradation on these membranes. Therefore, the present results clearly establish a solid foundation towards more efficient large-scale water desalination and other water treatment processes. PMID:26333385

  6. Nanostructured Black Phosphorus/Ketjenblack-Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries.

    PubMed

    Xu, Gui-Liang; Chen, Zonghai; Zhong, Gui-Ming; Liu, Yuzi; Yang, Yong; Ma, Tianyuan; Ren, Yang; Zuo, Xiaobing; Wu, Xue-Hang; Zhang, Xiaoyi; Amine, Khalil

    2016-06-01

    Sodium-ion batteries are promising alternatives to lithium-ion batteries for large-scale applications. However, the low capacity and poor rate capability of existing anodes for sodium-ion batteries are bottlenecks for future developments. Here, we report a high performance nanostructured anode material for sodium-ion batteries that is fabricated by high energy ball milling to form black phosphorus/Ketjenblack-multiwalled carbon nanotubes (BPC) composite. With this strategy, the BPC composite with a high phosphorus content (70 wt %) could deliver a very high initial Coulombic efficiency (>90%) and high specific capacity with excellent cyclability at high rate of charge/discharge (∼1700 mAh g(-1) after 100 cycles at 1.3 A g(-1) based on the mass of P). In situ electrochemical impedance spectroscopy, synchrotron high energy X-ray diffraction, ex situ small/wide-angle X-ray scattering, high resolution transmission electronic microscopy, and nuclear magnetic resonance were further used to unravel its superior sodium storage performance. The scientific findings gained in this work are expected to serve as a guide for future design on high performance anode material for sodium-ion batteries. PMID:27222911

  7. Self-assembled block copolymer micelles with silver-carbon nanotube hybrid fillers for high performance thermal conduction

    NASA Astrophysics Data System (ADS)

    Choi, Jae Ryung; Yu, Seunggun; Jung, Haejong; Hwang, Sun Kak; Kim, Richard Hahnkee; Song, Giyoung; Cho, Sung Hwan; Bae, Insung; Hong, Soon Man; Koo, Chong Min; Park, Cheolmin

    2015-01-01

    The development of polymer-filled composites with an extremely high thermal conductivity (TC) that is competitive with conventional metals is in great demand due to their cost-effective process, light weight, and easy shape-forming capability. A novel polymer composite with a large thermal conductivity of 153 W m-1 K-1 was prepared based on self-assembled block copolymer micelles containing two different fillers of micron-sized silver particles and multi-walled carbon nanotubes. Simple mechanical mixing of the components followed by conventional thermal compression at a low processing temperature of 160 °C produced a novel composite with both structural and thermal stability that is durable for high temperature operation up to 150 °C as well as multiple heating and cooling cycles of ΔT = 100 °C. The high performance in thermal conduction of our composite was mainly attributed to the facile deformation of Ag particles during the mixing in a viscous thermoplastic medium, combined with networked carbon nanotubes uniformly dispersed in the nanoscale structural matrix of block copolymer micelles responsible for its high temperature mechanical stability. Furthermore, micro-imprinting on the composite allowed for topographically periodic surface micropatterns, which offers broader suitability for numerous micro-opto-electronic systems.The development of polymer-filled composites with an extremely high thermal conductivity (TC) that is competitive with conventional metals is in great demand due to their cost-effective process, light weight, and easy shape-forming capability. A novel polymer composite with a large thermal conductivity of 153 W m-1 K-1 was prepared based on self-assembled block copolymer micelles containing two different fillers of micron-sized silver particles and multi-walled carbon nanotubes. Simple mechanical mixing of the components followed by conventional thermal compression at a low processing temperature of 160 °C produced a novel composite

  8. Directly-Grown Hierarchical Carbon Nanotube@Polypyrrole Core-Shell Hybrid for High-Performance Flexible Supercapacitors.

    PubMed

    Yesi, Yesi; Shown, Indrajit; Ganguly, Abhijit; Ngo, Trung Truc; Chen, Li-Chyong; Chen, Kuei-Hsien

    2016-02-19

    A hierarchical carbon nanotube-polypyrrole (CNT-PPy) core-shell composite was fabricated by growing CNTs directly on carbon cloth (CC) as a skeleton followed by electropolymerization of PPy with controlled polymerization time. Direct fabrication of electroactive (CNT-PPy) materials on the flexible CC electrode could reduce the interfacial resistance between the electrode and electrolyte and improve the ion diffusion. The supercapacitor electrode based on optimized PPy/CNT-CC exhibits excellent electrochemical performance, with the highest gravimetric capacitance being roughly 1038 F g(-1) per active mass of PPy and up to 486.1 F g(-1) per active mass of the PPy/CNT composite. Notably, excellent flexibility and cycle stability up to 10 000 cycles with only 18 % capacitance loss was achieved. At the same time, the fabricated asymmetric supercapacitor (PPy/CNT-CC∥CNT-CC) shows the maximum power density of 10 962 W kg(-1) at an energy density of 3.9 Wh kg(-1) under the operating potential of 1.4 V. The overall high cycle stability and high performance of the fabricated PPy/CNT-CC flexible electrode is due to the novel binder-free direct growth process. PMID:26791424

  9. First Principles Prediction of Nitrogen-doped Carbon Nanotubes as a High-Performance Cathode for Li-S Batteries

    SciTech Connect

    Wang, Zhiguo; Niu, Xinyue; Xiao, Jie; Wang, Chong M.; Liu, Jun; Gao, Fei

    2013-07-16

    The insulating nature of sulfur and the solubility of the polysulfide in organic electrolyte are two main factors that limit the application of lithium sulfur (Li-S) battery systems. Enhancement of Li conductivity, identification of a strong adsorption agent of polysulfides and the improvement of the whole sulfur-based electrode are of great technological importance. The diffusion of Li atoms on the outer-wall, inner-wall and inter-wall spaces in nitrogen-doped double-walled carbon nanotubes (CNTs) and penetrations of Li and S atoms through the walls are studied using density functional theory. We find that N-doping does not alternate the diffusion behaviors of Li atoms throughout the CNTs, but the energy barrier for Li atoms to penetrate the wall is greatly decreased by N-doping (from ~9.0 eV to ~ 1.0 eV). On the other hand, the energy barrier for S atoms to penetrate the wall remains very high, which is caused by the formation of the chemical bonds between the S and nearby N atoms. The results indicate that Li atoms are able to diffuse freely, whereas S atoms can be encapsulated inside the N-doped CNTs, suggesting that the N-doped CNTs can be potentially used in high performance Li-S batteries.

  10. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode

    NASA Astrophysics Data System (ADS)

    Cui, Hui-Fang; Du, Lin; Guo, Peng-Bo; Zhu, Bao; Luong, John H. T.

    2015-06-01

    Polyaniline (PANI) was electropolymerized on the surface of macroporous graphite felt (GF) followed by the electrophoretic deposition of carbon nanotubes (CNTs). The as-prepared macroporous material was characterized by scanning electron microscopy, water contact angle goniometry and electrochemical techniques. Upon the modification of PANI, a rough and nano-cilia containing film is coated on the surface of the graphite fibers, transforming the surface from hydrophobic to hydrophilic. The subsequent modification by CNTs increases the effective surface area and electrical conductivity of the resulting material. The power output of a mediator-free dual-chamber microbial fuel cell (MFC) constructed from the GF anode and an exoelectrogen Shewanella putrefaciens increases drastically with the CNT modification. The CNT/PANI/GF MFC attains an output voltage of 342 mV across an external resistor of 1.96 kΩ constant load, and a maximum power density of 257 mW m-2, increased by 343% and 186%, compared to that of the pristine GF MFC and the PANI/GF MFC, respectively. More bacteria are attached on the CNT/PANI/GF anode than on the PANI/GF anode during the working of the MFC. This strategy provides an easy scale-up, simple and controllable method for the preparation of high-performance and low-cost MFC anodes.

  11. Vacuum filtration based formation of liquid crystal films of semiconducting carbon nanotubes and high performance transistor devices

    NASA Astrophysics Data System (ADS)

    King, Benjamin; Panchapakesan, Balaji

    2014-05-01

    In this paper, we report ultra-thin liquid crystal films of semiconducting carbon nanotubes using a simple vacuum filtration process. Vacuum filtration of nanotubes in aqueous surfactant solution formed nematic domains on the filter membrane surface and exhibited local ordering. A 2D fast Fourier transform was used to calculate the order parameters from scanning electron microscopy images. The order parameter was observed to be sensitive to the filtration time demonstrating different regions of transformation namely nucleation of nematic domains, nanotube accumulation and large domain growth.Transmittance versus sheet resistance measurements of such films resulted in optical to dc conductivity of σ opt/σ dc = 9.01 indicative of purely semiconducting nanotube liquid crystal network.Thin films of nanotube liquid crystals with order parameters ranging from S = 0.1-0.5 were patterned into conducting channels of transistor devices which showed high I on/I off ratios from 10-19 800 and electron mobility values μ e = 0.3-78.8 cm2 (V-s)-1, hole mobility values μ h = 0.4-287 cm2 (V-s)-1. High I on/I off ratios were observed at low order parameters and film mass. A Schottky barrier transistor model is consistent with the observed transistor characteristics. Electron and hole mobilities were seen to increase with order parameters and carbon nanotube mass fractions. A fundamental tradeoff between decreasing on/off ratio and increasing mobility with increasing nanotube film mass and order parameter is therefore concluded. Increase in order parameters of nanotubes liquid crystals improved the electronic transport properties as witnessed by the increase in σ dc/σ opt values on macroscopic films and high mobilities in microscopic transistors. Liquid crystal networks of semiconducting nanotubes as demonstrated here are simple to fabricate, transparent, scalable and could find wide ranging device applications.

  12. In situ growth of carbon nanotube wrapped Si composites as anodes for high performance lithium ion batteries.

    PubMed

    Zhou, Jianbin; Lan, Yang; Zhang, Kailong; Xia, Guoliang; Du, Jin; Zhu, Yongchun; Qian, Yitai

    2016-03-01

    The composites of carbon nanotube wrapped Si particles (CNTWS) were synthesized in situ by using the catalytic chemical vapor deposition (CCVD) method. In this process, carbon nanotubes were produced in situ to wrap Si by the catalysis action of nascent Cu* under an acetylene atmosphere at a relatively low temperature of 400 °C, in which nascent Cu* was created by the reaction between Si particles and CuCl synchronously. The weight ratio of Si/C in CNTWS is 0.76/0.24. As anode materials for lithium ion batteries, the CNTWS composites exhibit a reversible discharge capacity of 1031.1 mA h g(-1) at 1.8 A g(-1) after 500 cycles, and 868.2 mA h g(-1) at 10.0 A g(-1). The high electrochemical performance of CNTWS composites is associated with the in situ formed carbon nanotubes. PMID:26875542

  13. In situ growth of carbon nanotube wrapped Si composites as anodes for high performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhou, Jianbin; Lan, Yang; Zhang, Kailong; Xia, Guoliang; Du, Jin; Zhu, Yongchun; Qian, Yitai

    2016-02-01

    The composites of carbon nanotube wrapped Si particles (CNTWS) were synthesized in situ by using the catalytic chemical vapor deposition (CCVD) method. In this process, carbon nanotubes were produced in situ to wrap Si by the catalysis action of nascent Cu* under an acetylene atmosphere at a relatively low temperature of 400 °C, in which nascent Cu* was created by the reaction between Si particles and CuCl synchronously. The weight ratio of Si/C in CNTWS is 0.76/0.24. As anode materials for lithium ion batteries, the CNTWS composites exhibit a reversible discharge capacity of 1031.1 mA h g-1 at 1.8 A g-1 after 500 cycles, and 868.2 mA h g-1 at 10.0 A g-1. The high electrochemical performance of CNTWS composites is associated with the in situ formed carbon nanotubes.The composites of carbon nanotube wrapped Si particles (CNTWS) were synthesized in situ by using the catalytic chemical vapor deposition (CCVD) method. In this process, carbon nanotubes were produced in situ to wrap Si by the catalysis action of nascent Cu* under an acetylene atmosphere at a relatively low temperature of 400 °C, in which nascent Cu* was created by the reaction between Si particles and CuCl synchronously. The weight ratio of Si/C in CNTWS is 0.76/0.24. As anode materials for lithium ion batteries, the CNTWS composites exhibit a reversible discharge capacity of 1031.1 mA h g-1 at 1.8 A g-1 after 500 cycles, and 868.2 mA h g-1 at 10.0 A g-1. The high electrochemical performance of CNTWS composites is associated with the in situ formed carbon nanotubes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08961a

  14. Fabrication of copper nanoparticles decorated multiwalled carbon nanotubes as a high performance electrochemical sensor for the detection of neotame.

    PubMed

    Bathinapatla, Ayyappa; Kanchi, Suvardhan; Singh, Parvesh; Sabela, Myalowenkosi I; Bisetty, Krishna

    2015-05-15

    A highly sensitive and novel electrochemical sensor for the detection of neotame using differential pulse voltammetry with a modified glassy carbon electrode is presented. The method was further customized by the fabrication of the electrode surface with copper nanoparticles-ammonium piperidine dithiocarbamate-mutiwalled carbon nanotubes assimilated with β-cyclodextrin. The multiwalled carbon nanotubes assimilated with β-cyclodextrin/glassy carbon electrode exhibited catalytic activity towards the oxidation of neotame at a potential of 1.3 V at pH 3.0. The transmission electron microscopy, thermogravimetric analysis, frontier transform infrared spectroscopy and cyclic voltammetry were employed to characterize the electrochemical sensor. The sensitivity and detection limits of the electrode increased two-fold in contrast to the β-CD-MWCNTs/GCE sensor. The developed method was successfully applied for the determination of neotame in food samples, with results similar to those achieved by our modified capillary electrophoresis method with a 96% confidence level. PMID:25216979

  15. Enhancing the grain size of organic halide perovskites by sulfonate-carbon nanotube incorporation in high performance perovskite solar cells.

    PubMed

    Zhang, Yong; Tan, Licheng; Fu, Qingxia; Chen, Lie; Ji, Ting; Hu, Xiaotian; Chen, Yiwang

    2016-04-14

    The grain size of perovskites was enhanced and the grain boundary was filled with sulfonate carbon nanotubes (s-CNTs) during the CH3NH3PbI3 perovskite precursor solution spin-coating process with the incorporation of s-CNTs. The performance of s-CNT incorporated perovskite solar cells remarkably increased from 10.3% to 15.1% (best) compared with pristine CNT incorporated perovskite solar cells. PMID:26940646

  16. SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes as high performance anode materials for lithium-ion batteries

    SciTech Connect

    Sun, Hongyu; Ahmad, Mashkoor; Luo, Jun; Shi, Yingying; Shen, Wanci; Zhu, Jing

    2014-01-01

    Graphical abstract: The synthesized SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes hybrid structures exhibit large reversible capacity, superior cycling performance, and good rate capability as compared to pure SnS{sub 2} nanoflakes. - Highlights: • Synthesis of SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes hybrid structures. • Simple solution-phase approach. • Morphology feature of SnS{sub 2}. • Enhanced performance as Li-ion batteries. - Abstract: SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes (MWCNTs) hybrid structures are directly synthesized via a simple solution-phase approach. The as-prepared SnS{sub 2}/MWCNTs structures are investigated as anode materials for Li-ion batteries as compared with SnS{sub 2} nanoflakes. It has been found that the composite structure exhibit excellent lithium storage performance with a large reversible capacity, superior cycling performance, and good rate capability as compared to pure SnS{sub 2} nanoflakes. The first discharge and charge capacities have been found to be 1416 and 518 mA h g{sup −1} for SnS{sub 2}/MWCNTs composite electrodes at a current density of 100 mA g{sup −1} between 5 mV and 1.15 V versus Li/Li{sup +}. A stable reversible capacity of ∼510 mA h g{sup −1} is obtained for 50 cycles. The improved electrochemical performance may be attributed to the flake-morphology feature of SnS{sub 2} and the addition of MWCNTs that can hinder the agglomeration of the active materials and improve the conductivity of the composite electrode simultaneously.

  17. Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for high-performance lithium sulfur batteries.

    PubMed

    Sun, Li; Li, Mengya; Jiang, Ying; Kong, Weibang; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan

    2014-07-01

    A binder-free nano sulfur-carbon nanotube composite material featured by clusters of sulfur nanocrystals anchored across the superaligned carbon nanotube (SACNT) matrix is fabricated via a facile solution-based method. The conductive SACNT matrix not only avoids self-aggregation and ensures dispersive distribution of the sulfur nanocrystals but also offers three-dimensional continuous electron pathway, provides sufficient porosity in the matrix to benefit electrolyte infiltration, confines the sulfur/polysulfides, and accommodates the volume variations of sulfur during cycling. The nanosized sulfur particles shorten lithium ion diffusion path, and the confinement of sulfur particles in the SACNT network guarantees the stability of structure and electrochemical performance of the composite. The nano S-SACNT composite cathode delivers an initial discharge capacity of 1071 mAh g(-1), a peak capacity of 1088 mAh g(-1), and capacity retention of 85% after 100 cycles with high Coulombic efficiency (∼100%) at 1 C. Moreover, at high current rates the nano S-SACNT composite displays impressive capacities of 1006 mAh g(-1) at 2 C, 960 mAh g(-1) at 5 C, and 879 mAh g(-1) at 10 C. PMID:24884659

  18. Graphene-winged carbon nanotubes as high-performance lithium-ion batteries anode with super-long cycle life

    NASA Astrophysics Data System (ADS)

    Ye, Minghui; Hu, Chuangang; Lv, Lingxiao; Qu, Liangti

    2016-02-01

    Graphene-winged carbon nanotubes (G-CNTs) have been prepared by the well-controlled outer-wall peeling of the multi-walled carbon nanotubes (MWCNTs). The final hybrid structure features the few layers of graphene nanosheets attaching to the intact inner walls of CNTs. On one hand, the outer branched graphene nanosheets could suppress the aggregation of CNTs and introduce abundant defects and active-edges for easily accessible chemical interaction. On the other hand, the CNTs could bridge the graphene nanosheets for rapid electron transfer and mechanical robustness. As a result, the G-CNTs was used as the electrode materials exhibiting an extremely steady reversible capacity of 603 mAh g-1 over 2200 cycles at a current density of 1 A g-1 (the corresponding area capacity is 0.16 mAh cm-2 at a current density of 0.26 mA cm-2) and owning a high rate capability much superior to those of the pristine MWCNT-based counterparts. The hierarchical G-CNTs architecture provides a new material platform for development of advanced energy-storage devices.

  19. Chemically Functionalized, Well-Dispersed Carbon Nanotubes in Lithium-Doped Zinc Oxide for Low-Cost, High-Performance Thin-Film Transistors.

    PubMed

    Son, Gi-Cheol; Chee, Sang-Soo; Jun, Ji-Hyun; Son, Myungwoo; Lee, Sun Sook; Choi, Youngmin; Jeong, Sunho; Ham, Moon-Ho

    2016-04-13

    Surface-functionalized carbon nanotubes (CNTs) are introduced into lithium-doped ZnO thin-film transistors (TFTs) as an alternative to the conventional incorporation of an expensive element, indium. The crucial role of surface functionalization of CNTs is clarified with the demonstration of indium-free ZnO-based TFTs with a field-effect mobility of 28.6 cm(2) V(-1) s(-1) and an on/off current ratio of 9 × 10(6) for low-cost, high-performance electronics. PMID:26856958

  20. Mildly reduced less defective graphene oxide/sulfur/carbon nanotube composite films for high-performance lithium-sulfur batteries.

    PubMed

    Li, Rui; Zhang, Miao; Li, Yingru; Chen, Ji; Yao, Bowen; Yu, Mingpeng; Shi, Gaoquan

    2016-04-20

    The microstructures and properties of the carbonaceous matrices in the cathodes of lithium-sulfur (Li-S) batteries have strong effects on their performances. We prepared a ternary composite cathode of mildly reduced less defective graphene oxide (mrLGO), sulfur, and carbon nanotubes (CNTs) by filtration for Li-S batteries. This battery showed a high initial specific capacity of 1219 mA h g(-1) at 0.2 C and a stable specific capacity of around 1000 mA h g(-1) after 200 cycles with a coulombic efficiency of 99%. Its excellent performance is mainly attributed to the good conductivity and residual oxygen containing groups of mrLGO, and the three-dimensional (3D) framework constructed using mrLGO sheets and CNTs. PMID:27049434

  1. A Free-Standing Sulfur/Nitrogen-Doped Carbon Nanotube Electrode for High-Performance Lithium/Sulfur Batteries.

    PubMed

    Zhao, Yan; Yin, Fuxing; Zhang, Yongguang; Zhang, Chengwei; Mentbayeva, Almagul; Umirov, Nurzhan; Xie, Hongxian; Bakenov, Zhumabay

    2015-12-01

    A free-standing sulfur/nitrogen-doped carbon nanotube (S/N-CNT) composite prepared via a simple solution method was first studied as a cathode material for lithium/sulfur batteries. By taking advantage of the self-weaving behavior of N-CNT, binders and current collectors are rendered unnecessary in the cathode, thereby simplifying its manufacturing and increasing the sulfur weight ratio in the electrode. Transmission electronic microscopy showed the formation of a highly developed core-shell tubular structure consisting of S/N-CNT composite with uniform sulfur coating on the surface of N-CNT. As a core in the composite, the N-CNT with N functionalization provides a highly conductive and mechanically flexible framework, enhancing the electronic conductivity and consequently the rate capability of the material. PMID:26586150

  2. A Free-Standing Sulfur/Nitrogen-Doped Carbon Nanotube Electrode for High-Performance Lithium/Sulfur Batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Yin, Fuxing; Zhang, Yongguang; Zhang, Chengwei; Mentbayeva, Almagul; Umirov, Nurzhan; Xie, Hongxian; Bakenov, Zhumabay

    2015-11-01

    A free-standing sulfur/nitrogen-doped carbon nanotube (S/N-CNT) composite prepared via a simple solution method was first studied as a cathode material for lithium/sulfur batteries. By taking advantage of the self-weaving behavior of N-CNT, binders and current collectors are rendered unnecessary in the cathode, thereby simplifying its manufacturing and increasing the sulfur weight ratio in the electrode. Transmission electronic microscopy showed the formation of a highly developed core-shell tubular structure consisting of S/N-CNT composite with uniform sulfur coating on the surface of N-CNT. As a core in the composite, the N-CNT with N functionalization provides a highly conductive and mechanically flexible framework, enhancing the electronic conductivity and consequently the rate capability of the material.

  3. Carbon dots-decorated multiwalled carbon nanotubes nanocomposites as a high-performance electrochemical sensor for detection of H2O2 in living cells.

    PubMed

    Bai, Jing; Sun, Chunhe; Jiang, Xiue

    2016-07-01

    A novel enzyme-free hydrogen peroxide sensor composed of carbon dots (CDs) and multi-walled carbon nanotubes (MWCNTs) was prepared. It was found that the carbon dots-decorated multi-walled carbon nanotubes nanocomposites (CDs/MWCNTs) modified glassy carbon (GC) electrode (CDs/MWCNTs/GCE) exhibited a significant synergistic electrocatalytic activity towards hydrogen peroxide reduction as compared to carbon dots or multi-walled carbon nanotubes alone, and the CDs/MWCNTs/GCE has shown a low detection limit as well as excellent stability, selectivity, and reproducibility. These remarkable analytical advantages enable the practical application of CDs/MWCNTs/GCE for the real-time tracking of hydrogen peroxide (H2O2) released from human cervical cancer cells with satisfactory results. The enhanced electrochemical activity can be assigned to the edge plane-like defective sites and lattice oxygen in the CDs/MWCNTs nanocomposites due to the small amount of decoration of carbon dots on the multi-walled carbon nanotubes. Based on a facile preparation method and with good electrochemical properties, the CDs/MWCNTs nanocomposites represent a new class of carbon electrode for electrochemical sensor applications. Graphical Abstract CDs/MWCNTs exhibited good electrocatalytic activity and stability to H2O2 reduction and can be used for real-time detection of H2O2 released from living cells. PMID:27108281

  4. Porous carbon nanotubes decorated with nanosized cobalt ferrite as anode materials for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Lingyan; Zhuo, Linhai; Cheng, Haiyang; Zhang, Chao; Zhao, Fengyu

    2015-06-01

    Generally, the fast ion/electron transport and structural stability dominate the superiority in lithium-storage applications. In this work, porous carbon nanotubes decorated with nanosized CoFe2O4 particles (p-CNTs@CFO) have been rationally designed and synthesized by the assistance of supercritical carbon dioxide (scCO2). When tested as anode materials for lithium-ion batteries, the p-CNTs@CFO composite exhibits outstanding electrochemical behavior with high lithium-storage capacity (1077 mAh g-1 after 100 cycles) and rate capability (694 mAh g-1 at 3 A g-1). These outstanding electrochemical performances are attributed to the synergistic effect of porous p-CNTs and nanosized CFO. Compared to pristine CNTs, the p-CNTs with substantial pores in the tubes possess largely increased specific surface area and rich oxygen-containing functional groups. The porous structure can not only accommodate the volume change during lithiation/delithiation processes, but also provide bicontinuous electron/ion pathways and large electrode/electrolyte interface, which facilitate the ion diffusion kinetics, improving the rate performance. Moreover, the CFO particles are bonded strongly to the p-CNTs through metal-oxygen bridges, which facilitate the electron fast capture from p-CNTs to CFO, and thus resulting in a high reversible capacity and excellent rate performance. Overall, the porous p-CNTs provide an efficient way for ion diffusion and continuous electron transport as anode materials.

  5. Encapsulating MWNTs into hollow porous carbon nanotubes: a tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries.

    PubMed

    Zhao, Yi; Wu, Wangliang; Li, Jiaxin; Xu, Zhichuan; Guan, Lunhui

    2014-08-13

    A tube-in-tube carbon nanostructure (TTCN) with multi-walled carbon nanotubes (MWNTs) confined within hollow porous carbon nanotubes is synthesized for Li-S batteries. The structure is designed to enhance the electrical conductivity, hamper the dissolution of lithium polysulfide, and provide large pore volume for sulfur impregnation. As a cathode material for Li-S batteries, the S-TTCN composite with 71 wt% sulfur content delivers high reversible capacity, good cycling performance as well as excellent rate capabilities. PMID:24897930

  6. Sulfur Embedded in a Mesoporous Carbon Nanotube Network as a Binder-Free Electrode for High-Performance Lithium-Sulfur Batteries.

    PubMed

    Sun, Li; Wang, Datao; Luo, Yufeng; Wang, Ke; Kong, Weibang; Wu, Yang; Zhang, Lina; Jiang, Kaili; Li, Qunqing; Zhang, Yihe; Wang, Jiaping; Fan, Shoushan

    2016-01-26

    Sulfur-porous carbon nanotube (S-PCNT) composites are proposed as cathode materials for advanced lithium-sulfur (Li-S) batteries. Abundant mesopores are introduced to superaligned carbon nanotubes (SACNTs) through controlled oxidation in air to obtain porous carbon nanotubes (PCNTs). Compared to original SACNTs, improved dispersive behavior, enhanced conductivity, and higher mechanical strength are demonstrated in PCNTs. Meanwhile, high flexibility and sufficient intertube interaction are preserved in PCNTs to support binder-free and flexible electrodes. Additionally, several attractive features, including high surface area and abundant adsorption points on tubes, are introduced, which allow high sulfur loading, provide dual protection to sulfur cathode materials, and consequently alleviate the capacity fade especially during slow charge/discharge processes. When used as cathodes for Li-S batteries, a high sulfur loading of 60 wt % is achieved, with excellent reversible capacities of 866 and 526 mAh g(-1) based on the weights of sulfur and electrode, respectively, after 100 cycles at a slow charge/discharge rate of 0.1C, revealing efficient suppression of polysulfide dissolution. Even with a high sulfur loading of 70 wt %, the S-PCNT composite maintains capacities of 760 and 528 mAh g(-1) based on the weights of sulfur and electrode, respectively, after 100 cycles at 0.1C, outperforming the current state-of-the-art sulfur cathodes. Improved high-rate capability is also delivered by the S-PCNT composites, revealing their potentials as high-performance carbon-sulfur composite cathodes for Li-S batteries. PMID:26695394

  7. Synthesis of carbon nanotube-nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing.

    PubMed

    Choi, Taejin; Kim, Soo Hyeon; Lee, Chang Wan; Kim, Hangil; Choi, Sang-Kyung; Kim, Soo-Hyun; Kim, Eunkyoung; Park, Jusang; Kim, Hyungjun

    2015-01-15

    A useful strategy has been developed to fabricate carbon-nanotube-nickel (CNT-Ni) nanocomposites through atomic layer deposition (ALD) of Ni and chemical vapor deposition (CVD) of functionalized CNTs. Various techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), were used to characterize the morphology and the structure of as-prepared samples. It was confirmed that the products possess uniform Ni nanoparticles that are constructed by finely controlled deposition of Ni onto oxygen or bromine functionalized CNT surface. Electrochemical studies indicate that the CNT-Ni nanocomposites exhibit high electrocatalytic activity for glucose oxidation in alkaline solutions, which enables the products to be used in enzyme-free electrochemical sensors for glucose determination. It was demonstrated that the CNT-Ni nanocomposite-based glucose biosensor offers a variety of merits, such as a wide linear response window for glucose concentrations of 5 μM-2 mM, short response time (3 s), a low detection limit (2 μM), high sensitivity (1384.1 μA mM(-1) cm(-2)), and good selectivity and repeatability. PMID:25113051

  8. 3D porous and ultralight carbon hybrid nanostructure fabricated from carbon foam covered by monolayer of nitrogen-doped carbon nanotubes for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    He, Shuijian; Hou, Haoqing; Chen, Wei

    2015-04-01

    3D porous and self-supported carbon hybrids are promising electrode materials for supercapacitor application attributed to their prominent properties such as binder-free electrode fabrication process, excellent electric conductivity and high power density etc. We present here a facile chemical vapor deposition method to fabricate a novel 3D flexible carbon hybrid nanostructure by growing a monolayer of nitrogen-doped carbon nanotubes on the skeleton of carbon foam (N-CNTs/CF) with Fe nanoparticle as catalyst. With such 3D porous, flexible and ultralight carbon nanostructure as binder-free electrode material, large surface area is available and fast ionic transport is facilitated. Moreover, the carbon-based network can provide excellent electronic conductivity. The electrochemical studies demonstrate that the supercapacitor constructed from the N-CNTs/CF hybrid exhibit high power density of 69.3 kW kg-1 and good stability with capacitance retention ration above 95% after cycled at 50 A g-1 for 5000 cycles. Therefore, the prepared porous N-CNTs/CF nanostructure is expected to be a type of excellent electrode material for electrical double layer capacitors.

  9. Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode.

    PubMed

    Mink, Justine E; Hussain, Muhammad Mustafa

    2013-08-27

    Microbial fuel cells (MFCs) are a promising alternative energy source that both generates electricity and cleans water. Fueled by liquid wastes such as wastewater or industrial wastes, the microbial fuel cell converts waste into energy. Microsized MFCs are essentially miniature energy harvesters that can be used to power on-chip electronics, lab-on-a-chip devices, and/or sensors. As MFCs are a relatively new technology, microsized MFCs are also an important rapid testing platform for the comparison and introduction of new conditions or materials into macroscale MFCs, especially nanoscale materials that have high potential for enhanced power production. Here we report a 75 μL microsized MFC on silicon using CMOS-compatible processes and employ a novel nanomaterial with exceptional electrochemical properties, multiwalled carbon nanotubes (MWCNTs), as the on-chip anode. We used this device to compare the usage of the more commonly used but highly expensive anode material gold, as well as a more inexpensive substitute, nickel. This is the first anode material study done using the most sustainably designed microsized MFC to date, which utilizes ambient oxygen as the electron acceptor with an air cathode instead of the chemical ferricyanide and without a membrane. Ferricyanide is unsustainable, as the chemical must be continuously refilled, while using oxygen, naturally found in air, makes the device mobile and is a key step in commercializing this for portable technology such as lab-on-a-chip for point-of-care diagnostics. At 880 mA/m(2) and 19 mW/m(2) the MWCNT anode outperformed the others in both current and power densities with between 6 and 20 times better performance. All devices were run for over 15 days, indicating a stable and high-endurance energy harvester already capable of producing enough power for ultra-low-power electronics and able to consistently power them over time. PMID:23899322

  10. In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries.

    PubMed

    Wu, Renbing; Wang, Dan Ping; Rui, Xianhong; Liu, Bo; Zhou, Kun; Law, Adrian W K; Yan, Qingyu; Wei, Jun; Chen, Zhong

    2015-05-20

    3D hollow hybrid composites with ultrafine cobalt sulfide nanoparticles uniformly embedded within the well-graphitized porous carbon polyhedra/carbon nanotubes framework are rationally fabricated using a green and one-step method involving the simultaneous pyrolysis and sulfidation of ZIF-67. Because of the synergistic coupling effects favored by the unique nanohybridization, these composites exhibit high specific capacity, excellent cycle stability, and superior rate capability when evaluated as electrodes in lithium-ion batteries. PMID:25856242

  11. Mesoporous Li4Ti5O12 nanoclusters anchored on super-aligned carbon nanotubes as high performance electrodes for lithium ion batteries.

    PubMed

    Sun, Li; Kong, Weibang; Wu, Hengcai; Wu, Yang; Wang, Datao; Zhao, Fei; Jiang, Kaili; Li, Qunqing; Wang, Jiaping; Fan, Shoushan

    2016-01-01

    Mesoporous lithium titanate (LTO) nanoclusters are in situ synthesized in a network of super aligned carbon nanotubes (SACNTs) via a solution-based method followed by heat treatment in air. In the LTO-CNT composite, SACNTs not only serve as the skeleton to support a binder-free electrode, but also render the composite with high conductivity, flexibility, and mechanical strength. The homogeneously dispersed LTO nanoclusters among the SACNTs allow each LTO grain to effectively access the electrolyte and the conductive network, benefiting both ion and electron transport. By the incorporation of LTO into the CNT network, mechanical reinforcement is also achieved. When serving as a negative electrode for lithium ion batteries, such a robust composite-network architecture provides the electrodes with effective charge transport and structural integrity, leading to high-performance flexible electrodes with high capacity, high rate capability, and excellent cycling stability. PMID:26646734

  12. Easy incorporation of single-walled carbon nanotubes into two-dimensional MoS2 for high-performance hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Cai, Yu; Yang, Xi; Liang, Tao; Dai, Lu; Ma, Lin; Huang, Guowei; Chen, Weixiang; Chen, Hongzheng; Su, Huanxing; Xu, Mingsheng

    2014-11-01

    The limited intrinsic conductivity of two-dimensional (2D) MoS2 nanosheets compromises its high electrocatalytic performance. In this work, we develop a facile method of simply dispersing MoS2 nanosheets into a water-isopropanol solution of high-conducting single-walled carbon nanotubes (SWCNTs) for preparation of MoS2/SWCNT composites. The SWCNTs in the hybrid system serve as effective electron transport channels among 2D MoS2 nanosheets and facilitate charge transfer at the catalyst-electrolyte interface. We investigated the influence of SWCNTs ratios on the catalytic activities and obtained a high-performance hybrid catalyst with a low Tafel slope of 40.82 mV/decade and prominent electrochemical durability. The demonstration of our hybrid electrocatalytic system, with its scalable capacity for facile preparation, provides a new pathway to enhance HER activity.

  13. Mesoporous Li4Ti5O12 nanoclusters anchored on super-aligned carbon nanotubes as high performance electrodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Sun, Li; Kong, Weibang; Wu, Hengcai; Wu, Yang; Wang, Datao; Zhao, Fei; Jiang, Kaili; Li, Qunqing; Wang, Jiaping; Fan, Shoushan

    2015-12-01

    Mesoporous lithium titanate (LTO) nanoclusters are in situ synthesized in a network of super aligned carbon nanotubes (SACNTs) via a solution-based method followed by heat treatment in air. In the LTO-CNT composite, SACNTs not only serve as the skeleton to support a binder-free electrode, but also render the composite with high conductivity, flexibility, and mechanical strength. The homogeneously dispersed LTO nanoclusters among the SACNTs allow each LTO grain to effectively access the electrolyte and the conductive network, benefiting both ion and electron transport. By the incorporation of LTO into the CNT network, mechanical reinforcement is also achieved. When serving as a negative electrode for lithium ion batteries, such a robust composite-network architecture provides the electrodes with effective charge transport and structural integrity, leading to high-performance flexible electrodes with high capacity, high rate capability, and excellent cycling stability.Mesoporous lithium titanate (LTO) nanoclusters are in situ synthesized in a network of super aligned carbon nanotubes (SACNTs) via a solution-based method followed by heat treatment in air. In the LTO-CNT composite, SACNTs not only serve as the skeleton to support a binder-free electrode, but also render the composite with high conductivity, flexibility, and mechanical strength. The homogeneously dispersed LTO nanoclusters among the SACNTs allow each LTO grain to effectively access the electrolyte and the conductive network, benefiting both ion and electron transport. By the incorporation of LTO into the CNT network, mechanical reinforcement is also achieved. When serving as a negative electrode for lithium ion batteries, such a robust composite-network architecture provides the electrodes with effective charge transport and structural integrity, leading to high-performance flexible electrodes with high capacity, high rate capability, and excellent cycling stability. Electronic supplementary information

  14. Applications of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ajayan, Pulickel M.; Zhou, Otto Z.

    Carbon nanotubes have attracted the fancy of many scientists worldwide. The small dimensions, strength and the remarkable physical properties of these structures make them a very unique material with a whole range of promising applications. In this review we describe some of the important materials science applications of carbon nanotubes. Specifically we discuss the electronic and electrochemical applications of nanotubes, nanotubes as mechanical reinforcements in high performance composites, nanotube-based field emitters, and their use as nanoprobes in metrology and biological and chemical investigations, and as templates for the creation of other nanostructures. Electronic properties and device applications of nanotubes are treated elsewhere in the book. The challenges that ensue in realizing some of these applications are also discussed from the point of view of manufacturing, processing, and cost considerations.

  15. Oxygen Evolution Assisted Fabrication of Highly Loaded Carbon Nanotube/MnO2 Hybrid Films for High-Performance Flexible Pseudosupercapacitors.

    PubMed

    Chen, Hongyuan; Zeng, Sha; Chen, Minghai; Zhang, Yongyi; Zheng, Lianxi; Li, Qingwen

    2016-04-01

    To date, it has been a great challenge to design high-performance flexible energy storage devices for sufficient loading of redox species in the electrode assemblies, with well-maintained mechanical robustness and enhanced electron/ionic transport during charge/discharge cycles. An electrochemical activation strategy is demonstrated for the facile regeneration of carbon nanotube (CNT) film prepared via floating catalyst chemical vapor deposition strategy into a flexible, robust, and highly conductive hydrogel-like film, which is promising as electrode matrix for efficient loading of redox species and the fabrication of high-performance flexible pseudosupercapacitors. The strong and conductive CNT films can be effectively expanded and activated by electrochemical anodic oxygen evolution reaction, presenting greatly enhanced internal space and surface wettability with well-maintained strength, flexibility, and conductivity. The as-formed hydrogel-like film is quite favorable for electrochemical deposition of manganese dioxide (MnO2 ) with loading mass up to 93 wt% and electrode capacitance kept around 300 F g(-1) (areal capacitance of 1.2 F cm(-2) ). This hybrid film was further used to assemble a flexible symmetric pseudosupercapacitor without using any other current collectors and conductive additives. The assembled flexible supercapacitors exhibited good rate performance, with the areal capacitance of more than 300 mF cm(-2) , much superior to other reported MnO2 based flexible thin-film supercapacitors. PMID:26929042

  16. High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3 O4 and NiO nanoparticles.

    PubMed

    Su, Fenghua; Lv, Xiaoming; Miao, Menghe

    2015-02-18

    Yarn supercapacitors are promising power sources for flexible electronic applications that require conventional fabric-like durability and wearer comfort. Carbon nanotube (CNT) yarn is an attractive choice for constructing yarn supercapacitors used in wearable textiles because of its high strength and flexibility. However, low capacitance and energy density limits the use of pure CNT yarn in wearable high-energy density devices. Here, transitional metal oxide pseudocapacitive materials NiO and Co3 O4 are deposited on as-spun CNT yarn surface using a simple electrodeposition process. The Co3 O4 deposited on the CNT yarn surface forms a uniform hybridized CNT@Co3 O4 layer. The two-ply supercapacitors formed from the CNT@Co3 O4 composite yarns display excellent electrochemical properties with very high capacitance of 52.6 mF cm(-2) and energy density of 1.10 μWh cm(-2) . The high performance two-ply CNT@Co3 O4 yarn supercapacitors are mechanically and electrochemically robust to meet the high performance requirements of power sources for wearable electronics. PMID:25277293

  17. A layer-nanostructured assembly of PbS quantum dot/multiwalled carbon nanotube for a high-performance photoswitch

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Qin, Chengqun; Shen, Yongtao; Li, Yu; Luo, Wen; An, Haoran; Feng, Yiyu

    2014-01-01

    A layered nanostructure of a lead sulfide (PbS) quantum dot (QD)/multi-walled carbon nanotube (MWNT) hybrid was prepared by the electrostatic assembly after the phase transfer of PbS QDs from an organic to an aqueous phase. Well-crystallized PbS QDs with a narrow diameter (5.5 nm) was mono-dispersed on the sidewalls of MWNT by the electrostatic adsorption. Near-infrared absorption of PbS/MWNT nanostructures was improved and controlled by the packing density of PbS QDs. Efficient charge transfer between PbS and MWNT at the interface resulted in a remarkable quenching of photoluminescence up to 28.6% and a blue-shift of emission band by 300 nm. This feature was facilitated by band energy levels based on the intimate contact through the electrostatic interaction. Two-terminal devices using PbS/MWNT nanostructures showed an excellent on/off switching photocurrent and good stability during 20 cycles under light illumination due to electron transfer from PbS to MWNT. The photoswitch exhibited a high photo sensitivity up to 31.3% with the photocurrent of 18.3 μA under the light of 3.85 mW/cm2, which outperformed many QD/carbon-based nanocomposites. Results indicate that the electrostatic layered assembly of QD/MWNT nanostructure is an excellent platform for the fabrication of high-performance optoelectronic devices.

  18. Transistors: Chemically Functionalized, Well-Dispersed Carbon Nanotubes in Lithium-Doped Zinc Oxide for Low-Cost, High-Performance Thin-Film Transistors (Small 14/2016).

    PubMed

    Son, Gi-Cheol; Chee, Sang-Soo; Jun, Ji-Hyun; Son, Myungwoo; Lee, Sun Sook; Choi, Youngmin; Jeong, Sunho; Ham, Moon-Ho

    2016-04-01

    A simple, wet-chemical method for the surface functionalization of carbon nanotubes with hydrophilic groups is introduced in Li-doped ZnO by S. Jeong, M. H. Ham, and co-workers, on page 1859. This results in the uniform spatial distribution of single-walled carbon nanotubes in ultrathin ZnO-based matrix oxides, and facilitates high-mobility, low-cost metal-oxide-based thin-film transistors. This approach is compatible with various film formation processes, even printing processes, and enables the realization of high-performance, cost-effective, large-area electronics and displays based on metal oxides. PMID:27061455

  19. Heterostructured core-shell ZnMn₂O₄ nanosheets@carbon nanotubes' coaxial nanocables: a competitive anode towards high-performance Li-ion batteries.

    PubMed

    Yuan, Changzhou; Zhang, Longhai; Zhu, Siqi; Cao, Hui; Lin, Jingdong; Hou, Linrui

    2015-04-10

    In this study, we rationally designed a rapid, low-temperature yet general synthetic methodology for the first time, involving in situ growth of two-dimensional (2D) birnessite-type MnO2 nanosheets (NSs) upon each carbon nanotube (CNT), and we designed the subsequent phase transformation into untrathin mesoporous ZnMn2O4 NSs with a thickness of ∼2-3 nm at room temperature to efficiently fabricate heterostructured core-shell ZnMn2O4 NSs@CNT coaxial nanocables with well-dispersed and tunable ZnMn2O4 loading. The underlying insights into the low-temperature formation mechanism of the unique core-shell hybrid nanoarchitectures were tentatively proposed here. When utilized as a high-performance anode for advanced LIBs, the resultant core-shell ZnMn2O4@CNTs' coaxial nanocables (∼84.5 wt.% loading) exhibited large specific discharge capacity (∼1033 mAh g(-1)), good rate capability (∼528 mAh g(-1)) and excellent cycling stability (average capacity degradation of only ∼5.2% per cycle) at a high current rate of 1224 mA g(-1), originating from the distinct core-shell synergetic effect of fast electronic delivery and from the large electrode/electrolyte contacting surfaces/interfaces provided by three-dimensional entangling coaxial CNT-based nanonetwork topology. PMID:25785913

  20. Carbon nanotubes-reinforced hollow fibre solid-phase microextraction coupled with high performance liquid chromatography for the determination of carbamate pesticides in apples.

    PubMed

    Song, Xin-Yue; Shi, Yan-Ping; Chen, Juan

    2013-08-15

    An effective and sensitive method to determinate five carbamate pesticides in apples was developed by using carbon nanotubes-reinforced hollow fibre solid-phase microextraction (CNTs-HF-SPME) combined with high performance liquid chromatography-photodiode array detection (HPLC-DAD). The CNTs were dispersed in water via adding surfactant, and then were held in the pores of HF supported by capillary forces and sonification. The SPME device, which was wetted with 1-octanol, was placed in a stirred apple samples to extract target analytes. After extraction, analytes were desorbed and analyzed using HPLC-DAD. Under the optimized extraction conditions, the enrichment factors were achieved in the range from 49 to 308 with good inter-fibre repeatability and batch-to-batch reproducibility, while good linearity ranges and recoveries were obtained. The limits of detection ranged from 0.09 to 6.00 ng/g. Therefore, the results demonstrated that this novel method was an efficient pretreatment and enrichment procedure for the determination of trace carbamate pesticides in apples. PMID:23561102

  1. Designing electrochemical interfaces with functionalized magnetic nanoparticles and wrapped carbon nanotubes as platforms for the construction of high-performance bienzyme biosensors.

    PubMed

    Eguílaz, Marcos; Villalonga, Reynaldo; Yáñez-Sedeño, Paloma; Pingarrón, José M

    2011-10-15

    The design of a novel biosensing electrode surface, combining the advantages of magnetic ferrite nanoparticles (MNPs) functionalized with glutaraldehyde (GA) and poly(diallyldimethylammonium chloride) (PDDA)-coated multiwalled carbon nanotubes (MWCNTs) as platforms for the construction of high-performance multienzyme biosensors, is reported in this work. Before the immobilization of enzymes, GA-MNP/PDDA/MWCNT composites were prepared by wrapping of carboxylated MWCNTs with positively charged PDDA and interaction with GA-functionalized MNPs. The nanoconjugates were characterized by scanning electron microscopy (SEM) and electrochemistry. The electrode platform was used to construct a bienzyme biosensor for the determination of cholesterol, which implied coimmobilization of cholesterol oxidase (ChOx) and peroxidase (HRP) and the use of hydroquinone as redox mediator. Optimization of all variables involved in the preparation and analytical performance of the bienzyme electrode was accomplished. At an applied potential of -0.05 V, a linear calibration graph for cholesterol was obtained in the 0.01-0.95 mM concentration range. The detection limit (0.85 μM), the apparent Michaelis-Menten constant (1.57 mM), the stability of the biosensor, and the calculated activation energy can be advantageously compared with the analytical characteristics of other CNT-based cholesterol biosensors reported in the literature. Analysis of human serum spiked with cholesterol at different concentration levels yielded recoveries between 100% and 103% PMID:21905724

  2. High-performance glucose biosensor based on chitosan-glucose oxidase immobilized polypyrrole/Nafion/functionalized multi-walled carbon nanotubes bio-nanohybrid film.

    PubMed

    Shrestha, Bishnu Kumar; Ahmad, Rafiq; Mousa, Hamouda M; Kim, In-Gi; Kim, Jeong In; Neupane, Madhav Prasad; Park, Chan Hee; Kim, Cheol Sang

    2016-11-15

    A highly electroactive bio-nanohybrid film of polypyrrole (PPy)-Nafion (Nf)-functionalized multi-walled carbon nanotubes (fMWCNTs) nanocomposite was prepared on the glassy carbon electrode (GCE) by a facile one-step electrochemical polymerization technique followed by chitosan-glucose oxidase (CH-GOx) immobilization on its surface to achieve a high-performance glucose biosensor. The as-fabricated nanohybrid composite provides high surface area for GOx immobilization and thus enhances the enzyme-loading efficiency. The structural characterization revealed that the PPy-Nf-fMWCNTs nanocomposite films were uniformly formed on GCE and after GOx immobilization, the surface porosities of the film were decreased due to enzyme encapsulation inside the bio-nanohybrid composite materials. The electrochemical behavior of the fabricated biosensor was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry measurements. The results indicated an excellent catalytic property of bio-nanohybrid film for glucose detection with improved sensitivity of 2860.3μAmM(-1)cm(-2), the linear range up to 4.7mM (R(2)=0.9992), and a low detection limit of 5μM under a signal/noise (S/N) ratio of 3. Furthermore, the resulting biosensor presented reliable selectivity, better long-term stability, good repeatability, reproducibility, and acceptable measurement of glucose concentration in real serum samples. Thus, this fabricated biosensor provides an efficient and highly sensitive platform for glucose sensing and can open up new avenues for clinical applications. PMID:27485503

  3. A layer-nanostructured assembly of PbS quantum dot/multiwalled carbon nanotube for a high-performance photoswitch

    PubMed Central

    Feng, Wei; Qin, Chengqun; Shen, Yongtao; Li, Yu; Luo, Wen; An, Haoran; Feng, Yiyu

    2014-01-01

    A layered nanostructure of a lead sulfide (PbS) quantum dot (QD)/multi-walled carbon nanotube (MWNT) hybrid was prepared by the electrostatic assembly after the phase transfer of PbS QDs from an organic to an aqueous phase. Well-crystallized PbS QDs with a narrow diameter (5.5 nm) was mono-dispersed on the sidewalls of MWNT by the electrostatic adsorption. Near-infrared absorption of PbS/MWNT nanostructures was improved and controlled by the packing density of PbS QDs. Efficient charge transfer between PbS and MWNT at the interface resulted in a remarkable quenching of photoluminescence up to 28.6% and a blue-shift of emission band by 300 nm. This feature was facilitated by band energy levels based on the intimate contact through the electrostatic interaction. Two-terminal devices using PbS/MWNT nanostructures showed an excellent on/off switching photocurrent and good stability during 20 cycles under light illumination due to electron transfer from PbS to MWNT. The photoswitch exhibited a high photo sensitivity up to 31.3% with the photocurrent of 18.3 μA under the light of 3.85 mW/cm2, which outperformed many QD/carbon-based nanocomposites. Results indicate that the electrostatic layered assembly of QD/MWNT nanostructure is an excellent platform for the fabrication of high-performance optoelectronic devices. PMID:24445285

  4. Importance of polypyrrole in constructing 3D hierarchical carbon nanotube@MnO2 perfect core-shell nanostructures for high-performance flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Jinyuan; Zhao, Hao; Mu, Xuemei; Chen, Jiayi; Zhang, Peng; Wang, Yaling; He, Yongmin; Zhang, Zhenxing; Pan, Xiaojun; Xie, Erqing

    2015-08-01

    This study reports the preparation of 3D hierarchical carbon nanotube (CNT) @MnO2 core-shell nanostructures under the assistance of polypyrrole (PPy). The as-prepared CNT@PPy@MnO2 core-shell structures show a perfect coating of MnO2 on each CNT and, more importantly, a robust bush-like pseudocapacitive shell to effectively increase the specific surface area and enhance the ion accessibility. As expected, a high specific capacity of 490-530 F g-1 has been achieved from CNT@PPy@MnO2 single electrodes. And about 98.5% of the capacity is retained after 1000 charge/discharge cycles at a current density of 5 A g-1. Furthermore, the assembled asymmetric CNT@PPy@MnO2//AC capacitors show the maximum energy density of 38.42 W h kg-1 (2.24 mW h cm-3) at a power density of 100 W kg-1 (5.83 mW cm-3), and they maintain 59.52% of the initial value at 10 000 W kg-1 (0.583 W cm-3). In addition, the assembled devices show high cycling stabilities (89.7% after 2000 cycles for asymmetric and 87.2% for symmetric), and a high bending stability (64.74% after 200 bending tests). This ability to obtain high energy densities at high power rates while maintaining high cycling stability demonstrates that this well-designed structure could be a promising electrode material for high-performance supercapacitors.This study reports the preparation of 3D hierarchical carbon nanotube (CNT) @MnO2 core-shell nanostructures under the assistance of polypyrrole (PPy). The as-prepared CNT@PPy@MnO2 core-shell structures show a perfect coating of MnO2 on each CNT and, more importantly, a robust bush-like pseudocapacitive shell to effectively increase the specific surface area and enhance the ion accessibility. As expected, a high specific capacity of 490-530 F g-1 has been achieved from CNT@PPy@MnO2 single electrodes. And about 98.5% of the capacity is retained after 1000 charge/discharge cycles at a current density of 5 A g-1. Furthermore, the assembled asymmetric CNT@PPy@MnO2//AC capacitors show the

  5. High performance ultracapacitors with carbon nanomaterials and ionic liquids

    DOEpatents

    Lu, Wen; Henry, Kent Douglas

    2012-10-09

    The present invention is directed to the use of carbon nanotubes and/or electrolyte structures in various electrochemical devices, such as ultracapacitors having an ionic liquid electrolyte. The carbon nanotubes are preferably aligned carbon nanotubes. Compared to randomly entangled carbon nanotubes, aligned carbon nanotubes can have better defined pore structures and higher specific surface areas.

  6. A simple L-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ion batteries.

    PubMed

    Park, Seung-Keun; Yu, Seung-Ho; Woo, Seunghee; Quan, Bo; Lee, Dong-Chan; Kim, Min Kun; Sung, Yung-Eun; Piao, Yuanzhe

    2013-02-21

    We introduce a simple process to synthesize few-layered MoS(2) nanosheets supported on coaxial carbon nanotubes through an L-cysteine-assisted hydrothermal route, in which L-cysteine, a cheap and ordinary amino acid, plays a fundamental role in controlling the morphology of the hybrid material and the binder to help the growth of MoS(2) nanosheets on the surface of the carbon nanotubes. It is also demonstrated that the polypeptide formed by L-cysteine can be transformed into amorphous carbon by heat treatment under an inert atmosphere. The materials exhibit high capacity and excellent cycling performance when used as anode materials for lithium ion batteries. The specific capacity of a composite with 1 : 4 molar ratio of MoS(2) to carbon nanotubes is 736.5 mAh g(-1) after the first cycle, increased for several initial cycles, and remains at 823.4 mAh g(-1) even after 30 cycles, when cycled at a current density of 100 mA g(-1). At a very high current density of 1600 mA g(-1), the material shows a stable capacity of approximately 530 mAh g(-1) after 30 cycles. The noteworthy improvement in the electrochemical performance of the material can be attributed to their unique structure and the synergistic effects of amorphous carbon and few-layered MoS(2). PMID:23208383

  7. Carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  8. Sulfur-impregnated 3D hierarchical porous nitrogen-doped aligned carbon nanotubes as high-performance cathode for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Deng, Weina; Hu, Aiping; Chen, Xiaohua; Zhang, Shiying; Tang, Qunli; Liu, Zheng; Fan, Binbin; Xiao, Kuikui

    2016-08-01

    A rational 3D hierarchical porous nitrogen-doped aligned carbon nanotubes (HPNACNTs) with well-directed 1D conductive electron paths is designed as scaffold to load sulfur. The HPNACNTs have abundant micropores, mesopores and macropores with a relatively high specific surface area and a large total pore volume. The sulfur-HPNACNTs composite is synthesized for lithium-sulfur batteries by a melt-diffusion of sulfur powders into HPNACNTs scaffolds. Electrochemical tests reveal that the sulfur-HPNACNTs (68.8 wt% sulfur) composite exhibits a high initial discharge capacity of 1340 mAh g-1 at 0.1 C and retains as high as 979 mAh g-1 at 0.2 C after 200 cycles. More importantly, it shows high reversible capacity at high rates (817 mAh g-1 at 5 C). Its enhanced electrochemical performance can be attributed to the excellent electrical conductivity of aligned carbon nanotubes, the synergetic effect of its hierarchical porosity and the restraint of the shuttle effect due to the SxLi … N interactions via the N lone-pair electron.

  9. Application of multiwalled carbon nanotubes as sorbents for the extraction of mycotoxins in water samples and infant milk formula prior to high performance liquid chromatography mass spectrometry analysis.

    PubMed

    Socas-Rodríguez, Bárbara; González-Sálamo, Javier; Hernández-Borges, Javier; Rodríguez Delgado, Miguel Ángel

    2016-05-01

    In this work, a simple and environmental friendly methodology has been developed for the analysis of a group of six mycotoxins with estrogenic activity produced by Fusarium species (i.e. zearalanone, zearalenone, α-zearalanol, β-zearalanol, α-zearalenol, and β-zearalenol), using microdispersive SPE the symbol micro should de before dSPE with multiwalled carbon nanotubes as sorbent. Separation, determination, and quantification were achieved by HPLC coupled to ion trap MS with an ESI interface. Parameters affecting the extraction efficiency of µ-dSPE such as pH of the sample, amount of multiwalled carbon nanotubes, and type and volume of elution solvent, were studied and optimized. The methodology was validated for mineral, pond, and wastewater as well as for powdered infant milk using 17β-estradiol-2,4,16,16,17-d5 (17β-E2 -D5 ) as internal standard, obtaining recoveries ranging from 85 to 120% for the three types of water samples and from 77 to 115% for powdered infant milk. RSD values were lower than 10%. The LOQs achieved were in the range 0.05-2.90 μg/L for water samples and 2.02-31.9 μg/L for powdered infant milk samples. PMID:26892029

  10. Podlike N-doped carbon nanotubes encapsulating FeNi alloy nanoparticles: high-performance counter electrode materials for dye-sensitized solar cells.

    PubMed

    Zheng, Xiaojia; Deng, Jiao; Wang, Nan; Deng, Dehui; Zhang, Wen-Hua; Bao, Xinhe; Li, Can

    2014-07-01

    Podlike nitrogen-doped carbon nanotubes encapsulating FeNi alloy nanoparticles (Pod(N)-FeNi) were prepared by the direct pyrolysis of organometallic precursors. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and Tafel polarization measurements revealed their excellent electrocatalytic activities in the I(-)/I3(-) redox reaction of dye-sensitized solar cells (DSSCs). This is suggested to arise from the modification of the surface electronic properties of the carbon by the encapsulated metal alloy nanoparticles (NPs). Sequential scanning with EIS and CV further showed the high electrochemical stability of the Pod(N)-FeNi composite. DSSCs with Pod(N)-FeNi as the counter electrode (CE) presented a power conversion efficiency of 8.82%, which is superior to that of the control device with sputtered Pt as the CE. The Pod(N)-FeNi composite thus shows promise as an environmentally friendly, low-cost, and highly efficient CE material for DSSCs. PMID:24800923

  11. Carbon nanotube nanoelectrode arrays

    DOEpatents

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  12. Growth of ultrathin MoS₂ nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes.

    PubMed

    Zhang, Shen; Yu, Xianbo; Yu, Hailong; Chen, Yujin; Gao, Peng; Li, Chunyan; Zhu, Chunling

    2014-12-24

    A hydrothermal method was developed to grow ultrathin MoS2 nanosheets, with an expanded spacing of the (002) planes, on carbon nanotubes. When used as a sodium-ion battery anode, the composite exhibited a specific capacity of 495.9 mAh g(-1), and 84.8% of the initial capacity was retained after 80 cycles, even at a current density of 200 mA g(-1). X-ray diffraction analyses show that the sodiation/desodiation mechanismis based on a conversion reaction. The high capacity and long-term stability at a high current ate demonstrate that the composite is a very promising candidate for use as an anode material in sodium-ion batteries. PMID:25479568

  13. Plumbing carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Jin, Chuanhong; Suenaga, Kazu; Iijima, Sumio

    2008-01-01

    Since their discovery, the possibility of connecting carbon nanotubes together like water pipes has been an intriguing prospect for these hollow nanostructures. The serial joining of carbon nanotubes in a controlled manner offers a promising approach for the bottom-up engineering of nanotube structures-from simply increasing their aspect ratio to making integrated carbon nanotube devices. To date, however, there have been few reports of the joining of two different carbon nanotubes. Here we demonstrate that a Joule heating process, and associated electro-migration effects, can be used to connect two carbon nanotubes that have the same (or similar) diameters. More generally, with the assistance of a tungsten metal particle, this technique can be used to seamlessly join any two carbon nanotubes-regardless of their diameters-to form new nanotube structures.

  14. A high-performance glucose biosensor using covalently immobilised glucose oxidase on a poly(2,6-diaminopyridine)/carbon nanotube electrode.

    PubMed

    Ali Kamyabi, Mohammad; Hajari, Nasim; Turner, Anthony P F; Tiwari, Ashutosh

    2013-11-15

    A highly-sensitive glucose biosensor amenable to ultra-miniaturisation was fabricated by immobilisation of glucose oxidase (GOx), onto a poly(2,6-diaminopyridine)/multi-walled carbon nanotube/glassy carbon electrode (poly(2,6-DP)/MWNT/GCE). Cyclic voltammetry was used for both the electrochemical synthesis of poly-(2,6-DP) on the surface of a MWNT-modified GC electrode, and characterisation of the polymers deposited on the GC electrode. The synergistic effect of the high active surface area of both the conducting polymer, i.e., poly-(2,6-DP) and MWNT gave rise to a remarkable improvement in the electrocatalytic properties of the biosensor. The transfer coefficient (α), heterogeneous electron transfer rate constant and Michaelis-Menten constant were calculated to be 0.6, 4 s(-1) and 0.20 mM at pH 7.4, respectively. The GOx/poly(2,6-DP)/MWNT/GC bioelectrode exhibited two linear responses to glucose in the concentration ranging from 0.42 μM to 8.0 mM with a correlation coefficient of 0.95, sensitivity of 52.0 μA mM(-1) cm(-2), repeatability of 1.6% and long-term stability, which could make it a promising bioelectrode for precise detection of glucose in the biological samples. PMID:24148477

  15. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.

    PubMed

    Vinayan, B P; Ramaprabhu, S

    2013-06-01

    The efforts to push proton exchange membrane fuel cells (PEMFC) for commercial applications are being undertaken globally. In PEMFC, the sluggish kinetics of oxygen reduction reactions (ORR) at the cathode can be improved by the alloying of platinum with 3d-transition metals (TM = Fe, Co, etc.) and with nitrogen doping, and in the present work we have combined both of these aspects. We describe a facile method for the synthesis of a nitrogen doped (reduced graphene oxide (rGO)-multiwalled carbon nanotubes (MWNTs)) hybrid structure (N-(G-MWNTs)) by the uniform coating of a nitrogen containing polymer over the surface of the hybrid structure (positively surface charged rGO-negatively surface charged MWNTs) followed by the pyrolysis of these (rGO-MWNTs) hybrid structure-polymer composites. The N-(G-MWNTs) hybrid structure is used as a catalyst support for the dispersion of platinum (Pt), platinum-iron (Pt3Fe) and platinum-cobalt (Pt3Co) alloy nanoparticles. The PEMFC performances of Pt-TM alloy nanoparticle dispersed N-(G-MWNTs) hybrid structure electrocatalysts are 5.0 times higher than that of commercial Pt-C electrocatalysts along with very good stability under acidic environment conditions. This work demonstrates a considerable improvement in performance compared to existing cathode electrocatalysts being used in PEMFC and can be extended to the synthesis of metal, metal oxides or metal alloy nanoparticle decorated nitrogen doped carbon nanostructures for various electrochemical energy applications. PMID:23644681

  16. Facile synthesis of high quality multi-walled carbon nanotubes on novel 3D KIT-6: application in high performance dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Balamurugan, Jayaraman; Pandurangan, Arumugam; Kim, Nam Hoon; Lee, Joong Hee

    2014-12-01

    A novel hard templating strategy for the synthesis of high quality multi-walled carbon nanotubes (MWCNTs) with a uniform diameter was developed. MWCNTs were successfully synthesized through chemical vapour deposition (CVD) using acetylene by employing 3D bicontinuous mesoporous silica (KIT-6) as a hard template and used as the counter electrode in dye-sensitized solar cells (DSSCs). Here, we report that Ni-Cr-KIT-6 and Co-Cr-KIT-6 systems are the most suitable catalysts for the growth of MWCNTs. Raman spectroscopy and TEM analysis revealed that the synthesized MWCNTs were of high quality and well graphitized. Impressively, DSSCs with a MWCNT counter electrode demonstrated high power conversion efficiencies (PCEs) of up to 10.53%, which was significantly higher than that of 9.87% obtained for a DSSC with a conventional Pt counter electrode. Moreover, MWCNTs had a charge transfer resistance (Rct) of only 0.74 Ω cm2 towards the I3-/I- electrolyte commonly applied in DSSCs, which is several orders of magnitude lower than that of a typical Pt electrode (2.78 Ω cm2). These results indicate that the synthesized MWCNT counter electrodes are versatile candidates that can increase the power conversion efficiency (PCE) of DSSCs.A novel hard templating strategy for the synthesis of high quality multi-walled carbon nanotubes (MWCNTs) with a uniform diameter was developed. MWCNTs were successfully synthesized through chemical vapour deposition (CVD) using acetylene by employing 3D bicontinuous mesoporous silica (KIT-6) as a hard template and used as the counter electrode in dye-sensitized solar cells (DSSCs). Here, we report that Ni-Cr-KIT-6 and Co-Cr-KIT-6 systems are the most suitable catalysts for the growth of MWCNTs. Raman spectroscopy and TEM analysis revealed that the synthesized MWCNTs were of high quality and well graphitized. Impressively, DSSCs with a MWCNT counter electrode demonstrated high power conversion efficiencies (PCEs) of up to 10.53%, which was

  17. High performance of carbon nanotubes/silver nanowires-PET hybrid flexible transparent conductive films via facile pressing-transfer technique

    PubMed Central

    2014-01-01

    To obtain low sheet resistance, high optical transmittance, small open spaces in conductive networks, and enhanced adhesion of flexible transparent conductive films, a carbon nanotube (CNT)/silver nanowire (AgNW)-PET hybrid film was fabricated by mechanical pressing-transfer process at room temperature. The morphology and structure were characterized by scanning electron microscope (SEM) and atomic force microscope (AFM), the optical transmittance and sheet resistance were tested by ultraviolet-visible spectroscopy (UV-vis) spectrophotometer and four-point probe technique, and the adhesion was also measured by 3M sticky tape. The results indicate that in this hybrid nanostructure, AgNWs form the main conductive networks and CNTs as assistant conductive networks are filled in the open spaces of AgNWs networks. The sheet resistance of the hybrid films can reach approximately 20.9 to 53.9 Ω/□ with the optical transmittance of approximately 84% to 91%. The second mechanical pressing step can greatly reduce the surface roughness of the hybrid film and enhance the adhesion force between CNTs, AgNWs, and PET substrate. This process is hopeful for large-scale production of high-end flexible transparent conductive films. PMID:25386105

  18. Engineered Molecular Chain Ordering in Single-Walled Carbon Nanotubes/Polyaniline Composite Films for High-Performance Organic Thermoelectric Materials.

    PubMed

    Wang, Liming; Yao, Qin; Xiao, Juanxiu; Zeng, Kaiyang; Qu, Sanyin; Shi, Wei; Wang, Qun; Chen, Lidong

    2016-06-21

    Single-walled carbon nanotubes (SWNTs)/polyaniline (PANI) composite films with enhanced thermoelectric properties were prepared by combining in situ polymerization and solution processing. Conductive atomic force microscopy and X-ray diffraction measurements confirmed that solution processing and strong π-π interactions between the PANI and SWNTs induced the PANI molecules to form a highly ordered structure. The improved degree of order of the PANI molecular arrangement increased the carrier mobility and thereby enhanced the electrical transport properties of PANI. The maximum in-plane electrical conductivity and power factor of the SWNTs/PANI composite films reached 1.44×10(3)  S cm(-1) and 217 μW m(-1)  K(-2) , respectively, at room temperature. Furthermore, a thermoelectric generator fabricated with the SWNTs/PANI composite films showed good electric generation ability and stability. A high power density of 10.4 μW cm(-2)  K(-1) was obtained, which is superior to most reported results obtained in organic thermoelectric modules. PMID:27123885

  19. BaFe12O19-chitosan Schiff-base Ag (I) complexes embedded in carbon nanotube networks for high-performance electromagnetic materials

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Xie, Yu; Guan, Dongsheng; Hua, Helin; Zhong, Rong; Qin, Yuancheng; Fang, Jing; Liu, Huilong; Chen, Junhong

    2015-07-01

    The multiwalled carbon nanotubes/BaFe12O19-chitosan (MCNTs/BF-CS) Schiff base Ag (I) complex composites were synthesized successfully by a chemical bonding method. The morphology and structures of the composites were characterized with electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction techniques. Their conductive properties were measured using a four-probe conductivity tester at room temperature, and their magnetic properties were tested by a vibrating sample magnetometer. The results show that the BF-CS Schiff base Ag (I) complexes are embedded into MCNT networks. When the mass ratio of MCNTs and BF-CS Schiff base is 0.95:1, the conductivity, Ms (saturation magnetization), Mr (residual magnetization), and Hc (coercivity) of the BF-CS Schiff base composites reach 1.908 S cm-1, 28.20 emu g-1, 16.66 emu g-1 and 3604.79 Oe, respectively. Finally, a possible magnetic mechanism of the composites has also been proposed.

  20. High-Performance Lithium-Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode-Electrolyte Interface.

    PubMed

    Kim, Hee Min; Hwang, Jang-Yeon; Manthiram, Arumugam; Sun, Yang-Kook

    2016-01-13

    Elemental sulfur electrode has a huge advantage in terms of charge-storage capacity. However, the lack of electrical conductivity results in poor electrochemical utilization of sulfur and performance. This problem has been overcome to some extent previously by using a bare multiwall carbon nanotube (MWCNT) paper interlayer between the sulfur cathode and the polymeric separator, resulting in good electron transport and adsorption of dissolved polysulfides. To advance the interlayer concept further, we present here a self-assembled MWCNT interlayer fabricated by a facile, low-cost process. The Li-S cells fabricated with the self-assembled MWCNT interlayer and a high loading of 3 mg cm(-2) sulfur exhibit a first discharge specific capacity of 1112 mAh g(-1) at 0.1 C rate and retain 95.8% of the capacity at 0.5 C rate after 100 cycles as the self-assembled MWCNT interlayer facilitates good interfacial contact between the interlayer and the sulfur cathode and fast electron and lithium-ion transport while trapping and reutilizing the migrating polysulfides. The approach presented here has the potential to advance the commercialization feasibility of the Li-S batteries. PMID:26686268

  1. A new strategy for designing high-performance sulfonated poly(ether ether ketone) polymer electrolyte membranes using inorganic proton conductor-functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, Chunli; Zheng, Xuan; Liu, Hai; Wang, Guangjin; Cheng, Fan; Zheng, Genwen; Wen, Sheng; Law, Wing-Cheung; Tsui, Chi-Pong; Tang, Chak-Yin

    2016-09-01

    Remarkable progress has been made on the use of polymer electrolyte membranes (PEMs) for renewable-energy-related research. In particular, carbon nanotubes (CNTs) have emerged as versatile nanomaterials to modify PEMs. However, the inert ionic conduction ability and possible short-circuiting risk are the two major obstacles to their further development. In this work, CNTs are firstly functionalized with an inorganic proton conductor, boron phosphate (BPO4), using a facile polydopamine-assisted sol-gel method to yield BPO4@CNTs. This new additive is then used to modify sulfonated poly(ether ether ketone) (SPEEK). Polydopamine coating layer can act as an extraordinary glue to homogeneously adhere BPO4 nanoparticles on CNTs, thereby not only reducing the risk of short-circuiting, but also fabricating new proton-conducting pathways in the composite membranes. A comprehensive characterization reveals that the thermal stability, tensile properties, and dimensional stability of PEMs are significantly improved. Compared with pure SPEEK, the proton conductivity of SPEEK/BPO4@CNTs-2 is improved by 45% and 150% at 20 °C and at 80 °C, respectively. Furthermore, the H2/O2 cell performance of SPEEK/BPO4@CNTs-2 membrane exhibits a peak power density of 340.7 mW cm-2 at 70 °C, which is significantly better than that of pure SPEEK (254.2 mW cm-2), demonstrating the great potential of proton conductors-functionalized CNTs in PEMs.

  2. Cross-stacked carbon nanotube film as an additional built-in current collector and adsorption layer for high-performance lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Sun, Li; Kong, Weibang; Li, Mengya; Wu, Hengcai; Jiang, Kaili; Li, Qunqing; Zhang, Yihe; Wang, Jiaping; Fan, Shoushan

    2016-02-01

    Cross-stacked carbon nanotube (CNT) film is proposed as an additional built-in current collector and adsorption layer in sulfur cathodes for advanced lithium sulfur (Li-S) batteries. On one hand, the CNT film with high conductivity, microstructural rough surface, high flexibility and mechanical durability retains stable and direct electronic contact with the sulfur cathode materials, therefore decreasing internal resistivity and suppressing polarization of the cathode. On the other hand, the highly porous structure and the high surface area of the CNT film provide abundant adsorption points to support and confine sulfur cathode materials, alleviate their aggregation and promote high sulfur utilization. Moreover, the lightweight and compact structure of the CNT film adds no extra weight or volume to the sulfur cathode, benefitting the improvement of energy densities. Based on these characteristics, the sulfur cathode with a 100-layer cross-stacked CNT film presents excellent rate performances with capacities of 986, 922 and 874 mAh g-1 at cycling rates of 0.2C, 0.5C and 1C for sulfur loading of 60 wt%, corresponding to an improvement of 52%, 109% and 146% compared to that without a CNT film. Promising cycling performances are also demonstrated, offering great potential for scaled-up production of sulfur cathodes for Li-S batteries.

  3. Cross-stacked carbon nanotube film as an additional built-in current collector and adsorption layer for high-performance lithium sulfur batteries.

    PubMed

    Sun, Li; Kong, Weibang; Li, Mengya; Wu, Hengcai; Jiang, Kaili; Li, Qunqing; Zhang, Yihe; Wang, Jiaping; Fan, Shoushan

    2016-02-19

    Cross-stacked carbon nanotube (CNT) film is proposed as an additional built-in current collector and adsorption layer in sulfur cathodes for advanced lithium sulfur (Li-S) batteries. On one hand, the CNT film with high conductivity, microstructural rough surface, high flexibility and mechanical durability retains stable and direct electronic contact with the sulfur cathode materials, therefore decreasing internal resistivity and suppressing polarization of the cathode. On the other hand, the highly porous structure and the high surface area of the CNT film provide abundant adsorption points to support and confine sulfur cathode materials, alleviate their aggregation and promote high sulfur utilization. Moreover, the lightweight and compact structure of the CNT film adds no extra weight or volume to the sulfur cathode, benefitting the improvement of energy densities. Based on these characteristics, the sulfur cathode with a 100-layer cross-stacked CNT film presents excellent rate performances with capacities of 986, 922 and 874 mAh g(-1) at cycling rates of 0.2C, 0.5C and 1C for sulfur loading of 60 wt%, corresponding to an improvement of 52%, 109% and 146% compared to that without a CNT film. Promising cycling performances are also demonstrated, offering great potential for scaled-up production of sulfur cathodes for Li-S batteries. PMID:26778739

  4. BaFe12O19-chitosan Schiff-base Ag (I) complexes embedded in carbon nanotube networks for high-performance electromagnetic materials

    PubMed Central

    Zhao, Jie; Xie, Yu; Guan, Dongsheng; Hua, Helin; Zhong, Rong; Qin, Yuancheng; Fang, Jing; Liu, Huilong; Chen, Junhong

    2015-01-01

    The multiwalled carbon nanotubes/BaFe12O19-chitosan (MCNTs/BF-CS) Schiff base Ag (I) complex composites were synthesized successfully by a chemical bonding method. The morphology and structures of the composites were characterized with electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction techniques. Their conductive properties were measured using a four-probe conductivity tester at room temperature, and their magnetic properties were tested by a vibrating sample magnetometer. The results show that the BF-CS Schiff base Ag (I) complexes are embedded into MCNT networks. When the mass ratio of MCNTs and BF-CS Schiff base is 0.95:1, the conductivity, Ms (saturation magnetization), Mr (residual magnetization), and Hc (coercivity) of the BF-CS Schiff base composites reach 1.908 S cm−1, 28.20 emu g−1, 16.66 emu g−1 and 3604.79 Oe, respectively. Finally, a possible magnetic mechanism of the composites has also been proposed. PMID:26218269

  5. Facile synthesis of high quality multi-walled carbon nanotubes on novel 3D KIT-6: application in high performance dye-sensitized solar cells.

    PubMed

    Balamurugan, Jayaraman; Pandurangan, Arumugam; Kim, Nam Hoon; Lee, Joong Hee

    2015-01-14

    A novel hard templating strategy for the synthesis of high quality multi-walled carbon nanotubes (MWCNTs) with a uniform diameter was developed. MWCNTs were successfully synthesized through chemical vapour deposition (CVD) using acetylene by employing 3D bicontinuous mesoporous silica (KIT-6) as a hard template and used as the counter electrode in dye-sensitized solar cells (DSSCs). Here, we report that Ni-Cr-KIT-6 and Co-Cr-KIT-6 systems are the most suitable catalysts for the growth of MWCNTs. Raman spectroscopy and TEM analysis revealed that the synthesized MWCNTs were of high quality and well graphitized. Impressively, DSSCs with a MWCNT counter electrode demonstrated high power conversion efficiencies (PCEs) of up to 10.53%, which was significantly higher than that of 9.87% obtained for a DSSC with a conventional Pt counter electrode. Moreover, MWCNTs had a charge transfer resistance (Rct) of only 0.74 Ω cm(2) towards the I3(-)/I(-) electrolyte commonly applied in DSSCs, which is several orders of magnitude lower than that of a typical Pt electrode (2.78 Ω cm(2)). These results indicate that the synthesized MWCNT counter electrodes are versatile candidates that can increase the power conversion efficiency (PCE) of DSSCs. PMID:25429647

  6. Self-Assembly of Polyethylene Glycol-Grafted Carbon Nanotube/Sulfur Composite with Nest-like Structure for High-Performance Lithium-Sulfur Batteries.

    PubMed

    Li, Han; Sun, Liping; Wang, Gengchao

    2016-03-01

    The novel polyethylene glycol-grafted multiwalled carbon nanotube/sulfur (PEG-CNT/S) composite cathodes with nest-like structure are fabricated through a facile combination process of liquid phase deposition and self-assembly, which consist of the active material core of sulfur particle and the conductive shell of PEG-CNT network. The unique architecture not only provides a short and rapid charge transfer pathway to improve the reaction kinetics but also alleviates the volume expansion of sulfur during lithiation and minimizes the diffusion of intermediate polysulfides. Such an encouraging electrochemical environment ensures the excellent rate capability and high cycle stability. As a result, the as-prepared PEG-CNT/S composite with sulfur content of 75.9 wt % delivers an initial discharge capacity of 1191 and 897 mAh g(-1) after 200 cycles at 0.2 C with an average Coulombic efficiency of 99.5%. Even at a high rate of 2 C, an appreciable capacity of 723 mAh g(-1) can still be obtained. PMID:26890092

  7. Effervescence and graphitized multi-walled carbon nanotubes assisted microextraction for natural antioxidants by ultra high performance liquid chromatography with electrochemical detection and quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    Wang, Shu-Ling; Pang, Xiao-Qing; Cao, Jun; Cao, Wan; Xu, Jing-Jing; Zhu, Qiong-Yao; Zhang, Qian-Yun; Peng, Li-Qing

    2015-10-30

    In this article, effervescence and graphitized multi-walled carbon nanotubes assisted microextraction was first developed for the extraction of antioxidants in hawthorn samples. The use of an effervescent tablet composed of sodium dihydrogen phosphate, sodium carbonate and micro-scale carboxyl graphitized multi-walled carbon nanotubes (extraction sorbent) was the core of the method. In this study, ultra high performance liquid chromatography coupled with electrochemical detection and quadrupole time-of-flight tandem mass spectrometry was performed for qualitative and quantitative analyses of target analytes in hawthorn foodstuffs. Several experimental factors, such as amount of effervescent salts, the sorbent, elution time and elution solvent, were systematically assessed. Under the optimized conditions, a good linearity with R values better than 0.9980 was obtained. The detection limits estimated at a signal-to-noise ratio of 3:1 were ranging from 0.01 to 0.18ng/mL. These results suggested that the proposed method could be an alternative and promising sample preparation tool in future food analysis. PMID:26435313

  8. Reinforced Carbon Nanotubes.

    DOEpatents

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2005-06-28

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  9. High performance pitch-based carbon fiber

    SciTech Connect

    Tadokoro, Hiroyuki; Tsuji, Nobuyuki; Shibata, Hirotaka; Furuyama, Masatoshi

    1996-12-31

    The high performance pitch-based carbon fiber with smaller diameter, six micro in developed by Nippon Graphite Fiber Corporation. This fiber possesses high tensile modulus, high tensile strength, excellent yarn handle ability, low thermal expansion coefficient, and high thermal conductivity which make it an ideal material for space applications such as artificial satellites. Performance of this fiber as a reinforcement of composites was sufficient. With these characteristics, this pitch-based carbon fiber is expected to find wide variety of possible applications in space structures, industrial field, sporting goods and civil infrastructures.

  10. NiCo2S4 nanotube arrays grown on flexible nitrogen-doped carbon foams as three-dimensional binder-free integrated anodes for high-performance lithium-ion batteries.

    PubMed

    Wu, Xiaoyu; Li, Songmei; Wang, Bo; Liu, Jianhua; Yu, Mei

    2016-02-14

    Binary metal sulfides, especially NiCo2S4, hold great promise as anode materials for high-performance lithium-ion batteries because of their excellent electronic conductivity and high capacity compared to mono-metal sulfides and oxides. Here, NiCo2S4 nanotube arrays are successfully grown on flexible nitrogen-doped carbon foam (NDCF) substrates with robust adhesion via a facile surfactant-assisted hydrothermal route and the subsequent sulfurization treatment. The obtained NiCo2S4/NDCF composites show unique three-dimensional architectures, in which NiCo2S4 nanotubes of ∼5 μm in length and 100 nm in width are uniformly grown on the NDCF skeletons to form arrays. When used directly as integrated anodes for lithium-ion batteries without any conductive additives and binders, the NiCo2S4/NDCF composites exhibit a high reversible capacity of 1721 mA h g(-1) at a high current density of 500 mA g(-1), enhanced cycling performance with the capacity maintained at 1182 mA h g(-1) after 100 cycles, and a remarkable rate capability. The excellent lithium storage performances of the composites could be attributed to the unique material composition, a rationally designed hollow nanostructure and an integrated smart architecture, which offer fast electron transport and ion diffusion, enhanced material/-electrolyte contact area and facile accommodation of strains during the lithium insertion and extraction process. PMID:26796603

  11. Electrostatic interactions for directed assembly of high performance nanostructured energetic materials of Al/Fe2O3/multi-walled carbon nanotube (MWCNT)

    NASA Astrophysics Data System (ADS)

    Zhang, Tianfu; Ma, Zhuang; Li, Guoping; Wang, Zhen; Zhao, Benbo; Luo, Yunjun

    2016-05-01

    Electrostatic self-assembly in organic solvent without intensively oxidative or corrosive environments, was adopted to prepare Al/Fe2O3/MWCNT nanostructured energetic materials as an energy generating material. The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe2O3 (oxide) nanoparticles. This spontaneous assembly method without any surfactant chemistry or other chemical and biological moieties decreased the aggregation of the same nanoparticles largely, moreover, the poor interfacial contact between the Al (fuel) and Fe2O3 (oxide) nanoparticles was improved significantly, which was the key characteristic of high performance nanostructured energetic materials. In addition, the assembly process was confirmed as Diffusion-Limited Aggregation. The assembled Al/Fe2O3/MWCNT nanostructured energetic materials showed excellent performance with heat release of 2400 J/g, peak pressure of 0.42 MPa and pressurization rate of 105.71 MPa/s, superior to that in the control group Al/Fe2O3 nanostructured energetic materials prepared by sonication with heat release of 1326 J/g, peak pressure of 0.19 MPa and pressurization rate of 33.33 MPa/s. Therefore, the approach, which is facile, opens a promising route to the high performance nanostructured energetic materials.

  12. Carbon nanotube macroelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Jialu

    In this dissertation, I discuss the application of carbon nanotubes in macroelectronis. Due to the extraordinary electrical properties such as high intrinsic carrier mobility and current-carrying capacity, single wall carbon nanotubes are very desirable for thin-film transistor (TFT) applications such as flat panel display, transparent electronics, as well as flexible and stretchable electronics. Compared with other popular channel material for TFTs, namely amorphous silicon, polycrystalline silicon and organic materials, nanotube thin-films have the advantages of low-temperature processing compatibility, transparency, and flexibility, as well as high device performance. In order to demonstrate scalable, practical carbon nanotube macroelectroncis, I have developed a platform to fabricate high-density, uniform separated nanotube based thin-film transistors. In addition, many other essential analysis as well as technology components, such as nanotube film density control, purity and diameter dependent semiconducting nanotube electrical performance study, air-stable n-type transistor fabrication, and CMOS integration platform have also been demonstrated. On the basis of the above achievement, I have further demonstrated various kinds of applications including AMOLED display electronics, PMOS and CMOS logic circuits, flexible and transparent electronics. The dissertation is structured as follows. First, chapter 1 gives a brief introduction to the electronic properties of carbon nanotubes, which serves as the background knowledge for the following chapters. In chapter 2, I will present our approach of fabricating wafer-scale uniform semiconducting carbon nanotube thin-film transistors and demonstrate their application in display electronics and logic circuits. Following that, more detailed information about carbon nanotube thin-film transistor based active matrix organic light-emitting diode (AMOLED) displays is discussed in chapter 3. And in chapter 4, a technology to

  13. High performance organic transistors: Percolating arrays of nanotubes functionalized with an electron deficient olefin

    NASA Astrophysics Data System (ADS)

    Kanungo, Mandakini; Malliaras, George G.; Blanchet, Graciela B.

    2010-08-01

    Precise control over the electronic properties of carbon nanotubes is key to their application in plastic electronics. In the present work, we have functionalized carbon nanotubes with an electron withdrawing nonfluorinated olefins via a 2-2 cycloaddition reaction. Our results suggest that the formation of cyclobutanelike four-member ring at the functionalization site is a fairly general approach, independent of specifics of the addend, to converting the grown mixture of metal and semiconductor tubes into high mobility semiconducting tubes without tedious separation requirements. Thin film transistors fabricated from such functionalized tubes exhibit mobilities of ˜30 cm2/V s and on/off ratios in excess of 106. This simple functionalization represents a low cost path to high performance semiconducting inks for printable electronics.

  14. Conducting carbonized polyaniline nanotubes

    NASA Astrophysics Data System (ADS)

    Mentus, Slavko; Ćirić-Marjanović, Gordana; Trchová, Miroslava; Stejskal, Jaroslav

    2009-06-01

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 °C min-1 up to a maximum temperature of 800 °C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 µm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 µm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm-1, increased to 0.7 S cm-1 upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  15. Conducting carbonized polyaniline nanotubes.

    PubMed

    Mentus, Slavko; Cirić-Marjanović, Gordana; Trchová, Miroslava; Stejskal, Jaroslav

    2009-06-17

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 degrees C min(-1) up to a maximum temperature of 800 degrees C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 microm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 microm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm(-1), increased to 0.7 S cm(-1) upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy. PMID:19471087

  16. Transport in Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Datta, S.; Xue, Yong-Qinag; Anantram, M. P.; Saini, Subhash (Technical Monitor)

    1999-01-01

    This presentation discusses coupling between carbon nanotubes (CNT), simple metals (FEG) and a graphene sheet. The graphene sheet did not couple well with FEG, but the combination of a graphene strip and CNT did couple well with most simple metals.

  17. Carbon nanotubes: Fibrillar pharmacology

    NASA Astrophysics Data System (ADS)

    Kostarelos, Kostas

    2010-10-01

    The mechanisms by which chemically functionalized carbon nanotubes flow in blood and are excreted through the kidneys illustrate the unconventional behaviour of these fibrillar nanostructures, and the opportunities they offer as components for the design of advanced delivery vehicles.

  18. Functionalization of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Webber, Stephen E.

    2003-01-01

    These project will explore the functionalization of carbon nanotubes via the formation of molecular complexes with perylene diimide based systems. It is anticipated that these complexes would be soluble in organic solvent and enable the homogenous dispersion of carbon nanotubes in polymer films. Molecular complexes will be prepared and characterized using standard spectroscopic and thermal analytical techniques. Polymer films will be prepared with these complexes and their properties (electrical and thermal conductivity, mechanical properties, stability) evaluated.

  19. High performance supercapacitor from chromium oxide-nanotubes based electrodes

    NASA Astrophysics Data System (ADS)

    Lota, Grzegorz; Frackowiak, Elzbieta; Mittal, Jagjiwan; Monthioux, Marc

    2007-01-01

    Single wall carbon nanotubes (SWNTs) filled and doped with chromium oxide have been used as attractive electrodes for supercapacitors. Pseudocapacitance effects related to the presence of nanosized chromium oxide finely dispersed at the nanoscale together with high conducting properties of SWNTs allow building efficient electrodes from this hybrid material. Even if capacitance values are not very high (ca. 60 F g -1), however, extremely quick charge propagation was observed, doubtless due to the overall physical and textural properties of SWNT material. The positive effect - with respect to empty-SWNTs - brought by the presence of chromium oxide in and probably in-between the SWNTs indicates that chromium oxide is accessible to the electrolyte in spite of its encapsulated location, because of the numerous side entries created all along the SWNT walls during the filling step.

  20. Nanotube composite carbon fibers

    NASA Astrophysics Data System (ADS)

    Andrews, R.; Jacques, D.; Rao, A. M.; Rantell, T.; Derbyshire, F.; Chen, Y.; Chen, J.; Haddon, R. C.

    1999-08-01

    Single walled carbon nanotubes (SWNTs) were dispersed in isotropic petroleum pitch matrices to form nanotube composite carbon fibers with enhanced mechanical and electrical properties. We find that the tensile strength, modulus, and electrical conductivity of a pitch composite fiber with 5 wt % loading of purified SWNTs are enhanced by ˜90%, ˜150%, and 340% respectively, as compared to the corresponding values in unmodified isotropic pitch fibers. These results serve to highlight the potential that exits for developing a spectrum of material properties through the selection of the matrix, nanotube dispersion, alignment, and interfacial bonding.

  1. Carbon Nanotube Solar Cells

    PubMed Central

    Klinger, Colin; Patel, Yogeshwari; Postma, Henk W. Ch.

    2012-01-01

    We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement. PMID:22655070

  2. Ultra high performance liquid chromatography with mass spectrometry method for the simultaneous determination of phenolic constituents in honey from various floral sources using multiwalled carbon nanotubes as extraction sorbents.

    PubMed

    Wabaidur, Saikh Mohammad; Ahmed, Yacine Badjah Hadj; Alothman, Zeid Abdullah; Obbed, Munir Saeed; AL-Harbi, Nasser Mohamed; AL-Turki, Turki Mohammad

    2015-08-01

    An ultra high performance liquid chromatography with mass spectrometry method has been developed for the simultaneous separation, identification and determination of 22 phenolic constituents in honey from various floral sources from Yemen. Solid-phase extraction was used for extraction of the target phenolic constituents from honey samples, while multiwalled carbon nanotubes were used as solid-phase adsorbent. The chromatographic separation of all phenolic constituents was performed on a BEH C18 column using a linear gradient elution with a binary mobile phase mixture of aqueous 0.1% formic acid and methanol. The quantitation was carried out in selected ion reaction monitoring acquisition mode. The total amount of phenolic acids, flavonoids and other phenols in each analyzed honey was found in the range of 338-3312, 122-5482 and 2.4-1342 μg/100 g of honey, respectively. 4-Hydroxybenzoic acid was found to be the major phenolic acid. The main detected flavonoid was chrysin, while cinnamic acid was found to be the major other phenol compound. The regeneration of solid phase adsorbent to be reused and recovery results confirm that the proposed method could be potentially used for the routine analysis of phenolic constituents in honey extract. PMID:25989240

  3. Multi-walled carbon nanotubes as solid-phase extraction sorbents for simultaneous determination of type A trichothecenes in maize, wheat and rice by ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Dong, Maofeng; Si, Wenshuai; Jiang, Keqiu; Nie, Dongxia; Wu, Yongjiang; Zhao, Zhihui; De Saeger, Sarah; Han, Zheng

    2015-12-01

    A solid-phase extraction (SPE) procedure using multi-walled carbon nanotubes (MWCNTs) as sorbents coupled with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed for simultaneous determination of four type A trichothecenes in maize, wheat and rice for the first time. Several key parameters including the composition of sample loading solutions, washing and elution solvents were thoroughly investigated to achieve optimal SPE recoveries and efficiency. Performance of the MWCNTs materials was significantly affected by pH, and after optimization, n-hexane and 5% methanol aqueous solution as the washing solutions and methanol containing 1% formic acid as the elution solvent presented an excellent purification efficiency for the four targets in the different matrices. The method was validated by determining the linearity (R(2)≥0.992), recovery (73.4-113.7%), precision (1.2-17.1%) and sensitivity (limit of quantification in the range of 0.02-0.10μg/kg), and was further applied for simultaneous determination of type A trichothecenes in 30 samples. Although low contamination levels of type A trichothecenes in wheat, maize and rice were observed revealing mitigated risks to consumers in Shanghai, China, the developed method has proven to be a valuable tool for type A trichothecenes monitoring in complex crop matrices. PMID:26549860

  4. Simultaneous determination of copper, cobalt, and mercury ions in water samples by solid-phase extraction using carbon nanotube sponges as adsorbent after chelating with sodium diethyldithiocarbamate prior to high performance liquid chromatography.

    PubMed

    Wang, Lei; Zhou, Jia-Bin; Wang, Xia; Wang, Zhen-Hua; Zhao, Ru-Song

    2016-06-01

    Recently, a sponge-like material called carbon nanotube sponges (CNT sponges) has drawn considerable attention because it can remove large-area oil, nanoparticles, and organic dyes from water. In this paper, the feasibility of CNT sponges as a novel solid-phase extraction (SPE) adsorbent for the enrichment and determination of heavy metal ions (Co(2+), Cu(2+), and Hg(2+)) was investigated for the first time. Sodium diethyldithiocarbamate (DDTC) was used as the chelating agent and high performance liquid chromatography (HPLC) for the final analysis. Important factors which may influence extraction efficiency of SPE were optimized, such as the kind and volume of eluent, volume of DDTC, sample pH, flow rate, etc. Under the optimized conditions, wide range of linearity (0.5-400 μg L(-1)), low limits of detection (0.089~0.690 μg L(-1); 0.018~0.138 μg), and good repeatability (1.27~3.60 %, n = 5) were obtained. The developed method was applied for the analysis of the three metal ions in real water samples, and satisfactory results were achieved. All of these findings demonstrated that CNT sponges will be a good choice for the enrichment and determination of target ions at trace levels in the future. PMID:27108287

  5. Simultaneous Determination of 10 Adulterants in Antihypertensive Functional Foods Using Multi-Walled Carbon Nanotubes-Dispersive Solid-Phase Extraction Coupled with High Performance Liquid Chromatography.

    PubMed

    Zeng, Li; Li, Yongxin; Wu, Xin; Zhang, Jing; Xie, Juan; Sun, Chengjun

    2015-10-01

    Consumption of functional foods based on extracts from selected herbs to alleviate hypertension is an increasingly common practice in China. Adulteration of these foods with pharmaceuticals can significantly impact a consumer's health. To control the quality of the functional foods effectively, a method for the simultaneous determination of 10 common adulterants including chlortalidone, hydrochlorothiazide, indapamide, metoprolol, nifedipine, nimodipine, nitrendipine, reserpine, triamterene and valsartan in antihypertensive functional foods was developed. The target chemicals in samples were ultrasonically extracted with acetonitrile, and then cleaned-up with multi-walled carbon natotubes-dispersive solid-phase extraction. Finally, the analytes were separated with a C18 column using binary mobile phases consisting of acetonitrile and 0.03 mol/L KH2PO4 solutions (pH 3.0). The flow rate of the mobile phase was 0.80 mL/min, and the column temperature was 35°C. The detection wavelength was set at 220 nm. The limits of detection and quantification of the method ranged from 0.014 to 0.053 and 0.047 to 0.178 μg/mL, respectively. The recoveries of the method were in the range of 80.1-98.1% with relative standard deviations <9.53%. The method was successfully applied to the determination of the target chemicals in real samples and simulated samples, and respirine was detected in one tonic wine sample with a concentration of 56.8 ± 1.2 mg/L. PMID:25840433

  6. From carbon nanostructures to high-performance sorbents for chromatographic separation and preconcentration

    NASA Astrophysics Data System (ADS)

    Postnov, V. N.; Rodinkov, O. V.; Moskvin, L. N.; Novikov, A. G.; Bugaichenko, A. S.; Krokhina, O. A.

    2016-02-01

    Information on carbon nanostructures (fullerenes, nanotubes, graphene, nanodiamond and nanodispersed active carbon) used to develop high-performance sorbents of organics and heavy metal ions from aqueous solutions is collected and analyzed. The advantages in the synthesis of hybrid carbon nanostructures and the possibilities of surface modification of these systems in order to carry out fast sorption pre-concentration are considered. Prospects for application of these materials in sorption technologies and analytical chemistry are discussed. The bibliography includes 364 references.

  7. Templated Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Siochik Emilie J. (Inventor)

    2007-01-01

    A method of growing carbon nanotubes uses a synthesized mesoporous si lica template with approximately cylindrical pores being formed there in. The surfaces of the pores are coated with a carbon nanotube precu rsor, and the template with the surfaces of the pores so-coated is th en heated until the carbon nanotube precursor in each pore is convert ed to a carbon nanotube.

  8. Carbon nanotube array based sensor

    DOEpatents

    Lee, Christopher L.; Noy, Aleksandr; Swierkowski, Stephan P.; Fisher, Karl A.; Woods, Bruce W.

    2005-09-20

    A sensor system comprising a first electrode with an array of carbon nanotubes and a second electrode. The first electrode with an array of carbon nanotubes and the second electrode are positioned to produce an air gap between the first electrode with an array of carbon nanotubes and the second electrode. A measuring device is provided for sensing changes in electrical capacitance between the first electrode with an array of carbon nanotubes and the second electrode.

  9. Purification of Carbon Nanotubes: Alternative Methods

    NASA Technical Reports Server (NTRS)

    Files, Bradley; Scott, Carl; Gorelik, Olga; Nikolaev, Pasha; Hulse, Lou; Arepalli, Sivaram

    2000-01-01

    Traditional carbon nanotube purification process involves nitric acid refluxing and cross flow filtration using surfactant TritonX. This is believed to result in damage to nanotubes and surfactant residue on nanotube surface. Alternative purification procedures involving solvent extraction, thermal zone refining and nitric acid refiuxing are used in the current study. The effect of duration and type of solvent to dissolve impurities including fullerenes and P ACs (polyaromatic compounds) are monitored by nuclear magnetic reasonance, high performance liquid chromatography, and thermogravimetric analysis. Thermal zone refining yielded sample areas rich in nanotubes as seen by scanning electric microscopy. Refluxing in boiling nitric acid seem to improve the nanotube content. Different procedural steps are needed to purify samples produced by laser process compared to arc process. These alternative methods of nanotube purification will be presented along with results from supporting analytical techniques.

  10. Carbon Nanotubes for Supercapacitor

    PubMed Central

    2010-01-01

    As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs) and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage. PMID:20672061

  11. [Determination of the migration of bisphenol diglycidyl ethers from food contact materials by high performance chromatography-tandem mass spectrometry coupled with multi-walled carbon nanotubes solid phase extraction].

    PubMed

    Wu, Xinhua; Ding, Li; Li, Zhonghai; Zhang, Yanli; Liu, Xiaoxia; Wang, Libing

    2010-11-01

    A comprehensive analytical method based on high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed for measuring 6 exogenous endocrine disruptors--bisphenol diglycidyl ethers, including bisphenol A diglycidyl ether (BADGE), bisphenol A glycidyl (2,3-dihydroxypropyl) ether (BADGE x H2O), bisphenol A glycidyl (3-chloro-2-hydroxypropyl) ether ( BADGE x HCl), bisphenol A (3-chloro-2-hydroxypropyl) (2,3-dihydroxypropyl) ether (BADGE x H2O x HCl), bisphenol F diglycidyl ether (BFDGE) and bisphenol F bis (3-chloro-2-hydroxypropyl) ether (BFDGE x 2HCl). The samples were extracted with methyl tert-butyl ether (MTBE) by ultrasonic wave assistant extraction. The extracts were cleaned up and concentrated on multi-walled carbon nanotubes (MWCNTs). The target compounds were analyzed by HPLC-MS/MS under positive ion mode using a COSMOSIL C18 column as analytical column. Under the optimal conditions, the calibration curves showed a good linearity in the concentration range of 1.0-100.0 microg/L for 6 target compounds. The correlation coefficients (r2) were higher than 0.999 1. Recoveries of 6 analytes at three spiked levels ranged from 78.6% to 89.9%, with relative standard deviations (RSDs) less than 10%. The detection limits of the method ranged from 0.5 to 1.5 microg/L. The method is sensitive and simple, and is suitable for the rapid determination of the migration of bisphenol diglycidyl ethers from food contact materials. PMID:21381429

  12. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  13. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2006-12-12

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  14. Horizontal carbon nanotube alignment.

    PubMed

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies. PMID:27546174

  15. Copper-philic carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Belgamwar, Sachin U.; Sharma, Niti Nipun

    2016-04-01

    Carbon nanotube is having poor wet-ability with copper metal. Wet-ability of carbon nanotube was improved by exposing and creating more active sites on the surface of carbon nanotube. Carbon nanotubes were subjected to the prolong ultrasonication treatment of 20×103 Hz and 500W, which helped in disentanglement of carbon nanotube agglomerates and in breaking the weak bonds like pentagonal or heptagonal structure on the surface and on the CNT cap. Disentanglement of the carbon nanotube, resulted in exposing the defective sites on the surface and breaking of weak bonds, which assisted in creating the new defects on the surface. This process results in generates more active sites on the surface and it helps in improving the wet-ability of the carbon nanotube in copper.

  16. Transport Through Carbon Nanotube Wires

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    This viewgraph presentation deals with the use of carbon nanotubes as a transport system. Contact, defects, tubular bend, phonons, and mechanical deformations all contribute to reflection within the nanotube wire. Bragg reflection, however, is native to an ideal energy transport system. Transmission resistance depends primarily on the level of energy present. Finally, the details regarding coupling between carbon nanotubes and simple metals are presented.

  17. Carbon nanotube intramolecular junctions

    NASA Astrophysics Data System (ADS)

    Yao, Zhen; Postma, Henk W. Ch.; Balents, Leon; Dekker, Cees

    1999-11-01

    The ultimate device miniaturization would be to use individual molecules as functional devices. Single-wall carbon nanotubes (SWNTs) are promising candidates for achieving this: depending on their diameter and chirality, they are either one-dimensional metals or semiconductors. Single-electron transistors employing metallic nanotubes and field-effect transistors employing semiconducting nanotubes have been demonstrated. Intramolecular devices have also been proposed which should display a range of other device functions. For example, by introducing a pentagon and a heptagon into the hexagonal carbon lattice, two tube segments with different atomic and electronic structures can be seamlessly fused together to create intramolecular metal-metal, metal-semiconductor, or semiconductor-semiconductor junctions. Here we report electrical transport measurements on SWNTs with intramolecular junctions. We find that a metal-semiconductor junction behaves like a rectifying diode with nonlinear transport characteristics that are strongly asymmetric with respect to bias polarity. In the case of a metal-metal junction, the conductance appears to be strongly suppressed and it displays a power-law dependence on temperatures and applied voltage, consistent with tunnelling between the ends of two Luttinger liquids. Our results emphasize the need to consider screening and electron interactions when designing and modelling molecular devices. Realization of carbon-based molecular electronics will require future efforts in the controlled production of these intramolecular nanotube junctions.

  18. The Toxicology of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Donaldson, Ken; Poland, Craig; Duffin, Rodger; Bonner, James

    2012-06-01

    1. Carbon nanotube structure, synthesis and applications C. Singh and W. Song; 2. The aerodynamic behaviour and pulmonary deposition of carbon nanotubes A. Buckley, R. Smith and R Maynard; 3. Utilising the concept of the biologically effective dose to define the particle and fibre hazards of carbon nanotubes K. Donaldson, R. Duffin, F. Murphy and C. Poland; 4. CNT, biopersistence and the fibre paradigm D. Warheit and M. DeLorme; 5. Length-dependent retention of fibres in the pleural space C. Poland, F. Murphy and K. Donaldson; 6. Experimental carcinogenicity of carbon nanotubes in the context of other fibres K. Unfried; 7. Fate and effects of carbon nanotubes following inhalation J. Ryman-Rasmussen, M. Andersen and J. Bonner; 8. Responses to pulmonary exposure to carbon nanotubes V. Castranova and R. Mercer; 9. Genotoxicity of carbon nanotubes R. Schins, C. Albrecht, K. Gerloff and D. van Berlo; 10. Carbon nanotube-cellular interactions; macrophages, epithelial and mesothelial cells V. Stone, M. Boyles, A. Kermanizadeh, J. Varet and H. Johnston; 11. Systemic health effects of carbon nanotubes following inhalation J. McDonald; 12. Dosimetry and metrology of carbon nanotubes L. Tran, L. MacCalman and R. Aitken; Index.

  19. Carbon Nanotube Purification and Functionalization

    NASA Technical Reports Server (NTRS)

    Lebron, Marisabel; Mintz, Eric; Smalley, Richard E.; Meador, Michael A.

    2003-01-01

    Carbon nanotubes have the potential to significantly enhance the mechanical, thermal, and electrical properties of polymers. However, dispersion of carbon nanotubes in a polymer matrix is hindered by the electrostatic forces that cause them to agglomerate. Chemical modification of the nanotubes is necessary to minimize these electrostatic forces and promote adhesion between the nanotubes and the polymer matrix. In a collaborative research program between Clark Atlanta University, Rice University, and NASA Glenn Research Center several approaches are being explored to chemically modify carbon nanotubes. The results of this research will be presented.

  20. Superhydrophobic amorphous carbon/carbon nanotube nanocomposites

    NASA Astrophysics Data System (ADS)

    Han, Z. J.; Tay, B. K.; Shakerzadeh, M.; Ostrikov, K.

    2009-06-01

    Superhydrophobic amorphous carbon/carbon nanotube nanocomposites are fabricated by plasma immersion ion implantation with carbon nanotube forests as a template. The microstructure of the fabricated nanocomposites shows arrays of carbon nanotubes capped with amorphous carbon nanoparticles. Contact angle measurements show that both advancing and receding angles close to 180° can be achieved on the nanocomposites. The fabrication here does not require patterning of carbon nanotubes or deposition of conformal coatings with low surface energy, which are usually involved in conventional approaches for superhydrophobic surfaces. The relationship between the observed superhydrophobicity and the unique microstructure of the nanocomposites is discussed.

  1. Carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei [Kennewick, WA; Liu, Jun [West Richland, WA

    2002-03-26

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  2. Method of manufacturing carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Benavides, Jeanette M. (Inventor); Leidecker, Henning W. (Inventor); Frazier, Jeffrey (Inventor)

    2004-01-01

    A process for manufacturing carbon nanotubes, including a step of inducing electrical current through a carbon anode and a carbon cathode under conditions effective to produce the carbon nanotubes, wherein the carbon cathode is larger than the carbon anode. Preferably, a welder is used to induce the electrical current via an arc welding process. Preferably, an exhaust hood is placed on the anode, and the process does not require a closed or pressurized chamber. The process provides high-quality, single-walled carbon nanotubes, while eliminating the need for a metal catalyst.

  3. Carbon nanotube network varactor.

    PubMed

    Generalov, A A; Anoshkin, I V; Erdmanis, M; Lioubtchenko, D V; Ovchinnikov, V; Nasibulin, A G; Räisänen, A V

    2015-01-30

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling. PMID:25556375

  4. Carbon nanotube network varactor

    NASA Astrophysics Data System (ADS)

    Generalov, A. A.; Anoshkin, I. V.; Erdmanis, M.; Lioubtchenko, D. V.; Ovchinnikov, V.; Nasibulin, A. G.; Räisänen, A. V.

    2015-01-01

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling.

  5. Carbon nanotube IR detectors (SV)

    SciTech Connect

    Leonard, F. L.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Corporation (LMC) collaborated to (1) evaluate the potential of carbon nanotubes as channels in infrared (IR) photodetectors; (2) assemble and characterize carbon nanotube electronic devices and measure the photocurrent generated when exposed to infrared light;(3) compare the performance of the carbon nanotube devices with that of traditional devices; and (4) develop and numerically implement models of electronic transport and opto-electronic behavior of carbon nanotube infrared detectors. This work established a new paradigm for photodetectors.

  6. Carbon Nanotubes Based Quantum Devices

    NASA Technical Reports Server (NTRS)

    Lu, Jian-Ping

    1999-01-01

    This document represents the final report for the NASA cooperative agreement which studied the application of carbon nanotubes. The accomplishments are reviewed: (1) Wrote a review article on carbon nanotubes and its potentials for applications in nanoscale quantum devices. (2) Extensive studies on the effects of structure deformation on nanotube electronic structure and energy band gaps. (3) Calculated the vibrational spectrum of nanotube rope and the effect of pressure. and (4) Investigate the properties of Li intercalated nanotube ropes and explore their potential for energy storage materials and battery applications. These studies have lead to four publications and seven abstracts in international conferences.

  7. Transport in Carbon Nanotube Junctions

    NASA Astrophysics Data System (ADS)

    Khoo, K. H.; Chelikowsky, James R.

    2008-03-01

    There is growing interest in the use of carbon nanotube thin films as transparent electrical conductors and thin-film transistors owing to their high optical transmittance, low sheet resistivity, and ease of fabrication. [1,2] A major contribution to the sheet resistivity originates at nanotube junctions, as electrical contact is typically poor between adjacent nanotubes. It is thus important to characterize carbon nanotube junctions in order to understand the conduction properties of nanotube thin films. To this end, we have performed ab initio density functional theory calculations to investigate the structural, electronic and transport properties of carbon nanotube junctions as a function of nanotube chirality and contact geometry [1] Z. Wu et al., Science 305, 1273 (2004) [2] E. S. Snow, J. P. Novak, P. M. Campbell, and D. Park, Appl. Phys. Lett. 82, 2145 (2003).

  8. Carbon nanotube core graphitic shell hybrid fibers.

    PubMed

    Hahm, Myung Gwan; Lee, Jae-Hwang; Hart, Amelia H C; Song, Sung Moo; Nam, Jaewook; Jung, Hyun Young; Hashim, Daniel Paul; Li, Bo; Narayanan, Tharangattu N; Park, Chi-Dong; Zhao, Yao; Vajtai, Robert; Kim, Yoong Ahm; Hayashi, Takuya; Ku, Bon-Cheol; Endo, Morinobu; Barrera, Enrique; Jung, Yung Joon; Thomas, Edwin L; Ajayan, Pulickel M

    2013-12-23

    A carbon nanotube yarn core graphitic shell hybrid fiber was fabricated via facile heat treatment of epoxy-based negative photoresist (SU-8) on carbon nanotube yarn. The effective encapsulation of carbon nanotube yarn in carbon fiber and a glassy carbon outer shell determines their physical properties. The higher electrical conductivity (than carbon fiber) of the carbon nanotube yarn overcomes the drawbacks of carbon fiber/glassy carbon, and the better properties (than carbon nanotubes) of the carbon fiber/glassy carbon make up for the lower thermal and mechanical properties of the carbon nanotube yarn via synergistic hybridization without any chemical doping and additional processes. PMID:24224730

  9. Optoelectronics with Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Kinoshita, Megumi

    2011-12-01

    The carbon nanotube is a promising material for future micro- and nano-scale electronics because of its unique electronic properties, high carrier mobility and extraordinary capacity for high current density. In particular, semiconducting carbon nanotubes are direct bandgap materials with a typical energy gap in the order of 1 eV, which means they emit light in the near-infrared range, making them an attractive option in telecommunications applications. However, there have been few systematic investigations of electrically-induced light emission (i.e. electroluminescence) from carbon nanotubes, and their emission properties are not well understood. In this dissertation, we explore the characteristics of electroluminescence in three different types of carbon-nanotube devices. The first is a single-tube field-effect transistor (CNTFET), whose emission has previously been found to have a very broad spectral shape and low emission efficiency. We analyze the spectral shape in detail, which reveals that a high electric field near metal contacts contributes most to the bias-dependent component of broadening, in addition to smaller contributions from tube nonuniformity, inelastic scattering of phonons, high temperature, etc. In the second part of the study, single-tube light-emitting diodes are constructed by employing a split top-gate scheme. The split gate creates p- and n-doped regions electrostatically, so that electrons and holes combine between the two sections and can decay radiatively. This configuration creates electron-hole pairs under much lower electric fields and gives us a greater control over carrier distribution in the device channel, resulting in much narrower spectral linewidths and an emission intensity several orders of magnitude larger than that of CNTFETs. The much better signal-to-noise also leads to the observation of emission from defect-induced states. Finally, we extend the idea of the single-tube p-n diode and fabricate CNT film diodes from many

  10. Thermoelectric power in carbon nanotubes

    SciTech Connect

    Mavrinskiy, A. V. Baitinger, E. M.

    2009-04-15

    The theoretical results for the temperature dependence of the thermoelectric power of graphite and semimetal carbon nanotubes are reported. In the calculations, the cylindrical superatomic range structure of nanotubes is taken into account. The Boltzmann equation and the {pi}-electron model of semimetal carbon nanotubes are used. The basic parameters of the calculation are the concentration of electrons, the Fermi energy, and the energy of the local level associated with the cylindrical structure of carbon nanotubes. The theoretical results are compared with the available experimental data.

  11. CARBON NANOTUBES AS MULTIPOLLUTANT SORBENTS

    EPA Science Inventory

    Exploratory Research Program Project - Carbon nanotubes (CNTs) are formed from graphite (or graphene) sheets rolled into tubes, typically with diameters of 1 - 10 nm and lengths of 200 - 500 nm. Carbon nanotubes have unique electrical properties that have led to interest in thei...

  12. Conduction in Carbon Nanotube Networks

    NASA Astrophysics Data System (ADS)

    Kaiser, A. B.; Rogers, S. A.

    2003-10-01

    Recent measurements of the resistivity of single-wall carbon nanotube (SWNT) networks are consistent with our model of metallic conduction interrupted by barriers. We extend our model of thermopower nonlinearities due to peaks in the density of electronic states and apply it to recent thermopower data for carbon nanotube networks.

  13. Studies of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Caneba, Gerard T.

    2005-01-01

    The fellowship experience for this summer for 2004 pertains to carbon nanotube coatings for various space-related applications. They involve the following projects: (a) EMI protection films from HiPco-polymers, and (b) Thermal protection nanosilica materials. EMI protection films are targeted to be eventually applied onto casings of laptop computers. These coatings are composites of electrically-conductive SWNTs and compatible polymers. The substrate polymer will be polycarbonate, since computer housings are typically made of carbon composites of this type of polymer. A new experimental copolymer was used last year to generate electrically-conductive and thermal films with HiPco at 50/50 wt/wt composition. This will be one of the possible formulations. Reference films will be base polycarbonate and neat HiPco onto polycarbonate films. Other coating materials that will be tried will be based on HiPco composites with commercial enamels (polyurethane, acrylic, polyester), which could be compatible with the polycarbonate substrate. Nanosilica fibers are planned for possible use as thermal protection tiles on the shuttle orbiter. Right now, microscale silica is used. Going to the nanoscale will increase the surface-volume-per-unit-area of radiative heat dissipation. Nanoscale carbon fibers/nanotubes can be used as templates for the generation of nanosilica. A sol-gel operation is employed for this purpose.

  14. Teslaphoresis of Carbon Nanotubes.

    PubMed

    Bornhoeft, Lindsey R; Castillo, Aida C; Smalley, Preston R; Kittrell, Carter; James, Dustin K; Brinson, Bruce E; Rybolt, Thomas R; Johnson, Bruce R; Cherukuri, Tonya K; Cherukuri, Paul

    2016-04-26

    This paper introduces Teslaphoresis, the directed motion and self-assembly of matter by a Tesla coil, and studies this electrokinetic phenomenon using single-walled carbon nanotubes (CNTs). Conventional directed self-assembly of matter using electric fields has been restricted to small scale structures, but with Teslaphoresis, we exceed this limitation by using the Tesla coil's antenna to create a gradient high-voltage force field that projects into free space. CNTs placed within the Teslaphoretic (TEP) field polarize and self-assemble into wires that span from the nanoscale to the macroscale, the longest thus far being 15 cm. We show that the TEP field not only directs the self-assembly of long nanotube wires at remote distances (>30 cm) but can also wirelessly power nanotube-based LED circuits. Furthermore, individualized CNTs self-organize to form long parallel arrays with high fidelity alignment to the TEP field. Thus, Teslaphoresis is effective for directed self-assembly from the bottom-up to the macroscale. PMID:27074626

  15. Carbon Nanotube Interconnect

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2006-01-01

    Method and system for fabricating an electrical interconnect capable of supporting very high current densities ( 10(exp 6)-10(exp 10) Amps/sq cm), using an array of one or more carbon nanotubes (CNTs). The CNT array is grown in a selected spaced apart pattern, preferably with multi-wall CNTs, and a selected insulating material, such as SiOw, or SiuNv is deposited using CVD to encapsulate each CNT in the array. An exposed surface of the insulating material is planarized to provide one or more exposed electrical contacts for one or more CNTs.

  16. Functionalization of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2, or F2, or CnHm) is irradiated to provide a cold plasma of selected target particles, such as atomic H or F, in a first chamber. The target particles are directed toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec.

  17. Functionalization of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H.sub.2 or F.sub.2 or C.sub.nH.sub.m) is irradiated to provide a cold plasma of selected target particles, such as atomic H or F, in a first chamber. The target particles are directed toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec.

  18. Using multi-walled carbon nanotubes as solid phase extraction adsorbents to determine dichlorodiphenyltrichloroethane and its metabolites at trace level in water samples by high performance liquid chromatography with UV detection.

    PubMed

    Zhou, Qingxiang; Xiao, Junping; Wang, Weidong

    2006-09-01

    Carbon nanotubes (CNTs) are a kind of new carbon-based nano-materials which have drawn great attention in many application fields. The potential of multi-walled carbon nanotubes (MWNTs) as solid-phase extraction (SPE) adsorbents for the preconcentration of environmental pollutants has been investigated in recent years. The goal of this work was to investigate the feasibility of MWNTs used as SPE adsorbents to enrich dichlorodiphenyltrichloroethane (DDT) and its metabolites including 1,1-dichloro-2,2-bis-(4'-chlorophenyl)ethane (DDD) and 1,1-dichloro-2,2-bis-(4'-chlorophenyl)ethane (DDE) at trace level which are typical persistent organic pollutants in environment. Parameters that maybe influence the extraction efficiency such as the eluent volume, sample flow rate, sample pH and the sample volume were optimized in detail. The experimental results showed the excellent linear relationship between peak area and the concentration of DDT and its metabolites over the range of 0.2-60 microg L(-1), and the precisions (RSD) were 2.3-2.5% under the optimal conditions. The detection limits of proposed method could reach 4-13 ng L(-1) based on the ratio of chromatographic signal to base line noise (S/N = 3). Satisfied results were achieved when the proposed method was applied to determine the four target compounds in realworld water samples with spiked recoveries over the range of 89.7-115.5%. All these facts indicated that MWCNTs as SPE packing materials coupled to HPLC was an excellent alternative for the routine analysis of DDT and its metabolites at trace level in environment. PMID:16797570

  19. Carbon Nanotubes for Space Applications

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya

    2000-01-01

    The potential of nanotube technology for NASA missions is significant and is properly recognized by NASA management. Ames has done much pioneering research in the last five years on carbon nanotube growth, characterization, atomic force microscopy, sensor development and computational nanotechnology. NASA Johnson Space Center has focused on laser ablation production of nanotubes and composites development. These in-house efforts, along with strategic collaboration with academia and industry, are geared towards meeting the agency's mission requirements. This viewgraph presentation (including an explanation for each slide) outlines the research focus for Ames nanotechnology, including details on carbon nanotubes' properties, applications, and synthesis.

  20. Carbon nanotube array actuators

    NASA Astrophysics Data System (ADS)

    Geier, S.; Mahrholz, T.; Wierach, P.; Sinapius, M.

    2013-09-01

    Experimental investigations of highly vertically aligned carbon nanotubes (CNTs), also known as CNT-arrays, are the main focus of this paper. The free strain as result of an active material behavior is analyzed via a novel experimental setup. Previous test experiences of papers made of randomly oriented CNTs, also called Bucky-papers, reveal comparably low free strain. The anisotropy of aligned CNTs promises better performance. Via synthesis techniques like chemical vapor deposition (CVD) or plasma enhanced CVD (PECVD), highly aligned arrays of multi-walled carbon nanotubes (MWCNTs) are synthesized. Two different types of CNT-arrays are analyzed, morphologically first, and optically tested for their active characteristics afterwards. One type of the analyzed arrays features tube lengths of 750-2000 μm with a large variety of diameters between 20 and 50 nm and a wave-like CNT-shape. The second type features a maximum, almost uniform, length of 12 μm and a constant diameter of 50 nm. Different CNT-lengths and array types are tested due to their active behavior. As result of the presented tests, it is reported that the quality of orientation is the most decisive property for excellent active behavior. Due to their alignment, CNT-arrays feature the opportunity to clarify the actuation mechanism of architectures made of CNTs.

  1. Carbon nanotube based photocathodes

    NASA Astrophysics Data System (ADS)

    Hudanski, Ludovic; Minoux, Eric; Gangloff, Laurent; Teo, Kenneth B. K.; Schnell, Jean-Philippe; Xavier, Stephane; Robertson, John; Milne, William I.; Pribat, Didier; Legagneux, Pierre

    2008-03-01

    This paper describes a novel photocathode which is an array of vertically aligned multi-walled carbon nanotubes (MWCNTs), each MWCNT being associated with one p-i-n photodiode. Unlike conventional photocathodes, the functions of photon-electron conversion and subsequent electron emission are physically separated. Photon-electron conversion is achieved with p-i-n photodiodes and the electron emission occurs from the MWCNTs. The current modulation is highly efficient as it uses an optically controlled reconfiguration of the electric field at the MWCNT locations. Such devices are compatible with high frequency and very large bandwidth operation and could lead to their application in compact, light and efficient microwave amplifiers for satellite telecommunication. To demonstrate this new photocathode concept, we have fabricated the first carbon nanotube based photocathode using silicon p-i-n photodiodes and MWCNT bunches. Using a green laser, this photocathode delivers 0.5 mA with an internal quantum efficiency of 10% and an ION/IOFF ratio of 30.

  2. Carbon Nanotube Biosensors

    NASA Astrophysics Data System (ADS)

    Tilmaciu, Carmen-Mihaela; Morris, May

    2015-10-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  3. Carbon nanotube biosensors

    PubMed Central

    Tîlmaciu, Carmen-Mihaela; Morris, May C.

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers. PMID:26579509

  4. Method for synthesizing carbon nanotubes

    DOEpatents

    Fan, Hongyou

    2012-09-04

    A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

  5. Carbon nanotubes in hyperthermia therapy

    PubMed Central

    Singh, Ravi; Torti, Suzy V.

    2013-01-01

    Thermal tumor ablation therapies are being developed with a variety of nanomaterials, including single-and multiwalled carbon nanotubes. Carbon nanotubes (CNTs) have attracted interest due to their potential for simultaneous imaging and therapy. In this review, we highlight in vivo applications of carbon nanotube-mediated thermal therapy (CNMTT) and examine the rationale for use of this treatment in recurrent tumors or those resistant to conventional cancer therapies. Additionally, we discuss strategies to localize and enhance the cancer selectivity of this treatment and briefly examine issues relating the toxicity and long term fate of CNTs. PMID:23933617

  6. Method for producing carbon nanotubes

    DOEpatents

    Phillips, Jonathan; Perry, William L.; Chen, Chun-Ku

    2006-02-14

    Method for producing carbon nanotubes. Carbon nanotubes were prepared using a low power, atmospheric pressure, microwave-generated plasma torch system. After generating carbon monoxide microwave plasma, a flow of carbon monoxide was directed first through a bed of metal particles/glass beads and then along the outer surface of a ceramic tube located in the plasma. As a flow of argon was introduced into the plasma through the ceramic tube, ropes of entangled carbon nanotubes, attached to the surface of the tube, were produced. Of these, longer ropes formed on the surface portion of the tube located in the center of the plasma. Transmission electron micrographs of individual nanotubes revealed that many were single-walled.

  7. Optimizing the thermoelectric performance of zigzag and chiral carbon nanotubes

    PubMed Central

    2012-01-01

    Using nonequilibrium molecular dynamics simulations and nonequilibrium Green's function method, we investigate the thermoelectric properties of a series of zigzag and chiral carbon nanotubes which exhibit interesting diameter and chirality dependence. Our calculated results indicate that these carbon nanotubes could have higher ZT values at appropriate carrier concentration and operating temperature. Moreover, their thermoelectric performance can be significantly enhanced via isotope substitution, isoelectronic impurities, and hydrogen adsorption. It is thus reasonable to expect that carbon nanotubes may be promising candidates for high-performance thermoelectric materials. PMID:22325623

  8. Cantilevered carbon nanotube hygrometer

    NASA Astrophysics Data System (ADS)

    Kuroyanagi, Toshinori; Terada, Yuki; Takei, Kuniharu; Akita, Seiji; Arie, Takayuki

    2014-05-01

    We investigate the effects of humidity on the vibrations of carbon nanotubes (CNTs) using two types of CNT cantilevers: open-ended and close-ended CNT cantilevers. As the humidity increases, the resonant frequency of the open-ended CNT cantilever decreases due to the adsorption of water molecules onto the CNT tip, whereas that of the close-ended CNT cantilever increases probably due to the change in the viscosity of the air surrounding the CNT cantilever, which is negatively correlated with the humidity of air. Our findings suggest that a close-ended CNT cantilever is more suitable for a quick-response and ultrasensitive hygrometer because it continuously reads the viscosity change of moist air in the vicinity of the CNT.

  9. On carbon nanotube resonators

    NASA Astrophysics Data System (ADS)

    Caruntu, Dumitru I.; Salinas Trevino, Cone S.

    2011-04-01

    This paper deals with electrostatically actuated Carbon NanoTubes (CNT) cantilevers for sensor applications. There are three kinds of forces acting on the CNT cantilever: electrostatic, elastostatic, and van der Waals. The van der Waals forces are significant for values of 50 nm or lower of the gap between the CNT and the ground plate. As both forces, electrostatic and van der Waals, are nonlinear, and the CNT electrostatic actuation is given by AC voltage, the CNT dynamics is nonlinear parametric. The method of multiple scales is used to investigate the system under soft excitations and/or weakly nonlinearities. The frequency-amplitude and frequency-phase behavior are found in the case of primary resonance.

  10. Carbon nanotube biconvex microcavities

    SciTech Connect

    Butt, Haider Ahmed, Rajib; Yetisen, Ali K.; Yun, Seok Hyun; Dai, Qing

    2015-03-23

    Developing highly efficient microcavities with predictive narrow-band resonance frequencies using the least amount of material will allow the applications in nonlinear photonic devices. We have developed a microcavity array that comprised multi-walled carbon nanotubes (MWCNT) organized in a biconvex pattern. The finite element model allowed designing microcavity arrays with predictive transmission properties and assessing the effects of the microarray geometry. The microcavity array demonstrated negative index and produced high Q factors. 2–3 μm tall MWCNTs were patterned as biconvex microcavities, which were separated by 10 μm in an array. The microcavity was iridescent and had optical control over the diffracted elliptical patterns with a far-field pattern, whose properties were predicted by the model. It is anticipated that the MWCNT biconvex microcavities will have implications for the development of highly efficient lenses, metamaterial antennas, and photonic circuits.

  11. Carbon nanotube optical mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Rabin, Douglas

    2015-01-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes (CNT) embedded in an epoxy matrix. CNT/epoxy is a multifunctional composite material that has sensing capabilities and can be made to incorporate self-actuation. Moreover, as the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and three-dimensional printing. Therefore, the technology holds promise for the development of a new generation of lightweight, compact "smart" telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics, active optics experiments, and numerical modeling. We discuss possible paths for future development.

  12. Carbon Nanotube Electron Gun

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2013-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  13. Carbon nanotube electron gun

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2010-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  14. Functionalization of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2009-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or F2 or CnHm) is irradiated to provide a cold plasma of selected target species particles, such as atomic H or F, in a first chamber. The target species particles are d irected toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target species particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. *Discrimination against non-target species is provided by (i) use of a target species having a lifetime that is much greater than a lifetime of a non-target species and/or (2) use of an applied magnetic field to discriminate between charged particle trajectories for target species and for non-target species.

  15. Carbon Nanotubes as Thermionic Emitters

    NASA Astrophysics Data System (ADS)

    Loutfy, R. O.; Samandi, M.; Moravsky, A.; Strange, S.

    2004-02-01

    Thermionic converters are an interesting option for lightweight and long-life power generators due to a number of compelling advantages, including all solid construction, no moving parts, and waste heat rejection at high temperature. An experimental set up has been built that allows the screening of thermionic coatings and new nanomaterials from room temperature to 2000 K in high vacuum and at gap sizes as small as 1 μm. A new class of very high temperature compatible materials, carbon nanotubes, has been investigated for their performance as cathodes. Seven different types of carbon nanotubes have been screened as thermionic emitter cathodes and compared to tungsten and nitrogen doped diamond. It has been found that some carbon nanotubes combine excellent temperature stability with good thermal emission performance. Yet, other carbon nanotubes exhibited exceptional combined thermal and field enhanced emission performance.

  16. Carbon Nanotube-Nanocrystal Heterostructures

    SciTech Connect

    Peng, X.; Wong, S.

    2009-04-01

    The importance of generating carbon nanotube-nanoparticle heterostructures is that these composites ought to take advantage of and combine the unique physical and chemical properties of both carbon nanotubes and nanoparticles in one discrete structure. These materials have potential applicability in a range of diverse fields spanning heterogeneous catalysis to optoelectronic device development, of importance to chemists, physicists, materials scientists, and engineers. In this critical review, we present a host of diverse, complementary strategies for the reliable synthesis of carbon nanotube-nanoparticle heterostructures using both covalent as well as non-covalent protocols, incorporating not only single-walled and multi-walled carbon nanotubes but also diverse classes of metallic and semiconducting nanoparticles.

  17. PECVD Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    McAninch, Ian; Arnold, James O. (Technical Monitor)

    2001-01-01

    Plasma enhanced chemical vapor deposition (PECVD), using inductively coupled plasma, has been used to grow carbon nanotubes (CNTs) and graphitic carbon fibers (GCF) on substrates sputtered with aluminum and iron catalyst. The capacitive plasma's power has been shown to cause a transition from nanotubes to nanofibers, depending on the strength of the plasma. The temperature, placement, and other factors have been shown to affect the height and density of the tube and fiber growth.

  18. Selective functionalization of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor)

    2009-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  19. Nanotechnology with Carbon Nanotubes: Mechanics, Chemistry, and Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak

    2003-01-01

    This viewgraph presentation reviews the Nanotechnology of carbon nanotubes. The contents include: 1) Nanomechanics examples; 2) Experimental validation of nanotubes in composites; 3) Anisotropic plastic collapse; 4) Spatio-temporal scales, yielding single-wall nanotubes; 5) Side-wall functionalization of nanotubes; 6) multi-wall Y junction carbon nanotubes; 7) Molecular electronics with Nanotube junctions; 8) Single-wall carbon nanotube junctions; welding; 9) biomimetic dendritic neurons: Carbon nanotube, nanotube electronics (basics), and nanotube junctions for Devices,

  20. Connecting carbon nanotubes using Sn.

    PubMed

    Mittal, Jagjiwan; Lin, Kwang Lung

    2013-08-01

    Process of Sn coating on mutiwalled carbon nanotubes (MWCNT) and formation of interconnections among nanotubes are studied using high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDX). Surface oxidation of nanotubes during heating with HNO3 prior to the SnCl2 treatment and the bonding between functional groups and Sn are found to be responsible for the coating and its stability. Open nanotubes are filled as well as coated during tin chloride treatment. Coating and filling are converted into the coatings on the inner as well as outer walls of the nanotubes during reduction with H2/N2. EDX studies show the formation of intermetallic compounds e.g., Cu6Sn5 and Cu3Sn at the joints between nanotubes. Formation of intermetallic compounds is supposed to be responsible for providing the required strength for bending and twisting of nanotubes joining of nanotubes. Paper presents a detailed mechanism of coating and filling processes, and interconnections among nanotubes. PMID:23882800

  1. Thermal Spreading in Carbon Nanotube Coating.

    PubMed

    Kim, Duckjong; Shin, Dong-Sig; Yu, Jeonghwan; Kim, Haesik; Kim, Jae-Hyun; Woo, Chang-Su

    2015-11-01

    Carbon nanomaterials, such as carbon nanotubes (CNTs) and graphene, have attracted significant attention as good candidates for next-generation heat-spreading materials because of their high thermal conductivity, mechanical flexibility, etc. Regarding the thermal spreading performance of carbon-based nanofilms, remarkable test results have been reported mainly from the industrial side, but their validity and the physical mechanism underlying the heat transfer enhancement are still under debate. In this study, we assess the thermal spreading performance of a multi-walled CNT film on a copper foil using a non-contact characterization method in a simple and methodical manner, and discuss the possibility of carbon nanofilms as heat spreaders based on the experimental and numerical results. This study provides useful information on heat transfer enhancement by carbon nanofilms and could contribute to the development of high-performance carbon-based heat-spreading coatings. PMID:26726629

  2. Carbon Nanotube Purification

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor); Delzeit, Clement J. (Inventor)

    2005-01-01

    A method for cleaning or otherwise removing amorphous carbon and other residues that arise in growth of a carbon nanotube (CNT) array. The CNT array is exposed to a plurality of hydroxyls or hydrogen, produced from a selected vapor or liquid source such as H2O or H2O2. and the hydroxyls or hydrogen (neutral or electrically charged) react with the residues to produce partly or fully dissolved or hydrogenated or hydroxylizated products that can be removed or separated from the CNT array. The hydroxyls or hydrogen can be produced by heating the CNT array, residue and selected vapor or liquid source or by application of an electromagnetic excitation signal with a selected frequency or range of frequencies to dissociate the selected vapor or liquid. The excitation frequency can be chirped to cover a selected range of frequencies corresponding to dissociation of the selected vapor or liquid. Sonication may be uscd to supplement dissociation of the H2O and/or H2O2.

  3. Carbon Nanotubes for Polymer Photovoltaics

    NASA Astrophysics Data System (ADS)

    Anctil, Annick; Dileo, Roberta; Schauerman, Chris; Landi, Brian; Raffaelle, Ryne

    2007-03-01

    Carbon nanotubes are being investigated for optical absorption, exciton dissociation, and carrier transport in polymer photovoltaic devices. In the present work, single wall carbon nanotubes (SWNTs) were synthesized by an Alexandrite pulsed laser vaporization reactor at standard conditions and purified based upon our previously reported TOP procedure. The SWNTs were dispersed in polymer composites for pure MEH-PPV, pure P3HT, and [C60]-PCBM-P3HT (1:1 by weight) as a function of nanotube weight loading (0.1 -- 5% w/w). The AM0 current-voltage measurements for structures sandwiched between PEDOT/PSS coated ITO substrates and an evaporated aluminum contact demonstrate the dramatic effect of SWNT content on the short circuit current density, with conversions efficiencies consistently greater than 1%. The temperature coefficient for nanotube-containing polymer photovoltaics has been compared to conventional PCBM-P3HT devices, and the general relationship of increasing efficiency with increasing temperature is observed. However, the necessity to control nanotube percolation to prevent device shunting has led to recent developments which focus on controlling nanotube length through oxidative cutting, the deposition of intrinsic polymer layers, and the use of aligned carbon nanotube arrays for preferential charge transport.

  4. Printed Carbon Nanotube Electronics and Sensor Systems.

    PubMed

    Chen, Kevin; Gao, Wei; Emaminejad, Sam; Kiriya, Daisuke; Ota, Hiroki; Nyein, Hnin Yin Yin; Takei, Kuniharu; Javey, Ali

    2016-06-01

    Printing technologies offer large-area, high-throughput production capabilities for electronics and sensors on mechanically flexible substrates that can conformally cover different surfaces. These capabilities enable a wide range of new applications such as low-cost disposable electronics for health monitoring and wearables, extremely large format electronic displays, interactive wallpapers, and sensing arrays. Solution-processed carbon nanotubes have been shown to be a promising candidate for such printing processes, offering stable devices with high performance. Here, recent progress made in printed carbon nanotube electronics is discussed in terms of materials, processing, devices, and applications. Research challenges and opportunities moving forward from processing and system-level integration points of view are also discussed for enabling practical applications. PMID:26880046

  5. Engineering heterojunctions with carbon nanostructures: towards high-performance optoelectronics

    NASA Astrophysics Data System (ADS)

    Wu, Judy Z.

    2015-08-01

    Low-dimensional carbon nanostructures such as nanotubes (CNTs) and graphene have excellent electronic, optoelectronic and mechanical properties, which provide fresh opportunities for designs of optoelectronic devices of extraordinary performance in addition to the benefits of low cost, large abundance, and light weight. This work investigates photodetectors made with CNTs and graphene with a particular focus on carbon-based nanohybrids aiming at a nanoscale control of photon absorption, exciton dissociation and charge transfer. Through several examples including graphene/GaSe-nanosheets, graphene/aligned ZnO nanorods, SWCNT/P3HT, and SWCNT/biomolecule, we show an atomic-scale control on the interfacial heterojunctions is the key to high responsivity and fast photoresponse in these nanohybrids optoelectronic devices.

  6. Occupational Exposure to Carbon Nanotubes and Nanofibers

    MedlinePlus

    ... Current Intelligence Bulletin 65: Occupational Exposure to Carbon Nanotubes and Nanofibers Recommend on Facebook Tweet Share Compartir ... composed of engineered nanoparticles, such as metal oxides, nanotubes, nanowires, quantum dots, and carbon fullerenes (buckyballs), among ...

  7. Probing Photosensitization by Functionalized Carbon Nanotubes

    EPA Science Inventory

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  8. Carbon Nanotube Based Molecular Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1998-01-01

    Carbon nanotubes and the nanotube heterojunctions have recently emerged as excellent candidates for nanoscale molecular electronic device components. Experimental measurements on the conductivity, rectifying behavior and conductivity-chirality correlation have also been made. While quasi-one dimensional simple heterojunctions between nanotubes with different electronic behavior can be generated by introduction of a pair of heptagon-pentagon defects in an otherwise all hexagon graphene sheet. Other complex 3- and 4-point junctions may require other mechanisms. Structural stability as well as local electronic density of states of various nanotube junctions are investigated using a generalized tight-binding molecular dynamics (GDBMD) scheme that incorporates non-orthogonality of the orbitals. The junctions investigated include straight and small angle heterojunctions of various chiralities and diameters; as well as more complex 'T' and 'Y' junctions which do not always obey the usual pentagon-heptagon pair rule. The study of local density of states (LDOS) reveal many interesting features, most prominent among them being the defect-induced states in the gap. The proposed three and four pointjunctions are one of the smallest possible tunnel junctions made entirely of carbon atoms. Furthermore the electronic behavior of the nanotube based device components can be taylored by doping with group III-V elements such as B and N, and BN nanotubes as a wide band gap semiconductor has also been realized in experiments. Structural properties of heteroatomic nanotubes comprising C, B and N will be discussed.

  9. Multiscale Modeling with Carbon Nanotubes

    SciTech Connect

    Maiti, A

    2006-02-21

    Technologically important nanomaterials come in all shapes and sizes. They can range from small molecules to complex composites and mixtures. Depending upon the spatial dimensions of the system and properties under investigation computer modeling of such materials can range from equilibrium and nonequilibrium Quantum Mechanics, to force-field-based Molecular Mechanics and kinetic Monte Carlo, to Mesoscale simulation of evolving morphology, to Finite-Element computation of physical properties. This brief review illustrates some of the above modeling techniques through a number of recent applications with carbon nanotubes: nano electromechanical sensors (NEMS), chemical sensors, metal-nanotube contacts, and polymer-nanotube composites.

  10. Large-Scale Processing of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Finn, John; Sridhar, K. R.; Meyyappan, M.; Arnold, James O. (Technical Monitor)

    1998-01-01

    Scale-up difficulties and high energy costs are two of the more important factors that limit the availability of various types of nanotube carbon. While several approaches are known for producing nanotube carbon, the high-powered reactors typically produce nanotubes at rates measured in only grams per hour and operate at temperatures in excess of 1000 C. These scale-up and energy challenges must be overcome before nanotube carbon can become practical for high-consumption structural and mechanical applications. This presentation examines the issues associated with using various nanotube production methods at larger scales, and discusses research being performed at NASA Ames Research Center on carbon nanotube reactor technology.

  11. Dispersions of Carbon nanotubes in Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor); Lillehei, Peter T. (Inventor); Lowther, Sharon E. (Inventor)

    2010-01-01

    Dispersions of carbon nanotubes exhibiting long term stability are based on a polymer matrix having moieties therein which are capable of a donor-acceptor complexation with carbon nanotubes. The carbon nanotubes are introduced into the polymer matrix and separated therein by standard means. Nanocomposites produced from these dispersions are useful in the fabrication of structures, e.g., lightweight aerospace structures.

  12. Carbon nanotube-polymer composite actuators

    DOEpatents

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  13. Gears Based on Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Han, Jie; Globus, Al; Deardorff, Glenn

    2005-01-01

    Gears based on carbon nanotubes (see figure) have been proposed as components of an emerging generation of molecular- scale machines and sensors. In comparison with previously proposed nanogears based on diamondoid and fullerene molecules, the nanotube-based gears would have simpler structures and are more likely to be realizable by practical fabrication processes. The impetus for the practical development of carbon-nanotube- based gears arises, in part, from rapid recent progress in the fabrication of carbon nanotubes with prescribed diameters, lengths, chiralities, and numbers of concentric shells. The shafts of the proposed gears would be made from multiwalled carbon nanotubes. The gear teeth would be rigid molecules (typically, benzyne molecules), bonded to the nanotube shafts at atomically precise positions. For fabrication, it may be possible to position the molecular teeth by use of scanning tunneling microscopy (STM) or other related techniques. The capability to position individual organic molecules at room temperature by use of an STM tip has already been demonstrated. Routes to the chemical synthesis of carbon-nanotube-based gears are also under investigation. Chemical and physical aspects of the synthesis of molecular scale gears based on carbon nanotubes and related molecules, and dynamical properties of nanotube- based gears, have been investigated by computational simulations using established methods of quantum chemistry and molecular dynamics. Several particularly interesting and useful conclusions have been drawn from the dynamical simulations performed thus far: The forces acting on the gears would be more sensitive to local molecular motions than to gross mechanical motions of the overall gears. Although no breakage of teeth or of chemical bonds is expected at temperatures up to at least 3,000 K, the gears would not work well at temperatures above a critical range from about 600 to about 1,000 K. Gear temperature could probably be controlled by

  14. Photodetector based on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pavlov, A.; Kitsyuk, E.; Ryazanov, R.; Timoshenkov, V.; Adamov, Y.

    2015-09-01

    Photodetector based on carbon nanotubes (CNT) was investigated. Sensors were done on quartz and silicon susbtrate. Samples of photodetectors sensors were produced by planar technology. This technology included deposition of first metal layer (Al), lithography for pads formation, etching, and formation of local catalyst area by inverse lithography. Vertically-aligned multi-wall carbon nanotubes were directly synthesized on substrate by PECVD method. I-V analysis and spectrum sensitivity of photodetector were investigated for 0.4 μm - 1.2 μm wavelength. Resistivity of CNT layers over temperature was detected in the range of -20°C to 100°C.

  15. CMOS Integrated Carbon Nanotube Sensor

    SciTech Connect

    Perez, M. S.; Lerner, B.; Boselli, A.; Lamagna, A.; Obregon, P. D. Pareja; Julian, P. M.; Mandolesi, P. S.; Buffa, F. A.

    2009-05-23

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  16. All carbon nanotubes are not created equal

    SciTech Connect

    Geohegan, David B; Puretzky, Alexander A; Rouleau, Christopher M

    2010-01-01

    This chapter presents the various factors that enter into consideration when choosing the source of carbon nanotubes for a specific application. Carbon nanotubes are giant molecules made of pure carbon. They have captured the imagination of the scientific community by the unique structure that provides superior physical, chemical, and electrical properties. However, a surprisingly wide disparity exists between the intrinsic properties determined under ideal conditions and the properties that carbon nanotubes exhibit in real world situations. The lack of uniformity in carbon nanotube properties is likely to be the main obstacle holding back the development of carbon nanotube applications. This tutorial addresses the nonuniformity of carbon nanotube properties from the synthesis standpoint. This synthesis-related nonuniformity is on top of the intrinsic chirality distribution that gives the ~1:2 ratio of metallic to semiconducting nanotubes. From the standpoint of carbon bonding chemistry the variation in the quality and reproducibility of carbon nanotube materials is not unexpected. It is an intrinsic feature that is related to the metastability of carbon structures. The extent to which this effect is manifested in carbon nanotube formation is governed by the type and the kinetics of the carbon nanotube synthesis reaction. Addressing this variation is critical if nanotubes are to live up to the potential already demonstrated by their phenomenal physical properties.

  17. EDITORIAL: Focus on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    2003-09-01

    The study of carbon nanotubes, since their discovery by Iijima in 1991, has become a full research field with significant contributions from all areas of research in solid-state and molecular physics and also from chemistry. This Focus Issue in New Journal of Physics reflects this active research, and presents articles detailing significant advances in the production of carbon nanotubes, the study of their mechanical and vibrational properties, electronic properties and optical transitions, and electrical and transport properties. Fundamental research, both theoretical and experimental, represents part of this progress. The potential applications of nanotubes will rely on the progress made in understanding their fundamental physics and chemistry, as presented here. We believe this Focus Issue will be an excellent guide for both beginners and experts in the research field of carbon nanotubes. It has been a great pleasure to edit the many excellent contributions from Europe, Japan, and the US, as well from a number of other countries, and to witness the remarkable effort put into the manuscripts by the contributors. We thank all the authors and referees involved in the process. In particular, we would like to express our gratitude to Alexander Bradshaw, who invited us put together this Focus Issue, and to Tim Smith and the New Journal of Physics staff for their extremely efficient handling of the manuscripts. Focus on Carbon Nanotubes Contents Transport theory of carbon nanotube Y junctions R Egger, B Trauzettel, S Chen and F Siano The tubular conical helix of graphitic boron nitride F F Xu, Y Bando and D Golberg Formation pathways for single-wall carbon nanotube multiterminal junctions Inna Ponomareva, Leonid A Chernozatonskii, Antonis N Andriotis and Madhu Menon Synthesis and manipulation of carbon nanotubes J W Seo, E Couteau, P Umek, K Hernadi, P Marcoux, B Lukic, Cs Mikó, M Milas, R Gaál and L Forró Transitional behaviour in the transformation from active end

  18. Synthesis of carbon nanotubes and nanotube forests on copper catalyst

    NASA Astrophysics Data System (ADS)

    Kruszka, Bartosz; Terzyk, Artur P.; Wiśniewski, Marek; Gauden, Piotr A.; Szybowicz, Mirosław

    2014-09-01

    The growth of carbon nanotubes on bulk copper is studied. We show for the first time, that super growth chemical vapor deposition method can be successfully applied for preparation of nanotubes on copper catalyst, and the presence of hydrogen is necessary. Next, different methods of copper surface activation are studied, to improve catalyst efficiency. Among them, applied for the first time for copper catalyst in nanotubes synthesis, sulfuric acid activation is the most promising. Among tested samples the surface modified for 10 min is the most active, causing the growth of vertically aligned carbon nanotube forests. Obtained results have potential importance in application of nanotubes and copper in electronic chips and nanodevices.

  19. Modified carbon nanotubes and methods of forming carbon nanotubes

    DOEpatents

    Heintz, Amy M.; Risser, Steven; Elhard, Joel D.; Moore, Bryon P.; Liu, Tao; Vijayendran, Bhima R.

    2016-06-14

    In this invention, processes which can be used to achieve stable doped carbon nanotubes are disclosed. Preferred CNT structures and morphologies for achieving maximum doping effects are also described. Dopant formulations and methods for achieving doping of a broad distribution of tube types are also described.

  20. Formation of ice nanotube with hydrophobic guests inside carbon nanotube.

    PubMed

    Tanaka, Hideki; Koga, Kenichiro

    2005-09-01

    A composite ice nanotube inside a carbon nanotube has been explored by molecular-dynamics and grand canonical Monte Carlo simulations. It is made from an octagonal ice nanotube whose hollow space contains hydrophobic guest molecules such as neon, argon, and methane. It is shown that the attractive interaction of the guest molecules stabilizes the ice nanotube. The guest occupancy of the hollow space is calculated by the same method as applied to clathrate hydrates. PMID:16164361

  1. Hydrogen storage in carbon nanotubes.

    PubMed

    Hirscher, M; Becher, M

    2003-01-01

    The article gives a comprehensive overview of hydrogen storage in carbon nanostructures, including experimental results and theoretical calculations. Soon after the discovery of carbon nanotubes in 1991, different research groups succeeded in filling carbon nanotubes with some elements, and, therefore, the question arose of filling carbon nanotubes with hydrogen by possibly using new effects such as nano-capillarity. Subsequently, very promising experiments claiming high hydrogen storage capacities in different carbon nanostructures initiated enormous research activity. Hydrogen storage capacities have been reported that exceed the benchmark for automotive application of 6.5 wt% set by the U.S. Department of Energy. However, the experimental data obtained with different methods for various carbon nanostructures show an extreme scatter. Classical calculations based on physisorption of hydrogen molecules could not explain the high storage capacities measured at ambient temperature, and, assuming chemisorption of hydrogen atoms, hydrogen release requires temperatures too high for technical applications. Up to now, only a few calculations and experiments indicate the possibility of an intermediate binding energy. Recently, serious doubt has arisen in relation to several key experiments, causing considerable controversy. Furthermore, high hydrogen storage capacities measured for carbon nanofibers did not survive cross-checking in different laboratories. Therefore, in light of today's knowledge, it is becoming less likely that at moderate pressures around room temperature carbon nanostructures can store the amount of hydrogen required for automotive applications. PMID:12908227

  2. Effect of Carbon Nanotubes on Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Chen, Michelle; Ahmed, Asma; Black, Melanie; Kawamoto, Nicole; Lucas, Jessica; Pagala, Armie; Pham, Tram; Stankiewicz, Sara; Chen, Howard

    2010-03-01

    Carbon Nanotubes possess extraordinary electrical, mechanical, and thermal properties. Research on applying the carbon nanotubes for ultrasensitive detection, disease diagnosis, and drug delivery is rapidly developing. While the fundamental and technological findings on carbon nanotubes show great promise, it is extremely important to investigate the effect of the carbon nanotubes on human health. In our experiments, we introduce purified carbon nanotubes in suspension to ovary cells cultured from Hamsters. These cells are chosen since they show robust morphological changes associated with cytotoxicity that can easily be observed under a light microscope. We will discuss the toxicity of carbon nanotubes by characterizing the cell morphology and viability as a function of time and the concentration of carbon nanotube suspension.

  3. Carbon Nanotube Material Quality Assessment

    NASA Technical Reports Server (NTRS)

    Yowell, Leonard; Arepalli, Sivaram; Sosa, Edward; Niolaev, Pavel; Gorelik, Olga

    2006-01-01

    The nanomaterial activities at NASA Johnson Space Center focus on carbon nanotube production, characterization and their applications for aerospace systems. Single wall carbon nanotubes are produced by arc and laser methods. Characterization of the nanotube material is performed using the NASA JSC protocol developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA. A possible addition of other techniques such as XPS, and ICP to the existing protocol will be discussed. Changes in the quality of the material collected in different regions of the arc and laser production chambers is assessed using the original JSC protocol. The observed variations indicate different growth conditions in different regions of the production chambers.

  4. Plasma CVD of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Cruden, B.; Hash, D.; Meyyappan, M.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Carbon nanotubes(CNT) exhibit remarkable mechanical and unique electronic properties and thus have created excitement in the research community about their potential in electronics, computing, sensor and structural applications. Realization of these applications critically depends on the ability to control the properties(such as diameter, chirality) as well purity. We have investigated CNT growth using an inductively coupled plasma(ICP) process using hydrocarbon feedstock. The catalyst required for nanotube growth consists of thin sputtered layers of aluminum and iron(10 nm each) and aligned carbon nanotubes have been obtained. Optical emission diagnostics as well as a plasma modeling effort have been undertaken to understand growth mechanisms. This presentation will discuss growth characteristics under various pressure, power and feedgas compositions and our understanding from modeling and diagnostics.

  5. Conductance Oscillations in Squashed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Mehrez, H.; Anantram, M. P.; Svizhenko, A.

    2003-01-01

    A combination of molecular dynamics and electrical conductance calculations are used to probe the electromechanical properties of squashed metallic carbon nanotubes. We find that the conductance and bandgap of armchair nanotubes show oscillations upon squashing. The physical origin of these oscillations is attributed to interaction of carbon atoms with a fourth neighbor. Squashing of armchair and zigzag nanotubes ultimately leads to metallic behavior.

  6. Supported lipid bilayer/carbon nanotube hybrids

    NASA Astrophysics Data System (ADS)

    Zhou, Xinjian; Moran-Mirabal, Jose M.; Craighead, Harold G.; McEuen, Paul L.

    2007-03-01

    Carbon nanotube transistors combine molecular-scale dimensions with excellent electronic properties, offering unique opportunities for chemical and biological sensing. Here, we form supported lipid bilayers over single-walled carbon nanotube transistors. We first study the physical properties of the nanotube/supported lipid bilayer structure using fluorescence techniques. Whereas lipid molecules can diffuse freely across the nanotube, a membrane-bound protein (tetanus toxin) sees the nanotube as a barrier. Moreover, the size of the barrier depends on the diameter of the nanotube-with larger nanotubes presenting bigger obstacles to diffusion. We then demonstrate detection of protein binding (streptavidin) to the supported lipid bilayer using the nanotube transistor as a charge sensor. This system can be used as a platform to examine the interactions of single molecules with carbon nanotubes and has many potential applications for the study of molecular recognition and other biological processes occurring at cell membranes.

  7. Redox sorting of carbon nanotubes.

    PubMed

    Gui, Hui; Streit, Jason K; Fagan, Jeffrey A; Hight Walker, Angela R; Zhou, Chongwu; Zheng, Ming

    2015-03-11

    This work expands the redox chemistry of single-wall carbon nanotubes (SWCNTs) by investigating its role in a number of SWCNT sorting processes. Using a polyethylene glycol (PEG)/dextran (DX) aqueous two-phase system, we show that electron-transfer between redox molecules and SWCNTs triggers reorganization of the surfactant coating layer, leading to strong modulation of nanotube partition in the two phases. While the DX phase is thermodynamically more favored by an oxidized SWCNT mixture, the mildly reducing PEG phase is able to recover SWCNTs from oxidation and extract them successively from the DX phase. Remarkably, the extraction order follows SWCNT bandgap: semiconducting nanotubes of larger bandgap first, followed by semiconducting nanotubes of smaller bandgap, then nonarmchair metallic tubes of small but nonvanishing bandgap, and finally armchair metallic nanotubes of zero bandgap. Furthermore, we show that redox-induced surfactant reorganization is a common phenomenon, affecting nanotube buoyancy in a density gradient field, affinity to polymer matrices, and solubility in organic solvents. These findings establish redox modulation of surfactant coating structures as a general mechanism for tuning a diverse range of SWCNT sorting processes and demonstrate for the first time that armchair and nonarmchair metallic SWCNTs can be separated by their differential response to redox. PMID:25719939

  8. Conductance of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Datta, Supriyo; Anatram, M. P.

    1998-01-01

    The recent report of quantized conductance in a 4 m long multiwalled nanotube (MWNT) raises the exciting possibility of ballistic transport at room temperature over relatively long distances. We argue that this is made possible by the special symmetry of the eigenstates of the lowest propagating modes in metallic nanotubes which suppresses backscattering. This unusual effect is absent for the higher propagating modes so that transport is not ballistic once the bias exceeds the cut-off energy for the higher modes, which is estimated to be approximately 75 meV for nanotubes of diameter approximately 15 nm. Also, we show that the symmetry of the eigenstates can significantly affect their coupling to the reservoir and hence the contact resistance. A simple model is presented that can be used to understand the observed conductance-voltage characteristics.

  9. Thermoelectrics: Carbon nanotubes get high

    NASA Astrophysics Data System (ADS)

    Crispin, Xavier

    2016-04-01

    Waste heat can be converted to electricity by thermoelectric generators, but their development is hindered by the lack of cheap materials with good thermoelectric properties. Now, carbon-nanotube-based materials are shown to have improved properties when purified to contain only semiconducting species and then doped.

  10. Terahertz detection and carbon nanotubes

    ScienceCinema

    Leonard, Francois

    2014-06-13

    Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

  11. Terahertz detection and carbon nanotubes

    SciTech Connect

    Leonard, Francois

    2014-06-11

    Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

  12. Carbon Nanotubes and Human Cells?

    ERIC Educational Resources Information Center

    King, G. Angela

    2005-01-01

    Single-walled carbon nanotubes that were chemically altered to be water soluble are shown to enter fibroblasts, T cells, and HL60 cells. Nanoparticles adversely affect immortalized HaCaT human keratinocyte cultures, indicating that they may enter cells.

  13. Nitrated carbon nanoblisters for high-performance glucose dehydrogenase bioanodes.

    PubMed

    de Souza, João C P; Iost, Rodrigo M; Crespilho, Frank N

    2016-03-15

    Recently, many strategies are being explored for efficiently wiring glucose dehydrogenase (GDh) enzymes capable of glucose (fuel) oxidation. For instance, the use of GDh NAD(+)-dependent for glucose oxidation is of great interest in biofuel cell technology because the enzyme are unaffected by the presence of molecular oxygen commonly present in electrolyte. Here we present the fabrication of flexible carbon fibers modified with nitrated carbon nanoblisters and their application as high-performance GDh bioanodes. These bioelectrodes could electro-oxidize glucose at -360 mV (vs. Ag/AgClsat) in the presence of a molecular oxygen saturated electrolyte with current densities higher than 1.0 mAcm(-2) at 0.0 V. It is corroborated by open circuit potential, where a potential stabilization occurs at -150 mV in a long term stability current-transient experiment. This value is in agreement with the quasi-steady current obtained at very low scan rate (0.1 mVs(-1)), where the onset potential for glucose oxidation is -180 mV. X-ray photoelectron spectroscopy and scanning electron microscopy revealed that the nitrated blisters and edge-like carbon structures, enabling highly efficient enzyme immobilization and low overpotential for electron transfer, allowing for glucose oxidation with potential values close to the thermodynamic cofactor. PMID:26516686

  14. Carbon nanotubes by the metallocene route

    NASA Astrophysics Data System (ADS)

    Sen, Rahul; Govindaraj, A.; Rao, C. N. R.

    1997-03-01

    Pyrolysis of metallocenes such as ferrocene, cobaltocene and nickelocene, is shown to yield carbon nanotubes and metal-filled onion-like structures. Pyrolysis of benzene in the presence of a metallocene gives high yields of nanotubes, the wall thickness of the nanotubes depending on the metallocene content. Pyrolysis of benzene in the absence of any metal however gives monodispersed nanospheres of carbon rather than nanotubes.

  15. Endohedral impurities in carbon nanotubes.

    PubMed

    Clougherty, Dennis P

    2003-01-24

    A generalization of the Anderson model that includes pseudo-Jahn-Teller impurity coupling is proposed to describe distortions of an endohedral impurity in a carbon nanotube. Within mean-field theory, spontaneous axial symmetry breaking is found when the vibronic coupling strength g exceeds a critical value. The effective potential is found to have O(2) symmetry, in agreement with numerical calculations. For metallic zigzag nanotubes endohedrally doped with transition metals in the dilute limit, the low-energy properties of the system may display two-channel Kondo behavior; however, strong vibronic coupling is seen to exponentially suppress the Kondo energy scale. PMID:12570507

  16. Endohedral Impurities in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis P.

    2003-01-01

    A generalization of the Anderson model that includes pseudo-Jahn-Teller impurity coupling is proposed to describe distortions of an endohedral impurity in a carbon nanotube. Within mean-field theory, spontaneous axial symmetry breaking is found when the vibronic coupling strength g exceeds a critical value. The effective potential is found to have O(2) symmetry, in agreement with numerical calculations. For metallic zigzag nanotubes endohedrally doped with transition metals in the dilute limit, the low-energy properties of the system may display two-channel Kondo behavior; however, strong vibronic coupling is seen to exponentially suppress the Kondo energy scale.

  17. Carbon-Nanotube Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Wong, Eric; Schlecht, Erich; Hunt, Brian; Siegel, Peter

    2006-01-01

    Schottky diodes based on semiconducting single-walled carbon nanotubes are being developed as essential components of the next generation of submillimeter-wave sensors and sources. Initial performance predictions have shown that the performance characteristics of these devices can exceed those of the state-of-the-art solid-state Schottky diodes that have been the components of choice for room-temperature submillimeter-wave sensors for more than 50 years. For state-of-the-art Schottky diodes used as detectors at frequencies above a few hundred gigahertz, the inherent parasitic capacitances associated with their semiconductor junction areas and the resistances associated with low electron mobilities limit achievable sensitivity. The performance of such a detector falls off approximately exponentially with frequency above 500 GHz. Moreover, when used as frequency multipliers for generating signals, state-of-the-art solid-state Schottky diodes exhibit extremely low efficiencies, generally putting out only micro-watts of power at frequencies up to 1.5 THz. The shortcomings of the state-of-the-art solid-state Schottky diodes can be overcome by exploiting the unique electronic properties of semiconducting carbon nanotubes. A single-walled carbon nanotube can be metallic or semiconducting, depending on its chirality, and exhibits high electron mobility (recently reported to be approx.= 2x10(exp 5)sq cm/V-s) and low parasitic capacitance. Because of the narrowness of nanotubes, Schottky diodes based on carbon nanotubes have ultra-small junction areas (of the order of a few square nanometers) and consequent junction capacitances of the order of 10(exp -18) F, which translates to cutoff frequency >5 THz. Because the turn-on power levels of these devices are very low (of the order of nano-watts), the input power levels needed for pumping local oscillators containing these devices should be lower than those needed for local oscillators containing state-of-the-art solid

  18. Quantum transport in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.; Grove-Rasmussen, Kasper; Nygârd, Jesper; Flensberg, Karsten; Kouwenhoven, Leo P.

    2015-07-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike in conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and valley freedom. The interplay between the two is the focus of this review. The energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are explained, together with their consequences for transport measurements through nanotube quantum dots. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli blockade. This can be exploited to read out spin and valley qubits and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly modifies their transport behavior. Interaction between electrons inside and outside a quantum dot is manifested in SU(4) Kondo behavior and level renormalization. Interaction within a dot leads to Wigner molecules and more complex correlated states. This review takes an experimental perspective informed by recent advances in theory. As well as the well-understood overall picture, open questions for the field are also clearly stated. These advances position nanotubes as a leading system for the study of spin and valley physics in one dimension where electronic disorder and hyperfine interaction can both be reduced to a low level.

  19. Roping and wrapping carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ausman, Kevin D.; O'Connell, Michael J.; Boul, Peter; Ericson, Lars M.; Casavant, Michael J.; Walters, Deron A.; Huffman, Chad; Saini, Rajesh; Wang, Yuhuang; Haroz, Erik; Billups, Edward W.; Smalley, Richard E.

    2001-11-01

    Single-walled carbon nanotubes can be dispersed into solvents by ultrasonication to the point that primarily individual tubes, cut to a few hundred nanometers in length, are present. However, when such dispersions are filtered to a thick mat, or paper, only tangles of uniform, seemingly endless ropes are observed. The factors contributing to this "roping" phenomenon, akin to aggregation or crystallization, will be discussed. We have developed methods for generating "super-ropes" more than twenty times the diameter of those formed by filtration, involving the extraction of nanotube material from an oleum dispersion. Nanotubes have been solubilized in water, largely individually, by non-covalently wrapping them with linear polymers. The general thermodynamic drive for this wrapping involves the polymer disrupting both the hydrophobic interface with water and the smooth tube-tube interaction in aggregates. The nanotubes can be recovered from their polymeric wrapping by changing their solvent system. This solubilization process opens the door to solution chemistry on pristine nanotubes, as well as their introduction into biologically relevant systems.

  20. Carbon nanotube coatings as chemical absorbers

    DOEpatents

    Tillotson, Thomas M.; Andresen, Brian D.; Alcaraz, Armando

    2004-06-15

    Airborne or aqueous organic compound collection using carbon nanotubes. Exposure of carbon nanotube-coated disks to controlled atmospheres of chemical warefare (CW)-related compounds provide superior extraction and retention efficiencies compared to commercially available airborne organic compound collectors. For example, the carbon nanotube-coated collectors were four (4) times more efficient toward concentrating dimethylmethyl-phosphonate (DMMP), a CW surrogate, than Carboxen, the optimized carbonized polymer for CW-related vapor collections. In addition to DMMP, the carbon nanotube-coated material possesses high collection efficiencies for the CW-related compounds diisopropylaminoethanol (DIEA), and diisopropylmethylphosphonate (DIMP).

  1. Twisting Graphene into Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Kit, Oleg O.; Tallinen, Tuomas; Mahadevan, L.; Timonen, Jussi; Koskinen, Pekka

    2012-02-01

    Carbon nanotubes are usually described as being rolled up from graphene sheets; this process, however, have never been realized experimentally. We showed that graphene can indeed be transformed into nanotube by twisting [1]. Further, we showed that tube formation can be well-explained within classical theory of elasticity---in fact the very mechanism of tube formation can be observed by twisting a strap from one's backpack (try now!). Furthermore, we showed that nanotube chirality may not only be predicted, but can also be controlled externally. The quantum molecular dynamic simulations at T=300K were achieved thanks to the revised periodic boundary conditions (RPBC) approach [2-3]. The structures similar to simulated have been recently observed experimentally [4]. This novel rote for nanotube formation opens new opportunities in nanomaterial manipulation not restricted to carbon alone. In the presentation, I will describe tube formation, as well as outline the easy and efficient technique for distorted nanostructures simulation, the RPBC approach. [4pt] [1] O. O. Kit et al. arXiv:1108.0048[0pt] [2] P. Koskinen & O. O. Kit PRL 105, 106401 (2010)[0pt] [3] O. O. Kit, L. Pastewka, P. Koskinen PRB 84, 155431 (2011)[0pt] [4] A. Chuvilin et al. Nature Materials 10, 687 (2011)

  2. Synthesis, assembly, and applications of single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Ryu, Koungmin

    This dissertation presents the synthesis and assembly of aligned carbon nanotubes, and their applications in both nano-electronics such as transistor and integrated circuits and macro-electronics in energy conversion devices as transparent conducting electrodes. Also, the high performance chemical sensor using metal oxide nanowire has been demonstrated. Chapter 1 presents a brief introduction of carbon nanotube, followed by discussion of a new synthesis technique using nanosphere lithography to grow highly aligned single-walled carbon nanotubes atop quartz and sapphire substrates. This method offers great potential to produce carbon nanotube arrays with simultaneous control over the nanotube orientation, position, density, diameter and even chirality. Chapter 3 introduces the wafer-scale integration and assembly of aligned carbon nanotubes, including full-wafer scale synthesis and transfer of massively aligned carbon nanotube arrays, and nanotube device fabrication on 4 inch Si/SiO2 wafer to yield submicron channel transistors with high on-current density ˜ 20 muA/mum and good on/off ratio and CMOS integrated circuits. In addition, various chemical doping methods for n-type nanotube transistors are studied to fabricate CMOS integrated nanotube circuits such as inverter, NAND and NOR logic devices. Furthermore, defect-tolerant circuit design for NAND and NOR is proposed and demonstrated to guarantee the correct operation of logic circuit, regardless of the presence of mis-aligned or mis-positioned nanotubes. Carbon nanotube flexible electronics and smart textiles for ubiquitous computing and sensing are demonstrated in chapter 4. A facile transfer printing technique has been introduced to transfer massively aligned single-walled carbon nanotubes from the original sapphire/quartz substrates to virtually any other substrates, including glass, silicon, polymer sheets, and even fabrics. The characterization of transferred nanotubes reveals that the transferred

  3. Carbon Nanotubes - Polymer Composites with Enhanced Conductivity using Functionalized Nanotubes

    NASA Astrophysics Data System (ADS)

    Ramasubramaniam, Rajagopal; Chen, Jian; Gupta, Rishi

    2003-03-01

    Individual carbon nanotubes show superior electrical, mechanical and thermal properties [1]. Composite materials using carbon nanotubes as fillers are predicted to show similar superior properties. However, realization of such composites has been plagued by poor dispersion of carbon nanotubes in solvents and in polymer matrices. We have developed a method to homogenously disperse carbon nanotubes in polymer matrices using functionalized nanotubes [2]. Thin films of functionalized single walled nanotubes (SWNT) - polystyrene composites and functionalized SWNT - polycarbonate composites were prepared using solution evaporation and spin coating. Both of the composites show several orders of magnitude increase in conductivity for less than 1 wt thresholds of the composites are less than 0.2 wt nanotubes. We attribute the enhanced conduction to the superior dispersion of the functionalized nanotubes in the polymer matrix and to the reduced nanotube waviness resulting from the rigid backbone of the conjugated polymer. References: [1]. R. H. Baughman, A. A. Zakhidov and W. A. de Heer, Science v297, p787 (2002); [2]. J. Chen, H. Liu, W. A. Weimer, M. D. Halls, D. H. Waldeck and G. C. Walker, J. Am. Chem. Soc. v124, p9034 (2002).

  4. High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Fan, Li-Zhen; Chen, Tian-Tian; Song, Wei-Li; Li, Xiaogang; Zhang, Shichao

    2015-10-01

    Supercapacitors fabricated by 3D porous carbon frameworks, such as graphene- and carbon nanotube (CNT)-based aerogels, have been highly attractive due to their various advantages. However, their high cost along with insufficient yield has inhibited their large-scale applications. Here we have demonstrated a facile and easily scalable approach for large-scale preparing novel 3D nitrogen-containing porous carbon frameworks using ultralow-cost commercial cotton. Electrochemical performance suggests that the optimal nitrogen-containing cotton-derived carbon frameworks with a high nitrogen content (12.1 mol%) along with low surface area 285 m2 g-1 present high specific capacities of the 308 and 200 F g-1 in KOH electrolyte at current densities of 0.1 and 10 A g-1, respectively, with very limited capacitance loss upon 10,000 cycles in both aqueous and gel electrolytes. Moreover, the electrode exhibits the highest capacitance up to 220 F g-1 at 0.1 A g-1 and excellent flexibility (with negligible capacitance loss under different bending angles) in the polyvinyl alcohol/KOH gel electrolyte. The observed excellent performance competes well with that found in the electrodes of similar 3D frameworks formed by graphene or CNTs. Therefore, the ultralow-cost and simply strategy here demonstrates great potential for scalable producing high-performance carbon-based supercapacitors in the industry.

  5. High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors.

    PubMed

    Fan, Li-Zhen; Chen, Tian-Tian; Song, Wei-Li; Li, Xiaogang; Zhang, Shichao

    2015-01-01

    Supercapacitors fabricated by 3D porous carbon frameworks, such as graphene- and carbon nanotube (CNT)-based aerogels, have been highly attractive due to their various advantages. However, their high cost along with insufficient yield has inhibited their large-scale applications. Here we have demonstrated a facile and easily scalable approach for large-scale preparing novel 3D nitrogen-containing porous carbon frameworks using ultralow-cost commercial cotton. Electrochemical performance suggests that the optimal nitrogen-containing cotton-derived carbon frameworks with a high nitrogen content (12.1 mol%) along with low surface area 285 m(2) g(-1) present high specific capacities of the 308 and 200 F g(-1) in KOH electrolyte at current densities of 0.1 and 10 A g(-1), respectively, with very limited capacitance loss upon 10,000 cycles in both aqueous and gel electrolytes. Moreover, the electrode exhibits the highest capacitance up to 220 F g(-1) at 0.1 A g(-1) and excellent flexibility (with negligible capacitance loss under different bending angles) in the polyvinyl alcohol/KOH gel electrolyte. The observed excellent performance competes well with that found in the electrodes of similar 3D frameworks formed by graphene or CNTs. Therefore, the ultralow-cost and simply strategy here demonstrates great potential for scalable producing high-performance carbon-based supercapacitors in the industry. PMID:26472144

  6. High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors

    PubMed Central

    Fan, Li-Zhen; Chen, Tian-Tian; Song, Wei-Li; Li, Xiaogang; Zhang, Shichao

    2015-01-01

    Supercapacitors fabricated by 3D porous carbon frameworks, such as graphene- and carbon nanotube (CNT)-based aerogels, have been highly attractive due to their various advantages. However, their high cost along with insufficient yield has inhibited their large-scale applications. Here we have demonstrated a facile and easily scalable approach for large-scale preparing novel 3D nitrogen-containing porous carbon frameworks using ultralow-cost commercial cotton. Electrochemical performance suggests that the optimal nitrogen-containing cotton-derived carbon frameworks with a high nitrogen content (12.1 mol%) along with low surface area 285 m2 g−1 present high specific capacities of the 308 and 200 F g−1 in KOH electrolyte at current densities of 0.1 and 10 A g−1, respectively, with very limited capacitance loss upon 10,000 cycles in both aqueous and gel electrolytes. Moreover, the electrode exhibits the highest capacitance up to 220 F g−1 at 0.1 A g−1 and excellent flexibility (with negligible capacitance loss under different bending angles) in the polyvinyl alcohol/KOH gel electrolyte. The observed excellent performance competes well with that found in the electrodes of similar 3D frameworks formed by graphene or CNTs. Therefore, the ultralow-cost and simply strategy here demonstrates great potential for scalable producing high-performance carbon-based supercapacitors in the industry. PMID:26472144

  7. Carbon nanotube devices: Sorting, Assembling, Characterizing

    NASA Astrophysics Data System (ADS)

    Krupke, Ralph

    2009-03-01

    Carbon nanotubes have been studied extensively over the last decade. Various exceptional properties have been revealed which still drive the vision about using carbon nanotube in future electronics, for instance as molecular nanoscale transistors or electromigration resistant interconnects. For many years a major obstacle was the inability to grow nanotubes with defined dimensions (length, diameter) and electronic properties (metallic,semiconducting). Recently those problems have been solved to a large extent by advanced sorting techniques. Today the challenge is to assemble nanotubes devices with defined properties to form a complex circuitry. As progress is made in making highly-integrated nanotube device arrays new characterization techniques have to be developed which allow testing large number of devices within an acceptable time. Along this line I will report on the state-of-the-art of sorting of carbon nanotube, as a base for nanotube device fabrication [1]. I will then explain our strategy to assemble high-density arrays of nanotube devices [2] and discuss a new characterization technique for nanotube devices [3]. Finally I will introduce a novel device engineering tool [4]. [4pt] [1] R. Krupke et al., ``Separation techniques for carbon nanotubes'' in Chemistry of Carbon Nanotubes, p.129-139, American Scientific Publishers 2008[0pt] [2] A. Vijayaraghavan et al., ``Ultra-Large-Scale Directed Assembly of Single-Walled Carbon Nanotube Devices'', Nano Lett. 7 (2007) 1556-1560[0pt] [3] A. Vijayaraghavan et al., ``Imaging Electronic Structure of Carbon Nanotubes by Voltage-Contrast Scanning Electron Microscopy'', Nano Resarch 1 (2008) 321-332[0pt] [4] C. W. Marquardt et al., ``Reversible metal-insulator transitions in metallic single-walled carbon nanotubes'', Nano Lett. 9 (2008) 2767-2772

  8. Method of making carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2014-05-20

    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  9. Multilayer Film Assembly of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Meyyappan, M.; Han, Jie; Arnold, J. (Technical Monitor)

    2000-01-01

    An approach to assemble multilayers of carbon nanotubes on a substrate is presented. Chemical vapor deposition using a transition metal catalyst formulation is used to grow the nanotubes. Results show a bilayer assembly of nanotubes each with a different density of tubes.

  10. Carbon Nanotubes: Molecular Electronic Components

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1997-01-01

    The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale molecular electronic networks. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal graphene sheet, more complex joints require other mechanisms. In this work we explore structural characteristics of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme. The study of pi-electron local densities of states (LDOS) of these junctions reveal many interesting features, most prominent among them being the defect-induced states in the gap.