Science.gov

Sample records for high-performance storage system

  1. Management issues for high performance storage systems

    SciTech Connect

    Louis, S.; Burris, R.

    1995-03-01

    Managing distributed high-performance storage systems is complex and, although sharing common ground with traditional network and systems management, presents unique storage-related issues. Integration technologies and frameworks exist to help manage distributed network and system environments. Industry-driven consortia provide open forums where vendors and users cooperate to leverage solutions. But these new approaches to open management fall short addressing the needs of scalable, distributed storage. We discuss the motivation and requirements for storage system management (SSM) capabilities and describe how SSM manages distributed servers and storage resource objects in the High Performance Storage System (HPSS), a new storage facility for data-intensive applications and large-scale computing. Modem storage systems, such as HPSS, require many SSM capabilities, including server and resource configuration control, performance monitoring, quality of service, flexible policies, file migration, file repacking, accounting, and quotas. We present results of initial HPSS SSM development including design decisions and implementation trade-offs. We conclude with plans for follow-on work and provide storage-related recommendations for vendors and standards groups seeking enterprise-wide management solutions.

  2. The high performance storage system (HPSS)

    SciTech Connect

    Kliewer, K.L.

    1995-12-31

    Ever more powerful computers and rapidly enlarging data sets require unprecedented levels of data storage and access capabilities. To help meet these requirements, the scalable, network-centered, parallel storage system HPSS was designed and is now being developed. The parallel 1/0 architecture, mechanisms, strategies and capabilities are described. The current development status and the broad applicability are illustrated through a discussion of the sites at which HPSS is now being implemented, representing a spectrum of computing environments. Planned capabilities and time scales will be provided. Some of the remarkable developments in storage media data density looming on the horizon will also be noted.

  3. Class of service in the high performance storage system

    SciTech Connect

    Louis, S.; Teaff, D.

    1995-01-10

    Quality of service capabilities are commonly deployed in archival mass storage systems as one or more client-specified parameters to influence physical location of data in multi-level device hierarchies for performance or cost reasons. The capabilities of new high-performance storage architectures and the needs of data-intensive applications require better quality of service models for modern storage systems. HPSS, a new distributed, high-performance, scalable, storage system, uses a Class of Service (COS) structure to influence system behavior. The authors summarize the design objectives and functionality of HPSS and describes how COS defines a set of performance, media, and residency attributes assigned to storage objects managed by HPSS servers. COS definitions are used to provide appropriate behavior and service levels as requested (or demanded) by storage system clients. They compare the HPSS COS approach with other quality of service concepts and discuss alignment possibilities.

  4. The architecture of the High Performance Storage System (HPSS)

    NASA Technical Reports Server (NTRS)

    Teaff, Danny; Watson, Dick; Coyne, Bob

    1994-01-01

    The rapid growth in the size of datasets has caused a serious imbalance in I/O and storage system performance and functionality relative to application requirements and the capabilities of other system components. The High Performance Storage System (HPSS) is a scalable, next-generation storage system that will meet the functionality and performance requirements or large-scale scientific and commercial computing environments. Our goal is to improve the performance and capacity of storage by two orders of magnitude or more over what is available in the general or mass marketplace today. We are also providing corresponding improvements in architecture and functionality. This paper describes the architecture and functionality of HPSS.

  5. Building and managing high performance, scalable, commodity mass storage systems

    NASA Technical Reports Server (NTRS)

    Lekashman, John

    1998-01-01

    The NAS Systems Division has recently embarked on a significant new way of handling the mass storage problem. One of the basic goals of this new development are to build systems at very large capacity and high performance, yet have the advantages of commodity products. The central design philosophy is to build storage systems the way the Internet was built. Competitive, survivable, expandable, and wide open. The thrust of this paper is to describe the motivation for this effort, what we mean by commodity mass storage, what the implications are for a facility that performs such an action, and where we think it will lead.

  6. High-performance mass storage system for workstations

    NASA Technical Reports Server (NTRS)

    Chiang, T.; Tang, Y.; Gupta, L.; Cooperman, S.

    1993-01-01

    Reduced Instruction Set Computer (RISC) workstations and Personnel Computers (PC) are very popular tools for office automation, command and control, scientific analysis, database management, and many other applications. However, when using Input/Output (I/O) intensive applications, the RISC workstations and PC's are often overburdened with the tasks of collecting, staging, storing, and distributing data. Also, by using standard high-performance peripherals and storage devices, the I/O function can still be a common bottleneck process. Therefore, the high-performance mass storage system, developed by Loral AeroSys' Independent Research and Development (IR&D) engineers, can offload a RISC workstation of I/O related functions and provide high-performance I/O functions and external interfaces. The high-performance mass storage system has the capabilities to ingest high-speed real-time data, perform signal or image processing, and stage, archive, and distribute the data. This mass storage system uses a hierarchical storage structure, thus reducing the total data storage cost, while maintaining high-I/O performance. The high-performance mass storage system is a network of low-cost parallel processors and storage devices. The nodes in the network have special I/O functions such as: SCSI controller, Ethernet controller, gateway controller, RS232 controller, IEEE488 controller, and digital/analog converter. The nodes are interconnected through high-speed direct memory access links to form a network. The topology of the network is easily reconfigurable to maximize system throughput for various applications. This high-performance mass storage system takes advantage of a 'busless' architecture for maximum expandability. The mass storage system consists of magnetic disks, a WORM optical disk jukebox, and an 8mm helical scan tape to form a hierarchical storage structure. Commonly used files are kept in the magnetic disk for fast retrieval. The optical disks are used as archive

  7. Using distributed OLTP technology in a high performance storage system

    SciTech Connect

    Tyler, T.W.; Fisher, D.S.

    1995-03-01

    The design of scaleable mass storage systems requires various system components to be distributed across multiple processors. Most of these processes maintain persistent database-type information (i.e., metadata) on the resources they are responsible for managing (e.g., bitfiles, bitfile segments, physical volumes, virtual volumes, cartridges, etc.). These processes all participate in fulfilling end-user requests and updating metadata information. A number of challenges arise when distributed processes attempt to maintain separate metadata resources with production-level integrity and consistency. For example, when requests fail, metadata changes made by the various processes must be aborted or rolled back. When requests are successful, all metadata changes must be committed together. If all metadata changes cannot be committed together for some reason, then all metadata changes must be rolled back to the previous consistent state. Lack of metadata consistency jeopardizes storage system integrity. Distributed on-line transaction processing (OLTP) technology can be applied to distributed mass storage systems as the mechanism for managing the consistency of distributed metadata. OLTP concepts are familiar to manN, industries such as banking and financial services but are less well known and understood in scientific and technical computing. As mass storage systems and other products are designed using distributed processing and data-management strategies for performance, scalability, and/or availability reasons, distributed OLTP technology can be applied to solve the inherent challenges raised by such environments. This paper discusses the benefits in using distributed transaction processing products. Design and implementation experiences using the Encina OLTP product from Transarc in the High Performance Storage System are presented in more detail as a case study for how this technology can be applied to mass storage systems designed for distributed environments.

  8. High Performance Storage System Scalability: Architecture, Implementation, and Experience

    SciTech Connect

    Watson, R W

    2005-01-05

    The High Performance Storage System (HPSS) provides scalable hierarchical storage management (HSM), archive, and file system services. Its design, implementation and current dominant use are focused on HSM and archive services. It is also a general-purpose, global, shared, parallel file system, potentially useful in other application domains. When HPSS design and implementation began over a decade ago, scientific computing power and storage capabilities at a site, such as a DOE national laboratory, was measured in a few 10s of gigaops, data archived in HSMs in a few 10s of terabytes at most, data throughput rates to an HSM in a few megabytes/s, and daily throughput with the HSM in a few gigabytes/day. At that time, the DOE national laboratories and IBM HPSS design team recognized that we were headed for a data storage explosion driven by computing power rising to teraops/petaops requiring data stored in HSMs to rise to petabytes and beyond, data transfer rates with the HSM to rise to gigabytes/s and higher, and daily throughput with a HSM in 10s of terabytes/day. This paper discusses HPSS architectural, implementation and deployment experiences that contributed to its success in meeting the above orders of magnitude scaling targets. We also discuss areas that need additional attention as we continue significant scaling into the future.

  9. Commoditization of High Performance Storage

    SciTech Connect

    Studham, Scott S.

    2004-04-01

    The commoditization of high performance computers started in the late 80s with the attack of the killer micros. Previously, high performance computers were exotic vector systems that could only be afforded by an illustrious few. Now everyone has a supercomputer composed of clusters of commodity processors. A similar commoditization of high performance storage has begun. Commodity disks are being used for high performance storage, enabling a paradigm change in storage and significantly changing the price point of high volume storage.

  10. Measurements over distributed high performance computing and storage systems

    NASA Technical Reports Server (NTRS)

    Williams, Elizabeth; Myers, Tom

    1993-01-01

    A strawman proposal is given for a framework for presenting a common set of metrics for supercomputers, workstations, file servers, mass storage systems, and the networks that interconnect them. Production control and database systems are also included. Though other applications and third part software systems are not addressed, it is important to measure them as well.

  11. Measurements over distributed high performance computing and storage systems

    NASA Technical Reports Server (NTRS)

    Williams, Elizabeth; Myers, Tom

    1993-01-01

    Requirements are carefully described in descriptions of systems to be acquired but often there is no requirement to provide measurements and performance monitoring to ensure that requirements are met over the long term after acceptance. A set of measurements for various UNIX-based systems will be available at the 1992 Goddard Conference on Mass Storage Systems and Technologies. The authors invite others to contribute to the set of measurements. The framework for presenting the measurements of supercomputers, workstations, file servers, mass storage systems, and the networks that interconnect them are given. Production control and database systems are also included. Though other applications and third party software systems are not addressed, it is important to measure them as well. The capability to integrate measurements from all these components from different vendors, and from the third party software systems was recognized and there are efforts to standardize a framework to do this. The measurement activity falls into the domain of management standards. Standards work is ongoing for Open Systems Interconnection (OSI) systems management; AT&T, Digital, and Hewlett-Packard are developing management systems based on this architecture even though it is not finished. Another effort is in the UNIX International Performance Management Working Group. In addition, there are the Open Systems Foundation's Distributed Management Environment and the Object Management Group. A paper comparing the OSI systems management model and the Object Management Group model has been written. The IBM world has had a capability for measurement for various IBM systems since the 1970's and different vendors were able to develop tools for analyzing and viewing these measurements. Since IBM was the only vendor, the user groups were able to lobby IBM for the kinds of measurements needed. In the UNIX world of multiple vendors, a common set of measurements will not be as easy to get.

  12. The parallel I/O architecture of the high performance storage system (HPSS). Revision 1

    SciTech Connect

    Watson, R.W.; Coyne, R.A.

    1995-04-01

    Datasets up to terabyte size and petabyte capacities have created a serious imbalance between I/O and storage system performance and system functionality. One promising approach is the use of parallel data transfer techniques for client access to storage, peripheral-to-peripheral transfers, and remote file transfers. This paper describes the parallel I/O architecture and mechanisms, Parallel Transport Protocol (PTP), parallel FTP, and parallel client Application Programming Interface (API) used by the High Performance Storage System (HPSS). Parallel storage integration issues with a local parallel file system are also discussed.

  13. The parallel I/O architecture of the High Performance Storage System (HPSS)

    SciTech Connect

    Watson, R.W.; Coyne, R.A.

    1995-02-01

    Rapid improvements in computational science, processing capability, main memory sizes, data collection devices, multimedia capabilities and integration of enterprise data are producing very large datasets (10s-100s of gigabytes to terabytes). This rapid growth of data has resulted in a serious imbalance in I/O and storage system performance and functionality. One promising approach to restoring balanced I/O and storage system performance is use of parallel data transfer techniques for client access to storage, device-to-device transfers, and remote file transfers. This paper describes the parallel I/O architecture and mechanisms, Parallel Transport Protocol, parallel FIP, and parallel client Application Programming Interface (API) used by the High Performance Storage System (HPSS). Parallel storage integration issues with a local parallel file system are also discussed.

  14. High-reliability high-performance optical data storage system architecture

    NASA Astrophysics Data System (ADS)

    Jin, Hai; Cheng, Peng; Feng, Dan; Zhou, Xinrong

    1998-08-01

    With the terabyte demands of storage in many applications, the improvement of the speed of optical disk, especially the write performance will definitely extend the scope of their applications and enhance the overall performance of computer system. One effective way to improve the speed is to use a plurality of optical disk drivers together to construct an optical storage array similar to Redundant Arrays of Independent Disks (RAID). According to the typical architecture of RAID, the most common fault tolerant RAID architecture is RAID level 1 or RAID level 5. Both are not suitable for optical storage array because RAID level 1 architecture has the most redundancy, while the write performance of RAID level 5 architecture is one-fourth of that of RAID level 0 architecture especially for the small- write problem. In this paper, we propose a high performance and high reliability optical disk array architecture with less redundancy, called Mirror Striped Disk Array (MSDA). It is a novel solution to a small write problem for disk array. MSDA stores the original data in two ways, one in a single optical disk and the other in a plurality of optical disks in the way of RAID level 0. The redundancy of whole system is less than RAID level 1 architecture but with the same reliability as RAID level 5. As the performance of RAID level 0 part of optical storage system is much higher than that of RAID level 5 in ordinary disk array, thus it avoids the write performance loss when using Mirror Striped Disk Array architecture. Because it omits the parity generation procedure when writing the new data, thus the overall performance of Mirror Striped Disk Array is the same as that of RAID level 0 architecture. Using this architecture, we can achieve the high reliability and high performance optical storage system without adding any extra redundancy and without losing any performance compared with RAID level 0 architecture but with the reliability much higher than that of RAID level 5.

  15. A high performance hierarchical storage management system for the Canadian tier-1 centre at TRIUMF

    NASA Astrophysics Data System (ADS)

    Deatrich, D. C.; Liu, S. X.; Tafirout, R.

    2010-04-01

    We describe in this paper the design and implementation of Tapeguy, a high performance non-proprietary Hierarchical Storage Management (HSM) system which is interfaced to dCache for efficient tertiary storage operations. The system has been successfully implemented at the Canadian Tier-1 Centre at TRIUMF. The ATLAS experiment will collect a large amount of data (approximately 3.5 Petabytes each year). An efficient HSM system will play a crucial role in the success of the ATLAS Computing Model which is driven by intensive large-scale data analysis activities that will be performed on the Worldwide LHC Computing Grid infrastructure continuously. Tapeguy is Perl-based. It controls and manages data and tape libraries. Its architecture is scalable and includes Dataset Writing control, a Read-back Queuing mechanism and I/O tape drive load balancing as well as on-demand allocation of resources. A central MySQL database records metadata information for every file and transaction (for audit and performance evaluation), as well as an inventory of library elements. Tapeguy Dataset Writing was implemented to group files which are close in time and of similar type. Optional dataset path control dynamically allocates tape families and assign tapes to it. Tape flushing is based on various strategies: time, threshold or external callbacks mechanisms. Tapeguy Read-back Queuing reorders all read requests by using an elevator algorithm, avoiding unnecessary tape loading and unloading. Implementation of priorities will guarantee file delivery to all clients in a timely manner.

  16. HybridStore: A Cost-Efficient, High-Performance Storage System Combining SSDs and HDDs

    SciTech Connect

    Kim, Youngjae; Gupta, Aayush; Urgaonkar, Bhuvan; Piotr, Berman; Sivasubramaniam, Anand

    2011-01-01

    Unlike the use of DRAM for caching or buffering, certain idiosyncrasies of NAND Flash-based solid-state drives (SSDs) make their integration into existing systems non-trivial. Flash memory suffers from limits on its reliability, is an order of magnitude more expensive than the magnetic hard disk drives (HDDs), and can sometimes be as slow as the HDD (due to excessive garbage collection (GC) induced by high intensity of random writes). Given these trade-offs between HDDs and SSDs in terms of cost, performance, and lifetime, the current consensus among several storage experts is to view SSDs not as a replacement for HDD but rather as a complementary device within the high-performance storage hierarchy. We design and evaluate such a hybrid system called HybridStore to provide: (a) HybridPlan: improved capacity planning technique to administrators with the overall goal of operating within cost-budgets and (b) HybridDyn: improved performance/lifetime guarantees during episodes of deviations from expected workloads through two novel mechanisms: write-regulation and fragmentation busting. As an illustrative example of HybridStore s ef cacy, HybridPlan is able to nd the most cost-effective storage con guration for a large scale workload of Microsoft Research and suggest one MLC SSD with ten 7.2K RPM HDDs instead of fourteen 7.2K RPM HDDs only. HybridDyn is able to reduce the average response time for an enterprise scale random-write dominant workload by about 71% as compared to a HDD-based system.

  17. High performance systems

    SciTech Connect

    Vigil, M.B.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  18. High Performance Fuel Cell and Electrolyzer Membrane Electrode Assemblies (MEAs) for Space Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Billings, Keith J.; Kisor, Adam; Bennett, William R.; Jakupca, Ian J.; Burke, Kenneth; Hoberecht, Mark A.

    2012-01-01

    Regenerative fuel cells provide a pathway to energy storage system development that are game changers for NASA missions. The fuel cell/ electrolysis MEA performance requirements 0.92 V/ 1.44 V at 200 mA/cm2 can be met. Fuel Cell MEAs have been incorporated into advanced NFT stacks. Electrolyzer stack development in progress. Fuel Cell MEA performance is a strong function of membrane selection, membrane selection will be driven by durability requirements. Electrolyzer MEA performance is catalysts driven, catalyst selection will be driven by durability requirements. Round Trip Efficiency, based on a cell performance, is approximately 65%.

  19. Development of Nano-structured Electrode Materials for High Performance Energy Storage System

    NASA Astrophysics Data System (ADS)

    Huang, Zhendong

    Systematic studies have been done to develop a low cost, environmental-friendly facile fabrication process for the preparation of high performance nanostructured electrode materials and to fully understand the influence factors on the electrochemical performance in the application of lithium ion batteries (LIBs) or supercapacitors. For LIBs, LiNi1/3Co1/3Mn1/3O2 (NCM) with a 1D porous structure has been developed as cathode material. The tube-like 1D structure consists of inter-linked, multi-facet nanoparticles of approximately 100-500nm in diameter. The microscopically porous structure originates from the honeycomb-shaped precursor foaming gel, which serves as self-template during the stepwise calcination process. The 1D NCM presents specific capacities of 153, 140, 130 and 118mAh·g-1 at current densities of 0.1C, 0.5C, 1C and 2C, respectively. Subsequently, a novel stepwise crystallization process consisting of a higher crystallization temperature and longer period for grain growth is employed to prepare single crystal NCM nanoparticles. The modified sol-gel process followed by optimized crystallization process results in significant improvements in chemical and physical characteristics of the NCM particles. They include a fully-developed single crystal NCM with uniform composition and a porous NCM architecture with a reduced degree of fusion and a large specific surface area. The NCM cathode material with these structural modifications in turn presents significantly enhanced specific capacities of 173.9, 166.9, 158.3 and 142.3mAh·g -1 at 0.1C, 0.5C, 1C and 2C, respectively. Carbon nanotube (CNT) is used to improve the relative low power capability and poor cyclic stability of NCM caused by its poor electrical conductivity. The NCM/CNT nanocomposites cathodes are prepared through simply mixing of the two component materials followed by a thermal treatment. The CNTs were functionalized to obtain uniformly-dispersed MWCNTs in the NCM matrix. The electrochemical

  20. Scientific data storage solutions: Meeting the high-performance challenge

    SciTech Connect

    Krantz, D.; Jones, L.; Kluegel, L.; Ramsey, C.; Collins, W.

    1994-04-01

    The Los Alamos High-Performance Data System (HPDS) has been developed to meet data storage and data access requirements of Grand Challenge and National Security problems running in a high-performance computing environment. HPDS is a fourth-generation data storage system in which storage devices are directly connected to a network, data is transferred directly between client machines and storage devices, and software distributed on workstations provides system management and control capabilities. Essential to the success of HPDS is the ability to effectively use HIPPI networks and HIPPI-attached storage devices for high-speed data transfer. This paper focuses on the performance of the HPDS storage systems in a Cray Supercomputer environment.

  1. High performance network and channel-based storage

    NASA Technical Reports Server (NTRS)

    Katz, Randy H.

    1991-01-01

    In the traditional mainframe-centered view of a computer system, storage devices are coupled to the system through complex hardware subsystems called input/output (I/O) channels. With the dramatic shift towards workstation-based computing, and its associated client/server model of computation, storage facilities are now found attached to file servers and distributed throughout the network. We discuss the underlying technology trends that are leading to high performance network-based storage, namely advances in networks, storage devices, and I/O controller and server architectures. We review several commercial systems and research prototypes that are leading to a new approach to high performance computing based on network-attached storage.

  2. Inverse opal-inspired, nanoscaffold battery separators: a new membrane opportunity for high-performance energy storage systems.

    PubMed

    Kim, Jung-Hwan; Kim, Jeong-Hoon; Choi, Keun-Ho; Yu, Hyung Kyun; Kim, Jong Hun; Lee, Joo Sung; Lee, Sang-Young

    2014-08-13

    The facilitation of ion/electron transport, along with ever-increasing demand for high-energy density, is a key to boosting the development of energy storage systems such as lithium-ion batteries. Among major battery components, separator membranes have not been the center of attention compared to other electrochemically active materials, despite their important roles in allowing ionic flow and preventing electrical contact between electrodes. Here, we present a new class of battery separator based on inverse opal-inspired, seamless nanoscaffold structure ("IO separator"), as an unprecedented membrane opportunity to enable remarkable advances in cell performance far beyond those accessible with conventional battery separators. The IO separator is easily fabricated through one-pot, evaporation-induced self-assembly of colloidal silica nanoparticles in the presence of ultraviolet (UV)-curable triacrylate monomer inside a nonwoven substrate, followed by UV-cross-linking and selective removal of the silica nanoparticle superlattices. The precisely ordered/well-reticulated nanoporous structure of IO separator allows significant improvement in ion transfer toward electrodes. The IO separator-driven facilitation of the ion transport phenomena is expected to play a critical role in the realization of high-performance batteries (in particular, under harsh conditions such as high-mass-loading electrodes, fast charging/discharging, and highly polar liquid electrolyte). Moreover, the IO separator enables the movement of the Ragone plot curves to a more desirable position representing high-energy/high-power density, without tailoring other battery materials and configurations. This study provides a new perspective on battery separators: a paradigm shift from plain porous films to pseudoelectrochemically active nanomembranes that can influence the charge/discharge reaction. PMID:24979037

  3. An open, parallel I/O computer as the platform for high-performance, high-capacity mass storage systems

    NASA Technical Reports Server (NTRS)

    Abineri, Adrian; Chen, Y. P.

    1992-01-01

    APTEC Computer Systems is a Portland, Oregon based manufacturer of I/O computers. APTEC's work in the context of high density storage media is on programs requiring real-time data capture with low latency processing and storage requirements. An example of APTEC's work in this area is the Loral/Space Telescope-Data Archival and Distribution System. This is an existing Loral AeroSys designed system, which utilizes an APTEC I/O computer. The key attributes of a system architecture that is suitable for this environment are as follows: (1) data acquisition alternatives; (2) a wide range of supported mass storage devices; (3) data processing options; (4) data availability through standard network connections; and (5) an overall system architecture (hardware and software designed for high bandwidth and low latency). APTEC's approach is outlined in this document.

  4. Monitoring SLAC High Performance UNIX Computing Systems

    SciTech Connect

    Lettsome, Annette K.; /Bethune-Cookman Coll. /SLAC

    2005-12-15

    Knowledge of the effectiveness and efficiency of computers is important when working with high performance systems. The monitoring of such systems is advantageous in order to foresee possible misfortunes or system failures. Ganglia is a software system designed for high performance computing systems to retrieve specific monitoring information. An alternative storage facility for Ganglia's collected data is needed since its default storage system, the round-robin database (RRD), struggles with data integrity. The creation of a script-driven MySQL database solves this dilemma. This paper describes the process took in the creation and implementation of the MySQL database for use by Ganglia. Comparisons between data storage by both databases are made using gnuplot and Ganglia's real-time graphical user interface.

  5. Mass storage: The key to success in high performance computing

    NASA Technical Reports Server (NTRS)

    Lee, Richard R.

    1993-01-01

    There are numerous High Performance Computing & Communications Initiatives in the world today. All are determined to help solve some 'Grand Challenges' type of problem, but each appears to be dominated by the pursuit of higher and higher levels of CPU performance and interconnection bandwidth as the approach to success, without any regard to the impact of Mass Storage. My colleagues and I at Data Storage Technologies believe that all will have their performance against their goals ultimately measured by their ability to efficiently store and retrieve the 'deluge of data' created by end-users who will be using these systems to solve Scientific Grand Challenges problems, and that the issue of Mass Storage will become then the determinant of success or failure in achieving each projects goals. In today's world of High Performance Computing and Communications (HPCC), the critical path to success in solving problems can only be traveled by designing and implementing Mass Storage Systems capable of storing and manipulating the truly 'massive' amounts of data associated with solving these challenges. Within my presentation I will explore this critical issue and hypothesize solutions to this problem.

  6. High performance aerated lagoon systems

    SciTech Connect

    Rich, L.

    1999-08-01

    At a time when less money is available for wastewater treatment facilities and there is increased competition for the local tax dollar, regulatory agencies are enforcing stricter effluent limits on treatment discharges. A solution for both municipalities and industry is to use aerated lagoon systems designed to meet these limits. This monograph, prepared by a recognized expert in the field, provides methods for the rational design of a wide variety of high-performance aerated lagoon systems. Such systems range from those that can be depended upon to meet secondary treatment standards alone to those that, with the inclusion of intermittent sand filters or elements of sequenced biological reactor (SBR) technology, can also provide for nitrification and nutrient removal. Considerable emphasis is placed on the use of appropriate performance parameters, and an entire chapter is devoted to diagnosing performance failures. Contents include: principles of microbiological processes, control of algae, benthal stabilization, design for CBOD removal, design for nitrification and denitrification in suspended-growth systems, design for nitrification in attached-growth systems, phosphorus removal, diagnosing performance.

  7. Performance, Performance System, and High Performance System

    ERIC Educational Resources Information Center

    Jang, Hwan Young

    2009-01-01

    This article proposes needed transitions in the field of human performance technology. The following three transitions are discussed: transitioning from training to performance, transitioning from performance to performance system, and transitioning from learning organization to high performance system. A proposed framework that comprises…

  8. High performance solar Stirling system

    NASA Technical Reports Server (NTRS)

    Stearns, J. W.; Haglund, R.

    1981-01-01

    A full-scale Dish-Stirling system experiment, at a power level of 25 kWe, has been tested during 1981 on the Test Bed Concentrator No. 2 at the Parabolic Dish Test Site, Edwards, CA. Test components, designed and developed primarily by industrial contractors for the Department of Energy, include an advanced Stirling engine driving an induction alternator, a directly-coupled solar receiver with a natural gas combustor for hybrid operation and a breadboard control system based on a programmable controller and standard utility substation components. The experiment demonstrated practicality of the solar Stirling application and high system performance into a utility grid. This paper describes the design and its functions, and the test results obtained.

  9. Los Alamos National Laboratory's high-performance data system

    SciTech Connect

    Mercier, C.; Chorn, G.; Christman, R.; Collins, B.

    1991-01-01

    Los Alamos National Laboratory is designing a High-Performance Data System (HPDS) that will provide storage for supercomputers requiring large files and fast transfer speeds. The HPDS will meet the performance requirements by managing data transfers from high-speed storage systems connected directly to a high-speed network. File and storage management software will be distributed in workstations. Network protocols will ensure reliable, wide-area network data delivery to support long-distance distributed processing. 3 refs., 2 figs.

  10. High Performance Work Systems and Firm Performance.

    ERIC Educational Resources Information Center

    Kling, Jeffrey

    1995-01-01

    A review of 17 studies of high-performance work systems concludes that benefits of employee involvement, skill training, and other high-performance work practices tend to be greater when new methods are adopted as part of a consistent whole. (Author)

  11. High-performances carbonaceous adsorbents for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Zhao, Weigang; Fierro, Vanessa; Aylon, E.; Izquierdo, M. T.; Celzard, Alain

    2013-03-01

    Activated carbons (ACs) with controlled microporosity have been prepared and their H2 storage performances have been tested in a gravimetric device. Such adsorbents are natural Chinese anthracites chemically activated with alkaline hydroxides, NaOH or KOH. Outstanding total storage capacities of hydrogen, as high as 6.6wt.% equivalent to excess capacity of 6.2 wt.%, have been obtained at 4MPa for some of these adsorbents. These values of hydrogen adsorption are among the best, if not the highest, ever published so far in the open literature. They are well above those of some commercial materials, e.g. Maxsorb-3, considered as a reference of high-performance adsorbent for hydrogen adsorption. Such exceptional storage capacities may be ascribed to a higher volume of micropores (< 2nm).

  12. High Performance Work Systems for Online Education

    ERIC Educational Resources Information Center

    Contacos-Sawyer, Jonna; Revels, Mark; Ciampa, Mark

    2010-01-01

    The purpose of this paper is to identify the key elements of a High Performance Work System (HPWS) and explore the possibility of implementation in an online institution of higher learning. With the projected rapid growth of the demand for online education and its importance in post-secondary education, providing high quality curriculum, excellent…

  13. High-performance computing and distributed systems

    SciTech Connect

    Loken, S.C.; Greiman, W.; Jacobson, V.L.; Johnston, W.E.; Robertson, D.W.; Tierney, B.L.

    1992-09-01

    We present a scenario for a fully distributed computing environment in which computing, storage, and I/O elements are configured on demand into ``virtual systems`` that are optimal for the solution of a particular problem. We also describe present two pilot projects that illustrate some of the elements and issues of this scenario. The goal of this work is to make the most powerful computing systems those that are logically assembled from network based components, and to make those systems available independent of the geographic location of the constituent elements.

  14. High-performance computing and distributed systems

    SciTech Connect

    Loken, S.C.; Greiman, W.; Jacobson, V.L.; Johnston, W.E.; Robertson, D.W.; Tierney, B.L.

    1992-09-01

    We present a scenario for a fully distributed computing environment in which computing, storage, and I/O elements are configured on demand into virtual systems'' that are optimal for the solution of a particular problem. We also describe present two pilot projects that illustrate some of the elements and issues of this scenario. The goal of this work is to make the most powerful computing systems those that are logically assembled from network based components, and to make those systems available independent of the geographic location of the constituent elements.

  15. Cloud object store for archive storage of high performance computing data using decoupling middleware

    SciTech Connect

    Bent, John M.; Faibish, Sorin; Grider, Gary

    2015-06-30

    Cloud object storage is enabled for archived data, such as checkpoints and results, of high performance computing applications using a middleware process. A plurality of archived files, such as checkpoint files and results, generated by a plurality of processes in a parallel computing system are stored by obtaining the plurality of archived files from the parallel computing system; converting the plurality of archived files to objects using a log structured file system middleware process; and providing the objects for storage in a cloud object storage system. The plurality of processes may run, for example, on a plurality of compute nodes. The log structured file system middleware process may be embodied, for example, as a Parallel Log-Structured File System (PLFS). The log structured file system middleware process optionally executes on a burst buffer node.

  16. High Performance Commercial Fenestration Framing Systems

    SciTech Connect

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial

  17. Hierarchical nanowires for high-performance electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Dong, Yi-Fan; Wang, Dan-Dan; Chen, Wei; Huang, Lei; Shi, Chang-Wei; Mai, Li-Qiang

    2014-06-01

    Nanowires are promising candidates for energy storage devices such as lithium-ion batteries, supercapacitors and lithium-air batteries. However, simple-structured nanowires have some limitations hence the strategies to make improvements need to be explored and investigated. Hierarchical nanowires with enhanced performance have been considered as an ideal candidate for energy storage due to the novel structures and/or synergistic properties. This review describes some of the recent progresses in the hierarchical nanowire merits, classification, synthesis and performance in energy storage applications. Herein we discuss the hierarchical nanowires based on their structural design from three major categories, including exterior design, interior design and aligned nanowire assembly. This review also briefly outlines the prospects of hierarchical nanowires in morphology control, property enhancement and application versatility.

  18. Low-cost high performance distributed data storage for multi-channel observations

    NASA Astrophysics Data System (ADS)

    Liu, Ying-bo; Wang, Feng; Deng, Hui; Ji, Kai-fan; Dai, Wei; Wei, Shou-lin; Liang, Bo; Zhang, Xiao-li

    2015-10-01

    The New Vacuum Solar Telescope (NVST) is a 1-m solar telescope that aims to observe the fine structures in both the photosphere and the chromosphere of the Sun. The observational data acquired simultaneously from one channel for the chromosphere and two channels for the photosphere bring great challenges to the data storage of NVST. The multi-channel instruments of NVST, including scientific cameras and multi-band spectrometers, generate at least 3 terabytes data per day and require high access performance while storing massive short-exposure images. It is worth studying and implementing a storage system for NVST which would balance the data availability, access performance and the cost of development. In this paper, we build a distributed data storage system (DDSS) for NVST and then deeply evaluate the availability of real-time data storage on a distributed computing environment. The experimental results show that two factors, i.e., the number of concurrent read/write and the file size, are critically important for improving the performance of data access on a distributed environment. Referring to these two factors, three strategies for storing FITS files are presented and implemented to ensure the access performance of the DDSS under conditions of multi-host write and read simultaneously. The real applications of the DDSS proves that the system is capable of meeting the requirements of NVST real-time high performance observational data storage. Our study on the DDSS is the first attempt for modern astronomical telescope systems to store real-time observational data on a low-cost distributed system. The research results and corresponding techniques of the DDSS provide a new option for designing real-time massive astronomical data storage system and will be a reference for future astronomical data storage.

  19. High-performance commercial building systems

    SciTech Connect

    Selkowitz, Stephen

    2003-10-01

    This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to building owners and

  20. Advanced solidification system using high performance cement

    SciTech Connect

    Kikuchi, Makoto; Matsuda, Masami; Nishi, Takashi; Tsuchiya, Hiroyuki; Izumida, Tatsuo

    1995-12-31

    Advanced cement solidification is proposed for the solidification of radioactive waste such as spent ion exchange resin, incineration ash and liquid waste. A new, high performance cement has been developed to raise volume reduction efficiency and lower radioactivity release into the environment. It consists of slag cement, reinforcing fiber, natural zeolite and lithium nitrate (LiNO{sub 3}). The fiber allows waste loading to be increased from 20 to 55kg-dry resin/200L. The zeolite, whose main constituent is clinoptilolite, reduces cesium leachability from the waste form to about 1/10. Lithium nitrate prevents alkaline corrosion of the aluminum, contained in ash, and reduces hydrogen gas generation. Laboratory and full-scale pilot plant experiments were performed to evaluate properties of the waste form, using simulated wastes. Emphasis was laid on improvement of solidification of spent resin and ash.

  1. A systems approach to high performance oscillators

    NASA Technical Reports Server (NTRS)

    Stein, S. R.; Manney, C. M., Jr.; Walls, F. L.; Gray, J. E.; Besson, R. J.

    1978-01-01

    The purpose of this paper is to show how systems composed of multiple oscillators and resonators can achieve superior performance compared to a single oscillator. Experimental results are presented for two systems based on quartz crystals which provide state-of-the-art stability over a much wider range of averaging times than has been previously achieved. One system has achieved a factor of five improvement in noise floor compared to all previously reported results.

  2. High performance VLSI telemetry data systems

    NASA Technical Reports Server (NTRS)

    Chesney, J.; Speciale, N.; Horner, W.; Sabia, S.

    1990-01-01

    NASA's deployment of major space complexes such as Space Station Freedom (SSF) and the Earth Observing System (EOS) will demand increased functionality and performance from ground based telemetry acquisition systems well above current system capabilities. Adaptation of space telemetry data transport and processing standards such as those specified by the Consultative Committee for Space Data Systems (CCSDS) standards and those required for commercial ground distribution of telemetry data, will drive these functional and performance requirements. In addition, budget limitations will force the requirement for higher modularity, flexibility, and interchangeability at lower cost in new ground telemetry data system elements. At NASA's Goddard Space Flight Center (GSFC), the design and development of generic ground telemetry data system elements, over the last five years, has resulted in significant solutions to these problems. This solution, referred to as the functional components approach includes both hardware and software components ready for end user application. The hardware functional components consist of modern data flow architectures utilizing Application Specific Integrated Circuits (ASIC's) developed specifically to support NASA's telemetry data systems needs and designed to meet a range of data rate requirements up to 300 Mbps. Real-time operating system software components support both embedded local software intelligence, and overall system control, status, processing, and interface requirements. These components, hardware and software, form the superstructure upon which project specific elements are added to complete a telemetry ground data system installation. This paper describes the functional components approach, some specific component examples, and a project example of the evolution from VLSI component, to basic board level functional component, to integrated telemetry data system.

  3. High-Performance Energy Applications and Systems

    SciTech Connect

    Miller, Barton

    2014-05-19

    The Paradyn project has a history of developing algorithms, techniques, and software that push the cutting edge of tool technology for high-end computing systems. Under this funding, we are working on a three-year agenda to make substantial new advances in support of new and emerging Petascale systems. The overall goal for this work is to address the steady increase in complexity of these petascale systems. Our work covers two key areas: (1) The analysis, instrumentation and control of binary programs. Work in this area falls under the general framework of the Dyninst API tool kits. (2) Infrastructure for building tools and applications at extreme scale. Work in this area falls under the general framework of the MRNet scalability framework. Note that work done under this funding is closely related to work done under a contemporaneous grant, “Foundational Tools for Petascale Computing”, SC0003922/FG02-10ER25940, UW PRJ27NU.

  4. Technologies of high-performance thermography systems

    NASA Astrophysics Data System (ADS)

    Breiter, R.; Cabanski, Wolfgang A.; Mauk, K. H.; Kock, R.; Rode, W.

    1997-08-01

    A family of 2 dimensional detection modules based on 256 by 256 and 486 by 640 platinum silicide (PtSi) focal planes, or 128 by 128 and 256 by 256 mercury cadmium telluride (MCT) focal planes for applications in either the 3 - 5 micrometer (MWIR) or 8 - 10 micrometer (LWIR) range was recently developed by AIM. A wide variety of applications is covered by the specific features unique for these two material systems. The PtSi units provide state of the art correctability with long term stable gain and offset coefficients. The MCT units provide extremely fast frame rates like 400 Hz with snapshot integration times as short as 250 microseconds and with a thermal resolution NETD less than 20 mK for e.g. the 128 by 128 LWIR module. The unique design idea general for all of these modules is the exclusively digital interface, using 14 bit analog to digital conversion to provide state of the art correctability, access to highly dynamic scenes without any loss of information and simplified exchangeability of the units. Device specific features like bias voltages etc. are identified during the final test and stored in a memory on the driving electronics. This concept allows an easy exchange of IDCAs of the same type without any need for tuning or e.g. the possibility to upgrade a PtSi based unit to an MCT module by just loading the suitable software. Miniaturized digital signal processor (DSP) based image correction units were developed for testing and operating the units with output data rates of up to 16 Mpixels/s. These boards provide the ability for freely programmable realtime functions like two point correction and various data manipulations in thermography applications.

  5. Using high performance interconnects in a distributed computing and mass storage environment

    SciTech Connect

    Ernst, M.

    1994-12-31

    Detector Collaborations of the HERA Experiments typically involve more than 500 physicists from a few dozen institutes. These physicists require access to large amounts of data in a fully transparent manner. Important issues include Distributed Mass Storage Management Systems in a Distributed and Heterogeneous Computing Environment. At the very center of a distributed system, including tens of CPUs and network attached mass storage peripherals are the communication links. Today scientists are witnessing an integration of computing and communication technology with the {open_quote}network{close_quote} becoming the computer. This contribution reports on a centrally operated computing facility for the HERA Experiments at DESY, including Symmetric Multiprocessor Machines (84 Processors), presently more than 400 GByte of magnetic disk and 40 TB of automoted tape storage, tied together by a HIPPI {open_quote}network{close_quote}. Focussing on the High Performance Interconnect technology, details will be provided about the HIPPI based {open_quote}Backplane{close_quote} configured around a 20 Gigabit/s Multi Media Router and the performance and efficiency of the related computer interfaces.

  6. Building Synergy: The Power of High Performance Work Systems.

    ERIC Educational Resources Information Center

    Gephart, Martha A.; Van Buren, Mark E.

    1996-01-01

    Suggests that high-performance work systems create the synergy that lets companies gain and keep a competitive advantage. Identifies the components of high-performance work systems and critical action steps for implementation. Describes the results companies such as Xerox, Lever Brothers, and Corning Incorporated have achieved by using them. (JOW)

  7. New architectures to reduce I/O bottlenecks in high-performance systems

    SciTech Connect

    Coleman, S.S.; Watson, R.W.

    1993-01-01

    Large commercial and scientific applications are straining input/output and storage facilities, a condition compounded by new networking and distributed-system technology, and by supercomputer, massively-parallel, and high-performance workstation architectures. This paper reviews large-scale application 1/O requirements that are driving the need for high-performance, distributed, hierarchical storage, and then discusses the emerging shift to network-connected devices and third-party protocol architectures to meet these requirements. It illustrates the discussion with actual implementations and with standards work under way in the IEEE Storage System Standards Working Group.

  8. High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles.

    PubMed

    Aboutalebi, Seyed Hamed; Jalili, Rouhollah; Esrafilzadeh, Dorna; Salari, Maryam; Gholamvand, Zahra; Aminorroaya Yamini, Sima; Konstantinov, Konstantin; Shepherd, Roderick L; Chen, Jun; Moulton, Simon E; Innis, Peter Charles; Minett, Andrew I; Razal, Joselito M; Wallace, Gordon G

    2014-03-25

    The successful commercialization of smart wearable garments is hindered by the lack of fully integrated carbon-based energy storage devices into smart wearables. Since electrodes are the active components that determine the performance of energy storage systems, it is important to rationally design and engineer hierarchical architectures atboth the nano- and macroscale that can enjoy all of the necessary requirements for a perfect electrode. Here we demonstrate a large-scale flexible fabrication of highly porous high-performance multifunctional graphene oxide (GO) and rGO fibers and yarns by taking advantage of the intrinsic soft self-assembly behavior of ultralarge graphene oxide liquid crystalline dispersions. The produced yarns, which are the only practical form of these architectures for real-life device applications, were found to be mechanically robust (Young's modulus in excess of 29 GPa) and exhibited high native electrical conductivity (2508 ± 632 S m(-1)) and exceptionally high specific surface area (2605 m(2) g(-1) before reduction and 2210 m(2) g(-1) after reduction). Furthermore, the highly porous nature of these architectures enabled us to translate the superior electrochemical properties of individual graphene sheets into practical everyday use devices with complex geometrical architectures. The as-prepared final architectures exhibited an open network structure with a continuous ion transport network, resulting in unrivaled charge storage capacity (409 F g(-1) at 1 A g(-1)) and rate capability (56 F g(-1) at 100 A g(-1)) while maintaining their strong flexible nature. PMID:24517282

  9. NFS as a user interface to a high-performance data system

    SciTech Connect

    Mercier, C.W.

    1991-01-01

    The Network File System (NFS) will be the user interface to a High-Performance Data System (HPDS) being developed at Los Alamos National Laboratory (LANL). HPDS will manage high-capacity, high-performance storage systems connected directly to a high-speed network from distributed workstations. NFS will be modified to maximize performance and to manage massive amounts of data. 6 refs., 3 figs.

  10. High Performance Input/Output Systems for High Performance Computing and Four-Dimensional Data Assimilation

    NASA Technical Reports Server (NTRS)

    Fox, Geoffrey C.; Ou, Chao-Wei

    1997-01-01

    The approach of this task was to apply leading parallel computing research to a number of existing techniques for assimilation, and extract parameters indicating where and how input/output limits computational performance. The following was used for detailed knowledge of the application problems: 1. Developing a parallel input/output system specifically for this application 2. Extracting the important input/output characteristics of data assimilation problems; and 3. Building these characteristics s parameters into our runtime library (Fortran D/High Performance Fortran) for parallel input/output support.

  11. Ion Storage with the High Performance Antiproton Trap (HiPAT)

    NASA Technical Reports Server (NTRS)

    Martin, James; Lewis, Raymond; Chakrabarti, Suman; Pearson, Boise

    2002-01-01

    The matter antimatter reaction represents the densest form of energy storage/release known to modern physics: as such it offers one of the most compact sources of power for future deep space exploration. To take the first steps along this path, NASA-Marshall Space Flight Center is developing a storage system referred to as the High Performance Antiproton Trap (HiPAT) with a goal of maintaining 10(exp 12) particles for up to 18 days. Experiments have been performed with this hardware using normal matter (positive hydrogen ions) to assess the device's ability to hold charged particles. These ions are currently created using an electron gun method to ionize background gas; however, this technique is limited by the quantity that can be captured. To circumvent this issue, an ion source is currently being commissioned which will greatly increase the number of ions captured and more closely simulate actual operations expected at an antiproton production facility. Ions have been produced, stored for various time intervals, and then extracted against detectors to measure species, quantity and energy. Radio frequency stabilization has been tested as a method to prolong ion lifetime: results show an increase in the baseline 1/e lifetime of trapped particles from hours to days. Impurities in the residual background gas (typically carbon-containing species CH4, CO, CO2, etc.) present a continuing problem by reducing the trapped hydrogen population through the mechanism of ion charge exchange.

  12. Ion Storage Tests with the High Performance Antimatter Trap (HiPAT)

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Lewis, Raymond A.; Chakrabarti, Suman; Pearson, Boise; Schafer, Charles (Technical Monitor)

    2002-01-01

    The NASA/Marshall Space Flight Centers (NASA/MSFC) Propulsion Research Center (PRC) is evaluating an antiproton storage system, referred to as the High Performance Antiproton Trap (HiPAT). This interest stems from the sheer energy represented by matter/antimatter annihilation process with has an energy density approximately 10 order of magnitude above that of chemical propellants. In other terms, one gram of antiprotons contains the equivalent energy of approximately 23 space shuttle external tanks or ET's (each ET contains roughly 740,000 kgs of fuel and oxidizer). This incredible source of stored energy, if harnessed, would be an enabling technology for deep space mission where both spacecraft weight and propulsion performance are key to satisfying aggressive mission requirements. The HiPAT hardware consists of a 4 Tesla superconductor system, an ultra high vacuum test section (vacuum approaching 10(exp -12) torr), and a high voltage confinement electrode system (up to 20 kvolts operation). The current laboratory layout is illustrated. The HiPAT designed objectives included storage of up to 1 trillion antiprotons with corresponding lifetimes approaching 18 days. To date, testing has centered on the storage of positive hydrogen ions produced in situ by a stream of high-energy electrons that passes through the trapping region. However, due to space charge issues and electron beam compression as it passes through the HiPAT central field, current ion production is limited to less then 50,000 ions. Ion lifetime was determined by counting particle populations at the end of various storage time intervals. Particle detection was accomplished by destructively expelling the ions against a micro-channel plate located just outside the traps magnetic field. The effect of radio frequency (RF) stabilization on the lifetime of trapped particles was also examined. This technique, referred to as a rotating wall, made use of a segmented electrode located near the center of the trap

  13. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage

    PubMed Central

    El-Kady, Maher F.; Ihns, Melanie; Li, Mengping; Hwang, Jee Youn; Mousavi, Mir F.; Chaney, Lindsay; Lech, Andrew T.; Kaner, Richard B.

    2015-01-01

    Supercapacitors now play an important role in the progress of hybrid and electric vehicles, consumer electronics, and military and space applications. There is a growing demand in developing hybrid supercapacitor systems to overcome the energy density limitations of the current generation of carbon-based supercapacitors. Here, we demonstrate 3D high-performance hybrid supercapacitors and microsupercapacitors based on graphene and MnO2 by rationally designing the electrode microstructure and combining active materials with electrolytes that operate at high voltages. This results in hybrid electrodes with ultrahigh volumetric capacitance of over 1,100 F/cm3. This corresponds to a specific capacitance of the constituent MnO2 of 1,145 F/g, which is close to the theoretical value of 1,380 F/g. The energy density of the full device varies between 22 and 42 Wh/l depending on the device configuration, which is superior to those of commercially available double-layer supercapacitors, pseudocapacitors, lithium-ion capacitors, and hybrid supercapacitors tested under the same conditions and is comparable to that of lead acid batteries. These hybrid supercapacitors use aqueous electrolytes and are assembled in air without the need for expensive “dry rooms” required for building today’s supercapacitors. Furthermore, we demonstrate a simple technique for the fabrication of supercapacitor arrays for high-voltage applications. These arrays can be integrated with solar cells for efficient energy harvesting and storage systems. PMID:25831542

  14. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage.

    PubMed

    El-Kady, Maher F; Ihns, Melanie; Li, Mengping; Hwang, Jee Youn; Mousavi, Mir F; Chaney, Lindsay; Lech, Andrew T; Kaner, Richard B

    2015-04-01

    Supercapacitors now play an important role in the progress of hybrid and electric vehicles, consumer electronics, and military and space applications. There is a growing demand in developing hybrid supercapacitor systems to overcome the energy density limitations of the current generation of carbon-based supercapacitors. Here, we demonstrate 3D high-performance hybrid supercapacitors and microsupercapacitors based on graphene and MnO2 by rationally designing the electrode microstructure and combining active materials with electrolytes that operate at high voltages. This results in hybrid electrodes with ultrahigh volumetric capacitance of over 1,100 F/cm(3). This corresponds to a specific capacitance of the constituent MnO2 of 1,145 F/g, which is close to the theoretical value of 1,380 F/g. The energy density of the full device varies between 22 and 42 Wh/l depending on the device configuration, which is superior to those of commercially available double-layer supercapacitors, pseudocapacitors, lithium-ion capacitors, and hybrid supercapacitors tested under the same conditions and is comparable to that of lead acid batteries. These hybrid supercapacitors use aqueous electrolytes and are assembled in air without the need for expensive "dry rooms" required for building today's supercapacitors. Furthermore, we demonstrate a simple technique for the fabrication of supercapacitor arrays for high-voltage applications. These arrays can be integrated with solar cells for efficient energy harvesting and storage systems. PMID:25831542

  15. Cooperative high-performance storage in the accelerated strategic computing initiative

    NASA Technical Reports Server (NTRS)

    Gary, Mark; Howard, Barry; Louis, Steve; Minuzzo, Kim; Seager, Mark

    1996-01-01

    The use and acceptance of new high-performance, parallel computing platforms will be impeded by the absence of an infrastructure capable of supporting orders-of-magnitude improvement in hierarchical storage and high-speed I/O (Input/Output). The distribution of these high-performance platforms and supporting infrastructures across a wide-area network further compounds this problem. We describe an architectural design and phased implementation plan for a distributed, Cooperative Storage Environment (CSE) to achieve the necessary performance, user transparency, site autonomy, communication, and security features needed to support the Accelerated Strategic Computing Initiative (ASCI). ASCI is a Department of Energy (DOE) program attempting to apply terascale platforms and Problem-Solving Environments (PSEs) toward real-world computational modeling and simulation problems. The ASCI mission must be carried out through a unified, multilaboratory effort, and will require highly secure, efficient access to vast amounts of data. The CSE provides a logically simple, geographically distributed, storage infrastructure of semi-autonomous cooperating sites to meet the strategic ASCI PSE goal of highperformance data storage and access at the user desktop.

  16. Teacher and Leader Effectiveness in High-Performing Education Systems

    ERIC Educational Resources Information Center

    Darling-Hammond, Linda, Ed.; Rothman, Robert, Ed.

    2011-01-01

    The issue of teacher effectiveness has risen rapidly to the top of the education policy agenda, and the federal government and states are considering bold steps to improve teacher and leader effectiveness. One place to look for ideas is the experiences of high-performing education systems around the world. Finland, Ontario, and Singapore all have…

  17. Department of Energy Project ER25739 Final Report “QoS-Enabled, High-performance Storage Systems for Data-Intensive Scientific Computing”

    SciTech Connect

    Raju Rangaswami

    2009-05-31

    This project's work resulted in the following research projects: (1) BORG - Block-reORGanization for Self-optimizing Storage Systems; (2) ABLE - Active Block Layer Extensions; (3) EXCES - EXternal Caching in Energy-Saving Storage Systems; (4) GRIO - Guaranteed-Rate I/O Scheduler. These projects together help in substantially advancing the over-arching project goal of developing 'QoS-Enabled, High-Performance Storage Systems'.

  18. A study of storage life extension for high performance chemically amplified resist coated blanks

    NASA Astrophysics Data System (ADS)

    Yang, Sin-Ju; Seo, Sung-Min; Ko, Sang-Hoon; Cha, Han-Sun; Kang, Geung-Won; Nam, Kee-Soo; Seo, Woong-Won; Jung, Woo-Kyun; Cho, Hyun-Kyoon; Kim, Jin-Min; Choi, Sang-Soo

    2005-06-01

    The importance of advanced e-beam writing system and chemically amplified resist (CAR) coated blank is increasing gradually in high-end grade photomask manufacture according to CD embodiment of 90 nm and beyond technology node requiring because of the shrinkage of design rule in the semiconductor industry. However, many studies have been reported that CAR has several troubles and especially, CAR sensitivity change is occurred by airborne molecular contamination (AMC). So, the storage life of CAR coated blank is shortened. This problem may cause the difficulty of high-end grade photomask manufacture because it is hard to secure stable mean to target (MTT) and CD uniformity by sensitivity change, T-top profile and footing profile. Therefore, the purpose of this paper is to investigate the storage life extension for high performance CAR coated blank through improvement of the packing materials. Firstly, a variety of packing materials were collected and the selected packing materials were analyzed by Automatic Thermal Desorption Gas Chromatograph/Mass Spectrometer (ATD GC/MS) and Ion Chromatograph (IC) to examine AMC generated from the packing materials. As a result, molecular condensables such as alcohols, hydrocarbons and fatty acids were detected and molecular acids and molecular bases those are NH4+, Cl-, NOx- and SOx- were also detected from the packing materials, respectively. From the above results, we selected the best packing materials which generated the least AMC and the worst packing materials which generated the most AMC. Additionally, we verified photomask process with CAR coated blanks which were packed with those packing materials with post coating delay (PCD) by 50 kV e-beam writing system. In consequence, dose to clear (DTC) showed 4.6 μC/cm2 at 0 day PCD for both of the best and the worst packing materials of CAR coated blank. After 90 days PCD, DTC variation was only 0.4 μC/cm2 for the best packing materials, but DTC variation of 4.0 μC/cm2

  19. Scyld Beowulf: A Standard, High-Performance Cluster Operating System

    NASA Astrophysics Data System (ADS)

    Becker, Donald

    2001-06-01

    Beowulf systems are high performance computers constructed from commodity hardware connected by a private internal network. Scyld Beowulf is a new generation Beowulf cluster operating system that presents this collection of machines as a single system. New features such as a unified process space, node scheduler, and integrated libraries reduce the complexity of building and using cluster applications. This talk will describe how the Scyld Beowulf system works, how we use it to simplify installation, administration and running applications, and the architectural model and interface it provides to application developers and end users.

  20. High Performance Computing and Storage Requirements for Nuclear Physics: Target 2017

    SciTech Connect

    Gerber, Richard; Wasserman, Harvey

    2015-01-20

    In April 2014, NERSC, ASCR, and the DOE Office of Nuclear Physics (NP) held a review to characterize high performance computing (HPC) and storage requirements for NP research through 2017. This review is the 12th in a series of reviews held by NERSC and Office of Science program offices that began in 2009. It is the second for NP, and the final in the second round of reviews that covered the six Office of Science program offices. This report is the result of that review

  1. Electrochemically fabricated polypyrrole-cobalt-oxygen coordination complex as high-performance lithium-storage materials.

    PubMed

    Guo, Bingkun; Kong, Qingyu; Zhu, Ying; Mao, Ya; Wang, Zhaoxiang; Wan, Meixiang; Chen, Liquan

    2011-12-23

    Current lithium-ion battery (LIB) technologies are all based on inorganic electrode materials, though organic materials have been used as electrodes for years. Disadvantages such as limited thermal stability and low specific capacity hinder their applications. On the other hand, the transition metal oxides that provide high lithium-storage capacity by way of electrochemical conversion reaction suffer from poor cycling stability. Here we report a novel high-performance, organic, lithium-storage material, a polypyrrole-cobalt-oxygen (PPy-Co-O) coordination complex, with high lithium-storage capacity and excellent cycling stability. Extended X-ray absorption fine structure and Raman spectroscopy and other physical and electrochemical characterizations demonstrate that this coordination complex can be electrochemically fabricated by cycling PPy-coated Co(3)O(4) between 0.0 V and 3.0 V versus Li(+)/Li. Density functional theory (DFT) calculations indicate that each cobalt atom coordinates with two nitrogen atoms within the PPy-Co coordination layer and the layers are connected with oxygen atoms between them. Coordination weakens the C-H bonds on PPy and makes the complex a novel lithium-storage material with high capacity and high cycling stability. PMID:22127820

  2. Middleware in Modern High Performance Computing System Architectures

    SciTech Connect

    Engelmann, Christian; Ong, Hong Hoe; Scott, Stephen L

    2007-01-01

    A recent trend in modern high performance computing (HPC) system architectures employs ''lean'' compute nodes running a lightweight operating system (OS). Certain parts of the OS as well as other system software services are moved to service nodes in order to increase performance and scalability. This paper examines the impact of this HPC system architecture trend on HPC ''middleware'' software solutions, which traditionally equip HPC systems with advanced features, such as parallel and distributed programming models, appropriate system resource management mechanisms, remote application steering and user interaction techniques. Since the approach of keeping the compute node software stack small and simple is orthogonal to the middleware concept of adding missing OS features between OS and application, the role and architecture of middleware in modern HPC systems needs to be revisited. The result is a paradigm shift in HPC middleware design, where single middleware services are moved to service nodes, while runtime environments (RTEs) continue to reside on compute nodes.

  3. In situ fabrication of porous graphene electrodes for high-performance energy storage.

    PubMed

    Wang, Zhong-Li; Xu, Dan; Wang, Heng-Guo; Wu, Zhong; Zhang, Xin-Bo

    2013-03-26

    In the development of energy-storage devices, simultaneously achieving high power and large energy capacity at fast rate is still a great challenge. In this paper, the synergistic effect of structure and doping in the graphene is demonstrated for high-performance lithium storage with ulftrafast and long-cycling capabilities. By an in situ constructing strategy, hierarchically porous structure, highly conductive network, and heteroatom doping are ideally combined in one graphene electrode. Compared to pristine graphene, it is found that the degree of improvement with both structure and doping effects is much larger than the sum of that with only structure effect or doping effect. Benefitting from the synergistic effect of structure and doping, the novel electrodes can deliver a high-power density of 116 kW kg(-1) while the energy density remains as high as 322 Wh kg(-1) at 80 A g(-1) (only 10 s to full charge), which provides an electrochemical storage level with the power density of a supercapacitor and the energy density of a battery, bridging the gap between them. Furthermore, the optimized electrodes exhibit long-cycling capability with nearly no capacity loss for 3000 cycles and wide temperature features with high capacities ranging from -20 to 55 °C. PMID:23383862

  4. Fiber optic distribution system for wideband, high performance video

    NASA Astrophysics Data System (ADS)

    Kline, A. R.

    A wideband fiber-optic video distribution system with a bandwidth exceeding 20 MHz has been developed for the NASA Space Station Freedom. The system uses FM modulation and light emitting diodes in combination with lightweight and rugged fiber-optic cables and digital switching elements to provide lightweight, reliable, high-performance video signal distribution over the full extent of the Space Station. The author addresses the Space Station requirements, including environmental constraints, which led to the selected system architecture and choice of components. The design of the modulators and demodulators, optical transmitters and receivers, fiber-optic cable, and the video switches is discussed. Also presented is a description of how the technology can be applied to those military needs which would benefit from the performance, reliability, and EMI/TEMPEST features of the system.

  5. A Study of NetCDF as an Approach for High Performance Medical Image Storage

    NASA Astrophysics Data System (ADS)

    Magnus, Marcone; Coelho Prado, Thiago; von Wangenhein, Aldo; de Macedo, Douglas D. J.; Dantas, M. A. R.

    2012-02-01

    The spread of telemedicine systems increases every day. The systems and PACS based on DICOM images has become common. This rise reflects the need to develop new storage systems, more efficient and with lower computational costs. With this in mind, this article discusses a study for application in NetCDF data format as the basic platform for storage of DICOM images. The study case comparison adopts an ordinary database, the HDF5 and the NetCDF to storage the medical images. Empirical results, using a real set of images, indicate that the time to retrieve images from the NetCDF for large scale images has a higher latency compared to the other two methods. In addition, the latency is proportional to the file size, which represents a drawback to a telemedicine system that is characterized by a large amount of large image files.

  6. Development of a High Performance Acousto-ultrasonic Scan System

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Martin, R. E.; Harmon, L. M.; Gyekenyesi, A. L.; Kautz, H. E.

    2002-01-01

    Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition/distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods such as ultrasonic c-scan, x-ray radiography, and thermographic inspection that tend to be used primarily for discrete flaw detection. Through its history, AU has been used to inspect polymer matrix composite, metal matrix composite, ceramic matrix composite, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. In this paper, a review of essential AU technology is given. Additionally, the basic hardware and software configuration, and preliminary results with the system, are described.

  7. A high-performance workflow system for subsurface simulation

    SciTech Connect

    Freedman, Vicky L.; Chen, Xingyuan; Finsterle, Stefan A.; Freshley, Mark D.; Gorton, Ian; Gosink, Luke J.; Keating, Elizabeth; Lansing, Carina; Moeglein, William AM; Murray, Christopher J.; Pau, George Shu Heng; Porter, Ellen A.; Purohit, Sumit; Rockhold, Mark L.; Schuchardt, Karen L.; Sivaramakrishnan, Chandrika; Vesselinov, Velimir V.; Waichler, Scott R.

    2014-02-14

    Subsurface modeling applications typically neglect uncertainty in the conceptual models, past or future scenarios, and attribute most or all uncertainty to errors in model parameters. In this contribution, uncertainty in technetium-99 transport in a heterogeneous, deep vadose zone is explored with respect to the conceptual model using a next generation user environment called Akuna. Akuna provides a range of tools to manage environmental modeling projects, from managing simulation data to visualizing results from high-performance computational simulators. Core toolsets accessible through the user interface include model setup, grid generation, parameter estimation, and uncertainty quantification. The BC Cribs site at Hanford in southeastern Washington State is used to demonstrate Akuna capabilities. At the BC Cribs site, conceptualization of the system is highly uncertain because only sparse information is available for the geologic conceptual model, the physical and chemical properties of the sediments, and the history of waste disposal operations. Using the Akuna toolset to perform an analysis of conservative solute transport, significant prediction uncertainty in simulated concentrations is demonstrated by conceptual model variation. This demonstrates that conceptual model uncertainty is an important consideration in sparse data environments such as BC Cribs. It is also demonstrated that Akuna and the underlying toolset provides an integrated modeling environment that streamlines model setup, parameter optimization, and uncertainty analyses for high-performance computing applications.

  8. Hierarchical micro & mesoporous silicon carbide flakes for high-performance electrochemical capacitive energy storage

    NASA Astrophysics Data System (ADS)

    Kim, Myeongjin; Oh, Ilgeun; Kim, Jooheon

    2016-03-01

    Hierarchical micro/mesoporous silicon carbide flakes (SiCF) with a high surface area of about 1376 m2 g-1 are obtained by one-step carbonization of waste Si wafer without any chemical or physical activation. The micropores are derived from the partial evaporation of Si atoms during the carbonization process and mesopores are formed by the integration of neighboring micropores. During carbonization process, the proportion of micro and mesopores in SiCF can be controlled by carbonization time by controlling the amount of partial evaporation of Si atoms. The SiCF electrode carbonized for 8 h at 1250 °C exhibits high charge storage capacity with a specific capacitance of 203.7 F g-1 at a scan rate of 5 mV s-1 with 87.3% rate performance from 5 to 500 mV s-1 in 1 M KCl aqueous electrolyte. The outstanding electrochemical performance can be the synergistic effect of both enhanced electric double layer properties caused by micropores and reduced resistant pathways for ions diffusion in the pores as well as a large accessible surface area for ion transport/charge storage caused by mesopores. These encouraging results demonstrate that the SiCF carbonized for 8 h at 1250 °C can be promising candidate for high performance electrode materials for supercapacitors.

  9. Coal-fired high performance power generating system. Final report

    SciTech Connect

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  10. High-performance work systems and occupational safety.

    PubMed

    Zacharatos, Anthea; Barling, Julian; Iverson, Roderick D

    2005-01-01

    Two studies were conducted investigating the relationship between high-performance work systems (HPWS) and occupational safety. In Study 1, data were obtained from company human resource and safety directors across 138 organizations. LISREL VIII results showed that an HPWS was positively related to occupational safety at the organizational level. Study 2 used data from 189 front-line employees in 2 organizations. Trust in management and perceived safety climate were found to mediate the relationship between an HPWS and safety performance measured in terms of personal-safety orientation (i.e., safety knowledge, safety motivation, safety compliance, and safety initiative) and safety incidents (i.e., injuries requiring first aid and near misses). These 2 studies provide confirmation of the important role organizational factors play in ensuring worker safety. PMID:15641891

  11. Engineering Development of Coal-Fired High Performance Power Systems

    SciTech Connect

    2000-12-31

    This report presents work carried out under contract DE-AC22-95PC95144 ''Engineering Development of Coal-Fired High Performance Systems Phase II and III.'' The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47% NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input all solid wastes benign cost of electricity {le}{le} 90% of present plants Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. Phase II, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase III. As part of a descoping initiative, the Phase III program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase II Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4, and 5) and the development of a site-specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: Task 2.2 HITAF Air Heaters

  12. BurstMem: A High-Performance Burst Buffer System for Scientific Applications

    SciTech Connect

    Wang, Teng; Oral, H Sarp; Wang, Yandong; Settlemyer, Bradley W; Atchley, Scott; Yu, Weikuan

    2014-01-01

    The growth of computing power on large-scale sys- tems requires commensurate high-bandwidth I/O system. Many parallel file systems are designed to provide fast sustainable I/O in response to applications soaring requirements. To meet this need, a novel system is imperative to temporarily buffer the bursty I/O and gradually flush datasets to long-term parallel file systems. In this paper, we introduce the design of BurstMem, a high- performance burst buffer system. BurstMem provides a storage framework with efficient storage and communication manage- ment strategies. Our experiments demonstrate that BurstMem is able to speed up the I/O performance of scientific applications by up to 8.5 on leadership computer systems.

  13. High Performance Drying System Using Absorption Temperature Amplifier

    NASA Astrophysics Data System (ADS)

    Nomura, Tomohiro; Nishimura, Nobuya; Yabushita, Akihiro; Kashiwagi, Takao

    It is highly essential to create a high performance drying technology from the viewpoint of energy conservation. Recently the drying process using superheated steam has received a great attention for improving the energy efficiency of the conventional air drying processes. Many other advantages of this superheated steam drying include its inert atmosphere, enhanced drying rate, improved product quality and easier control. This study presents a new concept of superheated steam drying in which the absorption temperature amplifier is effectively applied in order to recover the waste heat with high efficiency. A feature of this new drying system is that, owing to a closed circuit dryer, the consumption of heating energy decreases by approximately 50% of the conventional noncirculated one, and the superheated steam conventionally discharged so as to maintain the pressure of the dryer at an atmospheric one can be reused as heating energy for the generator of the absorption temperature amplifier. In the 1st report, thermal performances of this proposed system have been analyzed by a computer simulation developed for the solar-assisted absorption heat transformer model at the steady-state operating condition. It may be fair to conclude that this drying system satisfies the desired operating conditions, although it involves some problems to be solved further in detail in future.

  14. High Performance COPVs for In-Space Storage of High Pressure Cryogenic Fuels

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Dyess, Mark; Hastings, Chad; Wang, Jun

    2008-01-01

    Polymeric composite overwrapped pressure vessels (COPVs) provide an attractive material system to support developing commercial launch business and alternate fuel ventures. However to be able to design with these materials, the mechanical behavior of the materials must be understood with regards to processing, performance, damage tolerance, and environment. For the storage of cryogenic propellants, it is important to evaluate the materials performance and impact damage resistance at cryogenic temperatures in order to minimize weight and to ensure safety and reliability. As part of this study, material tests of candidate fiber and resin systems were used as the basis for the selection of the material combinations for evaluation in a COPV at cryogenic conditions. This comprehensive approach has also been expanded to address issues with impact damage tolerance and material degradation due to environmental factors. KEY WORDS: Cryogenic testing, evaluation and applications for pressure vessels, COPVs, tanks, or storage vessels.

  15. A High Performance Virtualized Seismic Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Davis, G. A.; Eakins, J. A.; Reyes, J. C.; Franke, M.; Sánchez, R. F.; Cortes Muñoz, P.; Busby, R. W.; Vernon, F.; Barrientos, S. E.

    2014-12-01

    As part of a collaborative effort with the Incorporated Research Institutions for Seismology, a virtualized seismic data acquisition and processing system was recently installed at the Centro Sismológical Nacional (CSN) at the Universidad de Chile for use as part of their early warning system. Using lessons learned from the Earthscope Transportable Array project, the design of this system consists of dedicated acquisition, processing and data distribution nodes hosted on a high availability hypervisor cluster. Data is exchanged with the IRIS Data Management Center and the existing processing infrastructure at the CSN. The processing nodes are backed by 20 TB of hybrid Solid State Disk (SSD) and spinning disk storage with automatic tiering of data between the disks. As part of the installation, best practices for station metadata maintenance were discussed and applied to the existing IRIS sponsored stations, as well as over 30 new stations being added to the early warning network. Four virtual machines (VM) were configured with distinctive tasks. Two VMs are dedicated to data acquisition, one to the real-time data processing, and one as relay between data acquisition and processing systems with services for the existing earthquake revision and dissemination infrastructure. The first acquisition system connects directly to Basalt dataloggers and Q330 digitizers, managing them, and acquiring seismic data as well as state-of-health (SOH) information. As newly deployed stations become available (beyond the existing 30), this VM is configured to acquire data from them and incorporate the additonal data. The second acquisition system imports the legacy network of CSN and data streams provided by other data centers. The processing system is connected to the production and archive databases. The relay system merges all incoming data streams and obtains the processing results. Data and processing packets are available for subsequent review and dissemination by the CSN. Such

  16. Coal-fired high performance power generating system

    SciTech Connect

    Not Available

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO[sub x] SO [sub x] and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW[sub e] combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO[sub x] production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  17. SCEC Earthquake System Science Using High Performance Computing

    NASA Astrophysics Data System (ADS)

    Maechling, P. J.; Jordan, T. H.; Archuleta, R.; Beroza, G.; Bielak, J.; Chen, P.; Cui, Y.; Day, S.; Deelman, E.; Graves, R. W.; Minster, J. B.; Olsen, K. B.

    2008-12-01

    The SCEC Community Modeling Environment (SCEC/CME) collaboration performs basic scientific research using high performance computing with the goal of developing a predictive understanding of earthquake processes and seismic hazards in California. SCEC/CME research areas including dynamic rupture modeling, wave propagation modeling, probabilistic seismic hazard analysis (PSHA), and full 3D tomography. SCEC/CME computational capabilities are organized around the development and application of robust, re- usable, well-validated simulation systems we call computational platforms. The SCEC earthquake system science research program includes a wide range of numerical modeling efforts and we continue to extend our numerical modeling codes to include more realistic physics and to run at higher and higher resolution. During this year, the SCEC/USGS OpenSHA PSHA computational platform was used to calculate PSHA hazard curves and hazard maps using the new UCERF2.0 ERF and new 2008 attenuation relationships. Three SCEC/CME modeling groups ran 1Hz ShakeOut simulations using different codes and computer systems and carefully compared the results. The DynaShake Platform was used to calculate several dynamic rupture-based source descriptions equivalent in magnitude and final surface slip to the ShakeOut 1.2 kinematic source description. A SCEC/CME modeler produced 10Hz synthetic seismograms for the ShakeOut 1.2 scenario rupture by combining 1Hz deterministic simulation results with 10Hz stochastic seismograms. SCEC/CME modelers ran an ensemble of seven ShakeOut-D simulations to investigate the variability of ground motions produced by dynamic rupture-based source descriptions. The CyberShake Platform was used to calculate more than 15 new probabilistic seismic hazard analysis (PSHA) hazard curves using full 3D waveform modeling and the new UCERF2.0 ERF. The SCEC/CME group has also produced significant computer science results this year. Large-scale SCEC/CME high performance codes

  18. Scientific Data Services -- A High-Performance I/O System with Array Semantics

    SciTech Connect

    Wu, Kesheng; Byna, Surendra; Rotem, Doron; Shoshani, Arie

    2011-09-21

    As high-performance computing approaches exascale, the existing I/O system design is having trouble keeping pace in both performance and scalability. We propose to address this challenge by adopting database principles and techniques in parallel I/O systems. First, we propose to adopt an array data model because many scientific applications represent their data in arrays. This strategy follows a cardinal principle from database research, which separates the logical view from the physical layout of data. This high-level data model gives the underlying implementation more freedom to optimize the physical layout and to choose the most effective way of accessing the data. For example, knowing that a set of write operations is working on a single multi-dimensional array makes it possible to keep the subarrays in a log structure during the write operations and reassemble them later into another physical layout as resources permit. While maintaining the high-level view, the storage system could compress the user data to reduce the physical storage requirement, collocate data records that are frequently used together, or replicate data to increase availability and fault-tolerance. Additionally, the system could generate secondary data structures such as database indexes and summary statistics. We expect the proposed Scientific Data Services approach to create a “live” storage system that dynamically adjusts to user demands and evolves with the massively parallel storage hardware.

  19. Systems design of high-performance stainless steels

    NASA Astrophysics Data System (ADS)

    Campbell, Carelyn Elizabeth

    A systems approach has been applied to the design of high performance stainless steels. Quantitative property objectives were addressed integrating processing/structure/property relations with mechanistic models. Martensitic transformation behavior was described using the Olson-Cohen model for heterogeneous nucleation and the Ghosh-Olson solid-solution strengthening model for interfacial mobility, and incorporating an improved description of Fe-Co-Cr thermodynamic interaction. Coherent Msb2C precipitation in a BCC matrix was described, taking into account initial paraequilibrium with cementite. Using available SANS data, a composition dependent strain energy was calibrated and a composition independent interfacial energy was evaluated to predict the critical particle size versus the fraction of the reaction completed as input to strengthening theory. Multicomponent Pourbaix diagrams provided an effective tool for evaluating oxide stability; constrained equilibrium calculations correlated oxide stability to Cr enrichment in the oxide film to allow more efficient use of alloy Cr content. Multicomponent solidification simulations provided composition constraints to improve castability. Using the Thermo-Calc and DICTRA software packages, the models were integrated to design a carburizing, secondary-hardening martensitic stainless steel. Initial characterization of the prototype showed good agreement with the design models and achievement of the desired property objectives. Prototype evaluation confirmed the predicted martensitic transformation temperature and the desired carburizing response, achieving a case hardness of Rsb{c} 64 in the secondary-hardened condition without case primary carbides. Decarburization experiments suggest that the design core toughness objective (Ksb{IC} = 65 MPasurdm) can be achieved by reducing the core carbon level to 0.05 weight percent. To achieve the core toughness objective at high core strength levels requires further analysis of an

  20. A highly scalable and high-performance storage architecture for multimedia applications

    NASA Astrophysics Data System (ADS)

    Liu, Zhaobin; Xie, Changsheng; Fu, Xianglin; Cao, Qiang

    2002-12-01

    Due to the excitement of Internet and high bandwidth, there are more and more multimedia applications involving digital industry. However the storage and the real-time of the conventional storage architecture cannot cater for the requirements of continuous media. The most important storage architecture used in past is Direct Attached Storage (DAS) and RAID cabinet, and recently, both Network Attached Storage (NAS) and Storage Area Networks (SAN) are the alterative storage network topology. But as for the multimedia characters, there need more storage capacity and more simultaneous streams. In this paper, we have introduced a novel concept 'Unified Storage Network' (USN) to build efficient SAN over IP, to bridge the gap of NAS and SAN, furthermore to resolve the scalability problem of storage for multimedia applications.

  1. Manufacturing Advantage: Why High-Performance Work Systems Pay Off.

    ERIC Educational Resources Information Center

    Appelbaum, Eileen; Bailey, Thomas; Berg, Peter; Kalleberg, Arne L.

    A study examined the relationship between high-performance workplace practices and the performance of plants in the following manufacturing industries: steel, apparel, and medical electronic instruments and imaging. The multilevel research methodology combined the following data collection activities: (1) site visits; (2) collection of plant…

  2. High-Performance Acousto-Ultrasonic Scan System Being Developed

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Martin, Richard E.; Cosgriff, Laura M.; Gyekenyesi, Andrew L.; Kautz, Harold E.

    2003-01-01

    Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition and distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods, such as ultrasonic cscan, x-ray radiography, and thermographic inspection, which tend to be used primarily for discrete flaw detection. Throughout its history, AU has been used to inspect polymer matrix composites, metal matrix composites, ceramic matrix composites, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. This year, essential AU technology was reviewed. In addition, the basic hardware and software configuration for the scanner was developed, and preliminary results with the system were described. Mechanical and environmental loads applied to composite materials can cause distributed damage (as well as discrete defects) that plays a significant role in the degradation of physical properties. Such damage includes fiber/matrix debonding (interface failure), matrix microcracking, and fiber fracture and buckling. Investigations at the NASA Glenn Research Center have shown that traditional NDE scan inspection methods such as ultrasonic c-scan, x-ray imaging, and thermographic imaging tend to be more suited to discrete defect detection rather than the characterization of accumulated distributed microdamage in composites. Since AU is focused on assessing the distributed microdamage state of the material in between the sending and receiving transducers, it has proven to be quite suitable for assessing the relative composite material state. One major success story at Glenn with AU measurements has been the correlation between the ultrasonic decay rate obtained during AU

  3. High-Performance Acousto-Ultrasonic Scan System Being Developed

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Martin, Richard E.; Cosgriff, Laura M.; Gyekenyesi, Andrew L.; Kautz, Harold E.

    2003-01-01

    Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition and distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods, such as ultrasonic cscan, x-ray radiography, and thermographic inspection, which tend to be used primarily for discrete flaw detection. Throughout its history, AU has been used to inspect polymer matrix composites, metal matrix composites, ceramic matrix composites, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. This year, essential AU technology was reviewed. In addition, the basic hardware and software configuration for the scanner was developed, and preliminary results with the system were described. Mechanical and environmental loads applied to composite materials can cause distributed damage (as well as discrete defects) that plays a significant role in the degradation of physical properties. Such damage includes fiber/matrix debonding (interface failure), matrix microcracking, and fiber fracture and buckling. Investigations at the NASA Glenn Research Center have shown that traditional NDE scan inspection methods such as ultrasonic c-scan, x-ray imaging, and thermographic imaging tend to be more suited to discrete defect detection rather than the characterization of accumulated distributed micro-damage in composites. Since AU is focused on assessing the distributed micro-damage state of the material in between the sending and receiving transducers, it has proven to be quite suitable for assessing the relative composite material state. One major success story at Glenn with AU measurements has been the correlation between the ultrasonic decay rate obtained during AU

  4. High-Performance Scanning Acousto-Ultrasonic System

    NASA Technical Reports Server (NTRS)

    Roth, Don; Martin, Richard; Kautz, Harold; Cosgriff, Laura; Gyekenyesi, Andrew

    2006-01-01

    A high-performance scanning acousto-ultrasonic system, now undergoing development, is designed to afford enhanced capabilities for imaging microstructural features, including flaws, inside plate specimens of materials. The system is expected to be especially helpful in analyzing defects that contribute to failures in polymer- and ceramic-matrix composite materials, which are difficult to characterize by conventional scanning ultrasonic techniques and other conventional nondestructive testing techniques. Selected aspects of the acousto-ultrasonic method have been described in several NASA Tech Briefs articles in recent years. Summarizing briefly: The acousto-ultrasonic method involves the use of an apparatus like the one depicted in the figure (or an apparatus of similar functionality). Pulses are excited at one location on a surface of a plate specimen by use of a broadband transmitting ultrasonic transducer. The stress waves associated with these pulses propagate along the specimen to a receiving transducer at a different location on the same surface. Along the way, the stress waves interact with the microstructure and flaws present between the transducers. The received signal is analyzed to evaluate the microstructure and flaws. The specific variant of the acousto-ultrasonic method implemented in the present developmental system goes beyond the basic principle described above to include the following major additional features: Computer-controlled motorized translation stages are used to automatically position the transducers at specified locations. Scanning is performed in the sense that the measurement, data-acquisition, and data-analysis processes are repeated at different specified transducer locations in an array that spans the specimen surface (or a specified portion of the surface). A pneumatic actuator with a load cell is used to apply a controlled contact force. In analyzing the measurement data for each pair of transducer locations in the scan, the total

  5. Low-Cost, High-Performance Hall Thruster Support System

    NASA Technical Reports Server (NTRS)

    Hesterman, Bryce

    2015-01-01

    Colorado Power Electronics (CPE) has built an innovative modular PPU for Hall thrusters, including discharge, magnet, heater and keeper supplies, and an interface module. This high-performance PPU offers resonant circuit topologies, magnetics design, modularity, and a stable and sustained operation during severe Hall effect thruster current oscillations. Laboratory testing has demonstrated discharge module efficiency of 96 percent, which is considerably higher than current state of the art.

  6. A High-Performance Rechargeable Iron Electrode for Large-Scale Battery-Based Energy Storage

    SciTech Connect

    Manohar, AK; Malkhandi, S; Yang, B; Yang, C; Prakash, GKS; Narayanan, SR

    2012-01-01

    Inexpensive, robust and efficient large-scale electrical energy storage systems are vital to the utilization of electricity generated from solar and wind resources. In this regard, the low cost, robustness, and eco-friendliness of aqueous iron-based rechargeable batteries are particularly attractive and compelling. However, wasteful evolution of hydrogen during charging and the inability to discharge at high rates have limited the deployment of iron-based aqueous batteries. We report here new chemical formulations of the rechargeable iron battery electrode to achieve a ten-fold reduction in the hydrogen evolution rate, an unprecedented charging efficiency of 96%, a high specific capacity of 0.3 Ah/g, and a twenty-fold increase in discharge rate capability. We show that modifying high-purity carbonyl iron by in situ electro-deposition of bismuth leads to substantial inhibition of the kinetics of the hydrogen evolution reaction. The in situ formation of conductive iron sulfides mitigates the passivation by iron hydroxide thereby allowing high discharge rates and high specific capacity to be simultaneously achieved. These major performance improvements are crucial to advancing the prospect of a sustainable large-scale energy storage solution based on aqueous iron-based rechargeable batteries. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.034208jes] All rights reserved.

  7. The NetLogger Methodology for High Performance Distributed Systems Performance Analysis

    SciTech Connect

    Tierney, Brian; Johnston, William; Crowley, Brian; Hoo, Gary; Brooks, Chris; Gunter, Dan

    1999-12-23

    The authors describe a methodology that enables the real-time diagnosis of performance problems in complex high-performance distributed systems. The methodology includes tools for generating precision event logs that can be used to provide detailed end-to-end application and system level monitoring; a Java agent-based system for managing the large amount of logging data; and tools for visualizing the log data and real-time state of the distributed system. The authors developed these tools for analyzing a high-performance distributed system centered around the transfer of large amounts of data at high speeds from a distributed storage server to a remote visualization client. However, this methodology should be generally applicable to any distributed system. This methodology, called NetLogger, has proven invaluable for diagnosing problems in networks and in distributed systems code. This approach is novel in that it combines network, host, and application-level monitoring, providing a complete view of the entire system.

  8. High-Performance of Gas Hydrates in Confined Nanospace for Reversible CH4 /CO2 Storage.

    PubMed

    Casco, Mirian E; Jordá, José L; Rey, Fernando; Fauth, François; Martinez-Escandell, Manuel; Rodríguez-Reinoso, Francisco; Ramos-Fernández, Enrique V; Silvestre-Albero, Joaquín

    2016-07-11

    The molecular exchange of CH4 for CO2 in gas hydrates grown in confined nanospace has been evaluated for the first time using activated carbons as a host structure. The nano-confinement effects taking place inside the carbon cavities and the exceptional physicochemical properties of the carbon structure allows us to accelerate the formation and decomposition process of the gas hydrates from the conventional timescale of hours/days in artificial bulk systems to minutes in confined nanospace. The CH4 /CO2 exchange process is fully reversible with high efficiency at practical temperature and pressure conditions. Furthermore, these activated carbons can be envisaged as promising materials for long-distance natural gas and CO2 transportation because of the combination of a high storage capacity, a high reversibility, and most important, with extremely fast kinetics for gas hydrate formation and release. PMID:27273454

  9. High performance quarter-inch cartridge tape systems

    NASA Technical Reports Server (NTRS)

    Schwarz, Ted

    1993-01-01

    Within the established low cost structure of Data Cartridge drive technology, it is possible to achieve nearly 1 terrabyte (10(exp 12)) of data capacity and more than 1 Gbit/sec (greater than 100 Mbytes/sec) transfer rates. The desirability to place this capability within a single cartridge will be determined by the market. The 3.5 in. or smaller form factor may suffice to serve both the current Data Cartridge market and a high performance segment. In any case, Data Cartridge Technology provides a strong sustainable technology growth path in the 21st century.

  10. NCI's High Performance Computing (HPC) and High Performance Data (HPD) Computing Platform for Environmental and Earth System Data Science

    NASA Astrophysics Data System (ADS)

    Evans, Ben; Allen, Chris; Antony, Joseph; Bastrakova, Irina; Gohar, Kashif; Porter, David; Pugh, Tim; Santana, Fabiana; Smillie, Jon; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2015-04-01

    The National Computational Infrastructure (NCI) has established a powerful and flexible in-situ petascale computational environment to enable both high performance computing and Data-intensive Science across a wide spectrum of national environmental and earth science data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress so far to harmonise the underlying data collections for future interdisciplinary research across these large volume data collections. NCI has established 10+ PBytes of major national and international data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the major Australian national-scale scientific collections), leading research communities, and collaborating overseas organisations. New infrastructures created at NCI mean the data collections are now accessible within an integrated High Performance Computing and Data (HPC-HPD) environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large-scale high-bandwidth Lustre filesystems. The hardware was designed at inception to ensure that it would allow the layered software environment to flexibly accommodate the advancement of future data science. New approaches to software technology and data models have also had to be developed to enable access to these large and exponentially

  11. IMPULSE---an advanced, high performance nuclear thermal propulsion system

    SciTech Connect

    Petrosky, L.J.; Disney, R.K.; Mangus, J.D. ); Gunn, S.A.; Zweig, H.R. )

    1993-01-10

    IMPULSE is an advanced nuclear propulsion engine for future space missions based on a novel conical fuel. Fuel assemblies are formed by stacking a series of truncated (U, Zr)C cones with non-fueled lips. Hydrogen flows radially inward between the cones to a central plenum connected to a high performance bell nozzle. The reference IMPULSE engine rated at 75,000 lb thrust and 1800 MWt weighs 1360 kg and is 3.65 meters in height and 81 cm in diameter. Specific impulse is estimated to be 1000 for a 15 minute life at full power. If longer life times are required, the operating temperature can be reduced with a concomitant decrease in specific impulse. Advantages of this concept include: well defined coolant paths without outlet flow restrictions; redundant orificing; very low thermal gradients and hence, thermal stresses, across the fuel elements; and reduced thermal stresses because of the truncated conical shape of the fuel elements.

  12. High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage

    SciTech Connect

    Cho, KT; Ridgway, P; Weber, AZ; Haussener, S; Battaglia, V; Srinivasan, V

    2012-01-01

    The electrochemical behavior of a promising hydrogen/bromine redox flow battery is investigated for grid-scale energy-storage application with some of the best redox-flow-battery performance results to date, including a peak power of 1.4 W/cm(2) and a 91% voltaic efficiency at 0.4 W/cm(2) constant-power operation. The kinetics of bromine on various materials is discussed, with both rotating-disk-electrode and cell studies demonstrating that a carbon porous electrode for the bromine reaction can conduct platinum-comparable performance as long as sufficient surface area is realized. The effect of flow-cell designs and operating temperature is examined, and ohmic and mass-transfer losses are decreased by utilizing a flow-through electrode design and increasing cell temperature. Charge/discharge and discharge-rate tests also reveal that this system has highly reversible behavior and good rate capability. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.018211jes] All rights reserved.

  13. Towards building high performance medical image management system for clinical trials

    NASA Astrophysics Data System (ADS)

    Wang, Fusheng; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel

    2011-03-01

    Medical image based biomarkers are being established for therapeutic cancer clinical trials, where image assessment is among the essential tasks. Large scale image assessment is often performed by a large group of experts by retrieving images from a centralized image repository to workstations to markup and annotate images. In such environment, it is critical to provide a high performance image management system that supports efficient concurrent image retrievals in a distributed environment. There are several major challenges: high throughput of large scale image data over the Internet from the server for multiple concurrent client users, efficient communication protocols for transporting data, and effective management of versioning of data for audit trails. We study the major bottlenecks for such a system, propose and evaluate a solution by using a hybrid image storage with solid state drives and hard disk drives, RESTfulWeb Services based protocols for exchanging image data, and a database based versioning scheme for efficient archive of image revision history. Our experiments show promising results of our methods, and our work provides a guideline for building enterprise level high performance medical image management systems.

  14. Towards Building High Performance Medical Image Management System for Clinical Trials.

    PubMed

    Wang, Fusheng; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel

    2011-01-01

    Medical image based biomarkers are being established for therapeutic cancer clinical trials, where image assessment is among the essential tasks. Large scale image assessment is often performed by a large group of experts by retrieving images from a centralized image repository to workstations to markup and annotate images. In such environment, it is critical to provide a high performance image management system that supports efficient concurrent image retrievals in a distributed environment. There are several major challenges: high throughput of large scale image data over the Internet from the server for multiple concurrent client users, efficient communication protocols for transporting data, and effective management of versioning of data for audit trails. We study the major bottlenecks for such a system, propose and evaluate a solution by using a hybrid image storage with solid state drives and hard disk drives, RESTful Web Services based protocols for exchanging image data, and a database based versioning scheme for efficient archive of image revision history. Our experiments show promising results of our methods, and our work provides a guideline for building enterprise level high performance medical image management systems. PMID:21603096

  15. Carbon hybridized halloysite nanotubes for high-performance hydrogen storage capacities.

    PubMed

    Jin, Jiao; Fu, Liangjie; Yang, Huaming; Ouyang, Jing

    2015-01-01

    Hybrid nanotubes of carbon and halloysite nanotubes (HNTs) with different carbon:HNTs ratio were hydrothermally synthesized from natural halloysite and sucrose. The samples display uniformly cylindrical hollow tubular structure with different morphologies. These hybrid nanotubes were concluded to be promising medium for physisorption-based hydrogen storage. The hydrogen adsorption capacity of pristine HNTs was 0.35% at 2.65 MPa and 298 K, while that of carbon coated HNTs with the pre-set carbon:HNTs ratio of 3:1 (3C-HNTs) was 0.48% under the same condition. This carbon coated method could offer a new pattern for increasing the hydrogen adsorption capacity. It was also possible to enhance the hydrogen adsorption capacity through the spillover mechanism by incorporating palladium (Pd) in the samples of HNTs (Pd-HNTs) and 3C-HNTs (Pd-3C-HNTs and 3C-Pd-HNTs are the samples with different location of Pd nanoparticles). The hydrogen adsorption capacity of the Pd-HNTs was 0.50% at 2.65 MPa and 298 K, while those of Pd-3C-HNTs and 3C-Pd-HNTs were 0.58% and 0.63%, respectively. In particular, for this spillover mechanism of Pd-carbon-HNTs ternary system, the bidirectional transmission of atomic and molecular hydrogen (3C-Pd-HNTs) was concluded to be more effective than the unidirectional transmission (Pd-3C-HNTs) in this work for the first time. PMID:26201827

  16. High-performance multimedia encryption system based on chaos.

    PubMed

    Hasimoto-Beltrán, Rogelio

    2008-06-01

    Current chaotic encryption systems in the literature do not fulfill security and performance demands for real-time multimedia communications. To satisfy these demands, we propose a generalized symmetric cryptosystem based on N independently iterated chaotic maps (N-map array) periodically perturbed with a three-level perturbation scheme and a double feedback (global and local) to increase the system's robustness to attacks. The first- and second-level perturbations make cryptosystem extremely sensitive to changes in the plaintext data since the system's output itself (ciphertext global feedback) is used in the perturbation process. Third-level perturbation is a system reset, in which the system-key and chaotic maps are replaced for totally new values. An analysis of the proposed scheme regarding its vulnerability to attacks, statistical properties, and implementation performance is presented. To the best of our knowledge we provide a secure cryptosystem with one of the highest levels of performance for real-time multimedia communications. PMID:18601477

  17. High Performance Image Processing And Laser Beam Recording System

    NASA Astrophysics Data System (ADS)

    Fanelli, Anthony R.

    1980-09-01

    The article is meant to provide the digital image recording community with an overview of digital image processing, and recording. The Digital Interactive Image Processing System (DIIPS) was assembled by ESL for Air Force Systems Command under ROME AIR DEVELOPMENT CENTER's guidance. The system provides the capability of mensuration and exploitation of digital imagery with both mono and stereo digital images as inputs. This development provided for system design, basic hardware, software and operational procedures to enable the Air Force's System Command photo analyst to perform digital mensuration and exploitation of stereo digital images as inputs. The engineering model was based on state-of-the-art technology and to the extent possible off-the-shelf hardware and software. A LASER RECORDER was also developed for the DIIPS Systems and is known as the Ultra High Resolution Image Recorder (UHRIR). The UHRIR is a prototype model that will enable the Air Force Systems Command to record computer enhanced digital image data on photographic film at high resolution with geometric and radiometric distortion minimized.

  18. Mesoporous crystalline-amorphous oxide nanocomposite network for high-performance lithium storage.

    PubMed

    Peng, Yiting; Chen, Zheng; Le, Zaiyuan; Xu, Qunjie; Li, Hexing; Lu, Yunfeng

    2015-08-01

    Mesoporous nanocomposites composed of crystalline and amorphous oxides network were successfully synthesized by a continuous aerosol spray process; electrodes made from such nanocomposites with a thin-layer of protective oxide coating exhibit high capacity and long cycling life for lithium storage. PMID:26121570

  19. High-performance image database system for remote sensing

    NASA Astrophysics Data System (ADS)

    Shock, Carter T.; Chang, Chialin; Davis, Larry S.; Goward, Samuel N.; Saltz, Joel H.; Sussman, Alan D.

    1996-02-01

    We present the design of an image database system for remotely sensed imagery. The system stores and serves level 1B remotely sensed data, providing users with a flexible and efficient means for specifying and obtaining image-like products on either a global or a local scale. We have developed both parallel and sequential versions of the system; the parallel version uses the CHAOS++ and Jovian libraries, developed at the University of Maryland as part of an NSF grand challenge project, to support parallel object oriented programming and parallel I/O, respectively.

  20. Total systems design analysis of high performance structures

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1993-01-01

    Designer-control parameters were identified at interdiscipline interfaces to optimize structural systems performance and downstream development and operations with reliability and least life-cycle cost. Interface tasks and iterations are tracked through a matrix of performance disciplines integration versus manufacturing, verification, and operations interactions for a total system design analysis. Performance integration tasks include shapes, sizes, environments, and materials. Integrity integrating tasks are reliability and recurring structural costs. Significant interface designer control parameters were noted as shapes, dimensions, probability range factors, and cost. Structural failure concept is presented, and first-order reliability and deterministic methods, benefits, and limitations are discussed. A deterministic reliability technique combining benefits of both is proposed for static structures which is also timely and economically verifiable. Though launch vehicle environments were primarily considered, the system design process is applicable to any surface system using its own unique filed environments.

  1. Personal communication system combines high performance with miniaturization

    NASA Technical Reports Server (NTRS)

    Atlas, N. D.

    1967-01-01

    Personal communication system provides miniaturized components that incorporate high level signal characteristics plus noise rejection in both microphone and earphone circuitry. The microphone is designed to overcome such spacecraft flight problems as size, ambient noise level, and RF interference.

  2. High Performance Drying System Using Absorption Temperature Amplifier

    NASA Astrophysics Data System (ADS)

    Nishimura, Nobuya; Nomura, Tomohiro; Yabushita, Akihiro; Kashiwagi, Takao

    A computer simulation has been developed on transient drying process in order to predict the dynamic thermal performance of a new superheated steam drying system using an absorption type temperature amplifier as a steam superheater. A feature of this drying system is that one can reuse the exhausted superheated stream conventionally discharged from the dryer as a driving heat source for the generator in this heat pump. But in the transient drying process, the evaporation of moisture sharply decreases. Accordingly, it is hardly expected to reuse an exhausted superheated steam as heating source for the generator. 80 the effects of this exhausted superheated steam and of changes in hot water and the cooling water temperatures were mainly investigated checking whether this drying system can be driven directly by the low level energy of sun or waste heat. Furthermore, the system performances of this drying system were evaluated on a qualitative-basis by using the exergy efficiency. The results show that, under the transient drying conditions, the temperature boost of superheated steam is possible at a high temperature and thus the absorption type temperature amplifier can be an effective steam superheater system.

  3. Open systems storage platforms

    NASA Technical Reports Server (NTRS)

    Collins, Kirby

    1992-01-01

    The building blocks for an open storage system includes a system platform, a selection of storage devices and interfaces, system software, and storage applications CONVEX storage systems are based on the DS Series Data Server systems. These systems are a variant of the C3200 supercomputer with expanded I/O capabilities. These systems support a variety of medium and high speed interfaces to networks and peripherals. System software is provided in the form of ConvexOS, a POSIX compliant derivative of 4.3BSD UNIX. Storage applications include products such as UNITREE and EMASS. With the DS Series of storage systems, Convex has developed a set of products which provide open system solutions for storage management applications. The systems are highly modular, assembled from off the shelf components with industry standard interfaces. The C Series system architecture provides a stable base, with the performance and reliability of a general purpose platform. This combination of a proven system architecture with a variety of choices in peripherals and application software allows wide flexibility in configurations, and delivers the benefits of open systems to the mass storage world.

  4. Miniaturized high-performance starring thermal imaging system

    NASA Astrophysics Data System (ADS)

    Cabanski, Wolfgang A.; Breiter, Rainer; Mauk, Karl-Heinz; Rode, Werner; Ziegler, Johann; Ennenga, L.; Lipinski, Ulrich M.; Wehrhahn, T.

    2000-07-01

    A high resolution thermal imaging system was developed based on a 384 X 288 mercury cadmium telluride (MCT) mid wave (MWIR) infrared (IR) detection module with a 2 X 2 microscan for improved geometrical resolution. Primary design goal was a long identification range of 3 km and high system performance for adverse weather conditions achieved by a system with small entrance pupil and minimized dimensions to fit for integration in existing apertures of armored vehicles, reconnaissance systems and stabilized platforms. A staring FPA module with its potential for long integration times together with a microscan for improved geometrical resolution provides the answers best fit to these requirements. A robust microscanner was developed to fit for military requirements and integrated with AIM's 384 X 288 MCT MWIR module and data processing. The modules allow for up to 2 ms integration time with 25 Hz frame rate and output a 768 X 576 high resolution CCIR standard image. The video image processing (VIP) provides the calculation power for scene based self learning nonuniformity correction (NUC) algorithms to save calibration sources. This NUC algorithm allows take into account non linear effects for unsurpassed performance in highly dynamic scenes. The detection module and VIP are designed to interface with STN's mature system electronics, used e.g. in hundreds of OPHELIOS thermal camera sets fielded. The system electronics provides a lot of different interface features like double serial control bus (CANBUS) interface, analog and digital outputs as well as different video outputs. The integrated graphic generation part allows to put advanced graphic overlays to the thermal image and also to external video signals via the video input feature. This electronics provides the power supply for the whole thermal imaging system as well as different processor controlled algorithms for field of view or zoom drives, focus drives, athermalization and temperature control of the FLIR. A

  5. American Models of High-Performance Work Systems.

    ERIC Educational Resources Information Center

    Appelbaum, Eileen; Batt, Rosemary

    1993-01-01

    Looks at work systems that draw on quality engineering and management concepts and use incentives. Discusses how some U.S. companies improve performance and maintain high quality. Suggests that the federal government strategy should include measures to support change in production processes and promote efficient factors of production. (JOW)

  6. Nanostructured microfluidic digestion system for rapid high-performance proteolysis

    PubMed Central

    Cheng, Gong; Hao, Si-Jie; Yu, Xu

    2014-01-01

    A novel microfluidic protein digestion system with nanostructured and bioactive inner surface was constructed by an easy biomimetic self-assembly strategy for rapid and effective proteolysis in 2 minutes, which is faster than the conventional overnight digestion methods. It is expected that this work would contribute to rapid online digestion in future high-throughput proteomics. PMID:25511010

  7. High Performance Input/Output for Parallel Computer Systems

    NASA Technical Reports Server (NTRS)

    Ligon, W. B.

    1996-01-01

    The goal of our project is to study the I/O characteristics of parallel applications used in Earth Science data processing systems such as Regional Data Centers (RDCs) or EOSDIS. Our approach is to study the runtime behavior of typical programs and the effect of key parameters of the I/O subsystem both under simulation and with direct experimentation on parallel systems. Our three year activity has focused on two items: developing a test bed that facilitates experimentation with parallel I/O, and studying representative programs from the Earth science data processing application domain. The Parallel Virtual File System (PVFS) has been developed for use on a number of platforms including the Tiger Parallel Architecture Workbench (TPAW) simulator, The Intel Paragon, a cluster of DEC Alpha workstations, and the Beowulf system (at CESDIS). PVFS provides considerable flexibility in configuring I/O in a UNIX- like environment. Access to key performance parameters facilitates experimentation. We have studied several key applications fiom levels 1,2 and 3 of the typical RDC processing scenario including instrument calibration and navigation, image classification, and numerical modeling codes. We have also considered large-scale scientific database codes used to organize image data.

  8. Low cost, high performance, self-aligning miniature optical systems

    PubMed Central

    Kester, Robert T.; Christenson, Todd; Kortum, Rebecca Richards; Tkaczyk, Tomasz S.

    2009-01-01

    The most expensive aspects in producing high quality miniature optical systems are the component costs and long assembly process. A new approach for fabricating these systems that reduces both aspects through the implementation of self-aligning LIGA (German acronym for lithographie, galvanoformung, abformung, or x-ray lithography, electroplating, and molding) optomechanics with high volume plastic injection molded and off-the-shelf glass optics is presented. This zero alignment strategy has been incorporated into a miniature high numerical aperture (NA = 1.0W) microscope objective for a fiber confocal reflectance microscope. Tight alignment tolerances of less than 10 μm are maintained for all components that reside inside of a small 9 gauge diameter hypodermic tubing. A prototype system has been tested using the slanted edge modulation transfer function technique and demonstrated to have a Strehl ratio of 0.71. This universal technology is now being developed for smaller, needle-sized imaging systems and other portable point-of-care diagnostic instruments. PMID:19543344

  9. Research in the design of high-performance reconfigurable systems

    NASA Technical Reports Server (NTRS)

    Mcewan, S. D.; Spry, A. J.

    1985-01-01

    Computer aided design and computer aided manufacturing have the potential for greatly reducing the cost and lead time in the development of VLSI components. This potential paves the way for the design and fabrication of a wide variety of economically feasible high level functional units. It was observed that current computer systems have only a limited capacity to absorb new VLSI component types other than memory, microprocessors, and a relatively small number of other parts. The first purpose is to explore a system design which is capable of effectively incorporating a considerable number of VLSI part types and will both increase the speed of computation and reduce the attendant programming effort. A second purpose is to explore design techniques for VLSI parts which when incorporated by such a system will result in speeds and costs which are optimal. The proposed work may lay the groundwork for future efforts in the extensive simulation and measurements of the system's cost effectiveness and lead to prototype development.

  10. Co3O4 nanocages with highly exposed {110} facets for high-performance lithium storage

    PubMed Central

    Liu, Dequan; Wang, Xi; Wang, Xuebin; Tian, Wei; Bando, Yoshio; Golberg, Dmitri

    2013-01-01

    Functional materials with both exposed highly reactive planes and hollow structures have attracted considerable attentions with respect to improved catalytic activity and enhanced electrochemical energy storage. Herein, we report the synthesis of unusual single-crystal Co3O4 nanocages with highly exposed {110} reactive facets via a one-step solution method. When tested as anode materials in lithium-ion batteries, these Co3O4 nanocages deliver a high reversible lithium storage capacity of 864 mAh g−1 at 0.2C over 50 cycles and exhibit an excellent rate capability. The dominantly exposed {110} planes, a high density of atomic steps in nanocages, and the large void interiors lead to the regarded superior electrochemical performance. PMID:23995848

  11. Ultrathin reduced graphene oxide films for high performance optical data storage

    NASA Astrophysics Data System (ADS)

    Xing, Fei; Yang, Yong; Zhu, Siwei; Yuan, Xiaocong

    2015-10-01

    Optical data storage (ODS) represents revolutionary progress for the field of information storage capacity. When the thickness of data recording layer is similar to a few nanometer even atomic scale, the data point dimension can decrease to the minimum with stable mechanical property. Thus the new generation of ODS requires data recording layer in nanoscale to improve areal storage density, so that the more digital information can be stored in limited zone. Graphene, a novel two-dimensional (2D) material, is a type of monolayer laminated structure composed of carbon atoms and is currently the thinnest known material (the thickness of monolayer graphene is 3.35 Å). It is an ideal choice as a active layer for ODS media. Reduced graphene oxide, a graphene derivative, has outstanding polarization-dependent absorption characteristics under total internal reflection (TIR). The strong broadband absorption of reduced graphene oxide causes it to exhibit different reflectance for transverse electric (TE) and transverse magnetic (TM) modes under TIR, and the maximum reflectance ratio between TM and TE modes is close to 8 with 8 nm reduced graphene oxide films. It opens a door for a high signal to noise ratio (SNR) graphene-based optical data storage. Here, 8 nm high-temperature reduced graphene oxide (h-rGO) films was used for the ultrathin active layer of ODS. The data writing was performed on the h-rGO active layer based on photolithography technology. Under TIR, a balanced detection technology in the experiment converts the optical signals into electric signals and simultaneously amplifies them. The reading results show a stable SNR up to 500, and the graphene-based ODS medium has a high transparency performance.

  12. A High Performance Content Based Recommender System Using Hypernym Expansion

    Energy Science and Technology Software Center (ESTSC)

    2015-10-20

    There are two major limitations in content-based recommender systems, the first is accurately measuring the similarity of preferred documents to a large set of general documents, and the second is over-specialization which limits the "interesting" documents recommended from a general document set. To address these issues, we propose combining linguistic methods and term frequency methods to improve overall performance and recommendation.

  13. Fitting modular reconnaissance systems into modern high-performance aircraft

    NASA Astrophysics Data System (ADS)

    Stroot, Jacquelyn R.; Pingel, Leslie L.

    1990-11-01

    The installation of the Advanced Tactical Air Reconnaissance System (ATARS) in the F/A-18D(RC) presented a complex set of design challenges. At the time of the F/A-18D(RC) ATARS option exercise, the design and development of the ATARS subsystems and the parameters of the F/A-18D(RC) were essentially fixed. ATARS is to be installed in the gun bay of the F/A-18D(RC), taking up no additional room, nor adding any more weight than what was removed. The F/A-18D(RC) installation solution required innovations in mounting, cooling, and fit techniques, which made constant trade study essential. The successful installation in the F/A-18D(RC) is the result of coupling fundamental design engineering with brainstorming and nonstandard approaches to every situation. ATARS is sponsored by the Aeronautical Systems Division, Wright-Patterson AFB, Ohio. The F/A-18D(RC) installation is being funded to the Air Force by the Naval Air Systems Command, Washington, D.C.

  14. Resolution of a High Performance Cavity Beam Position Monitor System

    SciTech Connect

    Walston, S; Chung, C; Fitsos, P; Gronberg, J; Ross, M; Khainovski, O; Kolomensky, Y; Loscutoff, P; Slater, M; Thomson, M; Ward, D; Boogert, S; Vogel, V; Meller, R; Lyapin, A; Malton, S; Miller, D; Frisch, J; Hinton, S; May, J; McCormick, D; Smith, S; Smith, T; White, G; Orimoto, T; Hayano, H; Honda, Y; Terunuma, N; Urakawa, J

    2005-09-12

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved - ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. A metrology system for the three BPMs was recently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame and has demonstrated that the three BPMs behave as a rigid-body to less than 5 nm. To date, we have demonstrated a BPM resolution of less than 20 nm over a dynamic range of +/- 20 microns.

  15. Resolution of a High Performance Cavity Beam Positron Monitor System

    SciTech Connect

    Walston, S.; Chung, C.; Fitsos, P.; Gronberg, J.; Ross, M.; Khainovski, O.; Kolomensky, Y.; Loscutoff, P.; Slater, M.; Thomson, M.; Ward, D.; Boogert, S.; Vogel, V.; Meller, R.; Lyapin, A.; Malton, S.; Miller, D.; Frisch, J.; Hinton, S.; May, J.; McCormick, D.; /SLAC /Caltech /KEK, Tsukuba

    2007-07-06

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved--ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. A metrology system for the three BPMs was recently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame and has demonstrated that the three BPMs behave as a rigid-body to less than 5 nm. To date, we have demonstrated a BPM resolution of less than 20 nm over a dynamic range of +/- 20 microns.

  16. High performance graphical data trending in a distributed system

    NASA Astrophysics Data System (ADS)

    Maureira, Cristián; Hoffstadt, Arturo; López, Joao; Troncoso, Nicolás; Tobar, Rodrigo; von Brand, Horst H.

    2010-07-01

    Trending near real-time data is a complex task, specially in distributed environments. This problem was typically tackled in financial and transaction systems, but it now applies to its utmost in other contexts, such as hardware monitoring in large-scale projects. Data handling requires subscription to specific data feeds that need to be implemented avoiding replication, and rate of transmission has to be assured. On the side of the graphical client, rendering needs to be fast enough so it may be perceived as real-time processing and display. ALMA Common Software (ACS) provides a software infrastructure for distributed projects which may require trending large volumes of data. For theses requirements ACS offers a Sampling System, which allows sampling selected data feeds at different frequencies. Along with this, it provides a graphical tool to plot the collected information, which needs to perform as well as possible. Currently there are many graphical libraries available for data trending. This imposes a problem when trying to choose one: It is necessary to know which has the best performance, and which combination of programming language and library is the best decision. This document analyzes the performance of different graphical libraries and languages in order to present the optimal environment when writing or re-factoring an application using trending technologies in distributed systems. To properly address the complexity of the problem, a specific set of alternative was pre-selected, including libraries in Java and Python, languages which are part of ACS. A stress benchmark will be developed in a simulated distributed environment using ACS in order to test the trending libraries.

  17. High-performance space shuttle auxiliary propellant valve system

    NASA Technical Reports Server (NTRS)

    Smith, G. M.

    1973-01-01

    Several potential valve closures for the space shuttle auxiliary propulsion system (SS/APS) were investigated analytically and experimentally in a modeling program. The most promising of these were analyzed and experimentally evaluated in a full-size functional valve test fixture of novel design. The engineering investigations conducted for both model and scale evaluations of the SS/APS valve closures and functional valve fixture are described. Preliminary designs, laboratory tests, and overall valve test fixture designs are presented, and a final recommended flightweight SS/APS valve design is presented.

  18. Performance analysis of memory hierachies in high performance systems

    SciTech Connect

    Yogesh, A.

    1993-07-01

    This thesis studies memory bandwidth as a performance predictor of programs. The focus of this work is on computationally intensive programs. These programs are the most likely to access large amounts of data, stressing the memory system. Computationally intensive programs are also likely to use highly optimizing compilers to produce the fastest executables possible. Methods to reduce the amount of data traffic by increasing the average number of references to each item while it resides in the cache are explored. Increasing the average number of references to each cache item reduces the number of memory requests. Chapter 2 describes the DLX architecture. This is the architecture on which all the experiments were performed. Chapter 3 studies memory moves as a performance predictor for a group of application programs. Chapter 4 introduces a model to study the performance of programs in the presence of memory hierarchies. Chapter 5 explores some compiler optimizations that can help increase the references to each item while it resides in the cache.

  19. Fabricating of high-performance functional graphene fibers for micro-capacitive energy storage

    NASA Astrophysics Data System (ADS)

    Fan, Tianju; Zhao, Chunyan; Xiao, Zhuangqing; Guo, Fangjun; Cai, Kaiyu; Lin, Hai; Liu, Yidong; Meng, Hong; Min, Yong; Epstein, Arthur J.

    2016-07-01

    Although graphene is a typical two dimensional materials, it has converted to multi-dimensional materials with many unique properties. As an example, the one dimensional graphene fiber is fabricated by utilizing ionic liquid as coagulation and functional diamines as cross-linkers to connect graphene oxide layers. The fibers show excellent mechanical properties and superior electrical performance. The tensile strength of the resultant fibers reaches ~729 MPa after a super high temperature thermal annealing treatment at 2800 °C. Additionally, quasi-solid-state flexible micro-capacitors are fabricated with promising result on energy storage. The device show a specific volumetric capacity as high as ~225 F/cm3 (measured at 103.5 mA cm‑3 in a three-electrode cell), as well as a long cycle life of 2000 times. The initial results indicate that these fibers will be a good candidate to replace energy storage devices for miniaturized portable electronic applications.

  20. Fabricating of high-performance functional graphene fibers for micro-capacitive energy storage

    PubMed Central

    Fan, Tianju; Zhao, Chunyan; Xiao, Zhuangqing; Guo, Fangjun; Cai, Kaiyu; Lin, Hai; Liu, Yidong; Meng, Hong; Min, Yong; Epstein, Arthur J.

    2016-01-01

    Although graphene is a typical two dimensional materials, it has converted to multi-dimensional materials with many unique properties. As an example, the one dimensional graphene fiber is fabricated by utilizing ionic liquid as coagulation and functional diamines as cross-linkers to connect graphene oxide layers. The fibers show excellent mechanical properties and superior electrical performance. The tensile strength of the resultant fibers reaches ~729 MPa after a super high temperature thermal annealing treatment at 2800 °C. Additionally, quasi-solid-state flexible micro-capacitors are fabricated with promising result on energy storage. The device show a specific volumetric capacity as high as ~225 F/cm3 (measured at 103.5 mA cm−3 in a three-electrode cell), as well as a long cycle life of 2000 times. The initial results indicate that these fibers will be a good candidate to replace energy storage devices for miniaturized portable electronic applications. PMID:27390070

  1. Fabricating of high-performance functional graphene fibers for micro-capacitive energy storage.

    PubMed

    Fan, Tianju; Zhao, Chunyan; Xiao, Zhuangqing; Guo, Fangjun; Cai, Kaiyu; Lin, Hai; Liu, Yidong; Meng, Hong; Min, Yong; Epstein, Arthur J

    2016-01-01

    Although graphene is a typical two dimensional materials, it has converted to multi-dimensional materials with many unique properties. As an example, the one dimensional graphene fiber is fabricated by utilizing ionic liquid as coagulation and functional diamines as cross-linkers to connect graphene oxide layers. The fibers show excellent mechanical properties and superior electrical performance. The tensile strength of the resultant fibers reaches ~729 MPa after a super high temperature thermal annealing treatment at 2800 °C. Additionally, quasi-solid-state flexible micro-capacitors are fabricated with promising result on energy storage. The device show a specific volumetric capacity as high as ~225 F/cm(3) (measured at 103.5 mA cm(-3) in a three-electrode cell), as well as a long cycle life of 2000 times. The initial results indicate that these fibers will be a good candidate to replace energy storage devices for miniaturized portable electronic applications. PMID:27390070

  2. Facile Green Synthesis of BCN Nanosheets as High-Performance Electrode Material for Electrochemical Energy Storage.

    PubMed

    Karbhal, Indrapal; Devarapalli, Rami Reddy; Debgupta, Joyashish; Pillai, Vijayamohanan K; Ajayan, Pulickel M; Shelke, Manjusha V

    2016-05-17

    Two-dimensional hexagonal boron carbon nitride (BCN) nanosheets (NSs) were synthesized by new approach in which a mixture of glucose and an adduct of boric acid (H3 BO3 ) and urea (NH2 CONH2 ) is heated at 900 °C. The method is green, scalable and gives a high yield of BCN NSs with average size of about 1 μm and thickness of about 13 nm. Structural characterization of the as-synthesized material was carried out by several techniques, and its energy-storage properties were evaluated electrochemically. The material showed excellent capacitive behaviour with a specific capacitance as high as 244 F g(-1) at a current density of 1 A g(-1) . The material retains up to 96 % of its initial capacity after 3000 cycles at a current density of 5 A g(-1) . PMID:27072914

  3. Multiwalled carbon nanotubes anchored with maghemite nanocrystals for high-performance lithium storage

    SciTech Connect

    Wu, Ping Xie, Kongwei; Xu, Xiali; Li, Jianping; Tang, Yawen; Zhou, Yiming Lu, Tianhong

    2015-04-15

    Highlights: • γ-Fe{sub 2}O{sub 3} nanocrystals uniformly anchored on MWCNT via facile layer-by-layer technique. • The hybrid exhibits enhanced structural stability and charge transport capability. • Superior lithium storage performance by virtue of unique structural characteristics. - Abstract: In this paper, we have anchored maghemite (γ-Fe{sub 2}O{sub 3}) nanocrystals compactly and uniformly on multiwalled carbon nanotubes (MWCNT) via a polyelectrolyte-assisted layer-by-layer assembly approach based on electrostatic attraction. When evaluated as an anode for lithium-ion batteries (LIBs), the as-synthesized MWCNT-γ-Fe{sub 2}O{sub 3} nanohybrid displays high reversible capacities, remarkable cycling stability, and magnificent high rate capability, facilitating its application as an advanced anode for high-energy, long-life, and high-power LIBs.

  4. Porous Iron Oxide Ribbons Grown on Graphene for High-Performance Lithium Storage

    PubMed Central

    Yang, Shubin; Sun, Yi; Chen, Long; Hernandez, Yenny; Feng, Xinliang; Müllen, Klaus

    2012-01-01

    A well-designed nanostructure of transition metal oxides has been regarded as a key to solve their problems of large volume changes during lithium insertion-desertion processes which are associated with pulverization of the electrodes and rapid capacity decay. Here we report an effective approach for the fabrication of porous iron oxide ribbons by controlling the nucleation and growth of iron precursor onto the graphene surface and followed by an annealing treatment. The resultant iron oxide ribbons possess large aspect ratio, porous structure, thin feature and enhanced open-edges. These characteristics are favorable for the fast diffusion of lithium ions and electrons, and meanwhile can effectively accommodate the volume change of iron oxides during the cycling processes. As a consequence, the graphene-induced porous iron oxide ribbons exhibit a high reversible capacity and excellent cycle stability for lithium storage. PMID:22645643

  5. Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices.

    PubMed

    Wang, Xianfu; Liu, Bin; Xiang, Qingyi; Wang, Qiufan; Hou, Xiaojuan; Chen, Di; Shen, Guozhen

    2014-01-01

    SnSe nanocrystal electrodes on three-dimensional (3D) carbon fabric and Au-coated polyethylene terephthalate (PET) wafer have been prepared by a simple spray-painting process and were further investigated as binder-free active-electrodes for Lithium-ion batteries (LIBs) and flexible stacked all-solid-state supercapacitors. The as-painted SnSe nanocrystals/carbon fabric electrodes exhibit an outstanding capacity of 676 mAh g(-1) after 80 cycles at a current density of 200 mA g(-1) and a considerable high-rate capability in lithium storage because of the excellent ion transport from the electrolyte to the active materials and the efficient charge transport between current collector and electrode materials. The binder-free electrodes also provide a larger electrochemical active surface compared with electrodes containing binders, which leads to the enhanced capacities of energy-storage devices. A flexible stacked all-solid-state supercapacitor based on the SnSe nanocrystals on Au-coated PET wafers shows high capacitance reversibility with little performance degradation at different current densities after 2200 charge-discharge cycles and even when bent. This allows for many potential applications in facile, cost-effective, spray-paintable, and flexible energy-storage devices. The results indicate that the fabrication of binder-free electrodes by a spray painting process is an interesting direction for the preparation of high-performance energy-storage devices. PMID:24339208

  6. Facial Synthesis of Three-Dimensional Cross-Linked Cage for High-Performance Lithium Storage.

    PubMed

    Sun, Zixu; Wang, Xinghui; Ying, Hangjun; Wang, Guangjin; Han, Wei-Qiang

    2016-06-22

    Silicon/C composite is a promising anode material for high-energy Li-ion batteries. However, synthesizing high-performance Si-based materials at large scale and low cost remains a huge challenge. Here, we for the first time report the preparation of an interconnected three-dimensional (3D) porous Si-hybrid architecture by using a spray drying method. In this unique structure, the highly robust C-CNT-RGO cages not only can improve the conductivity of the electrode and buffer the volume expansion but also suppress the Si nanoparticles aggregation. As a result, the 3D Si@po-C/CNT/RGO electrode achieves long-life cycling stability at high rates (a reversible capacity of 854.9 mA h g(-1) at 2 A g(-1) after 500 cycles and capacity decay less than 0.013% per cycle) and good rate capability (1454.7, 1198.8, 949.2, 597.8, and 150 mA h g(-1) at current densities of 1, 2, 4, 10, and 20 A g(-1), respectively). Moreover, this novel electrode could deliver high reversible capacities and long-life stabilities even with high mass loading density (764.9 mA h g(-1) at 1.0 mg cm(-2) after 500 cycles and 472.2 mA h g(-1) at 1.5 mg cm(-2) after 400 cycles, respectively). This cheap and scalable strategy can be extended to fabricate other materials with large volume expansion (Sn, Ge, transition-metal oxides) and 3D porous carbon for other potential applications. PMID:27236924

  7. TiO2 Microboxes with Controlled Internal Porosity for High-Performance Lithium Storage.

    PubMed

    Gao, Xuehui; Li, Gaoran; Xu, Yangyang; Hong, Zhanglian; Liang, Chengdu; Lin, Zhan

    2015-11-23

    Titanium dioxide (TiO2) is considered a promising anode material for high-power lithium ion batteries (LIBs) because of its low cost, high thermal/chemical stability, and good safety performance without solid electrolyte interface formation. However, the poor electronic conductivity and low lithium ion diffusivity of TiO2 result in poor cyclability and lithium ion depletion at high current rates, which hinder them from practical applications. Herein we demonstrate that hierarchically structured TiO2 microboxes with controlled internal porosity can address the aforementioned problems for high-power, long-life LIB anodes. A self-templating method for the synthesis of mesoporous microboxes was developed through Na2 EDTA-assisted ion exchange of CaTiO3 microcubes. The resulting TiO2 nanorods were organized into microboxes that resemble the microcube precursors. This nanostructured TiO2 material has superior lithium storage properties with a capacity of 187 mAh g(-1) after 300 cycles at 1 C and good rate capabilities up to 20 C. PMID:26429596

  8. TiO2 microboxes with controlled internal porosity for high-performance lithium storage

    DOE PAGESBeta

    Gao, Xuehui; Li, Gaoran; Xu, Yangyang; Hong, Zhanglian; Liang, Chengdu; Lin, Zhan

    2015-10-02

    Titanium dioxide (TiO2) is considered a promising anode material for high-power lithium ion batteries (LIBs) because of its low cost, high thermal/chemical stability, and good safety performance without solid electrolyte interface formation. However, the poor electronic conductivity and low lithium ion diffusivity of TiO2 result in poor cyclability and lithium ion depletion at high current rates, which hinder them from practical applications. Herein we demonstrate that hierarchically structured TiO2 microboxes with controlled internal porosity can address the aforementioned problems for high-power, long-life LIB anodes. A self-templating method for the synthesis of mesoporous microboxes was developed through Na2EDTA-assisted ion exchange ofmore » CaTiO3 microcubes. The resulting TiO2 nanorods were organized into microboxes that resemble the microcube precursors. Furthermore, this nanostructured TiO2 material has superior lithium storage properties with a capacity of 187 mAh g-1 after 300 cycles at 1C and good rate capabilities up to 20C.« less

  9. Functional porous carbon-ZnO nanocomposites for high-performance biosensors and energy storage applications.

    PubMed

    Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming; Veerakumar, Pitchaimani; Liu, Shang-Bin; Miyamoto, Nobuyoshi

    2016-06-28

    A one-pot synthesis method for the fabrication of biomass-derived activated carbon-zinc oxide (ZAC) nanocomposites using sugarcane bagasse as a carbon precursor and ZnCl2 as an activating agent is reported. For the first time, we used ZnCl2 as not only an activating agent and also for the synthesis of ZnO nanoparticles on the AC surface. ZAC materials with varying ZnO loading were prepared and characterized by a variety of analytical and spectroscopic techniques such as FE-SEM, FE-TEM, XRD, EA, XPS, and Raman spectroscopy. ZAC-modified glassy carbon electrodes (GCEs) were found to exhibit remarkable electrochemical properties for simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA) as well as hazardous pollutants such as hydrogen peroxide (H2O2) and hydrazine (N2H4) with desirable sensitivity, selectivity, and detection limits. Moreover, ZAC-modified stainless steel electrodes also showed superior performances for supercapacitor applications. The ZAC nanocomposites, which may be mass produced by the reported facile direct route from sugarcane bagasse, are not only eco-friendly but also cost-effective, and thus, are suitable as a practical platform for bio-sensing and energy storage applications. PMID:27265120

  10. Facile Synthesis of Nitrogen-Containing Mesoporous Carbon for High-Performance Energy Storage Applications.

    PubMed

    Xu, Yunling; Wang, Jie; Chang, Zhi; Ding, Bing; Wang, Ya; Shen, Laifa; Mi, Changhuan; Dou, Hui; Zhang, Xiaogang

    2016-03-14

    Porous carbon with high specific surface area (SSA), a reasonable pore size distribution, and modified surface chemistry is highly desirable for application in energy storage devices. Herein, we report the synthesis of nitrogen-containing mesoporous carbon with high SSA (1390 m(2)  g(-1) ), a suitable pore size distribution (1.5-8.1 nm), and a nitrogen content of 4.7 wt % through a facile one-step self-assembly process. Owing to its unique physical characteristics and nitrogen doping, this material demonstrates great promise for application in both supercapacitors and encapsulating sulfur as a superior cathode material for lithium-sulfur batteries. When deployed as a supercapacitor electrode, it exhibited a high specific capacitance of 238.4 F g(-1) at 1 A g(-1) and an excellent rate capability (180 F g(-1) , 10 A g(-1) ). Furthermore, when an NMC/S electrode was evaluated as the cathode material for lithium-sulfur batteries, it showed a high initial discharge capacity of 1143.6 mA h g(-1) at 837.5 mA g(-1) and an extraordinary cycling stability with 70.3 % capacity retention after 100 cycles. PMID:26849174

  11. Building High-Performing and Improving Education Systems. Systems and Structures: Powers, Duties and Funding. Review

    ERIC Educational Resources Information Center

    Slater, Liz

    2013-01-01

    This Review looks at the way high-performing and improving education systems share out power and responsibility. Resources--in the form of funding, capital investment or payment of salaries and other ongoing costs--are some of the main levers used to make policy happen, but are not a substitute for well thought-through and appropriate policy…

  12. Storage battery systems analysis

    SciTech Connect

    Murphy, K.D.

    1982-01-01

    Storage Battery Systems Analysis supports the battery Exploratory Technology Development and Testing Project with technical and economic analysis of battery systems in various end-use applications. Computer modeling and simulation techniques are used in the analyses. Analysis objectives are achieved through both in-house efforts and outside contracts. In-house studies during FY82 included a study of the relationship between storage battery system reliability and cost, through cost-of-investment and cost-of-service interruption inputs; revision and update of the SOLSTOR computer code in standard FORTRAN 77 form; parametric studies of residential stand-alone photovoltaic systems using the SOLSTOR code; simulation of wind turbine collector/storage battery systems for the community of Kalaupapa, Molokai, Hawaii.

  13. Iso-Oriented Anatase TiO2 Mesocages as a High Performance Anode Material for Sodium-Ion Storage

    PubMed Central

    Hong, Zhensheng; Zhou, Kaiqiang; Huang, Zhigao; Wei, Mingdeng

    2015-01-01

    A major obstacle in realizing Na-ion batteries (NIBs) is the absence of suitable anode materials. Herein, we firstly report the anatase TiO2 mesocages constructed by crystallographically oriented nanoparticle subunits as a high performance anode for NIBs. The mesocages with tunable microstructures, high surface area (204 m2 g−1) and uniform mesoporous structure were firstly prepared by a general synthesis method under the assist of sodium dodecyl sulfate (SDS). It’s notable that the TiO2 mesocages exhibit a large reversible capacity and good rate capability. A stable capacity of 93 mAhg−1 can be retained after 500 cycles at 10 C in the range of 0.01–2.5 V, indicating high rate performance and good cycling stability. This could be due to the uniform architecture of iso-oriented mesocage structure with few grain boundaries and nanoporous nature, allowing fast electron and ion transport, and providing more active sites as well as freedom for volume change during Na-ion insertion. CV measurements demonstrate that the sodium-ion storage process of anatase mesocages is mainly controlled by pseudocapacitive behavior, which is different from the lithium-ion storage and further facilitates the high rate capability. PMID:26145511

  14. Encapsulated, High-Performance, Stretchable Array of Stacked Planar Micro-Supercapacitors as Waterproof Wearable Energy Storage Devices.

    PubMed

    Kim, Hyoungjun; Yoon, Jangyeol; Lee, Geumbee; Paik, Seung-Ho; Choi, Gukgwon; Kim, Daeil; Kim, Beop-Min; Zi, Goangseup; Ha, Jeong Sook

    2016-06-29

    We report the fabrication of an encapsulated, high-performance, stretchable array of stacked planar micro-supercapacitors (MSCs) as a wearable energy storage device for waterproof applications. A pair of planar all-solid-state MSCs with spray-coated multiwalled carbon nanotube electrodes and a drop-cast UV-patternable ion-gel electrolyte was fabricated on a polyethylene terephthalate film using serial connection to increase the operation voltage of the MSC. Additionally, multiple MSCs could be vertically stacked with parallel connections to increase both the total capacitance and the areal capacitance owing to the use of a solid-state patterned electrolyte. The overall device of five parallel-connected stacked MSCs, a microlight-emitting diode (μ-LED), and a switch was encapsulated in thin Ecoflex film so that the capacitance remained at 82% of its initial value even after 4 d in water; the μ-LED was lit without noticeable decrease in brightness under deformation including bending and stretching. Furthermore, an Ecoflex encapsulated oximeter wound around a finger was operated using the stored energy of the MSC array attached to the hand (even in water) to give information on arterial pulse rate and oxygen saturation in the blood. This study suggests potential applications of our encapsulated MSC array in wearable energy storage devices especially in water. PMID:27267316

  15. Research into the interaction between high performance and cognitive skills in an intelligent tutoring system

    NASA Technical Reports Server (NTRS)

    Fink, Pamela K.

    1991-01-01

    Two intelligent tutoring systems were developed. These tutoring systems are being used to study the effectiveness of intelligent tutoring systems in training high performance tasks and the interrelationship of high performance and cognitive tasks. The two tutoring systems, referred to as the Console Operations Tutors, were built using the same basic approach to the design of an intelligent tutoring system. This design approach allowed researchers to more rapidly implement the cognitively based tutor, the OMS Leak Detect Tutor, by using the foundation of code generated in the development of the high performance based tutor, the Manual Select Keyboard (MSK). It is believed that the approach can be further generalized to develop a generic intelligent tutoring system implementation tool.

  16. Goddard Conference on Mass Storage Systems and Technologies, volume 2

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor)

    1993-01-01

    Papers and viewgraphs from the conference are presented. Discussion topics include the IEEE Mass Storage System Reference Model, data archiving standards, high-performance storage devices, magnetic and magneto-optic storage systems, magnetic and optical recording technologies, high-performance helical scan recording systems, and low end helical scan tape drives. Additional discussion topics addressed the evolution of the identifiable unit for processing (file, granule, data set, or some similar object) as data ingestion rates increase dramatically, and the present state of the art in mass storage technology.

  17. Energy storage connection system

    DOEpatents

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  18. Data acquisition and control system for high-performance large-area CCD systems

    NASA Astrophysics Data System (ADS)

    Afanasieva, I. V.

    2015-04-01

    Astronomical CCD systems based on second-generation DINACON controllers were developed at the SAO RAS Advanced Design Laboratory more than seven years ago and since then have been in constant operation at the 6-meter and Zeiss-1000 telescopes. Such systems use monolithic large-area CCDs. We describe the software developed for the control of a family of large-area CCD systems equipped with a DINACON-II controller. The software suite serves for acquisition, primary reduction, visualization, and storage of video data, and also for the control, setup, and diagnostics of the CCD system.

  19. Spacecraft cryogenic gas storage systems

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1971-01-01

    Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.

  20. Room temperature synthesis of cobalt-manganese-nickel oxalates micropolyhedrons for high-performance flexible electrochemical energy storage device

    PubMed Central

    Zhang, Yi-Zhou; Zhao, Junhong; Xia, Jing; Wang, Lulu; Lai, Wen-Yong; Pang, Huan; Huang, Wei

    2015-01-01

    Cobalt-manganese-nickel oxalates micropolyhedrons were successfully fabricated by a room temperature chemical co-precipitation method. Interestingly, the Co0.5Mn0.4Ni0.1C2O4*nH2O micropolyhedrons and graphene nanosheets have been successfully applied as the positive and negative electrode materials (a battery type Faradaic electrode and a capacitive electrode, respectively) for flexible solid-state asymmetric supercapacitors. More importantly, the as-assembled device achieved a maximum energy density of 0.46 mWh·cm−3, a decent result among devices with similar structures. The as-assembled device showed good flexibility, functioning well under both normal and bent conditions (0°–180°). The resulting device showed little performance decay even after 6000 cycles, which rendered the Co0.5Mn0.4Ni0.1C2O4*nH2O//Graphene device configuration a promising candidate for high-performance flexible solid-state asymmetric supercapacitors in the field of high-energy-density energy storage devices. PMID:25705048

  1. Room temperature synthesis of cobalt-manganese-nickel oxalates micropolyhedrons for high-performance flexible electrochemical energy storage device

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Zhou; Zhao, Junhong; Xia, Jing; Wang, Lulu; Lai, Wen-Yong; Pang, Huan; Huang, Wei

    2015-02-01

    Cobalt-manganese-nickel oxalates micropolyhedrons were successfully fabricated by a room temperature chemical co-precipitation method. Interestingly, the Co0.5Mn0.4Ni0.1C2O4*nH2O micropolyhedrons and graphene nanosheets have been successfully applied as the positive and negative electrode materials (a battery type Faradaic electrode and a capacitive electrode, respectively) for flexible solid-state asymmetric supercapacitors. More importantly, the as-assembled device achieved a maximum energy density of 0.46 mWh.cm-3, a decent result among devices with similar structures. The as-assembled device showed good flexibility, functioning well under both normal and bent conditions (0°-180°). The resulting device showed little performance decay even after 6000 cycles, which rendered the Co0.5Mn0.4Ni0.1C2O4*nH2O//Graphene device configuration a promising candidate for high-performance flexible solid-state asymmetric supercapacitors in the field of high-energy-density energy storage devices.

  2. High performance solar desiccant cooling system: Performance evaluation and research recommendations

    NASA Astrophysics Data System (ADS)

    Schlepp, D. R.; Schultz, K. J.

    1984-09-01

    The current status of solar desiccant cooling was assessed and recommendations were made for continued research to develop high performance systems competitive with conventional cooling systems. Solid desiccant, liquid desiccant, and hybrid systems combining desiccant dehumidifiers with vapor compressor units are considered. Currently, all desiccant systems fall somewhat short of being competitive with conventional systems. Hybrid systems appear to have the greatest potential in the short term. Solid systems are close to meeting performance goals. Development of high performance solid desiccant dehumidifiers based on parallel passage designs should be pursued. Liquid system collector/generators and efficient absorbers should receive attention. Model development is also indicated. Continued development by hybrid systems is directly tied to the above work.

  3. An intelligent tutoring system for the investigation of high performance skill acquisition

    NASA Technical Reports Server (NTRS)

    Fink, Pamela K.; Herren, L. Tandy; Regian, J. Wesley

    1991-01-01

    The issue of training high performance skills is of increasing concern. These skills include tasks such as driving a car, playing the piano, and flying an aircraft. Traditionally, the training of high performance skills has been accomplished through the use of expensive, high-fidelity, 3-D simulators, and/or on-the-job training using the actual equipment. Such an approach to training is quite expensive. The design, implementation, and deployment of an intelligent tutoring system developed for the purpose of studying the effectiveness of skill acquisition using lower-cost, lower-physical-fidelity, 2-D simulation. Preliminary experimental results are quite encouraging, indicating that intelligent tutoring systems are a cost-effective means of training high performance skills.

  4. Low-cost high performance adaptive optics real-time controller in free space optical communication system

    NASA Astrophysics Data System (ADS)

    Chen, Shanqiu; Liu, Chao; Zhao, Enyi; Xian, Hao; Xu, Bing; Ye, Yutang

    2014-11-01

    This paper proposed a low-cost and high performance adaptive optics real-time controller in free space optical communication system. Real-time controller is constructed with a 4-core CPU with Linux operation system patched with Real-Time Application Interface (RTAI) and a frame-grabber, and the whole cost is below $6000. Multi-core parallel processing scheme and SSE instruction optimization for reconstruction process result in about 5 speedup, and overall processing time for this 137-element adaptive optic system can reach below 100 us and with latency about 50 us by utilizing streamlined processing scheme, which meet the requirement of processing at frequency over 1709 Hz. Real-time data storage system designed by circle buffer make this system to store consecutive image frames and provide an approach to analysis the image data and intermediate data such as slope information.

  5. High Performance Work System, HRD Climate and Organisational Performance: An Empirical Study

    ERIC Educational Resources Information Center

    Muduli, Ashutosh

    2015-01-01

    Purpose: This paper aims to study the relationship between high-performance work system (HPWS) and organizational performance and to examine the role of human resource development (HRD) Climate in mediating the relationship between HPWS and the organizational performance in the context of the power sector of India. Design/methodology/approach: The…

  6. High-Performance Work Systems and School Effectiveness: The Case of Malaysian Secondary Schools

    ERIC Educational Resources Information Center

    Maroufkhani, Parisa; Nourani, Mohammad; Bin Boerhannoeddin, Ali

    2015-01-01

    This study focuses on the impact of high-performance work systems on the outcomes of organizational effectiveness with the mediating roles of job satisfaction and organizational commitment. In light of the importance of human resource activities in achieving organizational effectiveness, we argue that higher employees' decision-making capabilities…

  7. Unlocking the Black Box: Exploring the Link between High-Performance Work Systems and Performance

    ERIC Educational Resources Information Center

    Messersmith, Jake G.; Patel, Pankaj C.; Lepak, David P.

    2011-01-01

    With a growing body of literature linking systems of high-performance work practices to organizational performance outcomes, recent research has pushed for examinations of the underlying mechanisms that enable this connection. In this study, based on a large sample of Welsh public-sector employees, we explored the role of several individual-level…

  8. High Performance Work Systems and Organizational Outcomes: The Mediating Role of Information Quality.

    ERIC Educational Resources Information Center

    Preuss, Gil A.

    2003-01-01

    A study of the effect of high-performance work systems on 935 nurses and 182 nurses aides indicated that quality of decision-making information depends on workers' interpretive skills and partially mediated effects of work design and total quality management on organizational performance. Providing relevant knowledge and opportunities to use…

  9. 3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage.

    PubMed

    Ren, Long; Hui, K N; Hui, K S; Liu, Yundan; Qi, Xiang; Zhong, Jianxin; Du, Yi; Yang, Jianping

    2015-01-01

    New and novel 3D hierarchical porous graphene aerogels (HPGA) with uniform and tunable meso-pores (e.g., 21 and 53 nm) on graphene nanosheets (GNS) were prepared by a hydrothermal self-assembly process and an in-situ carbothermal reaction. The size and distribution of the meso-pores on the individual GNS were uniform and could be tuned by controlling the sizes of the Co3O4 NPs used in the hydrothermal reaction. This unique architecture of HPGA prevents the stacking of GNS and promises more electrochemically active sites that enhance the electrochemical storage level significantly. HPGA, as a lithium-ion battery anode, exhibited superior electrochemical performance, including a high reversible specific capacity of 1100 mAh/g at a current density of 0.1 A/g, outstanding cycling stability and excellent rate performance. Even at a large current density of 20 A/g, the reversible capacity was retained at 300 mAh/g, which is larger than that of most porous carbon-based anodes reported, suggesting it to be a promising candidate for energy storage. The proposed 3D HPGA is expected to provide an important platform that can promote the development of 3D topological porous systems in a range of energy storage and generation fields. PMID:26382852

  10. 3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage

    PubMed Central

    Ren, Long; Hui, K. N.; Hui, K. S.; Liu, Yundan; Qi, Xiang; Zhong, Jianxin; Du, Yi; Yang, Jianping

    2015-01-01

    New and novel 3D hierarchical porous graphene aerogels (HPGA) with uniform and tunable meso-pores (e.g., 21 and 53 nm) on graphene nanosheets (GNS) were prepared by a hydrothermal self-assembly process and an in-situ carbothermal reaction. The size and distribution of the meso-pores on the individual GNS were uniform and could be tuned by controlling the sizes of the Co3O4 NPs used in the hydrothermal reaction. This unique architecture of HPGA prevents the stacking of GNS and promises more electrochemically active sites that enhance the electrochemical storage level significantly. HPGA, as a lithium-ion battery anode, exhibited superior electrochemical performance, including a high reversible specific capacity of 1100 mAh/g at a current density of 0.1 A/g, outstanding cycling stability and excellent rate performance. Even at a large current density of 20 A/g, the reversible capacity was retained at 300 mAh/g, which is larger than that of most porous carbon-based anodes reported, suggesting it to be a promising candidate for energy storage. The proposed 3D HPGA is expected to provide an important platform that can promote the development of 3D topological porous systems in a range of energy storage and generation fields. PMID:26382852

  11. 3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage

    NASA Astrophysics Data System (ADS)

    Ren, Long; Hui, K. N.; Hui, K. S.; Liu, Yundan; Qi, Xiang; Zhong, Jianxin; Du, Yi; Yang, Jianping

    2015-09-01

    New and novel 3D hierarchical porous graphene aerogels (HPGA) with uniform and tunable meso-pores (e.g., 21 and 53 nm) on graphene nanosheets (GNS) were prepared by a hydrothermal self-assembly process and an in-situ carbothermal reaction. The size and distribution of the meso-pores on the individual GNS were uniform and could be tuned by controlling the sizes of the Co3O4 NPs used in the hydrothermal reaction. This unique architecture of HPGA prevents the stacking of GNS and promises more electrochemically active sites that enhance the electrochemical storage level significantly. HPGA, as a lithium-ion battery anode, exhibited superior electrochemical performance, including a high reversible specific capacity of 1100 mAh/g at a current density of 0.1 A/g, outstanding cycling stability and excellent rate performance. Even at a large current density of 20 A/g, the reversible capacity was retained at 300 mAh/g, which is larger than that of most porous carbon-based anodes reported, suggesting it to be a promising candidate for energy storage. The proposed 3D HPGA is expected to provide an important platform that can promote the development of 3D topological porous systems in a range of energy storage and generation fields.

  12. Energy Storage System

    NASA Technical Reports Server (NTRS)

    1996-01-01

    SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.

  13. Vehicle storage battery system

    SciTech Connect

    Binkley, B.I.

    1986-01-14

    This patent describes a vehicle storage battery system. Included in this system is a storage battery which has three separate storage battery portions. The main battery portion has a capacity for starting the vehicle under normal circumstances. The first and second standby portions of the battery when connected in a series have a rated capacity sufficient to transfer enough charge to the main battery portion when in a discharged state to start the engine of the vehicle. Another integral component of the system is a battery control having a circuit for connecting the two standby portions in series for charging the main battery portion when it is in a discharged state. This circuit also includes a means for restricting a charging current flow from the standby portions to the main portion to a predetermined safe level. An analogous circuit connects the standby portions in parallel for recharging from the main battery portion with a means for restricting a recharge current flow to a predetermined safe level. The last component is a switch means to switch between the above circuits.

  14. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH-PERFORMANCE POWER SYSTEMS

    SciTech Connect

    1998-11-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolyzation process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2, which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, Al. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. The design of the char burner was completed during this quarter. The burner is designed for arch-firing and has a maximum capacity of 30 MMBtu/hr. This size represents a half scale version of a typical commercial burner. The burner is outfitted with

  15. Building a medical multimedia database system to integrate clinical information: an application of high-performance computing and communications technology.

    PubMed

    Lowe, H J; Buchanan, B G; Cooper, G F; Vries, J K

    1995-01-01

    The rapid growth of diagnostic-imaging technologies over the past two decades has dramatically increased the amount of nontextual data generated in clinical medicine. The architecture of traditional, text-oriented, clinical information systems has made the integration of digitized clinical images with the patient record problematic. Systems for the classification, retrieval, and integration of clinical images are in their infancy. Recent advances in high-performance computing, imaging, and networking technology now make it technologically and economically feasible to develop an integrated, multimedia, electronic patient record. As part of The National Library of Medicine's Biomedical Applications of High-Performance Computing and Communications program, we plan to develop Image Engine, a prototype microcomputer-based system for the storage, retrieval, integration, and sharing of a wide range of clinically important digital images. Images stored in the Image Engine database will be indexed and organized using the Unified Medical Language System Metathesaurus and will be dynamically linked to data in a text-based, clinical information system. We will evaluate Image Engine by initially implementing it in three clinical domains (oncology, gastroenterology, and clinical pathology) at the University of Pittsburgh Medical Center. PMID:7703940

  16. Superflywheel energy storage system. [for windpowered machines

    NASA Technical Reports Server (NTRS)

    Rabenhorst, D. W.

    1973-01-01

    A windpowered system using the superflywheel configuration for energy storage is considered. Basic elements of superflywheels are thin rods assembled in pregrooved hub lamina so that they fan out in radial orientation. Adjacent layers of hub lamina are assembled 90 degree in rotation to each other so as to form a circular brush configuration. Thus stress concentrations and rod failure are minimized and realistic failure containment for a high performance flywheel is obtained.

  17. High Performance Variable Speed Drive System and Generating System with Doubly Fed Machines

    NASA Astrophysics Data System (ADS)

    Tang, Yifan

    Doubly fed machines are another alternative for variable speed drive systems. The doubly fed machines, including doubly fed induction machine, self-cascaded induction machine and doubly excited brushless reluctance machine, have several attractive advantages for variable speed drive applications, the most important one being the significant cost reduction with a reduced power converter rating. With a better understanding, improved machine design, flexible power converters and innovated controllers, the doubly fed machines could favorably compete for many applications, which may also include variable speed power generations. The goal of this research is to enhance the attractiveness of the doubly fed machines for both variable speed drive and variable speed generator applications. Recognizing that wind power is one of the favorable clean, renewable energy sources that can contribute to the solution to the energy and environment dilemma, a novel variable-speed constant-frequency wind power generating system is proposed. By variable speed operation, energy capturing capability of the wind turbine is improved. The improvement can be further enhanced by effectively utilizing the doubly excited brushless reluctance machine in slip power recovery configuration. For the doubly fed machines, a stator flux two -axis dynamic model is established, based on which a flexible active and reactive power control strategy can be developed. High performance operation of the drive and generating systems is obtained through advanced control methods, including stator field orientation control, fuzzy logic control and adaptive fuzzy control. System studies are pursued through unified modeling, computer simulation, stability analysis and power flow analysis of the complete drive system or generating system with the machine, the converter and the control. Laboratory implementations and tested results with a digital signal processor system are also presented.

  18. Investigating Operating System Noise in Extreme-Scale High-Performance Computing Systems using Simulation

    SciTech Connect

    Engelmann, Christian

    2013-01-01

    Hardware/software co-design for future-generation high-performance computing (HPC) systems aims at closing the gap between the peak capabilities of the hardware and the performance realized by applications (application-architecture performance gap). Performance profiling of architectures and applications is a crucial part of this iterative process. The work in this paper focuses on operating system (OS) noise as an additional factor to be considered for co-design. It represents the first step in including OS noise in HPC hardware/software co-design by adding a noise injection feature to an existing simulation-based co-design toolkit. It reuses an existing abstraction for OS noise with frequency (periodic recurrence) and period (duration of each occurrence) to enhance the processor model of the Extreme-scale Simulator (xSim) with synchronized and random OS noise simulation. The results demonstrate this capability by evaluating the impact of OS noise on MPI_Bcast() and MPI_Reduce() in a simulated future-generation HPC system with 2,097,152 compute nodes.

  19. Unlocking the black box: exploring the link between high-performance work systems and performance.

    PubMed

    Messersmith, Jake G; Patel, Pankaj C; Lepak, David P; Gould-Williams, Julian

    2011-11-01

    With a growing body of literature linking systems of high-performance work practices to organizational performance outcomes, recent research has pushed for examinations of the underlying mechanisms that enable this connection. In this study, based on a large sample of Welsh public-sector employees, we explored the role of several individual-level attitudinal factors--job satisfaction, organizational commitment, and psychological empowerment--as well as organizational citizenship behaviors that have the potential to provide insights into how human resource systems influence the performance of organizational units. The results support a unit-level path model, such that department-level, high-performance work system utilization is associated with enhanced levels of job satisfaction, organizational commitment, and psychological empowerment. In turn, these attitudinal variables were found to be positively linked to enhanced organizational citizenship behaviors, which are further related to a second-order construct measuring departmental performance. PMID:21787040

  20. Hybrid core-shell nanowire electrodes utilizing vertically aligned carbon nanofiber arrays for high-performance energy storage

    NASA Astrophysics Data System (ADS)

    Klankowski, Steven Arnold

    Nanostructured electrode materials for electrochemical energy storage systems have been shown to improve both rate performance and capacity retention, while allowing considerably longer cycling lifetime. The nano-architectures provide enhanced kinetics by means of larger surface area, higher porosity, better material interconnectivity, shorter diffusion lengths, and overall mechanical stability. Meanwhile, active materials that once were excluded from use due to bulk property issues are now being examined in new nanoarchitecture. Silicon was such a material, desired for its large lithium-ion storage capacity of 4,200 mAh g-1 and low redox potential of 0.4 V vs. Li/Li+; however, a ˜300% volume expansion and increased resistivity upon lithiation limited its broader applications. In the first study, the silicon-coated vertically aligned carbon nanofiber (VACNF) array presents a unique core-shell nanowire (NW) architecture that demonstrates both good capacity and high rate performance. In follow-up, the Si-VACNFs NW electrode demonstrates enhanced power rate capabilities as it shows excellent storage capacity at high rates, attributed to the unique nanoneedle structure that high vacuum sputtering produces on the three-dimensional array. Following silicon's success, titanium dioxide has been explored as an alternative high-rate electrode material by utilizing the dual storage mechanisms of Li+ insertion and pseudocapacitance. The TiO 2-coated VACNFs shows improved electrochemical activity that delivers near theoretical capacity at larger currents due to shorter Li+ diffusion lengths and highly effective electron transport. A unique cell is formed with the Si-coated and TiO2-coated electrodes place counter to one another, creating the hybrid of lithium ion battery-pseudocapacitor that demonstrated both high power and high energy densities. The hybrid cell operates like a battery at lower current rates, achieving larger discharge capacity, while retaining one-third of

  1. Stability and Degradation of Caffeoylquinic Acids under Different Storage Conditions Studied by High-Performance Liquid Chromatography with Photo Diode Array Detection and High-Performance Liquid Chromatography with Electrospray Ionization Collision-Induced Dissociation Tandem Mass Spectrometry.

    PubMed

    Xue, Meng; Shi, Hang; Zhang, Jiao; Liu, Qing-Quan; Guan, Jun; Zhang, Jia-Yu; Ma, Qun

    2016-01-01

    Caffeoylquinic acids (CQAs) are main constituents in many herbal medicines with various biological and pharmacological effects. However, CQAs will degrade or isomerize when affected by temperature, pH, light, etc. In this study, high-performance liquid chromatography with photodiode array detection (HPLC-PDA) and high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) was utilized to study the stability and degradation of CQAs (three mono-acyl CQAs and four di-acyl CQAs) under various ordinary storage conditions (involving different temperatures, solvents, and light irradiation). The results indicated that the stability of CQAs was mainly affected by temperature and light irradiation, while solvents did not affect it in any obvious way under the conditions studied. Mono-acyl CQAs were generally much more stable than di-acyl CQAs under the same conditions. Meanwhile, the chemical structures of 30 degradation products were also characterized by HPLC-MS(n), inferring that isomerization, methylation, and hydrolysis were three major degradation pathways. The result provides a meaningful clue for the storage conditions of CQAs standard substances and samples. PMID:27455213

  2. Development of low-cost high-performance multispectral camera system at Banpil

    NASA Astrophysics Data System (ADS)

    Oduor, Patrick; Mizuno, Genki; Olah, Robert; Dutta, Achyut K.

    2014-05-01

    Banpil Photonics (Banpil) has developed a low-cost high-performance multispectral camera system for Visible to Short- Wave Infrared (VIS-SWIR) imaging for the most demanding high-sensitivity and high-speed military, commercial and industrial applications. The 640x512 pixel InGaAs uncooled camera system is designed to provide a compact, smallform factor to within a cubic inch, high sensitivity needing less than 100 electrons, high dynamic range exceeding 190 dB, high-frame rates greater than 1000 frames per second (FPS) at full resolution, and low power consumption below 1W. This is practically all the feature benefits highly desirable in military imaging applications to expand deployment to every warfighter, while also maintaining a low-cost structure demanded for scaling into commercial markets. This paper describes Banpil's development of the camera system including the features of the image sensor with an innovation integrating advanced digital electronics functionality, which has made the confluence of high-performance capabilities on the same imaging platform practical at low cost. It discusses the strategies employed including innovations of the key components (e.g. focal plane array (FPA) and Read-Out Integrated Circuitry (ROIC)) within our control while maintaining a fabless model, and strategic collaboration with partners to attain additional cost reductions on optics, electronics, and packaging. We highlight the challenges and potential opportunities for further cost reductions to achieve a goal of a sub-$1000 uncooled high-performance camera system. Finally, a brief overview of emerging military, commercial and industrial applications that will benefit from this high performance imaging system and their forecast cost structure is presented.

  3. A tutorial on the construction of high-performance resolution/paramodulation systems

    SciTech Connect

    Butler, R.; Overbeek, R.

    1990-09-01

    Over the past 25 years, researchers have written numerous deduction systems based on resolution and paramodulation. Of these systems, a very few have been capable of generating and maintaining a formula database'' containing more than just a few thousand clauses. These few systems were used to explore mechanisms for rapidly extracting limited subsets of relevant'' clauses. We have written this tutorial to reflect some of the best ideas that have emerged and to cast them in a form that makes them easily accessible to students wishing to write their own high-performance systems. 4 refs.

  4. Building high-performance system for processing a daily large volume of Chinese satellites imagery

    NASA Astrophysics Data System (ADS)

    Deng, Huawu; Huang, Shicun; Wang, Qi; Pan, Zhiqiang; Xin, Yubin

    2014-10-01

    The number of Earth observation satellites from China increases dramatically recently and those satellites are acquiring a large volume of imagery daily. As the main portal of image processing and distribution from those Chinese satellites, the China Centre for Resources Satellite Data and Application (CRESDA) has been working with PCI Geomatics during the last three years to solve two issues in this regard: processing the large volume of data (about 1,500 scenes or 1 TB per day) in a timely manner and generating geometrically accurate orthorectified products. After three-year research and development, a high performance system has been built and successfully delivered. The high performance system has a service oriented architecture and can be deployed to a cluster of computers that may be configured with high end computing power. The high performance is gained through, first, making image processing algorithms into parallel computing by using high performance graphic processing unit (GPU) cards and multiple cores from multiple CPUs, and, second, distributing processing tasks to a cluster of computing nodes. While achieving up to thirty (and even more) times faster in performance compared with the traditional practice, a particular methodology was developed to improve the geometric accuracy of images acquired from Chinese satellites (including HJ-1 A/B, ZY-1-02C, ZY-3, GF-1, etc.). The methodology consists of fully automatic collection of dense ground control points (GCP) from various resources and then application of those points to improve the photogrammetric model of the images. The delivered system is up running at CRESDA for pre-operational production and has been and is generating good return on investment by eliminating a great amount of manual labor and increasing more than ten times of data throughput daily with fewer operators. Future work, such as development of more performance-optimized algorithms, robust image matching methods and application

  5. DScan - a high-performance digital scanning system for entomological collections.

    PubMed

    Schmidt, Stefan; Balke, Michael; Lafogler, Stefan

    2012-01-01

    Here we describe a high-performance imaging system for creating high-resolution images of whole insect drawers. All components of the system are industrial standard and can be adapted to meet the specific needs of entomological collections. A controlling unit allows the setting of imaging area (drawer size), step distance between individual images, number of images, image resolution, and shooting sequence order through a set of parameters. The system is highly configurable and can be used with a wide range of different optical hardware and image processing software. PMID:22859887

  6. High-performance porous carbon/CeO2 nanoparticles hybrid super-capacitors for energy storage

    NASA Astrophysics Data System (ADS)

    Shuvo, Mohammad Arif I.; Karim, Hasanul; Islam, Md. T.; Rodriguez, Gerardo; Nandasiri, Manjula I.; Schwarz, Ashleigh M.; Devaraj, Arun; Noveron, Juan C.; Vijayakumar, Murugesan; Lin, Yirong

    2015-03-01

    Increasing demand for energy storage devices has propelled researchers for developing efficient super-capacitors (SC) with long cycle life and ultrahigh energy density. Carbon-based materials are commonly used as electrode materials for SC. Herein we report a new approach to improve the SC performance utilizing porous carbon /Cerium oxide nanoparticle (PC-CON) hybrid as electrode material synthesized via low temperature hydrothermal method and tetraethyl ammonium tetrafluroborate in acetonitrile as organic electrolyte. Through this approach, charges can be stored not only via electrochemical double layer capacitance (EDLC) from PC but also through pseudo-capacitive effect from CeO2 NPs. The excellent electrode-electrolyte interaction due to the electrochemical properties of the ionic electrolyte provides a better voltage window for the SC. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD) measurements were used for the initial characterization of this PC/CeO2 NPs hybrid material system. Electrochemical measurements of SCs was performed using a potentio-galvanostat. It is found that the specific capacitance was improved by 30% using PC-CON system compared with pristine PC system.

  7. Damage-Mitigating Control of Space Propulsion Systems for High Performance and Extended Life

    NASA Technical Reports Server (NTRS)

    Ray, Asok; Wu, Min-Kuang

    1994-01-01

    A major goal in the control of complex mechanical system such as spacecraft rocket engine's advanced aircraft, and power plants is to achieve high performance with increased reliability, component durability, and maintainability. The current practice of decision and control systems synthesis focuses on improving performance and diagnostic capabilities under constraints that often do not adequately represent the materials degradation. In view of the high performance requirements of the system and availability of improved materials, the lack of appropriate knowledge about the properties of these materials will lead to either less than achievable performance due to overly conservative design, or over-straining of the structure leading to unexpected failures and drastic reduction of the service life. The key idea in this report is that a significant improvement in service life could be achieved by a small reduction in the system dynamic performance. The major task is to characterize the damage generation process, and then utilize this information in a mathematical form to synthesize a control law that would meet the system requirements and simultaneously satisfy the constraints that are imposed by the material and structural properties of the critical components. The concept of damage mitigation is introduced for control of mechanical systems to achieve high performance with a prolonged life span. A model of fatigue damage dynamics is formulated in the continuous-time setting, instead of a cycle-based representation, for direct application to control systems synthesis. An optimal control policy is then formulated via nonlinear programming under specified constraints of the damage rate and accumulated damage. The results of simulation experiments for the transient upthrust of a bipropellant rocket engine are presented to demonstrate efficacy of the damage-mitigating control concept.

  8. A flexible and inexpensive high-performance auditory evoked response recording system appropriate for research purposes.

    PubMed

    Valderrama, Joaquin T; de la Torre, Angel; Alvarez, Isaac; Segura, Jose Carlos; Sainz, Manuel; Vargas, Jose Luis

    2014-10-01

    Recording auditory evoked responses (AER) is done not only in hospitals and clinics worldwide to detect hearing impairments and estimate hearing thresholds, but also in research centers to understand and model the mechanisms involved in the process of hearing. This paper describes a high-performance, flexible, and inexpensive AER recording system. A full description of the hardware and software modules that compose the AER recording system is provided. The performance of this system was evaluated by conducting five experiments with both real and artificially synthesized auditory brainstem response and middle latency response signals at different intensity levels and stimulation rates. The results indicate that the flexibility of the described system is appropriate to record AER signals under several recording conditions. The AER recording system described in this article is a flexible and inexpensive high-performance AER recording system. This recording system also incorporates a platform through which users are allowed to implement advanced signal processing methods. Moreover, its manufacturing cost is significantly lower than that of other commercially available alternatives. These advantages may prove useful in many research applications in audiology. PMID:24870606

  9. Image Processor Electronics (IPE): The High-Performance Computing System for NASA SWIFT Mission

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang H.; Settles, Beverly A.

    2003-01-01

    Gamma Ray Bursts (GRBs) are believed to be the most powerful explosions that have occurred in the Universe since the Big Bang and are a mystery to the scientific community. Swift, a NASA mission that includes international participation, was designed and built in preparation for a 2003 launch to help to determine the origin of Gamma Ray Bursts. Locating the position in the sky where a burst originates requires intensive computing, because the duration of a GRB can range between a few milliseconds up to approximately a minute. The instrument data system must constantly accept multiple images representing large regions of the sky that are generated by sixteen gamma ray detectors operating in parallel. It then must process the received images very quickly in order to determine the existence of possible gamma ray bursts and their locations. The high-performance instrument data computing system that accomplishes this is called the Image Processor Electronics (IPE). The IPE was designed, built and tested by NASA Goddard Space Flight Center (GSFC) in order to meet these challenging requirements. The IPE is a small size, low power and high performing computing system for space applications. This paper addresses the system implementation and the system hardware architecture of the IPE. The paper concludes with the IPE system performance that was measured during end-to-end system testing.

  10. Goddard Conference on Mass Storage Systems and Technologies, Volume 1

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor)

    1993-01-01

    Copies of nearly all of the technical papers and viewgraphs presented at the Goddard Conference on Mass Storage Systems and Technologies held in Sep. 1992 are included. The conference served as an informational exchange forum for topics primarily relating to the ingestion and management of massive amounts of data and the attendant problems (data ingestion rates now approach the order of terabytes per day). Discussion topics include the IEEE Mass Storage System Reference Model, data archiving standards, high-performance storage devices, magnetic and magneto-optic storage systems, magnetic and optical recording technologies, high-performance helical scan recording systems, and low end helical scan tape drives. Additional topics addressed the evolution of the identifiable unit for processing purposes as data ingestion rates increase dramatically, and the present state of the art in mass storage technology.

  11. Technology for national asset storage systems

    NASA Technical Reports Server (NTRS)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard

    1993-01-01

    An industry-led collaborative project, called the National Storage Laboratory, was organized to investigate technology for storage systems that will be the future repositories for our national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and the provider of applications. The expected result is an evaluation of a high performance storage architecture assembled from commercially available hardware and software, with some software enhancements to meet the project's goals. It is anticipated that the integrated testbed system will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte class files at gigabit-per-second data rates. The National Storage Laboratory was officially launched on 27 May 1992.

  12. Terrestrial Energy Storage SPS Systems

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1998-01-01

    Terrestrial energy storage systems for the SSP system were evaluated that could maintain the 1.2 GW power level during periods of brief outages from the solar powered satellite (SPS). Short-term outages of ten minutes and long-term outages up to four hours have been identified as "typical" cases where the ground-based energy storage system would be required to supply power to the grid. These brief interruptions in transmission could result from performing maintenance on the solar power satellite or from safety considerations necessitating the power beam be turned off. For example, one situation would be to allow for the safe passage of airplanes through the space occupied by the beam. Under these conditions, the energy storage system needs to be capable of storing 200 MW-hrs and 4.8 GW-hrs, respectively. The types of energy storage systems to be considered include compressed air energy storage, inertial energy storage, electrochemical energy storage, superconducting magnetic energy storage, and pumped hydro energy storage. For each of these technologies, the state-of-the-art in terms of energy and power densities were identified as well as the potential for scaling to the size systems required by the SSP system. Other issues addressed included the performance, life expectancy, cost, and necessary infrastructure and site locations for the various storage technologies.

  13. High-performance gimbal control for self-protection weapon systems

    NASA Astrophysics Data System (ADS)

    Downs, James; Smith, Stephen A.; Schwickert, Jim; Stockum, Larry A.

    1998-07-01

    The gimbal and control system for a high performance, acquisition, tracking and pointing system is described. This system provides full hemispherical coverage, precision stabilization, rapid position response, and precision laser pointing. The high performance laser pointing system (HPLPS) receives position and rate cues form an integrated threat- warning-system, slews to the predicted target location, acquires, tracks, and designates the target. The azimuth and elevation axes of the HPLPS are inertially stabilized with independent, high bandwidth, inertial rate loops. The cue to position control loop is implemented using a time-optimal control algorithm which slews each axis of the platform to the predicted target location with high accuracy and zero overshoot in minimum time. After cuing to position,m auto- track mode engages with a type 4, high bandwidth track loop. Track loop integrators are initialized to keep the platform moving at the cued target rate as control transfers from position cue to auto-track mode. After initially tracking with a narrow field of view tracking sensor, an active laser track is performed with a narrower field of view laser-spot- tracking sensor. The gimbal electronics use a Texas Instruments TMS320C30 digital signal processor and proprietary software executive to achieve the performance required for the 960 Hz control loop sample rates. Optical encoder, resolver, and high bandwidth fiver-optic-gyro sensors are used. Linear amplifiers drive the azimuth and elevation mirror motors and a sine wave commutated amplifier drives the outer gimbal motor.

  14. Coal-fired high performance power generating system. Quarterly progress report, January 1--March 31, 1992

    SciTech Connect

    Not Available

    1992-12-31

    This report covers work carried out under Task 2, Concept Definition and Analysis, and Task 3, Preliminary R and D, under contract DE-AC22-92PC91155, ``Engineering Development of a Coal Fired High Performance Power Generation System`` between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of: > 47% thermal efficiency; NO{sub x}, SO{sub x} and Particulates {le} 25% NSPS; cost {ge} 65% of heat input; and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW{sub e} combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (FHTAF) which integrates several combustor and air heater designs with appropriate ash management procedures. The cycle optimization effort has brought about several revisions to the system configuration resulting from: (1) the use of Illinois No. 6 coal instead of Utah Blind Canyon; (2) the use of coal rather than methane as a reburn fuel; (3) reducing radiant section outlet temperatures to 1700F (down from 1800F); and (4) the need to use higher performance (higher cost) steam cycles to offset losses introduced as more realistic operating and construction constraints are identified.

  15. Scalable, High-performance 3D Imaging Software Platform: System Architecture and Application to Virtual Colonoscopy

    PubMed Central

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli; Brett, Bevin

    2013-01-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingly available and affordable commodity computing systems: multi-core, clusters, and cloud computing systems. To achieve scalable, high-performance computing, our platform (1) employs size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D image processing algorithms; (2) supports task scheduling for efficient load distribution and balancing; and (3) consists of a layered parallel software libraries that allow a wide range of medical applications to share the same functionalities. We evaluated the performance of our platform by applying it to an electronic cleansing system in virtual colonoscopy, with initial experimental results showing a 10 times performance improvement on an 8-core workstation over the original sequential implementation of the system. PMID:23366803

  16. HPNAIDM: The High-Performance Network Anomaly/Intrusion Detection and Mitigation System

    SciTech Connect

    Chen, Yan

    2013-12-05

    Identifying traffic anomalies and attacks rapidly and accurately is critical for large network operators. With the rapid growth of network bandwidth, such as the next generation DOE UltraScience Network, and fast emergence of new attacks/virus/worms, existing network intrusion detection systems (IDS) are insufficient because they: • Are mostly host-based and not scalable to high-performance networks; • Are mostly signature-based and unable to adaptively recognize flow-level unknown attacks; • Cannot differentiate malicious events from the unintentional anomalies. To address these challenges, we proposed and developed a new paradigm called high-performance network anomaly/intrustion detection and mitigation (HPNAIDM) system. The new paradigm is significantly different from existing IDSes with the following features (research thrusts). • Online traffic recording and analysis on high-speed networks; • Online adaptive flow-level anomaly/intrusion detection and mitigation; • Integrated approach for false positive reduction. Our research prototype and evaluation demonstrate that the HPNAIDM system is highly effective and economically feasible. Beyond satisfying the pre-set goals, we even exceed that significantly (see more details in the next section). Overall, our project harvested 23 publications (2 book chapters, 6 journal papers and 15 peer-reviewed conference/workshop papers). Besides, we built a website for technique dissemination, which hosts two system prototype release to the research community. We also filed a patent application and developed strong international and domestic collaborations which span both academia and industry.

  17. High-performance electronics for time-of-flight PET systems.

    PubMed

    Choong, W-S; Peng, Q; Vu, C Q; Turko, B T; Moses, W W

    2013-01-01

    We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively. PMID:24575149

  18. High-performance electronics for time-of-flight PET systems

    PubMed Central

    Choong, W.-S.; Peng, Q.; Vu, C.Q.; Turko, B.T.; Moses, W.W.

    2014-01-01

    We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC’s CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC’s CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively. PMID:24575149

  19. Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage.

    PubMed

    Xu, Fei; Xu, Hong; Chen, Xiong; Wu, Dingcai; Wu, Yang; Liu, Hao; Gu, Cheng; Fu, Ruowen; Jiang, Donglin

    2015-06-01

    Ordered π-columns and open nanochannels found in covalent organic frameworks (COFs) could render them able to store electric energy. However, the synthetic difficulty in achieving redox-active skeletons has thus far restricted their potential for energy storage. A general strategy is presented for converting a conventional COF into an outstanding platform for energy storage through post-synthetic functionalization with organic radicals. The radical frameworks with openly accessible polyradicals immobilized on the pore walls undergo rapid and reversible redox reactions, leading to capacitive energy storage with high capacitance, high-rate kinetics, and robust cycle stability. The results suggest that channel-wall functional engineering with redox-active species will be a facile and versatile strategy to explore COFs for energy storage. PMID:25908404

  20. a High-Performance Method for Simulating Surface Rainfall-Runoff Dynamics Using Particle System

    NASA Astrophysics Data System (ADS)

    Zhang, Fangli; Zhou, Qiming; Li, Qingquan; Wu, Guofeng; Liu, Jun

    2016-06-01

    The simulation of rainfall-runoff process is essential for disaster emergency and sustainable development. One common disadvantage of the existing conceptual hydrological models is that they are highly dependent upon specific spatial-temporal contexts. Meanwhile, due to the inter-dependence of adjacent flow paths, it is still difficult for the RS or GIS supported distributed hydrological models to achieve high-performance application in real world applications. As an attempt to improve the performance efficiencies of those models, this study presents a high-performance rainfall-runoff simulating framework based on the flow path network and a separate particle system. The vector-based flow path lines are topologically linked to constrain the movements of independent rain drop particles. A separate particle system, representing surface runoff, is involved to model the precipitation process and simulate surface flow dynamics. The trajectory of each particle is constrained by the flow path network and can be tracked by concurrent processors in a parallel cluster system. The result of speedup experiment shows that the proposed framework can significantly improve the simulating performance just by adding independent processors. By separating the catchment elements and the accumulated water, this study provides an extensible solution for improving the existing distributed hydrological models. Further, a parallel modeling and simulating platform needs to be developed and validate to be applied in monitoring real world hydrologic processes.

  1. Coal-fired high performance power generating system. Quarterly progress report, April 1--June 30, 1993

    SciTech Connect

    Not Available

    1993-11-01

    This report covers work carried out under Task 2, Concept Definition and Analysis, Task 3, Preliminary R&D and Task 4, Commercial Generating Plant Design, under Contract AC22-92PC91155, ``Engineering Development of a Coal Fired High Performance Power Generation System`` between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of: >47% thermal efficiency; NO{sub x}, SO{sub x} and Particulates {le}25% NSPS; cost {ge}65% of heat input; all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW{sub e} combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. A survey of currently available high temperature alloys has been completed and some of their high temperature properties are shown for comparison. Several of the most promising candidates will be selected for testing to determine corrosion resistance and high temperature strength. The corrosion resistance testing of candidate refractory coatings is continuing and some of the recent results are presented. This effort will provide important design information that will ultimately establish the operating ranges of the HITAF.

  2. High-Performance Monitoring Architecture for Large-Scale Distributed Systems Using Event Filtering

    NASA Technical Reports Server (NTRS)

    Maly, K.

    1998-01-01

    Monitoring is an essential process to observe and improve the reliability and the performance of large-scale distributed (LSD) systems. In an LSD environment, a large number of events is generated by the system components during its execution or interaction with external objects (e.g. users or processes). Monitoring such events is necessary for observing the run-time behavior of LSD systems and providing status information required for debugging, tuning and managing such applications. However, correlated events are generated concurrently and could be distributed in various locations in the applications environment which complicates the management decisions process and thereby makes monitoring LSD systems an intricate task. We propose a scalable high-performance monitoring architecture for LSD systems to detect and classify interesting local and global events and disseminate the monitoring information to the corresponding end- points management applications such as debugging and reactive control tools to improve the application performance and reliability. A large volume of events may be generated due to the extensive demands of the monitoring applications and the high interaction of LSD systems. The monitoring architecture employs a high-performance event filtering mechanism to efficiently process the large volume of event traffic generated by LSD systems and minimize the intrusiveness of the monitoring process by reducing the event traffic flow in the system and distributing the monitoring computation. Our architecture also supports dynamic and flexible reconfiguration of the monitoring mechanism via its Instrumentation and subscription components. As a case study, we show how our monitoring architecture can be utilized to improve the reliability and the performance of the Interactive Remote Instruction (IRI) system which is a large-scale distributed system for collaborative distance learning. The filtering mechanism represents an Intrinsic component integrated

  3. Gas hydrate cool storage system

    DOEpatents

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  4. Hierarchical Mesoporous 3D Flower-like CuCo2O4/NF for High-Performance Electrochemical Energy Storage.

    PubMed

    Jadhav, Harsharaj S; Pawar, Sambhaji M; Jadhav, Arvind H; Thorat, Gaurav M; Seo, Jeong Gil

    2016-01-01

    Ternary spinel CuCo2O4 nanostructure clenches great potential as high-performance electrode material for next-generation energy storage systems because of its higher electrical conductivity and electrochemical activity. Carbon free and binder free 3D flower-like CuCo2O4 structure are grown on nickel foam (NF) via a facile hydrothermal synthesis method followed by annealing. The obtained CuCo2O4/NF is directly used as electrode for lithium ion batteries (LIBs) and supercapacitors (SCs) application. The electrochemical study of 3D flower-like CuCo2O4 as an electrode for LIB and SC shows highly mesoporous unique architecture plays important role in achieving high capacity/capacitance with superior cycle life. The high surface area and mesoporous nature not only offer sufficient reaction sites, but also can accelerate the liquid electrolyte to penetrate electrode and the ions to reach the reacting sites. In outcome, it exhibits highest capacity of 1160 mA h g(-1) after 200 cycles when used as an anode for LIB and specific capacitance of 1002 F g(-1) after 3000 cycles. The superior electrochemical of synthesized material is attributed to direct contact of electrode active material with good intrinsic electrical conductivity to the underneath conductive NF substrate builds up an express path for fast ion and electron transfer. PMID:27506839

  5. Hierarchical Mesoporous 3D Flower-like CuCo2O4/NF for High-Performance Electrochemical Energy Storage

    NASA Astrophysics Data System (ADS)

    Jadhav, Harsharaj S.; Pawar, Sambhaji M.; Jadhav, Arvind H.; Thorat, Gaurav M.; Seo, Jeong Gil

    2016-08-01

    Ternary spinel CuCo2O4 nanostructure clenches great potential as high-performance electrode material for next-generation energy storage systems because of its higher electrical conductivity and electrochemical activity. Carbon free and binder free 3D flower-like CuCo2O4 structure are grown on nickel foam (NF) via a facile hydrothermal synthesis method followed by annealing. The obtained CuCo2O4/NF is directly used as electrode for lithium ion batteries (LIBs) and supercapacitors (SCs) application. The electrochemical study of 3D flower-like CuCo2O4 as an electrode for LIB and SC shows highly mesoporous unique architecture plays important role in achieving high capacity/capacitance with superior cycle life. The high surface area and mesoporous nature not only offer sufficient reaction sites, but also can accelerate the liquid electrolyte to penetrate electrode and the ions to reach the reacting sites. In outcome, it exhibits highest capacity of 1160 mA h g‑1 after 200 cycles when used as an anode for LIB and specific capacitance of 1002 F g‑1 after 3000 cycles. The superior electrochemical of synthesized material is attributed to direct contact of electrode active material with good intrinsic electrical conductivity to the underneath conductive NF substrate builds up an express path for fast ion and electron transfer.

  6. Hierarchical Mesoporous 3D Flower-like CuCo2O4/NF for High-Performance Electrochemical Energy Storage

    PubMed Central

    Jadhav, Harsharaj S.; Pawar, Sambhaji M.; Jadhav, Arvind H.; Thorat, Gaurav M.; Seo, Jeong Gil

    2016-01-01

    Ternary spinel CuCo2O4 nanostructure clenches great potential as high-performance electrode material for next-generation energy storage systems because of its higher electrical conductivity and electrochemical activity. Carbon free and binder free 3D flower-like CuCo2O4 structure are grown on nickel foam (NF) via a facile hydrothermal synthesis method followed by annealing. The obtained CuCo2O4/NF is directly used as electrode for lithium ion batteries (LIBs) and supercapacitors (SCs) application. The electrochemical study of 3D flower-like CuCo2O4 as an electrode for LIB and SC shows highly mesoporous unique architecture plays important role in achieving high capacity/capacitance with superior cycle life. The high surface area and mesoporous nature not only offer sufficient reaction sites, but also can accelerate the liquid electrolyte to penetrate electrode and the ions to reach the reacting sites. In outcome, it exhibits highest capacity of 1160 mA h g−1 after 200 cycles when used as an anode for LIB and specific capacitance of 1002 F g−1 after 3000 cycles. The superior electrochemical of synthesized material is attributed to direct contact of electrode active material with good intrinsic electrical conductivity to the underneath conductive NF substrate builds up an express path for fast ion and electron transfer. PMID:27506839

  7. Extending PowerPack for Profiling and Analysis of High Performance Accelerator-Based Systems

    SciTech Connect

    Li, Bo; Chang, Hung-Ching; Song, Shuaiwen; Su, Chun-Yi; Meyer, Timmy; Mooring, John; Cameron, Kirk

    2014-12-01

    Accelerators offer a substantial increase in efficiency for high-performance systems offering speedups for computational applications that leverage hardware support for highly-parallel codes. However, the power use of some accelerators exceeds 200 watts at idle which means use at exascale comes at a significant increase in power at a time when we face a power ceiling of about 20 megawatts. Despite the growing domination of accelerator-based systems in the Top500 and Green500 lists of fastest and most efficient supercomputers, there are few detailed studies comparing the power and energy use of common accelerators. In this work, we conduct detailed experimental studies of the power usage and distribution of Xeon-Phi-based systems in comparison to the NVIDIA Tesla and at SandyBridge.

  8. An Empirical Examination of the Mechanisms Mediating between High-Performance Work Systems and the Performance of Japanese Organizations

    ERIC Educational Resources Information Center

    Takeuchi, Riki; Lepak, David P.; Wang, Heli; Takeuchi, Kazuo

    2007-01-01

    The resource-based view of the firm and social exchange perspectives are invoked to hypothesize linkages among high-performance work systems, collective human capital, the degree of social exchange in an establishment, and establishment performance. The authors argue that high-performance work systems generate a high level of collective human…

  9. Robust holographic storage system design.

    PubMed

    Watanabe, Takahiro; Watanabe, Minoru

    2011-11-21

    Demand is increasing daily for large data storage systems that are useful for applications in spacecraft, space satellites, and space robots, which are all exposed to radiation-rich space environment. As candidates for use in space embedded systems, holographic storage systems are promising because they can easily provided the demanded large-storage capability. Particularly, holographic storage systems, which have no rotation mechanism, are demanded because they are virtually maintenance-free. Although a holographic memory itself is an extremely robust device even in a space radiation environment, its associated lasers and drive circuit devices are vulnerable. Such vulnerabilities sometimes engendered severe problems that prevent reading of all contents of the holographic memory, which is a turn-off failure mode of a laser array. This paper therefore presents a proposal for a recovery method for the turn-off failure mode of a laser array on a holographic storage system, and describes results of an experimental demonstration. PMID:22109441

  10. Robo-line storage: Low latency, high capacity storage systems over geographically distributed networks

    NASA Technical Reports Server (NTRS)

    Katz, Randy H.; Anderson, Thomas E.; Ousterhout, John K.; Patterson, David A.

    1991-01-01

    Rapid advances in high performance computing are making possible more complete and accurate computer-based modeling of complex physical phenomena, such as weather front interactions, dynamics of chemical reactions, numerical aerodynamic analysis of airframes, and ocean-land-atmosphere interactions. Many of these 'grand challenge' applications are as demanding of the underlying storage system, in terms of their capacity and bandwidth requirements, as they are on the computational power of the processor. A global view of the Earth's ocean chlorophyll and land vegetation requires over 2 terabytes of raw satellite image data. In this paper, we describe our planned research program in high capacity, high bandwidth storage systems. The project has four overall goals. First, we will examine new methods for high capacity storage systems, made possible by low cost, small form factor magnetic and optical tape systems. Second, access to the storage system will be low latency and high bandwidth. To achieve this, we must interleave data transfer at all levels of the storage system, including devices, controllers, servers, and communications links. Latency will be reduced by extensive caching throughout the storage hierarchy. Third, we will provide effective management of a storage hierarchy, extending the techniques already developed for the Log Structured File System. Finally, we will construct a protototype high capacity file server, suitable for use on the National Research and Education Network (NREN). Such research must be a Cornerstone of any coherent program in high performance computing and communications.

  11. The design of a high performance dataflow processor for multiprocessor systems

    SciTech Connect

    Luc, K.Q.

    1989-01-01

    The objective of this work is to design a high performance dynamic dataflow processor for multiprocessor systems. The performance of contemporary dataflow processors is limited due to the presence of a component, called a matching unit. The function of this unit is to match instruction tokens in order to detect the executability of instructions. Since activities within the matching unit are sequential in nature and require multiple memory accesses, the unit has been identified as a major performance bottleneck in a prototype processor. The author proposes a natural way to partition the set of tokens and present a new implementation for the matching unit, called an Instance-Based Matching Unit. The new unit requires tokens to be partitioned into blocks and allows matching of these blocks of tokens to proceed concurrently. With the new matching unit, substantial throughput enhancement for the unit is reported. He then analyzes the throughputs at various stages of a conventional dataflow processor. The results thus obtained direct us to propose an optimum configuration for an effective sub-processor. The maximum throughput of this sub-processor is determined by the throughput of a queue. With the sub-processor as a building block, a high performance dataflow processor is presented which consists of multiple copies of the sub-processor. Characteristics of the processor are studied with the Livermore Fortran Kernels as inputs. The performance of this processor is high, and the performance increases with the number of Sub-Processors.

  12. Management of Virtual Large-scale High-performance Computing Systems

    SciTech Connect

    Vallee, Geoffroy R; Naughton, III, Thomas J; Scott, Stephen L

    2011-01-01

    Linux is widely used on high-performance computing (HPC) systems, from commodity clusters to Cray su- percomputers (which run the Cray Linux Environment). These platforms primarily differ in their system config- uration: some only use SSH to access compute nodes, whereas others employ full resource management sys- tems (e.g., Torque and ALPS on Cray XT systems). Furthermore, latest improvements in system-level virtualization techniques, such as hardware support, virtual machine migration for system resilience purposes, and reduction of virtualization overheads, enables the usage of virtual machines on HPC platforms. Currently, tools for the management of virtual machines in the context of HPC systems are still quite basic, and often tightly coupled to the target platform. In this docu- ment, we present a new system tool for the management of virtual machines in the context of large-scale HPC systems, including a run-time system and the support for all major virtualization solutions. The proposed solution is based on two key aspects. First, Virtual System Envi- ronments (VSE), introduced in a previous study, provide a flexible method to define the software environment that will be used within virtual machines. Secondly, we propose a new system run-time for the management and deployment of VSEs on HPC systems, which supports a wide range of system configurations. For instance, this generic run-time can interact with resource managers such as Torque for the management of virtual machines. Finally, the proposed solution provides appropriate ab- stractions to enable use with a variety of virtualization solutions on different Linux HPC platforms, to include Xen, KVM and the HPC oriented Palacios.

  13. A survey on resource allocation in high performance distributed computing systems

    SciTech Connect

    Hussain, Hameed; Malik, Saif Ur Rehman; Hameed, Abdul; Khan, Samee Ullah; Bickler, Gage; Min-Allah, Nasro; Qureshi, Muhammad Bilal; Zhang, Limin; Yongji, Wang; Ghani, Nasir; Kolodziej, Joanna; Zomaya, Albert Y.; Xu, Cheng-Zhong; Balaji, Pavan; Vishnu, Abhinav; Pinel, Fredric; Pecero, Johnatan E.; Kliazovich, Dzmitry; Bouvry, Pascal; Li, Hongxiang; Wang, Lizhe; Chen, Dan; Rayes, Ammar

    2013-11-01

    An efficient resource allocation is a fundamental requirement in high performance computing (HPC) systems. Many projects are dedicated to large-scale distributed computing systems that have designed and developed resource allocation mechanisms with a variety of architectures and services. In our study, through analysis, a comprehensive survey for describing resource allocation in various HPCs is reported. The aim of the work is to aggregate under a joint framework, the existing solutions for HPC to provide a thorough analysis and characteristics of the resource management and allocation strategies. Resource allocation mechanisms and strategies play a vital role towards the performance improvement of all the HPCs classifications. Therefore, a comprehensive discussion of widely used resource allocation strategies deployed in HPC environment is required, which is one of the motivations of this survey. Moreover, we have classified the HPC systems into three broad categories, namely: (a) cluster, (b) grid, and (c) cloud systems and define the characteristics of each class by extracting sets of common attributes. All of the aforementioned systems are cataloged into pure software and hybrid/hardware solutions. The system classification is used to identify approaches followed by the implementation of existing resource allocation strategies that are widely presented in the literature.

  14. State observers and Kalman filtering for high performance vibration isolation systems

    SciTech Connect

    Beker, M. G. Bertolini, A.; Hennes, E.; Rabeling, D. S.; Brand, J. F. J. van den; Bulten, H. J.

    2014-03-15

    There is a strong scientific case for the study of gravitational waves at or below the lower end of current detection bands. To take advantage of this scientific benefit, future generations of ground based gravitational wave detectors will need to expand the limit of their detection bands towards lower frequencies. Seismic motion presents a major challenge at these frequencies and vibration isolation systems will play a crucial role in achieving the desired low-frequency sensitivity. A compact vibration isolation system designed to isolate in-vacuum optical benches for Advanced Virgo will be introduced and measurements on this system are used to present its performance. All high performance isolation systems employ an active feedback control system to reduce the residual motion of their suspended payloads. The development of novel control schemes is needed to improve the performance beyond what is currently feasible. Here, we present a multi-channel feedback approach that is novel to the field. It utilizes a linear quadratic regulator in combination with a Kalman state observer and is shown to provide effective suppression of residual motion of the suspended payload. The application of state observer based feedback control for vibration isolation will be demonstrated with measurement results from the Advanced Virgo optical bench suspension system.

  15. State observers and Kalman filtering for high performance vibration isolation systems.

    PubMed

    Beker, M G; Bertolini, A; van den Brand, J F J; Bulten, H J; Hennes, E; Rabeling, D S

    2014-03-01

    There is a strong scientific case for the study of gravitational waves at or below the lower end of current detection bands. To take advantage of this scientific benefit, future generations of ground based gravitational wave detectors will need to expand the limit of their detection bands towards lower frequencies. Seismic motion presents a major challenge at these frequencies and vibration isolation systems will play a crucial role in achieving the desired low-frequency sensitivity. A compact vibration isolation system designed to isolate in-vacuum optical benches for Advanced Virgo will be introduced and measurements on this system are used to present its performance. All high performance isolation systems employ an active feedback control system to reduce the residual motion of their suspended payloads. The development of novel control schemes is needed to improve the performance beyond what is currently feasible. Here, we present a multi-channel feedback approach that is novel to the field. It utilizes a linear quadratic regulator in combination with a Kalman state observer and is shown to provide effective suppression of residual motion of the suspended payload. The application of state observer based feedback control for vibration isolation will be demonstrated with measurement results from the Advanced Virgo optical bench suspension system. PMID:24689604

  16. Toward server-side, high performance climate change data analytics in the Earth System Grid Federation (ESGF) eco-system

    NASA Astrophysics Data System (ADS)

    Fiore, Sandro; Williams, Dean; Aloisio, Giovanni

    2016-04-01

    In many scientific domains such as climate, data is often n-dimensional and requires tools that support specialized data types and primitives to be properly stored, accessed, analysed and visualized. Moreover, new challenges arise in large-scale scenarios and eco-systems where petabytes (PB) of data can be available and data can be distributed and/or replicated (e.g., the Earth System Grid Federation (ESGF) serving the Coupled Model Intercomparison Project, Phase 5 (CMIP5) experiment, providing access to 2.5PB of data for the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). Most of the tools currently available for scientific data analysis in the climate domain fail at large scale since they: (1) are desktop based and need the data locally; (2) are sequential, so do not benefit from available multicore/parallel machines; (3) do not provide declarative languages to express scientific data analysis tasks; (4) are domain-specific, which ties their adoption to a specific domain; and (5) do not provide a workflow support, to enable the definition of complex "experiments". The Ophidia project aims at facing most of the challenges highlighted above by providing a big data analytics framework for eScience. Ophidia provides declarative, server-side, and parallel data analysis, jointly with an internal storage model able to efficiently deal with multidimensional data and a hierarchical data organization to manage large data volumes ("datacubes"). The project relies on a strong background of high performance database management and OLAP systems to manage large scientific data sets. It also provides a native workflow management support, to define processing chains and workflows with tens to hundreds of data analytics operators to build real scientific use cases. With regard to interoperability aspects, the talk will present the contribution provided both to the RDA Working Group on Array Databases, and the Earth System Grid Federation (ESGF

  17. A high performance fluorescence switching system triggered electrochemically by Prussian blue with upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhai, Yiwen; Zhang, Hui; Zhang, Lingling; Dong, Shaojun

    2016-05-01

    A high performance fluorescence switching system triggered electrochemically by Prussian blue with upconversion nanoparticles was proposed. We synthesized a kind of hexagonal monodisperse β-NaYF4:Yb3+,Er3+,Tm3+ upconversion nanoparticle and manipulated the intensity ratio of red emission (at 653 nm) and green emission at (523 and 541 nm) around 2 : 1, in order to match well with the absorption spectrum of Prussian blue. Based on the efficient fluorescence resonance energy transfer and inner-filter effect of the as-synthesized upconversion nanoparticles and Prussian blue, the present fluorescence switching system shows obvious behavior with high fluorescence contrast and good stability. To further extend the application of this system in analysis, sulfite, a kind of important anion in environmental and physiological systems, which could also reduce Prussian blue to Prussian white nanoparticles leading to a decrease of the absorption spectrum, was chosen as the target. And we were able to determine the concentration of sulfite in aqueous solution with a low detection limit and a broad linear relationship.A high performance fluorescence switching system triggered electrochemically by Prussian blue with upconversion nanoparticles was proposed. We synthesized a kind of hexagonal monodisperse β-NaYF4:Yb3+,Er3+,Tm3+ upconversion nanoparticle and manipulated the intensity ratio of red emission (at 653 nm) and green emission at (523 and 541 nm) around 2 : 1, in order to match well with the absorption spectrum of Prussian blue. Based on the efficient fluorescence resonance energy transfer and inner-filter effect of the as-synthesized upconversion nanoparticles and Prussian blue, the present fluorescence switching system shows obvious behavior with high fluorescence contrast and good stability. To further extend the application of this system in analysis, sulfite, a kind of important anion in environmental and physiological systems, which could also reduce Prussian blue to

  18. Multisensory systems integration for high-performance motor control in flies.

    PubMed

    Frye, Mark A

    2010-06-01

    Engineered tracking systems 'fuse' data from disparate sensor platforms, such as radar and video, to synthesize information that is more reliable than any single input. The mammalian brain registers visual and auditory inputs to directionally localize an interesting environmental feature. For a fly, sensory perception is challenged by the extreme performance demands of high speed flight. Yet even a fruit fly can robustly track a fragmented odor plume through varying visual environments, outperforming any human engineered robot. Flies integrate disparate modalities, such as vision and olfaction, which are neither related by spatiotemporal spectra nor processed by registered neural tissue maps. Thus, the fly is motivating new conceptual frameworks for how low-level multisensory circuits and functional algorithms produce high-performance motor control. PMID:20202821

  19. A scalable silicon photonic chip-scale optical switch for high performance computing systems.

    PubMed

    Yu, Runxiang; Cheung, Stanley; Li, Yuliang; Okamoto, Katsunari; Proietti, Roberto; Yin, Yawei; Yoo, S J B

    2013-12-30

    This paper discusses the architecture and provides performance studies of a silicon photonic chip-scale optical switch for scalable interconnect network in high performance computing systems. The proposed switch exploits optical wavelength parallelism and wavelength routing characteristics of an Arrayed Waveguide Grating Router (AWGR) to allow contention resolution in the wavelength domain. Simulation results from a cycle-accurate network simulator indicate that, even with only two transmitter/receiver pairs per node, the switch exhibits lower end-to-end latency and higher throughput at high (>90%) input loads compared with electronic switches. On the device integration level, we propose to integrate all the components (ring modulators, photodetectors and AWGR) on a CMOS-compatible silicon photonic platform to ensure a compact, energy efficient and cost-effective device. We successfully demonstrate proof-of-concept routing functions on an 8 × 8 prototype fabricated using foundry services provided by OpSIS-IME. PMID:24514859

  20. Palacios and Kitten : high performance operating systems for scalable virtualized and native supercomputing.

    SciTech Connect

    Widener, Patrick; Jaconette, Steven; Bridges, Patrick G.; Xia, Lei; Dinda, Peter; Cui, Zheng.; Lange, John; Hudson, Trammell B.; Levenhagen, Michael J.; Pedretti, Kevin Thomas Tauke; Brightwell, Ronald Brian

    2009-09-01

    Palacios and Kitten are new open source tools that enable applications, whether ported or not, to achieve scalable high performance on large machines. They provide a thin layer over the hardware to support both full-featured virtualized environments and native code bases. Kitten is an OS under development at Sandia that implements a lightweight kernel architecture to provide predictable behavior and increased flexibility on large machines, while also providing Linux binary compatibility. Palacios is a VMM that is under development at Northwestern University and the University of New Mexico. Palacios, which can be embedded into Kitten and other OSes, supports existing, unmodified applications and operating systems by using virtualization that leverages hardware technologies. We describe the design and implementation of both Kitten and Palacios. Our benchmarks show that they provide near native, scalable performance. Palacios and Kitten provide an incremental path to using supercomputer resources that is not performance-compromised.

  1. Users matter : multi-agent systems model of high performance computing cluster users.

    SciTech Connect

    North, M. J.; Hood, C. S.; Decision and Information Sciences; IIT

    2005-01-01

    High performance computing clusters have been a critical resource for computational science for over a decade and have more recently become integral to large-scale industrial analysis. Despite their well-specified components, the aggregate behavior of clusters is poorly understood. The difficulties arise from complicated interactions between cluster components during operation. These interactions have been studied by many researchers, some of whom have identified the need for holistic multi-scale modeling that simultaneously includes network level, operating system level, process level, and user level behaviors. Each of these levels presents its own modeling challenges, but the user level is the most complex due to the adaptability of human beings. In this vein, there are several major user modeling goals, namely descriptive modeling, predictive modeling and automated weakness discovery. This study shows how multi-agent techniques were used to simulate a large-scale computing cluster at each of these levels.

  2. Determination of metabolites of cytochrome P-450 model systems using high-performance liquid chromatography.

    PubMed

    Esclade, L; Guillochon, D; Thomas, D

    1985-06-14

    High-performance liquid chromatographic techniques were developed for the simultaneous detection of metabolites in a cytochrome P-450 model system composed of NADH, haemoglobin and methylene blue. Monohydroxylated metabolites were determined following aniline, acetanilide and phenol hydroxylations. 4-Aminoantipyrine, 7-hydroxycoumarin and p-nitrophenol were determined after dealkylation of 4-N,N-dimethylamino-antipyrine, 7-ethoxycoumarin and p-nitroanisole. These substrates are commonly used for measuring cytochrome P-450 activities. Treatment of the samples was minimal, consisting of a simple deproteinization, and did not involve any organic extraction. Separations were carried out on reversed-phase columns and the products were detected by UV adsorption. Separations were completed in less than 15 min and the detection limits were between 0.5 and 4 microM. PMID:3875625

  3. Tribology of magnetic storage systems

    NASA Technical Reports Server (NTRS)

    Bhushan, Bharat

    1992-01-01

    The construction and the materials used in different magnetic storage devices are defined. The theories of friction and adhesion, interface temperatures, wear, and solid-liquid lubrication relevant to magnetic storage systems are presented. Experimental data are presented wherever possible to support the relevant theories advanced.

  4. FeOx and Si nano-dots as dual Li-storage centers bonded with graphene for high performance lithium ion batteries.

    PubMed

    Yang, Jinlong; Zheng, Jiaxin; Hu, Lin; Tan, Rui; Wang, Kai; Mu, Shichun; Pan, Feng

    2015-09-14

    A novel design based on both FeOx and Si nano-dots bonded with graphene (FeOx·Si@GNS) as dual lithium-storage centers is reported. They show high performance as anode materials for Li-ion batteries with a remarkable reversible capacity of 1160 mA h g(-1) at 0.2 A g(-1), fast charging/discharging rate, and long cycling life (e.g., a capacity retention of 81.7% at 2.0 A g(-1) after 600 cycles). The origin of these high performances comes from the key factors of the high theoretical specific capacity of FeOx and Si, the shorter Li-ion diffusion distance of both nano-dot structures, fast electron conductivity, and the strain relaxation due to volume variations of both nano-dots bonded with graphene nanosheets during cycles. PMID:26245491

  5. High-performance and stability reticle writing system HL-800M

    NASA Astrophysics Data System (ADS)

    Kadowaki, Yasuhiro; Kawasaki, Katsuhiro; Mizuno, Kazui; Satoh, Hidetoshi; Hoga, Morihisa; Uryu, Ken

    1998-09-01

    HL-800M has been developed as electron beam reticle writing system (EB) for advanced reticle production. It is very important for EB to keep high performance constantly in the actual advanced reticle production. To meet such a requirement, this system adopts accelerated voltage of 50kV, variable shaped beam, continuous moving stage and 3-stage deflector. Especially, to improve the positioning accuracy, this system has temperature control system, active vibration-isolation system and the new software for position error correction. The proximity effect correction which changes exposure shot time depending on the pattern density and the multi-exposure function are also installed. As a result, the positing accuracy of 32nm and the long term placement of 28 nm are obtained. The line-width linearity from 1 micrometers to 10 micrometers is within the range of 70 nm, and 40 nm form 1 micrometers to 3 micrometers . The stitching accuracy at the stripe boundary is 26nm, and 20nm in case of the 3-path exposure.

  6. Engineering development of coal-fired high-performance power systems. Technical report, July - September 1996

    SciTech Connect

    1996-11-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, AlliedSignal Aerospace Equipment Systems, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase I of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolyzation process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). It is a pulverized fuel-fired boiler/airheater where steam and gas turbine air are indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and then a pilot plant with integrated pyrolyzer and char combustion systems will be tested. In this report, progress in the pyrolyzer pilot plant preparation is reported. The results of extensive laboratory and bench scale testing of representative char are also reported. Preliminary results of combustion modeling of the char combustion system are included. There are also discussions of the auxiliary systems that are planned for the char combustion system pilot plant and the status of the integrated system pilot plant.

  7. FeOx and Si nano-dots as dual Li-storage centers bonded with graphene for high performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Jinlong; Zheng, Jiaxin; Hu, Lin; Tan, Rui; Wang, Kai; Mu, Shichun; Pan, Feng

    2015-08-01

    A novel design based on both FeOx and Si nano-dots bonded with graphene (FeOx.Si@GNS) as dual lithium-storage centers is reported. They show high performance as anode materials for Li-ion batteries with a remarkable reversible capacity of 1160 mA h g-1 at 0.2 A g-1, fast charging/discharging rate, and long cycling life (e.g., a capacity retention of 81.7% at 2.0 A g-1 after 600 cycles). The origin of these high performances comes from the key factors of the high theoretical specific capacity of FeOx and Si, the shorter Li-ion diffusion distance of both nano-dot structures, fast electron conductivity, and the strain relaxation due to volume variations of both nano-dots bonded with graphene nanosheets during cycles.A novel design based on both FeOx and Si nano-dots bonded with graphene (FeOx.Si@GNS) as dual lithium-storage centers is reported. They show high performance as anode materials for Li-ion batteries with a remarkable reversible capacity of 1160 mA h g-1 at 0.2 A g-1, fast charging/discharging rate, and long cycling life (e.g., a capacity retention of 81.7% at 2.0 A g-1 after 600 cycles). The origin of these high performances comes from the key factors of the high theoretical specific capacity of FeOx and Si, the shorter Li-ion diffusion distance of both nano-dot structures, fast electron conductivity, and the strain relaxation due to volume variations of both nano-dots bonded with graphene nanosheets during cycles. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03311j

  8. Large surface area ordered porous carbons via nanocasting zeolite 10X and high performance for hydrogen storage application.

    PubMed

    Cai, Jinjun; Li, Liangjun; Lv, Xiaoxia; Yang, Chunpeng; Zhao, Xuebo

    2014-01-01

    We report the preparation of ordered porous carbons for the first time via nanocasting zeolite 10X with an aim to evaluate their potential application for hydrogen storage. The synthesized carbons exhibit large Brunauer-Emmett-Teller surface areas in the 1300-3331 m(2)/g range and pore volumes up to 1.94 cm(3)/g with a pore size centered at 1.2 nm. The effects of different synthesis processes with pyrolysis temperature varied in the 600-800 °C range on the surface areas, and pore structures of carbons were explored. During the carbonization process, carbons derived from the liquid-gas two-step routes at around 700 °C are nongraphitic and retain the particle morphology of 10X zeolite, whereas the higher pyrolysis temperature results in some graphitic domains and hollow-shell morphologies. In contrast, carbons derived from the direct acetylene infiltration process have some incident nanoribbon or nanofiber morphologies. A considerable hydrogen storage capacity of 6.1 wt % at 77 K and 20 bar was attained for the carbon with the surface area up to 3331 m(2)/g, one of the top-ranked capacities ever observed for large surface area adsorbents, demonstrating their potential uses for compacting gaseous fuels of hydrogen. The hydrogen capacity is comparable to those of previously reported values on other kinds of carbon-based materials and highly dependent on the surface area and micropore volume of carbons related to the optimum pore size, therefore providing guidance for the further search of nanoporous materials for hydrogen storage. PMID:24344972

  9. An empirical examination of the mechanisms mediating between high-performance work systems and the performance of Japanese organizations.

    PubMed

    Takeuchi, Riki; Lepak, David P; Wang, Heli; Takeuchi, Kazuo

    2007-07-01

    The resource-based view of the firm and social exchange perspectives are invoked to hypothesize linkages among high-performance work systems, collective human capital, the degree of social exchange in an establishment, and establishment performance. The authors argue that high-performance work systems generate a high level of collective human capital and encourage a high degree of social exchange within an organization, and that these are positively related to the organization's overall performance. On the basis of a sample of Japanese establishments, the results provide support for the existence of these mediating mechanisms through which high-performance work systems affect overall establishment performance. PMID:17638466

  10. Development and implementation of a high-performance, cardiac-gated dual-energy imaging system

    NASA Astrophysics Data System (ADS)

    Shkumat, N. A.; Siewerdsen, J. H.; Dhanantwari, A. C.; Williams, D. B.; Richard, S.; Tward, D. J.; Paul, N. S.; Yorkston, J.; Van Metter, R.

    2007-03-01

    Mounting evidence suggests that the superposition of anatomical clutter in a projection radiograph poses a major impediment to the detectability of subtle lung nodules. Through decomposition of projections acquired at multiple kVp, dual-energy (DE) imaging offers to dramatically improve lung nodule detectability and, in part through quantitation of nodule calcification, increase specificity in nodule characterization. The development of a high-performance DE chest imaging system is reported, with design and implementation guided by fundamental imaging performance metrics. A diagnostic chest stand (Kodak RVG 5100 digital radiography system) provided the basic platform, modified to include: (i) a filter wheel, (ii) a flat-panel detector (Trixell Pixium 4600), (iii) a computer control and monitoring system for cardiac-gated acquisition, and (iv) DE image decomposition and display. Computational and experimental studies of imaging performance guided optimization of key acquisition technique parameters, including: x-ray filtration, allocation of dose between low- and high-energy projections, and kVp selection. A system for cardiac-gated acquisition was developed, directing x-ray exposures to within the quiescent period of the heart cycle, thereby minimizing anatomical misregistration. A research protocol including 200 patients imaged following lung nodule biopsy is underway, allowing preclinical evaluation of DE imaging performance relative to conventional radiography and low-dose CT.

  11. A high performance fluorescence switching system triggered electrochemically by Prussian blue with upconversion nanoparticles.

    PubMed

    Zhai, Yiwen; Zhang, Hui; Zhang, Lingling; Dong, Shaojun

    2016-05-01

    A high performance fluorescence switching system triggered electrochemically by Prussian blue with upconversion nanoparticles was proposed. We synthesized a kind of hexagonal monodisperse β-NaYF4:Yb(3+),Er(3+),Tm(3+) upconversion nanoparticle and manipulated the intensity ratio of red emission (at 653 nm) and green emission at (523 and 541 nm) around 2 : 1, in order to match well with the absorption spectrum of Prussian blue. Based on the efficient fluorescence resonance energy transfer and inner-filter effect of the as-synthesized upconversion nanoparticles and Prussian blue, the present fluorescence switching system shows obvious behavior with high fluorescence contrast and good stability. To further extend the application of this system in analysis, sulfite, a kind of important anion in environmental and physiological systems, which could also reduce Prussian blue to Prussian white nanoparticles leading to a decrease of the absorption spectrum, was chosen as the target. And we were able to determine the concentration of sulfite in aqueous solution with a low detection limit and a broad linear relationship. PMID:27102984

  12. A High Performance Computing Network and System Simulator for the Power Grid: NGNS^2

    SciTech Connect

    Villa, Oreste; Tumeo, Antonino; Ciraci, Selim; Daily, Jeffrey A.; Fuller, Jason C.

    2012-11-11

    Designing and planing next generation power grid sys- tems composed of large power distribution networks, monitoring and control networks, autonomous generators and consumers of power requires advanced simulation infrastructures. The objective is to predict and analyze in time the behavior of networks of systems for unexpected events such as loss of connectivity, malicious attacks and power loss scenarios. This ultimately allows one to answer questions such as: “What could happen to the power grid if ...”. We want to be able to answer as many questions as possible in the shortest possible time for the largest possible systems. In this paper we present a new High Performance Computing (HPC) oriented simulation infrastructure named Next Generation Network and System Simulator (NGNS2 ). NGNS2 allows for the distribution of a single simulation among multiple computing elements by using MPI and OpenMP threads. NGNS2 provides extensive configuration, fault tolerant and load balancing capabilities needed to simulate large and dynamic systems for long periods of time. We show the preliminary results of the simulator running approximately two million simulated entities both on a 64-node commodity Infiniband cluster and a 48-core SMP workstation.

  13. Towards a smart Holter system with high performance analogue front-end and enhanced digital processing.

    PubMed

    Du, Leilei; Yan, Yan; Wu, Wenxian; Mei, Qiujun; Luo, Yu; Li, Yang; Wang, Lei

    2013-01-01

    Multiple-lead dynamic ECG recorders (Holter) play an important role in the earlier detection of various cardiovascular diseases. In this paper, we present the first several steps towards a 12-lead Holter system with high-performance AFE (Analogue Front-End) and enhanced digital processing. The system incorporates an analogue front-end chip (ADS1298 from TI), which has not yet been widely used in most commercial Holter products. A highly-efficient data management module was designated to handle the data exchange between the ADS1298 and the microprocessor (STM32L151 from ST electronics). Furthermore, the system employs a Field Programmable Gate Array (Spartan-3E from Xilinx) module, on which a dedicated real-time 227-step FIR filter was executed to improve the overall filtering performance, since the ADS1298 has no high-pass filtering capability and only allows limited low-pass filtering. The Spartan-3E FPGA is also capable of offering further on-board computational ability for a smarter Holter. The results indicate that all functional blocks work as intended. In the future, we will conduct clinical trials and compare our system with other state-of-the-arts. PMID:24109911

  14. Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce.

    PubMed

    Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel

    2013-08-01

    Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS - a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive. PMID:24187650

  15. Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce

    PubMed Central

    Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel

    2013-01-01

    Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS – a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive. PMID:24187650

  16. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data

    PubMed Central

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H.

    2013-01-01

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the “big data” challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce. PMID:24501719

  17. High-Performance, Multi-Node File Copies and Checksums for Clustered File Systems

    NASA Technical Reports Server (NTRS)

    Kolano, Paul Z.; Ciotti, Robert B.

    2012-01-01

    Modern parallel file systems achieve high performance using a variety of techniques, such as striping files across multiple disks to increase aggregate I/O bandwidth and spreading disks across multiple servers to increase aggregate interconnect bandwidth. To achieve peak performance from such systems, it is typically necessary to utilize multiple concurrent readers/writers from multiple systems to overcome various singlesystem limitations, such as number of processors and network bandwidth. The standard cp and md5sum tools of GNU coreutils found on every modern Unix/Linux system, however, utilize a single execution thread on a single CPU core of a single system, and hence cannot take full advantage of the increased performance of clustered file systems. Mcp and msum are drop-in replacements for the standard cp and md5sum programs that utilize multiple types of parallelism and other optimizations to achieve maximum copy and checksum performance on clustered file systems. Multi-threading is used to ensure that nodes are kept as busy as possible. Read/write parallelism allows individual operations of a single copy to be overlapped using asynchronous I/O. Multinode cooperation allows different nodes to take part in the same copy/checksum. Split-file processing allows multiple threads to operate concurrently on the same file. Finally, hash trees allow inherently serial checksums to be performed in parallel. Mcp and msum provide significant performance improvements over standard cp and md5sum using multiple types of parallelism and other optimizations. The total speed-ups from all improvements are significant. Mcp improves cp performance over 27x, msum improves md5sum performance almost 19x, and the combination of mcp and msum improves verified copies via cp and md5sum by almost 22x. These improvements come in the form of drop-in replacements for cp and md5sum, so are easily used and are available for download as open source software at http://mutil.sourceforge.net.

  18. Guidelines for application of fluorescent lamps in high-performance avionic backlight systems

    NASA Astrophysics Data System (ADS)

    Syroid, Daniel D.

    1997-07-01

    Fluorescent lamps have proven to be well suited for use in high performance avionic backlight systems as demonstrated by numerous production applications for both commercial and military cockpit displays. Cockpit display applications include: Boeing 777, new 737s, F-15, F-16, F-18, F-22, C- 130, Navy P3, NASA Space Shuttle and many others. Fluorescent lamp based backlights provide high luminance, high lumen efficiency, precision chromaticity and long life for avionic active matrix liquid crystal display applications. Lamps have been produced in many sizes and shapes. Lamp diameters range from 2.6 mm to over 20 mm and lengths for the larger diameter lamps range to over one meter. Highly convoluted serpentine lamp configurations are common as are both hot and cold cathode electrode designs. This paper will review fluorescent lamp operating principles, discuss typical requirements for avionic grade lamps, compare avionic and laptop backlight designs and provide guidelines for the proper application of lamps and performance choices that must be made to attain optimum system performance considering high luminance output, system efficiency, dimming range and cost.

  19. A Low-Cost, High-Performance System for Fluorescence Lateral Flow Assays

    PubMed Central

    Lee, Linda G.; Nordman, Eric S.; Johnson, Martin D.; Oldham, Mark F.

    2013-01-01

    We demonstrate a fluorescence lateral flow system that has excellent sensitivity and wide dynamic range. The illumination system utilizes an LED, plastic lenses and plastic and colored glass filters for the excitation and emission light. Images are collected on an iPhone 4. Several fluorescent dyes with long Stokes shifts were evaluated for their signal and nonspecific binding in lateral flow. A wide range of values for the ratio of signal to nonspecific binding was found, from 50 for R-phycoerythrin (R-PE) to 0.15 for Brilliant Violet 605. The long Stokes shift of R-PE allowed the use of inexpensive plastic filters rather than costly interference filters to block the LED light. Fluorescence detection with R-PE and absorbance detection with colloidal gold were directly compared in lateral flow using biotinylated bovine serum albumen (BSA) as the analyte. Fluorescence provided linear data over a range of 0.4–4,000 ng/mL with a 1,000-fold signal change while colloidal gold provided non-linear data over a range of 16–4,000 ng/mL with a 10-fold signal change. A comparison using human chorionic gonadotropin (hCG) as the analyte showed a similar advantage in the fluorescent system. We believe our inexpensive yet high-performance platform will be useful for providing quantitative and sensitive detection in a point-of-care setting. PMID:25586412

  20. Reconfigurable and adaptive photonic networks for high-performance computing systems.

    PubMed

    Kodi, Avinash; Louri, Ahmed

    2009-08-01

    As feature sizes decrease to the submicrometer regime and clock rates increase to the multigigahertz range, the limited bandwidth at higher bit rates and longer communication distances in electrical interconnects will create a major bandwidth imbalance in future high-performance computing (HPC) systems. We explore the application of an optoelectronic interconnect for the design of flexible, high-bandwidth, reconfigurable and adaptive interconnection architectures for chip-to-chip and board-to-board HPC systems. Reconfigurability is realized by interconnecting arrays of optical transmitters, and adaptivity is implemented by a dynamic bandwidth reallocation (DBR) technique that balances the load on each communication channel. We evaluate a DBR technique, the lockstep (LS) protocol, that monitors traffic intensities, reallocates bandwidth, and adapts to changes in communication patterns. We incorporate this DBR technique into a detailed discrete-event network simulator to evaluate the performance for uniform, nonuniform, and permutation communication patterns. Simulation results indicate that, without reconfiguration techniques being applied, optical based system architecture shows better performance than electrical interconnects for uniform and nonuniform patterns; with reconfiguration techniques being applied, the dynamically reconfigurable optoelectronic interconnect provides much better performance for all communication patterns. Based on the performance study, the reconfigured architecture shows 30%-50% increased throughput and 50%-75% reduced network latency compared with HPC electrical networks. PMID:19649024

  1. IGUANA: a high-performance 2D and 3D visualisation system

    NASA Astrophysics Data System (ADS)

    Alverson, G.; Eulisse, G.; Muzaffar, S.; Osborne, I.; Taylor, L.; Tuura, L. A.

    2004-11-01

    The IGUANA project has developed visualisation tools for multiple high-energy experiments. At the core of IGUANA is a generic, high-performance visualisation system based on OpenInventor and OpenGL. This paper describes the back-end and a feature-rich 3D visualisation system built on it, as well as a new 2D visualisation system that can automatically generate 2D views from 3D data, for example to produce R/Z or X/Y detector displays from existing 3D display with little effort. IGUANA has collaborated with the open-source gl2ps project to create a high-quality vector postscript output that can produce true vector graphics output from any OpenGL 2D or 3D display, complete with surface shading and culling of invisible surfaces. We describe how it works. We also describe how one can measure the memory and performance costs of various OpenInventor constructs and how to test scene graphs. We present good patterns to follow and bad patterns to avoid. We have added more advanced tools such as per-object clipping, slicing, lighting or animation, as well as multiple linked views with OpenInventor, and describe them in this paper. We give details on how to edit object appearance efficiently and easily, and even dynamically as a function of object properties, with instant visual feedback to the user.

  2. Enhanced Reaction Kinetics and Structure Integrity of Ni/SnO2 Nanocluster toward High-Performance Lithium Storage.

    PubMed

    Jiang, Yinzhu; Li, Yong; Zhou, Peng; Yu, Shenglan; Sun, Wenping; Dou, Shixue

    2015-12-01

    SnO2 is regarded as one of the most promising anodes via conversion-alloying mechanism for advanced lithium ion batteries. However, the sluggish conversion reaction severely degrades the reversible capacity, Coulombic efficiency and rate capability. In this paper, through constructing porous Ni/SnO2 composite electrode composed of homogeneously distributed SnO2 and Ni nanoparticles, the reaction kinetics of SnO2 is greatly enhanced, leading to full conversion reaction, superior cycling stability and improved rate capability. The uniformly distributed Ni nanoparticles provide a fast charge transport pathway for electrochemical reactions, and restrict the direct contact and aggregation of SnO2 nanoparticles during cycling. In the meantime, the void space among the nanoclusters increases the contact area between the electrolyte and active materials, and accommodates the huge volume change during cycling as well. The Ni/SnO2 composite electrode possesses a high reversible capacity of 820.5 mAh g(-1) at 1 A g(-1) up to 100 cycles. More impressively, large capacity of 841.9, 806.6, and 770.7 mAh g(-1) can still be maintained at high current densities of 2, 5, and 10 A g(-1) respectively. The results demonstrate that Ni/SnO2 is a high-performance anode for advanced lithium-ion batteries with high specific capacity, excellent rate capability, and cycling stability. PMID:26580088

  3. HESYRL storage ring vacuum system

    SciTech Connect

    Li, G.; Pang, Y.; Wang, Y.; Zhou, H.; Zhang, Z.; Jiang, D.; Xu, B.; Xu, S.

    1988-09-30

    The Storage Ring Vacuum System of the Synchrotron Radiation source project of HESYRL (Hefei Synchrotron Radiation Laboratory) in USTC, Hefei, Anhui, China, will be completed this year. Since the designed beam current of the 800 MeV electron storage ring is 300 mA, synchrotron radiation and hence high photon stimulated degassing will occur in the vacuum chamber. In order to get the stored beam lifetime of several hours, the pressure must be maintained at 10/sup -8/ approx.10/sup -9/ Torr. The gas desorption from synchrotron radiation and thermal outgas has been calculated. The UHV system of the storage ring and vacuum pretreatment methods are described in this paper.

  4. A High Performance Pocket-Size System for Evaluations in Acoustic Signal Processing

    NASA Astrophysics Data System (ADS)

    Rass, Uwe; Steeger, Gerhard H.

    2001-12-01

    Custom-made hardware is attractive for sophisticated signal processing in wearable electroacoustic devices, but has a high initial cost overhead. Thus, signal processing algorithms should be tested thoroughly in real application environments by potential end users prior to the hardware implementation. In addition, the algorithms should be easily alterable during this test phase. A wearable system which meets these requirements has been developed and built. The system is based on the high performance signal processor Motorola DSP56309. This device also includes high quality stereo analog-to-digital-(ADC)- and digital-to-analog-(DAC)-converters with 20 bit word length each. The available dynamic range exceeds 88 dB. The input and output gains can be adjusted by digitally controlled potentiometers. The housing of the unit is small enough to carry it in a pocket (dimensions 150 × 80 × 25 mm). Software tools have been developed to ease the development of new algorithms. A set of configurable Assembler code modules implements all hardware dependent software routines and gives easy access to the peripherals and interfaces. A comfortable fitting interface allows easy control of the signal processing unit from a PC, even by assistant personnel. The device has proven to be a helpful means for development and field evaluations of advanced new hearing aid algorithms, within interdisciplinary research projects. Now it is offered to the scientific community.

  5. Architecture of a high-performance PACS based on a shared file system

    NASA Astrophysics Data System (ADS)

    Glicksman, Robert A.; Wilson, Dennis L.; Perry, John H.; Prior, Fred W.

    1992-07-01

    The Picture Archive and Communication System developed by Loral Western Development Laboratories and Siemens Gammasonics Incorporated utilizes an advanced, high speed, fault tolerant image file server or Working Storage Unit (WSU) combined with 100 Mbit per second fiber optic data links. This central shared file server is capable of supporting the needs of more than one hundred workstations and acquisition devices at interactive rates. If additional performance is required, additional working storage units may be configured in a hyper-star topology. Specialized processing and display hardware is used to enhance Apple Macintosh personal computers to provide a family of low cost, easy to use, yet extremely powerful medical image workstations. The Siemens LiteboxTM application software provides a consistent look and feel to the user interface of all workstation in the family. Modern database and wide area communications technologies combine to support not only large hospital PACS but also outlying clinics and smaller facilities. Basic RIS functionality is integrated into the PACS database for convenience and data integrity.

  6. High-performance colossal permittivity materials of (Nb + Er) co-doped TiO2 for large capacitors and high-energy-density storage devices.

    PubMed

    Tse, Mei-Yan; Wei, Xianhua; Hao, Jianhua

    2016-09-21

    The search for colossal permittivity (CP) materials is imperative because of their potential for promising applications in the areas of device miniaturization and energy storage. High-performance CP materials require high dielectric permittivity, low dielectric loss and relatively weak dependence of frequency- and temperature. In this work, we first investigate the CP behavior of rutile TiO2 ceramics co-doped with niobium and erbium, i.e., (Er0.5Nb0.5)xTi1-xO2. Excellent dielectric properties were observed in the materials, including a CP of up to 10(4)-10(5) and a low dielectric loss (tan δ) down to 0.03, which are lower than that of the previously reported co-doped TiO2 CP materials when measured at 1 kHz. Stabilities of frequency and temperature were also accomplished via doping Er and Nb. Valence states of the elements in the material were analyzed using X-ray photoelectron spectroscopy. The Er induced secondary phases were observed using elemental mapping and energy-dispersive spectrometry. Consequently, this work may provide comprehensive guidance to develop high-performance CP materials for fully solid-state capacitor and energy storage applications. PMID:27530725

  7. Engineering Development of Coal-Fired High-Performance Power Systems

    SciTech Connect

    York Tsuo

    2000-12-31

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolysis process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately. This report addresses the areas of technical progress for this quarter. The detail of syngas cooler design is given in this report. The final construction work of the CFB pyrolyzer pilot plant has started during this quarter. No experimental testing was performed during this quarter. The proposed test matrix for the future CFB pyrolyzer tests is given in this report. Besides testing various fuels, bed temperature will be the primary test parameter.

  8. Porous Two-Dimensional Transition Metal Carbide (MXene) Flakes for High-Performance Li-Ion Storage

    DOE PAGESBeta

    Ren, Chang E.; Zhao, M-Q; Makaryan, Taron; Halim, Joseph; Boota, M.; Kota, Sankalp; Anasori, Babak; Barsoum, M W; Gogotsi, Yury

    2016-02-16

    Herein we develop a chemical etching method to produce porous two-dimensional (2D) Ti3C2Tx MXenes at room temperature in aqueous solutions. The as-produced porous Ti3C2Tx (p-Ti3C2Tx) have larger specific surface areas and more open structures than their pristine counterparts, and can be fabricated into flexible films with, or without, the addition of carbon nanotubes (CNTs). The as-fabricated p-Ti3C2Tx/CNT films showed significantly improved lithium ion storage capabilities compared to pristine Ti3C2Tx based films, with a very high capacity of ≈1250 mAh g-1 at 0.1 C, excellent cycling stability, and good rate performance (330 mAh g-1 at 10 C). Using the same chemicalmore » etching method, we also made porous Nb2CTx and V2CTx MXenes. Therefore, this study provides a simple, yet effective, procedure to introduce pores into MXenes and possibly other 2D sheets that in turn, can enhance their electrochemical properties.« less

  9. X-ray characterization of short-pulse laser illuminated hydrogen storage alloys having very high performance

    NASA Astrophysics Data System (ADS)

    Daido, Hiroyuki; Abe, Hiroshi; Shobu, Takahisa; Shimomura, Takuya; Tokuhira, Shinnosuke; Takenaka, Yusuke; Furuyama, Takehiro; Nishimura, Akihiko; Uchida, Hirohisa; Ohshima, Takeshi

    2015-09-01

    Hydrogen storage alloys become more and more important in the fields of electric energy production and stage and automobiles such as Ni-MH batteries. The vacancies introduced in hydrogen absorption alloy by charged particle beams were found to be positive effect on the increase in the initial hydrogen absorption reaction rate in the previous study. The initial reaction rates of hydrogen absorption and desorption of the alloy are one of the important performances to be improved. Here, we report on the characterization of the hydrogen absorption reaction rate directly illuminated by a femtosecond and nanosecond lasers instead of particle beam machines. A laser illuminates the whole surface sequentially on a tip of a few cm square LaNi4.6Al0.4 alloy resulting in significant improvement in the hydrogen absorption reaction rate. For characterization of the surface layer, we perform an x-ray diffraction experiment using a monochromatized intense x-ray beam from SPring-8 synchrotoron machine.

  10. TiO2 microboxes with controlled internal porosity for high-performance lithium storage

    SciTech Connect

    Gao, Xuehui; Li, Gaoran; Xu, Yangyang; Hong, Zhanglian; Liang, Chengdu; Lin, Zhan

    2015-10-02

    Titanium dioxide (TiO2) is considered a promising anode material for high-power lithium ion batteries (LIBs) because of its low cost, high thermal/chemical stability, and good safety performance without solid electrolyte interface formation. However, the poor electronic conductivity and low lithium ion diffusivity of TiO2 result in poor cyclability and lithium ion depletion at high current rates, which hinder them from practical applications. Herein we demonstrate that hierarchically structured TiO2 microboxes with controlled internal porosity can address the aforementioned problems for high-power, long-life LIB anodes. A self-templating method for the synthesis of mesoporous microboxes was developed through Na2EDTA-assisted ion exchange of CaTiO3 microcubes. The resulting TiO2 nanorods were organized into microboxes that resemble the microcube precursors. Furthermore, this nanostructured TiO2 material has superior lithium storage properties with a capacity of 187 mAh g-1 after 300 cycles at 1C and good rate capabilities up to 20C.

  11. Self-Assembled N/S Codoped Flexible Graphene Paper for High Performance Energy Storage and Oxygen Reduction Reaction.

    PubMed

    Akhter, Taslima; Islam, Md Monirul; Faisal, Shaikh Nayeem; Haque, Enamul; Minett, Andrew I; Liu, Hua Kun; Konstantinov, Konstantin; Dou, Shi Xue

    2016-01-27

    A novel flexible three-dimensional (3D) architecture of nitrogen and sulfur codoped graphene has been successfully synthesized via thermal treatment of a liquid crystalline graphene oxide-doping agent composition, followed by a soft self-assembly approach. The high temperature process turns the layer-by-layer assembly into a high surface area macro- and nanoporous free-standing material with different atomic configurations of graphene. The interconnected 3D network exhibits excellent charge capacitive performance of 305 F g(-1) (at 100 mV s(-1)), an unprecedented volumetric capacitance of 188 F cm(-3) (at 1 A g(-1)), and outstanding energy density of 28.44 Wh kg(-1) as well as cycle life of 10 000 cycles as a free-standing electrode for an aqueous electrolyte, symmetric supercapacitor device. Moreover, the resulting nitrogen/sulfur doped graphene architecture shows good electrocatalytic performance, long durability, and high selectivity when they are used as metal-free catalyst for the oxygen reduction reaction. This study demonstrates an efficient approach for the development of multifunctional as well as flexible 3D architectures for a series of heteroatom-doped graphene frameworks for modern energy storage as well as energy source applications. PMID:26725830

  12. Partially Adaptive Phased Array Fed Cylindrical Reflector Technique for High Performance Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Hussein, Z.; Hilland, J.

    2001-01-01

    Spaceborne microwave radar instruments demand a high-performance antenna with a large aperature to address key science themes such as climate variations and predictions and global water and energy cycles.

  13. POPE: A distributed query system for high performance analysis of very large persistent object stores

    SciTech Connect

    Fischler, M.S.; Isely, M.C.; Nigri, A.M.; Rinaldo, F.J.

    1996-01-01

    Analysis of large physics data sets is a major computing task at Fermilab. One step in such an analysis involves culling ``interesting`` events via the use of complex query criteria. What makes this unusual is the scale required: 100`s of gigabytes of event data must be scanned at 10`s of megabytes per second for the typical queries that are applied, and data must be extracted from 10`s of terabytes based on the result of the query. The Physics Object Persistency Manager (POPM) system is a solution tailored to this scale of problem. A running POPM environment can support multiple queries in progress, each scanning at rates exceeding 10 megabytes per second, all of which are sharing access to a very large persistent address space distributed across multiple disks on multiple hosts. Specifically, POPM employs the following techniques to permit this scale of performance and access: Persistent objects: Experimental data to be scanned is ``populated`` as a data structure into the persistent address space supported by POPM. C++ classes with a few key overloaded operators provide nearly transparent semantics for access to the persistent storage. Distributed and parallel I/O: The persistent address space is automatically distributed across disks of multiple ``I/O nodes`` within the POPM system. A striping unit concept is implemented in POPM, permitting fast parallel I/O across the storage nodes, even for small single queries. Efficient Shared access: POPM implements an efficient mechanism for arbitration and multiplexing of I/O access among multiple queries on the same or separate compute nodes.

  14. Engineering development of coal-fired high-performance power systems

    SciTech Connect

    1999-10-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolysis process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, AL. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. This report addresses the areas of technical progress for this quarter. Analysis of the arch-fired burner continued during this quarter. Unburned carbon and NOx performance are included in this report. Construction commenced this quarter to modify the CETF

  15. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect

    1999-04-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%, NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input, all solid wastes benign, and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAC Combustors; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  16. Engineering development of coal-fired high performance power systems phase 2 and 3

    SciTech Connect

    Unknown

    1999-08-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le}10% NSPS (New Source Performance Standard); coal providing {ge} 65% of heat input; all solid wastes benign; and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.2 HITAF Air Heaters; and Task 2.4 Duct Heater and Gas Turbine Integration.

  17. Design of a VLSI scan conversion processor for high-performance 3-D graphics systems

    SciTech Connect

    Huang, H.U.

    1988-01-01

    Scan-conversion processing is the bottleneck in the image generation process. To solve the problem of smooth shading and hidden surface elimination, a new processor architecture was invented which has been labeled as a scan-conversion processor architecture (SCP). The SCP is designed to perform hidden surface elimination and scan conversion for 64 pixels. The color intensities are dual-buffered so that when one buffer is being updated the other can be scanned out. Z-depth is used to perform the hidden surface elimination. The key operation performed by the SCP is the evaluation of linear functions of a form like F(X,Y) = A X + B Y + C. The computation is further simplified by using incremental addition. The z-depth buffer and the color buffers are incorporated onto the same chip. The SCP receives from its preprocessor the information for the definition of polygons and the computation of z-depth and RGB color intensities. Many copies of this processor will be used in a high-performance graphics system.

  18. Analysis of starch in food systems by high-performance size exclusion chromatography.

    PubMed

    Ovando-Martínez, Maribel; Whitney, Kristin; Simsek, Senay

    2013-02-01

    Starch has unique physicochemical characteristics among food carbohydrates. Starch contributes to the physicochemical attributes of food products made from roots, legumes, cereals, and fruits. It occurs naturally as distinct particles, called granules. Most starch granules are a mixture of 2 sugar polymers: a highly branched polysaccharide named amylopectin and a basically linear polysaccharide named amylose. The starch contained in food products undergoes changes during processing, which causes changes in the starch molecular weight and amylose to amylopectin ratio. The objective of this study was to develop a new, simple, 1-step, and accurate method for simultaneous determination of amylose and amylopectin ratio as well as weight-averaged molecular weights of starch in food products. Starch from bread flour, canned peas, corn flake cereal, snack crackers, canned kidney beans, pasta, potato chips, and white bread was extracted by dissolving in KOH, urea, and precipitation with ethanol. Starch samples were solubilized and analyzed on a high-performance size exclusion chromatography (HPSEC) system. To verify the identity of the peaks, fractions were collected and soluble starch and beta-glucan assays were performed additional to gas chromatography analysis. We found that all the fractions contain only glucose and soluble starch assay is correlated to the HPSEC fractionation. This new method can be used to determine amylose amylopectin ratio and weight-averaged molecular weight of starch from various food products using as low as 25 mg dry samples. PMID:23330715

  19. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect

    1999-01-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input; all solid wastes benign; cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAC Combustors; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  20. High-performance CMOS image sensors at BAE SYSTEMS Imaging Solutions

    NASA Astrophysics Data System (ADS)

    Vu, Paul; Fowler, Boyd; Liu, Chiao; Mims, Steve; Balicki, Janusz; Bartkovjak, Peter; Do, Hung; Li, Wang

    2012-07-01

    In this paper, we present an overview of high-performance CMOS image sensor products developed at BAE SYSTEMS Imaging Solutions designed to satisfy the increasingly challenging technical requirements for image sensors used in advanced scientific, industrial, and low light imaging applications. We discuss the design and present the test results of a family of image sensors tailored for high imaging performance and capable of delivering sub-electron readout noise, high dynamic range, low power, high frame rates, and high sensitivity. We briefly review the performance of the CIS2051, a 5.5-Mpixel image sensor, which represents our first commercial CMOS image sensor product that demonstrates the potential of our technology, then we present the performance characteristics of the CIS1021, a full HD format CMOS image sensor capable of delivering sub-electron read noise performance at 50 fps frame rate at full HD resolution. We also review the performance of the CIS1042, a 4-Mpixel image sensor which offers better than 70% QE @ 600nm combined with better than 91dB intra scene dynamic range and about 1 e- read noise at 100 fps frame rate at full resolution.

  1. Pyrolytic carbon-coated stainless steel felt as a high-performance anode for bioelectrochemical systems.

    PubMed

    Guo, Kun; Hidalgo, Diana; Tommasi, Tonia; Rabaey, Korneel

    2016-07-01

    Scale up of bioelectrochemical systems (BESs) requires highly conductive, biocompatible and stable electrodes. Here we present pyrolytic carbon-coated stainless steel felt (C-SS felt) as a high-performance and scalable anode. The electrode is created by generating a carbon layer on stainless steel felt (SS felt) via a multi-step deposition process involving α-d-glucose impregnation, caramelization, and pyrolysis. Physicochemical characterizations of the surface elucidate that a thin (20±5μm) and homogenous layer of polycrystalline graphitic carbon was obtained on SS felt surface after modification. The carbon coating significantly increases the biocompatibility, enabling robust electroactive biofilm formation. The C-SS felt electrodes reach current densities (jmax) of 3.65±0.14mA/cm(2) within 7days of operation, which is 11 times higher than plain SS felt electrodes (0.30±0.04mA/cm(2)). The excellent biocompatibility, high specific surface area, high conductivity, good mechanical strength, and low cost make C-SS felt a promising electrode for BESs. PMID:27058401

  2. Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Final Report

    SciTech Connect

    Costeux, Stephane; Bunker, Shanon

    2013-12-20

    The objective of this project was to explore and potentially develop high performing insulation with increased R/inch and low impact on climate change that would help design highly insulating building envelope systems with more durable performance and lower overall system cost than envelopes with equivalent performance made with materials available today. The proposed technical approach relied on insulation foams with nanoscale pores (about 100 nm in size) in which heat transfer will be decreased. Through the development of new foaming methods, of new polymer formulations and new analytical techniques, and by advancing the understanding of how cells nucleate, expand and stabilize at the nanoscale, Dow successfully invented and developed methods to produce foams with 100 nm cells and 80% porosity by batch foaming at the laboratory scale. Measurements of the gas conductivity on small nanofoam specimen confirmed quantitatively the benefit of nanoscale cells (Knudsen effect) to increase insulation value, which was the key technical hypotheses of the program. In order to bring this technology closer to a viable semi-continuous/continuous process, the project team modified an existing continuous extrusion foaming process as well as designed and built a custom system to produce 6" x 6" foam panels. Dow demonstrated for the first time that nanofoams can be produced in a both processes. However, due to technical delays, foam characteristics achieved so far fall short of the 100 nm target set for optimal insulation foams. In parallel with the technology development, effort was directed to the determination of most promising applications for nanocellular insulation foam. Voice of Customer (VOC) exercise confirmed that demand for high-R value product will rise due to building code increased requirements in the near future, but that acceptance for novel products by building industry may be slow. Partnerships with green builders, initial launches in smaller markets (e.g. EIFS

  3. High-performance lithium storage in an ultrafine manganese fluoride nanorod anode with enhanced electrochemical activation based on conversion reaction.

    PubMed

    Rui, Kun; Wen, Zhaoyin; Huang, Xiao; Lu, Yan; Jin, Jun; Shen, Chen

    2016-02-01

    A facile, one-step solvothermal reaction route for the preparation of manganese fluoride nanorods is successfully developed using manganese(II) chloride tetrahydrate (MnCl2·4H2O) as the manganese source and the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4) as the fluorine source. X-ray diffraction, field-emission scanning electron microscopy and high-resolution transmission electron microscopy (HRTEM) are conducted to characterize the structural and microstructural properties of the synthesized MnF2. The pure-phase tetragonal MnF2 displays nanorod-like morphology with a diameter of about 20 nm and a length of several hundreds of nanometers. The electrochemical performance of the MnF2 nanorod anode for rechargeable lithium batteries is investigated. A reversible discharge capacity as high as 443 mA h g(-1) at 0.1 C is obtained for the lithium uptake reaction with an initial discharge plateau around 0.7 V. The striking enhancement in electrochemical Li storage performance in ultrafine MnF2 nanorods can be attributed to the small diameters of the nanorods and efficient one-dimensional electron transport pathways. Long cycle performance for 2000 cycles at 10 C with a stabilized capacity of about 430 mA h g(-1) after activation is also achieved. Furthermore, lithiated and delithiated MnF2 anodes are analyzed with HRTEM to elucidate the conversion mechanism for the electrochemical reaction of MnF2 nanorods with Li at a microscopic level. PMID:26766389

  4. Engineering development of coal-fired high-performance power systems

    SciTech Connect

    1999-05-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolysis process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, AL. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. This report addresses the areas of technical progress for this quarter. The char combustion tests in the arch-fired arrangement were completed this quarter. A total of twenty-one setpoints were successfully completed, firing both synthetically-made char

  5. A Scintillation Counter System Design To Detect Antiproton Annihilation using the High Performance Antiproton Trap(HiPAT)

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Lewis, Raymond A.; Stanojev, Boris

    2003-01-01

    The High Performance Antiproton Trap (HiPAT), a system designed to hold up to l0(exp 12) charge particles with a storage half-life of approximately 18 days, is a tool to support basic antimatter research. NASA's interest stems from the energy density represented by the annihilation of matter with antimatter, 10(exp 2)MJ/g. The HiPAT is configured with a Penning-Malmberg style electromagnetic confinement region with field strengths up to 4 Tesla, and 20kV. To date a series of normal matter experiments, using positive and negative ions, have been performed evaluating the designs performance prior to operations with antiprotons. The primary methods of detecting and monitoring stored normal matter ions and antiprotons within the trap includes a destructive extraction technique that makes use of a micro channel plate (MCP) device and a non-destractive radio frequency scheme tuned to key particle frequencies. However, an independent means of detecting stored antiprotons is possible by making use of the actual annihilation products as a unique indicator. The immediate yield of the annihilation event includes photons and pie mesons, emanating spherically from the point of annihilation. To "count" these events, a hardware system of scintillators, discriminators, coincident meters and multi channel scalars (MCS) have been configured to surround much of the HiPAT. Signal coincidence with voting logic is an essential part of this system, necessary to weed out the single cosmic ray events from the multi-particle annihilation shower. This system can be operated in a variety of modes accommodating various conditions. The first is a low-speed sampling interval that monitors the background loss or "evaporation" rate of antiprotons held in the trap during long storage periods; provides an independent method of validating particle lifetimes. The second is a high-speed sample rate accumulating information on a microseconds time-scale; useful when trapped antiparticles are extracted

  6. Simultaneous quantification of crocetin esters and picrocrocin changes in Chinese saffron by high-performance liquid chromatography-diode array detector during 15 years of storage

    PubMed Central

    Tong, Yingpeng; Yan, Yongqiu; Zhu, Xingyi; Liu, Ruoxi; Gong, Feng; Zhang, Ling; Wang, Ping

    2015-01-01

    Background: Saffron, which is made up of the dried stigmas of Crocus sativus L., has been successfully cultivated in China since 1970s and Zhejiang province is now the largest producing area in China, but the contents of crocetin esters and picrocrocin in saffron from Zhejiang province has not been determined simultaneously by high-performance liquid chromatography (HPLC) and changes of these constituents in Chinese saffron during storage for years has not been studied. Object: To establish a simple method quantification of the five main compounds including picrocrocin and four crocetin esters in saffron from main producing areas of China and study the influence of storage time on the changes of saffron constituents. Materials and Methods: A simple, sensitive, and accurate HPLC method was developed for simultaneous determination of five major active components in saffron and eight samples which collected from the same farm of Zhejiang province in different years were analyzed. Results: The correlation coefficient values (R2 > 0.9997) indicated good correlations between the investigated compounds’ concentrations and their peak areas within the test ranges. The limits of quantification and detection of the five compounds were 0.53–2.76 μg/mL and 0.11–0.77 μg/mL, respectively. The recoveries ranged from 94.67% to 101.31%, and the overall relative standard deviations for intra-day and inter-day were lower than 3.49%. The method was applied to study the changes of crocetin esters and picrocrocin contents in saffron samples during 15 years of storage. The losses of crocetin esters and picrocrocin in saffron with 1 -year storage were 52.2% and 54.3%, respectively. The trend then declined during subsequent storage. Conclusion: The developed method can be applied to the intrinsic quality control of saffron. PMID:26246729

  7. Coal-fired high performance power generating system. Quarterly progress report

    SciTech Connect

    Not Available

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO{sub x} SO {sub x} and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW{sub e} combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R&D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO{sub x} production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  8. NASA Langley Research Center's distributed mass storage system

    NASA Technical Reports Server (NTRS)

    Pao, Juliet Z.; Humes, D. Creig

    1993-01-01

    There is a trend in institutions with high performance computing and data management requirements to explore mass storage systems with peripherals directly attached to a high speed network. The Distributed Mass Storage System (DMSS) Project at NASA LaRC is building such a system and expects to put it into production use by the end of 1993. This paper presents the design of the DMSS, some experiences in its development and use, and a performance analysis of its capabilities. The special features of this system are: (1) workstation class file servers running UniTree software; (2) third party I/O; (3) HIPPI network; (4) HIPPI/IPI3 disk array systems; (5) Storage Technology Corporation (STK) ACS 4400 automatic cartridge system; (6) CRAY Research Incorporated (CRI) CRAY Y-MP and CRAY-2 clients; (7) file server redundancy provision; and (8) a transition mechanism from the existent mass storage system to the DMSS.

  9. High performance dash on warning air mobile, missile system. [intercontinental ballistic missiles - systems analysis

    NASA Technical Reports Server (NTRS)

    Levin, A. D.; Castellano, C. R.; Hague, D. S.

    1975-01-01

    An aircraft-missile system which performs a high acceleration takeoff followed by a supersonic dash to a 'safe' distance from the launch site is presented. Topics considered are: (1) technological feasibility to the dash on warning concept; (2) aircraft and boost trajectory requirements; and (3) partial cost estimates for a fleet of aircraft which provide 200 missiles on airborne alert. Various aircraft boost propulsion systems were studied such as an unstaged cryogenic rocket, an unstaged storable liquid, and a solid rocket staged system. Various wing planforms were also studied. Vehicle gross weights are given. The results indicate that the dash on warning concept will meet expected performance criteria, and can be implemented using existing technology, such as all-aluminum aircraft and existing high-bypass-ratio turbofan engines.

  10. Electrochemical hydrogen Storage Systems

    SciTech Connect

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  11. Easy to use uncooled ¼ VGA 17 µm FPA development for high performance compact and low-power systems

    NASA Astrophysics Data System (ADS)

    Robert, P.; Tissot, JL.; Pochic, D.; Gravot, V.; Bonnaire, F.; Clerambault, H.; Durand, A.; Tinnes, S.

    2012-06-01

    The high level of accumulated expertise by ULIS and CEA/LETI on uncooled microbolometers made from amorphous silicon enables ULIS to develop ¼ VGA IRFPA formats with 17μm pixel-pitch to enable the development of small power, small weight (SWAP) and high performance IR systems. ROIC architecture will be described where innovations are widely on-chip implemented to enable an easier operation by the user. The detector configuration (integration time, windowing, gain, scanning direction...), is driven by a standard I²C link. Like most of the visible arrays, the detector adopts the HSYNC/VSYNC free-run mode of operation driven with only one master clock (MC) supplied to the ROIC which feeds back pixel, line and frame synchronizations. On-chip PROM memory for customer operational condition storage is available for detector characteristics. Low power consumption has been taken into account and less than 60 mW is possible in analog mode at 60 Hz and < 175 mW in digital mode (14 bits). A wide electrical dynamic range (2.4V) is maintained despite the use of advanced CMOS node. The specific appeal of this unit lies in the high uniformity and easy operation it provides. The reduction of the pixel-pitch turns this TEC-less ¼ VGA array into a product well adapted for high resolution and compact systems. NETD of 35 mK and thermal time constant of 10 ms have been measured leading to 350 mK.ms figure of merit. We insist on NETD trade-off with wide thermal dynamic range, as well as the high characteristics uniformity and pixel operability, achieved thanks to the mastering of the amorphous silicon technology coupled with the ROIC design. This technology node associated with advanced packaging technique, paves the way to compact low power system.

  12. High-Performance Optical 3R Regeneration for Scalable Fiber Transmission System Applications

    NASA Astrophysics Data System (ADS)

    Zhu, Zuqing; Funabashi, Masaki; Pan, Zhong; Paraschis, Loukas; Harris, David L.; Ben Yoo, S. J.

    2007-02-01

    This paper proposes and demonstrates optical 3R regeneration techniques for high-performance and scalable 10-Gb/s transmission systems. The 3R structures rely on monolithically integrated all-active semiconductor optical amplifier-based Mach Zehnder interferometers (SOA-MZIs) for signal reshaping and optical narrowband filtering using a Fabry Pérot filter (FPF) for all-optical clock recovery. The experimental results indicate very stable operation and superior cascadability of the proposed optical 3R structure, allowing error-free and low-penalty 10-Gb/s [pseudorandom bit sequence (PRBS) 223 - 1] return-to-zero (RZ) transmission through a record distance of 1 250 000 km using 10 000 optical 3R stages. Clock-enhancement techniques using a SOA-MZI are then proposed to accommodate the clock performance degradations that arise from dispersion uncompensated transmission. Leveraging such clock-enhancement techniques, we experimentally demonstrate error-free 125 000-km RZ dispersion uncompensated transmission at 10 Gb/s (PRBS 223 - 1) using 1000 stages of optical 3R regenerators spaced by 125-km large-effective-area fiber spans. To evaluate the proposed optical 3R structures in a relatively realistic environment and to investigate the tradeoff between the cascadability and the spacing of the optical 3R, a fiber recirculation loop is set up with 264- and 462-km deployed fiber. The field-trial experiment achieves error-free 10-Gb/s RZ transmission using PRBS 223} - 1 through 264 000-km deployed fiber across 1000 stages of optical 3R regenerators spaced by 264-km spans.

  13. A multi-layer robust adaptive fault tolerant control system for high performance aircraft

    NASA Astrophysics Data System (ADS)

    Huo, Ying

    Modern high-performance aircraft demand advanced fault-tolerant flight control strategies. Not only the control effector failures, but the aerodynamic type failures like wing-body damages often result in substantially deteriorate performance because of low available redundancy. As a result the remaining control actuators may yield substantially lower maneuvering capabilities which do not authorize the accomplishment of the air-craft's original specified mission. The problem is to solve the control reconfiguration on available control redundancies when the mission modification is urged to save the aircraft. The proposed robust adaptive fault-tolerant control (RAFTC) system consists of a multi-layer reconfigurable flight controller architecture. It contains three layers accounting for different types and levels of failures including sensor, actuator, and fuselage damages. In case of the nominal operation with possible minor failure(s) a standard adaptive controller stands to achieve the control allocation. This is referred to as the first layer, the controller layer. The performance adjustment is accounted for in the second layer, the reference layer, whose role is to adjust the reference model in the controller design with a degraded transit performance. The upmost mission adjust is in the third layer, the mission layer, when the original mission is not feasible with greatly restricted control capabilities. The modified mission is achieved through the optimization of the command signal which guarantees the boundedness of the closed-loop signals. The main distinguishing feature of this layer is the the mission decision property based on the current available resources. The contribution of the research is the multi-layer fault-tolerant architecture that can address the complete failure scenarios and their accommodations in realities. Moreover, the emphasis is on the mission design capabilities which may guarantee the stability of the aircraft with restricted post

  14. Instructional Leadership in Centralised Systems: Evidence from Greek High-Performing Secondary Schools

    ERIC Educational Resources Information Center

    Kaparou, Maria; Bush, Tony

    2015-01-01

    This paper examines the enactment of instructional leadership (IL) in high-performing secondary schools (HPSS), and the relationship between leadership and learning in raising student outcomes and encouraging teachers' professional learning in the highly centralised context of Greece. It reports part of a comparative research study focused on…

  15. Essential Elements of High Performing, High Quality Part C Systems. NECTAC Notes No. 25

    ERIC Educational Resources Information Center

    Lucas, Anne; Hurth, Joicey; Kasprzak, Christina

    2010-01-01

    National Early Childhood Technical Assistance Center (NECTAC) was asked to identify essential elements for supporting high performance and provision of high quality early intervention Part C services as determined by the Annual Performance Review (APR) required under Individuals with Disabilities Education Act (IDEA). To respond, NECTAC…

  16. Sub-micrometer Novolac-Derived Carbon Beads for High Performance Supercapacitors and Redox Electrolyte Energy Storage.

    PubMed

    Krüner, Benjamin; Lee, Juhan; Jäckel, Nicolas; Tolosa, Aura; Presser, Volker

    2016-04-13

    Carbon beads with sub-micrometer diameter were produced with a self-emulsifying novolac-ethanol-water system. A physical activation with CO2 was carried out to create a high microporosity with a specific surface area varying from 771 (DFT) to 2237 m(2)/g (DFT) and a total pore volume from 0.28 to 1.71 cm(3)/g. The carbon particles conserve their spherical shape after the thermal treatments. The controllable porosity of the carbon spheres is attractive for the application in electrochemical double layer capacitors. The electrochemical characterization was carried out in aqueous 1 M Na2SO4 (127 F/g) and organic 1 M tetraethylammonium tetrafluoroborate in propylene carbonate (123 F/g). Furthermore, an aqueous redox electrolyte (6 M KI) was tested with the highly porous carbon and a specific energy of 33 W·h/kg (equivalent to 493 F/g) was obtained. In addition to a high specific capacitance, the carbon beads also provide an excellent rate performance at high current and potential in all tested electrolytes, which leads to a high specific power (>11 kW/kg) with an electrode thickness of ca. 200 μm. PMID:26996252

  17. High performance MRI simulations of motion on multi-GPU systems

    PubMed Central

    2014-01-01

    Background MRI physics simulators have been developed in the past for optimizing imaging protocols and for training purposes. However, these simulators have only addressed motion within a limited scope. The purpose of this study was the incorporation of realistic motion, such as cardiac motion, respiratory motion and flow, within MRI simulations in a high performance multi-GPU environment. Methods Three different motion models were introduced in the Magnetic Resonance Imaging SIMULator (MRISIMUL) of this study: cardiac motion, respiratory motion and flow. Simulation of a simple Gradient Echo pulse sequence and a CINE pulse sequence on the corresponding anatomical model was performed. Myocardial tagging was also investigated. In pulse sequence design, software crushers were introduced to accommodate the long execution times in order to avoid spurious echoes formation. The displacement of the anatomical model isochromats was calculated within the Graphics Processing Unit (GPU) kernel for every timestep of the pulse sequence. Experiments that would allow simulation of custom anatomical and motion models were also performed. Last, simulations of motion with MRISIMUL on single-node and multi-node multi-GPU systems were examined. Results Gradient Echo and CINE images of the three motion models were produced and motion-related artifacts were demonstrated. The temporal evolution of the contractility of the heart was presented through the application of myocardial tagging. Better simulation performance and image quality were presented through the introduction of software crushers without the need to further increase the computational load and GPU resources. Last, MRISIMUL demonstrated an almost linear scalable performance with the increasing number of available GPU cards, in both single-node and multi-node multi-GPU computer systems. Conclusions MRISIMUL is the first MR physics simulator to have implemented motion with a 3D large computational load on a single computer

  18. Secure Repayable Storage System

    NASA Astrophysics Data System (ADS)

    Alkharobi, T. M.

    This paper proposes a method to create a system that allows data to be stored in several locations in secure and reliable manner. The system should create several shares from the data such that only pre-specified subsets of these shares can be used to retrieve the original data. The shares then will be distributed to shareholders over a local and/or wide area network. The system should allow requesting some/all shares from shareholders and using them to rebuild the data.

  19. Collinear holographic data storage system

    NASA Astrophysics Data System (ADS)

    Tan, Xiaodi; Lin, Xiao; Wu, Anan

    2013-08-01

    Holographic data storage system is a promising candidate of the next-generation of storage equipment. However, conventional technologies (called 2-axis holography) still have essential issues for commercialization of products. In this paper, we introduce the collinear holography that can produce a small, practical data storage system more easily than conventional 2-axis holography. In this technology the information and reference beams are displayed co-axially by the same SLM. With this unique configuration the optical pickup can be placed on one side of the recording media. The special media structure uses a pre-formatted reflective layer for the focus/tracking servo and for reading address information. It also uses a dichroic mirror interlayer for detecting holographic recording information without interfering with the preformatted information. A 2-dimensional digital page data format is used and the shift-multiplexing method is employed to increase recording density.

  20. Hydrogen storage and generation system

    DOEpatents

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  1. Hierarchical storage management system evaluation

    NASA Technical Reports Server (NTRS)

    Woodrow, Thomas S.

    1993-01-01

    The Numerical Aerodynamic Simulation (NAS) Program at NASA Ames Research Center has been developing a hierarchical storage management system, NAStore, for some 6 years. This evaluation compares functionality, performance, reliability, and other factors of NAStore and three commercial alternatives. FileServ is found to be slightly better overall than NAStore and DMF. UniTree is found to be severely lacking in comparison.

  2. Memory Storage and Neural Systems.

    ERIC Educational Resources Information Center

    Alkon, Daniel L.

    1989-01-01

    Investigates memory storage and molecular nature of associative-memory formation by analyzing Pavlovian conditioning in marine snails and rabbits. Presented is the design of a computer-based memory system (neural networks) using the rules acquired in the investigation. Reports that the artificial network recognized patterns well. (YP)

  3. INTEGRATED HYDROGEN STORAGE SYSTEM MODEL

    SciTech Connect

    Hardy, B

    2007-11-16

    Hydrogen storage is recognized as a key technical hurdle that must be overcome for the realization of hydrogen powered vehicles. Metal hydrides and their doped variants have shown great promise as a storage material and significant advances have been made with this technology. In any practical storage system the rate of H2 uptake will be governed by all processes that affect the rate of mass transport through the bed and into the particles. These coupled processes include heat and mass transfer as well as chemical kinetics and equilibrium. However, with few exceptions, studies of metal hydrides have focused primarily on fundamental properties associated with hydrogen storage capacity and kinetics. A full understanding of the complex interplay of physical processes that occur during the charging and discharging of a practical storage system requires models that integrate the salient phenomena. For example, in the case of sodium alanate, the size of NaAlH4 crystals is on the order of 300nm and the size of polycrystalline particles may be approximately 10 times larger ({approx}3,000nm). For the bed volume to be as small as possible, it is necessary to densely pack the hydride particles. Even so, in packed beds composed of NaAlH{sub 4} particles alone, it has been observed that the void fraction is still approximately 50-60%. Because of the large void fraction and particle to particle thermal contact resistance, the thermal conductivity of the hydride is very low, on the order of 0.2 W/m-{sup o}C, Gross, Majzoub, Thomas and Sandrock [2002]. The chemical reaction for hydrogen loading is exothermic. Based on the data in Gross [2003], on the order of 10{sup 8}J of heat of is released for the uptake of 5 kg of H{sub 2}2 and complete conversion of NaH to NaAlH{sub 4}. Since the hydride reaction transitions from hydrogen loading to discharge at elevated temperatures, it is essential to control the temperature of the bed. However, the low thermal conductivity of the hydride

  4. Storage systems for solar thermal power

    NASA Technical Reports Server (NTRS)

    Calogeras, J. E.; Gordon, L. H.

    1978-01-01

    The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.

  5. Silicon photonics-based laser system for high performance fiber sensing

    NASA Astrophysics Data System (ADS)

    Ayotte, S.; Faucher, D.; Babin, A.; Costin, F.; Latrasse, C.; Poulin, M.; G.-Deschênes, É.; Pelletier, F.; Laliberté, M.

    2015-09-01

    We present a compact four-laser source based on low-noise, high-bandwidth Pound-Drever-Hall method and optical phase-locked loops for sensing narrow spectral features. Four semiconductor external cavity lasers in butterfly packages are mounted on a shared electronics control board and all other optical functions are integrated on a single silicon photonics chip. This high performance source is compact, automated, robust, operates over a wide temperature range and remains locked for days. A laser to resonance frequency noise of 0.25 Hz/rt-Hz is demonstrated.

  6. Compressed gas fuel storage system

    SciTech Connect

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  7. Relationships of Cognitive and Metacognitive Learning Strategies to Mathematics Achievement in Four High-Performing East Asian Education Systems

    ERIC Educational Resources Information Center

    Areepattamannil, Shaljan; Caleon, Imelda S.

    2013-01-01

    The authors examined the relationships of cognitive (i.e., memorization and elaboration) and metacognitive learning strategies (i.e., control strategies) to mathematics achievement among 15-year-old students in 4 high-performing East Asian education systems: Shanghai-China, Hong Kong-China, Korea, and Singapore. In all 4 East Asian education…

  8. Constructing a LabVIEW-Controlled High-Performance Liquid Chromatography (HPLC) System: An Undergraduate Instrumental Methods Exercise

    ERIC Educational Resources Information Center

    Smith, Eugene T.; Hill, Marc

    2011-01-01

    In this laboratory exercise, students develop a LabVIEW-controlled high-performance liquid chromatography system utilizing a data acquisition device, two pumps, a detector, and fraction collector. The programming experience involves a variety of methods for interface communication, including serial control, analog-to-digital conversion, and…

  9. Combined solar collector and energy storage system

    NASA Technical Reports Server (NTRS)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  10. Use Of A Digital Optical Storage System

    NASA Astrophysics Data System (ADS)

    Collins, M. W.

    1983-01-01

    The Common File System (CFS) is a file management and file storage system for the Los Alamos National Laboratory's computer network. The CFS is organized as a hierarchical storage system: active files are stored on fast-access storage devices, larger, less active files are stored on slower, less expensive devices, and archival files are stored offline. Files are automatically moved between the various classes of storage by a file migration program that analyzes file activity, file size, and storage device capabilities. This has resulted in a cost-effective system that provides both fast access and large data storage capability (over 9 trillion bits currently stored). A large capacity (1014 bits), reliable Digital Optical Storage System would replace the offline storage as the archival part of the CFS and might also be used for active storage if it had a reasonable file access time.

  11. Storage systems for solar thermal power

    NASA Technical Reports Server (NTRS)

    Calogeras, J. E.; Gordon, L. H.

    1978-01-01

    A major constraint to the evolution of solar thermal power systems is the need to provide continuous operation during periods of solar outage. A number of high temperature thermal energy storage technologies which have the potential to meet this need are currently under development. The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.

  12. High performance computing at Sandia National Labs

    SciTech Connect

    Cahoon, R.M.; Noe, J.P.; Vandevender, W.H.

    1995-10-01

    Sandia`s High Performance Computing Environment requires a hierarchy of resources ranging from desktop, to department, to centralized, and finally to very high-end corporate resources capable of teraflop performance linked via high-capacity Asynchronous Transfer Mode (ATM) networks. The mission of the Scientific Computing Systems Department is to provide the support infrastructure for an integrated corporate scientific computing environment that will meet Sandia`s needs in high-performance and midrange computing, network storage, operational support tools, and systems management. This paper describes current efforts at SNL/NM to expand and modernize centralized computing resources in support of this mission.

  13. Online mass storage system detailed requirements document

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The requirements for an online high density magnetic tape data storage system that can be implemented in a multipurpose, multihost environment is set forth. The objective of the mass storage system is to provide a facility for the compact storage of large quantities of data and to make this data accessible to computer systems with minimum operator handling. The results of a market survey and analysis of candidate vendor who presently market high density tape data storage systems are included.

  14. Cost-effective scalable synthesis of mesoporous germanium particles via a redox-transmetalation reaction for high-performance energy storage devices.

    PubMed

    Choi, Sinho; Kim, Jieun; Choi, Nam-Soon; Kim, Min Gyu; Park, Soojin

    2015-02-24

    Nanostructured germanium is a promising material for high-performance energy storage devices. However, synthesizing it in a cost-effective and simple manner on a large scale remains a significant challenge. Herein, we report a redox-transmetalation reaction-based route for the large-scale synthesis of mesoporous germanium particles from germanium oxide at temperatures of 420-600 °C. We could confirm that a unique redox-transmetalation reaction occurs between Zn(0) and Ge(4+) at approximately 420 °C using temperature-dependent in situ X-ray absorption fine structure analysis. This reaction has several advantages, which include (i) the successful synthesis of germanium particles at a low temperature (∼450 °C), (ii) the accommodation of large volume changes, owing to the mesoporous structure of the germanium particles, and (iii) the ability to synthesize the particles in a cost-effective and scalable manner, as inexpensive metal oxides are used as the starting materials. The optimized mesoporous germanium anode exhibits a reversible capacity of ∼1400 mA h g(-1) after 300 cycles at a rate of 0.5 C (corresponding to the capacity retention of 99.5%), as well as stable cycling in a full cell containing a LiCoO2 cathode with a high energy density (charge capacity = 286.62 mA h cm(-3)). PMID:25666187

  15. A High Resolution On-Chip Delay Sensor with Low Supply-Voltage Sensitivity for High-Performance Electronic Systems

    PubMed Central

    Sheng, Duo; Lai, Hsiu-Fan; Chan, Sheng-Min; Hong, Min-Rong

    2015-01-01

    An all-digital on-chip delay sensor (OCDS) circuit with high delay-measurement resolution and low supply-voltage sensitivity for efficient detection and diagnosis in high-performance electronic system applications is presented. Based on the proposed delay measurement scheme, the quantization resolution of the proposed OCDS can be reduced to several picoseconds. Additionally, the proposed cascade-stage delay measurement circuit can enhance immunity to supply-voltage variations of the delay measurement resolution without extra self-biasing or calibration circuits. Simulation results show that the delay measurement resolution can be improved to 1.2 ps; the average delay resolution variation is 0.55% with supply-voltage variations of ±10%. Moreover, the proposed delay sensor can be implemented in an all-digital manner, making it very suitable for high-performance electronic system applications as well as system-level integration. PMID:25688590

  16. High-Performance Happy

    ERIC Educational Resources Information Center

    O'Hanlon, Charlene

    2007-01-01

    Traditionally, the high-performance computing (HPC) systems used to conduct research at universities have amounted to silos of technology scattered across the campus and falling under the purview of the researchers themselves. This article reports that a growing number of universities are now taking over the management of those systems and…

  17. HPTLC-aptastaining - Innovative protein detection system for high-performance thin-layer chromatography.

    PubMed

    Morschheuser, Lena; Wessels, Hauke; Pille, Christina; Fischer, Judith; Hünniger, Tim; Fischer, Markus; Paschke-Kratzin, Angelika; Rohn, Sascha

    2016-01-01

    Protein analysis using high-performance thin-layer chromatography (HPTLC) is not commonly used but can complement traditional electrophoretic and mass spectrometric approaches in a unique way. Due to various detection protocols and possibilities for hyphenation, HPTLC protein analysis is a promising alternative for e.g., investigating posttranslational modifications. This study exemplarily focused on the investigation of lysozyme, an enzyme which is occurring in eggs and technologically added to foods and beverages such as wine. The detection of lysozyme is mandatory, as it might trigger allergenic reactions in sensitive individuals. To underline the advantages of HPTLC in protein analysis, the development of innovative, highly specific staining protocols leads to improved sensitivity for protein detection on HPTLC plates in comparison to universal protein derivatization reagents. This study aimed at developing a detection methodology for HPTLC separated proteins using aptamers. Due to their affinity and specificity towards a wide range of targets, an aptamer based staining procedure on HPTLC (HPTLC-aptastaining) will enable manifold analytical possibilities. Besides the proof of its applicability for the very first time, (i) aptamer-based staining of proteins is applicable on different stationary phase materials and (ii) furthermore, it can be used as an approach for a semi-quantitative estimation of protein concentrations. PMID:27220270

  18. HPTLC-aptastaining – Innovative protein detection system for high-performance thin-layer chromatography

    NASA Astrophysics Data System (ADS)

    Morschheuser, Lena; Wessels, Hauke; Pille, Christina; Fischer, Judith; Hünniger, Tim; Fischer, Markus; Paschke-Kratzin, Angelika; Rohn, Sascha

    2016-05-01

    Protein analysis using high-performance thin-layer chromatography (HPTLC) is not commonly used but can complement traditional electrophoretic and mass spectrometric approaches in a unique way. Due to various detection protocols and possibilities for hyphenation, HPTLC protein analysis is a promising alternative for e.g., investigating posttranslational modifications. This study exemplarily focused on the investigation of lysozyme, an enzyme which is occurring in eggs and technologically added to foods and beverages such as wine. The detection of lysozyme is mandatory, as it might trigger allergenic reactions in sensitive individuals. To underline the advantages of HPTLC in protein analysis, the development of innovative, highly specific staining protocols leads to improved sensitivity for protein detection on HPTLC plates in comparison to universal protein derivatization reagents. This study aimed at developing a detection methodology for HPTLC separated proteins using aptamers. Due to their affinity and specificity towards a wide range of targets, an aptamer based staining procedure on HPTLC (HPTLC-aptastaining) will enable manifold analytical possibilities. Besides the proof of its applicability for the very first time, (i) aptamer-based staining of proteins is applicable on different stationary phase materials and (ii) furthermore, it can be used as an approach for a semi-quantitative estimation of protein concentrations.

  19. HPTLC-aptastaining – Innovative protein detection system for high-performance thin-layer chromatography

    PubMed Central

    Morschheuser, Lena; Wessels, Hauke; Pille, Christina; Fischer, Judith; Hünniger, Tim; Fischer, Markus; Paschke-Kratzin, Angelika; Rohn, Sascha

    2016-01-01

    Protein analysis using high-performance thin-layer chromatography (HPTLC) is not commonly used but can complement traditional electrophoretic and mass spectrometric approaches in a unique way. Due to various detection protocols and possibilities for hyphenation, HPTLC protein analysis is a promising alternative for e.g., investigating posttranslational modifications. This study exemplarily focused on the investigation of lysozyme, an enzyme which is occurring in eggs and technologically added to foods and beverages such as wine. The detection of lysozyme is mandatory, as it might trigger allergenic reactions in sensitive individuals. To underline the advantages of HPTLC in protein analysis, the development of innovative, highly specific staining protocols leads to improved sensitivity for protein detection on HPTLC plates in comparison to universal protein derivatization reagents. This study aimed at developing a detection methodology for HPTLC separated proteins using aptamers. Due to their affinity and specificity towards a wide range of targets, an aptamer based staining procedure on HPTLC (HPTLC-aptastaining) will enable manifold analytical possibilities. Besides the proof of its applicability for the very first time, (i) aptamer-based staining of proteins is applicable on different stationary phase materials and (ii) furthermore, it can be used as an approach for a semi-quantitative estimation of protein concentrations. PMID:27220270

  20. Determination of the kinetic rate constant of cyclodextrin supramolecular systems by high-performance affinity chromatography.

    PubMed

    Zhang, Jiwen; Li, Haiyan; Sun, Lixin; Wang, Caifen

    2015-01-01

    The kinetics of the association and dissociation are fundamental kinetic processes for the host-guest interactions (such as the drug-target and drug-excipient interactions) and the in vivo performance of supramolecules. With advantages of rapid speed, high precision and ease of automation, the high-performance affinity chromatography (HPAC) is one of the best techniques to measure the interaction kinetics of weak to moderate affinities, such as the typical host-guest interactions of drug and cyclodextrins by using a cyclodextrin-immobilized column. The measurement involves the equilibration of the cyclodextrin column, the upload and elution of the samples (non-retained substances and retained solutes) at different flow rates on the cyclodextrin and control column, and data analysis. It has been indicated that cyclodextrin-immobilized chromatography is a cost-efficient high-throughput tool for the measurement of (small molecule) drug-cyclodextrin interactions as well as the dissociation of other supramolecules with relatively weak, fast, and extensive interactions. PMID:25749964

  1. Coal-fired high performance power generating system. Draft quarterly progress report, January 1--March 31, 1995

    SciTech Connect

    1995-10-01

    This report covers work carried out under Task 3, Preliminary R and D, under contract DE-AC22-92PC91155, ``Engineering Development of a Coal-Fired High Performance Power Generation System`` between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of >47% thermal efficiency; NO{sub x}, SO{sub x} and particulates {le} 25% NSPS; cost {ge}65% of heat input; all solid wastes benign. A crucial aspect of the authors design is the integration of the gas turbine requirements with the HITAF output and steam cycle requirements. In order to take full advantage of modern highly efficient aeroderivative gas turbines they have carried out a large number of cycle calculations to optimize their commercial plant designs for both greenfield and repowering applications.

  2. Coal-fired high performance power generating system. Quarterly progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Not Available

    1993-12-31

    This report covers work carried out under Task 3, Preliminary Research and Development, and Task 4, Commercial Generating Plant Design, under contract DE-AC22-92PC91155, {open_quotes}Engineering Development of a Coal Fired High Performance Power Generation System{close_quotes} between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of >47% thermal efficiency; NO{sub x}, SO{sub x}, and particulates {le} 25% NSPS; cost {ge} 65% of heat input; and all solid wastes benign. The report discusses progress in cycle analysis, chemical reactor modeling, ash deposition rate calculations for HITAF (high temperature advanced furnace) convective air heater, air heater materials, and deposit initiation and growth on ceramic substrates.

  3. High Density Digital Data Storage System

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D., II; Gray, David L.; Rowland, Wayne D.

    1991-01-01

    The High Density Digital Data Storage System was designed to provide a cost effective means for storing real-time data from the field-deployable digital acoustic measurement system. However, the high density data storage system is a standalone system that could provide a storage solution for many other real time data acquisition applications. The storage system has inputs for up to 20 channels of 16-bit digital data. The high density tape recorders presently being used in the storage system are capable of storing over 5 gigabytes of data at overall transfer rates of 500 kilobytes per second. However, through the use of data compression techniques the system storage capacity and transfer rate can be doubled. Two tape recorders have been incorporated into the storage system to produce a backup tape of data in real-time. An analog output is provided for each data channel as a means of monitoring the data as it is being recorded.

  4. High Performing Alabama School Systems: What Do the Best Have in Common?

    ERIC Educational Resources Information Center

    Miller-Whitehead, Marie

    The Alabama State Department of Education School System Report Card provides annual data for each of Alabama's city and county public school systems, including student achievement indicators on the Stanford Achievement Test, High School Exit exam, writing tests, ACT test, dropouts, ADA expenditures, free and reduced lunch, system revenues, and…

  5. High-performance flexible energy storage and harvesting system for wearable electronics.

    PubMed

    Ostfeld, Aminy E; Gaikwad, Abhinav M; Khan, Yasser; Arias, Ana C

    2016-01-01

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm(2) and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices. PMID:27184194

  6. High-performance flexible energy storage and harvesting system for wearable electronics

    NASA Astrophysics Data System (ADS)

    Ostfeld, Aminy E.; Gaikwad, Abhinav M.; Khan, Yasser; Arias, Ana C.

    2016-05-01

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm2 and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices.

  7. High-performance flexible energy storage and harvesting system for wearable electronics

    PubMed Central

    Ostfeld, Aminy E.; Gaikwad, Abhinav M.; Khan, Yasser; Arias, Ana C.

    2016-01-01

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm2 and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices. PMID:27184194

  8. Evaluating Storage Systems for Lustre

    SciTech Connect

    Oral, H. Sarp

    2015-08-20

    Storage systems are complex, including multiple subsystems and components. Sustained operations with top performance require all these subsystems and components working as expected. Having a detailed performance profile helps establishing a baseline. This baseline can be used for easier identification of possible future problems. A systematic bottom-to-top approach, starting with a detailed performance analysis of disks and moving up across layers and subsystems, provides a quantitative breakdown of each component's capabilities and bottlenecks. Coupling these low-level tests with Lustre-level evaluations will present a better understanding of performance expectations under different I/O workloads.

  9. Programmable partitioning for high-performance coherence domains in a multiprocessor system

    DOEpatents

    Blumrich, Matthias A.; Salapura, Valentina

    2011-01-25

    A multiprocessor computing system and a method of logically partitioning a multiprocessor computing system are disclosed. The multiprocessor computing system comprises a multitude of processing units, and a multitude of snoop units. Each of the processing units includes a local cache, and the snoop units are provided for supporting cache coherency in the multiprocessor system. Each of the snoop units is connected to a respective one of the processing units and to all of the other snoop units. The multiprocessor computing system further includes a partitioning system for using the snoop units to partition the multitude of processing units into a plurality of independent, memory-consistent, adjustable-size processing groups. Preferably, when the processor units are partitioned into these processing groups, the partitioning system also configures the snoop units to maintain cache coherency within each of said groups.

  10. HybridPlan: A Capacity Planning Technique for Projecting Storage Requirements in Hybrid Storage Systems

    SciTech Connect

    Kim, Youngjae; Gupta, Aayush; Urgaonkar, Bhuvan; Piotr, Berman; Sivasubramaniam, Anand

    2014-01-01

    Economic forces, driven by the desire to introduce flash into the high-end storage market without changing existing software-base, have resulted in the emergence of solid-state drives (SSDs), flash packaged in HDD form factors and capable of working with device drivers and I/O buses designed for HDDs. Unlike the use of DRAM for caching or buffering, however, certain idiosyncrasies of NAND Flash-based solid-state drives (SSDs) make their integration into hard disk drive (HDD)-based storage systems nontrivial. Flash memory suffers from limits on its reliability, is an order of magnitude more expensive than the magnetic hard disk drives (HDDs), and can sometimes be as slow as the HDD (due to excessive garbage collection (GC) induced by high intensity of random writes). Given the complementary properties of HDDs and SSDs in terms of cost, performance, and lifetime, the current consensus among several storage experts is to view SSDs not as a replacement for HDD, but rather as a complementary device within the high-performance storage hierarchy. Thus, we design and evaluate such a hybrid storage system with HybridPlan that is an improved capacity planning technique to administrators with the overall goal of operating within cost-budgets. HybridPlan is able to find the most cost-effective hybrid storage configuration with different types of SSDs and HDDs

  11. HyperForest: A high performance multi-processor architecture for real-time intelligent systems

    SciTech Connect

    Garcia, P. Jr.; Rebeil, J.P.; Pollard, H.

    1997-04-01

    Intelligent Systems are characterized by the intensive use of computer power. The computer revolution of the last few years is what has made possible the development of the first generation of Intelligent Systems. Software for second generation Intelligent Systems will be more complex and will require more powerful computing engines in order to meet real-time constraints imposed by new robots, sensors, and applications. A multiprocessor architecture was developed that merges the advantages of message-passing and shared-memory structures: expendability and real-time compliance. The HyperForest architecture will provide an expandable real-time computing platform for computationally intensive Intelligent Systems and open the doors for the application of these systems to more complex tasks in environmental restoration and cleanup projects, flexible manufacturing systems, and DOE`s own production and disassembly activities.

  12. David Adler Lectureship Award in the Field of Materials Physics: Racetrack Memory - a high-performance, storage class memory using magnetic domain-walls manipulated by current

    NASA Astrophysics Data System (ADS)

    Parkin, Stuart

    2012-02-01

    Racetrack Memory is a novel high-performance, non-volatile storage-class memory in which magnetic domains are used to store information in a ``magnetic racetrack'' [1]. The magnetic racetrack promises a solid state memory with storage capacities and cost rivaling that of magnetic disk drives but with much improved performance and reliability: a ``hard disk on a chip''. The magnetic racetrack is comprised of a magnetic nanowire in which a series of magnetic domain walls are shifted to and fro along the wire using nanosecond-long pulses of spin polarized current [2]. We have demonstrated the underlying physics that makes Racetrack Memory possible [3,4] and all the basic functions - creation, and manipulation of a train of domain walls and their detection. The physics underlying the current induced dynamics of domain walls will also be discussed. In particular, we show that the domain walls respond as if they have mass, leading to significant inertial driven motion of the domain walls over long times after the current pulses are switched off [3]. We also demonstrate that in perpendicularly magnetized nanowires there are two independent current driving mechanisms: one derived from bulk spin-dependent scattering that drives the domain walls in the direction of electron flow, and a second interfacial mechanism that can drive the domain walls either along or against the electron flow, depending on subtle changes in the nanowire structure. Finally, we demonstrate thermally induced spin currents are large enough that they can be used to manipulate domain walls. [4pt] [1] S.S.P. Parkin, US Patent 6,834,005 (2004); S.S.P. Parkin et al., Science 320, 190 (2008); S.S.P. Parkin, Scientific American (June 2009). [0pt] [2] M. Hayashi, L. Thomas, R. Moriya, C. Rettner and S.S.P. Parkin, Science 320, 209 (2008). [0pt] [3] L. Thomas, R. Moriya, C. Rettner and S.S.P. Parkin, Science 330, 1810 (2010). [0pt] [4] X. Jiang et al. Nat. Comm. 1:25 (2010) and Nano Lett. 11, 96 (2011).

  13. Suppressing the Coffee-Ring Effect in Semitransparent MnO2 Film for a High-Performance Solar-Powered Energy Storage Window.

    PubMed

    Jin, Huanyu; Qian, Jiasheng; Zhou, Limin; Yuan, Jikang; Huang, Haitao; Wang, Yu; Tang, Wing Man; Chan, Helen Lai Wa

    2016-04-13

    We introduce a simple and effective method to deposit a highly uniform and semitransparent MnO2 film without coffee-ring effect (CRE) by adding ethanol into MnO2 ink for transparent capacitive energy storage devices. By carefully controlling the amount of ethanol added in the MnO2 droplet, we could significantly reduce the CRE and thus improve the film uniformity. The electrochemical properties of supercapacitor (SC) devices using semitransparent MnO2 film electrodes with or without CRE were measured and compared. The SC device without CRE shows a superior capacitance, high rate capability, and lower contact resistance. The CRE-free device could achieve a considerable volumetric capacitance of 112.2 F cm(-3), resulting in a high volumetric energy density and power density of 10 mWh cm(-3) and 8.6 W cm(-3), respectively. For practical consideration, both flexible SC and large-area rigid SC devices were fabricated to demonstrate their potential for flexible transparent electronic application and capacitive energy-storage window application. Moreover, a solar-powered energy storage window which consists of a commercial solar cell and our studied semitransparent MnO2-film-based SCs was assembled. These SCs could be charged by the solar cell and light up a light emitting diode (LED), demonstrating their potential for self-powered systems and energy-efficient buildings. PMID:26953596

  14. Control system design for robotic underground storage tank inspection systems

    SciTech Connect

    Kiebel, G.R.

    1994-09-01

    Control and data acquisition systems for robotic inspection and surveillance systems used in nuclear waste applications must be capable, versatile, and adaptable to changing conditions. The nuclear waste remediation application is dynamic -- requirements change as public policy is constantly re-examined and refocused, and as technology in this area advances. Control and data acquisition systems must adapt to these changing conditions and be able to accommodate future missions, both predictable and unexpected. This paper describes the control and data acquisition system for the Light Duty Utility Arm (LDUA) System that is being developed for remote surveillance and inspection of underground storage tanks at the Hanford Site and other US Department of Energy (DOE) sites. It is a high-performance system which has been designed for future growth. The priority mission at the Hanford site is to retrieve the waste generated by 50 years of production from its present storage and process it for final disposal. The LDUA will help to gather information about the waste and the tanks it is stored in to better plan and execute the cleanup mission.

  15. Teacher and School Leader Effectiveness: Lessons Learned from High-Performing Systems. Issue Brief

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2011

    2011-01-01

    In an effort to find best practices in enhancing teacher effectiveness, the Alliance for Excellent Education (Alliance) and the Stanford Center for Opportunity Policy in Education (SCOPE) looked abroad at education systems that appear to have well-developed and effective systems for recruiting, preparing, developing, and retaining teachers and…

  16. A high performance imagery system for unattended ground sensor tactical deployments

    NASA Astrophysics Data System (ADS)

    Hartup, David C.; Bobier, Kevin; Marks, Brian A.; Dirr, William J.; Salisbury, Richard; Brown, Alistair; Cairnduff, Bruce

    2006-05-01

    Modern Unattended Ground Sensor (UGS) systems require transmission of high quality imagery to a remote location while meeting severe operational constraints such as extended mission life using battery operation. This paper describes a robust imagery system that provides excellent performance for both long range and short range stand-off scenarios. The imaging devices include a joint EO and IR solution that features low power consumption, quick turn-on time, high resolution images, advanced AGC and exposure control algorithms, digital zoom, and compact packaging. Intelligent camera operation is provided by the System Controller, which allows fusion of multiple sensor inputs and intelligent target recognition. The System Controller's communications package is interoperable with all SEIWG-005 compliant sensors. Image transmission is provided via VHF, UHF, or SATCOM links. The system has undergone testing at Yuma Proving Ground and Ft. Huachuca, as well as extensive company testing. Results from these field tests are given.

  17. High performance parallel architectures

    SciTech Connect

    Anderson, R.E. )

    1989-09-01

    In this paper the author describes current high performance parallel computer architectures. A taxonomy is presented to show computer architecture from the user programmer's point-of-view. The effects of the taxonomy upon the programming model are described. Some current architectures are described with respect to the taxonomy. Finally, some predictions about future systems are presented. 5 refs., 1 fig.

  18. Design consideration in constructing high performance embedded Knowledge-Based Systems (KBS)

    NASA Technical Reports Server (NTRS)

    Dalton, Shelly D.; Daley, Philip C.

    1988-01-01

    As the hardware trends for artificial intelligence (AI) involve more and more complexity, the process of optimizing the computer system design for a particular problem will also increase in complexity. Space applications of knowledge based systems (KBS) will often require an ability to perform both numerically intensive vector computations and real time symbolic computations. Although parallel machines can theoretically achieve the speeds necessary for most of these problems, if the application itself is not highly parallel, the machine's power cannot be utilized. A scheme is presented which will provide the computer systems engineer with a tool for analyzing machines with various configurations of array, symbolic, scaler, and multiprocessors. High speed networks and interconnections make customized, distributed, intelligent systems feasible for the application of AI in space. The method presented can be used to optimize such AI system configurations and to make comparisons between existing computer systems. It is an open question whether or not, for a given mission requirement, a suitable computer system design can be constructed for any amount of money.

  19. Systems analysis of thermal storage

    NASA Astrophysics Data System (ADS)

    Copeland, R. J.

    1981-08-01

    Analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. Thermal storage concepts were evaluated for a liquid metal receiver. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts studied, include ground-mounted thermal storage for parabolic dishes with Stirling engines.

  20. High performance file compression algorithm for video-on-demand e-learning system

    NASA Astrophysics Data System (ADS)

    Nomura, Yoshihiko; Matsuda, Ryutaro; Sakamoto, Ryota; Sugiura, Tokuhiro; Matsui, Hirokazu; Kato, Norihiko

    2005-10-01

    Information processing and communication technology are progressing quickly, and are prevailing throughout various technological fields. Therefore, the development of such technology should respond to the needs for improvement of quality in the e-learning education system. The authors propose a new video-image compression processing system that ingeniously employs the features of the lecturing scene: recognizing the a lecturer and a lecture stick by pattern recognition techniques, the video-image compression processing system deletes the figure of a lecturer of low importance and displays only the end point of a lecture stick. It enables us to create the highly compressed lecture video files, which are suitable for the Internet distribution. We compare this technique with the other simple methods such as the lower frame-rate video files, and the ordinary MPEG files. The experimental result shows that the proposed compression processing system is much more effective than the others.

  1. An ultralightweight, evacuated, load-bearing, high-performance insulation system. [for cryogenic propellant tanks

    NASA Technical Reports Server (NTRS)

    Parmley, R. T.; Cunnington, G. R., Jr.

    1978-01-01

    A new hollow-glass microsphere insulation and a flexible stainless-steel vacuum jacket were demonstrated on a flight-weight cryogenic test tank, 1.17 m in diameter. The weight of the system is three times lighter than the most advanced vacuum-jacketed design demonstrated to date, a free-standing honeycomb hard shell with a multilayer insulation system (for a Space Tug application). Design characteristics of the flexible vacuum jacket are presented along with a model describing the insulation thermal performance as a function of boundary temperatures and emittance, compressive load on the insulation and insulation gas pressure. Test data are compared with model predictions and with prior flat-plate calorimeter test results. Potential applications for this insulation system or a derivative of this system include the cryogenic Space Tug, the Single-Stage-to-Orbit Space Shuttle, LH2 fueled subsonic and hypersonic aircraft, and LNG applications.

  2. High-performance sub-terahertz transmission imaging system for food inspection

    PubMed Central

    Ok, Gyeongsik; Park, Kisang; Chun, Hyang Sook; Chang, Hyun-Joo; Lee, Nari; Choi, Sung-Wook

    2015-01-01

    Unlike X-ray systems, a terahertz imaging system can distinguish low-density materials in a food matrix. For applying this technique to food inspection, imaging resolution and acquisition speed ought to be simultaneously enhanced. Therefore, we have developed the first continuous-wave sub-terahertz transmission imaging system with a polygonal mirror. Using an f-theta lens and a polygonal mirror, beam scanning is performed over a range of 150 mm. For obtaining transmission images, the line-beam is incorporated with sample translation. The imaging system demonstrates that a pattern with 2.83 mm line-width at 210 GHz can be identified with a scanning speed of 80 mm/s. PMID:26137392

  3. High Performance Molecular Dynamic Simulation on Single and Multi-GPU Systems

    SciTech Connect

    Villa, Oreste; Chen, Long; Krishnamoorthy, Sriram

    2010-05-30

    The programming techniques supported and employed on these GPUs and Multi-GPUs systems are not sufficient to address problems exhibiting irregular, and unbalanced workload such as Molecular Dynamic (MD) simulations of systems with non-uniform densities. In this paper, we propose a task-based dynamic load-balancing solution to employ on MD simulations for single- and multi-GPU systems. The solution allows load balancing at a finer granularity than what is supported in existing APIs such as NVIDIA’s CUDA. Experimental results with a single-GPU configuration show that our fine-grained task solution can utilize the hardware more efficiently than the CUDA scheduler. On multi-GPU systems, our solution achieves near-linear speedup, load balance, and significant performance improvement over techniques based on standard CUDA APIs.

  4. High performance CCD camera system for digitalisation of 2D DIGE gels.

    PubMed

    Strijkstra, Annemieke; Trautwein, Kathleen; Roesler, Stefan; Feenders, Christoph; Danzer, Daniel; Riemenschneider, Udo; Blasius, Bernd; Rabus, Ralf

    2016-07-01

    An essential step in 2D DIGE-based analysis of differential proteome profiles is the accurate and sensitive digitalisation of 2D DIGE gels. The performance progress of commercially available charge-coupled device (CCD) camera-based systems combined with light emitting diodes (LED) opens up a new possibility for this type of digitalisation. Here, we assessed the performance of a CCD camera system (Intas Advanced 2D Imager) as alternative to a traditionally employed, high-end laser scanner system (Typhoon 9400) for digitalisation of differential protein profiles from three different environmental bacteria. Overall, the performance of the CCD camera system was comparable to the laser scanner, as evident from very similar protein abundance changes (irrespective of spot position and volume), as well as from linear range and limit of detection. PMID:27252121

  5. Energy Performance Testing of Asetek's RackCDU System at NREL's High Performance Computing Data Center

    SciTech Connect

    Sickinger, D.; Van Geet, O.; Ravenscroft, C.

    2014-11-01

    In this study, we report on the first tests of Asetek's RackCDU direct-to-chip liquid cooling system for servers at NREL's ESIF data center. The system was simple to install on the existing servers and integrated directly into the data center's existing hydronics system. The focus of this study was to explore the total cooling energy savings and potential for waste-heat recovery of this warm-water liquid cooling system. RackCDU captured up to 64% of server heat into the liquid stream at an outlet temperature of 89 degrees F, and 48% at outlet temperatures approaching 100 degrees F. This system was designed to capture heat from the CPUs only, indicating a potential for increased heat capture if memory cooling was included. Reduced temperatures inside the servers caused all fans to reduce power to the lowest possible BIOS setting, indicating further energy savings potential if additional fan control is included. Preliminary studies manually reducing fan speed (and even removing fans) validated this potential savings but could not be optimized for these working servers. The Asetek direct-to-chip liquid cooling system has been in operation with users for 16 months with no necessary maintenance and no leaks.

  6. High performance in low-flow solar domestic hot water systems

    SciTech Connect

    Dayan, M.

    1997-12-31

    Low-flow solar hot water heating systems employ flow rates on the order of 1/5 to 1/10 of the conventional flow. Low-flow systems are of interest because the reduced flow rate allows smaller diameter tubing, which is less costly to install. Further, low-flow systems result in increased tank stratification. Lower collector inlet temperatures are achieved through stratification and the useful energy produced by the collector is increased. The disadvantage of low-flow systems is the collector heat removal factor decreases with decreasing flow rate. Many solar domestic hot water systems require an auxiliary electric source to operate a pump in order to circulate fluid through the solar collector. A photovoltaic driven pump can be used to replace the standard electrical pump. PV driven pumps provide an ideal means of controlling the flow rate, as pumps will only circulate fluid when there is sufficient radiation. Peak performance was always found to occur when the heat exchanger tank-side flow rate was approximately equal to the average load flow rate. For low collector-side flow rates, a small deviation from the optimum flow rate will dramatically effect system performance.

  7. High-performance radial AMTEC cell design for ultra-high-power solar AMTEC systems

    SciTech Connect

    Hendricks, T.J.; Huang, C.

    1999-07-01

    Alkali Metal Thermal to Electric Conversion (AMTEC) technology is rapidly maturing for potential application in ultra-high-power solar AMTEC systems required by potential future US Air Force (USAF) spacecraft missions in medium-earth and geosynchronous orbits (MEO and GEO). Solar thermal AMTEC power systems potentially have several important advantages over current solar photovoltaic power systems in ultra-high-power spacecraft applications for USAF MEO and GEO missions. This work presents key aspects of radial AMTEC cell design to achieve high cell performance in solar AMTEC systems delivering larger than 50 kW(e) to support high power USAF missions. These missions typically require AMTEC cell conversion efficiency larger than 25%. A sophisticated design parameter methodology is described and demonstrated which establishes optimum design parameters in any radial cell design to satisfy high-power mission requirements. Specific relationships, which are distinct functions of cell temperatures and pressures, define critical dependencies between key cell design parameters, particularly the impact of parasitic thermal losses on Beta Alumina Solid Electrolyte (BASE) area requirements, voltage, number of BASE tubes, and system power production for both maximum power-per-BASE-area and optimum efficiency conditions. Finally, some high-level system tradeoffs are demonstrated using the design parameter methodology to establish high-power radial cell design requirements and philosophy. The discussion highlights how to incorporate this methodology with sophisticated SINDA/FLUINT AMTEC cell modeling capabilities to determine optimum radial AMTEC cell designs.

  8. Structural integrity and damage assessment of high performance arresting cable systems using an embedded distributed fiber optic sensor (EDIFOS) system

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan; Prohaska, John; Bentley, Doug; Glasgow, Andy; Campbell, Richard

    2010-04-01

    Redondo Optics in collaboration with the Cortland Cable Company, TMT Laboratories, and Applied Fiber under a US Navy SBIR project is developing an embedded distributed fiber optic sensor (EDIFOSTM) system for the real-time, structural health monitoring, damage assessment, and lifetime prediction of next generation synthetic material arresting gear cables. The EDIFOSTM system represents a new, highly robust and reliable, technology that can be use for the structural damage assessment of critical cable infrastructures. The Navy is currently investigating the use of new, all-synthetic- material arresting cables. The arresting cable is one of the most stressed components in the entire arresting gear landing system. Synthetic rope materials offer higher performance in terms of the strength-to-weight characteristics, which improves the arresting gear engine's performance resulting in reduced wind-over-deck requirements, higher aircraft bring-back-weight capability, simplified operation, maintenance, supportability, and reduced life cycle costs. While employing synthetic cables offers many advantages for the Navy's future needs, the unknown failure modes of these cables remains a high technical risk. For these reasons, Redondo Optics is investigating the use of embedded fiber optic sensors within the synthetic arresting cables to provide real-time structural assessment of the cable state, and to inform the operator when a particular cable has suffered impact damage, is near failure, or is approaching the limit of its service lifetime. To date, ROI and its collaborators have developed a technique for embedding multiple sensor fibers within the strands of high performance synthetic material cables and use the embedded fiber sensors to monitor the structural integrity of the cable structures during tensile and compressive loads exceeding over 175,000-lbsf without any damage to the cable structure or the embedded fiber sensors.

  9. Spectra-view: A high performance, low-cost multispectral airborne imaging system

    SciTech Connect

    Helder, D.

    1996-11-01

    Although a variety of airborne platforms are available for collecting remote sensing data, a niche exists for a low cost, compact systemd capable of collecting accurate visible and infrared multispectral data in a digital format. To fill this void, an instrument known as Spectra-View was developed by Airborne Data Systems. Multispectral data is collected in the visible and near-infrared using an array of CCD cameras with appropriate spectral filtering. Infrared imaging is accomplished using commercially available cameras. Although the current system images in five spectral bands, a modular design approach allows various configurations for imaging in the visible and infrared regions with up to 10 or more channels. It was built entirely through integration of readily available commercial components, is compact enough to fly in an aircraft as small as a Cessna 172, and can record imagery at airspeeds in excess of 150 knots. A GPS-based navigation system provides a course deviation indicator for the pilot to follow and allows for georeferencing of the data. To maintain precise pointing knowledge, and at the same time keep system cost low, attitude sensors are mounted directly with the cameras rather than using a stabilized mounting system. Information is collect during camera firing of aircraft/camera attitude along the yaw, pitch, and roll axes. All data is collected in a digital format on a hard disk that is removable during flight so that virtually unlimited amounts of data may be recorded. Following collection, imagery is readily available for viewing and incorporation into computer-based systems for analysis and reduction. Ground processing software has been developed to perform radiometric calibration and georeference the imagery. Since June, 1995, the system has been collecting high-quality data in a variety of applications for numerous customers including applications in agriculture, forestry, and global change research. Several examples will be presented.

  10. High performance computational integral imaging system using multi-view video plus depth representation

    NASA Astrophysics Data System (ADS)

    Shi, Shasha; Gioia, Patrick; Madec, Gérard

    2012-12-01

    Integral imaging is an attractive auto-stereoscopic three-dimensional (3D) technology for next-generation 3DTV. But its application is obstructed by poor image quality, huge data volume and high processing complexity. In this paper, a new computational integral imaging (CII) system using multi-view video plus depth (MVD) representation is proposed to solve these problems. The originality of this system lies in three aspects. Firstly, a particular depth-image-based rendering (DIBR) technique is used in encoding process to exploit the inter-view correlation between different sub-images (SIs). Thereafter, the same DIBR method is applied in the display side to interpolate virtual SIs and improve the reconstructed 3D image quality. Finally, a novel parallel group projection (PGP) technique is proposed to simplify the reconstruction process. According to experimental results, the proposed CII system improves compression efficiency and displayed image quality, while reducing calculation complexity. [Figure not available: see fulltext.

  11. Optically synchronized dual-channel terahertz signals for high-performance transmitter/receiver system

    NASA Astrophysics Data System (ADS)

    Shimizu, Naofumi; Oh, Kyoung-Hwan; Kohjiro, Satoshi; Kikuchi, Ken'ichi; Wakatsuki, Atsushi; Kukutsu, Naoya; Kado, Yuichi

    2010-02-01

    We developed a high-sweeping-speed optically synchronized dual-channel terahertz signal generator, in which the frequency difference between the two terahertz signals is independent of the frequency of the terahertz signals themselves. This feature is essential for heterodyne detection of terahertz signals with various frequencies. With this generator, a frequency-sweepable terahertz transmitter (Tx)/receiver (Rx) system with a wide dynamic range can be realized without sacrificing the high frequency-sweeping speed. Absorption line measurements for water vapor and nitrous oxide show that the developed Tx/Rx system can detect gas absorption with the optical depth of 0.04 or less. This result indicates the potential of the system as a remote gas sensor and gas analyzer.

  12. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  13. A High Performance Sample Delivery System for Closed-Path Eddy Covariance Measurements

    NASA Astrophysics Data System (ADS)

    Nottrott, Anders; Leggett, Graham; Alstad, Karrin; Wahl, Edward

    2016-04-01

    The Picarro G2311-f Cavity Ring-Down Spectrometer (CRDS) measures CO2, CH4 and water vapor at high frequency with parts-per-billion (ppb) sensitivity for eddy covariance, gradient, eddy accumulation measurements. In flux mode, the analyzer measures the concentration of all three species at 10 Hz with a cavity gas exchange time of 5 Hz. We developed an enhanced pneumatic sample delivery system for drawing air from the atmosphere into the cavity. The new sample delivery system maintains a 5 Hz gas exchange time, and allows for longer sample intake lines to be configured in tall tower applications (> 250 ft line at sea level). We quantified the system performance in terms of vacuum pump head room and 10-90% concentration step response for several intake line lengths at various elevations. Sample eddy covariance data are shown from an alfalfa field in Northern California, USA.

  14. A High Performance Load Balance Strategy for Real-Time Multicore Systems

    PubMed Central

    Cho, Keng-Mao; Tsai, Chun-Wei; Chiu, Yi-Shiuan; Yang, Chu-Sing

    2014-01-01

    Finding ways to distribute workloads to each processor core and efficiently reduce power consumption is of vital importance, especially for real-time systems. In this paper, a novel scheduling algorithm is proposed for real-time multicore systems to balance the computation loads and save power. The developed algorithm simultaneously considers multiple criteria, a novel factor, and task deadline, and is called power and deadline-aware multicore scheduling (PDAMS). Experiment results show that the proposed algorithm can greatly reduce energy consumption by up to 54.2% and the deadline times missed, as compared to the other scheduling algorithms outlined in this paper. PMID:24955382

  15. Damage-mitigating control of space propulsion systems for high performance and extended life

    NASA Technical Reports Server (NTRS)

    Ray, Asok; Wu, Min-Kuang; Dai, Xiaowen; Carpino, Marc; Lorenzo, Carl F.

    1993-01-01

    Calculations are presented showing that a substantial improvement in service life of a reusable rocket engine can be achieved by an insignificant reduction in the system dynamic performance. The paper introduces the concept of damage mitigation and formulates a continuous-time model of fatigue damage dynamics. For control of complex mechanical systems, damage prediction and damage mitigation are carried out based on the available sensory and operational information such that the plant can be inexpensively maintained and safely and efficiently steered under diverse operating conditions. The results of simulation experiments are presented for transient operations of a reusable rocket engine.

  16. Building High-Performing and Improving Education Systems: Quality Assurance and Accountability. Review

    ERIC Educational Resources Information Center

    Slater, Liz

    2013-01-01

    Monitoring, evaluation, and quality assurance in their various forms are seen as being one of the foundation stones of high-quality education systems. De Grauwe, writing about "school supervision" in four African countries in 2001, linked the decline in the quality of basic education to the cut in resources for supervision and support.…

  17. VLab: A Science Gateway for Distributed First Principles Calculations in Heterogeneous High Performance Computing Systems

    ERIC Educational Resources Information Center

    da Silveira, Pedro Rodrigo Castro

    2014-01-01

    This thesis describes the development and deployment of a cyberinfrastructure for distributed high-throughput computations of materials properties at high pressures and/or temperatures--the Virtual Laboratory for Earth and Planetary Materials--VLab. VLab was developed to leverage the aggregated computational power of grid systems to solve…

  18. High performance computing in biology: multimillion atom simulations of nanoscale systems.

    PubMed

    Sanbonmatsu, K Y; Tung, C-S

    2007-03-01

    Computational methods have been used in biology for sequence analysis (bioinformatics), all-atom simulation (molecular dynamics and quantum calculations), and more recently for modeling biological networks (systems biology). Of these three techniques, all-atom simulation is currently the most computationally demanding, in terms of compute load, communication speed, and memory load. Breakthroughs in electrostatic force calculation and dynamic load balancing have enabled molecular dynamics simulations of large biomolecular complexes. Here, we report simulation results for the ribosome, using approximately 2.64 million atoms, the largest all-atom biomolecular simulation published to date. Several other nano-scale systems with different numbers of atoms were studied to measure the performance of the NAMD molecular dynamics simulation program on the Los Alamos National Laboratory Q Machine. We demonstrate that multimillion atom systems represent a 'sweet spot' for the NAMD code on large supercomputers. NAMD displays an unprecedented 85% parallel scaling efficiency for the ribosome system on 1024 CPUs. We also review recent targeted molecular dynamics simulations of the ribosome that prove useful for studying conformational changes of this large biomolecular complex in atomic detail. PMID:17187988

  19. Aim Higher: Lofty Goals and an Aligned System Keep a High Performer on Top

    ERIC Educational Resources Information Center

    McCommons, David P.

    2014-01-01

    Every school district is feeling the pressure to ensure higher academic achievement for all students. A focus on professional learning for an administrative team not only improves student learning and achievement, but also assists in developing a systemic approach for continued success. This is how the Fox Chapel Area School District in…

  20. A high performance low cost flow-through solar water pasteurization system

    SciTech Connect

    Duff, W.S.; Hodgson, D.

    1999-07-01

    In the rural areas of developing countries, boiling of water is the means most often used for purifying water for food preparation and drinking. However, boiling is relatively expensive, consumes substantial amounts of fossil energy and the associated wood gathering contributes to depletion of forests. Solar water pasteurization is one of the most promising approaches for a cost-effective, robust and reliable solution to these problems. The authors are developing a solar water pasteurization system based on an evacuated solar collector, and appropriately matched heat exchanger and a system for regulating the pasteurization temperature and holding time. The unit is completely passive, requiring no power of any sort. As part of the design requirements, the authors have imposed low fabrication and installation cost goals. Experimental versions have been fabricated for a materials cost of under $150 US. The authors have designed, built and experimentally evaluated several designs. The most recent testing was performed on a system using water density as the basis for regulating the pasteurization temperature and holding time. They have tested and are currently refining a new design based on an innovative regulation system which results in a system that is more compact and robust than with the water density regulation approach. Once testing is completed, they have an arrangement to place two units at a school in Uganda where they will be exposed to the actual conditions of their use in developing countries. They will report the details of current and previous designs, provide experimental results and, in the presentation in April, relate initial experiences with the units in Uganda.

  1. Whisker: a client-server high-performance multimedia research control system.

    PubMed

    Cardinal, Rudolf N; Aitken, Michael R F

    2010-11-01

    We describe an original client-server approach to behavioral research control and the Whisker system, a specific implementation of this design. The server process controls several types of hardware, including digital input/output devices, multiple graphical monitors and touchscreens, keyboards, mice, and sound cards. It provides a way to access this hardware for client programs, communicating with them via a simple text-based network protocol based on the standard Internet protocol. Clients to implement behavioral tasks may be written in any network-capable programming language. Applications to date have been in experimental psychology and behavioral and cognitive neuroscience, using rodents, humans, nonhuman primates, dogs, pigs, and birds. This system is flexible and reliable, although there are potential disadvantages in terms of complexity. Its design, features, and performance are described. PMID:21139173

  2. Fair share on high performance computing systems : what does fair really mean?

    SciTech Connect

    Clearwater, Scott Harvey; Kleban, Stephen David

    2003-03-01

    We report on a performance evaluation of a Fair Share system at the ASCI Blue Mountain supercomputer cluster. We study the impacts of share allocation under Fair Share on wait times and expansion factor. We also measure the Service Ratio, a typical figure of merit for Fair Share systems, with respect to a number of job parameters. We conclude that Fair Share does little to alter important performance metrics such as expansion factor. This leads to the question of what Fair Share means on cluster machines. The essential difference between Fair Share on a uni-processor and a cluster is that the workload on a cluster is not fungible in space or time. We find that cluster machines must be highly utilized and support checkpointing in order for Fair Share to function more closely to the spirit in which it was originally developed.

  3. Towards high performing hospital enterprise systems: an empirical and literature based design framework

    NASA Astrophysics Data System (ADS)

    dos Santos Fradinho, Jorge Miguel

    2014-05-01

    Our understanding of enterprise systems (ES) is gradually evolving towards a sense of design which leverages multidisciplinary bodies of knowledge that may bolster hybrid research designs and together further the characterisation of ES operation and performance. This article aims to contribute towards ES design theory with its hospital enterprise systems design (HESD) framework, which reflects a rich multidisciplinary literature and two in-depth hospital empirical cases from the US and UK. In doing so it leverages systems thinking principles and traditionally disparate bodies of knowledge to bolster the theoretical evolution and foundation of ES. A total of seven core ES design elements are identified and characterised with 24 main categories and 53 subcategories. In addition, it builds on recent work which suggests that hospital enterprises are comprised of multiple internal ES configurations which may generate different levels of performance. Multiple sources of evidence were collected including electronic medical records, 54 recorded interviews, observation, and internal documents. Both in-depth cases compare and contrast higher and lower performing ES configurations. Following literal replication across in-depth cases, this article concludes that hospital performance can be improved through an enriched understanding of hospital ES design.

  4. Platform-Based Design for the Low Complexity and High Performance De-Interlacing System

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Han; Lin, Hsueh-Liang

    With the development of digital TV system, how to display the NTSC signal in digital TV system is a problem. De-interlacing is an algorithm to solve it. In previous papers, using motion compensation (MC) method for de-interlacing needs lots of computation complexity and it is not easy to implement in hardware. In this paper, a content adaptive de-interlacing algorithm is proposed. Our algorithm is based on the motion adaptive (MA) method which combines the advantages of intra-field and inter-field method. We propose a block type decision mechanism to predict the video content instead of a blind processing with MC method throughout the entire frame. Additionally, in intra-field method, we propose the edge-base adaptive weight average (EAWA) method to achieve a better performance and smooth the edge and stripe. In order to demonstrate our algorithm, we implement the de-interlacing system on the DSP platform with thorough complexity analysis. Compared to MC method, we not only achieve higher video quality in objective and subjective view, but also consume lower computation power. From the profiling on CPU run-time analysis, the proposed algorithm is only one-fifth of MC method. At the DSP demonstration board, the saving ratio is about 54% to 96%.

  5. High Performance Operation Control for Heat Driven Heat Pump System using Metal Hydride

    NASA Astrophysics Data System (ADS)

    Okamoto, Hideyuki; Masuda, Masao; Kozawa, Yoshiyuki

    lt is recognized that COP of heat driven heat pump system using metal hydride is 0.3-0.4 in general. In order to rise COP, we have proposed two kinds of specific operation control; the control of cycle change time according to cold heat load and the control of cooling water temperature according to outside air wet-bulb temperature. The characteristics of the heat pump system using metal hydride have grasped by various experiments and simulations. The validity of the simulation model has been confirmed by comparing with experimental results. As results of the simulations programmed for the actual operation control month by month, yearly COP has risen till 0.5-0.6 for practical scale air-conditioning system without regard for the building use. By the operation control hour by hour, yearly COP has risen till 0.6-0.65. Moreover, in the office building case added 40% sensible heat recovery, yearly COP has risen more than 0.8.

  6. High performance 3-coil wireless power transfer system for the 512-electrode epiretinal prosthesis.

    PubMed

    Zhao, Yu; Nandra, Mandheerej; Yu, Chia-Chen; Tai, Yu-chong

    2012-01-01

    The next-generation retinal prostheses feature high image resolution and chronic implantation. These features demand the delivery of power as high as 100 mW to be wireless and efficient. A common solution is the 2-coil inductive power link, used by current retinal prostheses. This power link tends to include a larger-size extraocular receiver coil coupled to the external transmitter coil, and the receiver coil is connected to the intraocular electrodes through a trans-sclera trans-choroid cable. In the long-term implantation of the device, the cable may cause hypotony (low intraocular pressure) and infection. However, when a 2-coil system is constructed from a small-size intraocular receiver coil, the efficiency drops drastically which may induce over heat dissipation and electromagnetic field exposure. Our previous 2-coil system achieved only 7% power transfer. This paper presents a fully intraocular and highly efficient wireless power transfer system, by introducing another inductive coupling link to bypass the trans-sclera trans-choroid cable. With the specific equivalent load of our customized 512-electrode stimulator, the current 3-coil inductive link was measured to have the overall power transfer efficiency around 36%, with 1-inch separation in saline. The high efficiency will favorably reduce the heat dissipation and electromagnetic field exposure to surrounding human tissues. The effect of the eyeball rotation on the power transfer efficiency was investigated as well. The efficiency can still maintain 14.7% with left and right deflection of 30 degree during normal use. The surgical procedure for the coils' implantation into the porcine eye was also demonstrated. PMID:23367438

  7. Commodity CPU-GPU System for Low-Cost , High-Performance Computing

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, S.; Weiss, R. M.; Barnett, G. A.; Yuen, D. A.

    2009-12-01

    We have put together a desktop computer system for under 2.5 K dollars from commodity components that consist of one quad-core CPU (Intel Core 2 Quad Q6600 Kentsfield 2.4GHz) and two high end GPUs (nVidia's GeForce GTX 295 and Tesla C1060). A 1200 watt power supply is required. On this commodity system, we have constructed an easy-to-use hybrid computing environment, in which Message Passing Interface (MPI) is used for managing the working loads, for transferring the data among different GPU devices, and for minimizing the need of CPU’s memory. The test runs using the MAGMA (Matrix Algebra on GPU and Multicore Architectures) library show that the speed ups for double precision calculations can be greater than 10 (GPU vs. CPU) and they are bigger (> 20) for single precision calculations. In addition we have enabled the combination of Matlab with CUDA for interactive visualization through MPI, i.e., two GPU devices are used for simulation and one GPU device is used for visualizing the computing results as the simulation goes. Our experience with this commodity system has shown that running multiple applications on one GPU device or running one application across multiple GPU devices can be done as conveniently as on CPUs. With NVIDIA CEO Jen-Hsun Huang's claim that over the next 6 years GPU processing power will increase by 570x compared to the 3x for CPUs, future low-cost commodity computers such as ours may be a remedy for the long wait queues of the world's supercomputers, especially for small- and mid-scale computation. Our goal here is to explore the limits and capabilities of this emerging technology and to get ourselves ready to run large-scale simulations on the next generation of computing environment, which we believe will hybridize CPU and GPU architectures.

  8. High performance monolithic power management system with dynamic maximum power point tracking for microbial fuel cells.

    PubMed

    Erbay, Celal; Carreon-Bautista, Salvador; Sanchez-Sinencio, Edgar; Han, Arum

    2014-12-01

    Microbial fuel cell (MFC) that can directly generate electricity from organic waste or biomass is a promising renewable and clean technology. However, low power and low voltage output of MFCs typically do not allow directly operating most electrical applications, whether it is supplementing electricity to wastewater treatment plants or for powering autonomous wireless sensor networks. Power management systems (PMSs) can overcome this limitation by boosting the MFC output voltage and managing the power for maximum efficiency. We present a monolithic low-power-consuming PMS integrated circuit (IC) chip capable of dynamic maximum power point tracking (MPPT) to maximize the extracted power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. The proposed PMS continuously detects the maximum power point (MPP) of the MFC and matches the load impedance of the PMS for maximum efficiency. The system also operates autonomously by directly drawing power from the MFC itself without any external power. The overall system efficiency, defined as the ratio between input energy from the MFC and output energy stored into the supercapacitor of the PMS, was 30%. As a demonstration, the PMS connected to a 240 mL two-chamber MFC (generating 0.4 V and 512 μW at MPP) successfully powered a wireless temperature sensor that requires a voltage of 2.5 V and consumes power of 85 mW each time it transmit the sensor data, and successfully transmitted a sensor reading every 7.5 min. The PMS also efficiently managed the power output of a lower-power producing MFC, demonstrating that the PMS works efficiently at various MFC power output level. PMID:25365216

  9. High-performance digital triggering system for phase-controlled rectifiers

    SciTech Connect

    Olsen, R.E.

    1983-01-01

    The larger power supplies used to power accelerator magnets are most commonly polyphase rectifiers using phase control. While this method is capable of handling impressive amounts of power, it suffers from one serious disadvantage, namely that of subharmonic ripple. Since the stability of the stored beam depends to a considerable extent on the regulation of the current in the bending magnets, subharmonic ripple, especially that of low frequency, can have a detrimental effect. At the NSLS, we have constructed a 12-pulse, phase control system using digital signal processing techniques that essentially eliminates subharmonic ripple.

  10. High-performance fault-tolerant VLSI systems using micro rollback

    NASA Technical Reports Server (NTRS)

    Tamir, Yuval; Tremblay, Marc

    1990-01-01

    A technique called micro rollback, which allows most of the performance penalty for concurrent error detection to be eliminated, is presented. Detection is performed in parallel with the transmission of information between modules, thus removing the delay for detection from the critical path. Erroneous information may thus reach its destination module several clock cycles before an error indication. Operations performed on this erroneous information are undone using a hardware mechanism for fast rollback of a few cycles. The implementation of a VLSI processor capable of micro rollback is discussed, as well as several critical issues related to its use in a complete system.

  11. A high-performance multilane microdevice system designed for the DNA forensics laboratory.

    PubMed

    Goedecke, Nils; McKenna, Brian; El-Difrawy, Sameh; Carey, Loucinda; Matsudaira, Paul; Ehrlich, Daniel

    2004-06-01

    We report preliminary testing of "GeneTrack", an instrument designed for the specific application of multiplexed short tandem repeat (STR) DNA analysis. The system supports a glass microdevice with 16 lanes of 20 cm effective length and double-T cross injectors. A high-speed galvanometer-scanned four-color detector was specially designed to accommodate the high elution rates on the microdevice. All aspects of the system were carefully matched to practical crime lab requirements for rapid reproducible analysis of crime-scene DNA evidence in conjunction with the United States DNA database (CODIS). Statistically significant studies demonstrate that an absolute, three-sigma, peak accuracy of 0.4-0.9 base pair (bp) can be achieved for the CODIS 13-locus multiplex, utilizing a single channel per sample. Only 0.5 microL of PCR product is needed per lane, a significant reduction in the consumption of costly chemicals in comparison to commercial capillary machines. The instrument is also designed to address problems in temperature-dependent decalibration and environmental sensitivity, which are weaknesses of the commercial capillary machines for the forensics application. PMID:15188257

  12. High performance electrophoresis system for site-specific entrapment of nanoparticles in a nanoarray

    NASA Astrophysics Data System (ADS)

    Han, Jin-Hee; Lakshmana, Sudheendra; Kim, Hee-Joo; Hass, Elizabeth A.; Gee, Shirley; Hammock, Bruce D.; Kennedy, Ian

    2010-02-01

    A nanoarray, integrated with an electrophoretic system, was developed to trap nanoparticles into their corresponding nanowells. This nanoarray overcomes the complications of losing the function and activity of the protein binding to the surface in conventional microarrays by using minimum amounts of sample. The nanoarray is also superior to other biosensors that use immunoassays in terms of lowering the limit of detection to the femto- or atto-molar level. In addition, our electrophoretic particle entrapment system (EPES) is able to effectively trap the nanoparticles using a low trapping force for a short duration. Therefore, good conditions for biological samples conjugated with particles can be maintained. The channels were patterned onto a bi-layer consisting of a PMMA and LOL coating on conductive indium tin oxide (ITO)-coated glass slide by using e-beam lithography. The suspensions of 170 nm-nanoparticles then were added to the chip that was connected to a positive voltage. On top of the droplet, another ITO-coated-glass slide was covered and connected to a ground terminal. Negatively charged fluorescent nanoparticles (blue emission) were selectively trapped onto the ITO surface at the bottom of the wells by following electric field lines. Numerical modeling was performed by using commercially available software, COMSOL Multiphysics to provide better understanding about the phenomenon of electrophoresis in a nanoarray. Simulation results are also useful for optimally designing a nanoarray for practical applications.

  13. Design of high performance multivariable control systems for supermaneuverable aircraft at high angle of attack

    NASA Technical Reports Server (NTRS)

    Valavani, Lena

    1995-01-01

    The main motivation for the work under the present grant was to use nonlinear feedback linearization methods to further enhance performance capabilities of the aircraft, and robustify its response throughout its operating envelope. The idea was to use these methods in lieu of standard Taylor series linearization, in order to obtain a well behaved linearized plant, in its entire operational regime. Thus, feedback linearization was going to constitute an 'inner loop', which would then define a 'design plant model' to be compensated for robustness and guaranteed performance in an 'outer loop' application of modern linear control methods. The motivation for this was twofold; first, earlier work had shown that by appropriately conditioning the plant through conventional, simple feedback in an 'inner loop', the resulting overall compensated plant design enjoyed considerable enhancement of performance robustness in the presence of parametric uncertainty. Second, the nonlinear techniques did not have any proven robustness properties in the presence of unstructured uncertainty; a definition of robustness (and performance) is very difficult to achieve outside the frequency domain; to date, none is available for the purposes of control system design. Thus, by proper design of the outer loop, such properties could still be 'injected' in the overall system.

  14. Metal-based anode for high performance bioelectrochemical systems through photo-electrochemical interaction

    NASA Astrophysics Data System (ADS)

    Liang, Yuxiang; Feng, Huajun; Shen, Dongsheng; Long, Yuyang; Li, Na; Zhou, Yuyang; Ying, Xianbin; Gu, Yuan; Wang, Yanfeng

    2016-08-01

    This paper introduces a novel composite anode that uses light to enhance current generation and accelerate biofilm formation in bioelectrochemical systems. The composite anode is composed of 316L stainless steel substrate and a nanostructured α-Fe2O3 photocatalyst (PSS). The electrode properties, current generation, and biofilm properties of the anode are investigated. In terms of photocurrent, the optimal deposition and heat-treatment times are found to be 30 min and 2 min, respectively, which result in a maximum photocurrent of 0.6 A m-2. The start-up time of the PSS is 1.2 days and the maximum current density is 2.8 A m-2, twice and 25 times that of unmodified anode, respectively. The current density of the PSS remains stable during 20 days of illumination. Confocal laser scanning microscope images show that the PSS could benefit biofilm formation, while electrochemical impedance spectroscopy indicates that the PSS reduce the charge-transfer resistance of the anode. Our findings show that photo-electrochemical interaction is a promising way to enhance the biocompatibility of metal anodes for bioelectrochemical systems.

  15. Cpl6: The New Extensible, High-Performance Parallel Coupler forthe Community Climate System Model

    SciTech Connect

    Craig, Anthony P.; Jacob, Robert L.; Kauffman, Brain; Bettge,Tom; Larson, Jay; Ong, Everest; Ding, Chris; He, Yun

    2005-03-24

    Coupled climate models are large, multiphysics applications designed to simulate the Earth's climate and predict the response of the climate to any changes in the forcing or boundary conditions. The Community Climate System Model (CCSM) is a widely used state-of-art climate model that has released several versions to the climate community over the past ten years. Like many climate models, CCSM employs a coupler, a functional unit that coordinates the exchange of data between parts of climate system such as the atmosphere and ocean. This paper describes the new coupler, cpl6, contained in the latest version of CCSM,CCSM3. Cpl6 introduces distributed-memory parallelism to the coupler, a class library for important coupler functions, and a standardized interface for component models. Cpl6 is implemented entirely in Fortran90 and uses Model Coupling Toolkit as the base for most of its classes. Cpl6 gives improved performance over previous versions and scales well on multiple platforms.

  16. A high-performance network for a distributed-control system

    NASA Astrophysics Data System (ADS)

    Cuttone, G.; Aghion, F.; Giove, D.

    1989-04-01

    Local area networks play a central rule in modern distributed-control systems for accelerators. For a superconducting cyclotron under construction at the University of Milan, an optical Ethernet network has been implemented for the interconnection of multicomputer-based stations. Controller boards, with VLSI protocol chips, have been used. The higher levels of the ISO OSI model have been implemented to suit real-time control requirements. The experimental setup for measuring the data throughput between stations will be described. The effect of memory-to-memory data transfer with respect to the packet size has been studied for packets ranging from 200 bytes to 10 Kbytes. Results, showing the data throughput to range from 0.2 to 1.1 Mbit/s, will be discussed.

  17. Optimization of CSO storage and treatment systems

    SciTech Connect

    Field, R.; O`Connor, T.P.

    1997-03-01

    Combined-sewer overflow (CSO) must be controlled by a storage-treatment system because storm flow in the combined sewerage system is intermittent and highly variable in both pollutant concentration and flow rate. A treatment facility operating without the benefit of upstream storage would need to be very large and costly in order to handle the relatively high volume and flow rate of a CSO. Similarly, if storage is used without treatment, the storage volume required would be very large and also expensive. This paper describes a strategy to optimize a CSO control system. This optimized system maximizes the use of the existing system before new construction and sizes the storage volume in concert with the wastewater treatment plant capacity to obtain the lowest-cost storage and treatment system.

  18. Compressive sensing based Bayesian sparse channel estimation for OFDM communication systems: high performance and low complexity.

    PubMed

    Gui, Guan; Xu, Li; Shan, Lin; Adachi, Fumiyuki

    2014-01-01

    In orthogonal frequency division modulation (OFDM) communication systems, channel state information (CSI) is required at receiver due to the fact that frequency-selective fading channel leads to disgusting intersymbol interference (ISI) over data transmission. Broadband channel model is often described by very few dominant channel taps and they can be probed by compressive sensing based sparse channel estimation (SCE) methods, for example, orthogonal matching pursuit algorithm, which can take the advantage of sparse structure effectively in the channel as for prior information. However, these developed methods are vulnerable to both noise interference and column coherence of training signal matrix. In other words, the primary objective of these conventional methods is to catch the dominant channel taps without a report of posterior channel uncertainty. To improve the estimation performance, we proposed a compressive sensing based Bayesian sparse channel estimation (BSCE) method which cannot only exploit the channel sparsity but also mitigate the unexpected channel uncertainty without scarifying any computational complexity. The proposed method can reveal potential ambiguity among multiple channel estimators that are ambiguous due to observation noise or correlation interference among columns in the training matrix. Computer simulations show that proposed method can improve the estimation performance when comparing with conventional SCE methods. PMID:24983012

  19. Coal-fired high performance power generating system. Quarterly progress report, October 1--December 31, 1992

    SciTech Connect

    Not Available

    1992-12-31

    Our team has outlined a research plan based on an optimized analysis of a 250 MWe combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (FUTAF) which integrates several combustor and air heater designs with appropriate ash management procedures. The Cycle Optimization effort under Task 2 outlines the evolution of our designs. The basic combined cycle approach now includes exhaust gas recirculation to quench the flue gas before it enters the convective air heater. By selecting the quench gas from a downstream location it will be clean enough and cool enough (ca. 300F) to be driven by a commercially available fan and still minimize the volume of the convective air heater. Further modeling studies on the long axial flame, under Task 3, have demonstrated that this configuration is capable of providing the necessary energy flux to the radiant air panels. This flame with its controlled mixing constrains the combustion to take place in a fuel rich environment, thus minimizing the NO{sub x} production. Recent calculations indicate that the NO{sub x} produced is low enough that the SNCR section can further reduce it to within the DOE goal of 0. 15 lbs/MBTU of fuel input. Also under Task 3 the air heater design optimization continued.

  20. High-Performance Water Electrolysis System with Double Nanostructured Superaerophobic Electrodes.

    PubMed

    Xu, Wenwen; Lu, Zhiyi; Wan, Pengbo; Kuang, Yun; Sun, Xiaoming

    2016-05-01

    Catalysts screening and structural optimization are both essential for pursuing a high-efficient water electrolysis system (WES) with reduced energy supply. This study demonstrates an advanced WES with double superaerophobic electrodes, which are achieved by constructing a nanostructured NiMo alloy and NiFe layered double hydroxide (NiFe-LDH) films for hydrogen evolution and oxygen evolution reactions, respectively. The superaerophobic property gives rise to significantly reduced adhesion forces to gas bubbles and thereby accelerates the hydrogen and oxygen bubble releasing behaviors. Benefited from these metrics and the high intrinsic activities of catalysts, this WES affords an early onset potential (≈1.5 V) for water splitting and ultrafast catalytic current density increase (≈0.83 mA mV(-1) ), resulting in ≈2.69 times higher performance compared to the commercial Pt/C and IrO2 /C catalysts based counterpart under 1.9 V. Moreover, enhanced performance at high temperature as well as prominent stability further demonstrate the practical application of this WES. PMID:26997618

  1. High performance CMOS image sensor for digitally fused day/night vision systems

    NASA Astrophysics Data System (ADS)

    Fowler, Boyd; Vu, Paul; Liu, Chiao; Mims, Steve; Do, Hung; Li, Wang; Appelbaum, Jeff

    2010-04-01

    We present the performance of a CMOS image sensor optimized for next generation fused day/night vision systems. The device features 5T pixels with pinned photodiodes on a 6.5μm pitch with integrated micro-lens. The 5T pixel architecture enables both correlated double sampling (CDS) to reduce noise for night time operation, and a lateral antiblooming drain for day time operation. The measured peak quantum efficiency of the sensor is above 55% at 600nm, and the median read noise is less than 1e- RMS at room temperature. The sensor features dual gain 11-bit data output ports and supports 30 fps and 60 fps. The full well capacity is greater than 30ke-, the dark current is less than 3.8pA/cm2 at 20ºC, and the MTF at 77 lp/mm is 0.4 at 550nm. The sensor also achieves an intra-scene linear dynamic range of greater than 90dB (30000:1) for night time operation, and an inter-scene linear dynamic range of greater than 150dB for complete day/night operability.

  2. JMS: An Open Source Workflow Management System and Web-Based Cluster Front-End for High Performance Computing

    PubMed Central

    Brown, David K.; Penkler, David L.; Musyoka, Thommas M.; Bishop, Özlem Tastan

    2015-01-01

    Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over high performance computing (HPC) clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing. We have developed the Job Management System (JMS), a workflow management system and web interface for high performance computing (HPC). JMS provides users with a user-friendly web interface for creating complex workflows with multiple stages. It integrates this workflow functionality with the resource manager, a tool that is used to control and manage batch jobs on HPC clusters. As such, JMS combines workflow management functionality with cluster administration functionality. In addition, JMS provides developer tools including a code editor and the ability to version tools and scripts. JMS can be used by researchers from any field to build and run complex computational pipelines and provides functionality to include these pipelines in external interfaces. JMS is currently being used to house a number of bioinformatics pipelines at the Research Unit in Bioinformatics (RUBi) at Rhodes University. JMS is an open-source project and is freely available at https://github.com/RUBi-ZA/JMS. PMID:26280450

  3. Investigating the effectiveness of many-core network processors for high performance cyber protection systems. Part I, FY2011.

    SciTech Connect

    Wheeler, Kyle Bruce; Naegle, John Hunt; Wright, Brian J.; Benner, Robert E., Jr.; Shelburg, Jeffrey Scott; Pearson, David Benjamin; Johnson, Joshua Alan; Onunkwo, Uzoma A.; Zage, David John; Patel, Jay S.

    2011-09-01

    This report documents our first year efforts to address the use of many-core processors for high performance cyber protection. As the demands grow for higher bandwidth (beyond 1 Gbits/sec) on network connections, the need to provide faster and more efficient solution to cyber security grows. Fortunately, in recent years, the development of many-core network processors have seen increased interest. Prior working experiences with many-core processors have led us to investigate its effectiveness for cyber protection tools, with particular emphasis on high performance firewalls. Although advanced algorithms for smarter cyber protection of high-speed network traffic are being developed, these advanced analysis techniques require significantly more computational capabilities than static techniques. Moreover, many locations where cyber protections are deployed have limited power, space and cooling resources. This makes the use of traditionally large computing systems impractical for the front-end systems that process large network streams; hence, the drive for this study which could potentially yield a highly reconfigurable and rapidly scalable solution.

  4. JMS: An Open Source Workflow Management System and Web-Based Cluster Front-End for High Performance Computing.

    PubMed

    Brown, David K; Penkler, David L; Musyoka, Thommas M; Bishop, Özlem Tastan

    2015-01-01

    Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over high performance computing (HPC) clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing. We have developed the Job Management System (JMS), a workflow management system and web interface for high performance computing (HPC). JMS provides users with a user-friendly web interface for creating complex workflows with multiple stages. It integrates this workflow functionality with the resource manager, a tool that is used to control and manage batch jobs on HPC clusters. As such, JMS combines workflow management functionality with cluster administration functionality. In addition, JMS provides developer tools including a code editor and the ability to version tools and scripts. JMS can be used by researchers from any field to build and run complex computational pipelines and provides functionality to include these pipelines in external interfaces. JMS is currently being used to house a number of bioinformatics pipelines at the Research Unit in Bioinformatics (RUBi) at Rhodes University. JMS is an open-source project and is freely available at https://github.com/RUBi-ZA/JMS. PMID:26280450

  5. Data storage and retrieval system

    NASA Technical Reports Server (NTRS)

    Nakamoto, Glen

    1992-01-01

    The Data Storage and Retrieval System (DSRS) consists of off-the-shelf system components integrated as a file server supporting very large files. These files are on the order of one gigabyte of data per file, although smaller files on the order of one megabyte can be accommodated as well. For instance, one gigabyte of data occupies approximately six 9-track tape reels (recorded at 6250 bpi). Due to this large volume of media, it was desirable to 'shrink' the size of the proposed media to a single portable cassette. In addition to large size, a key requirement was that the data needs to be transferred to a (VME based) workstation at very high data rates. One gigabyte (GB) of data needed to be transferred from an archiveable media on a file server to a workstation in less than 5 minutes. Equivalent size, on-line data needed to be transferred in less than 3 minutes. These requirements imply effective transfer rates on the order of four to eight megabytes per second (4-8 MB/s). The DSRS also needed to be able to send and receive data from a variety of other sources accessible from an Ethernet local area network.

  6. Data storage and retrieval system

    NASA Technical Reports Server (NTRS)

    Nakamoto, Glen

    1991-01-01

    The Data Storage and Retrieval System (DSRS) consists of off-the-shelf system components integrated as a file server supporting very large files. These files are on the order of one gigabyte of data per file, although smaller files on the order of one megabyte can be accommodated as well. For instance, one gigabyte of data occupies approximately six 9 track tape reels (recorded at 6250 bpi). Due to this large volume of media, it was desirable to shrink the size of the proposed media to a single portable cassette. In addition to large size, a key requirement was that the data needs to be transferred to a (VME based) workstation at very high data rates. One gigabyte (GB) of data needed to be transferred from an archiveable media on a file server to a workstation in less than 5 minutes. Equivalent size, on-line data needed to be transferred in less than 3 minutes. These requirements imply effective transfer rates on the order of four to eight megabytes per second (4-8 MB/s). The DSRS also needed to be able to send and receive data from a variety of other sources accessible from an Ethernet local area network.

  7. Systems analysis of thermal storage

    SciTech Connect

    Copeland, R. J.

    1980-08-01

    During FY80 analyses were conducted on thermal storage concepts for solar thermal applications. These studies include both estimates of the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, promising thermal storage concepts are being identified. A preliminary screening was completed in FY80 and a more in-depth study was initiated. Value studies are being conducted to establish cost goals. A ranking of storage concepts based on value in solar thermal electric plants was conducted for both diurnal and long duration applications. Ground mounted thermal storage concepts for a parabolic dish/Stirling systtem are also being evaluated.

  8. Lunox storage and transfer system

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This semester, efforts were concentrated on the design of the Lunox transfer line from the storage area to the launch site. Emphasis was placed on flow and heat transfer problems and their remedies by reducing the effect of radiation by selecting materials for storage tanks, transfer lines and insulation. The design for the storage tank was based on a medium sized Lunox production facility of 6,000 metric tons per year and the frequency of transportation of Lunox from lunar launch site to lower lunar orbit of four launches per month. The design included the selection of materials for cryogenic storage, insulation and radiation shielding. Lunox was pumped to the storage area near the launch site through a piping network designed for maximum mass flow rate with a minimum boil off. The entire network incorporated specially designed radiation shields made of material which was lightweight and low in secondary radiation.

  9. Toward a Performance/Resilience Tool for Hardware/Software Co-Design of High-Performance Computing Systems

    SciTech Connect

    Engelmann, Christian; Naughton, III, Thomas J

    2013-01-01

    xSim is a simulation-based performance investigation toolkit that permits running high-performance computing (HPC) applications in a controlled environment with millions of concurrent execution threads, while observing application performance in a simulated extreme-scale system for hardware/software co-design. The presented work details newly developed features for xSim that permit the injection of MPI process failures, the propagation/detection/notification of such failures within the simulation, and their handling using application-level checkpoint/restart. These new capabilities enable the observation of application behavior and performance under failure within a simulated future-generation HPC system using the most common fault handling technique.

  10. Development of a High-performance Optical System and Fluorescent Converters for High-resolution Neutron Imaging

    NASA Astrophysics Data System (ADS)

    Sakai, T.; Yasuda, R.; Iikura, H.; Nojima, T.; Matsubayashi, M.

    Two novel devices for use in neutron imaging technique are introduced. The first one is a high-performance optical lens for video camera systems. The lens system has a magnification of 1:1 and an F value of 3. The optical resolution is less than 5 μm. The second device is a high-resolution fluorescent plate that converts neutrons into visible light. The fluorescent converter material consists of a mixture of 6LiF and ZnS(Ag) fine powder, and the thickness of the converter is material is as little as 15 μm. The surface of the plate is coated with a 1 μm-thick gadolinium oxide layer. This layer is optically transparent and acts as an electron emitter for neutron detection. Our preliminary results show that the developed optical lens and fluorescent converter plates are very promising for high-resolution neutron imaging.

  11. High Performance, Dependable Multiprocessor

    NASA Technical Reports Server (NTRS)

    Ramos, Jeremy; Samson, John R.; Troxel, Ian; Subramaniyan, Rajagopal; Jacobs, Adam; Greco, James; Cieslewski, Grzegorz; Curreri, John; Fischer, Michael; Grobelny, Eric; George, Alan; Aggarwal, Vikas; Patel, Minesh; Some, Raphael

    2006-01-01

    With the ever increasing demand for higher bandwidth and processing capacity of today's space exploration, space science, and defense missions, the ability to efficiently apply commercial-off-the-shelf (COTS) processors for on-board computing is now a critical need. In response to this need, NASA's New Millennium Program office has commissioned the development of Dependable Multiprocessor (DM) technology for use in payload and robotic missions. The Dependable Multiprocessor technology is a COTS-based, power efficient, high performance, highly dependable, fault tolerant cluster computer. To date, Honeywell has successfully demonstrated a TRL4 prototype of the Dependable Multiprocessor [I], and is now working on the development of a TRLS prototype. For the present effort Honeywell has teamed up with the University of Florida's High-performance Computing and Simulation (HCS) Lab, and together the team has demonstrated major elements of the Dependable Multiprocessor TRLS system.

  12. Small Delay and High Performance AD/DA Converters of Lease Circuit System for AM&FM Broadcast

    NASA Astrophysics Data System (ADS)

    Takato, Kenji; Suzuki, Dai; Ishii, Takashi; Kobayashi, Masato; Yamada, Hirokazu; Amano, Shigeru

    Many AM&FM broadcasting stations in Japan are connected by the leased circuit system of NTT. Small delay and high performance AD/DA converter was developed for the system. The system was designed based on ITU-T J.41 Recommendation (384kbps), the transmission signal is 11bit-32 kHz where the Gain-frequency characteristics between 40Hz to 15kHz have to be quite flat. The ΔΣAD/DA converter LSIs for audio application in the market today realize very high performance. However the performance is not enough for the leased circuit system. We found that it is not possible to meet the delay and Gain-frequency requirements only by using ΔΣAD/DA converter LSI in normal operation, because 15kHz the highest frequency and 16kHz Nyquist frequency are too close, therefore there are aliasing around Nyquist frequency. In this paper, we designed AD/DA architecture having small delay (1msec) and sharp cut off LPF (100dB attenuation at 16kHz, and 1500dB/Oct from 15kHz to 16kHz) by operating ΔΣAD/DA converter LSIs over-sampling rate such as 128kHz and by adding custom LPF designed Infinite Impulse Response (IIR) filter. The IIR filter is a 16th order elliptic type and it is consist of eight biquad filters in series. We described how to evaluate the stability of IIR filter theoretically by calculating frequency response, Pole and Zero Layout and impulse response of each biquad filter, and experimentally by adding overflow detection circuit on each filters and input overlord signal.

  13. Hydrogen storage and delivery system development

    SciTech Connect

    Handrock, J.L.; Wally, K.; Raber, T.N.

    1995-09-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. The purpose of this project is to develop a platform for the engineering evaluation of hydrogen storage and delivery systems with an added focus on lightweight hydride utilization. Hybrid vehicles represent the primary application area of interest, with secondary interests including such items as existing vehicles and stationary uses. The near term goal is the demonstration of an internal combustion engine/storage/delivery subsystem. The long term goal is optimization of storage technologies for both vehicular and industrial stationary uses. In this project an integrated approach is being used to couple system operating characteristics to hardware development. A model has been developed which integrates engine and storage material characteristics into the design of hydride storage and delivery systems. By specifying engine operating parameters, as well as a variety of storage/delivery design features, hydride bed sizing calculations are completed. The model allows engineering trade-off studies to be completed on various hydride material/delivery system configurations. A more generalized model is also being developed to allow the performance characteristics of various hydrogen storage and delivery systems to be compared (liquid, activated carbon, etc.). Many of the features of the hydride storage model are applicable to the development of this more generalized model.

  14. Advanced real-time bus system for concurrent data paths used in high-performance image processing

    NASA Astrophysics Data System (ADS)

    Brodersen, Jorg; Palkovich, Roland; Landl, Dieter; Furtler, Johannes; Dulovits, Martin

    2004-05-01

    In this paper we present a new bus protocol satisfying extreme real time demands. It has been applied to a high performance quality inspection system which can involve up to eight sensors of various types. Thanks to the modular configuration this multi-sensor inspection system acts on the outside as a single sensor image processing system. In general, image processing systems comprise three basic functions (i) image acquisition, (ii) image processing and (iii) output of processed data. The data transfers for these three fundamental functions can be accomplished either by individual bus systems or by a single bus. In case of using a single bus the system complexity of the implementation, i.e. Development of protocols, hardware employment and EMC technical considerations, is far smaller. An important goal of the new protocol design is to support extremely fast communication between individual processing modules. For example, the input data (image acquisition) is transferred in real time to individual processing modules. Concurrent to this communication the processed data are being transferred to the output module. Therefore, the key function of this protocol is to realize concurrent data paths (data rates over 1.2 Gbit/s) by using principles of pipeline architectures and methods of time division multiplex. Moreover, the new bus protocol enables concurrent data transfers via a single bus system. In this paper the function of the new bus protocol including hardware layout and innovative bus arbiter are described in details.

  15. High Performance Parallel Computational Nanotechnology

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Craw, James M. (Technical Monitor)

    1995-01-01

    At a recent press conference, NASA Administrator Dan Goldin encouraged NASA Ames Research Center to take a lead role in promoting research and development of advanced, high-performance computer technology, including nanotechnology. Manufacturers of leading-edge microprocessors currently perform large-scale simulations in the design and verification of semiconductor devices and microprocessors. Recently, the need for this intensive simulation and modeling analysis has greatly increased, due in part to the ever-increasing complexity of these devices, as well as the lessons of experiences such as the Pentium fiasco. Simulation, modeling, testing, and validation will be even more important for designing molecular computers because of the complex specification of millions of atoms, thousands of assembly steps, as well as the simulation and modeling needed to ensure reliable, robust and efficient fabrication of the molecular devices. The software for this capacity does not exist today, but it can be extrapolated from the software currently used in molecular modeling for other applications: semi-empirical methods, ab initio methods, self-consistent field methods, Hartree-Fock methods, molecular mechanics; and simulation methods for diamondoid structures. In as much as it seems clear that the application of such methods in nanotechnology will require powerful, highly powerful systems, this talk will discuss techniques and issues for performing these types of computations on parallel systems. We will describe system design issues (memory, I/O, mass storage, operating system requirements, special user interface issues, interconnects, bandwidths, and programming languages) involved in parallel methods for scalable classical, semiclassical, quantum, molecular mechanics, and continuum models; molecular nanotechnology computer-aided designs (NanoCAD) techniques; visualization using virtual reality techniques of structural models and assembly sequences; software required to

  16. High-Density Digital Data Storage System

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D.; Gray, David L.

    1995-01-01

    High-density digital data storage system designed for cost-effective storage of large amounts of information acquired during experiments. System accepts up to 20 channels of 16-bit digital data with overall transfer rates of 500 kilobytes per second. Data recorded on 8-millimeter magnetic tape in cartridges, each capable of holding up to five gigabytes of data. Each cartridge mounted on one of two tape drives. Operator chooses to use either or both of drives. One drive used for primary storage of data while other can be used to make a duplicate record of data. Alternatively, other drive serves as backup data-storage drive when primary one fails.

  17. A system approach to archival storage

    NASA Technical Reports Server (NTRS)

    Corcoran, John W.

    1991-01-01

    The introduction and viewgraphs of a discussion on a system approach to archival storage presented at the National Space Science Data Center (NSSDC) Mass Storage Workshop is included. The use of D-2 iron particles for archival storage is discussed along with how acceleration factors relating short-term tests to archival life times can be justified. Ampex Recording Systems is transferring D-2 video technology to data storage applications, and encountering concerns about corrosion. To protect the D-2 standard, Battelle tests were done on all four tapes in the Class 2 environment. Error rates were measured before and after the test on both exposed and control groups.

  18. Coal-fired high performance power generating system. Quarterly progress report, October 1, 1994--December 31, 1994

    SciTech Connect

    1995-08-01

    This report covers work carried out under Task 3, Preliminary R and D, under contract DE-AC22-92PC91155, {open_quotes}Engineering Development of a Coal-Fired High Performance Power Generation System{close_quotes} between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of (1) > 47% thermal efficiency; (2) NO{sub x}, SO{sub x} and particulates {<=}25% NSPS; (3) cost {>=}65% of heat input; (4) all solid wastes benign. In our design consideration, we have tried to render all waste streams benign and if possible convert them to a commercial product. It appears that vitrified slag has commercial values. If the flyash is reinjected through the furnace, along with the dry bottom ash, then the amount of the less valuable solid waste stream (ash) can be minimized. A limitation on this procedure arises if it results in the buildup of toxic metal concentrations in either the slag, the flyash or other APCD components. We have assembled analytical tools to describe the progress of specific toxic metals in our system. The outline of the analytical procedure is presented in the first section of this report. The strengths and corrosion resistance of five candidate refractories have been studied in this quarter. Some of the results are presented and compared for selected preparation conditions (mixing, drying time and drying temperatures). A 100 hour pilot-scale stagging combustor test of the prototype radiant panel is being planned. Several potential refractory brick materials are under review and five will be selected for the first 100 hour test. The design of the prototype panel is presented along with some of the test requirements.

  19. High performance steam development

    SciTech Connect

    Duffy, T.; Schneider, P.

    1995-12-31

    DOE has launched a program to make a step change in power plant to 1500 F steam, since the highest possible performance gains can be achieved in a 1500 F steam system when using a topping turbine in a back pressure steam turbine for cogeneration. A 500-hour proof-of-concept steam generator test module was designed, fabricated, and successfully tested. It has four once-through steam generator circuits. The complete HPSS (high performance steam system) was tested above 1500 F and 1500 psig for over 102 hours at full power.

  20. Compressed air energy storage system

    SciTech Connect

    Ahrens, F.W.; Kartsounes, G.T.

    1981-07-28

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  1. Compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  2. Compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  3. Integration of tools for the Design and Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS), phase 1

    NASA Technical Reports Server (NTRS)

    Scheper, C.; Baker, R.; Frank, G.; Yalamanchili, S.; Gray, G.

    1992-01-01

    Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified.

  4. Enabling Interoperation of High Performance, Scientific Computing Applications: Modeling Scientific Data with the Sets & Fields (SAF) Modeling System

    SciTech Connect

    Miller, M C; Reus, J F; Matzke, R P; Arrighi, W J; Schoof, L A; Hitt, R T; Espen, P K; Butler, D M

    2001-02-07

    This paper describes the Sets and Fields (SAF) scientific data modeling system. It is a revolutionary approach to interoperation of high performance, scientific computing applications based upon rigorous, math-oriented data modeling principles. Previous technologies have required all applications to use the same data structures and/or meshes to represent scientific data or lead to an ever expanding set of incrementally different data structures and/or meshes. SAF addresses this problem by providing a small set of mathematical building blocks--sets, relations and fields--out of which a wide variety of scientific data can be characterized. Applications literally model their data by assembling these building blocks. A short historical perspective, a conceptual model and an overview of SAF along with preliminary results from its use in a few ASCI codes are discussed.

  5. Evaluation of C/C-SiC Composites as Potential Candidate Materials for High Performance Braking Systems

    NASA Astrophysics Data System (ADS)

    Saptono Duryat, Rahmat

    2016-05-01

    This paper is aimed at evaluating the characteristic and performance of C/C-SiC composites as potential candidate materials for high performance braking system. A set of material specifications had been derived from specific engineering design requirements. Analysis was performed by formulating the function(s), constraint(s), and objective(s) of design and materials selection. Function of a friction material is chiefly to provide friction, absorb and dissipate energy. It is done while withstanding load and maintaining the structural adequacy and characteristic of tribology at high temperature. Objective of the material selection and design is to maximize the absorption and dissipation of energy and to minimize weight and cost. Candidate materials were evaluated based on their friction and wear, thermal capacity and conductivity, structural properties, manufacturing properties, and densities. The present paper provides a state of the art example on how materials - function - geometry - design, are all interrelated.

  6. High-performance SPME/AP MALDI system for high-throughput sampling and determination of peptides.

    PubMed

    Wang, Yan; Schneider, Bradley B; Covey, Thomas R; Pawliszyn, Janusz

    2005-12-15

    This paper presents the performance characteristics for a new multiplexed solid-phase microextraction/atmospheric pressure matrix-assisted laser desorption/ionization (SPME/AP MALDI) source configuration for a hybrid quadrupole-linear ion trap instrument. The results demonstrate that thorough optimization of parameters such as SPME coating material, optics configurations, extraction solvents, and fiber capacity provides dramatic sensitivity improvements (>1000x) over previous reports in the literature. The multiplexed SPME plate is capable of simultaneous extraction from 16 different wells on a multiwell plate, eliminating the need for extensive sample preparation. Subfemtomole sensitivity is demonstrated for peptide standards and protein digests with run-run reproducibility ranging from approximately 13 to 31%. This high-performance SPME/AP MALDI system shows potential for high-throughput extraction from biological samples. PMID:16351160

  7. Development of a high-performance gantry system for a new generation of optical slope measuring profilers

    NASA Astrophysics Data System (ADS)

    Assoufid, Lahsen; Brown, Nathan; Crews, Dan; Sullivan, Joseph; Erdmann, Mark; Qian, Jun; Jemian, Pete; Yashchuk, Valeriy V.; Takacs, Peter Z.; Artemiev, Nikolay A.; Merthe, Daniel J.; McKinney, Wayne R.; Siewert, Frank; Zeschke, Thomas

    2013-05-01

    A new high-performance metrology gantry system has been developed within the scope of collaborative efforts of optics groups at the US Department of Energy synchrotron radiation facilities as well as the BESSY-II synchrotron at the Helmholtz Zentrum Berlin (Germany) and the participation of industrial vendors of x-ray optics and metrology instrumentation directed to create a new generation of optical slope measuring systems (OSMS) [1]. The slope measurement accuracy of the OSMS is expected to be <50 nrad, which is strongly required for the current and future metrology of x-ray optics for the next generation of light sources. The fabricated system was installed and commissioned (December 2012) at the Advanced Photon Source (APS) at Argonne National Laboratory to replace the aging APS Long Trace Profiler (APS LTP-II). Preliminary tests were conducted (in January and May 2012) using the optical system configuration of the Nanometer Optical Component Measuring Machine (NOM) developed at Helmholtz Zentrum Berlin (HZB)/BESSY-II. With a flat Si mirror that is 350 mm long and has 200 nrad rms nominal slope error over a useful length of 300 mm, the system provides a repeatability of about 53 nrad. This value corresponds to the design performance of 50 nrad rms accuracy for inspection of ultra-precise flat optics.

  8. Feasibility of cool storage systems in refrigeration

    NASA Astrophysics Data System (ADS)

    Elmahgary, Yehia; Kekkonen, Veikko; Laitinen, Ari; Pihala, Hannu

    1989-05-01

    In the present report, the economic viability and technical feasibility of selected cool storage systems are considered. Cool storage has clear potential for several applications: in connection with air-conditioning systems, domestic refrigerating and freezing systems; commercially e.g., in the dairy and vegetable industries; and in deep freezing, as in the meat industry. Air-conditioning has limited significance in Finland. For this reason it was not investigated in this study. In domestic refrigeration and freezing two systems were investigated; a controlled cooling/heating system and a simple built-in system in individual refrigerators and freezers. The central cooling/heating system in houses was found to be economically unattractive. It also has several technical drawbacks. The simple built-in system appeared to be promising. The amount of savings is rationally a function of the difference between day and night tariffs and the costs of installing an automatic switch and storage media. In the vegetable and dairy industries cool storage also has considerable potential. Several systems were investigated in this respect and compared to the conventional system. The cool storage system using Cristopia balls, one of the most common commercial systems available in Europe, was not economical at a tariff difference of 10 p/k Wh or more. Cool storage for freezing in meat plants was also investigated.

  9. The Open Cloud Testbed: Supporting Open Source Cloud Computing Systems Based on Large Scale High Performance, Dynamic Network Services

    NASA Astrophysics Data System (ADS)

    Grossman, Robert; Gu, Yunhong; Sabala, Michal; Bennet, Colin; Seidman, Jonathan; Mambratti, Joe

    Recently, a number of cloud platforms and services have been developed for data intensive computing, including Hadoop, Sector, CloudStore (formerly KFS), HBase, and Thrift. In order to benchmark the performance of these systems, to investigate their interoperability, and to experiment with new services based on flexible compute node and network provisioning capabilities, we have designed and implemented a large scale testbed called the Open Cloud Testbed (OCT). Currently OCT has 120 nodes in 4 data centers: Baltimore, Chicago (two locations), and San Diego. In contrast to other cloud testbeds, which are in small geographic areas and which are based on commodity Internet services, the OCT is a wide area testbed and the 4 data centers are connected with a high performance 10Gb/s network, based on a foundation of dedicated lightpaths. This testbed can address the requirements of extremely large data streams that challenge other types of distributed infrastructure. We have also developed several utilities to support the development of cloud computing systems and services, including novel node and network provisioning services, a monitoring system, and an RPC system. In this paper, we describe the OCT concepts, architecture, infrastructure, a few benchmarks that were developed for this platform, interoperability studies, and results.

  10. High Performance, Low Operating Voltage n-Type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System

    NASA Astrophysics Data System (ADS)

    Dey, A.; Singh, A.; Kalita, A.; Das, D.; Iyer, P. K.

    2016-04-01

    The performance of organic field-effect transistors (OFETs) fabricated utilizing vacuum deposited n-type conjugated molecule N,N’-Dioctadecyl-1,4,5,8-naphthalenetetracarboxylic diimide (NDIOD2) were investigated using single and bilayer dielectric system over a low-cost glass substrate. Single layer device structure consists of Poly (vinyl alcohol) (PVA) as the dielectric material whereas the bilayer systems contain two different device configuration namely aluminum oxide/Poly (vinyl alcohol) (Al2O3/PVA) and aluminum oxide/Poly (methyl mefhacrylate) (Al2O3/PMMA) in order to reduce the operating voltage and improve the device performance. It was observed that the devices with Al2O3/PMMA bilayer dielectric system and top contact aluminum electrodes exhibit excellent n-channel behaviour under vacuum compared to the other two structures with electron mobility value of 0.32 cm2/Vs, threshold voltages ~1.8 V and current on/off ratio ~104, operating under a very low voltage (6 V). These devices demonstrate highly stable electrical behaviour under multiple scans and low threshold voltage instability in vacuum condition even after 7 days than the Al2O3/PVA device structure. This low operating voltage, high performance OTFT device with bilayer dielectric system is expected to have diverse applications in the next generation of OTFT technologies.

  11. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, Peter

    1991-01-01

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.

  12. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  13. Distributed Storage Systems for Data Intensive Computing

    SciTech Connect

    Vazhkudai, Sudharshan S; Butt, Ali R; Ma, Xiaosong

    2012-01-01

    In this chapter, the authors present an overview of the utility of distributed storage systems in supporting modern applications that are increasingly becoming data intensive. Their coverage of distributed storage systems is based on the requirements imposed by data intensive computing and not a mere summary of storage systems. To this end, they delve into several aspects of supporting data-intensive analysis, such as data staging, offloading, checkpointing, and end-user access to terabytes of data, and illustrate the use of novel techniques and methodologies for realizing distributed storage systems therein. The data deluge from scientific experiments, observations, and simulations is affecting all of the aforementioned day-to-day operations in data-intensive computing. Modern distributed storage systems employ techniques that can help improve application performance, alleviate I/O bandwidth bottleneck, mask failures, and improve data availability. They present key guiding principles involved in the construction of such storage systems, associated tradeoffs, design, and architecture, all with an eye toward addressing challenges of data-intensive scientific applications. They highlight the concepts involved using several case studies of state-of-the-art storage systems that are currently available in the data-intensive computing landscape.

  14. Ice Storage System for School Complex.

    ERIC Educational Resources Information Center

    Montgomery, Ross D.

    1998-01-01

    Describes a project at the Manatee Education Center in Naples, Florida, which won an ASHRAE award. Project involved the implementation of ice-storage technology in 19 schools. Compares the performance of ice-storage systems with traditional chiller designs in two other schools. Tables illustrate costs for the campuses. Addresses the maintenance…

  15. Redox flow cell energy storage systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1979-01-01

    The redox flow cell energy storage system being developed by NASA for use in remote power systems and distributed storage installations for electric utilities is presented. The system under consideration is an electrochemical storage device which utilizes the oxidation and reduction of two fully soluble redox couples (acidified chloride solutions of chromium and iron) as active electrode materials separated by a highly selective ion exchange membrane. The reactants are contained in large storage tanks and pumped through a stack of redox flow cells where the electrochemical reactions take place at porous carbon felt electrodes. Redox equipment has allowed the incorporation of state of charge readout, stack voltage control and system capacity maintenance (rebalance) devices to regulate cells in a stack jointly. A 200 W, 12 V system with a capacity of about 400 Wh has been constructed, and a 2 kW, 10kWh system is planned.

  16. Conceptual design of a self-deployable, high performance parabolic concentrator for advanced solar-dynamic power systems

    NASA Technical Reports Server (NTRS)

    Dehne, Hans J.

    1991-01-01

    NASA has initiated technology development programs to develop advanced solar dynamic power systems and components for space applications beyond 2000. Conceptual design work that was performed is described. The main efforts were the: (1) conceptual design of self-deploying, high-performance parabolic concentrator; and (2) materials selection for a lightweight, shape-stable concentrator. The deployment concept utilizes rigid gore-shaped reflective panels. The assembled concentrator takes an annular shape with a void in the center. This deployable concentrator concept is applicable to a range of solar dynamic power systems of 25 kW sub e to in excess of 75 kW sub e. The concept allows for a family of power system sizes all using the same packaging and deployment technique. The primary structural material selected for the concentrator is a polyethyl ethylketone/carbon fiber composite also referred to as APC-2 or Vitrex. This composite has a nearly neutral coefficient of thermal expansion which leads to shape stable characteristics under thermal gradient conditions. Substantial efforts were undertaken to produce a highly specular surface on the composite. The overall coefficient of thermal expansion of the composite laminate is near zero, but thermally induced stresses due to micro-movement of the fibers and matrix in relation to each other cause the surface to become nonspecular.

  17. A high performance system to study the influence of temperature in on-line solid-phase extraction capillary electrophoresis.

    PubMed

    Tascon, Marcos; Benavente, Fernando; Sanz-Nebot, Victoria; Gagliardi, Leonardo G

    2015-03-10

    A novel high performance system to control the temperature of the microcartridge in on-line solid phase extraction capillary electrophoresis (SPE-CE) is introduced. The mini-device consists in a thermostatic bath that fits inside of the cassette of any commercial CE instrument, while its temperature is controlled from an external circuit of liquid connecting three different water baths. The circuits are controlled from a switchboard connected to an array of electrovalves that allow to rapidly alternate the water circulation through the mini-thermostatic-bath between temperatures from 5 to 90 °C. The combination of the mini-device and the forced-air thermostatization system of the commercial CE instrument allows to optimize independently the temperature of the sample loading, the clean-up, the analyte elution and the electrophoretic separation steps. The system is used to study the effect of temperature on the C18-SPE-CE analysis of the opioid peptides, Dynorphin A (Dyn A), Endomorphin1 (END) and Met-enkephalin (MET), in both standard solutions and in spiked plasma samples. Extraction recoveries demonstrated to depend, with a non-monotonous trend, on the microcartridge temperature during the sample loading and became maximum at 60 °C. Results prove the potential of temperature control to further enhance sensitivity in SPE-CE when analytes are thermally stable. PMID:25732315

  18. Performance evaluation of floor thermal storage system

    SciTech Connect

    Shinkai, Koichiro; Kasuya, Atsushi; Kato, Masahiro

    2000-07-01

    Environmental issues were seriously addressed when a new building was designed with district heating and cooling for the Osaka gas company. As a result, the building was officially recognized as Environmentally Conscious Building No. 1 by the Construction Ministry. In order to reduce cost by peak shaving, adoption of a floor thermal storage system was planned. This paper describes results regarding the peak shaving by floor thermal storage system in designing the air-conditioning system.

  19. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1996-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA-High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high order characteristics of the system. In this paper, only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles at attack : 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  20. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1999-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high-order characteristics of the system. In this paper only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles of attack: 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of the identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the estimated closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  1. Internally insulated thermal storage system development program

    NASA Technical Reports Server (NTRS)

    Scott, O. L.

    1980-01-01

    A cost effective thermal storage system for a solar central receiver power system using molten salt stored in internally insulated carbon steel tanks is described. Factors discussed include: testing of internal insulation materials in molten salt; preliminary design of storage tanks, including insulation and liner installation; optimization of the storage configuration; and definition of a subsystem research experiment to demonstrate the system. A thermal analytical model and analysis of a thermocline tank was performed. Data from a present thermocline test tank was compared to gain confidence in the analytical approach. A computer analysis of the various storage system parameters (insulation thickness, number of tanks, tank geometry, etc.,) showed that (1) the most cost-effective configuration was a small number of large cylindrical tanks, and (2) the optimum is set by the mechanical constraints of the system, such as soil bearing strength and tank hoop stress, not by the economics.

  2. Horizontal modular dry irradiated fuel storage system

    DOEpatents

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  3. Hydrogen storage and delivery system development: Fabrication

    SciTech Connect

    Handrock, J.L.; Malinowski, M.E.; Wally, K.

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a newly developed fuel cell vehicle hydride storage system model will also be discussed. As an example of model use power distribution and control for a simulated driving cycle is presented. An experimental test facility, the Hydride Bed Testing Laboratory (HBTL) has been designed and fabricated. The development of this facility and its use in storage system development will be reviewed. These two capabilities (analytical and experimental) form the basis of an integrated approach to storage system design and development. The initial focus of these activities has been on hydride utilization for vehicular applications.

  4. Determination of salbutamol in human plasma and urine by high-performance liquid chromatography with a coulometric electrode array system.

    PubMed

    Zhang, X Z; Gan, Y R; Zhao, F N

    2004-01-01

    A method is developed to determine salbutamol in human plasma and urine using high-performance liquid chromatography (HPLC) with a coulometric electrode array system, based on the electrochemical behavior of salbutamol at graphite electrode. The mobile phase component A is 30 mM sodium dihydroxy phosphate-30 mM triethylamine and is adjusted to pH 6.0 with 20% phosphate acid. The mobile phase component B is methanol. The optimized mobile phase composition was A and B in the proportion of 90:10 (v/v). Paracetamol is selected as the external standard. The human plasma and urine samples are pretreated using solid-phase extraction cartridges (Sep-Pak Silica), and the eluting solution is monitored by the coulometric electrode array system. The electrode potentials are set at 300, 400, 550, and 650 mV, respectively. Calibration curves show good linearity, and the recovery of salbutamol proves to be constant and unaffected by the concentration of the drug. This method, developed using HPLC-electrochemical detection, is reproducible and sensitive enough for the determination of salbutamol in human plasma and urine. PMID:15189600

  5. Storage system architectures and their characteristics

    NASA Technical Reports Server (NTRS)

    Sarandrea, Bryan M.

    1993-01-01

    Not all users storage requirements call for 20 MBS data transfer rates, multi-tier file or data migration schemes, or even automated retrieval of data. The number of available storage solutions reflects the broad range of user requirements. It is foolish to think that any one solution can address the complete range of requirements. For users with simple off-line storage requirements, the cost and complexity of high end solutions would provide no advantage over a more simple solution. The correct answer is to match the requirements of a particular storage need to the various attributes of the available solutions. The goal of this paper is to introduce basic concepts of archiving and storage management in combination with the most common architectures and to provide some insight into how these concepts and architectures address various storage problems. The intent is to provide potential consumers of storage technology with a framework within which to begin the hunt for a solution which meets their particular needs. This paper is not intended to be an exhaustive study or to address all possible solutions or new technologies, but is intended to be a more practical treatment of todays storage system alternatives. Since most commercial storage systems today are built on Open Systems concepts, the majority of these solutions are hosted on the UNIX operating system. For this reason, some of the architectural issues discussed focus around specific UNIX architectural concepts. However, most of the architectures are operating system independent and the conclusions are applicable to such architectures on any operating system.

  6. Making resonance a common case: a high-performance implementation of collective I/O on parallel file systems

    SciTech Connect

    Davis, Marion Kei; Zhang, Xuechen; Jiang, Song

    2009-01-01

    Collective I/O is a widely used technique to improve I/O performance in parallel computing. It can be implemented as a client-based or server-based scheme. The client-based implementation is more widely adopted in MPI-IO software such as ROMIO because of its independence from the storage system configuration and its greater portability. However, existing implementations of client-side collective I/O do not take into account the actual pattern offile striping over multiple I/O nodes in the storage system. This can cause a significant number of requests for non-sequential data at I/O nodes, substantially degrading I/O performance. Investigating the surprisingly high I/O throughput achieved when there is an accidental match between a particular request pattern and the data striping pattern on the I/O nodes, we reveal the resonance phenomenon as the cause. Exploiting readily available information on data striping from the metadata server in popular file systems such as PVFS2 and Lustre, we design a new collective I/O implementation technique, resonant I/O, that makes resonance a common case. Resonant I/O rearranges requests from multiple MPI processes to transform non-sequential data accesses on I/O nodes into sequential accesses, significantly improving I/O performance without compromising the independence ofa client-based implementation. We have implemented our design in ROMIO. Our experimental results show that the scheme can increase I/O throughput for some commonly used parallel I/O benchmarks such as mpi-io-test and ior-mpi-io over the existing implementation of ROMIO by up to 157%, with no scenario demonstrating significantly decreased performance.

  7. Battery storage for supplementing renewable energy systems

    SciTech Connect

    None, None

    2009-01-18

    The battery storage for renewable energy systems section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  8. Water-storage-tube systems. Final report

    SciTech Connect

    Hemker, P.

    1981-12-24

    Passive solar collection/storage/distribution systems were surveyed, designed, fabricated, and mechanically and thermally tested. The types studied were clear and opaque fiberglass tubes, metal tubes with plastic liners, and thermosyphoning tubes. (MHR)

  9. Advanced long term cryogenic storage systems

    NASA Technical Reports Server (NTRS)

    Brown, Norman S.

    1987-01-01

    Long term, cryogenic fluid storage facilities will be required to support future space programs such as the space-based Orbital Transfer Vehicle (OTV), Telescopes, and Laser Systems. An orbital liquid oxygen/liquid hydrogen storage system with an initial capacity of approximately 200,000 lb will be required. The storage facility tank design must have the capability of fluid acquisition in microgravity and limit cryogen boiloff due to environmental heating. Cryogenic boiloff management features, minimizing Earth-to-orbit transportation costs, will include advanced thick multilayer insulation/integrated vapor cooled shield concepts, low conductance support structures, and refrigeration/reliquefaction systems. Contracted study efforts are under way to develop storage system designs, technology plans, test article hardware designs, and develop plans for ground/flight testing.

  10. Gas hydrate cool storage system

    DOEpatents

    Ternes, Mark P.; Kedl, Robert J.

    1985-01-01

    This invention is a process for formation of a gas hydrate to be used as a cool storage medium using a refrigerant in water. Mixing of the immiscible refrigerant and water is effected by addition of a surfactant and agitation. The difficult problem of subcooling during the process is overcome by using the surfactant and agitation and performance of the process significantly improves and approaches ideal.

  11. APS storage ring vacuum system performance

    SciTech Connect

    Noonan, J.R.; Gagliano, J.; Goeppner, G.A.

    1997-06-01

    The Advanced Photon Source (APS) storage ring was designed to operated with 7-GeV, 100-mA positron beam with lifetimes > 20 hours. The lifetime is limited by residual gas scattering and Touschek scattering at this time. Photon-stimulated desorption and microwave power in the rf cavities are the main gas loads. Comparison of actual system gas loads and design calculations will be given. In addition, several special features of the storage ring vacuum system will be presented.

  12. Implementation of system intelligence in a 3-tier telemedicine/PACS hierarchical storage management system

    NASA Astrophysics Data System (ADS)

    Chao, Woodrew; Ho, Bruce K. T.; Chao, John T.; Sadri, Reza M.; Huang, Lu J.; Taira, Ricky K.

    1995-05-01

    Our tele-medicine/PACS archive system is based on a three-tier distributed hierarchical architecture, including magnetic disk farms, optical jukebox, and tape jukebox sub-systems. The hierarchical storage management (HSM) architecture, built around a low cost high performance platform [personal computers (PC) and Microsoft Windows NT], presents a very scaleable and distributed solution ideal for meeting the needs of client/server environments such as tele-medicine, tele-radiology, and PACS. These image based systems typically require storage capacities mirroring those of film based technology (multi-terabyte with 10+ years storage) and patient data retrieval times at near on-line performance as demanded by radiologists. With the scaleable architecture, storage requirements can be easily configured to meet the needs of the small clinic (multi-gigabyte) to those of a major hospital (multi-terabyte). The patient data retrieval performance requirement was achieved by employing system intelligence to manage migration and caching of archived data. Relevant information from HIS/RIS triggers prefetching of data whenever possible based on simple rules. System intelligence embedded in the migration manger allows the clustering of patient data onto a single tape during data migration from optical to tape medium. Clustering of patient data on the same tape eliminates multiple tape loading and associated seek time during patient data retrieval. Optimal tape performance can then be achieved by utilizing the tape drives high performance data streaming capabilities thereby reducing typical data retrieval delays associated with streaming tape devices.

  13. Synthesis and Characterization of High Performance Polyimides Containing the Bicyclo(2.2.2)oct-7-ene Ring System

    NASA Technical Reports Server (NTRS)

    Alvarado, M.; Harruna, I. I.; Bota, K. B.

    1997-01-01

    Due to the difficulty in processing polyimides with high temperature stability and good solvent resistance, we have synthesized high performance polyimides with bicyclo(2.2.2)-oct-7-ene ring system which can easily be fabricated into films and fibers and subsequently converted to the more stable aromatic polyimides. In order to improve processability, we prepared two polyimides by reacting 1,4-phenylenediamine and 1,3phenylediamine with bicyclo(2.2.2)-7-octene-2,3,5,6-tetracarboxylic dianhydride. The polyimides were characterized by FTIR, FTNMR, solubility and thermal analysis. Thermogravimetric analysis (TGA) showed that the 1,4-phenylenediamine and 1,3-phenylenediamine containing polyimides were stable up to 460 and 379 C, respectively under nitrogen atmosphere. No melting transitions were observed for both polyimides. The 1,4-phenylenediamine containing polyimide is partially soluble in dimethyl sulfoxide, methane sulfonic acid and soluble in sulfuric acid at room temperature. The 1,3-phenylenediamine containing polyimide is partially soluble in dimethyl sulfoxide, tetramethyl urea, N,N-dimethyl acetamide and soluble in methane sulfonic acid and sulfuric acid.

  14. Determination of Oxyclozanide in Beef and Milk using High-Performance Liquid Chromatography System with UV Detector

    PubMed Central

    Jo, Kyul; Cho, Hee-Jung; Yi, Hee; Cho, Soo-Min; Park, Jin-A; Kwon, Chan-Hyeok; Park, Hee-Ra; Kwon, Ki-Sung

    2011-01-01

    This study was developed and validated for the determination of oxyclozanide residue concentrations in beef and commercial milk, using high-performance liquid chromatography system. Oxyclozanide was successfully separated on a reverse phase column (Xbridge-C18, 4.6×250 mm, 5 µm) with a mobile phase composed of acetonitrile and 0.1% phosphoric acid (60:40, v/v%). This analytical procedure involved a deproteinization process using acetonitrile for beef and 2% formic acid in acetonitrile for commercial milk, dehydration by adding sodium sulfate to the liquid analytical sample, and a defatting process using n-hexane; after these steps, the extract was exposed to a stream of nitrogen dryness. The final extracted sample was dissolved in the mobile phase and filtered using a 0.45 µm syringe filter. This method had good selectivity and recovery (70.70±7.90-110.79±14.95%) from the matrices. The LOQs ranged from 9.7 to 9.8 µg/kg for beef and commercial milk. The recoveries met the standards set by the CODEX guideline. PMID:21826158

  15. High Performance Real-Time Visualization of Voluminous Scientific Data Through the NOAA Earth Information System (NEIS).

    NASA Astrophysics Data System (ADS)

    Stewart, J.; Hackathorn, E. J.; Joyce, J.; Smith, J. S.

    2014-12-01

    Within our community data volume is rapidly expanding. These data have limited value if one cannot interact or visualize the data in a timely manner. The scientific community needs the ability to dynamically visualize, analyze, and interact with these data along with other environmental data in real-time regardless of the physical location or data format. Within the National Oceanic Atmospheric Administration's (NOAA's), the Earth System Research Laboratory (ESRL) is actively developing the NOAA Earth Information System (NEIS). Previously, the NEIS team investigated methods of data discovery and interoperability. The recent focus shifted to high performance real-time visualization allowing NEIS to bring massive amounts of 4-D data, including output from weather forecast models as well as data from different observations (surface obs, upper air, etc...) in one place. Our server side architecture provides a real-time stream processing system which utilizes server based NVIDIA Graphical Processing Units (GPU's) for data processing, wavelet based compression, and other preparation techniques for visualization, allows NEIS to minimize the bandwidth and latency for data delivery to end-users. Client side, users interact with NEIS services through the visualization application developed at ESRL called TerraViz. Terraviz is developed using the Unity game engine and takes advantage of the GPU's allowing a user to interact with large data sets in real time that might not have been possible before. Through these technologies, the NEIS team has improved accessibility to 'Big Data' along with providing tools allowing novel visualization and seamless integration of data across time and space regardless of data size, physical location, or data format. These capabilities provide the ability to see the global interactions and their importance for weather prediction. Additionally, they allow greater access than currently exists helping to foster scientific collaboration and new

  16. ITER fuel storage system conceptual design description

    SciTech Connect

    Nasise, J.E.; Anderson, J.L.; Bartlit, J.R.; Muller, M.E.

    1990-01-01

    Fuel, in the form of hydrogen isotopes Q{sub 2} (where Q is H, D, or T), is required to be stored and assayed in a safe manner at the proposed International Thermonuclear Experimental Reactor (ITER). Two subsystems are proposed for this task: Fuel Storage (FS) and Fuel Management (FM). The combined system, Fuel Storage and Management System (FSMS), will provide fuel storage, tritium inventory, gas analysis, transfer pumping, and flow measurements. Presented is a Conceptual Design Description (CDD) of only the FS portion of the FSMS. The proposed FS system permits tritium and its associated isotopes to be stored within ZrCo storage beds, as a solid metal-hydride, or as a gas stored in tanks. 10 refs., 4 figs., 3 tabs.

  17. Test report : Princeton power systems prototype energy storage system.

    SciTech Connect

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

  18. High-Performance SiC/SiC Ceramic Composite Systems Developed for 1315 C (2400 F) Engine Components

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Yun, Hee Mann; Morscher, Gregory N.; Bhatt, Ramakrishna T.

    2004-01-01

    As structural materials for hot-section components in advanced aerospace and land-based gas turbine engines, silicon carbide (SiC) ceramic matrix composites reinforced by high performance SiC fibers offer a variety of performance advantages over current bill-of-materials, such as nickel-based superalloys. These advantages are based on the SiC/SiC composites displaying higher temperature capability for a given structural load, lower density (approximately 30- to 50-percent metal density), and lower thermal expansion. These properties should, in turn, result in many important engine benefits, such as reduced component cooling air requirements, simpler component design, reduced support structure weight, improved fuel efficiency, reduced emissions, higher blade frequencies, reduced blade clearances, and higher thrust. Under the NASA Ultra-Efficient Engine Technology (UEET) Project, much progress has been made at the NASA Glenn Research Center in identifying and optimizing two highperformance SiC/SiC composite systems. The table compares typical properties of oxide/oxide panels and SiC/SiC panels formed by the random stacking of balanced 0 degrees/90 degrees fabric pieces reinforced by the indicated fiber types. The Glenn SiC/SiC systems A and B (shaded area of the table) were reinforced by the Sylramic-iBN SiC fiber, which was produced at Glenn by thermal treatment of the commercial Sylramic SiC fiber (Dow Corning, Midland, MI; ref. 2). The treatment process (1) removes boron from the Sylramic fiber, thereby improving fiber creep, rupture, and oxidation resistance and (2) allows the boron to react with nitrogen to form a thin in situ grown BN coating on the fiber surface, thereby providing an oxidation-resistant buffer layer between contacting fibers in the fabric and the final composite. The fabric stacks for all SiC/SiC panels were provided to GE Power Systems Composites for chemical vapor infiltration of Glenn designed BN fiber coatings and conventional SiC matrices

  19. High-performance flat data center network architecture based on scalable and flow-controlled optical switching system

    NASA Astrophysics Data System (ADS)

    Calabretta, Nicola; Miao, Wang; Dorren, Harm

    2016-03-01

    Traffic in data centers networks (DCNs) is steadily growing to support various applications and virtualization technologies. Multi-tenancy enabling efficient resource utilization is considered as a key requirement for the next generation DCs resulting from the growing demands for services and applications. Virtualization mechanisms and technologies can leverage statistical multiplexing and fast switch reconfiguration to further extend the DC efficiency and agility. We present a novel high performance flat DCN employing bufferless and distributed fast (sub-microsecond) optical switches with wavelength, space, and time switching operation. The fast optical switches can enhance the performance of the DCNs by providing large-capacity switching capability and efficiently sharing the data plane resources by exploiting statistical multiplexing. Benefiting from the Software-Defined Networking (SDN) control of the optical switches, virtual DCNs can be flexibly created and reconfigured by the DCN provider. Numerical and experimental investigations of the DCN based on the fast optical switches show the successful setup of virtual network slices for intra-data center interconnections. Experimental results to assess the DCN performance in terms of latency and packet loss show less than 10^-5 packet loss and 640ns end-to-end latency with 0.4 load and 16- packet size buffer. Numerical investigation on the performance of the systems when the port number of the optical switch is scaled to 32x32 system indicate that more than 1000 ToRs each with Terabit/s interface can be interconnected providing a Petabit/s capacity. The roadmap to photonic integration of large port optical switches will be also presented.

  20. High Performance Network Monitoring

    SciTech Connect

    Martinez, Jesse E

    2012-08-10

    Network Monitoring requires a substantial use of data and error analysis to overcome issues with clusters. Zenoss and Splunk help to monitor system log messages that are reporting issues about the clusters to monitoring services. Infiniband infrastructure on a number of clusters upgraded to ibmon2. ibmon2 requires different filters to report errors to system administrators. Focus for this summer is to: (1) Implement ibmon2 filters on monitoring boxes to report system errors to system administrators using Zenoss and Splunk; (2) Modify and improve scripts for monitoring and administrative usage; (3) Learn more about networks including services and maintenance for high performance computing systems; and (4) Gain a life experience working with professionals under real world situations. Filters were created to account for clusters running ibmon2 v1.0.0-1 10 Filters currently implemented for ibmon2 using Python. Filters look for threshold of port counters. Over certain counts, filters report errors to on-call system administrators and modifies grid to show local host with issue.

  1. A System Architect's View Of Optical Storage

    NASA Astrophysics Data System (ADS)

    McIntosh, John W.; Harness, Kent; Parham, Frederick

    1983-11-01

    The design and the development of optical storage creates a significant impact on system architecture. Some of the highlights of optical storage include the following: both direct and sequential access are supported, large units of data are divided into bands that act as the unit of physical and logical data addressahility, and the user deals with logical records that can be of variable length, up to two megabytes. Ease of use is enhanced by the simplicity of data manipulation and access. Future consideratons will allow rapid retrieval of a platter from a library for subsequent automatic insertion of the cartridge into an optical storage unit.

  2. Laser beam modeling in optical storage systems

    NASA Technical Reports Server (NTRS)

    Treptau, J. P.; Milster, T. D.; Flagello, D. G.

    1991-01-01

    A computer model has been developed that simulates light propagating through an optical data storage system. A model of a laser beam that originates at a laser diode, propagates through an optical system, interacts with a optical disk, reflects back from the optical disk into the system, and propagates to data and servo detectors is discussed.

  3. Ice storage systems spark air conditioning savings

    SciTech Connect

    Kohlenberger, C.R.

    1981-03-01

    Thermal storage systems similar to giant storage batteries are explained by means of storing energy (either hot or cold) during these off-peak times for use at the more convenient time when the actual load is impressed on to the system. This load shifting, of course, does not actually save energy. It merely shifts the load to a time when the electric utility can more conveniently handle that load. In fact, more actual KW hours may be utilized by this shift, but with the resulting cost to the consumer being reduced. System concepts are described and energy cost comparisons are made. Various methods of ice making systems are presented and analyzed.

  4. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Schoenung, Susan M.

    2011-04-01

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  5. Finely tuning MOFs towards high performance in C2H2 storage: synthesis and properties of a new MOF-505 analogue with an inserted amide functional group.

    PubMed

    Zhang, Mingxing; Li, Bin; Li, Yunzhi; Wang, Qian; Zhang, Wenwei; Chen, Banglin; Li, Shuhua; Pan, Yi; You, Xiaozeng; Bai, Junfeng

    2016-06-01

    Aiming to improve the acetylene (C2H2) storage capability of MOFs, we successfully designed NJU-Bai 17, a new analogue of MOF-505 with an inserted amide functional group which exhibits almost record high C2H2 uptakes of 222.4 cm(3) g(-1) at 296 K and 296 cm(3) g(-1) at 273 K under 1 bar. This result has been further supported by the determination of the heat of C2H2 adsorption and Grand Canonical Monte Carlo (GCMC) and first-principle calculations. PMID:27173153

  6. Hydrogen storage and delivery system development: Analysis

    SciTech Connect

    Handrock, J.L.

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Results of the analytical model development portion of this project will be discussed. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a recently developed fuel cell vehicle storage system model will also be discussed. As an example of model use, power distribution and control for a simulated driving cycle is presented. Model calibration results of fuel cell fluid inlet and exit temperatures at various fuel cell idle speeds, assumed fuel cell heat capacities, and ambient temperatures are presented. The model predicts general increases in temperature with fuel cell power and differences between inlet and exit temperatures, but under predicts absolute temperature values, especially at higher power levels.

  7. High-performance two-axis gimbal system for free space laser communications onboard unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Locke, Michael; Czarnomski, Mariusz; Qadir, Ashraf; Setness, Brock; Baer, Nicolai; Meyer, Jennifer; Semke, William H.

    2011-03-01

    A custom designed and manufactured gimbal with a wide field-of-view and fast response time is developed. This enhanced custom design is a 24 volt system with integrated motor controllers and drivers which offers a full 180o fieldof- view in both azimuth and elevation; this provides a more continuous tracking capability as well as increased velocities of up to 479° per second. The addition of active high-frequency vibration control, to complement the passive vibration isolation system, is also in development. The ultimate goal of this research is to achieve affordable, reliable, and secure air-to-air laser communications between two separate remotely piloted aircraft. As a proof-of-concept, the practical implementation of an air-to-ground laserbased video communications payload system flown by a small Unmanned Aerial Vehicle (UAV) will be demonstrated. A numerical tracking algorithm has been written, tested, and used to aim the airborne laser transmitter at a stationary ground-based receiver with known GPS coordinates; however, further refinement of the tracking capabilities is dependent on an improved gimbal design for precision pointing of the airborne laser transmitter. The current gimbal pointing system is a two-axis, commercial-off-the-shelf component, which is limited in both range and velocity. The current design is capable of 360o of pan and 78o of tilt at a velocity of 60o per second. The control algorithm used for aiming the gimbal is executed on a PC-104 format embedded computer onboard the payload to accurately track a stationary ground-based receiver. This algorithm autonomously calculates a line-of-sight vector in real-time by using the UAV autopilot's Differential Global Positioning System (DGPS) which provides latitude, longitude, and altitude and Inertial Measurement Unit (IMU) which provides the roll, pitch, and yaw data, along with the known Global Positioning System (GPS) location of the ground-based photodiode array receiver.

  8. Gas storage and recovery system

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    A system for recovering and recycling gases is disclosed. The system is comprised of inlet and outlet flow lines, controllers, an inflatable enclosure, and inflatable rib stiffeners which are inflatable by the gas to be stored. The system does not present gas at an undesirable back pressure to the gas source. A filtering relief valve is employed which prevents environmental airborne contamination from flowing back into the system when the relief valve is closing. The system is for storing and re-using helium.

  9. Gas storage and recovery system

    NASA Astrophysics Data System (ADS)

    Cook, Joseph S.

    1993-03-01

    A system for recovering and recycling gases is disclosed. The system is comprised of inlet and outlet flow lines, controllers, an inflatable enclosure, and inflatable rib stiffeners which are inflatable by the gas to be stored. The system does not present gas at an undesirable back pressure to the gas source. A filtering relief valve is employed which prevents environmental airborne contamination from flowing back into the system when the relief valve is closing. The system is for storing and re-using helium.

  10. Gas storage and recovery system

    NASA Astrophysics Data System (ADS)

    Cook, Joseph S., Jr.

    1994-11-01

    A system for recovering and recycling gases is disclosed. The system is comprised of inlet and outlet flow lines, controllers, an inflatable enclosure, and inflatable rib stiffeners which are inflatable by the gas to be stored. The system does not present gas at an undesirable back pressure to the gas source. A filtering relief valve is employed which prevents environmental airborne contamination from flowing back into the system when the relief valve is closing. The system is for storing and re-using helium.

  11. Designing Microporus Carbons for Hydrogen Storage Systems

    SciTech Connect

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  12. Energy storage systems for MPD thrusters

    SciTech Connect

    Gabriel, S.B.

    1981-01-01

    Because of its high thrust density, the magnetoplasmadynamic (MPD) thruster is a promising candidate for many advanced space missions. Its high power requirements lead to operation in a pulsed mode using an intermediate energy storage device. The characteristics of a system consisting of a solar array, energy storage capacitor, and MPD thruster are studied for array powers in the range 25-375 kw. Assuming simple analytic models for the circuit components, the circuit charge and discharge equations are solved numerically, resulting in the system efficiency and capacitance. The system efficiency is inversely proportional to array power and decreases with circuit resistance. Alternative methods of energy storage such as a pulse forming network and a homopolar generator, are presented, and an overall comparison between all of the methods is given.

  13. Redox storage systems for solar applications

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.; Thaller, L. H.

    1980-01-01

    The NASA Redox energy storage system is described. The system is based on soluble aqueous iron and chromium chloride redox couples. The needed technology advances in the two elements (electrodes and membranes) that are key to its technological feasibility have been achieved and system development has begun. The design, construction, and test of a 1 kilowatt system integrated with a solar photovoltaic array is discussed.

  14. [A systematic screening and identification method for 29 central nervous system drugs in body fluid by high performance capillary electrophoresis].

    PubMed

    Wu, H F; Guan, F Y; Luo, Y

    1997-05-01

    A systematic screening method has been developed for the detection of 29 central nervous system (CNS) drugs in human plasma, urine and gastric juice by high performance capillary electrophoresis (HPCE). The first step is sample preparation. The patient's or normal human plasma (0.5 ml) spiked with CNS drugs was extracted with 2 x 4 ml dichloromethane, while 2 ml of patient's or spiked urine was extracted with 2 x 6 ml chloroform. The combined extract from plasma or urine was evaporated to dryness in a rotation evaporator at 35 degrees C. The residue was dissolved in 100 microliters methanol and subsequently 400 microliters of redistilled water was added. The patient gastric juice (3 ml) was centrifuged at 2,000 r.min-1 for 5 min. The supernatant was filtered through 0.45 micron microporous membrane for injection onto capillary columns. The second step was to perform CZE separation in acidic buffer composed of 30 mmol.L-1(NH4)3PO4(pH 2.50) and 10% acetonitrile (condition A). Most of the benzodiazepines (diazepam, nitrazepam, chlordiazepoxide, flurazepam, extazolam, alprazolam) and methaqualone were baseline separated and detected at 5-13 min, while thiodiphenylamines showed group peaks at 3-5 min and barbiturates migrate with electroosmotic fluid (EOF) together. The third step is to separate the drugs in basic buffer constituted of 70 mmol.L-1 Na2HPO4(pH 8.60) and 30% acetonitrile (condition B). The thiodiphenylamines and some other basic drugs could be well separated, which include thihexyphenidyl, imipramine, amitriptyline, diphenhydramine, chlorpromazine, doxepin, chlorprothixene, promethazine and flurazepam, while the rest of the CNS drugs did not interfere with the separation. The last step was to separate the drugs by micellar electrokinetic chromatography (MEKC) in such a buffer as 70 mmol.L-1 SDS plus 15 mmol.L-1 Na2HPO4 (pH 7.55) and 5% methanol (condition C). Barbiturates (barbital, phenobarbital, methylphenobarbital, amobarbital, thiopental, pentobarbital

  15. Engineering development of coal-fired high performance power systems, Phase II and Phase III. Quarter progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    1996-11-01

    Work is presented on the development of a coal-fired high performance power generation system by the year 2000. This report describes the design of the air heater, duct heater, system controls, slag viscosity, and design of a quench zone.

  16. Toward Scalable Benchmarks for Mass Storage Systems

    NASA Technical Reports Server (NTRS)

    Miller, Ethan L.

    1996-01-01

    This paper presents guidelines for the design of a mass storage system benchmark suite, along with preliminary suggestions for programs to be included. The benchmarks will measure both peak and sustained performance of the system as well as predicting both short- and long-term behavior. These benchmarks should be both portable and scalable so they may be used on storage systems from tens of gigabytes to petabytes or more. By developing a standard set of benchmarks that reflect real user workload, we hope to encourage system designers and users to publish performance figures that can be compared with those of other systems. This will allow users to choose the system that best meets their needs and give designers a tool with which they can measure the performance effects of improvements to their systems.

  17. Magnetic Energy Storage System: Superconducting Magnet Energy Storage System with Direct Power Electronics Interface

    SciTech Connect

    2010-10-01

    GRIDS Project: ABB is developing an advanced energy storage system using superconducting magnets that could store significantly more energy than today’s best magnetic storage technologies at a fraction of the cost. This system could provide enough storage capacity to encourage more widespread use of renewable power like wind and solar. Superconducting magnetic energy storage systems have been in development for almost 3 decades; however, past devices were designed to supply power only for short durations—generally less than a few minutes. ABB’s system would deliver the stored energy at very low cost, making it ideal for eventual use in the electricity grid as a costeffective competitor to batteries and other energy storage technologies. The device could potentially cost even less, on a per kilowatt basis, than traditional lead-acid batteries.

  18. Self-assembly formation of hollow Ni-Fe-O nanocage architectures by metal-organic frameworks with high-performance lithium storage

    NASA Astrophysics Data System (ADS)

    Guo, Hong; Li, Tingting; Chen, Weiwei; Liu, Lixiang; Qiao, Jinli; Zhang, Jiujun

    2015-09-01

    A hollow hybrid Ni-Fe-O nanomaterial (NiFe2O4) is synthesized using a precursor of metal-organic frameworks through a simple and cost-effective method. The unique hollow nanocage structures shorten the length of Li-ion diffusion. The hollow structure offers a sufficient void space, which sufficiently alleviates the mechanical stress caused by volume change. Besides, the hybrid elements allow the volume change to take place in a stepwise manner during electrochemical cycle. And thus, the hierarchical hollow NiFe2O4 nanocage electrode exhibits extraordinary electrochemical performance. The stable cyclic performance is obtained for all rates from 1 C to 10 C. Even when the current reaches 10 C, the capacity can also arrive at 652 mAhg-1. Subsequently, a specific capacity of ca. 975 mAhg-1 is recovered when the current rate reduces back to 1 C after 200 cycles. This strategy that derived from NMOFs may shed light on a new route for large-scale synthesis of hollow porous hybrid nanocages for energy storage, environmental remediation and other novel applications.

  19. Low temperature plasma synthesis of mesoporous Fe3O4 nanorods grafted on reduced graphene oxide for high performance lithium storage.

    PubMed

    Zhou, Quan; Zhao, Zongbin; Wang, Zhiyu; Dong, Yanfeng; Wang, Xuzhen; Gogotsi, Yury; Qiu, Jieshan

    2014-02-21

    Transition metal oxide coupling with carbon is an effective method for improving electrical conductivity of battery electrodes and avoiding the degradation of their lithium storage capability due to large volume expansion/contraction and severe particle aggregation during the lithium insertion and desertion process. In our present work, we develop an effective approach to fabricate the nanocomposites of porous rod-shaped Fe3O4 anchored on reduced graphene oxide (Fe3O4/rGO) by controlling the in situ nucleation and growth of β-FeOOH onto the graphene oxide (β-FeOOH/GO) and followed by dielectric barrier discharge (DBD) hydrogen plasma treatment. Such well-designed hierarchical nanostructures are beneficial for maximum utilization of electrochemically active matter in lithium ion batteries and display superior Li uptake with high reversible capacity, good rate capability, and excellent stability, maintaining 890 mA h g(-1) capacity over 100 cycles at a current density of 500 mA g(-1). PMID:24413631

  20. Self-assembly formation of hollow Ni-Fe-O nanocage architectures by metal-organic frameworks with high-performance lithium storage

    PubMed Central

    Guo, Hong; Li, Tingting; Chen, Weiwei; Liu, Lixiang; Qiao, Jinli; Zhang, Jiujun

    2015-01-01

    A hollow hybrid Ni-Fe-O nanomaterial (NiFe2O4) is synthesized using a precursor of metal-organic frameworks through a simple and cost-effective method. The unique hollow nanocage structures shorten the length of Li-ion diffusion. The hollow structure offers a sufficient void space, which sufficiently alleviates the mechanical stress caused by volume change. Besides, the hybrid elements allow the volume change to take place in a stepwise manner during electrochemical cycle. And thus, the hierarchical hollow NiFe2O4 nanocage electrode exhibits extraordinary electrochemical performance. The stable cyclic performance is obtained for all rates from 1 C to 10 C. Even when the current reaches 10 C, the capacity can also arrive at 652 mAhg−1. Subsequently, a specific capacity of ca. 975 mAhg−1 is recovered when the current rate reduces back to 1 C after 200 cycles. This strategy that derived from NMOFs may shed light on a new route for large-scale synthesis of hollow porous hybrid nanocages for energy storage, environmental remediation and other novel applications. PMID:26347981

  1. Self-assembly of 2D sandwich-structured MnFe{sub 2}O{sub 4}/graphene composites for high-performance lithium storage

    SciTech Connect

    Li, Songmei Wang, Bo; Li, Bin; Liu, Jianhua; Yu, Mei; Wu, Xiaoyu

    2015-01-15

    Highlights: • MFO/GN composites were synthesized by a facile in situ solvothermal approach. • The MFO microspheres are sandwiched between the graphene layers. • Each MFO microsphere is an interstitial cluster of nanoparticles. • The MFO/GN electrode exhibits an enhanced cyclability for Li-ion batteries anodes. - Abstract: In this study, two-dimensional (2D) sandwich-structured MnFe{sub 2}O{sub 4}/graphene (MFO/GN) composites are synthesized by a facile in situ solvothermal approach, using cetyltrimethylammonium bromide (CTAB) as cationic surfactant. As a consequence, the nanocomposites of MFO/GN self-assembled into a 2D sandwich structure, in which the interstitial cluster structure of microsphere-type MnFe{sub 2}O{sub 4} is sandwiched between the graphene layers. This special structure of the MFO/GN composites used as anodes for lithium-ion batteries will be favorable for the maximum accessible surface of electroactive materials, fast diffusion of lithium ions and migration of electron, and elastomeric space to accommodate volume changes during the discharge–charge processes. The as-synthesized MFO/GN composites deliver a high specific reversible capacity of 987.95 mA h g{sup −1} at a current density of 200 mA g{sup −1}, a good capacity retention of 69.27% after 80 cycles and excellent rate performance for lithium storage.

  2. Mass Storage Performance Information System

    NASA Technical Reports Server (NTRS)

    Scheuermann, Peter

    2000-01-01

    The purpose of this task is to develop a data warehouse to enable system administrators and their managers to gather information by querying the data logs of the MDSDS. Currently detailed logs capture the activity of the MDSDS internal to the different systems. The elements to be included in the data warehouse are requirements analysis, data cleansing, database design, database population, hardware/software acquisition, data transformation, query and report generation, and data mining.

  3. High Performance Database Management for Earth Sciences

    NASA Technical Reports Server (NTRS)

    Rishe, Naphtali; Barton, David; Urban, Frank; Chekmasov, Maxim; Martinez, Maria; Alvarez, Elms; Gutierrez, Martha; Pardo, Philippe

    1998-01-01

    The High Performance Database Research Center at Florida International University is completing the development of a highly parallel database system based on the semantic/object-oriented approach. This system provides exceptional usability and flexibility. It allows shorter application design and programming cycles and gives the user control via an intuitive information structure. It empowers the end-user to pose complex ad hoc decision support queries. Superior efficiency is provided through a high level of optimization, which is transparent to the user. Manifold reduction in storage size is allowed for many applications. This system allows for operability via internet browsers. The system will be used for the NASA Applications Center program to store remote sensing data, as well as for Earth Science applications.

  4. Electricity Storage Systems and the Grid

    NASA Astrophysics Data System (ADS)

    Howes, Ruth

    2007-04-01

    Demand for electricity varies seasonally, daily, and on much shorter time scales. Renewable energy sources such as solar or wind power are naturally intermittent. Nuclear power plants can respond to a narrow range of fluctuating demand quickly and to larger fluctuations in hours. However, they are most efficient when operated at a constant power output. Thus implementing either nuclear power as baseline power or power from renewables requires either a system for storage of electrical energy that can respond quickly to demand or a back-up power source, usually a gas turbine plant that has a quick response time. We have studied six technologies for storing electrical energy from the grid: pumped hydropower, compressed air storage, batteries, flywheels, superconducting magnetic energy storage, and electrochemical capacitors. In addition, the power conversion systems (PCS) that connect storage to the grid are both expensive and critical to the success of a storage technology. Each of these six technologies offers different benefits, is at a different stage of readiness for commercial use, and offers opportunities for research. Advantages and disadvantages for each of the technologies and PCS will be discussed.

  5. High performance polymer development

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1991-01-01

    The term high performance as applied to polymers is generally associated with polymers that operate at high temperatures. High performance is used to describe polymers that perform at temperatures of 177 C or higher. In addition to temperature, other factors obviously influence the performance of polymers such as thermal cycling, stress level, and environmental effects. Some recent developments at NASA Langley in polyimides, poly(arylene ethers), and acetylenic terminated materials are discussed. The high performance/high temperature polymers discussed are representative of the type of work underway at NASA Langley Research Center. Further improvement in these materials as well as the development of new polymers will provide technology to help meet NASA future needs in high performance/high temperature applications. In addition, because of the combination of properties offered by many of these polymers, they should find use in many other applications.

  6. High Performance Polymers

    NASA Technical Reports Server (NTRS)

    Venumbaka, Sreenivasulu R.; Cassidy, Patrick E.

    2003-01-01

    This report summarizes results from research on high performance polymers. The research areas proposed in this report include: 1) Effort to improve the synthesis and to understand and replicate the dielectric behavior of 6HC17-PEK; 2) Continue preparation and evaluation of flexible, low dielectric silicon- and fluorine- containing polymers with improved toughness; and 3) Synthesis and characterization of high performance polymers containing the spirodilactam moiety.

  7. Motivation and Design of the Sirocco Storage System Version 1.0.

    SciTech Connect

    Curry, Matthew Leon; Ward, H. Lee; Danielson, Geoffrey Charles

    2015-07-01

    Sirocco is a massively parallel, high performance storage system for the exascale era. It emphasizes client-to-client coordination, low server-side coupling, and free data movement to improve resilience and performance. Its architecture is inspired by peer-to-peer and victim- cache architectures. By leveraging these ideas, Sirocco natively supports several media types, including RAM, flash, disk, and archival storage, with automatic migration between levels. Sirocco also includes storage interfaces and support that are more advanced than typical block storage. Sirocco enables clients to efficiently use key-value storage or block-based storage with the same interface. It also provides several levels of transactional data updates within a single storage command, including full ACID-compliant updates. This transaction support extends to updating several objects within a single transaction. Further support is provided for con- currency control, enabling greater performance for workloads while providing safe concurrent modification. By pioneering these and other technologies and techniques in the storage system, Sirocco is poised to fulfill a need for a massively scalable, write-optimized storage system for exascale systems. This is version 1.0 of a document reflecting the current and planned state of Sirocco. Further versions of this document will be accessible at http://www.cs.sandia.gov/Scalable_IO/ sirocco .

  8. High performance sapphire windows

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.; Liou, Larry

    1993-01-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  9. Cost projections for Redox Energy storage systems

    NASA Technical Reports Server (NTRS)

    Michaels, K.; Hall, G.

    1980-01-01

    A preliminary design and system cost analysis was performed for the redox energy storage system. A conceptual design and cost estimate was prepared for each of two energy applications: (1) electric utility 100-MWh requirement (10-MW for ten hours) for energy storage for utility load leveling application, and (2) a 500-kWh requirement (10-kW for 50 hours) for use with a variety of residential or commercial applications, including stand alone solar photovoltaic systems. The conceptual designs were based on cell performance levels, system design parameters, and special material costs. These data were combined with estimated thermodynamic and hydraulic analysis to provide preliminary system designs. Results indicate that the redox cell stack to be amenable to mass production techniques with a relatively low material cost.

  10. Redox flow cell energy storage systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1979-01-01

    NASA-Redox systems are electrochemical storage devices that use two fully soluble Redox couples, anode and cathode fluids, as active electrode materials separated by a highly selective ion exchange membrane. The reactants are contained in large storage tanks and pumped through a stack of Redox flow cells where the electrochemical reactions (reduction and oxidation) take place at porous carbon felt electrodes. A string or stack of these power producing cells is connected in series in a bipolar manner. Redox energy storage systems promise to be inexpensive and possess many features that provide for flexible design, long life, high reliability and minimal operation and maintenance costs. These features include independent sizing of power and storage capacity requirements and inclusion within the cell stack of a cell that monitors the state of charge of the system as a whole, and a rebalance cell which permits continuous correction to be made for minor side reactions that would tend to result in the anode fluid and cathode fluids becoming electrochemically out of balance. These system features are described and discussed.

  11. CLUPI, a high-performance imaging system on the rover of the 2018 mission to discover biofabrics on Mars

    NASA Astrophysics Data System (ADS)

    Josset, J.-L.; Westall, F.; Hofmann, B. A.; Spray, J. G.; Cockell, C.; Kempe, S.; Griffiths, A. D.; Coradini, A.; Colangeli, L.; Koschny, D.; Pullan, D.; Föllmi, K.; Diamond, L.; Josset, M.; Javaux, E.; Esposito, F.

    2011-10-01

    The scientific objectives of the 2018 ExoMars rover mission are to search for traces of past or present life and to characterise the near-sub surface. Both objectives require study of the rock/regolith materials in terms of structure, textures, mineralogy, and elemental and organic composition. The 2018 ExoMars rover payload consists of a suite of complementary instruments designed to reach these objectives. CLUPI, the high-performance colour close up imager, on board the 2018 ExoMars Rover plays an important role in attaining the mission objectives: it is the equivalent of the hand lens that no geologist is without when undertaking field work. CLUPI is a powerful, highly integrated miniaturized (<700g) low-power robust imaging system, able to operate at very low temperatures (-120°C). CLUPI has a working distance from 10cm to infinite providing outstanding pictures with a color detector of 2652x1768. At 10cm, the resolution is 7 micrometer/pixel in color. The optical-mechanical interface is a smart assembly in titanium that can sustain a wide temperature range. The concept benefits from well-proven heritage: Proba, Rosetta, MarsExpress and Smart-1 missions… In a typical field scenario, the geologist will use his/her eyes to make an overview of an area and the outcrops within it to determine sites of particular interest for more detailed study. In the ExoMars scenario, the PanCam wide angle cameras (WACS) will be used for this task. After having made a preliminary general evaluation, the geologist will approach a particular outcrop for closer observation of structures at the decimetre to subdecimeter scale (ExoMars' High Resolution Camera) before finally getting very close up to the surface with a hand lens (ExoMars' CLUPI), and/or taking a hand specimen, for detailed observation of textures and minerals. Using structural, textural and preliminary compositional analysis, the geologist identifies the materials and makes a decision as to whether they are of

  12. Use of high-performance computers, FEA and the CAVE automatic virtual environment for collaborative design of complex systems

    SciTech Connect

    Plaskacz, E.J.; Kulak, R.F.

    1996-03-01

    Concurrent, interactive engineering design and analysis has the potential for substantially reducing product development time and enhancing US competitiveness. Traditionally, engineering design has involved running engineering analysis codes to simulate and evaluate the response of a product or process, writing the output data to file, and viewing or ``post-processing`` the results at a later time. The emergence of high-performance computer architectures, virtual reality, and advanced telecommunications in the mid 90`s promises to dramatically alter the way designers, manufacturers, engineers and scientists will do their work.

  13. Monitoring a petabyte scale storage system

    SciTech Connect

    Bakken, Jon; Berman, Eileen; Huang, Chih-Hao; Moibenko, Alexander; Petravick, Don; Zalokar, Michael; /Fermilab

    2004-12-01

    Fermilab operates a petabyte scale storage system, Enstore, which is the primary data store for experiments' large data sets. The Enstore system regularly transfers greater than 15 Terabytes of data each day. It is designed using a client-server architecture providing sufficient modularity to allow easy addition and replacement of hardware and software components. Monitoring of this system is essential to insure the integrity of the data that is stored in it and to maintain the high volume access that this system supports. The monitoring of this distributed system is accomplished using a variety of tools and techniques that present information for use by a variety of roles (operator, storage system administrator, storage software developer, user). Essential elements of the system are monitored: performance, hardware, firmware, software, network, data integrity. We will present details of the deployed monitoring tools with an emphasis on the different techniques that have proved useful to each role. Experience with the monitoring tools and techniques, what worked and what did not will be presented.

  14. High performance liquid level monitoring system based on polymer fiber Bragg gratings embedded in silicone rubber diaphragms

    NASA Astrophysics Data System (ADS)

    Marques, Carlos A. F.; Peng, Gang-Ding; Webb, David J.

    2015-05-01

    Liquid-level sensing technologies have attracted great prominence, because such measurements are essential to industrial applications, such as fuel storage, flood warning and in the biochemical industry. Traditional liquid level sensors are based on electromechanical techniques; however they suffer from intrinsic safety concerns in explosive environments. In recent years, given that optical fiber sensors have lots of well-established advantages such as high accuracy, costeffectiveness, compact size, and ease of multiplexing, several optical fiber liquid level sensors have been investigated which are based on different operating principles such as side-polishing the cladding and a portion of core, using a spiral side-emitting optical fiber or using silica fiber gratings. The present work proposes a novel and highly sensitive liquid level sensor making use of polymer optical fiber Bragg gratings (POFBGs). The key elements of the system are a set of POFBGs embedded in silicone rubber diaphragms. This is a new development building on the idea of determining liquid level by measuring the pressure at the bottom of a liquid container, however it has a number of critical advantages. The system features several FBG-based pressure sensors as described above placed at different depths. Any sensor above the surface of the liquid will read the same ambient pressure. Sensors below the surface of the liquid will read pressures that increase linearly with depth. The position of the liquid surface can therefore be approximately identified as lying between the first sensor to read an above-ambient pressure and the next higher sensor. This level of precision would not in general be sufficient for most liquid level monitoring applications; however a much more precise determination of liquid level can be made by linear regression to the pressure readings from the sub-surface sensors. There are numerous advantages to this multi-sensor approach. First, the use of linear regression using

  15. APS storage ring vacuum system development

    SciTech Connect

    Niemann, R.C.; Benaroya, R.; Choi, M.; Dortwegt, R.J.; Ferry, R.; Goeppner, G.A.; Gonczy, J.D.; Krieger, C.; Howell, J.; Nielsen, R.W.; Roop, B.; Wehrle, R.B.

    1991-01-01

    The Advanced Photon Source synchrotron radiation facility, under construction at the Argonne National Laboratory, incorporates a large ring for the storage of 7 GeV positrons for the generation of photon beams for the facility's materials research program. The Storage Ring's 1104 m circumference is divided into 40 sectors which contain vacuum, beam transport, control, rf and insertion device systems. The vacuum system will operate at a pressure of 1 nTorr and is fabricated from aluminum. The system includes distributed NeG pumping, photon absorbers with lumped pumping, beam position monitors, vacuum diagnostics and valving. An overview of the vacuum system design and details of selected development program results are presented. 5 refs.

  16. High Performance Work and Learning Systems: Crafting a Worker-Centered Approach. Proceedings of a Conference (Washington, D.C., September 1991).

    ERIC Educational Resources Information Center

    Marschall, Daniel, Ed.

    A consensus that unions must develop coherent and comprehensive policies on new work systems and continuous learning in order to guide local activities, was the central theme of this conference on the interrelated issues of the high performance work organization. These proceedings include the following presentations: "Labor's Stake in High…

  17. Balloon borne optical disk mass storage system

    NASA Technical Reports Server (NTRS)

    Vanek, M. D.; Jennings, D. A.

    1991-01-01

    An on-board data recording system for balloon-borne interferometer using a vacuum operable, ruggedized WORM optical drive is presented. This system, as presently under development, provides 320 Mbytes of data storage (or approximately 11 hrs at the 64 kbits/sec telemetry rate of the experiment). It has the capability of recording the unmodified telemetry bit system as transmitted or doing some preprocessing of the data onboard. The system is compact and requires less than 28 watts of battery power to operate.

  18. Hydrogen storage systems from waste Mg alloys

    NASA Astrophysics Data System (ADS)

    Pistidda, C.; Bergemann, N.; Wurr, J.; Rzeszutek, A.; Møller, K. T.; Hansen, B. R. S.; Garroni, S.; Horstmann, C.; Milanese, C.; Girella, A.; Metz, O.; Taube, K.; Jensen, T. R.; Thomas, D.; Liermann, H. P.; Klassen, T.; Dornheim, M.

    2014-12-01

    The production cost of materials for hydrogen storage is one of the major issues to be addressed in order to consider them suitable for large scale applications. In the last decades several authors reported on the hydrogen sorption properties of Mg and Mg-based systems. In this work magnesium industrial wastes of AZ91 alloy and Mg-10 wt.% Gd alloy are used for the production of hydrogen storage materials. The hydrogen sorption properties of the alloys were investigated by means of volumetric technique, in situ synchrotron radiation powder X-ray diffraction (SR-PXD) and calorimetric methods. The measured reversible hydrogen storage capacity for the alloys AZ91 and Mg-10 wt.% Gd are 4.2 and 5.8 wt.%, respectively. For the Mg-10 wt.% Gd alloy, the hydrogenated product was also successfully used as starting reactant for the synthesis of Mg(NH2)2 and as MgH2 substitute in the Reactive Hydride Composite (RHC) 2LiBH4 + MgH2. The results of this work demonstrate the concrete possibility to use Mg alloy wastes for hydrogen storage purposes.

  19. The ALS Storage Ring RF System

    SciTech Connect

    Taylor, B.; Lo, C.C.; Baptiste, K.; Guigli, J.; Julian, J.

    1993-05-01

    The ALS Storage Ring RF System is characterized by the use of the following features: (1) High power loading of two single cell cavities. (2) The use of a tubular ceramic input window employing aperture coupling. (3) The use of waveguide filters and matchers designed for HOM absorption. (4) A comprehensive HOM monitoring system. (5) The use of waveguide water-wedge loads for the magic tee and circulator loads. The results of cavity measurements and high power tests are reported together with the performance of the system during the commissioning and operation phases of the ALS project. Plans for future window development are discussed.

  20. Validation of a high-performance liquid chromatography method for the determination of (-)-alpha-bisabolol from particulate systems.

    PubMed

    São Pedro, André; Detoni, Cássia; Ferreira, Domingos; Cabral-Albuquerque, Elaine; Sarmento, Bruno

    2009-09-01

    A reversed-phase high performance liquid chromatography method has been developed and validated for determination and quantitation of the natural sesquiterpene (-)-alpha-bisabolol. Furthermore the application of the method was done by characterization of chitosan milispheres and liposomes entrapping Zanthoxylum tingoassuiba essential oil, which contains appreciable amount of (-)-alpha-bisabolol. A reversed-phase C(18) column and gradient elution was used with the mobile phase composed of (A) acetonitrile-water-phosphoric acid (19:80:1) and (B) acetonitrile. The eluent was pumped at a flow rate of 0.8 mL/min with UV detection at 200 nm. In the range 0.02-0.64 mg/mL the assay showed good linearity (R(2 )= 0.9999) and specificity for successful identification and quantitation of (-)-alpha-bisabolol in the essential oil without interfering peaks. The method also showed good reproducibility, demonstrating inter-day and intra-day precision based on relative standard deviation values (up to 3.03%), accuracy (mean recovery of 100.69% +/- 1.05%) and low values of detection and quantitation limits (0.0005 and 0.0016 mg/mL, respectively). The method was also robust for showing a recovery of 98.81% under a change of solvent in standard solutions. The suitability of the method was demonstrated by the successful determination of association efficiency of the (-)-alpha-bisabolol in chitosan milispheres and liposomes. PMID:19353738

  1. Speciation of chromium in environmental samples by dual electromembrane extraction system followed by high performance liquid chromatography.

    PubMed

    Safari, Meysam; Nojavan, Saeed; Davarani, Saied Saeed Hosseiny; Morteza-Najarian, Amin

    2013-07-30

    This study proposes the dual electromembrane extraction followed by high performance liquid chromatography for selective separation-preconcentration of Cr(VI) and Cr(III) in different environmental samples. The method was based on the electrokinetic migration of chromium species toward the electrodes with opposite charge into the two different hollow fibers. The extractant was then complexed with ammonium pyrrolidinedithiocarbamate for HPLC analysis. The effects of analytical parameters including pH, type of organic solvent, sample volume, stirring rate, time of extraction and applied voltage were investigated. The results showed that Cr(III) and Cr(VI) could be simultaneously extracted into the two different hollow fibers. Under optimized conditions, the analytes were quantified by HPLC instrument, with acceptable linearity ranging from 20 to 500 μg L(-1) (R(2) values≥0.9979), and repeatability (RSD) ranging between 9.8% and 13.7% (n=5). Also, preconcentration factors of 21.8-33 that corresponded to recoveries ranging from 31.1% to 47.2% were achieved for Cr(III) and Cr(VI), respectively. The estimated detection limits (S/N ratio of 3:1) were less than 5.4 μg L(-1). Finally, the proposed method was successfully applied to determine Cr(III) and Cr(VI) species in some real water samples. PMID:23856230

  2. INL High Performance Building Strategy

    SciTech Connect

    Jennifer D. Morton

    2010-02-01

    (LEED®) Green Building Rating System (LEED 2009). The document employs a two-level approach for high performance building at INL. The first level identifies the requirements of the Guiding Principles for Sustainable New Construction and Major Renovations, and the second level recommends which credits should be met when LEED Gold certification is required.

  3. High performance polymeric foams

    SciTech Connect

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-08-28

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy.

  4. Inorganic nanostructured materials for high performance electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Sheng; Sun, Shouheng; You, Xiao-Zeng

    2014-01-01

    Electrochemical supercapacitors (ES) are a well-known energy storage system that has high power density, long life-cycle and fast charge-discharge kinetics. Nanostructured materials are a new generation of electrode materials with large surface area and short transport/diffusion path for ions and electrons to achieve high specific capacitance in ES. This mini review highlights recent developments of inorganic nanostructure materials, including carbon nanomaterials, metal oxide nanoparticles, and metal oxide nanowires/nanotubes, for high performance ES applications.

  5. Implementation of Remote Acquisition and Storage System

    NASA Technical Reports Server (NTRS)

    Hess, Jason R.

    1995-01-01

    The existing system for gathering and processing acoustical test data had several shortcomings and limitations in the areas of microphone array size, sampling rate, and background noise. A new Remote Acquisition and Storage System (RASS) is being designed for applications not suited for the existing acquisition system. One of the first tasks in the design of the RASS was to redesign the microprocessor card of the existing system to include RS-232 serial ports to accept communications through the radio modem used in the RF link. Cost and parts availability comparisons were made between the newly designed board and commercially available models, and a commercially made model was selected. This model was tested for basic I/0 operations. The prototype of the RF telemetry system was set up and tested. Plans are now being developed for integrating the RF telemetry system with the other RASS subsystems.

  6. Air Storage System Energy Transfer (ASSET) plants

    NASA Astrophysics Data System (ADS)

    Stys, Z. S.

    1983-09-01

    The design features and performance capabilities of Air Storage System Energy Transfer (ASSET) plants for transferring off-peak utility electricity to on-peak hours are described. The plant operations involve compressing ambient air with an axial flow compressor and depositing it in an underground reservoir at 70 bar pressure. Released during a peaking cycle, the pressure is reduced to 43 bar, the air is heated to 550 C, passed through an expander after a turbine, and passed through a low pressure combustion chamber to be heated to 850 C. A West German plant built in 1978 to supply over 300 MW continuous power for up to two hours is detailed, noting its availability factor of nearly 98 percent and power delivery cost of $230/kW installed. A plant being constructed in Illinois will use limestone caverns as the air storage tank.

  7. SCIS. Small Container Storage Inventory System

    SciTech Connect

    Esworthy, S.

    1988-09-01

    SCIS, the Small Container Inventory System, was developed to track the chemical inventory in the Small Container Storage Facility. Running totals of the amounts of stored chemicals can be extracted daily, with reports generated at the close of business on the last working day of each month. SCIS is designed to provide complete logging of all chemical transactions of the Facility. Records can be retrieved based on key information in any of the 14 fields in the system. Eight reports are available by division, cabinet number, and chemical name; for chemicals removed and chemicals remaining; for all transactions occurring during a specified month; and a current inventory by chemical name and cabinet number.

  8. High Performance Processors for Space Environments: A Subproject of the NASA Exploration Missions Systems Directorate "Radiation Hardened Electronics for Space Environments" Technology Development Program

    NASA Technical Reports Server (NTRS)

    Johnson, M.; Label, K.; McCabe, J.; Powell, W.; Bolotin, G.; Kolawa, E.; Ng, T.; Hyde, D.

    2007-01-01

    Implementation of challenging Exploration Systems Missions Directorate objectives and strategies can be constrained by onboard computing capabilities and power efficiencies. The Radiation Hardened Electronics for Space Environments (RHESE) High Performance Processors for Space Environments project will address this challenge by significantly advancing the sustained throughput and processing efficiency of high-per$ormance radiation-hardened processors, targeting delivery of products by the end of FY12.

  9. Information storage capacity of discrete spin systems

    SciTech Connect

    Yoshida, Beni

    2013-11-15

    Understanding the limits imposed on information storage capacity of physical systems is a problem of fundamental and practical importance which bridges physics and information science. There is a well-known upper bound on the amount of information that can be stored reliably in a given volume of discrete spin systems which are supported by gapped local Hamiltonians. However, all the previously known systems were far below this theoretical bound, and it remained open whether there exists a gapped spin system that saturates this bound. Here, we present a construction of spin systems which saturate this theoretical limit asymptotically by borrowing an idea from fractal properties arising in the Sierpinski triangle. Our construction provides not only the best classical error-correcting code which is physically realizable as the energy ground space of gapped frustration-free Hamiltonians, but also a new research avenue for correlated spin phases with fractal spin configurations. -- Highlights: •We propose a spin model with fractal ground states and study its coding properties. •We show that the model asymptotically saturates a theoretical limit on information storage capacity. •We discuss its relations to various theoretical physics problems.

  10. High performance bilateral telerobot control.

    PubMed

    Kline-Schoder, Robert; Finger, William; Hogan, Neville

    2002-01-01

    Telerobotic systems are used when the environment that requires manipulation is not easily accessible to humans, as in space, remote, hazardous, or microscopic applications or to extend the capabilities of an operator by scaling motions and forces. The Creare control algorithm and software is an enabling technology that makes possible guaranteed stability and high performance for force-feedback telerobots. We have developed the necessary theory, structure, and software design required to implement high performance telerobot systems with time delay. This includes controllers for the master and slave manipulators, the manipulator servo levels, the communication link, and impedance shaping modules. We verified the performance using both bench top hardware as well as a commercial microsurgery system. PMID:15458092

  11. Identification of high performance and component technology for space electrical power systems for use beyond the year 2000

    NASA Technical Reports Server (NTRS)

    Maisel, James E.

    1988-01-01

    Addressed are some of the space electrical power system technologies that should be developed for the U.S. space program to remain competitive in the 21st century. A brief historical overview of some U.S. manned/unmanned spacecraft power systems is discussed to establish the fact that electrical systems are and will continue to become more sophisticated as the power levels appoach those on the ground. Adaptive/Expert power systems that can function in an extraterrestrial environment will be required to take an appropriate action during electrical faults so that the impact is minimal. Manhours can be reduced significantly by relinquishing tedious routine system component maintenance to the adaptive/expert system. By cataloging component signatures over time this system can set a flag for a premature component failure and thus possibly avoid a major fault. High frequency operation is important if the electrical power system mass is to be cut significantly. High power semiconductor or vacuum switching components will be required to meet future power demands. System mass tradeoffs have been investigated in terms of operating at high temperature, efficiency, voltage regulation, and system reliability. High temperature semiconductors will be required. Silicon carbide materials will operate at a temperature around 1000 K and the diamond material up to 1300 K. The driver for elevated temperature operation is that radiator mass is reduced significantly because of inverse temperature to the fourth power.

  12. High Performance FORTRAN

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush

    1994-01-01

    High performance FORTRAN is a set of extensions for FORTRAN 90 designed to allow specification of data parallel algorithms. The programmer annotates the program with distribution directives to specify the desired layout of data. The underlying programming model provides a global name space and a single thread of control. Explicitly parallel constructs allow the expression of fairly controlled forms of parallelism in particular data parallelism. Thus the code is specified in a high level portable manner with no explicit tasking or communication statements. The goal is to allow architecture specific compilers to generate efficient code for a wide variety of architectures including SIMD, MIMD shared and distributed memory machines.

  13. High Performance Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Talcott, Stephen

    High performance liquid chromatography (HPLC) has many applications in food chemistry. Food components that have been analyzed with HPLC include organic acids, vitamins, amino acids, sugars, nitrosamines, certain pesticides, metabolites, fatty acids, aflatoxins, pigments, and certain food additives. Unlike gas chromatography, it is not necessary for the compound being analyzed to be volatile. It is necessary, however, for the compounds to have some solubility in the mobile phase. It is important that the solubilized samples for injection be free from all particulate matter, so centrifugation and filtration are common procedures. Also, solid-phase extraction is used commonly in sample preparation to remove interfering compounds from the sample matrix prior to HPLC analysis.

  14. Compartmentalized storage tank for electrochemical cell system

    NASA Technical Reports Server (NTRS)

    Piecuch, Benjamin Michael (Inventor); Dalton, Luke Thomas (Inventor)

    2010-01-01

    A compartmentalized storage tank is disclosed. The compartmentalized storage tank includes a housing, a first fluid storage section disposed within the housing, a second fluid storage section disposed within the housing, the first and second fluid storage sections being separated by a movable divider, and a constant force spring. The constant force spring is disposed between the housing and the movable divider to exert a constant force on the movable divider to cause a pressure P1 in the first fluid storage section to be greater than a pressure P2 in the second fluid storage section, thereby defining a pressure differential.

  15. 49 CFR 173.311 - Metal hydride storage systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Metal hydride storage systems. 173.311 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.311 Metal hydride storage systems. The following packing instruction is applicable to transportable UN Metal hydride storage...

  16. High performance mini-gas chromatography-flame ionization detector system based on micro gas chromatography column

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaofeng; Sun, Jianhai; Ning, Zhanwu; Zhang, Yanni; Liu, Jinhua

    2016-04-01

    Monitoring Volatile organic compounds (VOCs) was a very important measure for preventing environmental pollution, therefore, a mini gas chromatography (GC) flame ionization detector (FID) system integrated with a mini H2 generator and a micro GC column was developed for environmental VOC monitoring. In addition, the mini H2 generator was able to make the system explode from far away due to the abandoned use of a high pressure H2 source. The experimental result indicates that the fabricated mini GC FID system demonstrated high repeatability and very good linear response, and was able to rapidly monitor complicated environmental VOC samples.

  17. High performance mini-gas chromatography-flame ionization detector system based on micro gas chromatography column.

    PubMed

    Zhu, Xiaofeng; Sun, Jianhai; Ning, Zhanwu; Zhang, Yanni; Liu, Jinhua

    2016-04-01

    Monitoring Volatile organic compounds (VOCs) was a very important measure for preventing environmental pollution, therefore, a mini gas chromatography (GC) flame ionization detector (FID) system integrated with a mini H2 generator and a micro GC column was developed for environmental VOC monitoring. In addition, the mini H2 generator was able to make the system explode from far away due to the abandoned use of a high pressure H2 source. The experimental result indicates that the fabricated mini GC FID system demonstrated high repeatability and very good linear response, and was able to rapidly monitor complicated environmental VOC samples. PMID:27131686

  18. High Performance Buildings Database

    DOE Data Explorer

    The High Performance Buildings Database is a shared resource for the building industry, a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses. The database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site.

  19. High Performance Window Retrofit

    SciTech Connect

    Shrestha, Som S; Hun, Diana E; Desjarlais, Andre Omer

    2013-12-01

    The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2 F h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

  20. Simulation of Flywheel Energy Storage System Controls

    NASA Technical Reports Server (NTRS)

    Truong, Long V.; Wolff, Frederick J.; Dravid, Narayan

    2001-01-01

    This paper presents the progress made in the controller design and operation of a flywheel energy storage system. The switching logic for the converter bridge circuit has been redefined to reduce line current harmonics, even at the highest operating speed of the permanent magnet motor-generator. An electromechanical machine model is utilized to simulate charge and discharge operation of the inertial energy in the flywheel. Controlling the magnitude of phase currents regulates the rate of charge and discharge. The resulting improvements are demonstrated by simulation.

  1. A high-performance ultrasonic system for the simultaneous transmission of data and power through solid metal barriers.

    PubMed

    Lawry, Tristan J; Wilt, Kyle R; Ashdown, Jon D; Scarton, Henry A; Saulnier, Gary J

    2013-01-01

    This paper presents a system capable of simultaneous high-power and high-data-rate transmission through solid metal barriers using ultrasound. By coaxially aligning a pair of piezoelectric transducers on opposite sides of a metal wall and acoustically coupling them to the barrier, an acoustic- electric transmission channel is formed which prevents the need for physical penetration. Independent data and power channels are utilized, but they are only separated by 25.4 mm to reduce the system's form factor. Commercial off-the-shelf components and evaluation boards are used to create realtime prototype hardware and the full system is capable of transmitting data at 17.37 Mbps and delivering 50 W of power through a 63.5-mm thick steel wall. A synchronous multi-carrier communication scheme (OFDM) is used to achieve a very high spectral efficiency and to ensure that there is only minor interference between the power and data channels. Also presented is a discussion of potential enhancements that could be made to greatly improve the power and data-rate capabilities of the system. This system could have a tremendous impact on improving safety and preserving structural integrity in many military applications (submarines, surface ships, unmanned undersea vehicles, armored vehicles, planes, etc.) as well as in a wide range of commercial, industrial, and nuclear systems. PMID:23287924

  2. High Performance Measurement System of Large Area Solid-State Track Detector Array for Ultra Heavy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Doke, T.; Hareyama, M.; Hasebe, N.; Sakurai, K.; Ota, S.; Sato, M.; Yasuda, N.; Nakamura, S.; Kamei, T.; Tawara, H.; Ogura, K.

    The handling of solid-state track detector (SSTD) has been historically required for a long period and many human powers to scan and analyze etch-pits produced on the detector. Because a large area greater than a few m2 detector is required to observe ultraheavy nuclei in galactic cosmic rays, a high speed scanning system is practically important to realize our observation. We have developed the fast automated digital imaging optical microscope (HSP-1000) to scan and analyze the etch-pit produced on the detector, whose image acquisition speed is 50-100 times faster than conventional microscope system. Furthermore, analyzing massive cosmic ray track data produced in extremely large exposed area requires a completely automated multi-sample scanning system. The developed automated system consists of a modified HSP-1000 microscope for image acquisition, a robot arm to replace the sample trays, a magazine station for storing sample trays, and a scanning and analyzing computer to control the whole system. Moreover, since the improvement of thickness measurement accuracy in local area of SSTD will allow us to achieve higher charge and mass resolutions, the new system to measure the SSTD thickness located adjacent to etch-pit in SSTD with an excellent resolution of +/- 0.2 um has been developed.

  3. Data storage and retrieval system abstract

    NASA Technical Reports Server (NTRS)

    Matheson, Barbara

    1992-01-01

    The STX mass storage system design is intended for environments requiring high speed access to large volumes of data (terabyte and greater). Prior to commitment to a product design plan, STX conducted an exhaustive study of the commercially available off-the-shelf hardware and software. STX also conducted research into the area of emerging technologies in networks and storage media so that the design could easily accommodate new interfaces and peripherals as they came on the market. All the selected system elements were brought together in a demo suite sponsored jointly by STX and ALLIANT where the system elements were evaluated based on actual operation using a client-server mirror image configuration. Testing was conducted to assess the various component overheads and results were compared against vendor data claims. The resultant system, while adequate to meet our capacity requirements, fell short of transfer speed expectations. A product team lead by STX was assembled and chartered with solving the bottleneck issues. Optimization efforts yielded a 60 percent improvement in throughput performance. The ALLIANT computer platform provided the I/O flexibility needed to accommodate a multitude of peripheral interfaces including the following: up to twelve 25MB/s VME I/O channels; up to five HiPPI I/O full duplex channels; IPI-s, SCSI, SMD, and RAID disk array support; standard networking software support for TCP/IP, NFS, and FTP; open architecture based on standard RISC processors; and V.4/POSIX-based operating system (Concentrix). All components including the software are modular in design and can be reconfigured as needs and system uses change. Users can begin with a small system and add modules as needed in the field. Most add-ons can be accomplished seamlessly without revision, recompilation or re-linking of software.

  4. High-performance computer aided detection system for polyp detection in CT colonography with fluid and fecal tagging

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Wang, Shijun; Kabadi, Suraj; Summers, Ronald M.

    2009-02-01

    CT colonography (CTC) is a feasible and minimally invasive method for the detection of colorectal polyps and cancer screening. Computer-aided detection (CAD) of polyps has improved consistency and sensitivity of virtual colonoscopy interpretation and reduced interpretation burden. A CAD system typically consists of four stages: (1) image preprocessing including colon segmentation; (2) initial detection generation; (3) feature selection; and (4) detection classification. In our experience, three existing problems limit the performance of our current CAD system. First, highdensity orally administered contrast agents in fecal-tagging CTC have scatter effects on neighboring tissues. The scattering manifests itself as an artificial elevation in the observed CT attenuation values of the neighboring tissues. This pseudo-enhancement phenomenon presents a problem for the application of computer-aided polyp detection, especially when polyps are submerged in the contrast agents. Second, general kernel approach for surface curvature computation in the second stage of our CAD system could yield erroneous results for thin structures such as small (6-9 mm) polyps and for touching structures such as polyps that lie on haustral folds. Those erroneous curvatures will reduce the sensitivity of polyp detection. The third problem is that more than 150 features are selected from each polyp candidate in the third stage of our CAD system. These high dimensional features make it difficult to learn a good decision boundary for detection classification and reduce the accuracy of predictions. Therefore, an improved CAD system for polyp detection in CTC data is proposed by introducing three new techniques. First, a scale-based scatter correction algorithm is applied to reduce pseudo-enhancement effects in the image pre-processing stage. Second, a cubic spline interpolation method is utilized to accurately estimate curvatures for initial detection generation. Third, a new dimensionality

  5. SMART reliability mechanism for very large storage systems

    NASA Astrophysics Data System (ADS)

    Luo, Dongjian; Zhong, Haifeng; Pei, Canhao; Wu, Wei; Zhang, Chengfeng

    2008-12-01

    In this paper, we investigate the reliability in a petabyte scale storage system built from thousands of Object-Based Storage Devices and study the mechanisms to protect data loss when disk failure happens. We delve in two underlying redundancy mechanisms: 2-way mirroring, 3-way mirroring. To accelerate data reconstruction, Fast Mirroring Copy is employed where the reconstructed objects are stored on different OBSDs throughout the system. A SMART reliability for enhancing the reliability in very large-scale storage system is proposed. Results show that our SMART Reliability Mechanism can utilize the spare resources (including processing, network, and storage resources) to improve the reliability in very large storage systems.

  6. Low cost, high performance white-light fiber-optic hydrophone system with a trackable working point.

    PubMed

    Ma, Jinyu; Zhao, Meirong; Huang, Xinjing; Bae, Hyungdae; Chen, Yongyao; Yu, Miao

    2016-08-22

    A working-point trackable fiber-optic hydrophone with high acoustic resolution is proposed and experimentally demonstrated. The sensor is based on a polydimethylsiloxane (PDMS) cavity molded at the end of a single-mode fiber, acting as a low-finesse Fabry-Perot (FP) interferometer. The working point tracking is achieved by using a low cost white-light interferometric system with a simple tunable FP filter. By real-time adjusting the optical path difference of the FP filter, the sensor working point can be kept at its highest sensitivity point. This helps address the sensor working point drift due to hydrostatic pressure, water absorption, and/or temperature changes. It is demonstrated that the sensor system has a high resolution with a minimum detectable acoustic pressure of 148 Pa and superior stability compared to a system using a tunable laser. PMID:27557180

  7. A new high-performance heterologous fungal expression system based on regulatory elements from the Aspergillus terreus terrein gene cluster.

    PubMed

    Gressler, Markus; Hortschansky, Peter; Geib, Elena; Brock, Matthias

    2015-01-01

    Recently, the Aspergillus terreus terrein gene cluster was identified and selected for development of a new heterologous expression system. The cluster encodes the specific transcription factor TerR that is indispensable for terrein cluster induction. To identify TerR binding sites, different recombinant versions of the TerR DNA-binding domain were analyzed for specific motif recognition. The high affinity consensus motif TCGGHHWYHCGGH was identified from genes required for terrein production and binding site mutations confirmed their essential contribution to gene expression in A. terreus. A combination of TerR with its terA target promoter was tested as recombinant expression system in the heterologous host Aspergillus niger. TerR mediated target promoter activation was directly dependent on its transcription level. Therefore, terR was expressed under control of the regulatable amylase promoter PamyB and the resulting activation of the terA target promoter was compared with activation levels obtained from direct expression of reporters from the strong gpdA control promoter. Here, the coupled system outcompeted the direct expression system. When the coupled system was used for heterologous polyketide synthase expression high metabolite levels were produced. Additionally, expression of the Aspergillus nidulans polyketide synthase gene orsA revealed lecanoric acid rather than orsellinic acid as major polyketide synthase product. Domain swapping experiments assigned this depside formation from orsellinic acid to the OrsA thioesterase domain. These experiments confirm the suitability of the expression system especially for high-level metabolite production in heterologous hosts. PMID:25852654

  8. A new high-performance heterologous fungal expression system based on regulatory elements from the Aspergillus terreus terrein gene cluster

    PubMed Central

    Gressler, Markus; Hortschansky, Peter; Geib, Elena; Brock, Matthias

    2015-01-01

    Recently, the Aspergillus terreus terrein gene cluster was identified and selected for development of a new heterologous expression system. The cluster encodes the specific transcription factor TerR that is indispensable for terrein cluster induction. To identify TerR binding sites, different recombinant versions of the TerR DNA-binding domain were analyzed for specific motif recognition. The high affinity consensus motif TCGGHHWYHCGGH was identified from genes required for terrein production and binding site mutations confirmed their essential contribution to gene expression in A. terreus. A combination of TerR with its terA target promoter was tested as recombinant expression system in the heterologous host Aspergillus niger. TerR mediated target promoter activation was directly dependent on its transcription level. Therefore, terR was expressed under control of the regulatable amylase promoter PamyB and the resulting activation of the terA target promoter was compared with activation levels obtained from direct expression of reporters from the strong gpdA control promoter. Here, the coupled system outcompeted the direct expression system. When the coupled system was used for heterologous polyketide synthase expression high metabolite levels were produced. Additionally, expression of the Aspergillus nidulans polyketide synthase gene orsA revealed lecanoric acid rather than orsellinic acid as major polyketide synthase product. Domain swapping experiments assigned this depside formation from orsellinic acid to the OrsA thioesterase domain. These experiments confirm the suitability of the expression system especially for high-level metabolite production in heterologous hosts. PMID:25852654

  9. Design of a high-performance slide and drive system for a small precision machining research lathe

    SciTech Connect

    Donaldson, R.R.; Maddux, A.S.

    1984-03-01

    The development of high-accuracy machine tools, principally through interest in diamond turning, plus the availability of new cutting tool materials, offers the possibility of improving workpiece accuracy for a much larger variety of materials than that addressed by diamond tools. This paper describes the design and measured performance of a slideway and servo-drive system for a small lathe intended as a tool for research on the above subject, with emphasis on the servo-control design. The slide system provides high accuracy and stiffness over a travel of 100 mm, utilizing oil hydrostatic bearings and a capstan roller drive with integral dc motor and tachometer.

  10. Process innovation in high-performance systems: From polymeric composites R&D to design and build of airplane showers

    NASA Astrophysics Data System (ADS)

    Wu, Yi-Jui

    In the aerospace industry reducing aircraft weight is key because it increases flight performance and drives down operating costs. With fierce competition in the commercial aircraft industry, companies that focused primarily on exterior aircraft performance design issues are turning more attention to the design of aircraft interior. Simultaneously, there has been an increase in the number of new amenities offered to passengers especially in first class travel and executive jets. These new amenities present novel and challenging design parameters that include integration into existing aircraft systems without sacrificing flight performance. The objective of this study was to design a re-circulating shower system for an aircraft that weighs significantly less than pre-existing shower designs. This was accomplished by integrating processes from polymeric composite materials, water filtration, and project management. Carbon/epoxy laminates exposed to hygrothermal cycling conditions were evaluated and compared to model calculations. Novel materials and a variety of fabrication processes were developed to create new types of paper for honeycomb applications. Experiments were then performed on the properties and honeycomb processability of these new papers. Standard water quality tests were performed on samples taken from the re-circulating system to see if current regulatory standards were being met. These studies were executed and integrated with tools from project management to design a better shower system for commercial aircraft applications.

  11. Thermoeconomic optimal sizing for ice storage system in partial storage control strategies

    SciTech Connect

    Lee, K.H.; Joo, Y.J.; Choi, B.Y.; Kwon, S.C.

    1999-07-01

    This paper describes optimal sizing of ice storage and chiller system through parametric simulation for a commercial office building with peak cooling load of 600 tons. As an optimality criterion, the minimization of the annualized capital cost and fuel exergy costs on the basis of thermoeconomic analysis was chosen. This paper considers encapsulated ice storage system in chiller-downstream arrangement with chiller-priority control and storage-priority control strategies. Minimal required chiller sizes of the system for each control strategy are determined with storage fraction from 40% to 60%. The design condition, which has minimum cost, lies on the curve of the set of required chiller size and storage fraction. The optimal sizing is defined in this paper as the choice of size of chiller and storage tank, which leads to minimization of the annualized cost per exergy unit of product for the system.

  12. Efficient Journaling for the Spider Storage System

    SciTech Connect

    Oral, H Sarp; Wang, Feiyi; Shipman, Galen M; Dillow, David A; Miller, Ross G; Drokin, Oleg

    2003-01-01

    Journaling is a widely used technique to increase file system robustness against meta data and/or data corruptions. While the overhead of journaling can be negligible for small-scale file systems, we found that two aspects of local back-end file system journaling significantly lower the overall performance of a large-scale parallel file system such as Lustre: extra head seeks and serialization of incoming client requests. Journal transactions reside on a separate area of the disk that the file data, and each commit of the journal requires a head seek. Incoming client requests become serialized and take a latency hit by waiting for a commit to occur before the reply is sent. In this paper we present two different approaches to increase the local back-end file system journaling efficiency, thus increasing the overall aggregate parallel file system efficiency. First, we present a hardware-based solution where a solid-state device is used as an external journaling device to minimize the disk head seek. Second, we introduce a software-based optimization to allow asynchronously commit multiple journal transactions on the local back-end file system to minimize the penalty of serialization. Both our solutions are experimentally tested on Oak Ridge National Laboratory's large-scale Spider storage system and our tests show that both methods nearly double the overall parallel write performance.

  13. Development of an ultra-high performance multi-turn TOF-SIMS/SNMS system "MULTUM-SIMS/SNMS".

    PubMed

    Ebata, Shingo; Ishihara, Morio; Kumondai, Kousuke; Mibuka, Ryo; Uchino, Kiichiro; Yurimoto, Hisayoshi

    2013-02-01

    A new system incorporating a multi-turn time-of-flight secondary ion/sputtered neutral mass spectrometer (TOF-SIMS/SNMS) with laser post-ionization was designed and constructed. This system consists of a gallium focused ion beam, femtosecond (fs) laser for post-ionization, and multi-turn TOF mass spectrometer. When laser post-ionization was used, the secondary ion signal strengths for several metals increased by up to 650 times, and were greater than the values obtained in conventional TOF-SIMS experiments. Use of the multi-turn mass spectrometer resulted in an increase in mass resolving power with increase in the total TOF. The mass resolving power reached to 23,000 after 800 multi-turn cycles, corresponding to a flight path length of 1040 m. These results indicated that this system is very effective for the analysis of valuable materials such as space samples with high sensitivity, high mass resolving power, and high lateral resolution. PMID:23292978

  14. Comparison of ultrasonic and thermospray systems for high performance sample introduction to inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Conver, Timothy S.; Koropchak, John A.

    1995-06-01

    This paper describes detailed work done in our lab to compare analytical figures of merit for pneumatic, ultrasonic and thermospray sample introduction (SI) systems with three different inductively coupled plasma-atomic emission spectrometry (ICP-AES) instruments. One instrument from Leeman Labs, Inc. has an air path echelle spectrometer and a 27 MHz ICP. For low dissolved solid samples with this instrument, we observed that the ultrasonic nebulizer (USN) and fused silica aperture thermospray (FSApT) both offered similar LOD improvements as compared to pneumatic nebulization (PN), 14 and 16 times, respectively. Average sensitivities compared to PN were better for the USN, by 58 times, compared to 39 times for the FSApT. For solutions containing high dissolved solids we observed that FSApT optimized at the same conditions as for low dissolved solids, whereas USN required changes in power and gas flows to maintain a stable discharge. These changes degraded the LODs for USN substantially as compared to those utilized for low dissolved solid solutions, limiting improvement compared to PN to an average factor of 4. In general, sensitivities for USN were degraded at these new conditions. When solutions with 3000 μg/g Ca were analyzed, LOD improvements were smaller for FSApT and USN, but FSApT showed an improvement over USN of 6.5 times. Sensitivities compared to solutions without high dissolved solids were degraded by 19% on average for FSApT, while those for USN were degraded by 26%. The SI systems were also tested with a Varian Instruments Liberty 220 having a vacuum path Czerny-Turner monochromator and a 40 MHz generator. The sensitivities with low dissolved solids solutions compared to PN were 20 times better for the USN and 39 times better for FSApT, and LODs for every element were better for FSApT. Better correlation between relative sensitivities and anticipated relative analyte mass fluxes for FSApT and USN was observed with the Varian instrument. LOD

  15. MO-G-17A-01: Innovative High-Performance PET Imaging System for Preclinical Imaging and Translational Researches

    SciTech Connect

    Sun, X; Lou, K; Deng, Z; Shao, Y

    2014-06-15

    Purpose: To develop a practical and compact preclinical PET with innovative technologies for substantially improved imaging performance required for the advanced imaging applications. Methods: Several key components of detector, readout electronics and data acquisition have been developed and evaluated for achieving leapfrogged imaging performance over a prototype animal PET we had developed. The new detector module consists of an 8×8 array of 1.5×1.5×30 mm{sup 3} LYSO scintillators with each end coupled to a latest 4×4 array of 3×3 mm{sup 2} Silicon Photomultipliers (with ∼0.2 mm insensitive gap between pixels) through a 2.0 mm thick transparent light spreader. Scintillator surface and reflector/coupling were designed and fabricated to reserve air-gap to achieve higher depth-of-interaction (DOI) resolution and other detector performance. Front-end readout electronics with upgraded 16-ch ASIC was newly developed and tested, so as the compact and high density FPGA based data acquisition and transfer system targeting 10M/s coincidence counting rate with low power consumption. The new detector module performance of energy, timing and DOI resolutions with the data acquisition system were evaluated. Initial Na-22 point source image was acquired with 2 rotating detectors to assess the system imaging capability. Results: No insensitive gaps at the detector edge and thus it is capable for tiling to a large-scale detector panel. All 64 crystals inside the detector were clearly separated from a flood-source image. Measured energy, timing, and DOI resolutions are around 17%, 2.7 ns and 1.96 mm (mean value). Point source image is acquired successfully without detector/electronics calibration and data correction. Conclusion: Newly developed advanced detector and readout electronics will be enable achieving targeted scalable and compact PET system in stationary configuration with >15% sensitivity, ∼1.3 mm uniform imaging resolution, and fast acquisition counting rate

  16. Compensation of Wave-Induced Motion and Force Phenomena for Ship-Based High Performance Robotic and Human Amplifying Systems

    SciTech Connect

    Love, LJL

    2003-09-24

    The decrease in manpower and increase in material handling needs on many Naval vessels provides the motivation to explore the modeling and control of Naval robotic and robotic assistive devices. This report addresses the design, modeling, control and analysis of position and force controlled robotic systems operating on the deck of a moving ship. First we provide background information that quantifies the motion of the ship, both in terms of frequency and amplitude. We then formulate the motion of the ship in terms of homogeneous transforms. This transformation provides a link between the motion of the ship and the base of a manipulator. We model the kinematics of a manipulator as a serial extension of the ship motion. We then show how to use these transforms to formulate the kinetic and potential energy of a general, multi-degree of freedom manipulator moving on a ship. As a demonstration, we consider two examples: a one degree-of-freedom system experiencing three sea states operating in a plane to verify the methodology and a 3 degree of freedom system experiencing all six degrees of ship motion to illustrate the ease of computation and complexity of the solution. The first series of simulations explore the impact wave motion has on tracking performance of a position controlled robot. We provide a preliminary comparison between conventional linear control and Repetitive Learning Control (RLC) and show how fixed time delay RLC breaks down due to the varying nature wave disturbance frequency. Next, we explore the impact wave motion disturbances have on Human Amplification Technology (HAT). We begin with a description of the traditional HAT control methodology. Simulations show that the motion of the base of the robot, due to ship motion, generates disturbances forces reflected to the operator that significantly degrade the positioning accuracy and resolution at higher sea states. As with position-controlled manipulators, augmenting the control with a Repetitive

  17. High performance dash-on-warning air mobile missile system. [first strike avoidance for retaliatory aircraft-borne ICBM counterattack

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Levin, A. D.

    1978-01-01

    Because fixed missile bases have become increasingly vulnerable to strategic nuclear attack, an air-mobile missile system is proposed, whereby ICBMs can be launched from the hold of large subsonic aircraft following a missile-assisted supersonic dash of the aircraft to a safe distance from their base (about 50 n mi). Three major categories of vehicle design are presented: staged, which employs vertical take-off and a single solid rocket booster similar to that used on the Space Shuttle; unstaged, which employs vertical take-off and four internally-carried reusable liquid rocket engines; and alternative concepts, some using horizontal take-off with duct-burning afterburners. Attention is given to the economics of maintaining 200 ICBMs airborne during an alert (about $600 million for each fleet alert, exclusive of acquisition costs). The chief advantages of the system lie in its reduced vulnerability to suprise attack, because it can be launched on warning, and in the possibility for recall of the aircraft if the warning proves to be a false alarm.

  18. Solar energy collector/storage system

    SciTech Connect

    Bettis, J.R.; Clearman, F.R.

    1983-05-24

    A solar energy collector/storage system which includes an insulated container having working fluid inlets and outlets and an opening, a light-transmitting member positioned over the opening, and a heat-absorbing member which is centrally situated, is supported in the container, and is made of a mixture of gypsum , lampblack, and water. A light-reflecting liner made of corrugated metal foil preferably is attached to the internal surface of the container. The opening of the container is positioned in optical alignment with a source of solar energy. A light-reflecting cover optionally can be hingedly attached to the container, and can be positioned such as to reflect solar energy rays into the container. The system is adaptable for use with a working gas (e.g., air) and/or a working liquid (e.g., water) in separated flows which absorb heat from the heat-absorbing member, and which are useable per se or in an associated storage and/or circulatory system that is not part of this invention. The heatabsorbing mixture can also contain glass fibers. The heatabsorbing member is of such great load-bearing strength that it can also be used simultaneously as a structural member, e.g., a wall or ceiling of a room; and, thereby, the system can be used to heat a room, if a window of the room is the light-transmitting member and is facing the sun, and if the heat-absorbing member is a wall and/or the ceiling of the room and receives solar energy through the window.

  19. High performance nuclear thermal propulsion system for near term exploration missions to 100 A.U. and beyond

    NASA Astrophysics Data System (ADS)

    Powell, James R.; Paniagua, John; Maise, George; Ludewig, Hans; Todosow, Michael

    1999-05-01

    A new compact ultra light nuclear reactor engine design termed MITEE (MIniature Reac Tor EnginE) is described. MITEE heats hydrogen propellant to 3000 K, achieving a specific impulse of 1000 seconds and a thrust-to-weight of 10. Total engine mass is 200 kg, including reactor, pump, auxiliaries and a 30% contingency. MITEE enables many types of new and unique missions to the outer solar system not possible with chemical engines. Examples include missions to 100 A.U. in less than 10 years, flybys of Pluto in 5 years, sample return from Pluto and the moons of the outer planets, unlimited ramjet flight in planetary atmospheres, etc. Much of the necessary technology for MITEE already exists as a result of previous nuclear rocket development programs. With some additional development, initial MITEE missions could begin in only 6 years.

  20. Electric utility applications of hydrogen energy storage systems

    SciTech Connect

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  1. Sustaining High Performance in Bad Times.

    ERIC Educational Resources Information Center

    Bassi, Laurie J.; Van Buren, Mark A.

    1997-01-01

    Summarizes the results of the American Society for Training and Development Human Resource and Performance Management Survey of 1996 that examined the performance outcomes of downsizing and high performance work systems, explored the relationship between high performance work systems and downsizing, and asked whether some downsizing practices were…

  2. Thermodynamic Analysis of a Novel Liquid Air Energy Storage System

    NASA Astrophysics Data System (ADS)

    Xue, X. D.; Wang, S. X.; Zhang, X. L.; Cui, C.; Chen, L. B.; Zhou, Y.; Wang, J. J.

    In this study, a novel liquid air energy storage system for electrical power load shifting application is introduced. It is a combination of an air liquefaction cycle and a gas turbine power generation cycle without fuel combustion. Thermodynamic analysis is conducted to investigate the performance of this system. The results show that liquid air energy storage systems could be very effective systems for electrical power storage with high efficiency, high energy density and extensive application prospects.

  3. Simultaneous determination of five systemic azoles in plasma by high-performance liquid chromatography with ultraviolet detection.

    PubMed

    Gordien, Jean-Baptiste; Pigneux, Arnaud; Vigouroux, Stephane; Tabrizi, Reza; Accoceberry, Isabelle; Bernadou, Jean-Marc; Rouault, Audrey; Saux, Marie-Claude; Breilh, Dominique

    2009-12-01

    A simple, specific and automatable HPLC assay was developed for a simultaneous determination of systemic azoles (fluconazole, posaconazole, voriconazole, itraconazole and its metabolite hydroxyl-itraconazole, and ketoconazole) in plasma. The major advantage of this assay was sample preparation by a fully automatable solid phase extraction with Varian Plexa cartridges. C6-phenyl column was used for chromatographic separation, and UV detection was set at a wavelength of 260 nm. Linezolid was used as an internal standard. The assay was specific and linear over the concentration range of 0.05 to 40 microg/ml excepted for fluconazole which was between 0.05 and 100 microg/ml, and itraconazole between 0.1 and 40 microg/ml. Validation data for accuracy and precision for intra- and inter-day were good and satisfied FDA's guidance: CV between 0.24% and 11.66% and accuracy between 93.8% and 108.7% for all molecules. This assay was applied to therapeutic drug monitoring on patients hospitalized in intensive care and onco-hematologic units. PMID:19608374

  4. Assignment of ozone-sensitive tryptophan residue in tryptophanase by a dual-monitoring high-performance liquid chromatography system

    SciTech Connect

    Ida, N.; Tokushige, M.

    1985-02-01

    Tryptophanase purified from Escherichia coli B/1t7-A is inactivated by mild ozonization following pseudo-first-order kinetics. Previous data from the authors suggest that one out of two tryptophan residues (Trp's) in the enzyme subunit is preferentially oxidized concomitant with the ozone inactivation and has a direct interaction with the coenzyme, pyridoxal phosphate. To determine which Trp is more susceptible to ozonization and interacts with PLP, the native and ozonized enzyme proteins were cleaved by trypsin and the two Trp-containing peptides were analyzed by reverse-phase HPLC equipped with a dual-monitoring system consisting of an uv and a fluorescence monitor connected in tandem for selective detection of Trp-containing peptides. This device facilitated rapid detection and quantitation of the Trp-containing peptides which decreased upon ozonization. The results showed that Trp preferentially oxidized upon ozonization and involved in the interaction with PLP was the one in peptide T-15 rather than that in T-23, which Kagamiyama et al. originally designated.

  5. Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems

    SciTech Connect

    2011-12-05

    HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNL’s metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800°C). A high-temperature tank in PNNL’s storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNL’s thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

  6. Fraction-storage unit for drug-identification system

    NASA Technical Reports Server (NTRS)

    Campen, C. F.; Stuart, J. L.

    1976-01-01

    Device, connecting outputs of all gas chromatographs to single, relatively inexpensive IR spectrometer, reduces costs of system. Storage unit provides buffer storage of samples until infrared spectrometer is ready to accept them. Storage unit can be used to separate overlapping peaks.

  7. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Volume 1, Final report

    SciTech Connect

    1996-02-01

    A major objective of the coal-fired high performance power systems (HIPPS) program is to achieve significant increases in the thermodynamic efficiency of coal use for electric power generation. Through increased efficiency, all airborne emissions can be decreased, including emissions of carbon dioxide. High Performance power systems as defined for this program are coal-fired, high efficiency systems where the combustion products from coal do not contact the gas turbine. Typically, this type of a system will involve some indirect heating of gas turbine inlet air and then topping combustion with a cleaner fuel. The topping combustion fuel can be natural gas or another relatively clean fuel. Fuel gas derived from coal is an acceptable fuel for the topping combustion. The ultimate goal for HIPPS is to, have a system that has 95 percent of its heat input from coal. Interim systems that have at least 65 percent heat input from coal are acceptable, but these systems are required to have a clear development path to a system that is 95 percent coal-fired. A three phase program has been planned for the development of HIPPS. Phase 1, reported herein, includes the development of a conceptual design for a commercial plant. Technical and economic feasibility have been analysed for this plant. Preliminary R&D on some aspects of the system were also done in Phase 1, and a Research, Development and Test plan was developed for Phase 2. Work in Phase 2 include s the testing and analysis that is required to develop the technology base for a prototype plant. This work includes pilot plant testing at a scale of around 50 MMBtu/hr heat input. The culmination of the Phase 2 effort will be a site-specific design and test plan for a prototype plant. Phase 3 is the construction and testing of this plant.

  8. A Report on Simulation-Driven Reliability and Failure Analysis of Large-Scale Storage Systems

    SciTech Connect

    Wan, Lipeng; Wang, Feiyi; Oral, H. Sarp; Vazhkudai, Sudharshan S.; Cao, Qing

    2014-11-01

    High-performance computing (HPC) storage systems provide data availability and reliability using various hardware and software fault tolerance techniques. Usually, reliability and availability are calculated at the subsystem or component level using limited metrics such as, mean time to failure (MTTF) or mean time to data loss (MTTDL). This often means settling on simple and disconnected failure models (such as exponential failure rate) to achieve tractable and close-formed solutions. However, such models have been shown to be insufficient in assessing end-to-end storage system reliability and availability. We propose a generic simulation framework aimed at analyzing the reliability and availability of storage systems at scale, and investigating what-if scenarios. The framework is designed for an end-to-end storage system, accommodating the various components and subsystems, their interconnections, failure patterns and propagation, and performs dependency analysis to capture a wide-range of failure cases. We evaluate the framework against a large-scale storage system that is in production and analyze its failure projections toward and beyond the end of lifecycle. We also examine the potential operational impact by studying how different types of components affect the overall system reliability and availability, and present the preliminary results

  9. Materials for tomorrow`s infrastructure: A ten-year plan for deploying high-performance construction materials and systems. Technical report

    SciTech Connect

    Belle, R.A.; Almand, K.H.

    1994-12-27

    This report presents a detailed program to transform our nation`s infrastructure. The Intended audience Is the Administration and Congress, other national policy makers, and government and industry leaders. Descriptions of major high-performance research and commercialization projects are provided by working groups representing ten different materials: aluminum, coatings, fiber-reinforced polymer composites, concrete, hot mix asphalt. masonry, roofing materials, smart material devices and monitoring systems, steel, and wood. The report builds on the 1991 National Civil Engineering Research Needs Forum organized by the Civil Engineering Research Foundation (CERF) and the 1993 initial program plan as presented in High-Performonce Construction Materials ond Systems: An Essentiol Program for America and its infrastructure. The high-performance CONstruction MATerials and systems program (CONMAT) will create significant improvements in the nation`s infrastructure and U.S. competitiveness in the construction market. The report concludes by reviewing the strong support that the Administration has shown the CONMAT research effort to date and recommends continued support from government, industry, and academia to support this critical initiative.

  10. NASA Redox Storage System Development Project

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.

    1984-01-01

    The Redox Storage System Technology Project was jointly supported by the U.S. Department of Energy and NASA. The objectives of the project were to develop the Redox flow battery concept and to probe its technical and economic viability. The iron and chromium redox couples were selected as the reactants. Membranes and electrodes were developed for the original mode of operating at 25 C with the reactants separated by an ion-exchange membrane. Analytical capabilities and system-level operating concepts were developed and verified in a 1-kW, 13-kWh preprototype system. A subsequent change was made in operating mode, going to 65 C and using mixed reactants. New membranes and a new electrode catalyst were developed, resulting in single cell operation as high as 80 mA/sq cm with energy efficiencies greater than 80 percent. Studies indicate a likely system cost of about $75/kWh. Standard Oil of Ohio (Sohio) has undertaken further development of the Redox system. An exclusive patent license was obtained from NASA by Sohio. Transfer of Redox technology to Sohio is supported by the NASA Technology Utilization Office.

  11. Electrochemical energy storage systems for solar thermal applications

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Frank, H.

    1980-01-01

    Existing and advanced electrochemical storage and inversion/conversion systems that may be used with terrestrial solar-thermal power systems are evaluated. The status, cost and performance of existing storage systems are assessed, and the cost, performance, and availability of advanced systems are projected. A prime consideration is the cost of delivered energy from plants utilizing electrochemical storage. Results indicate that the five most attractive electrochemical storage systems are the: iron-chromium redox (NASA LeRC), zinc-bromine (Exxon), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (EDA).

  12. Electrical Energy Storage for Renewable Energy Systems

    SciTech Connect

    Helms, C. R.; Cho, K. J.; Ferraris, John; Balkus, Ken; Chabal, Yves; Gnade, Bruce; Rotea, Mario; Vasselli, John

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. Significant accomplishments are detailed in each section. Those particularly noteworthy include: • Transition metal silicate cathodes with 2x higher storage capacity than commercial cobalt oxide cathodes were demonstrated. • MnO₂ nanowires, which are a promising replacement for RuO₂, were synthesized • PAN-based carbon nanofibers were prepared and characterized with an energy density 30-times higher than current ultracapacitors on the market and comparable to lead-acid batteries • An optimization-based control strategy for real-time power management of battery storage in wind farms was developed and demonstrated. • PVDF films were developed with breakdown strengths of > 600MVm⁻¹, a maximum energy density of approximately 15 Jcm⁻³, and an average dielectric constant of 9.8 (±1.2). Capacitors made from these films can support a 10-year lifetime operating at an electric field of 200 MV m⁻¹. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  13. Understanding I/O workload characteristics of a Peta-scale storage system

    SciTech Connect

    Kim, Youngjae; Gunasekaran, Raghul

    2015-01-01

    Understanding workload characteristics is critical for optimizing and improving the performance of current systems and software, and architecting new storage systems based on observed workload patterns. In this paper, we characterize the I/O workloads of scientific applications of one of the world s fastest high performance computing (HPC) storage cluster, Spider, at the Oak Ridge Leadership Computing Facility (OLCF). OLCF flagship petascale simulation platform, Titan, and other large HPC clusters, in total over 250 thousands compute cores, depend on Spider for their I/O needs. We characterize the system utilization, the demands of reads and writes, idle time, storage space utilization, and the distribution of read requests to write requests for the Peta-scale Storage Systems. From this study, we develop synthesized workloads, and we show that the read and write I/O bandwidth usage as well as the inter-arrival time of requests can be modeled as a Pareto distribution. We also study the I/O load imbalance problems using I/O performance data collected from the Spider storage system.

  14. Energy Storage Systems Program Report for FY98

    SciTech Connect

    Butler, P.C.

    1999-04-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the U.S. Department of Energy's Office of Power Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1998.

  15. Energy storage systems program report for FY1996

    SciTech Connect

    Butler, P.C.

    1997-05-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective energy storage systems as a resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of energy storage systems for stationary applications. This report details the technical achievements realized during fiscal year 1996.

  16. Energy Storage Systems Program Report for FY99

    SciTech Connect

    BOYES,JOHN D.

    2000-06-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy's Office of Power Technologies. The goal of this program is to develop cost-effective electric energy storage systems for many high-value stationary applications in collaboration with academia and industry. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1999.

  17. Cost analysis of energy storage systems for electric utility applications

    SciTech Connect

    Akhil, A.; Swaminathan, S.; Sen, R.K.

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  18. System Software and Tools for High Performance Computing Environments: A report on the findings of the Pasadena Workshop, April 14--16, 1992

    SciTech Connect

    Sterling, T.; Messina, P.; Chen, M.

    1993-04-01

    The Pasadena Workshop on System Software and Tools for High Performance Computing Environments was held at the Jet Propulsion Laboratory from April 14 through April 16, 1992. The workshop was sponsored by a number of Federal agencies committed to the advancement of high performance computing (HPC) both as a means to advance their respective missions and as a national resource to enhance American productivity and competitiveness. Over a hundred experts in related fields from industry, academia, and government were invited to participate in this effort to assess the current status of software technology in support of HPC systems. The overall objectives of the workshop were to understand the requirements and current limitations of HPC software technology and to contribute to a basis for establishing new directions in research and development for software technology in HPC environments. This report includes reports written by the participants of the workshop`s seven working groups. Materials presented at the workshop are reproduced in appendices. Additional chapters summarize the findings and analyze their implications for future directions in HPC software technology development.

  19. The Grid Enabled Mass Storage System (GEMSS): the Storage and Data management system used at the INFN Tier1 at CNAF.

    NASA Astrophysics Data System (ADS)

    Ricci, Pier Paolo; Bonacorsi, Daniele; Cavalli, Alessandro; Dell'Agnello, Luca; Gregori, Daniele; Prosperini, Andrea; Rinaldi, Lorenzo; Sapunenko, Vladimir; Vagnoni, Vincenzo

    2012-12-01

    The storage system currently used in production at the INFN Tier1 at CNAF is the result of several years of case studies, software development and tests. This solution, called the Grid Enabled Mass Storage System (GEMSS), is based on a custom integration between a fast and reliable parallel filesystem (the IBM General Parallel File System, GPFS), with a complete integrated tape backend based on the Tivoli Storage Manager (TSM), which provides Hierarchical Storage Management (HSM) capabilities, and the Grid Storage Resource Manager (StoRM), providing access to grid users through a standard SRM interface. Since the start of the Large Hadron Collider (LHC) operation, all LHC experiments have been using GEMSS at CNAF for both disk data access and long-term archival on tape media. Moreover, during last year, GEMSS has become the standard solution for all other experiments hosted at CNAF, allowing the definitive consolidation of the data storage layer. Our choice has proved to be very successful during the last two years of production with continuous enhancements, accurate monitoring and effective customizations according to the end-user requests. In this paper a description of the system is reported, addressing recent developments and giving an overview of the administration and monitoring tools. We also discuss the solutions adopted in order to grant the maximum availability of the service and the latest optimization features within the data access process. Finally, we summarize the main results obtained during these last years of activity from the perspective of some of the end-users, showing the reliability and the high performances that can be achieved using GEMSS.

  20. Dynamic Non-Hierarchical File Systems for Exascale Storage

    SciTech Connect

    Long, Darrell E.; Miller, Ethan L

    2015-02-24

    appliances. These search applications are often optimized for a single file system, making it difficult to move files and their metadata between file systems. Users have tried to solve this problem in several ways, including the use of separate databases to index file properties, the encoding of file properties into file names, and separately gathering and managing provenance data, but none of these approaches has worked well, either due to limited usefulness or scalability, or both. Our research addressed several key issues: • High-performance, real-time metadata harvesting: extracting important attributes from files dynami- cally and immediately updating indexes used to improve search. • Transparent, automatic, and secure provenance capture: recording the data inputs and processing steps used in the production of each file in the system. • Scalable indexing: indexes that are optimized for integration with the file system. • Dynamic file system structure: our approach provides dynamic directories similar to those in semantic file systems, but these are the native organization rather than a feature grafted onto a conventional system. In addition to these goals, our research effort will include evaluating the impact of new storage technolo- gies on the file system design and performance. In particular, the indexing and metadata harvesting functions can potentially benefit from the performance improvements promised by new storage class memories.