Science.gov

Sample records for high-power aluminum z-pinch

  1. Time-dependent electron temperature diagnostics for high-power aluminum z-pinch plasmas

    SciTech Connect

    Sanford, T.W.L.; Nash, T.J.; Mock, R.C.

    1996-08-01

    Time-resolved x-ray pinhole photographs and time-integrated radially-resolved x-ray crystal-spectrometer measurements of azimuthally-symmetric aluminum-wire implosions suggest that the densest phase of the pinch is composed of a hot plasma core surrounded by a cooler plasma halo. The slope of the free-bound x-ray continuum, provides a time-resolved, model-independent diagnostic of the core electron temperature. A simultaneous measurement of the time-resolved K-shell line spectra provides the electron temperature of the spatially averaged plasma. Together, the two diagnostics support a 1-D Radiation-Hydrodynamic model prediction of a plasma whose thermalization on axis produces steep radial gradients in temperature, from temperatures in excess of a kilovolt in the core to below a kilovolt in the surrounding plasma halo.

  2. Variation of high-power aluminum-wire array z-pinch dynamics with wire number, load mass, and array radius

    SciTech Connect

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M.

    1997-12-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, (as measured by the radial convergence, the radiated energy, pulse width, and power), increases with wire number. Radiation magnetohydrodynamic (RMHC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below {approximately} 1.4 mm. In this plasma-shell regime, many of the global radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. In this regime, measured changes in the radiation pulse width with variations in load mass and array radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple radiation-scaling models.

  3. Experimental astrophysics with high power lasers and Z pinches

    SciTech Connect

    Remington, B A; Drake, R P; Ryutov, D D

    2004-12-10

    With the advent of high energy density (HED) experimental facilities, such as high-energy lasers and fast Z-pinch, pulsed-power facilities, mm-scale quantities of matter can be placed in extreme states of density, temperature, and/or velocity. This has enabled the emergence of a new class of experimental science, HED laboratory astrophysics, wherein the properties of matter and the processes that occur under extreme astrophysical conditions can be examined in the laboratory. Areas particularly suitable to this class of experimental astrophysics include the study of opacities relevant to stellar interiors; equations of state relevant to planetary interiors; strong shock driven nonlinear hydrodynamics and radiative dynamics, relevant to supernova explosions and subsequent evolution; protostellar jets and high Mach-number flows; radiatively driven molecular clouds and nonlinear photoevaporation front dynamics; and photoionized plasmas relevant to accretion disks around compact objects, such as black holes and neutron stars.

  4. Structure of stagnated plasma in aluminum wire array Z pinches

    NASA Astrophysics Data System (ADS)

    Hall, G. N.; Pikuz, S. A.; Shelkovenko, T. A.; Bland, S. N.; Lebedev, S. V.; Ampleford, D. J.; Palmer, J. B. A.; Bott, S. C.; Rapley, J.; Chittenden, J. P.; Apruzese, J. P.

    2006-08-01

    Experiments with aluminum wire array Z pinches have been carried out on the mega-ampere generator for plasma implosion experiments (MAGPIE) at Imperial College London [I. H. Mitchell et al., Rev. Sci. Instrum. 67, 1533 (1996)]. It has been shown that in these arrays, there are two intense sources of radiation during stagnation; Al XII line emission from a precursor-sized object, and both continuum and Al XIII radiation from bright spots of either significantly higher temperature or density randomly distributed around this object so as to produce a hollow emission profile. Spatially resolved spectra produced by spherically bent crystals were recorded, both time-integrated and time-resolved, and were used to show that these two sources of radiation peak at the same time.

  5. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    SciTech Connect

    SANFORD,THOMAS W. L.

    2000-05-23

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here.

  6. X-ray CCD measurements of aluminum and argon z-pinch K-shell emissions

    NASA Astrophysics Data System (ADS)

    Failor, B. H.; Coleman, P.; Levine, J.; Song, Y.; Sze, H.; Lepell, P. D.; Coverdale, C. A.; Deeney, C.

    1999-11-01

    We present pinhole images and spatially-resolved K-shell spectra from z-pinches produced at the SATURN facility (Sandia National Laboratory) and Double EAGLE (Maxwell Physics International). These time-integrated data were recorded with x-ray sensitive CCD cameras. They allow us to perform quantitative analysis immediately after the shot. Spectra were spatially-resolved in the radial and axial directions on different shots. We show argon data from four different gas flow geometries: a 2.5 cm (diameter) nominal shell, a 7 cm uniform fill, a 10 cm uniform fill, and a double shell. Pinches for the small nozzle implode in 100 ns. The other three nozzles give longer implosion times: 160 to 260 ns. The aluminum data are from wire arrays imploded in 150-170 ns. We compare the x-ray CCD data with film recording.

  7. Implosion characteristics and applications of combined tungsten-aluminum Z-pinch planar arrays

    NASA Astrophysics Data System (ADS)

    Osborne, G. C.; Kantsyrev, V. L.; Esaulov, A. A.; Safronova, A. S.; Weller, M. E.; Shrestha, I.; Williamson, K. M.; Shlyaptseva, V. V.

    2013-12-01

    An exploration of the implosion properties and X-ray radiation pulses from tungsten-based planar wire array Z-pinch experiments is presented, with an emphasis on loads mixed with aluminum. These experiments were carried out on Zebra, the 1.0 MA pulse power generator at the Nevada Terawatt Facility. A suite of diagnostics was used to study these plasmas, including X-ray and EUV Si diodes, optical imaging, laser shadowgraphy, and time-gated and time-integrated X-ray pinhole imagers and spectrometers. Specifically, loads with relatively large inter-wire gaps where tungsten is placed in the center of a planar configuration composed primarily of aluminum showed unusual characteristics. These loads are shown to generate a "bubbling" effect in which plasma from the ablation of outer aluminum wires is temporarily hindered from converging at the center of the array where the tungsten wire is located. Reproduction of these experiments with variations to load geometry, materials, and mass distribution are also presented and discussed in an attempt to better understand the phenomenon. In addition, a theoretical model has also been applied to better understand the dynamics of the implosions of these loads. Applications of this effect to radiation pulse shaping, particularly with multi-planar arrays, are also discussed.

  8. X-ray absorption spectroscopy of aluminum z-pinch plasma with tungsten backlighter planar wire array source.

    PubMed

    Osborne, G C; Kantsyrev, V L; Safronova, A S; Esaulov, A A; Weller, M E; Shrestha, I; Shlyaptseva, V V; Ouart, N D

    2012-10-01

    Absorption features from K-shell aluminum z-pinch plasmas have recently been studied on Zebra, the 1.7 MA pulse power generator at the Nevada Terawatt Facility. In particular, tungsten plasma has been used as a semi-backlighter source in the generation of aluminum K-shell absorption spectra by placing a single Al wire at or near the end of a single planar W array. All spectroscopic experimental results were recorded using a time-integrated, spatially resolved convex potassium hydrogen phthalate (KAP) crystal spectrometer. Other diagnostics used to study these plasmas included x-ray detectors, optical imaging, laser shadowgraphy, and time-gated and time-integrated x-ray pinhole imagers. Through comparisons with previous publications, Al K-shell absorption lines are shown to be from much lower electron temperature (?10-40 eV) plasmas than emission spectra (?350-500 eV). PMID:23126925

  9. Opacity and gradients in aluminum wire array z-pinch implosions on the Z pulsed power facility

    NASA Astrophysics Data System (ADS)

    Ampleford, D. J.; Hansen, S. B.; Jennings, C. A.; Jones, B.; Coverdale, C. A.; Harvey-Thompson, A. J.; Rochau, G. A.; Dunham, G.; Moore, N. W.; Harding, E. C.; Cuneo, M. E.; Chong, Y.-K.; Clark, R. W.; Ouart, N.; Thornhill, J. W.; Giuliani, J.; Apruzese, J. P.

    2014-03-01

    Aluminum wire array z pinches imploded on the Z generator are an extremely bright source of 1-2 keV radiation, with close to 400 kJ radiated at photon energies >1 keV and more than 50 kJ radiated in a single line (Al Ly-?). Opacity plays a critical role in the dynamics and K-shell radiation efficiency of these pinches. Where significant structure is present in the stagnated pinch this acts to reduce the effective opacity of the system as demonstrated by direct analysis of spectra. Analysis of time-integrated broadband spectra (0.8-25 keV) indicates electron temperatures ranging from a few 100 eV to a few keV are present, indicative of substantial temperature gradients.

  10. Opacity and gradients in aluminum wire array z-pinch implosions on the Z pulsed power facility

    SciTech Connect

    Ampleford, D. J. Hansen, S. B.; Jennings, C. A.; Jones, B.; Coverdale, C. A.; Harvey-Thompson, A. J.; Rochau, G. A.; Dunham, G.; Moore, N. W.; Harding, E. C.; Cuneo, M. E.; Chong, Y.-K.; Clark, R. W.; Ouart, N.; Thornhill, J. W.; Giuliani, J.; Apruzese, J. P.

    2014-03-15

    Aluminum wire array z pinches imploded on the Z generator are an extremely bright source of 12?keV radiation, with close to 400?kJ radiated at photon energies >1?keV and more than 50?kJ radiated in a single line (Al Ly-?). Opacity plays a critical role in the dynamics and K-shell radiation efficiency of these pinches. Where significant structure is present in the stagnated pinch this acts to reduce the effective opacity of the system as demonstrated by direct analysis of spectra. Analysis of time-integrated broadband spectra (0.825?keV) indicates electron temperatures ranging from a few 100?eV to a few keV are present, indicative of substantial temperature gradients.

  11. Dense Z-Pinches

    NASA Astrophysics Data System (ADS)

    Haines, M. G.

    The basic underlying physics of the Z-pinch is reviewed; the Bennett relation, the snowplough model, particle orbits, heat losses to electrodes, equilibrium profiles, radiative collapse, and finally stability in many regimes. Recent experimental results from Imperial College using the MAGPIE and IMP generators on fibre Z-pinches are presented, together with X-ray results from wire arrays from SATURN and PBFA-Z at Sandia National Laboratory.

  12. Characteristics of implosion and radiation for aluminum planar wire array z-pinch at 1.5 MA

    SciTech Connect

    Wang Liangping; Wu Jian; Li Mo; Han Juanjuan; Guo Ning; Wu Gang; Qiu Aici

    2012-12-15

    Planar wire arrays Z pinches were carried out on Qiangguang generator (1.5 MA, 100 ns). Loads with varied row widths (6-24 mm) and wire numbers (10-34) were employed in the experiments. The implosion dynamics of planar wire arrays has been studied. Meanwhile, the changes of the implosion time, radiation yield and power with array mass, inter-wire gap, and array width were investigated. The images of a soft X-ray camera exhibit that the trailing mass, precursor column, and R-T instability exist during the implosion phase, and when m = 0 maybe accompanied with m = 1, instability will rapidly develop after stagnation. The implosion trajectories show that loads will implode by the snowplow mode and about 50% of total initial array mass will participate in the final implosion. The maximum total X-ray energy is 22 kJ with a power of 630 GW, while the maximum K-shell yield is 3.9 kJ with a power of 158 GW. Experiments with different planar wire arrays show that the value of m{sub P}D{sub 0}{sup 2} (the product of line mass and squared width) is the critical factor which affects the implosion time and the X-ray products of the wire arrays. The optimum value of m{sub P}D{sub 0}{sup 2} should be in the range of 200-400 {mu}gcm and the inter-wire gap should be less than 1 mm.

  13. Z-Pinch Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Miernik, Janie

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Shorter trips are better for humans in the harmful radiation environment of deep space. Nuclear propulsion and power plants can enable high Ispand payload mass fractions because they require less fuel mass. Fusion energy research has characterized the Z-Pinch dense plasma focus method. (1) Lightning is form of pinched plasma electrical discharge phenomena. (2) Wire array Z-Pinch experiments are commonly studied and nuclear power plant configurations have been proposed. (3) Used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, nuclear weapon x-rays are simulated through Z-Pinch phenomena.

  14. Modeling Pulsed Power Z-Pinches

    NASA Astrophysics Data System (ADS)

    Rousculp, C. L.

    2003-10-01

    Modeling pulsed power z-pinch experiments, such as those conducted on the Atlas or Pegasus devices, has most often been accomplished with 1D Lagrangian or 2D Eularian codes. Here we show results for an Arbitrary Lagrange Eularian (ALE) code. In one example, the shock impulse on the Atlas containment vessel is estimated using a 2D cylindrical geometry model. By injecting 20 MJoules (the maximum storage of the capacitor bank) into the liner assembly and letting the shock structure evolve, the pressure can be integrated over time and space at the boundary of the vessel. In a second example, the Pegasus DH-3 experiment is modeled in 2D Cartesian geometry. Here, the imploding aluminum liner impacts the target and the shock propagates across a radial step in density.

  15. Energetics in Imploding Z-Pinches

    NASA Astrophysics Data System (ADS)

    Reisman, D. L.; Deeney, C.; Degroot, J. S.; Estabrook, K. G.; Hammer, J. H.; Sanford, T. W. L.; Spielman, R. B.; Toor, A.

    1996-11-01

    High atomic number imploding z-pinches are prodigious x-ray radiators. Magnetic energy is converted to radial kinetic energy during the implosion. Surprisingly, the x-ray yield, Y, is larger than the radial kinetic energy. This extra energy increases with atomic mass ( ~ 0.2 Y in aluminum to ~ 0.5 Y in gold and tungsten). We have recently observed on the SATURN accelerator at SNL (see poster by C. Deeney this session) that the time scale for the development of this energy is reduced by improving the compression ratio. Mechanisms to convert the extra magnetic energy to electron thermal energy will be reviewed in light of the experimental results.

  16. Z-Pinch Fusion for Energy Applications

    SciTech Connect

    SPIELMAN,RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  17. Stability of the optimal Z pinch

    SciTech Connect

    Zhdanov, S.K.

    1980-07-01

    The stability of a Z pinch in peaked-current operation is analyzed in terms of affine compression. In contrast with the compression of a spherical droplet by laser bombardment, which is known to be unstable, in the optimal Z pinch there is no catastrophic loss of compressional symmetry.

  18. Intense neutron pulse generation in dense Z-pinch

    SciTech Connect

    Bystritskii, V.M.; Glusko, Y.A.; Mesyats, G.A. ); Ratakhin, N.A. )

    1989-12-01

    The problem of intense neutron pulse generation with fast dense Z-pinches (ZP) is analyzed for a modified approach. The analysis pertains to the interaction of a High Power Deuterium Beam (HPDB) with hot ({ital T}{sub {ital e}}{congruent}1 keV) deuterium target formed by a ZP. The considerable decrease of the Coulomb ion-electron scattering cross-sections gives a corresponding increase of the deuterium range and neutron yield in the hot target.

  19. The physics of fast Z pinches

    SciTech Connect

    Ryutov, D.D.; Derzon, M.S.; Matzen, M.K.

    1998-07-01

    The spectacular progress made during the last few years in reaching high energy densities in fast implosions of annular current sheaths (fast Z pinches) opens new possibilities for a broad spectrum of experiments, from x-ray generation to controlled thermonuclear fusion and astrophysics. Presently Z pinches are the most intense laboratory X ray sources (1.8 MJ in 5 ns from a volume 2 mm in diameter and 2 cm tall). Powers in excess of 200 TW have been obtained. This warrants summarizes the present knowledge of physics that governs the behavior of radiating current-carrying plasma in fast Z-pinches. This survey covers essentially all aspects of the physics of fast Z pinches: initiation, instabilities of the early stage, magnetic Rayleigh-Taylor instability in the implosion phase, formation of a transient quasi-equilibrium near the stagnation point, and rebound. Considerable attention is paid to the analysis of hydrodynamic instabilities governing the implosion symmetry. Possible ways of mitigating these instabilities are discussed. Non-magnetohydrodynamic effects (anomalous resistivity, generation of particle beams, etc.) are summarized. Various applications of fast Z pinches are briefly described. Scaling laws governing development of more powerful Z pinches are presented. The survey contains 52 figures and nearly 300 references.

  20. The Physics of Fast Z Pinches

    SciTech Connect

    RYUTOV,D.D.; DERZON,MARK S.; MATZEN,M. KEITH

    1999-10-25

    The spectacular progress made during the last few years in reaching high energy densities in fast implosions of annular current sheaths (fast Z pinches) opens new possibilities for a broad spectrum of experiments, from x-ray generation to controlled thermonuclear fusion and astrophysics. Presently Z pinches are the most intense laboratory X ray sources (1.8 MJ in 5 ns from a volume 2 mm in diameter and 2 cm tall). Powers in excess of 200 TW have been obtained. This warrants summarizing the present knowledge of physics that governs the behavior of radiating current-carrying plasma in fast Z pinches. This survey covers essentially all aspects of the physics of fast Z pinches: initiation, instabilities of the early stage, magnetic Rayleigh-Taylor instability in the implosion phase, formation of a transient quasi-equilibrium near the stagnation point, and rebound. Considerable attention is paid to the analysis of hydrodynamic instabilities governing the implosion symmetry. Possible ways of mitigating these instabilities are discussed. Non-magnetohydrodynamic effects (anomalous resistivity, generation of particle beams, etc.) are summarized. Various applications of fast Z pinches are briefly described. Scaling laws governing development of more powerful Z pinches are presented. The survey contains 36 figures and more than 300 references.

  1. Plasma formation in metallic wire Z pinches

    NASA Astrophysics Data System (ADS)

    Chittenden, J. P.; Lebedev, S. V.; Ruiz-Camacho, J.; Beg, F. N.; Bland, S. N.; Jennings, C. A.; Bell, A. R.; Haines, M. G.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.

    2000-04-01

    Plasma formation in metallic wire Z pinches is modeled using a two-dimensional resistive magnetohydrodynamics code. Modified Thomas-Fermi equations of state and dense plasma transport coefficients allow the phase transitions from solid to plasma to be approximated. Results indicate the persistence of a two-component structure with a cold, dense core embedded within a much hotter, low density, m=0 unstable corona. Extensive benchmark testing against data from a number of single-wire experiments is presented. Artificial laser schlieren and x-ray back-lighting images generated from the code data are compared directly to experimental results. The results were found to be insensitive to inaccuracies in the equations of state and transport coefficients. Simulations of individual wires in a wire array show different behavior to that observed experimentally due to the absence of three-dimensional effects. Simulations with similar conditions to wires in an array show a general trend in the plasma structure at start of implosion from discrete wires with large m=0 perturbation amplitudes to partially merged wires with smaller perturbation amplitudes as the number of wires is increased. Results for a wire number scan with aluminum wire arrays on the SATURN generator suggest that the observed sharp transition to high x-ray power at around 40 wires corresponds to a sharp decrease in m=0 perturbation amplitude and hence a sharp decrease in the seed perturbation for the Rayleigh-Taylor instability.

  2. Spectroscopic study in Z-pinch discharge

    SciTech Connect

    Garamoon, A.A.; Saudy, A.H.; Shark, W.

    1995-12-31

    The temporal variation of the emitted line intensity has been investigated, and thus an important information about the dynamic ionization stages in the Z-pinch discharge has been studied. Also the electron temperature Te, has been deduced by using a spectroscopic technique.

  3. Z-pinch instability with distributed current

    SciTech Connect

    Pereira, N.R.; Rostoker, N.; Pearlman, J.S.

    1984-02-01

    Sausage and kink growth rates for a Z pinch are computed from ideal magnetohydrodynamic theory for an infinitely thin surface current sheath and for a surface current layer of finite width. The growth rate decreases with increasing layer width. Satisfactory agreement with experiment is obtained for reasonable width estimates based on magnetic field diffusion.

  4. Ionization dynamics of a single wire z-pinch

    NASA Astrophysics Data System (ADS)

    Johnston, Mark Darren

    This thesis explored the ionization dynamics of a single wire z-pinch. Experiments were conducted on fine wires of aluminum, copper, silver, and tungsten ranging in diameter from 7.5--50mum with lengths of 2.5cm. These wires were subjected to a pulsed current of 2kA, 500ns half-cycle from a spark-gap triggered, negatively-charged capacitor bank discharge. The results of this thesis are divided into three parts which cover the entire dynamic evolution of the wires during the first 500ns of the current pulse. The first part examined surface impurity evolution and its contribution to the voltage collapse and initial plasma formation. It was discovered that hydrocarbon impurities contribute significantly to the initial plasma formation, for all wires studied, and that high ionization states of carbon (CIII and CIV) are present at the point of the voltage collapse. The second portion of the thesis dealt with laser imaging and the observation of instability growth at the core/corona boundary of expanding z-pinch wire plasmas. From the increased sensitivity of the resonant XeCl excimer laser diagnostics, it was determined that, for aluminum wires, these instabilities were consistent with a hydrodynamic Rayleigh-Taylor instability of a decelerating plasma plume front. The third portion of the thesis focused on potential seeding mechanisms for instability growth in single wire z-pinches and their relevance to wire array experiments. It was observed in copper wires that do pre-heating of wires caused surface alterations due to recrystallization. It was also discovered, during the course of these studies, that electrical current pulses on the timescale of the experimental pulse (500ns half-cycle) could also alter the surface structure of copper wires and lead to coronal instabilities. Finally, preliminary investigations into the possibility of crystal/grain growth behavior in tungsten wires is given, along with the idea of using potassium doped tungsten wires as a means of compensating for this behavior in pure tungsten. The experiments in this thesis were designed with the intention of aiding in the overall understanding of z-pinch wire physics and in particular the pre-pulse conditions on larger wire array experiments, such as the Z-machine at Sandia National Laboratories. The information in this thesis is directed towards supporting ongoing modeling efforts to help establish the initial conditions for individual wires on wire arrays, with the overall goal of being able to better predict wire array behavior. (Abstract shortened by UMI.)

  5. Z-Pinch Driven Isentropic Compression for Inertial Fusion

    SciTech Connect

    Asay, J.R.; Hall, C.A.; Holland, K.G.; Slutz, S.A.; Spielman, R.B.; Stygar, W.A.

    1999-02-01

    The achievement of high gain with inertial fusion requires the compression of hydrogen isotopes to high density and temperatures. High densities can be achieved most efficiently by isentropic compression. This requires relatively slow pressure pulses on the order of 10-20 nanoseconds; however, the pressure profile must have the appropriate time. We present 1-D numerical simulations that indicate such a pressure profile can be generated by using pulsed power driven z pinches. Although high compression is calculated, the initial temperature is too low for ignition. Ignition could be achieved by heating a small portion of this compressed fuel with a short (-10 ps) high power laser pulse as previously described. Our 1-D calculations indicate that the existing Z-accelerator could provide the driving current (-20 MA) necessary to compress fuel to roughly 1500 times solid density. At this density the required laser energy is approximately 10 kJ. Multidimensional effects such as the Rayleigh-Taylor were not addressed in this brief numerical study. These effects will undoubtedly lower fuel compression for a given chive current. Therefore it is necessary to perform z-pinch driven compression experiments. Finally, we present preliminary experimental data from the Z-accelerator indicating that current can be efficiently delivered to appropriately small loads (- 5 mm radius) and that VISAR can be used measure high pressure during isentropic compression.

  6. Electrical resistance of constriction in Z pinches

    SciTech Connect

    Sasorov, P.V.

    1992-03-01

    The process by which helicons are generated at fluctuations of the ion density in Z-pinch constrictions is considered. Such fluctuations can occur as a result of nonresonant interactions between the ion density fluctuations and the helicons when the nonlinear transformation of the angular spectrum of the ion density fluctuations is taken into considerations. The helicons, which interact nonlinearity, transport their momentum and energy into the high-wave number region, where they are damped by the electrons. An estimate is made of the resulting friction between electrons and ions and the corresponding electrical resistance of the Z-pinch constrictions. Neoclassical transport effects are included in the electron component of the plasma. These processes can produce stabilization of the sausage model at the level a{omega}{sub pi}/c{approximately}1. 27 refs.

  7. Shear flow stabilization of Z-pinches

    NASA Astrophysics Data System (ADS)

    Paraschiv, Ioana

    A z-pinch plasma is in principle an efficient and cost-effective way of heating a small amount of matter to high temperatures, while also achieving high densities. In practice, the heating and compression are very nonuniform because z-pinches are very unstable. One of the proposed means of stabilization of the most dangerous magnetohydrodynamic (MHD) instability modes, the m=0 ("sausage") and m=1 ("kink"), is to use sheared plasma flow to tear off the instability structure. A detailed study of the linear and nonlinear development of the m=0 instability in the presence of sheared axial flows has been performed in this dissertation. For this purpose we have used a two-dimensional MHD numerical code, MHRDR, to solve the ideal set of single-fluid magnetohydrodynamic equations. In order to accurately study shear flow stabilization of a z-pinch, the code was modified to include periodic boundary conditions and a monotonic van Leer advection algorithm. Linear growth rates obtained with MHRDR were in good agreement with the linear theory (<10% difference). Nonlinear mode coupling and saturation of the sausage instability have been studied for plasma equilibria with and without sheared flows. It was found that sheared flows changed the m=0 development by reducing the linear growth rates, decreasing the saturation amplitude, and modifying the instability spectrum. High spatial frequency modes were stabilized to small amplitudes, and only the long wavelengths continued to grow. Full stabilization was predicted for supersonic plasma flows.

  8. Spectral Unfolds of Tungsten Z Pinches and Z-Pinch Driven Hohlraum Radiation Sources*

    NASA Astrophysics Data System (ADS)

    Chandler, G. A.; Fehl, D. L.; Torres, J. A.; Deeney, C.; Porter, J. L.; Olson, R. E.; Spielman, R. B.

    1996-11-01

    We have measured the sub-keV spectral output from tungsten Z pinches^1 and from tungsten Z-pinch driven hohlraums^2 on the 7-MA Saturn accelerator. A primary detector system consists of a set of filtered x-ray diode detectors. The broad spectral response of the individual detectors requires a spectral unfold of their response to obtain the source flux. With these detectors we have inferred peak x-ray powers from these Z-pinch sources of 62 TW. Fluxes from hohlraums driven by these Z pinches yield a measured peak equivalent brightness temperature of 85 eV. The unfolded spectral output from these sources as a function of source parameters and hohlraum geometry will be presented. We will begin z-pinch experiments this summer using the 16-MA PBFA-Z accelerator^3. The PBFA-Z driver should be able to produce output powers > 150 TW and hohlraums with radiation temperatures > 100 eV. The scaling obtained from preliminary measurements on the PBFA-Z accelerator will also be presented. 1 C. Deeney et. al., this conference. 2 J. L. Porter et. al., this conference. 3 R.B. Spielman et. al., Proc. Beams 96. *This work performed by Sandia National Laboratories is supported by the U.S. Department of Energy under contract DE-AC04-94AL85000

  9. Z-pinch research at Nihon University

    NASA Astrophysics Data System (ADS)

    Miyamoto, T.; Takeuchi, A.; Takada, H.; Takasugi, K.

    1989-12-01

    Descriptions of the following theoretical and experimental studies are given. First, the snowplow energy equation is derived and compared with the snowplow momentum equation, which has been used to investigate implosion processes. Second, the quasi-steady processes are studied without assumption of perfect relaxation between electrons and ions. Third, the limitation of the line density for the Bennett pinch and the existence of ion-current-rich pinch is shown. Lastly, the results for a gas-puff Z-pinch with a strong density gradient and density minimum between electrodes are given.

  10. Fusion Propulsion Z-Pinch Engine Concept

    NASA Technical Reports Server (NTRS)

    Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.; Percy, T.

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human spaceflight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly1. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield 2. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10(exp -6 sec). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Decade Module 2 (DM2), approx.500 KJ pulsed-power is coming to the RSA Aerophysics Lab managed by UAHuntsville in January, 2012. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) 3 propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle.

  11. Optical diagnostics on dense Z -pinch plasmas

    SciTech Connect

    Riley, R.A.; Lovberg, R.H.; Shlachter, J.S.; Scudder, D.W. )

    1992-10-01

    A novel point-diffraction'' interferometer has been implemented on the Los Alamos solid fiber {ital Z}-pinch experiment. The laser beam is split into two legs {ital after} passing through the plasma. The reference leg is filtered with a pin-hole aperture and recombined with the other leg to form an interferogram. This allows compact mounting of the optics and relative ease of alignment. The {ital Z}-pinch experiment employs a pulsed-power generator that delivers up to 700 kA with a 100 ns rise time through a fiber of deuterium or deuterated polyethylene (CD{sub 2}) that is 5-cm long and initially solid with radius {ital r}{approx}15 {mu}m. The interferometer, using a {Delta}{ital t}{approx}200 ps pulse from a Nd:YAG laser frequency doubled to {lambda}=532 nm, measures the electron line density and, assuming azimuthal symmetry, the density as a function of radial and axial position. Calculations predict Faraday rotations of order {pi}/2 for plasma and current densities that this experiment was designed to produce. The resulting periodic loss of fringes would provide the current density distribution.

  12. Investigation of plasma instabilities in the stagnated Z pinch.

    PubMed

    Ivanov, V V; Chittenden, J P; Mancini, R C; Papp, D; Niasse, N; Altemara, S D; Anderson, A A

    2012-10-01

    High-resolution laser probing diagnostics at a wavelength of 266 nm allow observation of the internal structure and instabilities in dense stagnated Z pinches, typically hidden by trailing material. The internal structure of the 1-MA Z pinch includes strong kink and sausage instabilities, loops, flares, and disruptions. Mid- and small-scale density perturbations develop in the precursor and main pinch. The three-dimensional shape and dynamics of the wire-array Z pinch are predetermined by the initial configuration of the wire array. Cylindrical, linear, and star wire-array Z pinches present different sets of instabilities seeded to the pinch at the implosion stage. Prolonged implosion of trailing mass can enhance x-ray production in wire arrays. Fast plasma motion with a velocity >100km/s was observed in the Z pinch at stagnation with two-frame shadowgraphy. Development of instabilities in wire arrays is in agreement with three-dimensional magnetohydrodynamic simulations. PMID:23214696

  13. Chemically etched modulation in wire radius for wire array Z-pinch perturbation studies

    SciTech Connect

    Jones, B.; Deeney, C.; McKenney, J.L.; Garrity, J.E.; Lobley, D.K.; Martin, K.L.; Griego, A.E.; Ramacciotti, J.P.; Bland, S.N.; Lebedev, S.V.; Bott, S.C.; Ampleford, D.J.; Palmer, J.B.A.; Rapley, J.; Hall, G.

    2004-11-01

    A technique for manufacturing wires with imposed modulation in radius with axial wavelengths as short as 1 mm is presented. Extruded aluminum 5056 with 15 {mu}m diameter was masked and chemically etched to reduce the radius by {approx}20% in selected regions. Characterized by scanning electron microscopy, the modulation in radius is a step function with a {approx}10 {mu}m wide conical transition between thick and thin segments, with some pitting in etched regions. Techniques for mounting and aligning these wires in arrays for fast z-pinch experiments will be discussed. Axially mass-modulated wire arrays of this type will allow the study of seeded Rayleigh-Taylor instabilities in z pinches, corona formation, wire initiation with varying current density in the wire core, and correlation of perturbations between adjacent wires. This tool will support magnetohydrodynamics code validation in complex three-dimensional geometries, and perhaps x-ray pulse shaping.

  14. The high density Z-pinch

    SciTech Connect

    McCall, G.H.

    1988-01-01

    During the past few years techniques have been developed for producing pinches in solid deuterium. The conditions which exist in these plasmas are quiet different from those produced earlier. The pinch is formed from a fiber of solid deuterium rather than from a low density gas, and the current is driven by a low impedance, high voltage pulse generator. Because of the high initial density, it is not necessary to compress the pinch to reach thermonuclear conditions, and the confinement time required for energy production is much shorter than for a gas. The experimental results, which have been verified by experiments performed at higher current were quite surprising and encouraging. The pinch appeared to be stable for a time much longer than the Alfven radial transit time. In this paper, however, I argue that the pinch is not strictly stable, but it does not appear to disassemble in a catastrophic fashion. It appears that there may be a distinction between stability and confinement in the high density pinch. In the discussion below I will present the status of the high density Z-pinch experiments at laboratories around the world, and I will describe some of the calculational and experimental results. I will confine my remarks to recent work on the high density pinch. 17 refs. 10 figs.

  15. Rotating plasma disks in dense Z-pinch experiments

    NASA Astrophysics Data System (ADS)

    Bennett, M. J.; Lebedev, S. V.; Hall, G. N.; Suttle, L.; Burdiak, G.; Suzuki-Vidal, F.; Hare, J.; Swadling, G.; Patankar, S.; Bocchi, M.; Chittenden, J. P.; Smith, R.; Frank, A.; Blackman, E.; Drake, R. P.; Ciardi, A.

    2014-12-01

    We present data from the first z-pinch experiments aiming to simulate aspects of accretion disk physics in the laboratory. Using off axis ablation flows from a wire array z-pinch we demonstrate the formation of a hollow disk structure that rotates at 60 kms-1 for 150 ns. By analysing the Thomson scattered spectrum we make estimates for the ion and electron temperatures as Ti 60 eV and ZTe 150 to 200 eV.

  16. Progress in Z-pinch inertial fusion energy.

    SciTech Connect

    Weed, John Woodruff

    2010-03-01

    The goal of z-pinch inertial fusion energy (IFE) is to extend the single-shot z-pinch inertial confinement fusion (ICF) results on Z to a repetitive-shot z-pinch power plant concept for the economical production of electricity. Z produces up to 1.8 MJ of x-rays at powers as high as 230 TW. Recent target experiments on Z have demonstrated capsule implosion convergence ratios of 14-21 with a double-pinch driven target, and DD neutron yields up to 8x10exp10 with a dynamic hohlraum target. For z-pinch IFE, a power plant concept is discussed that uses high-yield IFE targets (3 GJ) with a low rep-rate per chamber (0.1 Hz). The concept includes a repetitive driver at 0.1 Hz, a Recyclable Transmission Line (RTL) to connect the driver to the target, high-yield targets, and a thick-liquid wall chamber. Recent funding by a U.S. Congressional initiative for $4M for FY04 is supporting research on RTLs, repetitive pulsed power drivers, shock mitigation, full RTL cycle planned experiments, high-yield IFE targets, and z-pinch power plant technologies. Recent results of research in all of these areas are discussed, and a Road Map for Z-Pinch IFE is presented.

  17. Z-Pinch Pulsed Plasma Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Adams, Robert B.; Fabisinski, Leo; Fincher, Sharon; Maples, C. Dauphne; Miernik, Janie; Percy, Tom; Statham, Geoff; Turner, Matt; Cassibry, Jason; Cortez, Ross; Santarius, John

    2010-01-01

    Fusion-based propulsion can enable fast interplanetary transportation. Magneto-inertial fusion (MIF) is an approach which has been shown to potentially lead to a low cost, small reactor for fusion break even. The Z-Pinch/dense plasma focus method is an MIF concept in which a column of gas is compressed to thermonuclear conditions by an axial current (I approximates 100 MA). Recent advancements in experiments and the theoretical understanding of this concept suggest favorable scaling of fusion power output yield as I(sup 4). This document presents a conceptual design of a Z-Pinch fusion propulsion system and a vehicle for human exploration. The purpose of this study is to apply Z-Pinch fusion principles to the design of a propulsion system for an interplanetary spacecraft. This study took four steps in service of that objective; these steps are identified below. 1. Z-Pinch Modeling and Analysis: There is a wealth of literature characterizing Z-Pinch physics and existing Z-Pinch physics models. In order to be useful in engineering analysis, simplified Z-Pinch fusion thermodynamic models are required to give propulsion engineers the quantity of plasma, plasma temperature, rate of expansion, etc. The study team developed these models in this study. 2. Propulsion Modeling and Analysis: While the Z-Pinch models characterize the fusion process itself, propulsion models calculate the parameters that characterize the propulsion system (thrust, specific impulse, etc.) The study team developed a Z-Pinch propulsion model and used it to determine the best values for pulse rate, amount of propellant per pulse, and mixture ratio of the D-T and liner materials as well as the resulting thrust and specific impulse of the system. 3. Mission Analysis: Several potential missions were studied. Trajectory analysis using data from the propulsion model was used to determine the duration of the propulsion burns, the amount of propellant expended to complete each mission considered. 4. Vehicle Design: To understand the applicability of Z-Pinch propulsion to interplanetary travel, it is necessary to design a concept vehicle that uses it -- the propulsion system significantly impacts the design of the electrical, thermal control, avionics and structural subsystems of a vehicle. The study team developed a conceptual design of an interplanetary vehicle that transports crew and cargo to Mars and back and can be reused for other missions. Several aspects of this vehicle are based on a previous crewed fusion vehicle study -- the Human Outer Planet Exploration (HOPE) Magnetized Target Fusion (MTF) vehicle. Portions of the vehicle design were used outright and others were modified from the MTF design in order to maintain comparability.

  18. Investigation of Metal Puff Z pinch Based on Multichannel Vacuum Arcs

    NASA Astrophysics Data System (ADS)

    Rousskikh, A. G.; Oreshkin, V. I.; Zhigalin, A. S.; Chaikovsky, S. A.; Baksht, R. B.; Mitrofanov, K. N.

    2015-11-01

    The performance of a metal double puff Z-pinch system has been studied experimentally. In this type of system, the outer and inner cylindrical shells were produced by ten plasma guns. Each gun initiates a vacuum arc operating between aluminum electrodes. The net current of the guns was 80 kA. The arc-produced plasma shells were compressed by using a 450-kA, 450-ns driver, and as a result, a plasma column 0.2 cm in diameter was formed. The power of the Al K-line radiation emitted by the plasma for 7 ns was 800 MW/cm.

  19. {alpha} Heating in a Stagnated Z-pinch

    SciTech Connect

    Appelbe, Brian; Chittenden, Jeremy

    2009-01-21

    A computational investigation of a scheme for magneto-inertial confinement fusion in a Z-pinch is carried out. In the scheme implosion of a deuterium-tritium fuel mass is preceded by formation of a hotspot containing warm, dense plasma on axis. The presence of the hotspot increases energy yield. Compression of the hotspot by the main fuel mass initiates thermonuclear burn. There is significant heating of the plasma by thermonuclear {alpha} particles which are confined by the strong magnetic field of the Z-pinch.

  20. Rotating plasma disks in dense Z-pinch experiments

    SciTech Connect

    Bennett, M. J. E-mail: s.lebedev@imperial.ac.uk; Lebedev, S. V. E-mail: s.lebedev@imperial.ac.uk; Suttle, L.; Burdiak, G.; Suzuki-Vidal, F.; Hare, J.; Swadling, G.; Patankar, S.; Bocchi, M.; Chittenden, J. P.; Smith, R.; Hall, G. N.; Frank, A.; Blackman, E.; Drake, R. P.; Ciardi, A.

    2014-12-15

    We present data from the first z-pinch experiments aiming to simulate aspects of accretion disk physics in the laboratory. Using off axis ablation flows from a wire array z-pinch we demonstrate the formation of a hollow disk structure that rotates at 60 kms{sup ?1} for 150 ns. By analysing the Thomson scattered spectrum we make estimates for the ion and electron temperatures as T{sub i} ? 60 eV and ZT{sub e} ? 150 to 200 eV.

  1. Quantitative Measurements of Ablation in Wire Array Z-Pinches

    NASA Astrophysics Data System (ADS)

    Harvey-Thompson, A.; Lebedev, S. V.; Bland, S. N.; Chittenden, J. P.; Hall, G. N.; Palmer, J. B. A.; Suzuki-Vidal, F.; Bott, S. C.

    2007-11-01

    The long-time scale ablation of the wires in a wire array z-pinch is crucial in determining its subsequent implosion and X-ray emission. Using a combination of interferometry and Faraday probing, we report on direct measurements of the current and mass density profiles in cylindrical, radial and inverse wire array z-pinches leading up to and during implosion. The results are compared and contracted to the rocket ablation model and to both 2 and 3-D MHD simulations. This research was sponsored by Sandia National Labs and the NNSA under DOE Cooperative Agreement DE-F03-02NA00057.

  2. Polycrystalline diamond based detector for Z-pinch plasma diagnosis.

    PubMed

    Liu, Linyue; Ouyang, Xiaoping; Zhao, Jizhen; Chen, Liang; Wang, Lan

    2010-08-01

    A detector setup based on polycrystalline chemical-vapor-deposition diamond film is developed with great characteristics: low dark current (lower than 60 pA within 3 V/mum), fast pulsed response time (rise time: 2-3 ns), flat spectral response (3-5 keV), easy acquisition, low cost, and relative large sensitive area. The characterizing data on Qiangguang-I accelerator show that this detector can satisfy the practical requirements in Z-pinch plasma diagnosis very well, which offers a promising prototype for the x-ray detection in Z-pinch diagnosis. PMID:20815603

  3. Mechanism for neutron production in Z-pinches

    SciTech Connect

    Vikhrev, V.V.

    1986-04-01

    Experimental and theoretical research on the mechanism for the neutron emission in Z-pinches is reviewed. Emphasis is placed on the thermonuclear mechanism for neutron production. This mechanism is a result of the formation of hot regions of plasma at the necks of a Z-pinch. It is pointed out that this mechanism may be predominant in discharges with yields greater than 10/sup 9/ neutrons per discharge. Some experimental facts which have been regarded as contradicting the thermonuclear mechanism for neutron production are explained.

  4. Electron temperature diagnostics of aluminium plasma in a z-pinch experiment at the “QiangGuang-1" facility

    NASA Astrophysics Data System (ADS)

    Li, Mo; Wu, Jian; Wang, Liang-Ping; Wu, Gang; Han, Juan-Juan; Guo, Ning; Qiu, Meng-Tong

    2012-12-01

    Two curved crystal spectrometers are set up on the “QiangGuang-1" generator to measure the z-pinch plasma spectra emitted from planar aluminum wire array loads. Kodak Biomax-MS film and an IRD AXUVHS5# array are employed to record time-integrated and time-resolved free-bound radiation, respectively. The photon energy recorded by each detector is ascertained by using the L-shell lines of molybdenum plasma. Based on the exponential relation between the continuum power and photon energies, the aluminum plasma electron temperatures are measured. For the time-integrated diagnosis, several “bright spots" indicate electron temperatures between (450 eV ~ 520 eV) ± 35%. And for the time-resolved ones, the result shows that the electron temperature reaches about 800 eV ± 30% at peak power. The system satisfies the demand of z-pinch plasma electron temperature diagnosis on a ~ 1 MA facility.

  5. Flow effects on the stability of z-pinches

    SciTech Connect

    Shumlak, U.; Hartman, C.W.

    1996-12-31

    The effect of an axial flow on the m = 1 kink instability in z-pinches is studied numerically by reducing the linearized ideal MHD equations to a one-dimensional eigenvalue equation for the radial displacement. The derivation of the displacement equation for equilibria with axial flows will be presented. A diffuse z-pinch equilibrium is chosen that is made marginally stable to the m = 0 sausage mode by tailoring the pressure profile. The principle result reveals that a sheared axial flow does stabilize the kink mode when the shear exceeds a threshold value. Additionally, the m = 0 sausage mode is driven from marginal stability into the stable regime which suggests that the equilibrium pressure profile control can be relaxed. Fast z-pinches such as liner implosions are plagued by the Rayleigh-Taylor instability which destroys the liner and disrupts the current path before the liner arrives on axis. A sheared axial flow in a liner may quench the Rayleigh-Taylor instability in the same way that it quenches MHD instabilities in a diffuse z-pinch. Simulation results will be presented showing the effect of a sheared axial flow on the Rayleigh-Taylor instability in a fast liner implosion.

  6. Measurement and analysis of x-ray absorption in Al and MgF2 plasmas heated by Z-pinch radiation.

    PubMed

    Rochau, Gregory A; Bailey, J E; Macfarlane, J J

    2005-12-01

    High-power Z pinches on Sandia National Laboratories' Z facility can be used in a variety of experiments to radiatively heat samples placed some distance away from the Z-pinch plasma. In such experiments, the heating radiation spectrum is influenced by both the Z-pinch emission and the re-emission of radiation from the high-Z surfaces that make up the Z-pinch diode. To test the understanding of the amplitude and spectral distribution of the heating radiation, thin foils containing both Al and MgF2 were heated by a 100-130 TW Z pinch. The heating of these samples was studied through the ionization distribution in each material as measured by x-ray absorption spectra. The resulting plasma conditions are inferred from a least-squares comparison between the measured spectra and calculations of the Al and Mg 1s-->2p absorption over a large range of temperatures and densities. These plasma conditions are then compared to radiation-hydrodynamics simulations of the sample dynamics and are found to agree within 1sigma to the best-fit conditions. This agreement indicates that both the driving radiation spectrum and the heating of the Al and MgF2 samples is understood within the accuracy of the spectroscopic method. PMID:16486068

  7. X-ray absorption spectroscopy measurements of thin foil heating by Z-pinch radiation.

    PubMed

    MacFarlane, J J; Bailey, J E; Chandler, G A; Deeney, C; Douglas, M R; Jobe, D; Lake, P; Nash, T J; Nielsen, D S; Spielman, R B; Wang, P; Woodruff, P

    2002-10-01

    Absorption spectroscopy measurements of the time-dependent heating of thin foils exposed to intense z-pinch radiation sources are presented. These measurements and their analysis provide valuable benchmarks for, and insights into, the radiative heating of matter by x-ray sources. Z-pinch radiation sources with peak powers of up to 160 TW radiatively heated thin plastic-tamped aluminum foils to temperatures approximately 60 eV. The foils were located in open slots at the boundary of z-pinch hohlraums surrounding the pinch. Time-resolved Kalpha satellite absorption spectroscopy was used to measure the evolution of the Al ionization distribution, using a geometry in which the pinch served as the backlighter. The time-dependent pinch radius and x-ray power were monitored using framing camera, x-ray diode array, and bolometer measurements. A three-dimensional view factor code, within which one-dimensional (1D) radiation-hydrodynamics calculations were performed for each surface element in the view factor grid, was used to compute the incident and reemitted radiation flux distribution throughout the hohlraum and across the foil surface. Simulated absorption spectra were then generated by postprocessing radiation-hydrodynamics results for the foil heating using a 1D collisional-radiative code. Our simulated results were found to be in good general agreement with experimental x-ray spectra, indicating that the spectral measurements are consistent with independent measurements of the pinch power. We also discuss the sensitivity of our results to the spectrum of the radiation field incident on the foil, and the role of nonlocal thermodynamic equilibrium atomic kinetics in affecting the spectra. PMID:12443339

  8. An Inertial-Fusion Z-Pinch Power Plant Concept

    SciTech Connect

    DERZON,MARK S.; ROCHAU,GARY E.; DEGROOT,J.; OLSON,CRAIG L.; PETERSON,P.; PETERSON,R.R.; SLUTZ,STEPHEN A.; ZAMORA,ANTONIO J.

    2000-12-15

    With the promising new results of fast z-pinch technology developed at Sandia National Laboratories, we are investigating using z-pinch driven high-yield Inertial Confinement Fusion (ICF) as a fusion power plant energy source. These investigations have led to a novel fusion system concept based on an attempt to separate many of the difficult fusion engineering issues and a strict reliance on existing technology, or a reasonable extrapolation of existing technology, wherever possible. In this paper, we describe the main components of such a system with a focus on the fusion chamber dynamics. The concept works with all of the electrically-coupled ICF proposed fusion designs. It is proposed that a z-pinch driven ICF power system can be feasibly operated at high yields (1 to 30 GJ) with a relatively low pulse rate (0.01-0.1 Hz). To deliver the required current from the rep-rated pulse power driver to the z-pinch diode, a Recyclable Transmission Line (RTL) and the integrated target hardware are fabricated, vacuum pumped, and aligned prior to loading for each power pulse. In this z-pinch driven system, no laser or ion beams propagate in the chamber such that the portion of the chamber outside the RTL does not need to be under vacuum. Additionally, by utilizing a graded-density solid lithium or fluorine/lithium/beryllium eutectic (FLiBe) blanket between the source and the first-wall the system can breed its own fuel absorb a large majority of the fusion energy released from each capsule and shield the first-wall from a damaging neutron flux. This neutron shielding significantly reduces the neutron energy fluence at the first-wall such that radiation damage should be minimal and will not limit the first-wall lifetime. Assuming a 4 m radius, 8 m tall cylindrical chamber design with an 80 cm thick spherical FLiBe blanket, our calculations suggest that a 20 cm thick 6061-T6 Al chamber wall will reach the equivalent uranium ore radioactivity level within 100 years after a 30 year plant operation. The implication of this low radioactivity is that a z-pinch driven power plant may not require deep geologic waste storage.

  9. Wire array z-pinch insights for high x-ray power generation

    SciTech Connect

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M.

    1997-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  10. Wire array z-pinch insights for high x-ray power generation

    SciTech Connect

    Sanford, T.W.L.; Mock, R.C.; Nash, T.J.

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  11. Wire array z-pinch insights for high X-ray power generation

    SciTech Connect

    Sanford, T.W.L.; Marder, B.M.; Desjarlais, M.P.

    1998-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  12. Plasma conditions produced in long-implosion-time z pinches

    NASA Astrophysics Data System (ADS)

    Failor, B. K.; Song, Y.; Levine, J. S.; Riordan, J. C.; Coleman, P. L.; Yadlowsky, E. J.; Hazelton, R. C.; Moschella, J. J.; Deeney, C.; Coverdale, C. A.; Apruzese, J. P.

    1998-11-01

    We have diagnosed 200-300 nsec implosion time Ar z-pinches at the DECADE Module 2, Double EAGLE, and SATURN facilities. Extending the implosion time beyond 100 ns reduces the complexity of z-pinch drivers for future high current (> 20 MA) facilities. Our objective is to characterize the hot, dense pinch core plasma where 10^19 < ne < 10^22 e/cm^3 and 0.5 < Te < 2.0 keV. We estimate plasma conditions from the K-shell spectra of both the primary gas, Ar, and a dopant, Cl. Ti is found from Doppler broadening. Imaging slits allow us to measure the axial and radial variation in the density and temperature profiles.

  13. Resolving microstructures in Z pinches with intensity interferometry

    NASA Astrophysics Data System (ADS)

    Apruzese, J. P.; Kroupp, E.; Maron, Y.; Giuliani, J. L.; Thornhill, J. W.

    2014-03-01

    Nearly 60 years ago, Hanbury Brown and Twiss [R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046 (1956)] succeeded in measuring the 30 nrad angular diameter of Sirius using a new type of interferometry that exploited the interference of photons independently emitted from different regions of the stellar disk. Its basis was the measurement of intensity correlations as a function of detector spacing, with no beam splitting or preservation of phase information needed. Applied to Z pinches, X pinches, or laser-produced plasmas, this method could potentially provide spatial resolution under one micron. A quantitative analysis based on the work of Purcell [E. M. Purcell, Nature 178, 1449 (1956)] reveals that obtaining adequate statistics from x-ray interferometry of a Z-pinch microstructure would require using the highest-current generators available. However, using visible light interferometry would reduce the needed photon count and could enable its use on sub-MA machines.

  14. Resolving microstructures in Z pinches with intensity interferometry

    SciTech Connect

    Apruzese, J. P.; Kroupp, E.; Maron, Y.; Giuliani, J. L.; Thornhill, J. W.

    2014-03-15

    Nearly 60 years ago, Hanbury Brown and Twiss [R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046 (1956)] succeeded in measuring the 30 nrad angular diameter of Sirius using a new type of interferometry that exploited the interference of photons independently emitted from different regions of the stellar disk. Its basis was the measurement of intensity correlations as a function of detector spacing, with no beam splitting or preservation of phase information needed. Applied to Z pinches, X pinches, or laser-produced plasmas, this method could potentially provide spatial resolution under one micron. A quantitative analysis based on the work of Purcell [E. M. Purcell, Nature 178, 1449 (1956)] reveals that obtaining adequate statistics from x-ray interferometry of a Z-pinch microstructure would require using the highest-current generators available. However, using visible light interferometry would reduce the needed photon count and could enable its use on sub-MA machines.

  15. Instabilities in Z-pinch and liner systems

    SciTech Connect

    Sasorov, P. V.; Esaulov, A. A.; Nedoseev, S. L.

    1997-05-05

    Recent results concerning plasma instabilities and their influence on Z-pinches and liners dynamics are considered in the report. Three-dimensional two-fluid instabilities (TFI) can be responsible for the high value of anomalous electric resistance of plasma column. Two-dimensional two-fluid MHD simulation, taking into account such anomalous resistance, was performed to evaluate a threshold of sausage instability stabilization. This threshold is expressed in the terms of Z-pinch mass per unit length. Competition of the TFI's and usual Rayleigh-Taylor instability (RTI) for thin plasma liner is also discussed. The effect of an extremely fast redeployment of current from liner to a central load which had been discovered previously by the ANGARA-5 team is examined from the viewpoint of liner instabilities.

  16. Status of Pulsed Power/Beams/Z-pinch Researches in Japan

    NASA Astrophysics Data System (ADS)

    Yatsui, Kiyoshi

    2002-12-01

    Fruitful progresses have been achieved in pulsed power technology and its applications in Japan in materials science, environmental, medical, biological, etc. At Nagaoka Univ. of Tech., main efforts are devoted in materials science such as the preparation of thin films or ultrafine nanosized powders (UNP) by high-density ablation plasma produced by pulsed ion beam evaporation. Alternatively, UNPs were produced by rapid cooling of the plasma produced by pulsed wire discharge (PWD) as well. The ablation plasma is also very effective to build-in metals (e.g., tungsten, aluminum, copper) in via holes of LSIs. Flue-gas treatment of NOx is studied by pulsed, relativistic electron beam. At Tokyo Inst. of Tech., studies are carried out on pulse discharge using powders, soft X-ray by capillary discharge, and development of pulse power sources for industrial applications. At Kumamoto Univ., studies are concerned on NOx removal by pulsed power, gas-puff z-pinch, and opening switches. Converting the pulsed power to z-pinches, charged particles beams, or plasma foci have also been carried out in many universities. Systematic studies are carried out under good collaboration among many universities, national laboratories and companies.

  17. Measurement of Radiation Symmetry in Z-Pinch Driven Hohlraums

    NASA Astrophysics Data System (ADS)

    Hanson, David L.

    2001-10-01

    The z-pinch driven hohlraum (ZPDH) is a promising approach to high yield inertial confinement fusion currently being characterized in experiments on the Sandia Z accelerator [1]. In this concept [2], x rays are produced by an axial z-pinch in a primary hohlraum at each end of a secondary hohlraum. A fusion capsule in the secondary is imploded by a symmetric x-ray flux distribution, effectively smoothed by wall reemission during transport to the capsule position. Capsule radiation symmetry, a critical issue in the design of such a system, is influenced by hohlraum geometry, wall motion and time-dependent albedo, as well as power balance and pinch timing between the two z-pinch x-ray sources. In initial symmetry studies on Z, we used solid low density burnthrough spheres to diagnose highly asymmetric, single-sided-drive hohlraum geometries. We then applied this technique to the more symmetric double z-pinch geometry [3]. As a result of design improvements, radiation flux symmetry in Z double-pinch wire array experiments now exceeds the measurement sensitivity of this self-backlit foam ball symmetry diagnostic (15% max-min flux asymmetry). To diagnose radiation symmetry at the 2 - 5% level attainable with our present ZPDH designs, we are using high-energy x rays produced by the recently-completed Z-Beamlet laser backlighter for point-projection imaging of thin-wall implosion and symmetry capsules. We will present the results of polar flux symmetry measuremets on Z for several ZPDH capsule geometries together with radiosity and radiation-hydrodynamics simulations for comparison. [1] M. E. Cuneo et al., Phys. Plasmas 8,2257(2001); [2] J. H. Hammer et al., Phys. Plasmas 6,2129(1999); [3] D. L. Hanson et al., Bull. Am. Phys. Soc. 45,360(2000).

  18. Self-similar oscillations of a Z pinch

    SciTech Connect

    Felber, F.S.

    1982-04-01

    A new analytic, self-similar solution of the equations of ideal magnetohydrodynamics describes cylindrically symmetric plasmas conducting constant current. The solution indicates that an adiabatic Z pinch oscillates radially with a period typically of the order of a few acoustic transit times. A stability analysis, which shows the growth rate of the sausage instability to be a saturating function of wavenumber, suggests that the oscillations are observable.

  19. Characterization of Z-Pinch Driven Hohlraum Radiation Sources*

    NASA Astrophysics Data System (ADS)

    Porter, J. L.; Chandler, G. A.; Deeney, C.; Fehl, D. L.; Noack, D. D.; Olson, R. E.; Ruggles, L. E.; Seaman, J. F.; Spielman, R. B.; Torres, J. A.; Vargas, M. F.; Bartlett, R. J.; Benage, J. F., Jr.; Idzorek, G. C.

    1996-11-01

    We have developed a z-pinch-driven soft x-ray radiation source that is near-Planckian in spectral shape and very uniform over spatial dimensions of several millimeters. We create this radiation source by surrounding a z-pinch implosion with a high-Z radiation case (a hohlraum). This experimental arrangement is referred to as the =B3vacuum hohlraum=B2 configuration. We have measured hohlraum temperatures of greater than 75 eV which last for 10=B9s of nanoseconds using the 7-MA Saturn accelerator. We will begin z-pinch experiments this fall using the 16-MA PBFA-Z accelerator. The PBFA-Z driver will be able to produce hohlraums with radiation temperatures well in excess of 100 eV. In this presentation we will describe measurements of the time history of the x-ray power, spectrum, and spatial uniformity of hohlraums produced using the Saturn accelerator. We will also present preliminary measurements of the radiation temperature of hohlraums created using the recently commissioned PBFA-Z accelerator. *This work supported by the U.S. Department of Energy under contract DE-AC04-94AL85000.

  20. High Power Selective Laser Melting (HP SLM) of Aluminum Parts

    NASA Astrophysics Data System (ADS)

    Buchbinder, D.; Schleifenbaum, H.; Heidrich, S.; Meiners, W.; Bültmann, J.

    Selective Laser Melting (SLM) is one of the Additive Manufacturing (AM) technologies that enables the production of light weight structured components with series identical mechanical properties without the need for part specific tooling or downstream sintering processes, etc. Especially aluminum is suited for such eco-designed components due to its low weight and superior mechanical and chemical properties. However, SLM's state-of-the-art process and cost efficiency is not yet suited for series-production. In order to improve this efficiency it is indispensable to increase the build rate significantly. Thus, aluminum is qualified for high build rate applications using a new prototype machine tool including a 1 kW laser and a multi-beam system.

  1. Enhanced energy coupling and x-ray emission in Z-pinch plasma implosions

    NASA Astrophysics Data System (ADS)

    Whitney, K. G.; Thornhill, J. W.; Apruzese, J. P.; Davis, J.; Deeney, C.; Coverdale, C. A.

    2004-08-01

    Recent experiments conducted on the Saturn pulsed-power generator at Sandia National Laboratories [R. B. Spielman et al., in Proceedings of the Second International Conference on Dense Z Pinches, Laguna Beach, CA, 1989, edited by N. R. Pereira, J. Davis, and N. Rostoker (American Institute of Physics, New York, 1989), p. 3] have produced large amounts of x-ray output, which cannot be accounted for in conventional magnetohydrodynamic (MHD) calculations. In these experiments, the Saturn current had a rise time of ~180 ns in contrast to a rise time of ~60 ns in Saturn's earlier mode of operation. In both aluminum and tungsten wire-array Z-pinch implosions, 2-4 times more x-ray output was generated than could be supplied according to one-dimensional (1D) magnetohydrodynamic calculations by the combined action of the jB acceleration forces and ohmic heating (as described by a classical Braginskii resistivity). In this paper, we reexamine the problem of coupling transmission line circuits to plasma fluid equations and derive expressions for the Z-pinch load circuit resistance and inductance that relate these quantities in a 1D analysis to the surface resistivity of the fluid, and to the magnetic field energy that is stored in the vacuum diode, respectively. Enhanced energy coupling in this analysis, therefore, comes from enhancements to the surface resistivity, and we show that plasma resistivities approximately three orders of magnitude larger than classical are needed in order to achieve energy inputs that are comparable to the Saturn experiment x-ray outputs. Large enhancements of the plasma resistivity increase the rate of magnetic field and current diffusion, significantly modify the qualitative features of the MHD, and raise important questions as to how the plasma fluid dynamics converts enhanced energy inputs into enhanced x-ray outputs. One-dimensional MHD calculations in which resistivity values are adjusted phenomenologically are used to illustrate how various dynamical assumptions influence the way enhanced energy inputs are channeled by the fluid dynamics. Variations in the parameters of the phenomenological model are made in order to determine how sensitively they influence the dynamics and the degree to which the calculated x-ray outputs can be made to replicate the kinds of large variations in the experimental x-ray power data that were observed in three nominally identical aluminum wire shots on Saturn.

  2. Development of the Axial Instability in Low Wire Number Wire Array Z-Pinches

    SciTech Connect

    Knapp, P. F.; Bell, K. S.; Blesener, I. C.; Chalenski, D. A.; Douglass, J. D.; Greenly, J. B.; Martin, M. R.; McBride, R. D.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Kusse, B. R.; Hall, G. N.

    2009-01-21

    We are investigating the development of the axial instability, a modulation of the size of the coronal plasma that develops around each wire in wire-array Z-pinches. The modulation is a result of nonuniform ablation of material from the relatively cold wire core. It has long been known that the wavelength of this modulation is constant late in time and, since it is unique to different materials, it has come to be known as the fundamental mode. In these experiments we imaged individual wires with laser shadowgraphy early in time primarily in low wire number, large wire diameter aluminum arrays for ease of viewing. We Observe the development of this modulation from the time of initiation of coronal plasma, obtaining its dominant wavelength and amplitude growth as a function of time. We also studied the instability on coiled wires, which modify the wire ablation mechanism and completely suppress the fundamental mode[Hall2008]. time is discussed.

  3. Z-Pinch Power Plant Shock Mitigation Experiments, Modeling, and Code Assessment

    SciTech Connect

    Rodriguez, Sal B.; Dandini, Vincent J.; Vigil, Virginia L.; Turgeon, Matt; Louie, Dave

    2005-04-15

    We are investigating attenuation techniques to mitigate the powerful shock that occurs inside the Z-Pinch Power Plant. For this purpose, we conducted a series of experiments at the University of Wisconsin. These experiments consisted of shock waves traveling at greater than Ma 1 that impacted aluminum foam under various configurations. In turn, ABAQUS, ALEGRA, CTH, and DYNA3D were used to simulate one of the experiments in order to validate the codes. Although the behavior of foamed solid and liquid metal is fundamentally different, we considered foamed metal because some disposable components of the ZP-3 (i.e. the RTL) may be designed with metal foam. In addition, the relatively simple experiments should help us determine which codes can better simulate shock waves. In the near future, we will conduct shock experiments using foamed materials such as water, oils, and other metals.

  4. X-ray power increase from symmetrized wire-array z-pinch implosions

    SciTech Connect

    Sanford, T.W.L.; Allshouse, G.O.; Marder, B.M.

    1996-08-01

    A systematic experimental study of annular aluminum-wire z-pinches on the Saturn accelerator shows that, for the first time, the measured spatial characteristics and x-ray powers can approach those of two-dimensional, radiation-magneto-hydrodynamic simulations when large numbers of wires are used. Calculations show that the implosion begins to transition from that of individual plasma wires to that of a continuous plasma shell, when the circumferential gap between wires in the array is reduced below 1.4+1.3/-0.7 mm. This calculated gap coincides with the measured transition of 1.4 {+-}0.4 mm between the observed regimes of slow and rapid improvement in power output with decreasing gap. In the plasma shell regime, x-ray powers in excess of a factor of three over that generated in the plasma-wire region are measured.

  5. Z-Pinch fusion-based nuclear propulsion

    NASA Astrophysics Data System (ADS)

    Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.; Percy, T.

    2013-02-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human space flight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly [1]. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield [2]. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10-6 s). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) [3] propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle. The analysis of the Z-Pinch MIF propulsion system concludes that a 40-fold increase of Isp over chemical propulsion is predicted. An Isp of 19,436 s and thrust of 3812 N s/pulse, along with nearly doubling the predicted payload mass fraction, warrants further development of enabling technologies.

  6. Nonlinear Rayleigh-Taylor instabilities in fast Z pinches

    SciTech Connect

    Miles, Aaron R.

    2009-03-15

    A simplified analytic model is presented to describe the implosion of a plasma column by an azimuthal magnetic field of sufficient magnitude to drive a strong shock wave into the plasma. This model is employed together with buoyancy-drag-based models of nonlinear single-mode and turbulent multimode Rayleigh-Taylor growth to investigate the mixing process in such fast Z pinches. These models give predictions that characterize limitations the instability can impose on the implosion in terms of maximum convergence ratios attainable for an axially coherent pinch. Both the implosion and instability models are validated with results from high-resolution numerical simulations.

  7. High energy density Z-pinch plasmas using flow stabilization

    NASA Astrophysics Data System (ADS)

    Shumlak, U.; Golingo, R. P.; Nelson, B. A.; Bowers, C. A.; Doty, S. A.; Forbes, E. G.; Hughes, M. C.; Kim, B.; Knecht, S. D.; Lambert, K. K.; Lowrie, W.; Ross, M. P.; Weed, J. R.

    2014-12-01

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvn times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes - Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and scaling analyses will be presented. In addition to studying fundamental plasma science and high energy density physics, the ZaP and ZaP-HD experiments can be applied to laboratory astrophysics.

  8. High energy density Z-pinch plasmas using flow stabilization

    SciTech Connect

    Shumlak, U. Golingo, R. P. Nelson, B. A. Bowers, C. A. Doty, S. A. Forbes, E. G. Hughes, M. C. Kim, B. Knecht, S. D. Lambert, K. K. Lowrie, W. Ross, M. P. Weed, J. R.

    2014-12-15

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and scaling analyses will be presented. In addition to studying fundamental plasma science and high energy density physics, the ZaP and ZaP-HD experiments can be applied to laboratory astrophysics.

  9. Radiating shock measurements in the Z-pinch dynamic hohlraum.

    PubMed

    Rochau, G A; Bailey, J E; Maron, Y; Chandler, G A; Dunham, G S; Fisher, D V; Fisher, V I; Lemke, R W; Macfarlane, J J; Peterson, K J; Schroen, D G; Slutz, S A; Stambulchik, E

    2008-03-28

    The Z-pinch dynamic hohlraum is an x-ray source for high energy-density physics studies that is heated by a radiating shock to radiation temperatures >200 eV. The time-dependent 300-400 eV electron temperature and 15-35 mg/cc density of this shock have been measured for the first time using space-resolved Si tracer spectroscopy. The shock x-ray emission is inferred from these measurements to exceed 50 TW, delivering >180 kJ to the hohlraum. PMID:18517878

  10. Breakeven Fusion in a Staged Z-Pinch

    NASA Astrophysics Data System (ADS)

    Rahman, H. U.; Ney, P.; Rostoker, N.; Wessel, F. J.

    2008-04-01

    We are studying a dense-plasma, Z-pinch configuration, where a cylindrical, Xe shell implodes onto a co-axial, deuterium-tritium target. The configuration is modeled using MACH2. During implosion current amplification occurs at the outer surface of the DT target, leading to a shorter and more energetic implosion (Ref. 1). Shocks preheat and preaccelerate the DT without Rayleigh-Taylor (RT) instability (Ref. 2), even as the Xe liner becomes RT unstable. Proper choice of the initial radius, density, and driver parameters provides a fusion-energy yield larger than the stored (capacitor-bank) energy. A specific example is presented, involving a 2 MJ, 100 ns system that produces a 5 MJ fusion yield. These studies are of interest, since fusion breakeven has yet to be demonstrated in any laboratory experiment. [1] H. U. Rahman, F. J. Wessel, N. Rostoker, ``Staged Z Pinch'', Phys. Rev. Lett 74, p. 714(1995). [2] N. Rostoker and H. Tashiri, A Perspective of Physics Vol. 2, Gordon and Breech, ``RT Instability of Impulsively Accelerated Shells'', p. 217(1978).

  11. D-D fusion experiments using fast z pinches

    SciTech Connect

    Spielman, R.B.; Baldwin, G.T.; Cooper, G.

    1994-04-01

    The development of high current (I > 10 MA) drivers provides us with a new tool for the study of neutron-producing plasmas in the thermal regime. The imploded deuterium mass (or collisionality) increases as I{sup 2} and the ability of the driver to heat the plasma to relevant fusion temperatures improves as the power of the driver increases. Additionally, fast (< 100 ns) implosions are more stable to the usual MHD instabilities that plagued the traditional slower implosions. We describe experiments in which deuterium gas puffs or CD{sub 2} fiber arrays were imploded in a fast z-pinch configuration on Sandia`s Saturn facility generating up to 3 {times} 10{sup 12} D-D neutrons. These experiments were designed to explore the physics of neutron-generating plasmas in a z-pinch geometry. Specifically, we intended to produce neutrons from a nearly thermal plasma where the electrons and ions have a nearly Maxwellian distribution. This is to be clearly differentiated from the more usual D-D beam-target neutrons generated in many dense plasma focus (DPF) devices.

  12. D-D fusion experiments using fast Z pinches

    SciTech Connect

    Spielman, R.B.; Baldwin, G.T.; Cooper, G.

    1998-03-01

    The development of high current (I > 10 MA) drivers provides the authors with a new tool for the study of neutron-producing plasmas in the thermal regime. The imploded deuterium mass (or collisionality) increases as I{sup 2} and the ability of the driver to heat the plasma to relevant fusion temperatures improves as the power of the driver increases. Additionally, fast (<100 ns) implosions are more stable to the usual MHD instabilities that plagued the traditional slower implosions. The authors describe experiments in which deuterium gas puffs or CD{sub 2} fiber arrays were imploded in a fast z-pinch configuration on Sandia`s Saturn facility generating up to 3 {times} 10{sup 12} D-D neutrons. These experiments were designed to explore the physics of neutron-generating plasmas in a z-pinch geometry. Specifically, the authors intended to produce neutrons from a nearly thermal plasma where the electrons and ions have a nearly Maxwellian distribution. This is to be clearly differentiated from the more usual D-D beam-target neutrons generated in many dense plasma focus (DPF) devices.

  13. Optical diagnostics on dense Z-pinch plasmas

    SciTech Connect

    Riley, R.A. Jr.; Lovberg, R.H.; Shlachter, J.S.; Scudder, D.W.

    1992-01-01

    A novel point-diffraction'' interferometer has been implemented on the Los Alamos Solid Fiber Z-Pinch experiment. The laser beam is split into two legs after passing through the plasma. The reference leg is filtered with a pin-hole aperture and recombined with the other leg to form an interferogram. This allows compact mounting of the optics and relative ease of alignment. The Z-Pinch experiment employs a pulsed-power generator that delivers up to 700 KA with a 100ns rise-time through a fiber of deuterium or deuterated polyethylene (CD{sub s}) that is 5-cm long and initially solid with radius r{approx}15{mu}m. The interferometer, using a {triangle}t{approx}200ps pulse from a Nd:YAG laser frequency doubled to {lambda}=532nm, measures the electron line density and, assuming azimuthal symmetry, the density as a function of radial and axial position. Calculations predict Faraday rotations of order {pi}/2 for plasma and current densities that this experiment was designed to produce. The resulting periodic loss of fringes would provide the current density distribution.

  14. Optical diagnostics on dense Z-pinch plasmas

    SciTech Connect

    Riley, R.A. Jr.; Lovberg, R.H.; Shlachter, J.S.; Scudder, D.W.

    1992-05-01

    A novel ``point-diffraction`` interferometer has been implemented on the Los Alamos Solid Fiber Z-Pinch experiment. The laser beam is split into two legs after passing through the plasma. The reference leg is filtered with a pin-hole aperture and recombined with the other leg to form an interferogram. This allows compact mounting of the optics and relative ease of alignment. The Z-Pinch experiment employs a pulsed-power generator that delivers up to 700 KA with a 100ns rise-time through a fiber of deuterium or deuterated polyethylene (CD{sub s}) that is 5-cm long and initially solid with radius r{approx}15{mu}m. The interferometer, using a {triangle}t{approx}200ps pulse from a Nd:YAG laser frequency doubled to {lambda}=532nm, measures the electron line density and, assuming azimuthal symmetry, the density as a function of radial and axial position. Calculations predict Faraday rotations of order {pi}/2 for plasma and current densities that this experiment was designed to produce. The resulting periodic loss of fringes would provide the current density distribution.

  15. A time-resolved spectroscopic diagnostic based on fast scintillator and optical fiber array for z-pinch plasmas.

    PubMed

    Ye, Fan; Qin, Yi; Jiang, Shuqing; Xue, Feibiao; Li, Zhenghong; Yang, Jianlun; Xu, Rongkun; Anan'ev, S S; Dan'ko, S A; Kalinin, Yu G

    2009-10-01

    We report a specially designed type of temporal resolved x-ray spectroscopic diagnostic using a spherically bent quartz crystal for z-pinch plasmas. Registration of time-resolved spectra was accomplished by coupling fast plastic scintillator, an optical fiber array, an optical streak camera, and a charge coupled device as the recording medium of this diagnostic. The diagnostic has been tested in imploding wire array experiments on S-300 pulsed power facility. Time-resolved K-shell lines were successfully obtained for aluminum wire array implosion plasmas. PMID:19895094

  16. Investigation of trailing mass in Z-pinch implosions and comparison to experiment

    NASA Astrophysics Data System (ADS)

    Yu, Edmund

    2007-11-01

    Wire-array Z pinches represent efficient, high-power x-ray sources with application to inertial confinement fusion, high energy density plasmas, and laboratory astrophysics. The first stage of a wire-array Z pinch is described by a mass ablation phase, during which stationary wires cook off material, which is then accelerated radially inwards by the JxB force. The mass injection rate varies axially and azimuthally, so that once the ablation phase concludes, the subsequent implosion is highly 3D in nature. In particular, a network of trailing mass and current is left behind the imploding plasma sheath, which can significantly affect pinch performance. In this work we focus on the implosion phase, electing to model the mass ablation via a mass injection scheme. Such a scheme has a number of injection parameters, but this freedom also allows us to gain understanding into the nature of the trailing mass network. For instance, a new result illustrates the role of azimuthal correlation. For an implosion which is 100% azimuthally correlated (corresponding to an azimuthally symmetric 2D r-z problem), current is forced to flow on the imploding plasma sheath, resulting in strong Rayleigh-Taylor (RT) growth. If, however, the implosion is not azimuthally symmetric, the additional azimuthal degree of freedom opens up new conducting paths of lower magnetic energy through the trailing mass network, effectively reducing RT growth. Consequently the 3D implosion experiences lower RT growth than the 2D r-z equivalent, and actually results in a more shell-like implosion. A second major goal of this work is to constrain the injection parameters by comparison to a well-diagnosed experimental data set, in which array mass was varied. In collaboration with R. Lemke, M. Desjarlais, M. Cuneo, C. Jennings, D. Sinars, E. Waisman

  17. Nonlinear development of the sausage instability in dense Z-pinches

    SciTech Connect

    Colombant, D.; Mosher, D. )

    1989-12-01

    In this paper, a 2d envelope model is described for the nonlinear development of the sausage instability in dense Z-pinches. Numerical solutions for various cases of interest are provided which lay the foundation for a quantitative model of nonthermal neutron emission in dense Z-pinches by determining the induced electric fields associated with the development of the instability. (AIP)

  18. Wire Array Z-pinches on Sphinx Machine: Experimental Results and Relevant Points of Microsecond Implosion Physics

    NASA Astrophysics Data System (ADS)

    Calamy, H.; Hamann, F.; Lassalle, F.; Bayol, F.; Mangeant, C.; Morell, A.; Huet, D.; Bedoch, J. P.; Chittenden, J. P.; Lebedev, S. V.; Jennings, C. A.; Bland, S. N.

    2006-01-01

    Centre d'Etudes de Gramat (France) has developed an efficient long implosion time (800 ns) Aluminum plasma radiation source (PRS). Based on the LTD technology, the SPHINX facility is developed as a 1-3MJ, 1?s rise time, 4-10 MA current driver. In this paper, it was used in 1MJ, 4MA configuration to drive Aluminum nested wire arrays Z-pinches with K-shell yield up to 20 kJ and a FWHM of the x-ray pulse of about 50 ns. We present latest SPHINX experiments and some of the main physic issues of the microsecond regime. Experimental setup and results are described with the aim of giving trends that have been obtained. The main features of microsecond implosion of wire arrays can be analyzed thanks to same methods and theories as used for faster Z-pinches. The effect of load polarity was examined. The stability of the implosion , one of the critical point of microsecond wire arrays due to the load dimensions imposed by the time scale, is tackled. A simple scaling from 100 ns Z-pinch results to 800 ns ones gives good results and the use of nested arrays improves dramatically the implosion quality and the Kshell yield of the load. However, additional effects such as the impact of the return current can geometry on the implosion have to be taken into account on our loads. Axial inhomogeneity of the implosion the origin of which is not yet well understood occurs in some shots and impacts the radiation output. The shape of the radiative pulse is discussed and compared with the homogeneity of the implosion. Numerical 2D R-Z and R-? simulations are used to highlight some experimental results and understand the plasma conditions during these microsecond wire arrays implosions.

  19. The Past, Present and Future of Z-pinches

    NASA Astrophysics Data System (ADS)

    Haines, M. G.

    1999-11-01

    The Z-pinch is enjoying a renaissance as the world's most powerful soft x-ray source, and there is a growing interest in both understanding the basic physics and its application to controlled fusion, particularly through indirect drive inertial confinement. It has the advantages of being efficient and having high energy and power density. The early history will be traced from 1790, when Martinus van Marum conducted exploding wire experiments in Holland, the Australian pinching of a copper tube lightning conductor, the seminal lecture at Harwell in 1956 by Kurchatov, and the classic contributions of Bennett, Pease and Braginskii. The most notable feature of the Z-pinch is its instability. The various regimes of stability analysis will be reviewed, including resistive and viscous effects, finite ion Larmor radius and the effect of sheared axial flow. Work in the last 10 years on single fibres, especially of cryogenic deuterium, gave neutrons but, alas, they were of the same origin, namely beam-plasma interactions, as reported by Kurchatov. The renaissance has come about through the implosion first of gas puffs but now, most importantly, of arrays of fine wires. Research at Sandia National Laboratory has shown that by using more and more, finer and finer wires, the x-ray radiation emitted at stagnation increased in power and decreased in pulse width. The understanding of these results has been advanced considerably by theory, simulation and smaller-scale, well diagnosed experiments. The dominant instability during the implosion is the magneto-Rayleigh-Taylor instability. The seeding of the mode seems to be associated with the MHD m = 0 instability that develops in an uncorrelated way on each individual wire as it evolves from a molten metal cylinder surrounded by a plasma corona. The global magnetic field leads both to the inward jetting of the plasma to the axis and to the development of a correlated global mode with seed amplitude proportional to the (number of wires)-1/2 in agreement with a heuristic model. The Rayleigh-Taylor instability can be mitigated by having a second inner array, and at least three modes of behaviour have been identified. It is with a tungsten nested array on the Z-accelerator at Sandia that a record 280TW of power or 1.8MJ of soft x-rays have been produced. In the future, generators and hopefully x-ray yield will be enhanced. There are several hohlraum designs based on Z-pinches for high yield inertial confinement fusion, and already some ideas for going towards inertial fusion energy. Other applications include radiation-hydrodynamics, equation of state and opacity studies. It appears to have an exciting future.

  20. Tungsten Z-Pinch Long Implosions on the Saturn Generator

    SciTech Connect

    DOUGLAS,MELISSA R.; DEENEY,CHRISTOPHER; SPIELMAN,RICK B.; COVERDALE,CHRISTINE A.; RODERICK,N.F.; HAINES,M.G.

    1999-11-05

    Recent success on the Saturn and Z accelerators at Sandia National Laboratories have demonstrated the ability to scale z-pinch parameters to increasingly larger current pulsed power facilities. Next generation machines will require even larger currents (>20 MA), placing further demands on pulsed power technology. To this end, experiments have been carried out on Saturn operating in a long pulse mode, investigating the potential of lower voltages and longer implosion times while still maintaining pinch fidelity. High wire number, 25 mm diameter tungsten arrays were imploded with implosion times ranging from 130 to 240 ns. The results were comparable to those observed in the Saturn short pulse mode, with risetimes on the order of 4.5 to 6.5 ns. Experimental data will be presented, along with two dimensional radiation magnetohydrodynamic simulations used to explain and reproduce the experiment.

  1. Conceptual Design of a Z-Pinch Fusion Propulsion System

    NASA Technical Reports Server (NTRS)

    Adams, Robert; Polsgrove, Tara; Fincher, Sharon; Fabinski, Leo; Maples, Charlotte; Miernik, Janie; Stratham, Geoffrey; Cassibry, Jason; Cortez, Ross; Turner, Matthew; Santarius, John; Percy, Thomas

    2010-01-01

    This slide presentation reviews a project that aims to develop a conceptual design for a Z-pinch thruster, that could be applied to develop advanced thruster designs which promise high thrust/high specific impulse propulsion. Overviews shows the concept of the design, which use annular nozzles with deuterium-tritium (D-T) fuel and a Lithium mixture as a cathode, Charts show the engine performance as a function of linear mass, nozzle performance (i.e., plasma segment trajectories), and mission analysis for possible Mars and Jupiter missions using this concept for propulsion. Slides show views of the concepts for the vehicle configuration, thrust coil configuration, the power management system, the structural analysis of the magnetic nozzle, the thermal management system, and the avionics suite,

  2. Analysis of Z-pinch dynamics with application to fibers

    SciTech Connect

    Rosenau, P.; Nebel, R.A.; Lewis, H.R.

    1989-06-01

    A computer-aided study of Z-pinch plasma transport reveals a high level of structured behavior. The equations asymptote into time and space separable forms, with the profiles of all the variables determined solely by the time dependence of the plasma current. Plasma profiles (normalized with respect to their values on the axis and to the plasma radius) are almost independent of the level of Bremsstrahlung radiation and thus can be determined using the self-similar pattern of a nonradiating plasma. Radiation causes the plasma column to collapse within a finite time and is accompanied by a rapid growth in the density and pressure. The temporal growth of the temperature initially follows that of the current, but if the current crosses the Pease limit, the temperature also rapidly grows.

  3. Spectroscopic diagnosis of foam z-pinch plasmas on SATURN

    SciTech Connect

    Nash, T.J.; Derzon, M.S.; Allshouse, G.; Deeney, C.; Jobe, D.; McGurn, J.; MacFarlane, J.J.; Wang, P.

    1996-06-01

    Solid and annular silicon aerogel and agar foams were shot on the accelerator SATURN to study plasma initiation, acceleration, and stagnation. SATURN delivers 7 MA with a 50 nsec rise time to these foam loads. We fielded several spectroscopic diagnostics to measure plasma parameters throughout the z-pinch discharge. A spatially resolved single frame time-gated EUV spectrometer measured the extent of plasma ablation off the surface foam. A time integrated crystal spectrometer showed that characteristic K shell radiation of silicon in the aerogel and of S and Na impurities in the agar were all attenuated when the foam loads were coated with a conductive layer of gold. The time resolved pinhole camera showed that in general the quality of the pinch implosions was poor but improved with increasing efforts to improve current continuity such as prepulse and conductive coatings.

  4. Light detonation wave in a cylindrical Z-pinch

    NASA Astrophysics Data System (ADS)

    Yusupaliev, U.; Sysoev, N. N.; Shuteev, S. A.; Elenskii, V. G.

    2015-09-01

    A secondary compression wave previously observed by other researchers in a cylindrical Z-pinch has been identified in this work as a light detonation wave. It appears on the inner surface of a discharge chamber under the action of the intense ultraviolet radiation from a plasma pinch at the stage of its maximum compression. The condition of the light detonation wave has been determined experimentally. The dependence of its Mach number on a generalized dimensionless variable has been determined taking into account the conservation laws for the light detonation wave including the pressure of the gas, expenses on the formation of the surface plasma, and the energy of ionization of the gas involved in the wave. An analogy with the laser-supported detonation wave created by intense laser radiation has been revealed. The indicated dependence is within the error of measurement in agreement with the experimental data for light detonation waves created by both methods.

  5. Spectroscopic study of z-pinch stagnation on Z.

    SciTech Connect

    Maron, Yitzhak; Weingarten, L.; Starobinets, A.; Fisher, V.; Jennings, Christopher A.; Ampleford, David J.; Bailey, James E.; Yu, Edmund P.; Bernshtam, V.; Cuneo, Michael Edward; Rochau, Gregory Alan; Coverdale, Christine Anne; Jones, Brent Manley; Hansen, Stephanie B.

    2010-11-01

    Fast z-pinches provide intense 1-10 keV photon energy radiation sources. Here, we analyze time-, space-, and spectrally-resolved {approx}2 keV K-shell emissions from Al (5% Mg) wire array implosions on Sandia's Z machine pulsed power driver. The stagnating plasma is modeled as three separate radial zones, and collisional-radiative modeling with radiation transport calculations are used to constrain the temperatures and densities in these regions, accounting for K-shell line opacity and Doppler effects. We discuss plasma conditions and dynamics at the onset of stagnation, and compare inferences from the atomic modeling to three-dimensional magneto-hydrodynamic simulations.

  6. Spectroscopic diagnosis of foam z-pinch plasmas on SATURN

    NASA Astrophysics Data System (ADS)

    Nash, T. J.; Derzon, M. S.; Allshouse, G.; Deeney, C.; Jobe, D.; Seaman, J.; Gilliland, T.; McGurn, J.; MacFarlane, J. J.; Wang, P.

    1997-01-01

    Solid and annular silicon aerogel and agar foams were imploded on the SATURN accelerator to study plasma initiation, acceleration, and stagnation. SATURN delivers 7 MA with a 50 ns rise time to these foam loads. We fielded several spectroscopic diagnostics to measure plasma parameters throughout the z-pinch discharge. A spatially resolved single frame time-gated extreme ultraviolet spectrometer measured the extent of plasma ablation off the surface of the foam. A time integrated crystal spectrometer showed that characteristic K shell radiation of silicon in the aerogel and of sulfur and sodium impurities in the agar were attenuated when the foam loads were coated with a conductive layer of gold. A time-resolved pinhole camera showed that in general the quality of the pinch implosions was poor but improved with increasing efforts to improve current continuity such as prepulse and conductive coatings.

  7. Suppression of Rayleigh-Taylor instabilities in Z-pinches

    NASA Astrophysics Data System (ADS)

    Zhigalin, A. S.; Rousskikh, A. G.; Baksht, R. B.; Chaikovsky, S. A.; Labetskaya, N. A.; Oreshkin, V. I.

    2015-06-01

    Experiments on studying the stability of Z-pinch compression were carried out at a current of 450 kA with a build-up time of 450 ns. The plasma shell of the pinches was formed by evaporating the electrode material in the process of vacuum arc burning. The Rayleigh-Taylor (RT) instabilities were suppressed using the regime of arc combustion on the surface of one of the electrodes in the high-voltage gap in which the pinch was positioned. As a result of free plasma discharge, the radial density distribution was formed such that the plasma concentration increased from the outer boundary to the shell axis. The experiments demonstrated that such an initial radial density distribution almost completely suppresses of the RT instability.

  8. Global external magnetohydrodynamic instabilities in straight noncircular Z pinches

    SciTech Connect

    Spies, G.O.

    1989-02-01

    The straight EXTRAP experiment (Phys. Scr. 16, 147 (1977); Nucl. Instrum. Methods 207, 223 (1983)) is modeled as a magnetohydrostatic equilibrium with cylindrical symmetry and a plane magnetic field. The plasma is surrounded by a vacuum that extends to infinity, and in which four axial rod currents are placed symmetrically. The plasma current density is either parallel or antiparallel to the rod currents, thus having one sign throughout. In the stability analysis, the configuration is assumed to have a finite axial length (the boundary conditions appropriate to a rigid perfect conductor are imposed at the two ends), and the rods are assumed to be permeable to the magnetic field. According to ideal magnetohydrodynamics, such an equilibrium is globally unstable to flute modes and/or slip modes unless the rod currents vanish (circular Z pinch). This is due to the increase away from the center of the octupole field of the rods.

  9. Instability heating of a solid fiber Z-pinch

    SciTech Connect

    Riley, R.; Scudder, D.; Shlachter, J.; Lovberg, R.

    1996-04-01

    A dense Z-pinch formed by the electrical breakdown of solid CD{sub 2} fibers in an 800 kA, 100 ns risetime pulse generator has been studied with optical and radiation diagnostics. It has been found that, contrary to calculations based on classical joule heating of the plasma that predict approximate dynamic equilibrium, the pinch always expands explosively while displaying intense {ital m}=0 hydromagnetic instability activity. Excellent agreement with the observed expansion rate as well as with measured electron temperatures and neutron yield has been obtained by including in a simulation code the direct heating of ions by turbulence arising from instability growth. {copyright} {ital 1996 American Institute of Physics.}

  10. The stability of the High-Density Z-Pinch

    SciTech Connect

    Glasser, A.H.; Nebel, R.A.

    1989-01-01

    Fiber-initiated High Density Z-Pinches at Los Alamos, NRL, and Karlsruhe have shown anomalously good stability. Kink modes are never seen, and sausage modes are at least delayed until late in the discharge. The success of these devices in reaching fusion conditions may depend on maintaining and understanding this anomalous stability. We have developed two numerical methods to study the stability in the regime where fluid theory is valid. While our methods are applicable to all modes, we will describe them only for the m = 0 sausage mode. The appearance of sausage modes late in the discharge and the total absence of kink modes suggest that an understanding of sausage modes is more urgent, and it is also simpler. 14 refs., 8 figs.

  11. Nonlinear stage of a Z-pinch instability

    SciTech Connect

    Garanin, S.F.; Chernyshev, Y.D.

    1987-08-01

    The nonlinear evolution of the sausage instability is analyzed for a Z-pinch with a fully developed skin effect in the current. Two-dimensional numerical calculations carried out on the sausage instability show that its occurrence leads to a stage describable by a self-similar solution when the length of the neck is fixed and the plasma compression is isentropic. At a perturbation wavelength small in comparison with the pinch radius, this stage is preceded by a stage which reduces to a nonlinear Rayleigh--Taylor instability. The dynamics of the motion of magnetic field ''bubbles'' and of plasma ''jets'' is analyzed in this case. The plasma jets emerging from the pinch do not block the pinch from the current source.

  12. Fusion burn dynamics in dense Z-pinches (DZP)

    SciTech Connect

    Krakowski, R.A.; Miller, R.L.; Bathke, C.G.; Werley, K.A.; Hagenson, R.L.; Phillips Petroleum Co., Bartlesville, OK )

    1989-01-01

    The fusion burn dynamics and energy yield of the dense Z-pinch (DZP) are examined using a profile-averaged, zero-dimensional time-dependent model. A range of conditions (fuel, line density, voltage, fusion-product heating, enthalpy endless, density and temperature profiles, current rise rate, electrode impurities) are examined. Magneto-hydrodynamic stability is assumed, and initial conditions are based on those ideally existing after the melting and ionization of a solid fiber of fusion fuel. Plasma-conditions required of neutron sources for materials testing ({dot S}{sub n} {ge} 10{sup 19} n/s) and for possible commercial power production are examined. 25 refs., 9 figs.

  13. The stability of the high-density z-pinch

    SciTech Connect

    Glasser, A.H.; Nebel, R.A. )

    1989-12-01

    Fiber-initiated High Density Z-Pinches at Los Alamos, NRL, and Karlsruhe have shown anomalously good stability. Kink modes are never seen, and sausage modes are at least delayed until late in the discharge. The success of these devices in reaching fusion conditions may depend on maintaining and understanding this anomalous stability. We have developed two numerical methods to study the stability in the regime where fluid theory is valid. While our methods are applicable to all modes, we will describe them only for the {ital m}=0 sausage mode. The appearance of sausage modes late in the discharge and the total absence of kink modes suggest that an understanding of sausage modes is more urgent, and it is also simpler.

  14. Calculation of neutron yield from a dense Z pinch

    SciTech Connect

    McCall, G.H.

    1989-04-24

    Measurements of neutron yield from a Z pinch formed from a solid deuterium fiber have been reported recently. The scaling of yield with applied current was a surprising I/sup 10/. Although the neutrons were believed to result from a plasma instability, no explanation for the magnitude or scaling of the yield with current was suggested. A model of a sausage, or m = 0, instability has been generated which gives the observed yield to a multiplicative constant and the scaling of yield with current. It is predicted that the yield can be increased by increasing the applied current, but the model indicates that yields from this mechanism may be limited to 10/sup 12/ unless tritium is added to the pinch.

  15. Magnetohydrodynamic Simulation of Solid-Deuterium - Z-Pinch Experiments

    NASA Astrophysics Data System (ADS)

    Sheehey, Peter Trogdon

    Solid-deuterium-initiated Z-pinch experiments are numerically simulated using a two-dimensional resistive magnetohydrodynamic model, which includes many important experimental details, such as "cold-start" initial conditions, thermal conduction, radiative energy loss, actual discharge current vs. time, and grids of sufficient size and resolution to allow realistic development of the plasma. The alternating -direction-implicit numerical technique used meets the substantial demands presented by such a computational task. Simulations of fiber-initiated experiments show that when the fiber becomes fully ionized (at a time depending on current ramp and fiber thickness), rapidly developing m = 0 instabilities, which originated in the coronal plasma generated from the ablating fiber, drive intense non-uniform heating and rapid expansion of the plasma column. The possibility that inclusion of additional physical effects would improve stability is explored. Finite-Larmor-radius-ordered Hall and diamagnetic pressure terms in the magnetic field evolution equation, corresponding energy equation terms, and separate ion and electron energy equations are included; these do not change the basic results. Model diagnostics, such as shadowgrams and interferograms, generated from simulation results, are in good agreement with experiment. Two alternative experimental approaches are explored: high-current magnetic implosion of hollow cylindrical deuterium shells, and "plasma -on wire" (POW) implosion of low-density plasma onto a central deuterium fiber. By minimizing instability problems, these techniques may allow attainment of higher temperatures and densities than possible with bare fiber-initiated Z -pinches. Conditions for significant D-D or D-T fusion neutron production may be realizable with these implosion -based approaches.

  16. Cu spectroscopy from a z-pinch plasma

    NASA Astrophysics Data System (ADS)

    Dasgupta, Arati; Clark, Robert W.; Ouart, Nicholas D.; Giuliani, John L.

    2014-11-01

    Recent improvements in diagnostic techniques at the Sandia Laboratories Z accelerator have facilitated the production of very detailed x-ray spectral data in the range of 1-20 keV. The high energy density plasma produced in a z-pinch is inherently in non-local thermodynamic equilibrium (NLTE). We therefore employ a NLTE collisional equilibrium model in a 1D radiation-magnetohydrodynamics code to simulate the dynamics of the pinch and to generate synthetic emission spectra. We will discuss the effects on radiation spectra and the yields of using simplifying assumptions in the atomic model and/or the radiation transport. X-ray emission from moderately high atomic number plasmas such as Fe and Cu wire array implosions often include substantial 2p-1s K-α radiation. In a z-pinch plasma, K-shell vacancies can be produced by e-beams, hot electrons at the tail of a Maxwellian and also by photopumping from energetic photons emitted near the pinch axis. In the Z-1975 Cu wire implosion, K-α lines from various ionization stages of Cu as well as from minor constituents including Ni, Fe and Cr are observed. We have calculated K-α production within a full simulation of a Cu implosion, including contributions from energetic electrons and photons. Photo-pumped K-α emission can be distinguished from that produced by e-beams; K-shell vacancies will be produced near the axis for a beam, and near the outer edge of the plasma for energetic photons. Spectroscopic modeling of these K-α lines as well as K- and L-shell emission from valence electrons can provide quantitative diagnostics of plasma parameters. This methodology can also be used to investigate K-α emission from other laboratory experiments such as EBIT and astrophysical plasmas.

  17. Instability heating of solid-fiber Z pinches

    SciTech Connect

    Riley, R.A. Jr.

    1994-02-01

    The Los Alamos High Density Z Pinch-II (HDZP-II) facility is used to study the dynamics of z-pinch plasmas generated from solid fibers of deuterated polyethylene CD{sub 2} with a range in radii of 3--60 {mu}m. HDZP-II is a pulsed-power generator that delivers a current that rises to 700 kA in 100 ns through an inductive load. A multiframe circular schlieren records the evolution of the shape and size of the plasma on seven images taken at 10-ns intervals. These circular-schlieren images show very strong m=0 instability at the onset of current and a rapid radial expansion of the plasma. No higher-order instabilities are observed. An interferometer is used to infer the electron density and electron line density, giving a measure of the fraction of plasma contained within the outline of the circular-schlieren image at one time during the multiframe sequence. A three-channel x-ray crystal-reflection spectrometer provides the time-resolved, spatially-averaged electron temperature. The magnitude of the x-ray emission at these energies also gives qualitative information about the electron temperature and density at late times. A lower bound on the ion temperature is inferred from the particle pressure needed to balance the magnetic field pressure. The ion temperature rose above that of the electrons, strongly suggesting an additional heating term that puts energy directly into the ions. An ion heating term is proposed to explain the observed rapid radial expansion and elevated ion temperatures. This heating term is based on the assumption that the observed m=0 instabilities reconnect, enclosing magnetic flux which degenerates into turbulence in the plasma. A 0-D simulation is developed to investigate the relevance of different physical models to the data presented.

  18. X-ray imaging measurements of capsule implosions driven by a Z-pinch dynamic hohlraum.

    PubMed

    Bailey, J E; Chandler, G A; Slutz, S A; Bennett, G R; Cooper, G; Lash, J S; Lazier, S; Lemke, R; Nash, T J; Nielsen, D S; Moore, T C; Ruiz, C L; Schroen, D G; Smelser, R; Torres, J; Vesey, R A

    2002-08-26

    The radiation and shock generated by impact of an annular tungsten Z-pinch plasma on a 10-mm diam 5-mg/cc CH(2) foam are diagnosed with x-ray imaging and power measurements. The radiative shock was virtually unaffected by Z-pinch plasma instabilities. The 5-ns-duration approximately 135-eV radiation field imploded a 2.1-mm-diam CH capsule. The measured radiation temperature, shock radius, and capsule radius agreed well with computer simulations, indicating understanding of the main features of a Z-pinch dynamic-hohlraum-driven capsule implosion. PMID:12190409

  19. Sodium-fluoride discharge for fast Z-pinch experiments

    NASA Astrophysics Data System (ADS)

    Welch, B. L.; Young, F. C.; Commisso, R. J.; Hinshelwood, D. D.; Mosher, D.; Weber, B. V.

    1989-04-01

    A capillary-discharge plasma source has been developed to produce a sodium-bearing plasma for fast Z-pinch implosion experiments. Peak currents of 40-50 kA from a 0.5-kJ capacitor bank were driven through a 0.5-mm-diam, few cm long capillary drilled in packed sodium-fluoride powder to form the source. A nozzle was used to collimate plasma ejected from one end of the capillary to produce a 1-2-cm-diam, several cm long cylindrical plasma. Ions with velocities of 2.2-3.4 cm/?s and densities of up to 51015 cm-3 were measured with biased charge collectors located at least 5 cm from the nozzle. Measurements of visible light from neutrals near the nozzle exit gave velocities of 1.5-1.7 cm/?s. Indications of axial and radial nonuniformities of the plasma were observed in framing photographs of visible-light emission and in spatially resolved spectral measurements. Neutral-sodium and neutral-fluorine lines were identified in the spectral range from 2300 to 6700 . Also, impurity lines of carbon, copper, and hydrogen were identified and used to characterize the plasma. Stark broadening of the Balmer alpha line of hydrogen was used to deduce a peak electron density of 81016 cm-3 at the exit of a 2-cm-diam nozzle. Electron temperatures of 1.4-1.6 eV at the nozzle exit were inferred from relative intensities of the C i and C ii lines. At this density and temperature, Saha-equilibrium-model calculations indicate that the plasma consists primarily of singly ionized sodium and neutral fluorine. A total mass per unit length (sodium and fluorine) of at least 15 ?g/cm is deduced from this analysis of the plasma constituents. This capillary discharge has been used to produce 50-100 GW of sodium K-shell x rays in fast Z-pinch experiments.

  20. Radiative properties of Z-pinch and laser produced plasmas from mid-atomic-number materials

    NASA Astrophysics Data System (ADS)

    Ouart, Nicholas D.

    The investigation of Z-pinches on university-scale pulsed power generators allows for the study of plasmas with a broad range of temperatures, densities, and sizes in cost effective experiments. In particular, X-pinches produce the hottest and densest plasma and are very suitable for x-ray radiation studies. The planar wire array has shown to be a powerful radiation source on the 1 MA Zebra generator at UNR. The radiative and implosion dynamics from such loads with mid-atomic-number materials were not studied previously in detail and are a topic of this dissertation. Specifically, the radiative and implosion characteristics of Z-pinch and X-pinch plasmas with mid-atomic-number materials (iron, nickel, copper, and zinc) will be discussed. The theoretical tool used to accomplish this is non-LTE kinetic modeling. This tool is not limited to Z-pinches, but can be applied to any plasma radiation source like laser produced plasmas which will be demonstrated. In addition, since the radiative characteristics of wire arrays are connected with the implosion characteristics, another theoretical tool, the Wire Ablation Dynamics Model was used in this dissertation to understand the ablation and implosion dynamics of wire arrays. The experiments were analyzed from two university-scale pulsed power machines: the 1 MA Zebra and COBRA generators. The research completed in this dissertation emphasizes the unique capabilities and usefulness of spectroscopy, particularly time-gated x-ray spectroscopy. For example, modeling of time-gated L-shell spectra captured from the precursor column of low-wire-number copper cylindrical wire arrays reveals electron temperatures 400 eV, which is significantly higher than any previous precursor measurements. From the analysis of experiments on COBRA, total energy was higher for the implosion of a compact cylindrical wire array made with alternating brass and aluminum wires than a uniform wire array made with just brass or aluminum. Comparison of L-shell radiation from mid-atomic-number wires placed in the inner or outer array from nested wire array implosions on COBRA shows that the material radiates more when placed on the outer array. Using different materials on the outer and inner arrays provides a unique opportunity to study the implosion dynamics of nested wire arrays, especially when using time-gated spectroscopy. Brass planar wire arrays represent a unique opportunity to study the performance of two L-shell radiators from mid-atomic-number materials (copper and zinc) at the same time in experiments on Zebra. The ablation and implosion dynamics of the single- and double-planar wire arrays was investigated and completed. Non-LTE kinetic modeling was used to describe the radiation from simultaneous measurements of K- and L-shell radiation from the interaction of a femtosecond laser system with an iron target. The K- and L-shell radiation originates from two distinct plasma regions. The L-shell radiation was emitted from a region of plasma created by the prepulse and modeling showed moderate electron temperatures and electron densities. The cold iron Kalpha line manifested from a region of plasma that was heated by hot electrons interacting with the solid dense iron target. K-shell modeling showed electron temperatures of tens of eV and less than 1% hot electrons. To study the time history of cold Kalpha lines for mid-atomic-number materials, experiments with planar wire arrays were performed on Zebra. Continuation of this study was accomplished using X-pinches to allow for the simultaneous measurements in time of hotter ionic and cold K-shell lines.

  1. The effect of load thickness on Rayleigh-Taylor mitigation in high velocity, annular z pinch implosion

    SciTech Connect

    DOUGLAS,MELISSA R.; DEENEY,CHRISTOPHER; RODERICK,NORMAN F.

    2000-05-16

    Numerical calculations have been performed to investigate the role that load thickness may play in the performance of fast annular z pinch implosions. In particular, the effects of load thickness on the mitigation of the magnetically-driven Rayleigh-Taylor (RT) instability and energy coupling between the load and generator are addressed. using parameters representative of the Z accelerator [R.B.Spielman et al., Phys.Plasmas, 5, 2105 (1998)] at Sandia National Laboratories, two dimensional magnetohydrodynamic (MHD) simulations show that increased shell thickness results in lower amplitude, slightly longer wavelength RT modes. In addition, there appears to be an optimum in load velocity which is directly associated with the thickness of the sheath and subsequent RT growth. Thin, annular loads, which should couple efficiently to the accelerator, show a large reduction in implosion velocity due to extreme RT development and increased load inductance. As a consequence, thicker loads on the order of 5 mm, couple almost as efficiently to the generator since the RT growth is reduced. This suggests that z-pinch loads can be tailored for different applications, depending on the need for uniformity or high powers.

  2. Study of soft X-ray emission from Z-pinches with a complex atomic composition

    SciTech Connect

    Volkov, G. S.; Zaitsev, V. I.; Grabovski, E. V.; Fedulov, M. V.; Aleksandrov, V. V.; Lakhtyushko, N. I.

    2010-03-15

    Results are presented from experimental studies of Z-pinches produced by implosion of aluminum and tungsten cylindrical wire arrays in the Angara-5-1 facility. The electron temperature T{sub e} and density n{sub e} of the high-temperature pinch plasma have been determined by analyzing line emission from multicharged ions. For the same mass and radius of the array and the same number of wires in it, the intensity of line emission of H- and He-like Al ions from an imploded Al + W wire array containing even a small amount of tungsten (7 wt %) is one order of magnitude lower than that from an Al array. As the W content increases, the total soft X-ray (SXR) yield increases, while the duration of the SXR pulse decreases. For the 30% W content in the array, the power and duration of the SXR pulse are nearly the same as those recorded during the implosion of a W array with the same linear mass and radius and the same number of wires. Results are also presented from experiments with nested wire arrays in which the outer and inner shells were made of Al and W wires, respectively. It is found that, in this case, the effect of tungsten on the line emission of aluminum is much weaker than that in experiments with arrays in which tungsten and aluminum wires were placed in the same shell, even if the mass of the inner (tungsten) shell was larger than that of the outer (aluminum) one. At the same time, the inner W shell plays a significant role in the implosion dynamics of a nested wire array, reducing the duration of the SXR pulse and increasing the SXR power.

  3. Viscous Heating At Stagnation In Z-Pinches

    SciTech Connect

    Haines, M. G.

    2009-01-21

    The viscous heating associated with m = 0 MHD instabilities in the stagnated Z-pinch is developed further. It would appear that the larger numerical (Neumann) viscosity plus De Bar corrections in simulation codes to yield energy conservation might be another way of representing viscous heating, but in this case the viscosity is inserted to smooth shock discontinuities. However the viscous heating per unit volume appears to be independent of the coefficient of viscosity itself because the fastest growing MHD mode is itself determined by the viscous damping. Therefore it could be argued that, though the correct physics is not in the codes, the resulting heating is not sensitive to the fact that numerical viscosity instead is employed. In addition, by chance, the model of magnetic bubbles first introduced by Lovberg et al. and Riley et al., and later by Rudakov et al. to explain phenomenologically extra heating of the ions leads to the same heating rate as in Haines et al. For the stainless steel array in which T{sub i} was predicted and measured to be >200 KeV while T{sub e} = 3 KeV the ion viscous heating is dominant. However, for the low current experiment by Kroupp et al. in which the ion kinematic viscosity is much smaller than the resistive diffusivity there is resistive damping of MHD modes, and no ions viscous heating should be expected.

  4. Electromagnetic Wave Propagation Through the ZR Z-Pinch Accelerator

    SciTech Connect

    Rose, D. V.; Welch, D. R.; Madrid, E. A.; Miller, C. L.; Clark, R. E.; Stygar, W. A.; Struve, K.; Corcoran, P. A.; Whitney, B.

    2009-01-21

    A fully three-dimensional electromagnetic model of the major pulsed power components of the 26-MA ZR accelerator is presented. This large-scale simulation model tracks the evolution of electromagnetic waves through the intermediate storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, tri-plate transmission lines, and water convolute to the vacuum insulator stack. The plates at the insulator stack are coupled to a transmission line circuit model of the four-level magnetically-insulated transmission line section and post-hole convolutes. The vacuum section circuit model is terminated by either a short-circuit load or dynamic models of imploding z-pinch loads. The simulations results are compared with electrical measurements made throughout the ZR accelerator and good agreement is found, especially for times before and up to peak load power. This modeling effort represents new opportunities for modeling existing and future large-scale pulsed power systems used in a variety of high energy density physics and radiographic applications.

  5. Study of gas-puff Z-pinches on COBRA

    NASA Astrophysics Data System (ADS)

    Qi, N.; Rosenberg, E. W.; Gourdain, P. A.; de Grouchy, P. W. L.; Kusse, B. R.; Hammer, D. A.; Bell, K. S.; Shelkovenko, T. A.; Potter, W. M.; Atoyan, L.; Cahill, A. D.; Evans, M.; Greenly, J. B.; Hoyt, C. L.; Pikuz, S. A.; Schrafel, P. C.; Kroupp, E.; Fisher, A.; Maron, Y.

    2014-11-01

    Gas-puff Z-pinch experiments were conducted on the 1 MA, 200 ns pulse duration Cornell Beam Research Accelerator (COBRA) pulsed power generator in order to achieve an understanding of the dynamics and instability development in the imploding and stagnating plasma. The triple-nozzle gas-puff valve, pre-ionizer, and load hardware are described. Specific diagnostics for the gas-puff experiments, including a Planar Laser Induced Fluorescence system for measuring the radial neutral density profiles along with a Laser Shearing Interferometer and Laser Wavefront Analyzer for electron density measurements, are also described. The results of a series of experiments using two annular argon (Ar) and/or neon (Ne) gas shells (puff-on-puff) with or without an on- (or near-) axis wire are presented. For all of these experiments, plenum pressures were adjusted to hold the radial mass density profile as similar as possible. Initial implosion stability studies were performed using various combinations of the heavier (Ar) and lighter (Ne) gasses. Implosions with Ne in the outer shell and Ar in the inner were more stable than the opposite arrangement. Current waveforms can be adjusted on COBRA and it was found that the particular shape of the 200 ns current pulse affected on the duration and diameter of the stagnated pinched column and the x-ray yield.

  6. Azimuthal Clumping Instabilities in a Z-pinch Wire Array

    NASA Astrophysics Data System (ADS)

    Tang, W.; Garasi, C.

    2005-10-01

    Recent simulations of a high wire-number array Z-pinch reveal a strong azimuthal clumping instability [1]. This instability is found to be entirely analogous to the Jeans instability in a self-gravitating disk, where the mutual attraction of gravity is replaced by the mutual attraction of neighboring wires that carry currents in the same direction. The unstable modes are heavily crowded. We have studied the temporal evolution of initial perturbations which are randomly and uniformly distributed among all modes, i.e., the spectral equivalent of white noise. An analytic scaling law is derived, which shows that randomly seeded perturbations evolve at the rate of the fastest unstable mode, almost from the start. Extension to a coronal plasma, and the coupling of this clumping instability to the magnetic Rayleigh-Taylor instability, will be reported. [1] T. Strickler et al., Phys. Plasmas 12, 052701 (2005). * This work was supported by U. S. DoE through Sandia National Laboratories award number 240985 to the University of Michigan. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  7. Analytic model for the dynamic Z-pinch

    SciTech Connect

    Piriz, A. R. Sun, Y. B.; Tahir, N. A.

    2015-06-15

    A model is presented for describing the cylindrical implosion of a shock wave driven by an accelerated piston. It is based in the identification of the acceleration of the shocked mass with the acceleration of the piston. The model yields the separate paths of the piston and the shock. In addition, by considering that the shocked region evolves isentropically, the approximate profiles of all the magnitudes in the shocked region are obtained. The application to the dynamic Z-pinch is presented and the results are compared with the well known snowplow and slug models which are also derived as limiting cases of the present model. The snowplow model is seen to yield a trajectory in between those of the shock and the piston. Instead, the neglect of the inertial effects in the slug model is seen to produce a too fast implosion, and the pressure uniformity is shown to lead to an unphysical instantaneous piston stopping when the shock arrives to the axis.

  8. Diagnostics for Z-pinch implosion experiments on PTS

    SciTech Connect

    Ren, X. D. Huang, X. B. Zhou, S. T. Zhang, S. Q. Dan, J. K. Li, J. Cai, H. C. Wang, K. L. Ouyang, K. Xu, Q. Duan, S. C. Chen, G. H. Wang, M. Feng, S. P. Yang, L. B. Xie, W. P. Deng, J. J.

    2014-12-15

    The preliminary experiments of wire array implosion were performed on PTS, a 10 MA z-pinch driver with a 70 ns rise time. A set of diagnostics have been developed and fielded on PTS to study pinch physics and implosion dynamics of wire array. Radiated power measurement for soft x-rays was performed by multichannel filtered x-ray diode array, and flat spectral responses x-ray diode detector. Total x-ray yield was measured by a calibrated, unfiltered nickel bolometer which was also used to obtain pinch power. Multiple time-gated pinhole cameras were used to produce spatial-resolved images of x-ray self-emission from plasmas. Two time-integrated pinhole cameras were used respectively with 20-μm Be filter and with multilayer mirrors to record images produced by >1-keV and 277±5 eV self-emission. An optical streak camera was used to produce radial implosion trajectories, and an x-ray streak camera paired with a horizontal slit was used to record a continuous time-history of emission with one-dimensional spatial resolution. A frequency-doubled Nd:YAG laser (532 nm) was used to produce four frame laser shadowgraph images with 6 ns time interval. We will briefly describe each of these diagnostics and present some typical results from them.

  9. Study of gas-puff Z-pinches on COBRA

    SciTech Connect

    Qi, N.; Rosenberg, E. W.; Gourdain, P. A.; Grouchy, P. W. L. de; Kusse, B. R.; Hammer, D. A.; Bell, K. S.; Shelkovenko, T. A.; Potter, W. M.; Atoyan, L.; Cahill, A. D.; Evans, M.; Greenly, J. B.; Hoyt, C. L.; Pikuz, S. A.; Schrafel, P. C.; Kroupp, E.; Fisher, A.; Maron, Y.

    2014-11-15

    Gas-puff Z-pinch experiments were conducted on the 1 MA, 200?ns pulse duration Cornell Beam Research Accelerator (COBRA) pulsed power generator in order to achieve an understanding of the dynamics and instability development in the imploding and stagnating plasma. The triple-nozzle gas-puff valve, pre-ionizer, and load hardware are described. Specific diagnostics for the gas-puff experiments, including a Planar Laser Induced Fluorescence system for measuring the radial neutral density profiles along with a Laser Shearing Interferometer and Laser Wavefront Analyzer for electron density measurements, are also described. The results of a series of experiments using two annular argon (Ar) and/or neon (Ne) gas shells (puff-on-puff) with or without an on- (or near-) axis wire are presented. For all of these experiments, plenum pressures were adjusted to hold the radial mass density profile as similar as possible. Initial implosion stability studies were performed using various combinations of the heavier (Ar) and lighter (Ne) gasses. Implosions with Ne in the outer shell and Ar in the inner were more stable than the opposite arrangement. Current waveforms can be adjusted on COBRA and it was found that the particular shape of the 200?ns current pulse affected on the duration and diameter of the stagnated pinched column and the x-ray yield.

  10. Electromagnetic wave propagation through the ZR Z-pinch accelerator.

    SciTech Connect

    Welch, Dale Robert; Clark, R. E.; Rose, David Vincent; Madrid, Elizabeth Ann; Corcoran, P. A.; Struve, Kenneth William; Stygar, William A.; Miller, C. L.; Whitney, B.

    2008-08-01

    A fully three-dimensional electromagnetic model of the major pulsed power components of the 26-MA ZR accelerator is presented. This large-scale simulation model tracks the evolution of electromagnetic waves through the intermediate storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, tri-plate transmission lines, and water convolute to the vacuum insulator stack. The plates at the insulator stack are coupled to a transmission line circuit model of the four-level magnetically-insulated transmission line section and post-hole convolutes. The vacuum section circuit model is terminated by either a short-circuit load or dynamic models of imploding z-pinch loads. The simulations results are compared with electrical measurements made throughout the ZR accelerator and good agreement is found, especially for times before and up to peak load power. This modeling effort represents new opportunities for modeling existing and future large-scale pulsed power systems used in a variety of high energy density physics and radiographic applications.

  11. Diagnostics for Z-pinch implosion experiments on PTS

    NASA Astrophysics Data System (ADS)

    Ren, X. D.; Huang, X. B.; Zhou, S. T.; Zhang, S. Q.; Dan, J. K.; Li, J.; Cai, H. C.; Wang, K. L.; Ouyang, K.; Xu, Q.; Duan, S. C.; Chen, G. H.; Wang, M.; Feng, S. P.; Yang, L. B.; Xie, W. P.; Deng, J. J.

    2014-12-01

    The preliminary experiments of wire array implosion were performed on PTS, a 10 MA z-pinch driver with a 70 ns rise time. A set of diagnostics have been developed and fielded on PTS to study pinch physics and implosion dynamics of wire array. Radiated power measurement for soft x-rays was performed by multichannel filtered x-ray diode array, and flat spectral responses x-ray diode detector. Total x-ray yield was measured by a calibrated, unfiltered nickel bolometer which was also used to obtain pinch power. Multiple time-gated pinhole cameras were used to produce spatial-resolved images of x-ray self-emission from plasmas. Two time-integrated pinhole cameras were used respectively with 20-μm Be filter and with multilayer mirrors to record images produced by >1-keV and 277±5 eV self-emission. An optical streak camera was used to produce radial implosion trajectories, and an x-ray streak camera paired with a horizontal slit was used to record a continuous time-history of emission with one-dimensional spatial resolution. A frequency-doubled Nd:YAG laser (532 nm) was used to produce four frame laser shadowgraph images with 6 ns time interval. We will briefly describe each of these diagnostics and present some typical results from them.

  12. K-? emission spectroscopic analysis from a Cu Z-pinch

    NASA Astrophysics Data System (ADS)

    Dasgupta, A.; Clark, R. W.; Giuliani, J. L.; Ouart, N. D.; Jones, B.; Ampleford, D. J.; Hansen, S. B.

    2013-06-01

    Advances in diagnostic techniques at the Sandia Z-facility have facilitated the production of very detailed spectral data. In particular, data from the copper nested wire-array shot Z1975 provides a wealth of information about the implosion dynamics and ionization history of the pinch. Besides the dominant valence K- and L-shell lines in Z1975 spectra, K-? lines from various ionization stages were also observed. K-shell vacancies can be created from inner-shell excitation and ionization by hot electrons and from photo-ionization by high-energy photons; these vacancies are subsequently filled by Auger decay or resonance fluorescence. The latter process produces the K-? emission. For plasmas in collisional equilibrium, K-? emission usually occurs from highly charged ions due to the high electron temperatures required for appreciable excitation of the K-? transitions. Our simulation of Z1975 was carried out with the NRL 1-D DZAPP non-LTE radiation-hydrodynamics model, and the resulting K- and L-shell synthetic spectra are compared with measured radiation data. Our investigation will focus on K-? generation by both impacting electrons and photons. Synthetic K-? spectra will be generated either by self-consistently calculating the K-shell vacancy production in a full Z-pinch simulation, or by post-processing data from a simulation. The analysis of these K-? lines as well as K- and L-shell emission from valence electrons should provide quantitative information about the dynamics of the pinch plasma.

  13. Analytic model for the dynamic Z-pinch

    NASA Astrophysics Data System (ADS)

    Piriz, A. R.; Sun, Y. B.; Tahir, N. A.

    2015-06-01

    A model is presented for describing the cylindrical implosion of a shock wave driven by an accelerated piston. It is based in the identification of the acceleration of the shocked mass with the acceleration of the piston. The model yields the separate paths of the piston and the shock. In addition, by considering that the shocked region evolves isentropically, the approximate profiles of all the magnitudes in the shocked region are obtained. The application to the dynamic Z-pinch is presented and the results are compared with the well known snowplow and slug models which are also derived as limiting cases of the present model. The snowplow model is seen to yield a trajectory in between those of the shock and the piston. Instead, the neglect of the inertial effects in the slug model is seen to produce a too fast implosion, and the pressure uniformity is shown to lead to an unphysical instantaneous piston stopping when the shock arrives to the axis.

  14. A non-LTE kinetic model for quick analysis of K-shell spectra from Z-pinch plasmas

    SciTech Connect

    Li, J. Huang, X. B. Cai, H. C. Yang, L. B. Xie, W. P. Duan, S. C.

    2014-12-15

    Analyzing and modeling K-shell spectra emitted by low-to moderate-atomic number plasma is a useful and effective way to retrieve temperature density of z-pinch plasmas. In this paper, a non-LTE population kinetic model for quick analysis of K-shell spectra was proposed. The model contains ionization stages from bare nucleus to neutral atoms and includes all the important atomic processes. In the present form of the model, the plasma is assumed to be both optically thin and homogeneous with constant temperature and density, and only steady-state situation is considered. According to the detailed calculations for aluminum plasmas, contours of ratios of certain K-shell lines in electron temperature and density plane as well as typical synthesized spectra were presented and discussed. The usefulness of the model is demonstrated by analyzing the spectrum from a neon gas-puff Z-pinch experiment performed on a 1 MA pulsed-power accelerator.

  15. A non-LTE kinetic model for quick analysis of K-shell spectra from Z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Li, J.; Huang, X. B.; Cai, H. C.; Yang, L. B.; Xie, W. P.; Duan, S. C.

    2014-12-01

    Analyzing and modeling K-shell spectra emitted by low-to moderate-atomic number plasma is a useful and effective way to retrieve temperature density of z-pinch plasmas. In this paper, a non-LTE population kinetic model for quick analysis of K-shell spectra was proposed. The model contains ionization stages from bare nucleus to neutral atoms and includes all the important atomic processes. In the present form of the model, the plasma is assumed to be both optically thin and homogeneous with constant temperature and density, and only steady-state situation is considered. According to the detailed calculations for aluminum plasmas, contours of ratios of certain K-shell lines in electron temperature and density plane as well as typical synthesized spectra were presented and discussed. The usefulness of the model is demonstrated by analyzing the spectrum from a neon gas-puff Z-pinch experiment performed on a 1 MA pulsed-power accelerator.

  16. Current redistribution and generation of kinetic energy in the stagnated Z pinch.

    PubMed

    Ivanov, V V; Anderson, A A; Papp, D; Astanovitskiy, A L; Talbot, B R; Chittenden, J P; Niasse, N

    2013-07-01

    The structure of magnetic fields was investigated in stagnated wire-array Z pinches using a Faraday rotation diagnostic at the wavelength of 266 nm. The distribution of current in the pinch and trailing material was reconstructed. A significant part of current can switch from the main pinch to the trailing plasma preheated by x-ray radiation of the pinch. Secondary implosions of trailing plasma generate kinetic energy and provide enhanced heating and radiation of plasma at stagnation. Hot spots in wire-array Z pinches also provide enhanced radiation of the Z pinch. A collapse of a single hot spot radiates 1%-3% of x-ray energy of the Z pinch with a total contribution of hot spots of 10%-30%. PMID:23944569

  17. Observations of a dynamical percolating network in dense Z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. B.; Rantsev-Kartinov, V. A.

    1999-02-01

    The method of multilevel dynamical contrasting [A. B. Kukushkin and V. A. Rantsev-Kartinov, Laser Part. Beams 16, 445 (1998)] is applied to analyzing earlier Z-pinch experiments. The results suggest Z-pinch plasmas to be a dynamical percolating network formed by the long-living filaments of electric current. The probable role of filamentation and networking of filaments is analyzed for the following phenomena: (1) formation of a "stocking" woven by the individual filaments, from the very beginning of discharge; (2) formation of an electric current precursor on axis, in advance of the convergence of the major current sheath; (3) fine structuring of the Z-pinch's main body and halo at stagnation stage; (4) development and saturation of the magnetically driven Rayleigh-Taylor instability in the filamentary current sheath; (5) disruption of the necks in the filamentary Z pinch; (6) fine structure of "hot spots."

  18. Study of the internal structure and small-scale instabilities in the dense Z pinch.

    PubMed

    Ivanov, V V; Chittenden, J P; Altemara, S D; Niasse, N; Hakel, P; Mancini, R C; Papp, D; Anderson, A A

    2011-10-14

    High-resolution laser diagnostics at the wavelength of 266 nm were applied for the investigation of Z pinches at the 1-MA generator. The internal structure of the stagnated Z pinches was observed in unprecedented detail. A dense pinch with strong instabilities was seen inside the column of the trailing plasma. Kink instability, disruptions, and micropinches were seen at the peak of the x-ray pulse and later in time. The three-dimensional structure of the stagnated Z pinch depends on the initial wire-array configuration and implosion scenario. Small-scale density perturbations were found in the precursor plasma and in the stagnated Z pinch. Development of instabilities is in agreement with three-dimensional magnetohydrodynamic simulations. PMID:22107394

  19. Magnetoelectric confinement and stabilization of Z pinch in a soft-x-ray Ar(+8) laser.

    PubMed

    Szasz, J; Kiss, M; Santa, I; Szatmari, S; Kukhlevsky, S V

    2013-05-01

    Magnetoelectric confinement and stabilization of the plasma column in a soft-x-ray Ar(+8) laser, which is excited by a capillary Z pinch, via the combined magnetic and electric fields of the gliding surface discharge is experimentally demonstrated. Unlike soft-x-ray lasers excited by the conventional capillary Z pinches, the magnetoelectric confinement and stabilization of plasma do provide the laser operation without using any external preionization circuit. PMID:23683196

  20. Preliminary Results of a 10 kJ Z-Pinch

    SciTech Connect

    Cortazar, O. D.; Piriz, A. R.; Prieto, G. Rodriguez; Hoffmann, D. H. H.; Tahir, N. A.

    2008-04-07

    Preliminary results obtained on 10 kJ Z-pinch device developed at the Plasma and Electrical Discharge Laboratory in the University of Castilla-La Mancha are presented. The device called ENERGU-1 is composed by 8 capacitors (0.5 {mu}F, 75 kV, 20 nH) connected in parallel to a discharge chamber by means of one high power plane transmission line by mean of 8 spark-gaps switches triggered by a 100 kV, 13 ns trigger pulse. The discharge chamber is a cylindrical Pyrex glass tube externally surrounded by a SF{sub 6} isolation atmosphere with the electrodes at the ends. Two different chambers have been studied by discharging the capacitor bank energy in deuterium for optimizing the D-D nuclear fusion reactions: one of 100 mm long by 100 mm inner diameter and the other of the same length and 70 mm inner diameter. Several sequences of ultrahigh speed converter camera photography (5 ns) are presented showing the implosion of plasma columns for different deuterium pressure and currents. Preliminary measurements of integrated 2.45 MeV neutron emissions by a silver activated neutron counter are analyzed as a function of electrical and constructive parameters. A yield of 10{sup 7}-10{sup 8} D-D fusion reactions by shot is reported when the optimum conditions are reached conducting currents of 400-600 kA with a plasma column lifetime above 100 ns.

  1. EQ-10 electrodeless Z-pinch EUV source for metrology applications

    NASA Astrophysics Data System (ADS)

    Gustafson, Deborah; Horne, Stephen F.; Partlow, Matthew J.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.

    2011-11-01

    With EUV Lithography systems shipping, the requirements for highly reliable EUV sources for mask inspection and resist outgassing are becoming better defined, and more urgent. The sources needed for metrology applications are very different than that needed for lithography; brightness (not power) is the key requirement. Suppliers for HVM EUV sources have all resources working on high power and have not entered the smaller market for metrology. Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinchTM light source since 19951. The source is currently being used for metrology, mask inspection, and resist development2-4. These applications require especially stable performance in both output power and plasma size and position. Over the last 6 years Energetiq has made many source modifications which have included better thermal management to increase the brightness and power of the source. We now have introduced a new source that will meet requirements of some of the mask metrology first generation tools; this source will be reviewed.

  2. Soldered Contact and Current Risetime Effects on Negative Polarity Wire Array Z-pinches

    SciTech Connect

    Chalenski, D. A.; Kusse, B. R.; Greenly, J. B.; Blesener, I. C.; McBride, R. D.; Hammer, D. A.; Knapp, P. F.

    2009-01-21

    The Cornell University COBRA pulser is a nominal 1 MA machine, capable of driving up to 32 wire cylindrical Z-pinch arrays. COBRA can operate with variable current risetimes ranging from 100 ns to 200 ns (short and long pulse, respectively). Wires are typically strung with a 'press' contact to the electrode hardware, where the wire is loosely pulled against the hardware and held there to establish electrical contact. The machine is normally negative, but a bolt-on convolute can be used to modify the current path and effectively produce positive polarity operation at the load.Previous research with single wires on a 1-5 kA pulser has shown that soldering the wire, thereby improving the wire/electrode contact, and operating in positive polarity can improve the energy deposition into the wire and enhance wire core expansion. Negative polarity showed no difference. Previous experiments on the negative polarity, 20 MA, 100 ns Z accelerator have shown that improving the contact improved the x-ray yield.Cornell data were collected on 16-wire Aluminum Z-pinch arrays in negative polarity. Experiments were conducted with both short and long current pulses with soldered and no-soldered wire/electrode contacts. The initiation, ablation, implosion and stagnation phases were compared for these four conditions. Time dependent x-ray signals were measured using diodes and diamond detectors. An inductive voltage monitor was used to infer minimum current radius achieved, as defined by a uniform shell of current moving radially inward, producing a time dependent inductance. Total energy data were collected with a metal-strip bolometer. Self-emission data were collected by an XUV 4-frame camera and an optical streak camera.In negative polarity and with short pulses, soldering appeared to produce a smaller radius pinch and decrease variations in the x-ray pulse shape. The bolometer, laser backlighter, 4-frame and streak cameras showed negligible differences in the initiation ablation and implosion phases. X-ray yield was increased with soldered arrays in negative polarity with long pulses. The bolometer also showed a 50% increase in radial power emitted for soldered arrays. 4-frame images showed soldered arrays have a more pronounced 'Christmas Tree' effect originating from the cathode. The inductive voltage monitor showed, with both long and short pulses, that soldered and no-solder arrays reached the same minimum current radius at the same time. However, with long pulses soldered arrays radiate x-rays at the time of minimum current radius while no-solder array x-ray output is delayed by {approx}20 ns, resulting in decreased x-ray yield.

  3. Development of laser-based diagnostics for 1-MA z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Hakel, P.; Mancini, R. C.; Wiewior, P.; Presura, R.; Kindel, J. M.; Shevelko, A. P.; Chalyy, O.; Astanovitskiy, A.; Haboub, A.; Altemara, S. D.; Papp, D.; Durmaz, T.

    2009-11-01

    The 50 TW Leopard laser coupled with the 1-MA Zebra generator was used for development of new diagnostics of z-pinch plasmas. Two plasma diagnostics are presented: an x-ray broadband backlighting for z-pinch absorption spectroscopy and parametric two-plasmon decay of the laser beam in dense z-pinch plasma. Implementation of new diagnostics on the Zebra generator and the first results are discussed. The absorption spectroscopy is based on backlighting of z-pinch plasma with a broadband x-ray radiation from a Sm laser plasma. Detailed analysis of the absorption spectra yields the electron temperature and density of z-pinch plasma at the non-radiative stage. The parametric two-plasmon decay of intensive laser radiation generates 3/2φ and 1/2φ harmonics. These harmonics can be used to derive a temperature of z-pinch plasma with the electron density near the quarter of critical plasma density.

  4. PBFA Z: A 20-MA z-pinch driver for plasma radiation sources

    SciTech Connect

    Spielman, R.B.; Breeze, S.F.; Deeney, C.

    1996-07-01

    Sandia National Laboratories is completing a major modification to the PBFA-II facility. PBFA Z will be a z-pinch driver capable of delivering up to 20 MA to a z-pinch load. It optimizes the electrical coupling to the implosion energy of z pinches at implosion velocities of {approximately} 40 cm/{mu}s. Design constraints resulted in an accelerator with a 0.12-{Omega} impedance, a 10.25-nH inductance, and a 120-ns pulse width. The design required new water transmission lines, insulator stack, and vacuum power feeds. Current is delivered to the z-pinch load through four, self-magnetically-insulated vacuum transmission lines and a double post-hole convolute. A variety of design codes are used to model the power flow. These predict a peak current of 20 MA to a z-pinch load having a 2-cm length, a 2-cm radius, and a 15--mg mass, coupling 1.5 MJ into kinetic energy. We present 2-D Rad-Hydro calculations showing MJ x-ray outputs from tungsten wire-array z pinches.

  5. Magnetized jets and shocks in radial foil Z-pinches: experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Lebedev, S. V.; Suzuki-Vidal, F.; Pickworth, L. A.; Swadling, G. F.; Burdiak, G.; Skidmore, J.; Hall, G. N.; Bennett, M.; Bland, S. N.; Chittenden, J. P.; de Grouchy, P.; Derrick, J.; Hare, J.; Parker, T.; Sciortino, F.; Suttle, L.; Ciardi, A.; Rodriguez, R.; Gil, J. M.; Espinosa, G.; Hansen, E.; Frank, A.; Music, J.

    2014-10-01

    Different variations of the radial foil Z-pinch configuration have been investigated in the recent years on the MAGPIE generator (1.4 MA, 250 ns), particularly using over-massed aluminum foils with thicknesses of ~15 ?m. This setup is characterized by a highly collimated, supersonic jet on the axis of the foil surrounded by low-density ablated plasma, both moving with the same axial velocity of ~60 km/s. Latest results show that the formation and collimation of the jet is directly related to toroidal magnetic field advected with the flow. We present new experimental results that include Thomson scattering measurements of plasma flow velocity and temperature, and a first study on the effect of foil material on jet formation. The effect of advected toroidal magnetic field in the plasma flow is clearly evidenced using a new experimental configuration that produces counter-streaming jets. The results are characterized by the formation of shocks in which the effect of magnetic field and radiative cooling are significant. The setup also allows controlling the polarity of the advected fields at the interaction point between the counter-streaming flows, and results from experiments and numerical simulations will be presented and discussed.

  6. Investigation of the role of ion stopping power in Z-pinch stagnation physics

    NASA Astrophysics Data System (ADS)

    Mehlhorn, Thomas; Giuliani, John; Thornhill, Ward; Maron, Yitzhak

    2014-10-01

    A recently published paper examining the pressure and energy balance of stagnating plasmas in K-shell radiating z-pinch experiments shows that the stagnating plasma pressure is balanced by the implosion pressure and the radiation energy is provided by the imploding-plasma kinetic energy. This result is shown to be valid for both neon gas-puff loads on the 500 kA, 500 ns Weizmann pulsed power generator and for nested aluminum-titanium wire array experiments on Sandia's Z- machine at 20 MA, 100 ns. Multi-frame pinhole photography and spectroscopic analysis of the neon gas puff has shown that the radius of the stagnation plasma increases from 0.2 mm to 0.45 mm over a 3.5 ns time period and that the density is nearly constant during the K-shell emission period. A very similar phenomenology of constant density and growing radius is observed on Sandia's Z machine for imploding wire array experiments with radius growing from 0.6 to 2.1 mm over a 6 ns period. In this poster we will study what role the kinetic energy loss of the imploding ions in the stagnation plasma may play in determining the initial scale, density, and evolution of the stagnation plasmas in these two K-shell emission systems. Work supported by NRL Base Program and DOE/NNSA.

  7. Theoretical z -pinch scaling relations for thermonuclear-fusion experiments.

    PubMed

    Stygar, W A; Cuneo, M E; Vesey, R A; Ives, H C; Mazarakis, M G; Chandler, G A; Fehl, D L; Leeper, R J; Matzen, M K; McDaniel, D H; McGurn, J S; McKenney, J L; Muron, D J; Olson, C L; Porter, J L; Ramirez, J J; Seamen, J F; Speas, C S; Spielman, R B; Struve, K W; Torres, J A; Waisman, E M; Wagoner, T C; Gilliland, T L

    2005-08-01

    We have developed wire-array z -pinch scaling relations for plasma-physics and inertial-confinement-fusion (ICF) experiments. The relations can be applied to the design of z -pinch accelerators for high-fusion-yield (approximately 0.4 GJ/shot) and inertial-fusion-energy (approximately 3 GJ/shot) research. We find that (delta(a)/delta(RT)) proportional (m/l)1/4 (Rgamma)(-1/2), where delta(a) is the imploding-sheath thickness of a wire-ablation-dominated pinch, delta(RT) is the sheath thickness of a Rayleigh-Taylor-dominated pinch, m is the total wire-array mass, l is the axial length of the array, R is the initial array radius, and gamma is a dimensionless functional of the shape of the current pulse that drives the pinch implosion. When the product Rgamma is held constant the sheath thickness is, at sufficiently large values of m/l, determined primarily by wire ablation. For an ablation-dominated pinch, we estimate that the peak radiated x-ray power P(r) proportional (I/tau(i))(3/2)Rlphigamma, where I is the peak pinch current, tau(i) is the pinch implosion time, and phi is a dimensionless functional of the current-pulse shape. This scaling relation is consistent with experiment when 13 MA < or = I < or = 20 MA, 93 ns < or = tau(i) < or = 169 ns, 10 mm < or = R < or = 20 mm, 10 mm < or = l < or = 20 mm, and 2.0 mg/cm < or = m/l < or = 7.3 mg/cm. Assuming an ablation-dominated pinch and that Rlphigamma is held constant, we find that the x-ray-power efficiency eta(x) congruent to P(r)/P(a) of a coupled pinch-accelerator system is proportional to (tau(i)P(r)(7/9 ))(-1), where P(a) is the peak accelerator power. The pinch current and accelerator power required to achieve a given value of P(r) are proportional to tau(i), and the requisite accelerator energy E(a) is proportional to tau2(i). These results suggest that the performance of an ablation-dominated pinch, and the efficiency of a coupled pinch-accelerator system, can be improved substantially by decreasing the implosion time tau(i). For an accelerator coupled to a double-pinch-driven hohlraum that drives the implosion of an ICF fuel capsule, we find that the accelerator power and energy required to achieve high-yield fusion scale as tau(i)0.36 and tau(i)1.36, respectively. Thus the accelerator requirements decrease as the implosion time is decreased. However, the x-ray-power and thermonuclear-yield efficiencies of such a coupled system increase with tau(i). We also find that increasing the anode-cathode gap of the pinch from 2 to 4 mm increases the requisite values of P(a) and E(a) by as much as a factor of 2. PMID:16196715

  8. Fusion burn dynamics in dense Z-pinch (DZP)

    SciTech Connect

    Krakowski, R.A.

    1990-04-01

    The fusion burn dynamics and energy yield of the dense Z-pinch (DZP) are examined using a profile-averaged, zero-dimensional, time dependent model. A range of conditions (fuel, line density, voltage, fusion-product heating, enthalpy endloss, density and temperature profiles, current rise rate, electrode impurities) are examined. Magneto-hydrodynamic stability is assumed, and initial conditions are based on those ideally existing after the melting and ionization of a solid fiber of fusion fuel. Plasma conditions required of neutron sources for materials testing ({dot S}{sub n} {ge} 10{sup 19} n/s) and for possible commercial power production (ratio of fusion energy yield to energy input, Q{sub p} {approx equal} 15, lower values if reversible recovery of a fraction of the magnetic energy is possible) are described. If f{sub B} {approx gt} 0.8 fractional fuel burnup is possible in a nominal 800-ns DT discharge (200-ns current-rise phase at 20 MV/m followed by a 500-ns constant-current crowbarred phase), reactor-relevant values of Q{sub p} may be possible. For the simpler (and shorter) constant-voltage discharge (e.g., no voltage crowbar) the value of Q{sub p} is in the range 5--10 for discharges below 200-ns duration. Smaller levels of fuel burnup, shorter discharges, or generally lower levels of Q{sub p} will require a reversible energy transfer system to meet reactor energy-balance requirements. Imposition of a plasma current rise-time constraint that may be needed for stable plasma operation (e.g., I > 10{sup 12} A/s) will burnup, Q{sub p} and discharge time to an extent where reversible energy/transfer system will be required to meet reactor energy- balance requirements. 25 refs.

  9. Rotating kink modes in a noncircular Z pinch

    SciTech Connect

    Wahlberg, C. )

    1990-07-01

    The free-boundary {ital m}=1 kink mode of a noncircular (square-shaped) Z pinch is investigated. Particular attention is paid to the exchange of angular momentum between the external coil system (providing the external transverse magnetic field which deforms the plasma cross section) and helical kink perturbations of the plasma column. Following the time development of an initial, arbitrary perturbation of the plasma it is found that a torque, in general, is exerted on the {ital m}=1 component, thus causing the kink modes to rotate. Damping effects of the {ital m}=3 and {ital m}=5 sidebands (excited by the first order {ital m}=4 (square) and {ital m}=1 interaction) are shown to slow down the rotational motion, resulting in a lifetime of the order of {tau}{sub {ital L}}{similar to}1/{Gamma}{lambda}{sup 2} Alfven times of the angular momentum ({lambda} is the degree of noncircularity {Delta}{ital R}{sub {ital P}}/{ital R}{sub {ital P}} and {Gamma} is the normalized damping decrement {gamma}{sub {ital m}}/{omega}{sub {ital m}} of the sidebands). The calculations are based on a surface current magnetohydrodynamic (MHD) description of the pinch with internal ({bold B}{sub {ital i}}) as well as external ({bold B}{sub {ital e}}) axial magnetic fields included. The free-boundary {ital m}=1 dispersion relation {omega}({ital k}{sub {ital z}}) is calculated analytically to leading order in the noncircularity, and various cases corresponding to different combinations of {bold B}{sub {ital i}} and {bold B}{sub {ital e}} are illustrated. The results confirm previous pessimistic predictions about the linear MHD stability of the long {ital m}=1 kink mode in the straight Extrap (Fusion Technol. {bold 16}, 7 (1989)) configuration. The phenomenon of mode rotation may, however, open the possibility of dynamic stabilization of the long kink mode in the nonlinear regime.

  10. Target implantation and redeposition processes during high-power impulse magnetron sputtering of aluminum

    NASA Astrophysics Data System (ADS)

    Will, Andreas; de los Arcos, Teresa; Corbella, Carles; Hecimovic, Ante; Machura, Patrick D.; Winter, Jrg; von Keudell, Achim

    2013-02-01

    The processes of argon retention by the target and redeposition of target material were investigated by x-ray photoelectron spectroscopy as a function of radial position for different plasma conditions in high-power impulse magnetron sputtering of aluminum targets. Significant differences in Ar radial concentration profiles were observed for different discharge conditions. Inside the racetrack area, Ar ion flux-dominated implantation is compensated by radiation-enhanced diffusion loss terms. Outside the racetrack, the role of ion implantation is diminished, and Ar retention by the target may stem from a balance between gettering by redeposited Al and ion-induced Ar desorption.

  11. PBFA Z: A 20-MA Driver for Z-Pinch Radiation Sources*

    NASA Astrophysics Data System (ADS)

    Spielman, R. B.; Chandler, G. A.; Deeney, C.; Long, F.; Martin, T. H.; Matzen, M. K.; McDaniel, D. H.; Nash, T. J.; Porter, J. L.; Ruggles, L. E.; Sanford, T. W. L.; Seamen, J. F.; Stygar, W. A.; Breeze, S. P.; McGurn, J. S.; Torres, J. A.; Zagar, D. M.; Gilliland, T. L.; Jobe, D.; Struve, K. W.; Mostrom, M.; Corcoran, P.; Smith, I.; Shoup, R. W.

    1996-11-01

    Sandia National Laboratories has completed a major modification to the existing PBFA-II Light Ion Beam Fusion facility. This new operational mode, known as PBFA-Z, is a driver capable of delivering up to 20 MA to a z-pinch load. PBFA-Z is designed to optimize the coupling of electrical energy to the implosion kinetic energy of z pinches. These design constraints resulted in an accelerator with an impedance of 0.125 Ohms, a total inductance of 10 nH, and an electrical pulse width of 120 ns. Current is delivered to the z-pinch load through four, self-magnetically-insulated vacuum transmission lines (MITLs) and a double post- hole convolute. We will present data showing the electrical energy coupled to z- pinch and short circuit loads and preliminary data of the x-ray output of tungsten wire-array z pinches. X-ray diagnostics include a time-resolved x-ray pinhole camera, resistive bolometry, photoconducting x-ray detectors, x-ray diodes, and a time-resolved convex curved-crystal spectrograph. *This work supported by the U.S. Department of Energy under Contract DE-AC04- 94AL85000.

  12. PBFA Z: A 60-TW/5-MJ Z-pinch driver

    NASA Astrophysics Data System (ADS)

    Spielman, R. B.; Deeney, C.; Chandler, G. A.; Douglas, M. R.; Fehl, D. L.; Matzen, M. K.; McDaniel, D. H.; Nash, T. J.; Porter, J. L.; Sanford, T. W. L.; Seamen, J. F.; Stygar, W. A.; Struve, K. W.; Breeze, S. P.; McGurn, J. S.; Torres, J. A.; Zagar, D. M.; Gilliland, T. L.; Jobe, D. O.; McKenney, J. L.; Mock, R. C.; Vargas, M.; Wagoner, T.; Peterson, D. L.

    1997-05-01

    PBFA Z, a new 60-TW/5-MJ electrical accelerator located at Sandia National Laboratories, is now the world's most powerful z-pinch driver. PBFA Z stores 11.4 MJ in its 36 Marx generators, couples 5 MJ into a 60-TW/105-ns FWHM pulse to the 120-m? water transmission lines, and delivers 3.0 MJ and 50 TW of electrical energy to the z-pinch load. Depending on load parameters, we attain peak load currents of 16-20 MA with a current rise time of 105 ns with wire-array z-pinch loads. We have extended the x-ray performance of tungsten wire-array z pinches from earlier Saturn experiments. Using a 2-cm-radius, 2-cm-long tungsten wire array with 240, 7.5-?m diameter wires (4.1-mg mass), we achieved an x-ray power of 210 TW and an x-ray energy of 1.9 MJ. Preliminary spectral measurements suggest a mostly optically-thick, Planckian-like radiator below 1000 eV. Data indicate 100 kJ of x rays radiated above 1000 eV. An intense z-pinch x-ray source with an overall coupling efficiency greater than 15% has been demonstrated.

  13. Development of the 50 TW laser for joint experiments with 1 MA z-pinches

    NASA Astrophysics Data System (ADS)

    Wiewior, P. P.; Ivanov, V. V.; Chalyy, O.

    2010-08-01

    A 50 TW high-intensity laser (aka "Leopard" laser) was developed for experiments with the 1 MA z-pinch generator at the University of Nevada, Reno. The laser produces short pulses of 0.35 ps; energy is 15 J. Long pulses are 1 ns; energy is 30 J. The output beam diameter is 80 mm. The Leopard laser applies chirped pulse amplification technology. The laser is based on the 130 fs Ti:Sapphire oscillator, Öffner-type stretcher, Ti:Sapphire regenerative amplifier, mixed Nd:glass rod and disk amplifiers, and vacuum grating compressor. An adaptive optics system ameliorates focusing ability and augments the repetition rate. Two beam terminals are available for experiments: in the vacuum chamber of the z-pinch generator (aka "Zebra"), and a laser-only vacuum chamber (aka "Phoenix" chamber). The Leopard laser coupled to the Zebra z-pinch generator is a powerful diagnostic tool for dense z-pinch plasma. We outline the status, design, architecture and parameters of the Leopard laser, and its coupling to Zebra. We present the methods of laser-based z-pinch plasma diagnostics, which are under development at the University of Nevada, Reno.

  14. Application of Proton Deflectometry to Z-Pinch Plasma Systems at the Mega-Ampere Scale

    NASA Astrophysics Data System (ADS)

    Mariscal, Derek; McGuffey, Chris; Valenzuela, Julio; Wei, Mingsheng; Beg, Farhat; Presura, Radu; Haque, Showera; Arias, Angel; Covington, Aaron; Sawada, Hiroshi; Chittenden, Jeremy

    2013-10-01

    Measuring magnetic fields in z-pinch plasmas is challenging. Typical laser-probing diagnostics are limited by the critical density and large density gradients, while electrical diagnostics have limited spatial resolution. We report the first demonstration of proton deflectometry of z-pinch plasma systems at the mega-ampere scale. The proton beam was produced using the 10J 0.3ps Leopard laser and coupled to z-pinch plasma produced by Zebra, a 1MA pulsed-power driver at the Nevada Terawatt Facility. The magnetic field distorted the proton beam profile, which was recorded on radiochromic film. The experimental data was compared against integrated modeling using the resistive MHD code, Gorgon, for Z-pinch plasmas, in combination with the hybrid PIC code, LSP, for proton-beam trajectory tracking. This comparison provided the field and current configuration for various plasma loads, including wire and foil z-pinches. Funded by the NSF/DoE Partnership in Basic Plasma Scienceand En- gineering under contracts DE-SC-0001992 / PHY-0903876. Use of the Nevada Terawatt Facility was supported by the US DOE, NNSA, under Contract No. DE-FC52-06NA27616.

  15. Axial x-ray backlighting of wire-array Z-pinches using X pinches

    NASA Astrophysics Data System (ADS)

    Blesener, I. C.; Greenly, J. B.; Pikuz, S. A.; Shelkovenko, T. A.; Vishniakou, S.; Hammer, D. A.; Kusse, B. R.

    2009-12-01

    For the first time, a geometry has been developed to allow for an axial imaging system for wire-array Z-pinch experiments that produce high-resolution x-ray images. The new geometry required a significant redesign of the electrode hardware. Calibrated areal density measurements of the Z-pinch plasma including wire cores, coronal plasma, streaming plasma, and the precursor were obtained. The system used eight-wire molybdenum (Mo) X pinches in series with and directly below the Z-pinch axis to provide micron-scale x-rays sources for point-projection radiography. The images formed on the x-ray sensitive film had a 15 mm diameter field of view at the center height of the array and a magnification of about 7.5:1. Titanium (Ti) filters in front of the film transmitted radiation in the spectral range of 3-5 keV. For calibration, a separate film with the same thickness Ti filter was placed the same distance from the X pinch. This film had an unobstructed path that bypasses the Z-pinch but included step wedges for calibration of the Z-pinch plasma. The step wedges had thicknesses of tungsten (W) ranging from 0.015 to 1.1 ?m to obtain areal density measurements of the W plasma from the wire-array. Images had subnanosecond temporal resolution and about 10 ?m spatial resolution.

  16. Axial x-ray backlighting of wire-array Z-pinches using X pinches.

    PubMed

    Blesener, I C; Greenly, J B; Pikuz, S A; Shelkovenko, T A; Vishniakou, S; Hammer, D A; Kusse, B R

    2009-12-01

    For the first time, a geometry has been developed to allow for an axial imaging system for wire-array Z-pinch experiments that produce high-resolution x-ray images. The new geometry required a significant redesign of the electrode hardware. Calibrated areal density measurements of the Z-pinch plasma including wire cores, coronal plasma, streaming plasma, and the precursor were obtained. The system used eight-wire molybdenum (Mo) X pinches in series with and directly below the Z-pinch axis to provide micron-scale x-rays sources for point-projection radiography. The images formed on the x-ray sensitive film had a 15 mm diameter field of view at the center height of the array and a magnification of about 7.5:1. Titanium (Ti) filters in front of the film transmitted radiation in the spectral range of 3-5 keV. For calibration, a separate film with the same thickness Ti filter was placed the same distance from the X pinch. This film had an unobstructed path that bypasses the Z-pinch but included step wedges for calibration of the Z-pinch plasma. The step wedges had thicknesses of tungsten (W) ranging from 0.015 to 1.1 microm to obtain areal density measurements of the W plasma from the wire-array. Images had subnanosecond temporal resolution and about 10 microm spatial resolution. PMID:20059143

  17. A Gas Embedded Z-pinch Driven by SPEED2 Generator

    SciTech Connect

    Soto, Leopoldo; Moreno, Jose; Sylvester, Gustavo; Silva, Patricio; Zambra, Marcelo; Pavez, Cristian; Clausse, Alejandro

    2006-12-04

    A gas embedded Z-pinch has been implemented using the SPEED2 generator (4.1 {mu}F equivalent Marx generator capacity, 300 kV, 4 MA in short circuit, 187 kJ, 400 ns rise time, dI/dt{approx}1013 A/s). Initial conditions to produce a gas embedded z-pinch with enhanced stability by means resistive effects and by finite Larmor radius effects were obtained and electrodes were constructed in order to obtain a double column Z-pinch and a hollow discharge. Experiments were carried out in deuterium at mega amperes currents. Current derivative and voltage signals have been obtained. In addition interferograms have been obatined using a pulse Nd-YAG laser (8ns FWMH at 532nm). Preliminary results on neutron emission were also obtained.

  18. Characteristics of the Z-pinch Implosion Plasmas on Low Current Generators

    SciTech Connect

    Ding Ning; Yang Zhenhua; Ning Cheng; Wu Jiming; Liu Quan; Fan Wenbin; Zhang Yang

    2006-01-05

    The primary physical images of the low driven current (<7MA) Z-pinch experiments on the three facilities, including the Angara-5-1 and S-300 in Russia, and the Qiangguang-I in China, were analyzed and summarized. The wire-array Z-pinch implosion processes were simulated by using a zero-dimensional model and an one-dimensional radial-magneto-hydrodynamic code. It is found that in the different pulse power driver, even if there are the same peak currents, the process of the wire-array plasma implosion and the compression state can be quite different due to the different rising-time of the current. Moreover, it is also found that not total mass of the wire-array takes part in the implosion process in the Z-pinch experiment.

  19. Study of the 3D Structure of the Stagnated Z-Pinch

    NASA Astrophysics Data System (ADS)

    Anderson, Austin; Ivanov, Vladimir

    2014-10-01

    Z pinches are the most powerful laboratory sources of x-ray radiation. Z pinches represent an unstable plasma configuration and are subjected by strong plasma instabilities at the ablation, implosion, and stagnation stages. MHD instability produce necks, kinks, and micropinches at stagnation. Knowledge of the 3D plasma distribution is important for interpreting 2D images of the pinch, as well as understanding the effectiveness of models that assume azimuthal symmetry using Abel inversion. Recent experiments were conducted with 266 nm laser shadowgrams from 4 channels, evenly spaced in 45 degree increments. Channels were timed with 100 ps temporal accuracy to provide simultaneous imaging. Results and discussion on the azimuthal non-uniformity of the Z pinch are presented.

  20. Analysis of Conical Wire Array Z-Pinch Stability with a Center Wire

    SciTech Connect

    Martinez, D.; Presura, R.; Wright, S.; Plechaty, C.; Neff, S.; Wanex, L.; Ampleford, D. J.

    2009-01-21

    Adding a center wire on the axis of a conical wire array produces conditions suitable for studying shear flow stabilization of the Z-pinch. The conical wire array produces and axial plasma flow while the center wire introduces a radial variation of the axial velocity. Experiments of this array configuration were preformed on the 1 MA Zebra Z-pinch generator and showed stabilization of the kink instability when a center wire was present. Comparison with equivalent cylindrical wire arrays indicates that the shear flow stabilization plays a role in the stabilization of the kink instability.

  1. Measurement of temperature, density, and particle transport with localized dopants in wire-array Z pinches.

    PubMed

    Jones, B; Deeney, C; McKenney, J L; Ampleford, D J; Coverdale, C A; Lepell, P D; Shelton, K P; Safronova, A S; Kantsyrev, V L; Osborne, G; Sotnikov, V I; Ivanov, V V; Fedin, D; Nalajala, V; Yilmaz, F; Shrestha, I

    2008-03-14

    Axially localized NaF dopants are coated onto Al cylindrical wire arrays in order to act as spectroscopic tracers in the stagnated z-pinch plasma. Non-local-thermodynamic-equilibrium kinetic models fit to Na K-shell lines provide an independent measurement of the density and temperature that is consistent with spectroscopic analysis of K-shell emissions from Al and an alloyed Mg dopant. Axial transport of the Na dopant is observed, enabling quantitative study of instabilities in dense z-pinch plasmas. PMID:18352197

  2. Hall and two-temperature magnetohydrodynamic simulation of deuterium-fiber-initiated Z pinches

    SciTech Connect

    Sheehey, P.; Lindemuth, I.

    1997-01-01

    Two-dimensional {open_quotes}cold-start{close_quotes} resistive magnetohydrodynamic computations of formation and evolution of deuterium-fiber-initiated Z pinches have been extended to include separate ion and electron energy equations and some finite-Larmor-radius ordered terms. In the Ohm{close_quote}s law (magnetic field evolution) equation, Hall and diamagnetic pressure terms have been added, and corresponding terms have been added to the energy equation. None of the extended model computations show stabilizing effects for fiber-initiated Z pinches; in fact, further slight destabilization is noted. This continues the good agreement shown between previous computational results and experiment.

  3. Fusion conditions in a finite-thickness gas-puff staged Z-pinch

    NASA Astrophysics Data System (ADS)

    Mirza, Arshad M.; Khattak, N. A. D.; Iqbal, M.; Murtaza, G.

    1994-12-01

    We investigate the implosion of a dense ?-pinch plasma driven by an annular finite-thickness gas-puff Z-pinch. The imploding Z-pinch traps an axial magnetic field Bz, compressing it to large values in an extremely short time. The temporal variation of Bz then induces an azimuthal ? current on the surface of a fibre placed on the axis, with a rise time an order of magnitude shorter than the rise time of the Z-pinch current. Our numerical results demonstrate that, for a thick gas-puff layer, maximum compression occurs before the current peaks.We also find that at peak compression, fuel densities of the order of 1025 cm-3 and temperatures above 10 keV can be achieved on a time scale of the order of 0.1 ns. Thus a Lawson parameter n? ? 1014 s cm-3 for a DT fibre becomes achievable. The snowplough effect in the Z-pinch exercises a stabilization effect on the growth of sausage and RayleighTaylor instabilities. In the limit of a very thin gas-puff layer, previous results are fully recovered.

  4. MHRDRing Z-Pinches and Related Geometries: Four Decades of Computational Modeling Using Still Unconventional Methods

    SciTech Connect

    Lindemuth, Irvin R.

    2009-01-21

    For approximately four decades, Z-pinches and related geometries have been computationally modeled using unique Alternating Direction Implicit (ADI) numerical methods. Computational results have provided illuminating and often provocative interpretations of experimental results. A number of past and continuing applications are reviewed and discussed.

  5. UV Laser Diagnostics of the 1-MA Z-pinch Plasmas

    SciTech Connect

    Altemara, S. D.; Ivanov, V. V.; Astanovitskiy, A. L.; Haboub, A.

    2009-01-21

    The 532 nm laser diagnostic set at the Zebra generator shows the details of the ablation and stagnation phases in cylindrical, planar, and star-like wire arrays but it cannot show the structure of the stagnated z-pinch and the implosion in small diameter loads, 1-3 mm in diameter. The absorption increment and the refraction angle of the 532 nm laser, when passing through the plasma, are too great to obtain quality images. An ultraviolet probing beam at the wavelength of 266 nm was developed to study small-diameter loads and to investigate the structure of the 1-MA z-pinch. The UV radiation has a much smaller absorption increment and refraction angles in plasmas than the 532 nm light and allows for better imaging of the z-pinch plasmas. Estimates showed that UV probing would be able to probe the high-density z-pinch plasma in experiments on the Zebra generator, and the early results of UV probing on the Zebra generator have shown promise.

  6. Deuteron Acceleration and Fusion Neutron Production in Z-pinch plasmas

    SciTech Connect

    Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Ananeev, S. S.; Bakshaev, Yu. L.; Blinov, P. I.; Chernenko, A. S.; Kazakov, E. D.; Korolev, V. D.; Ustroev, G. I.

    2009-01-21

    Fusion neutron measurements were carried out on the S-300 generator (Kurchatov Institute, Moscow). We tried deuterated fibers, various types of wire arrays imploding onto a deuterated fiber, and deuterium gas puffs as Z-pinch loads. On the current level of 2 MA, the peak neutron yield of 10{sup 10} was achieved with a deuterium gas-puff. The neutron and deuteron energy spectra were quite similar in various types of Z-pinch configurations. The broad width of radial neutron spectra implied a high radial component of deuteron velocity. On the basis of neutron measurements, we concluded that neutron production mechanism is connected with the study of plasma voltage. It means that the acceleration of fast deuterons is not a secondary process but it reflects the global dynamics of Z-pinch plasmas. For this reason it is useful to add deuterium as a 'tracer' in Z-pinch loads more often. For instance, it seems attractive to prepare wire-arrays from deuterated metal wires such as Pd.

  7. Numerical study on the Z pinch dynamics of gas jet type discharge produced plasma (DPP) source

    NASA Astrophysics Data System (ADS)

    Huang, Bin; Xie, Bin; Tomizuka, Taku; Watanabe, Masato; Xiao, Feng; Hotta, Eiki

    2012-10-01

    Z pinch DPP source is often used as an Extreme Ultra-Violet (EUV) source. It is convenient to produce high temperature and high density plasma. There are several analytical models to describe the dynamics of the plasma. The snowplow model is a simple and widely used model to analyze the motion of the plasma shell and predict the pinch time; however, it is incapable of analyzing the plasma behavior after the maximum pinch and providing detailed information of concerned plasma parameters, such as electron density and electron temperature. In this study, we present the simulation results of the Z pinch DPP dynamics obtained by a 2D MHD code. This code solves the problem based on the assumption of single fluid, two temperature approximations in the cylindrical geometry. The numerical scheme for this MHD code is Total-Variation-Diminishing scheme in Lax Friedrich formulation (TVD-LF). The evolution of electron density, electron temperature, current density, magnetic flux and some other important parameters in Z pinch dynamics are investigated with this code. The simulation results show that the maximum pinch electron density is on the order of 10^19 cm-3, with a pinch plasma radius of about 0.1 mm. In order to optimize the radiation output, the influences of initial gas distribution and the current waveform on the Z pinch dynamics are also investigated. They affect the electron density at pinch stagnation obviously; while in term of electron temperature, the effect is slight.

  8. Plasma dynamics in a composite gas-embedded Z-pinch discharge

    SciTech Connect

    Soto, L.; Chuaqui, H.; Favre, M.; Wyndham, E.; Aliaga-Rossel, R.; Mitchell, I.

    1996-12-31

    A composite gas embedded Z-pinch discharge is studied. In this discharge an axial current filament as well as a coaxial cylindrical current shell are used. The dynamics of this composite compressional gas-embedded Z-pinch are presented. Visible streak camera, fast current measurements and holographic shadowgraphy and interferometry have been used. An initial 10 ns fast expansion phase is observed, followed by about 50 ns with an expansion of the central channel of 2 x 10{sup 4} m/s, an expansion of the internal wall of the annular plasma of the same order, whereas the external wall has a slower expanding velocity of 6 x 10{sup 3} m/s. A direct comparison with either a laser initiated gas embedded Z-pinch (single axial current channel), or annular initial microdischarge only does produce a significantly different behavior. Results obtained with the present configuration suggest that by controlling the initial preionization conditions it might be possible to improve the stability properties of a gas embedded Z-pinch.

  9. Magnetic Rayleigh-Taylor instability mitigation in large-diameter gas puff Z-pinch implosions

    SciTech Connect

    Qi, N.; Sze, H.; Failor, B. H.; Banister, J.; Levine, J. S.; Riordan, J. C.; Steen, P.; Sincerny, P.; Lojewski, D.

    2008-02-15

    Recently, a new approach for efficiently generating K-shell x-rays in large-diameter, long-implosion time, structured argon gas Z-pinches has been demonstrated based on a 'pusher-stabilizer-radiator' model. In this paper, direct observations of the Rayleigh-Taylor instability mitigation of a 12-cm diameter, 200-ns implosion time argon Z-pinch using a laser shearing interferometer (LSI) and a laser wavefront analyzer (LWA) are presented. Using a zero-dimensional snowplow model, the imploding plasma trajectories are calculated with the driver current waveforms and the initial mass distributions measured using the planar laser induced fluorescence method. From the LSI and LWA images, the plasma density and trajectory during the implosion are measured. The measured trajectory agrees with the snowplow calculations. The suppression of hydromagnetic instabilities in the ''pusher-stabilizer-radiator'' structured loads, leading to a high-compression ratio, high-yield Z-pinch, is discussed. For comparison, the LSI and LWA images of an alternative load (without stabilizer) show the evolution of a highly unstable Z-pinch.

  10. Efficient neutron production from a novel configuration of deuterium gas-puff z-pinch.

    PubMed

    Klir, D; Kubes, P; Rezac, K; Cikhardt, J; Kravarik, J; Sila, O; Shishlov, A V; Kovalchuk, B M; Ratakhin, N A; Kokshenev, V A; Labetsky, A Yu; Cherdizov, R K; Fursov, F I; Kurmaev, N E; Dudkin, G N; Nechaev, B A; Padalko, V N; Orcikova, H; Turek, K

    2014-03-01

    A novel configuration of a deuterium z pinch has been used to generate fusion neutrons. Injecting an outer hollow cylindrical plasma shell around an inner deuterium gas puff, neutron yields from DD reactions reached Y(n)=(2.9 0.3) 10(12) at 700 ns implosion time and 2.7 MA current. Such a neutron yield means a tenfold increase in comparison with previous deuterium gas puff experiments at the same current generator. The increase of beam-target yields was obtained by a larger amount of current assembled on the z-pinch axis, and subsequently by higher induced voltage and higher energies of deuterons. A stack of CR-39 track detectors on the z-pinch axis showed hydrogen ions up to 38 MeV. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial time-of-flight detectors, respectively. The number of DD neutrons per one joule of stored plasma energy approached 5 10(7). This implies that deuterium gas puff z pinches belong to the most efficient plasma-based sources of DD neutrons. PMID:24655260

  11. Dust and debris transport modeling for experimental z-pinch driven inertial fusion systems

    NASA Astrophysics Data System (ADS)

    Utschig, Tristan Thomas

    A model using the TEXAS-NCV computer code is presented for the transport of dust and debris in a z-pinch driven explosive propagation of gas into vacuum. First, TEXAS-NC was improved, updated, and benchmarked against several experiments for quasi-one-dimensional shock propagation applications involving multi-component, multi-phase systems. Second, a vacuum transport model was developed and incorporated into TEXAS and benchmarked for adiabatic expansions and wall pressure histories at various dimensionless distances. This model eliminates the severe problem usually encountered with vacuum transport in Eulerian hydrodynamics codes, and gives TEXAS a rare set of capabilities that is not known to exist before. Third, TEXAS-NCV was used to model dust and debris transport in z-pinch driven experiments designed for application to the U.S. inertial fusion energy program. Results showed that if radioactive dust and debris is to be completely contained within the Z experiment chamber, explosive closures placed at the ends of the MITLs must complete the closure process in less than 1 ms. Substantially faster closure times will be required if the valves are to be placed closer to the center of the Z-pinch convolute or if magnetic effects during the z-pinch have already accelerated debris.

  12. Los Alamos compact toroid, fast-liner, and high-density Z-pinch programs

    SciTech Connect

    Linford, R.K.; Sherwood, A.R.; Hammel, J.E.

    1981-03-01

    The Compact Toroid (CT) and High Density Z-Pinch (HDZP) are two of the plasma configurations presently being studied at Los Alamos. The purpose of these two programs, plus the recently terminated (May 1979) Fast Liner (FL) program, is summarized in this section along with a brief description of the experimental facilities. The remaining sections summarize the recent results and the experimental status.

  13. O-d energetics scaling models for Z-pinch-driven hohlraums

    SciTech Connect

    CUNEO,MICHAEL E.; VESEY,ROGER A.; HAMMER,J.H.; PORTER,JOHN L.

    2000-06-08

    Wire array Z-pinches on the Z accelerator provide the most intense laboratory source of soft x-rays in the world. The unique combination of a highly-Planckian radiation source with high x-ray production efficiency (15% wall plug), large x-ray powers and energies ( >150 TW, {ge}1 MJ in 7 ns), large characteristic hohlraum volumes (0.5 to >10 cm{sup 3}), and long pulse-lengths (5 to 20 ns) may make Z-pinches a good match to the requirements for driving high-yield scale ICF capsules with adequate radiation symmetry and margin. The Z-pinch driven hohlraum approach of Hammer and Porter [Phys.Plasmas, 6, 2129(1999)] may provide a conservative and robust solution to the requirements for high yield, and is currently being studied on the Z accelerator. This paper describes a multiple region, 0-d hohlraum energetic model for Z-pinch driven hohlraums in four configurations. The authors observe consistency between the models and the measured x-ray powers and hohlraum wall temperatures to within {+-}20% in flux, for the four configurations.

  14. High-energy electron acceleration in the gas-puff Z-pinch plasma

    NASA Astrophysics Data System (ADS)

    Takasugi, Keiichi; Miyazaki, Takanori; Nishio, Mineyuki

    2014-12-01

    The characteristics of hard x-ray generation were examined in the gas-puff z-pinch experiment. The experiment on reversing the voltage was conducted. In both of the positive and negative discharges, the x-ray was generated only from the anode surface, so it was considered that the electrons were accelerated by the induced electromagnetic force at the pinch time.

  15. Feasibility of a nitrogen-recombination soft-x-ray laser using capillary discharge Z pinch.

    PubMed

    Kampel, N S; Rikanati, A; Be'ery, I; Ben-Kish, A; Fisher, A; Ron, A

    2008-11-01

    Capillary discharge Z pinches have been shown to be efficient drivers for x-ray lasers (XRLs). In this work we examine the possibility of realizing a H_{alpha} nitrogen recombination laser ( 3-->2 transition) at lambda=13.4nm , using a capillary discharge Z pinch. A pulsed power generator with 60kA peak current and 70ns quarter period have been used to generate Z -pinch plasma in a 90-mm -long and 5-mm -diameter capillary. The plasma conditions were evaluated experimentally, using a filtered x-ray diode detector and time-integrated spectroscopy. The conditions required for the XRL were analytically estimated based on simple steady-state rate equations and then compared to experimental results. We demonstrated above 10% N7+ abundance at pinch time, while at least 50% is required. Then, in the expansion phase, the plasma is cooled in a time less than 5ns to temperatures below 60eV , as needed for the recombination laser. These results suggest that the required conditions for nitrogen-recombination lasing could be achieved in a capillary discharge Z pinch, but a higher-power driver might be needed. PMID:19113223

  16. ZaP-HD: High Energy Density Z-Pinch Plasmas using Sheared Flow Stabilization

    NASA Astrophysics Data System (ADS)

    Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Bowers, C. A.; Doty, S. A.; Forbes, E. G.; Goldstone, D.; Hughes, M. C.; Kim, B.; Knecht, S. D.; Lambert, K. K.; Lowrie, W.; Ross, M. P.; Weed, J. R.

    2014-10-01

    The ZaP-HD flow Z-pinch project investigates scaling the sheared flow Z-pinch to HEDP conditions by using sheared flow stabilization. Z-pinch plasmas have been produced that are 100 cm long with a 1 cm radius and are quiescent for many radial Alfven times and axial flow times. Quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes: Mach2, WARPX, and NIMROD. A sheared flow profile is observed to be coincident with the quiescent period and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements of density, flow, electron & ion temperature, and magnetic field. Wall stabilization is investigated computationally and experimentally by removing 70% of the surrounding conducting wall. The flow Z-pinch concept provides an approach to achieve HED plasmas, which are large and persist for extended durations. The new experiment, ZaP-HD, has been built to investigate this approach. Experimental results and scaling analyses are presented. This work is supported by grants from US DoE and NNSA.

  17. Plasma channel and Z-pinch dynamics for heavy ion transport

    SciTech Connect

    Ponce-Marquez, David

    2002-07-09

    A self stabilized, free standing, z-pinch plasma channel has been proposed to deliver the high intensity heavy ion beam from the end of a driver to the fuel target in a heavy ion inertial fusion power plant. The z-pinch relaxes emittance and energy spread requirements requiring a lower cost driver. A z-pinch transport would reduce the number of beam entry port holes to the target chamber from over a hundred to four as compared to neutralized ballistic focusing thus reducing the driver hardware exposure to neutron flux. Experiments where a double pulse discharge technique is used, z-pinch plasma channels with enhanced stability are achieved. Typical parameters are 7 kV pre-pulse discharge and 30 kV main bank discharge with 50 kA of channel current in a 7 torr background gas atmosphere. This work is an experimental study of these plasma channels examining the relevant physics necessary to understand and model such plasmas. Laser diagnostics measured the dynamical properties of neutrals and plasma. Schlieren and phase contrast techniques probe the pre-pulse gas dynamics and infrared interferometry and faraday effect polarimetry are used on the z-pinch to study its electron density and current distribution. Stability and repeatability of the z-pinch depend on the initial conditions set by the pre-pulse. Results show that the z-pinch channel is wall stabilized by an on-axis gas density depression created by the pre-pulse through hydrodynamic expansion where the ratio of the initial gas density to the final gas density is > 10/1. The low on-axis density favors avalanching along the desired path for the main bank discharge. Pinch time is around 2 s from the main bank discharge initiation with a FWHM of {approx} 2 cm. Results also show that typical main bank discharge plasma densities reach 10{sup 17} cm{sup -3} peak on axis for a 30 kV, 7 torr gas nitrogen discharge. Current rise time is limited by the circuit-channel inductance with the highest contribution to the impedance due to the plasma. There is no direct evidence of surface currents due to high frequency skin effects and magnetic field experiments indicate that > 70% of the current carried by the channel is enclosed within FWHM of the channel. Code-experiment benchmark comparisons show that simulations capture the main mechanisms of the channel evolution, but complete atomic models need to be incorporated.

  18. Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM

    SciTech Connect

    Ding, Ning Zhang, Yang Xiao, Delong Wu, Jiming Huang, Jun Yin, Li Sun, Shunkai Xue, Chuang Dai, Zihuan Ning, Cheng Shu, Xiaojian Wang, Jianguo Li, Hua

    2014-12-15

    Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosion phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the “Qiangguang I” facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire-array plasma acceleration, shock generation and production, hohlraum formation, radiation ablation and fuel compression.

  19. Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM

    NASA Astrophysics Data System (ADS)

    Ding, Ning; Zhang, Yang; Xiao, Delong; Wu, Jiming; Huang, Jun; Yin, Li; Sun, Shunkai; Xue, Chuang; Dai, Zihuan; Ning, Cheng; Shu, Xiaojian; Wang, Jianguo; Li, Hua

    2014-12-01

    Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, ?) geometry is numerically studied. In the implosion phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the "Qiangguang I" facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire-array plasma acceleration, shock generation and production, hohlraum formation, radiation ablation and fuel compression.

  20. Target design for high fusion yield with the double Z-pinch-driven hohlrauma)

    NASA Astrophysics Data System (ADS)

    Vesey, R. A.; Herrmann, M. C.; Lemke, R. W.; Desjarlais, M. P.; Cuneo, M. E.; Stygar, W. A.; Bennett, G. R.; Campbell, R. B.; Christenson, P. J.; Mehlhorn, T. A.; Porter, J. L.; Slutz, S. A.

    2007-05-01

    A key demonstration on the path to inertial fusion energy is the achievement of high fusion yield (hundreds of MJ) and high target gain. Toward this goal, an indirect-drive high-yield inertial confinement fusion (ICF) target involving two Z-pinch x-ray sources heating a central secondary hohlraum is described by Hammer et al. [Phys. Plasmas 6, 2129 (1999)]. In subsequent research at Sandia National Laboratories, theoretical/computational models have been developed and an extensive series of validation experiments have been performed to study hohlraum energetics, capsule coupling, and capsule implosion symmetry for this system. These models have been used to design a high-yield Z-pinch-driven ICF target that incorporates the latest experience in capsule design, hohlraum symmetry control, and x-ray production by Z pinches. An x-ray energy output of 9MJ per pinch, suitably pulse-shaped, is sufficient for this concept to drive 0.3-0.5GJ capsules. For the first time, integrated two-dimensional (2D) hohlraum/capsule radiation-hydrodynamics simulations have demonstrated adequate hohlraum coupling, time-dependent radiation symmetry control, and the successful implosion, ignition, and burn of a high-yield capsule in the double Z-pinch hohlraum. An important new feature of this target design is mode-selective symmetry control: the use of burn-through shields offset from the capsule that selectively tune certain low-order asymmetry modes (P2,P4) without significantly perturbing higher-order modes and without a significant energy penalty. This paper will describe the capsule and hohlraum design that have produced 0.4-0.5GJ yields in 2D simulations, provide a preliminary estimate of the Z-pinch load and accelerator requirements necessary to drive the system, and suggest future directions for target design work.

  1. Numerical simulation of fiber and wire array Z-pinches with Trac-II

    SciTech Connect

    Reisman, D

    1998-09-01

    Trac-II is a two dimensional axisymmetric resistive MHD code. It simulates all three spatial components (r, z, φ) of the magnetic field and fluid velocity vectors, and the plasma is treated as a single fluid with two temperatures (Te,Ti). In addition, it can optionally include a self-consistent external circuit. Recent modifications to the code include the addition of the 3-T radiation model, a 4-phase (solid-liquid-vapor-plasma) equation of state model (QEOS), a 4-phase electrical/thermal conductivity model, and an implicit solution of poloidal Bz,Br) magnetic field diffusion. These changes permit a detailed study of fiber and wire array Z-pinches. Specifically, Trac-II is used to study the wire array Z-pinch at the PBFA-Z pulse power generator at Sandia National Laboratory. First, in 1-D we examine the behavior of a single wire in the Z-pinch. Then, using these results as initial radial conditions in 2-D, we investigate the dynamics of wire array configurations in the r-z and r-θ plane. In the r-z plane we examine the growth of the m=0 or "sausage" instability in single wires within the array. In the r-θ plane we examine the merging behavior between neighboring wires. Special emphasis is placed on trying to explain how instability growth affects the performance of the Z-pinch. Lastly, we introduce Trac-III, a 3-D MHD code, and illustrate the m=1 or "kink" instability. We also discuss how Trac-III can be modified to simulate the wire array Z-pinch.

  2. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode

    NASA Astrophysics Data System (ADS)

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin; Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun

    2015-11-01

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.

  3. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode.

    PubMed

    Wang, Kun-Lun; Ren, Xiao-Dong; Huang, Xian-Bin; Zhang, Si-Qun; Zhou, Shao-Tong; Dan, Jia-Kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-Chun; Wei, Bing; Ji, Ce; Feng, Shu-Ping; Wang, Meng; Xie, Wei-Ping; Deng, Jian-Jun

    2015-11-01

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%. PMID:26628136

  4. High-power laser shock-induced dynamic fracture of aluminum and microscopic observation of samples

    NASA Astrophysics Data System (ADS)

    Fan, Zhang; Xiuguang, Huang; Hua, Shu; Dawu, Xiao; Lifeng, He; Zhiyong, Xie; Junjian, Ye; Jiaqin, Dong; guo, Jia; Zhiheng, Fang; Huazhen, Zhou

    2015-09-01

    High-power laser induced shocks generated by "ShenGuang II" laser facility has been used to study spall fracture of polycrystalline aluminum at strain rates more than 106/s. The free surface velocity histories of shock-loaded samples, 150 ?m thick and with initial temperature from 293 K to 873 K, have been recorded using velocity interferometer system for any reflector (VISAR). From the free surface velocity profile, spall strength and yield stress are calculated, it demonstrates that spall strength will decline and yield strength increase with initial temperature. The loaded samples are recovered to obtain samples' section and free surface metallographic pictures through Laser Scanning Confocal Microscopy. It is found that there are more micro-voids and more opportunity to appear bigger voids near the spall plane and the grain size increases with temperature slowly but smoothly except the sharply change at 893 K (near melting point). Besides, the fracture mechanisms change from mainly intergranular fracture to transgranular fracture with the increase of initial temperature.

  5. History of HERMES III diode to z-pinch breakthrough and beyond : learning about pulsed power and z-pinch ICF.

    SciTech Connect

    Sanford, Thomas W. L.

    2013-04-01

    HERMES III and Z are two flagship accelerators of Sandia's pulsed-power program developed to generate intense-ray fields for the study of nuclear radiation effects, and to explore high energy-density physics (including the production of intense x-ray fields for Inertia Confinement Fusion [ICF]), respectively. A diode at the exit of HERMES III converts its 20-MeV electron beam into-rays. In contrast, at the center of Z, a z-pinch is used to convert its 20-MA current into an intense burst of x-rays. Here the history of how the HERMES III diode emerged from theoretical considerations to actual hardware is discussed. Next, the reverse process of how the experimental discovery of wire-array stabilization in a z-pinch, led to a better theory of wirearray implosions and its application to one of the ICF concepts on Z--the DH (Dynamic Hohlraum) is reviewed. Lastly, the report concludes with how the unexpected axial radiation asymmetry measured in the DH is understood. The first discussion illustrates the evolution of physics from theory-to-observationto- refinement. The second two illustrate the reverse process of observationto- theory-to refinement. The histories are discussed through the vehicle of my research at Sandia, illustrating the unique environment Sandia provides for personal growth and development into a scientific leader.

  6. Z-Pinch Driven Inertial Confinement Fusion Target Physics Research at Sandia National Laboratories

    SciTech Connect

    Alberts, T.E.; Asay, J.R.; Baca, P.M.; Baker, K.L.; Breeze, S.P.; Chandler, G.A.; Cook, D.L.; Cooper, G.W.; Deeney, C.; Derzon, M.S.; Douglas, M.R.; Fehl, D.L.; Gilliland, T.; Hebron, D.E.; Hurst, M.J.; Jobe, D.O.; Kellogg, J.W.; Lash, J.S.; Lazier, S.E.; Leeper, R.J.; Matzen, M.K.; McDaniel, D.H.; McGurn, J.S.; Mehlhorn, T.A.; Moats, A.R.; Mock, R.C.; Muron, D.J.; Nash, T.J.; Olson, R.E.; Porter, J.L.; Quintenz, J.P.; Reyers, P.V.; Ruggles, L.E.; Ruiz, C.L.; Sandford, T.W.L.; Schmidlapp, F.A.; Seamen, J.F.; Spielman, R.B.; Stark, M.A.; Struve, K.W.; Stygar, W.A.; Tibbetts-Russell, D.R.; Torres, J.A.; Vargas, M.; Wagoner, T.C.; Wakefield, C.

    1998-10-27

    Three hohlraum concepts are being pursued at Sandia National Laboratories (SNL) to investigate the possibility of using pulsed power driven magnetic implosions (z-pinches) to drive high gain targets capable of yields in the range of 200-1000 MJ. This research is being conducted on SNL'S.Z facility that is capable of driving peak currents of 20 MA in z-pinch loads producing implosion velocities as high as 7.5X 107 cm/s, x-ray energies approaching 2 MJ, and x-ray powers exceeding 200 TW. This paper will discuss each of these hohlraum concepts and will overview the experiments that have been conducted on these systems to date.

  7. Study of the stability of Z-pinch implosions with different initial density profiles

    SciTech Connect

    Rousskikh, A. G.; Zhigalin, A. S.; Labetskaya, N. A.; Chaikovsky, S. A.; Yushkov, G. Yu.; Oreshkin, V. I.; Batrakov, A. V.; Tomsk Polytechnic University, Tomsk ; Baksht, R. B.; Tel-Aviv University, Tel Aviv

    2014-05-15

    Stability of metal-puff Z pinches was studied experimentally. Experiments were carried out on a facility producing a load current up to 450 kA with a rise time of 450?ns. In a metal-puff Z pinch, the plasma shell is produced due to evaporation of the electrode material during the operation of a vacuum arc. In the experiment to be reported, a single-shell and a shell-on-jet pinch load with magnesium electrodes were used. Two-dimensional, 3 ns gated, visible-light images were taken at different times during the implosion. When the shell was formed from a collimated plasma flow with small radial divergence, RayleighTaylor (RT) instability typical of gas-puff implosions was recorded. The RT instability was completely suppressed in a mode where the initial density distribution of the shell approached a tailored density profile [A. L. Velikovich et al., Phys. Rev. Lett. 77, 853 (1996)].

  8. Use of Z-Pinch Sources for High-Pressure Shock Wave Experiments

    NASA Astrophysics Data System (ADS)

    Asay, J. R.; Konrad, C. H.; Trott, W. M.; Hall, C. A.; Lash, J. S.; Dukart, R. J.; Hanson, D. L.; Olson, R. E.; Chandler, G. A.; Chhabildas, L. C.; Fleming, K. J.; Trucano, T. G.

    1997-07-01

    With gun technologies, it is possible to make a wide variety of physical property measurements for dynamic pressures of several megabars. However, current scientific and programmatic problems require measurements to shock pressures approaching 100 Mbar. Recent developments have demonstrated that intense radiation sources (z-pinches) can drive planar shock waves in samples with spatial dimensions significantly larger than possible with other radiation sources. Specifically, shock breakout studies obtained with z-pinch sources(To be published in Phys Plasmas, May 1997.) indicate that uniform shock waves can indeed be obtained. In this presentation, we will discuss the use of these sources for EOS studies at multi-Mbar pressures. Plans to use the technique for absolute shock Hugoniot measurements and with accuracies comparable to that obtained with gun launchers will also be discussed.

  9. Exploring Ways to Improve Predictive Capability of Z-Pinch Calculations

    SciTech Connect

    Matuska, W.; Aubrey, J.; Bowers, R.; Lee, H.; Peterson, D.; Deeney, C.; Derzon, M.; Nash, T.

    1998-10-19

    For some time 2-dimensional RMHD (radiation magneto-hydrodynamic) calculations of radiating z-pinches have been made to agree with integral data (current wave form, yield and power). For these calculations, the agreement with detailed data, such as time-resolved x-ray images, is generally not as good. Correctly modeling the physics of z-pinches, including detailed data, is needed to have true predictive capability. To address this problem, the authors first determine which integral data are most sensitive to the details in the models. With this information, they investigate aspects of the pinch, to which the data is sensitive, using non-standard techniques. For example, the pinch is calculated in (x,y)-geometry to investigate how a non-symmetric implosion affects the simulated data.

  10. Determination of the inductance of imploding wire array Z-pinches using measurements of load voltage

    SciTech Connect

    Burdiak, G. C.; Lebedev, S. V.; Hall, G. N.; Harvey-Thompson, A. J.; Suzuki-Vidal, F.; Swadling, G. F.; Khoory, E.; Pickworth, L.; Bland, S. N.; Grouchy, P. de; Skidmore, J.

    2013-03-15

    The inductance of imploding cylindrical wire array z-pinches has been determined from measurements of load voltage and current. A thorough analysis method is presented that explains how the load voltage of interest is found from raw signals obtained using a resistive voltage divider. This method is applied to voltage data obtained during z-pinch experiments carried out on the MAGPIE facility (1.4 MA, 240 ns rise-time) in order to calculate the load inductance and thereafter the radial trajectory of the effective current sheath during the snowplough implosion. Voltage and current are monitored very close to the load, allowing these calculations to be carried out without the need for circuit modelling. Measurements give a convergence ratio for the current of between 3.1 and 5.7 at stagnation of the pinch.

  11. Progress in Z-pinch research driven by the mega-ampere device SPEED2

    SciTech Connect

    Pavez, Cristian; Soto, Leopoldo; Moreno, Jose; Tarifeno, Ariel; Sylvester, Gustavo

    2008-04-07

    Several pinch configurations have being studied at the Chilean Nuclear Energy Commission using the SPEED2 generator: plasma focus, gas embedded z-pinch and wire arrays. SPEED2 is a generator based on Marx technology (4.1 {mu}F equivalent Marx generator capacity, 300 kV, 4 MA in short circuit, 187 kJ, 400 ns rise time, dI/dt{approx}10{sup 13} A/s). Currently the device is being operated at 70kJ stored energy producing a peak current of 2.4 MA in short circuit. In this work results related to studies in gas embedded z-pinch in deuterium and studies in wire arrays are presented.

  12. Formation of Radiatively cooled, Supersonically Rotating, Plasma Disks in Z-pinch experiments

    NASA Astrophysics Data System (ADS)

    Bennett, M.; Lebedev, S. V.; Suttle, L.; Burdiak, G.; Suzuki-Vidal, F.; Hare, J.; Swadling, G. F.; Patankar, S.; Hall, G. N.; Bocchi, M.; Chittenden, J. P.; Smith, R. A.; Frank, A.; Blackman, E.; Drake, R. P.; Ciardi, A.

    2014-10-01

    We present data from z-pinch experiments aiming to simulate aspects of accretion disk physics in the laboratory. Using off axis ablation flows from a wire array z-pinch we demonstrate the formation of a hollow disk structure that rotates supersonically with velocity of ~60 km/s and M ~ 2 for ~150 ns. We use interferometry to measure the electron density as >1019 cm-3 and analyze Thomson Scattered spectra to make estimates for the ion and electron temperatures; we find Ti ~ 60 eV and ZTe ~ 150 to 200 eV. Using these parameters we calculate the Reynolds number for the plasma on the order 105 putting the experiment within the correct viscous regime for turbulent flow and scaling to accretion disks.

  13. Temporal and Spatial Measurements of a Z-Pinch Magnetic Field and Comparison with Simulations

    NASA Astrophysics Data System (ADS)

    Kroupp, Eyal; Rosenzweig, Guy; Fisher, Amnon; Maron, Yitzhak; Giuliani, John; Thornhill, Ward; Velikovich, Alexander; Dasgupta, Arati

    2014-10-01

    Magnetic forces drive the implosion of a linear Z-pinch. The finite conductivity of the plasma means that the azimuthal field can diffuse into the accelerated material and the current is distributed. We have performed detailed measurements of the evolution of the azimuthal magnetic field within an oxygen z pinch on a 500 kA generator. Polarization spectroscopy is used to record the individual line profiles of the left and right circularly polarized component of Zeeman-split emission lines from OIII and OVI ions. The magnetic field spatial distribution down to <5 mm radius is presented for four times within 26 ns of stagnation. Numerical simulations using a 2D radiation MHD code are compared with the data. Implications for the current distribution and plasma resistivity will be discussed in light of the simulations and data. Work supported by the Israel Science Foundation and DOE/NNSA.

  14. Preliminary results from the flow-through z-pinch experiments: ZaP

    SciTech Connect

    Shumlak, U.; Nelson, B.A.; Goilingo, R.P.; Tang, D.; Crawford, E.; Hartog, D.J.D.; Holly, D.J.

    1999-07-01

    The stabilizing effect of an axial flow on the m = 1 kink instability in z-pinches has been studied numerically by reducing the linearized ideal MHD equations to a one-dimensional eigenvalue equation for the radial displacement. A diffuse z-pinch equilibrium is chosen that is made marginally stable to the m = 0 sausage mode by tailoring the pressure profile. The principal result reveals that a sheared axial flow does stabilize the kink mode when the shear exceeds a threshold value which is inversely proportional to the wavelength of the mode. This threshold value can be satisfied with a peak flow which is less than the Alfven speed for certain wavelengths. Additionally, the m = 0 sausage mode is driven from marginal stability into the stable regime which suggests that the equilibrium pressure profile control can be relaxed. The flow stabilization agrees with experimental observations. The details of the theoretical development will be presented.

  15. K-shell radiation physics in low-to moderate-atomic-number z-pinch plasmas on the Z accelerator.

    SciTech Connect

    Clark, Robert W.; Maron, Yitzhak; Davis, J.; Apruzese, John P.; Whitney, Ken G.; LePell, Paul David; Velikovich, Aleksandr Lazarevich; Deeney, Christopher E.; McKenney, John Lee; Thornhill, Joseph W.; Oreshkin, V. I.; Kantsyrev, Victor Leonidovich; Coverdale, Christine Anne; Jones, Brent Manley; Safronova, Alla S.

    2004-12-01

    Dense z-pinches produced by 100 ns implosions of wire arrays or gas puffs produce substantial soft X-ray power. One class of z-pinch radiation sources includes low- to moderate-atomic-number K-shell radiators, such as aluminum and iron. These loads are designed for 1-10 keV K-shell X-ray generation, and offer opportunities for crystal spectroscopy that can reveal fundamental properties of the plasma when studied using plasma spectroscopic modeling. Typically these plasmas are characterized by ion densities of {approx} 10{sup 20} cm{sup -3}, diameters of 1-5 mm, electron temperatures up to several keV, and a range of opacities of the K-shell lines. Measurements from wire arrays on Sandia's 20 MA Z accelerator are presented along with collisional radiative and hydrodynamic simulations. The impact of opacity and 3D structure on non-LTE, non-diffusive radiation transport and X-ray production is discussed.

  16. Effect of soft metal gasket contacts on contact resistance, energy deposition, and plasma expansion profile in a wire array Z pinch.

    PubMed

    Gomez, M R; Zier, J C; Gilgenbach, R M; French, D M; Tang, W; Lau, Y Y

    2008-09-01

    Soft metal gaskets (indium and silver) were used to reduce contact resistance between the wire and the electrode in an aluminum wire Z pinch by more than an order of magnitude over the best weighted contact case. Clamping a gasket over a Z-pinch wire compresses the wire to the electrode with a greater normal force than possible with wire weights. Average contact resistance was reduced from the range of 100-3000 Omega (depending on wire weight mass) to 1-10 Omega with soft metal gaskets. Single wire experiments (13 microm Al 5056) on a 16 kA, 100 kV Marx bank showed an increase in light emission (97%) and emission volume (100%) of the plasma for the reduced contact resistance cases. The measured increases in plasma volume and light emission indicate greater energy deposition in the ablated wire. Additionally, dual-wire experiments showed plasma edge effects were significantly decreased in the soft metal gasket contact case. The average height of the edge effects was reduced by 51% and the width of the edge effects was increased by 40%, thus the gasket contact case provided greater axial uniformity in the plasma expansion profile of an individual wire. PMID:19044418

  17. Sheath broadening in imploding z-pinches due to large-bandwidth Rayleigh-Taylor instability

    SciTech Connect

    Hammer, J.H.; Eddleman, J.L.; Tabak, M.; Toor, A.; Zimmerman, G.B.; De Groot, J.S.

    1996-06-04

    The magnetic Rayleigh-Taylor (RT) instability has been predicted and observed to cause breakup of the plasma sheath in imploding Z-pinches. In this work we show that for the type of density profile encountered in strongly radiating pinches, instability at very short wavelengths grows to the non-linear stage and seeds progressively longer wavelengths. The result is a self-similar broadening of the sheath as found for mix layers in fluid RT unstable systems.

  18. Wire initiation critical for radiation symmetry in z-pinch-driven dynamic hohlraums.

    PubMed

    Sanford, T W L; Jennings, C A; Rochau, G A; Rosenthal, S E; Sarkisov, G S; Sasorov, P V; Stygar, W A; Bennett, L F; Bliss, D E; Chittenden, J P; Cuneo, M E; Haines, M G; Leeper, R J; Mock, R C; Nash, T J; Peterson, D L

    2007-02-01

    Axial symmetry in x-ray radiation of wire-array z pinches is important for the creation of dynamic hohlraums used to compress inertial-confinement-fusion capsules. We present the first evidence that this symmetry is directly correlated with the magnitude of the negative radial electric field along the wire surface. This field (in turn) is inferred to control the initial energy deposition into the wire cores, as well as any current shorting to the return conductor. PMID:17358953

  19. Nonlinear full two-fluid study of m=0 sausage instabilities in an axisymmetric Z pinch

    SciTech Connect

    Loverich, J.; Shumlak, U.

    2006-08-15

    A nonlinear full five-moment two-fluid model is used to study axisymmetric instabilities in a Z pinch. When the electron velocity due to the current J is greater than the ion acoustic speed, high wave-number sausage instabilities develop that initiate shock waves in the ion fluid. This condition corresponds to a pinch radius on the order of a few ion Larmor radii.

  20. Radiation Symmetry Control for ICF Capsule Implosions in Double Z-Pinch Hohlraums on Z

    NASA Astrophysics Data System (ADS)

    Vesey, Roger A.

    2002-11-01

    The double z-pinch hohlraum high-yield concept [Phys. Plasmas 6, 2129 (1999)] utilizes two 60-MA z-pinches to heat separate primary hohlraums at either end of a secondary hohlraum containing the cryogenic fusion capsule. Recent experiments on the Z accelerator at Sandia National Laboratories have developed an advanced single-sided power feed, double z-pinch load to study radiation symmetry and pinch power balance using implosion capsules [Phys. Rev. Lett. 88, 215004 (2002)]. Point-projection x-ray imaging with the Z-Beamlet Laser mapped the trajectory and distortion of 2-mm diameter plastic ablator capsules (see G. R. Bennett, this session). Using the backlit capsule distortion as a symmetry diagnostic, we have demonstrated the ability to predictably tune symmetry at the <10in fluence by modifying the hohlraum geometry. Systematic control of the time-integrated P2 Legendre mode asymmetry coefficient at the +/-3length of the cylindrical secondary hohlraum containing the capsule, in agreement with viewfactor and radiation-hydrodynamics simulations. Simulations predict that both P2 and P4 can be further minimized on Z by proper hohlraum design to a level that satisfies the scaled high yield requirement. These same simulation methods indicate that adequate implosion symmetry can be attained for a high-yield (400 MJ) capsule driven at 220 eV in a hohlraum of the same scale.

  1. Radiation-Hydromagnetic Models of a Z-Pinch Implosion with an Axial Magnetic Field

    NASA Astrophysics Data System (ADS)

    Clark, R. W.; Giuliani, J. L.; Terry, R.; Davis, J.; Velikovich, A. L.

    1997-11-01

    Experimental results on a 1MA pulser suggest that axial magnetic fields can stabilize z-pinch implosions and enhance the compression ratio(S. Sorokin and S. Chaikovsky, Dense Z-Pinches, AIP Conf. Proc. 299, p.83 (1993).). The present theoretical work calculates the effects of an axial magnetic field on the plasma and field profiles in an imploding z-pinch. The initial mass configuration is an annular shell of krypton. The 1-D simulation model includes: resistive diffusion (skin effect) for both the azimuthal and axial fields, ionization dynamics, and non-LTE radiation transport. Unlike the constant pulser current of self-similar models for the screw-pinch, a transmission line is used to model the circuit of a realistic ~10MA pulser. The implosion dynamics resulting from an axial field generated by a twisted return current cage will be compared with results due to an initial field from external Helmholtz coils. The dependence of the radiative performance on compression ratio, which in turn is a function of inital field strength or cage twist, will be discussed.

  2. Application of 2-D simulations to hollow z-pinch implosions

    SciTech Connect

    Peterson, D.L.; Bowers, R.L.; Brownell, J.H.

    1997-12-01

    The application of simulations of z-pinch implosions should have at least two goals: first, to properly model the most important physical processes occurring in the pinch allowing for a better understanding of the experiments and second, provide a design capability for future experiments. Beginning with experiments fielded at Los Alamos on the Pegasus 1 and Pegasus 2 capacitor banks, the authors have developed a methodology for simulating hollow z-pinches in two dimensions which has reproduced important features of the measured experimental current drive, spectrum, radiation pulse shape, peak power and total radiated energy. This methodology employs essentially one free parameter, the initial level of the random density perturbations imposed at the beginning of the 2-D simulation, but in general no adjustments to other parameters are required. Currently the authors are applying this capability to the analysis of recent Saturn and PBFA-Z experiments. The code results provide insight into the nature of the pinch plasma prior to arrival on-axis, during thermalization and development after peak pinch time. Among other things, the simulation results provide an explanation for the production of larger amounts of radiated energy than would be expected from a simple slug-model kinetic energy analysis and the appearance of multiple peaks in the radiation power. The 2-D modeling has also been applied to the analysis of Saturn dynamic hohlraum experiments and is being used in the design of this and other Z-Pinch applications on PBFA-Z.

  3. Radiative cooling of two-component wire-array Z-pinch plasma

    SciTech Connect

    Ivanov, V. V.; Mancini, R. C.; Papp, D.; Hakel, P.; Durmaz, T.; Florido, R.

    2014-08-15

    Wire-array two-component Z-pinch plasmas containing Al and other elements were studied experimentally and the observations interpreted with the help of theoretical modeling. Special attention was given to achieving reproducible implosions. Cascading implosions in star wire arrays mix components during the implosion phase and implosion dynamics were not affected by changes in concentration. A reduction in Al K-shell radiation and an increase in soft x-ray radiation emission were observed in Al-W plasma with 84% concentration of Al ions compared to only-Al plasma. Plasma with 84% of Al ions has radiative properties like those of W Z-pinches. The analysis of Al K-shell x-ray spectra with a collisional-radiative atomic kinetics model shows a drop of the electron temperature from 400?eV in pure Al plasma to below 300?eV in the Al-W mix. Al-Au Z-pinches present radiation features similar to Al-W plasma. This is indicative of a similar plasma cooling effect due to the presence of a high-Z element.

  4. Study of magnetic fields and current in the Z pinch at stagnation

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Anderson, A. A.; Papp, D.; Astanovitskiy, A. L.; Nalajala, V.; Dmitriev, O.

    2015-09-01

    The structure of magnetic fields in wire-array Z pinches at stagnation was studied using a Faraday rotation diagnostic at the wavelength of 266 nm. The electron plasma density and the Faraday rotation angle in plasma were calculated from images of the three-channel polarimeter. The magnetic field was reconstructed with Abel transform, and the current was estimated using a simple model. Several shots with wire-array Z pinches at 0.5-1.5 MA were analyzed. The strength of the magnetic field measured in plasma of the stagnated pinch was in the range of 1-2 MG. The magnetic field and current profile in plasma near the neck on the pinch were reconstructed, and the size of the current-carrying plasma was estimated. It was found that current flowed in the large-size trailing plasma near the dense neck. Measurements of the magnetic field near the bulge on the pinch also showed current in trailing plasma. A distribution of current in the large-size trailing plasma can prevent the formation of multi-MG fields in the Z pinch.

  5. Plasma dynamics and generation of hard radiations in experiments with cylindrical Z-pinches

    SciTech Connect

    Matveev, Yu. V.

    2010-03-15

    A survey of experimental studies on the generation of hard ionizing radiations from dynamic cylindrical Z-pinches is presented. Comprehensive experimental data do not confirm the hypothesis that charged particles responsible for the generation of hard radiations (neutrons and X-rays) are accelerated in short-scale Z-pinch necks (m = 0). Analysis of the experimental data indicates that, in discharges in pure hydrogen and deuterium, these particles are most probably accelerated in the axial direction along H{sub {phi} {approx}} 0 lines by the induction electric field generated during the initiation of the secondary near-wall breakdown, which disconnects the pinch from the power supply. In discharges excited in heavy gases and at high initial current growth rates (I{sub 0} {>=} 10{sup 12} A/s) in experiments with hydrogen and deuterium contaminated with admixtures arriving from the chamber wall, there is an additional acceleration mechanism related to the growth of the resistance of a radiatively cooled Z-pinch.

  6. Study of micro-pinches in wire-array Z pinches

    SciTech Connect

    Ivanov, V. V.; Papp, D.; Anderson, A. A.; Talbot, B. R.; Astanovitskiy, A. L.; Nalajala, V.; Dmitriev, O.; Chittenden, J. P.; Niasse, N.; Pikuz, S. A.; Shelkovenko, T. A.

    2013-11-15

    Bright and hot areas with a high plasma density and temperature are observed in all kinds of Z pinches. We studied bright radiating spots produced by micro-pinches in cylindrical and planar wire-arrays at the 1 MA Zebra pulsed power generator using an x-ray streak camera synchronized with laser diagnostics, x-ray time-gated pinhole camera, and spectroscopy. Hot spots with extremely dense and relatively hot plasma arise during the collapse of the micro-pinches. These hot spots radiate a continuum spectrum with energy >2.5 keV. Typical micro-pinches in Al wire arrays generate x-ray bursts with durations of 0.41 ns in the soft x-ray range and 0.10.4 ns in the keV range. UV two-frame shadowgraphy shows spatial correlation of hot spots with the collapse and explosion of micro-pinches. Micro-pinches typically occur at the necks of the Z pinch, but can demonstrate a variety of parameters and different dynamics. An analysis of x-ray streak images shows that micro-pinches can generate >20% of the x-ray energy in some types of wire-array Z pinches.

  7. Preliminary experimental results of tungsten wire-array Z-pinches on primary test stand

    NASA Astrophysics Data System (ADS)

    Huang, Xian-Bin; Zhou, Shao-Tong; Dan, Jia-Kun; Ren, Xiao-Dong; Wang, Kun-Lun; Zhang, Si-Qun; Li, Jing; Xu, Qiang; Cai, Hong-Chun; Duan, Shu-Chao; Ouyang, Kai; Chen, Guang-Hua; Ji, Ce; Wei, Bing; Feng, Shu-Ping; Wang, Meng; Xie, Wei-Ping; Deng, Jian-Jun; Zhou, Xiu-Wen; Yang, Yi

    2015-07-01

    The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a 20 TW pulsed power driver, which can deliver a 10 MA, 70 ns rise-time (10%-90%) current to a short-circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. Preliminary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 13 mm to 30 mm, consisting of 132-300 tungsten wires with 5-10 ?m in diameter. Multiple diagnostics were fielded to characterize the x-ray radiation from wire-array Z pinches. The x-ray peak power (50 TW) and total radiated energy (500 kJ) were obtained from a single 20-mm-diam array with 80-ns stagnation time. The highest x-ray peak power up to 80 TW with 2.4 ns FWHM was achieved by using a nested array with 20-mm outer diameter, and the total x-ray energy from the nested array is comparable to that of single array. Implosion velocity estimated from the time-resolved image measurement exceeds 30 cm/?s. The detailed experimental results and other findings are presented and discussed.

  8. Study of micro-pinches in wire-array Z pinches

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Papp, D.; Anderson, A. A.; Talbot, B. R.; Astanovitskiy, A. L.; Nalajala, V.; Dmitriev, O.; Chittenden, J. P.; Niasse, N.; Pikuz, S. A.; Shelkovenko, T. A.

    2013-11-01

    Bright and hot areas with a high plasma density and temperature are observed in all kinds of Z pinches. We studied bright radiating spots produced by micro-pinches in cylindrical and planar wire-arrays at the 1 MA Zebra pulsed power generator using an x-ray streak camera synchronized with laser diagnostics, x-ray time-gated pinhole camera, and spectroscopy. Hot spots with extremely dense and relatively hot plasma arise during the collapse of the micro-pinches. These hot spots radiate a continuum spectrum with energy >2.5 keV. Typical micro-pinches in Al wire arrays generate x-ray bursts with durations of 0.4-1 ns in the soft x-ray range and 0.1-0.4 ns in the keV range. UV two-frame shadowgraphy shows spatial correlation of hot spots with the collapse and explosion of micro-pinches. Micro-pinches typically occur at the necks of the Z pinch, but can demonstrate a variety of parameters and different dynamics. An analysis of x-ray streak images shows that micro-pinches can generate >20% of the x-ray energy in some types of wire-array Z pinches.

  9. Radiative cooling of two-component wire-array Z-pinch plasma

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Mancini, R. C.; Papp, D.; Hakel, P.; Durmaz, T.; Florido, R.

    2014-08-01

    Wire-array two-component Z-pinch plasmas containing Al and other elements were studied experimentally and the observations interpreted with the help of theoretical modeling. Special attention was given to achieving reproducible implosions. Cascading implosions in star wire arrays mix components during the implosion phase and implosion dynamics were not affected by changes in concentration. A reduction in Al K-shell radiation and an increase in soft x-ray radiation emission were observed in Al-W plasma with 84% concentration of Al ions compared to only-Al plasma. Plasma with 84% of Al ions has radiative properties like those of W Z-pinches. The analysis of Al K-shell x-ray spectra with a collisional-radiative atomic kinetics model shows a drop of the electron temperature from 400 eV in pure Al plasma to below 300 eV in the Al-W mix. Al-Au Z-pinches present radiation features similar to Al-W plasma. This is indicative of a similar plasma cooling effect due to the presence of a high-Z element.

  10. Influence of induced axial magnetic field on plasma dynamics and radiative characteristics of Z pinches.

    PubMed

    Kantsyrev, V L; Esaulov, A A; Safronova, A S; Velikovich, A L; Rudakov, L I; Osborne, G C; Shrestha, I; Weller, M E; Williamson, K M; Stafford, A; Shlyaptseva, V V

    2011-10-01

    The influence of an induced axial magnetic field on plasma dynamics and radiative characteristics of Z pinches is investigated. An axial magnetic field was induced in a novel Z-pinch load: a double planar wire array with skewed wires (DPWAsk), which represents a planar wire array in an open magnetic configuration. The induced axial magnetic field suppressed magneto-Rayleigh-Taylor (MRT) instabilities (with m = 0 and m = 1 instability modes) in the Z-pinch plasma. The influence of the initial axial magnetic field on the structure of the plasma column at stagnation was manifested through the formation of a more uniform plasma column compared to a standard double planar wire array (DPWA) load [V. L. Kantsyrev et al., Phys. Plasmas 15, 030704 (2008)]. The DPWAsk load is characterized by suppression of MRT instabilities and by the formation of the sub-keV radiation pulse that occurs before the main x-ray peak. Gradients in plasma parameters along the cathode-anode gap were observed and analyzed for DPWAsk loads made from low atomic number Z (Al) and mid-Z (brass) wires. PMID:22181284

  11. Study of implosion dynamics of Z-pinch dynamic hohlraum on the Angara-5-1 facility

    NASA Astrophysics Data System (ADS)

    Zhang, Faqiang; Xu, Rongkun; Xu, Zeping; Yang, Jianlun; Li, Zhenghong; Xia, Guangxin; Ning, Jiamin; Li, Linbo; Chen, Dingyang; Chen, Jinchuan

    2015-02-01

    The Z-pinch dynamic hohlraum (ZPDH) is one of high-power X-ray sources that has been used in a variety of high energy-density experiments including inertial confinement fusion (ICF) studies. Dynamic hohlraums driven by a 12-mm and a 18-mm-diameter single tungsten wire arrays embedded with a C16H20O6 foam, respectively, exhibit no visible differences in radiation from the axial exit, although the radial radiation is a little higher in a large array. The analysis of the images suggests that the implosion of a large array is quasi-continuous and has a faster imploding velocity, indicating that the large array is matched to the embedded foam and, oppositely, the small array is mismatched. The analysis also shows that the Rayleigh-Taylor instability develops much harder in implosions of a large array, and this leads to a lower hohlraum temperature. The conclusion was drawn that, for the purpose of enhancing the hohlraum temperature, increasing the conversion efficiency of kinetic energy into thermal energy is more important than increasing the kinetic energy from wire plasma.

  12. The microscopic Z-pinch process of current-carrying rarefied deuterium plasma shell

    NASA Astrophysics Data System (ADS)

    Ning, Cheng; Feng, Zhixing; Xue, Chuang; Li, Baiwen

    2015-02-01

    For insight into the microscopic mechanism of Z-pinch dynamic processes, a code of two-dimensional particle-in-cell (PIC) simulation has been developed in cylindrical coordinates. In principle, the Z-pinch of current-carrying rarefied deuterium plasma shell has been simulated by means of this code. Many results related to the microscopic processes of the Z-pinch are obtained. They include the spatio-temporal distributions of electromagnetic field, current density, forces experienced by the ions and electrons, positions and energy distributions of particles, and trailing mass and current. In radial direction, the electric and magnetic forces exerted on the electrons are comparable in magnitude, while the forces exerted on the ions are mainly the electric forces. So in the Z-pinch process, the electrons are first accelerated in Z direction and get higher velocities; then, they are driven inwards to the axis at the same time by the radial magnetic forces (i.e., Lorentz forces) of them. That causes the separations between the electrons and ions because the ion mass is much larger than the electron's, and in turn a strong electrostatic field is produced. The produced electrostatic field attracts the ions to move towards the electrons. When the electrons are driven along the radial direction to arrive at the axis, they shortly move inversely due to the static repellency among them and their tiny mass, while the ions continue to move inertially inwards, and later get into stagnation, and finally scatter outwards. Near the stagnation, the energies of the deuterium ions mostly range from 0.3 to 6 keV, while the electron energies are mostly from 5 to 35 keV. The radial components, which can contribute to the pinched plasma temperature, of the most probable energies of electron and ion at the stagnation are comparable to the Bennett equilibrium temperature (about 1 keV), and also to the highest temperatures of electron and ion obtained in one dimensional radiation magnetohydrodynamic simulation of the plasma shell Z-pinch. The trailing mass is about 20% of the total mass of the shell, and the maximum trailing current is about 7% of the driven current under our trailing definition. Our PIC simulation also demonstrates that the plasma shell first experiences a snow-plow like implosion process, which is relatively stable.

  13. The microscopic Z-pinch process of current-carrying rarefied deuterium plasma shell

    SciTech Connect

    Ning, Cheng; Xue, Chuang; Li, Baiwen; Feng, Zhixing

    2015-02-15

    For insight into the microscopic mechanism of Z-pinch dynamic processes, a code of two-dimensional particle-in-cell (PIC) simulation has been developed in cylindrical coordinates. In principle, the Z-pinch of current-carrying rarefied deuterium plasma shell has been simulated by means of this code. Many results related to the microscopic processes of the Z-pinch are obtained. They include the spatio-temporal distributions of electromagnetic field, current density, forces experienced by the ions and electrons, positions and energy distributions of particles, and trailing mass and current. In radial direction, the electric and magnetic forces exerted on the electrons are comparable in magnitude, while the forces exerted on the ions are mainly the electric forces. So in the Z-pinch process, the electrons are first accelerated in Z direction and get higher velocities; then, they are driven inwards to the axis at the same time by the radial magnetic forces (i.e., Lorentz forces) of them. That causes the separations between the electrons and ions because the ion mass is much larger than the electron's, and in turn a strong electrostatic field is produced. The produced electrostatic field attracts the ions to move towards the electrons. When the electrons are driven along the radial direction to arrive at the axis, they shortly move inversely due to the static repellency among them and their tiny mass, while the ions continue to move inertially inwards, and later get into stagnation, and finally scatter outwards. Near the stagnation, the energies of the deuterium ions mostly range from 0.3 to 6 keV, while the electron energies are mostly from 5 to 35 keV. The radial components, which can contribute to the pinched plasma temperature, of the most probable energies of electron and ion at the stagnation are comparable to the Bennett equilibrium temperature (about 1 keV), and also to the highest temperatures of electron and ion obtained in one dimensional radiation magnetohydrodynamic simulation of the plasma shell Z-pinch. The trailing mass is about 20% of the total mass of the shell, and the maximum trailing current is about 7% of the driven current under our trailing definition. Our PIC simulation also demonstrates that the plasma shell first experiences a snow-plow like implosion process, which is relatively stable.

  14. Increasing the K-shell yield of line radiation in Z-pinch implosions using alloyed Al/Mg wire-arrays

    SciTech Connect

    Xiao Delong; Ding Ning; Xue Chuang; Huang Jun; Zhang Yang; Ning Cheng; Sun Shunkai

    2013-01-15

    The variation of the K-shell yield of pure aluminum wire-array Z-pinch implosions with load parameters is discussed. The mechanism and the efficiency of increasing the K-shell yield using alloyed Al/Mg wire-arrays are numerically investigated. It has been shown that the maximum K-shell yield from a pure aluminum wire-array Z-pinch implosion can be obtained at an optimal load mass for a given generator and at a fixed initial wire-array radius. This optimal load mass is determined by the load energy coupling with the generator, the capability of Z-pinch plasmas to emit the K-shell radiation, and the self absorption of K-shell lines. For different generators, the optimal load mass increases as the drive current increases, and the line absorption limits the further increase of K-shell radiation. The coupled energy per ion is likely decreasing with increased mass, so the plasma might not be able to ionize into the K-shell. Also, the ability of the plasma to radiatively cool can increase with mass, thus, making it difficult for the plasma to ionize into and remain in the K-shell during the stagnation phase of the implosion. Alloyed Al/Mg wire-arrays were thus suggested to be used to decrease the opacity of K-shell lines and to increase the overall K-shell yield. In this paper, we show that using alloyed Al/Mg wire-arrays will decrease the opacity and increase the K-shell yield remarkably if the plasma is optically thick. We will also show that the efficiency of increasing the K-shell yield with alloyed Al/Mg wire-arrays cannot increase indefinitely. The ratio of K-shell yield from an alloyed Al/Mg wire-array to that from a pure aluminum wire-array reaches a limit. For example, we show that when the mass share of magnesium is 10% then this limit is 1.2, and for a 50% mass share, the limit is 1.3.

  15. Grazing incidence extreme ultraviolet spectrometer fielded with time resolution in a hostile Z-pinch environment

    SciTech Connect

    Williamson, K. M.; Kantsyrev, V. L.; Safronova, A. S.; Wilcox, P. G.; Cline, W.; Batie, S.; LeGalloudec, B.; Nalajala, V.; Astanovitsky, A.

    2011-09-15

    This recently developed diagnostic was designed to allow for time-gated spectroscopic study of the EUV radiation (4 nm < {lambda} < 15 nm) present during harsh wire array z-pinch implosions. The spectrometer utilizes a 25 {mu}m slit, an array of 3 spherical blazed gratings at grazing incidence, and a microchannel plate (MCP) detector placed in an off-Rowland position. Each grating is positioned such that its diffracted radiation is cast over two of the six total independently timed frames of the MCP. The off-Rowland configuration allows for a much greater spectral density on the imaging plate but only focuses at one wavelength per grating. The focal wavelengths are chosen for their diagnostic significance. Testing was conducted at the Zebra pulsed-power generator (1 MA, 100 ns risetime) at University of Nevada, Reno on a series of wire array z-pinch loads. Within this harsh z-pinch environment, radiation yields routinely exceed 20 kJ in the EUV and soft x-ray. There are also strong mechanical shocks, high velocity debris, sudden vacuum changes during operation, energic ion beams, and hard x-ray radiation in excess of 50 keV. The spectra obtained from the precursor plasma of an Al double planar wire array contained lines of Al IX and AlX ions indicating a temperature near 60 eV during precursor formation. Detailed results will be presented showing the fielding specifications and the techniques used to extract important plasma parameters using this spectrometer.

  16. Characterization of energy flow and instability development in two-dimensional simulations of hollow z pinches

    NASA Astrophysics Data System (ADS)

    Peterson, D. L.; Bowers, R. L.; McLenithan, K. D.; Deeney, C.; Chandler, G. A.; Spielman, R. B.; Matzen, M. K.; Roderick, N. F.

    1998-09-01

    A two-dimensional (2-D) Eulerian Radiation-Magnetohydrodynamic (RMHD) code has been used to simulate imploding z pinches for three experiments fielded on the Los Alamos Pegasus II capacitor bank [J. C. Cochrane et al., Dense Z-Pinches, Third International Conference, London, United Kingdom 1993 (American Institute of Physics, New York, 1994), p. 381] and the Sandia Saturn accelerator [R. B. Spielman et al., Dense Z-Pinches, Second International Conference, Laguna Beach, 1989 (American Institute of Physics, New York, 1989), p. 3] and Z accelerator [R. B. Spielman et al., Phys. Plasmas 5, 2105 (1998)]. These simulations match the experimental results closely and illustrate how the code results may be used to track the flow of energy in the simulation and account for the amount of total radiated energy. The differences between the calculated radiated energy and power in 2-D simulations and those from zero-dimensional (0-D) and one-dimensional (1-D) Lagrangian simulations (which typically underpredict the total radiated energy and overpredict power) are due to the radially extended nature of the plasma shell, an effect which arises from the presence of magnetically driven Rayleigh-Taylor instabilities. The magnetic Rayleigh-Taylor instabilities differ substantially from hydrodynamically driven instabilities and typical measures of instability development such as e-folding times and mixing layer thickness are inapplicable or of limited value. A new measure of global instability development is introduced, tied to the imploding plasma mass, termed "fractional involved mass." Examples of this quantity are shown for the three experiments along with a discussion of the applicability of this measure.

  17. Grazing incidence extreme ultraviolet spectrometer fielded with time resolution in a hostile Z-pinch environment

    NASA Astrophysics Data System (ADS)

    Williamson, K. M.; Kantsyrev, V. L.; Safronova, A. S.; Wilcox, P. G.; Cline, W.; Batie, S.; LeGalloudec, B.; Nalajala, V.; Astanovitsky, A.

    2011-09-01

    This recently developed diagnostic was designed to allow for time-gated spectroscopic study of the EUV radiation (4 nm < ? < 15 nm) present during harsh wire array z-pinch implosions. The spectrometer utilizes a 25 ?m slit, an array of 3 spherical blazed gratings at grazing incidence, and a microchannel plate (MCP) detector placed in an off-Rowland position. Each grating is positioned such that its diffracted radiation is cast over two of the six total independently timed frames of the MCP. The off-Rowland configuration allows for a much greater spectral density on the imaging plate but only focuses at one wavelength per grating. The focal wavelengths are chosen for their diagnostic significance. Testing was conducted at the Zebra pulsed-power generator (1 MA, 100 ns risetime) at the University of Nevada, Reno on a series of wire array z-pinch loads. Within this harsh z-pinch environment, radiation yields routinely exceed 20 kJ in the EUV and soft x-ray. There are also strong mechanical shocks, high velocity debris, sudden vacuum changes during operation, energic ion beams, and hard x-ray radiation in excess of 50 keV. The spectra obtained from the precursor plasma of an Al double planar wire array contained lines of Al IX and AlX ions indicating a temperature near 60 eV during precursor formation. Detailed results will be presented showing the fielding specifications and the techniques used to extract important plasma parameters using this spectrometer.

  18. On the transparency of foam in low-density foam Z-pinch experiments

    NASA Astrophysics Data System (ADS)

    MacFarlane, J. J.; Derzon, M. S.; Nash, T. J.; Chandler, G. A.; Peterson, D. L.

    1999-01-01

    Z-pinch experiments have been performed on the SATURN and Z machines at Sandia National Laboratories to study physics issues related to x-ray radiation generation and inertial confinement fusion. Some of these experiments utilize a CH foam located on-axis to convert energy to radiation and act as a radiative transfer volume. A significant issue for foam Z-pinch experiments is the transparency of the heated foam as a function of time and wavelength. Foam transparency will be important in future foam Z-pinch experiments both because it influences the time-dependent radiation field seen by an inertial confinement fusion capsule embedded in the foam, and because it is an important factor in making high-resolution spectral measurements of a capsule or tracers embedded in the foam. In this article, we describe results from simulations and experiments which address the issue of foam transparency. We discuss imaging data from one Z experiment in which x-ray emission from a half-Au/half-CH disk located at the bottom of a 1-cm-tall, 14 mg/cc TPX foam is observed. Simulation results predicting CH foam optical depths as a function of plasma conditions are presented. In addition, we present results from spectral calculations which utilize 2D magnetohydrodynamic (MHD) simulation predictions for the time-dependent foam conditions. Our results indicate that the observed x-ray framing camera images are consistent with early-time (several ns prior to stagnation) foam electron temperatures of ?30 eV, which is somewhat hotter than the foam electron temperatures predicted from the 2D MHD simulations at early times.

  19. The importance of EBIT data for Z-pinch plasma diagnostics

    SciTech Connect

    Safronova, A S; Kantsyrev, V L; Neill, P; Safronova, U I; Fedin, D A; Ouart, N D; Yilmaz, M F; Osborne, G; Shrestha, I; Williamson, K; Hoppe, T; Harris, C; Beiersdorfer, P; Hansen, S

    2007-04-04

    The results from the last six years of x-ray spectroscopy and spectropolarimetry of high energy density Z-pinch plasmas complemented by experiments with the electron beam ion trap (EBIT) at the Lawrence Livermore National Laboratory (LLNL) are presented. The two topics discussed are the development of M-shell x-ray W spectroscopic diagnostics and K-shell Ti spectropolarimetry of Z-pinch plasmas. The main focus is on radiation from a specific load configuration called an 'X-pinch'. X-pinches are excellent sources for testing new spectral diagnostics and for atomic modelling because of the high density and temperature of the pinch plasmas, which scale from a few {micro}m to several mm in size. They offer a variety of load configurations, which differ in wire connections, number of wires, and wire materials. In this work the study of X-pinches with tungsten wires combined with wires from other, lower-Z materials is reported. Utilizing data produced with the LLNL EBIT at different energies of the electron beam the theoretical prediction of line positions and intensity of M-shell W spectra were tested and calibrated. Polarization-sensitive X-pinch experiments at the University of Nevada, Reno (UNR) provide experimental evidence for the existence of strong electron beams in Ti and Mo X-pinch plasmas and motivate the development of x-ray spectropolarimetry of Z-pinch plasmas. This diagnostic is based on the measurement of spectra recorded simultaneously by two spectrometers with different sensitivity to the linear polarization of the observed lines and compared with theoretical models of polarization-dependent spectra. Polarization-dependent K-shell spectra from Ti X-pinches are presented and compared with model calculations and with spectra generated by a quasi-Maxwellian electron beam at the LLNL EBIT-II electron beam ion trap.

  20. Grazing incidence extreme ultraviolet spectrometer fielded with time resolution in a hostile z-pinch environment.

    PubMed

    Williamson, K M; Kantsyrev, V L; Safronova, A S; Wilcox, P G; Cline, W; Batie, S; LeGalloudec, B; Nalajala, V; Astanovitsky, A

    2011-09-01

    This recently developed diagnostic was designed to allow for time-gated spectroscopic study of the EUV radiation (4 nm < ? < 15 nm) present during harsh wire array z-pinch implosions. The spectrometer utilizes a 25 ?m slit, an array of 3 spherical blazed gratings at grazing incidence, and a microchannel plate (MCP) detector placed in an off-Rowland position. Each grating is positioned such that its diffracted radiation is cast over two of the six total independently timed frames of the MCP. The off-Rowland configuration allows for a much greater spectral density on the imaging plate but only focuses at one wavelength per grating. The focal wavelengths are chosen for their diagnostic significance. Testing was conducted at the Zebra pulsed-power generator (1 MA, 100 ns risetime) at the University of Nevada, Reno on a series of wire array z-pinch loads. Within this harsh z-pinch environment, radiation yields routinely exceed 20 kJ in the EUV and soft x-ray. There are also strong mechanical shocks, high velocity debris, sudden vacuum changes during operation, energic ion beams, and hard x-ray radiation in excess of 50 keV. The spectra obtained from the precursor plasma of an Al double planar wire array contained lines of Al IX and AlX ions indicating a temperature near 60 eV during precursor formation. Detailed results will be presented showing the fielding specifications and the techniques used to extract important plasma parameters using this spectrometer. PMID:21974586

  1. X-ray results from a modified nozzle and double gas puff z pinch

    SciTech Connect

    Chang, T.; Fisher, A.; Van Drie, A. )

    1991-03-15

    The nozzle and the anode of the UCI (University of California, Irvine) {ital z}-pinch facility were modified to study the influence of the anode-cathode geometrical structure on the stability of the pinch and the x-ray yield of the pinch. The anode was modified from a honey-comb to a hollow cylinder with a 4-cm diameter and a {similar to}3.5-mm wall thickness, placed 2 cm below the cathode. The cavity in the center of the cathode was enlarged from 6-mm diameter to 36 mm. The design of the cathode and the anode showed a marked improvement of the pinch stability over the previous design. Both zirconium and carbon-carbon nozzle were used for the Kr and Ne {ital z} pinches. After a few tens of shots the Zr nozzle was melted at the edge and the pinch degraded, while the carbon-carbon nozzle did not sustain any damage for more than 300 shots. Some shots showed the {ital di}/{ital dt} at the implosion is {similar to}5 times higher than the {ital di}/{ital dt} at the beginning of the discharge, this has never been obtained at UCI before. This ratio of the initial {ital di}/{ital dt} to pinch {ital di}/{ital dt} is a measure of the pinch quality. By serendipity it was found that double gas puff {ital z} pinch increased the hard x-ray ({gt}1 keV) output by about an order of magnitude. The nozzle was then modified to allow double puff operation. A 3.4-mm-diam hole was opened at the center of the nozzle and a plunger was inserted from the top to control the mass of the gas entering the hole. The diagnostics include {ital di}/{ital dt} coil, soft, and hard x-ray diodes. Soft and hard x-ray emission are both enhanced by the double gas puff {ital z} pinch.

  2. Four-color laser diagnostics for Z-pinch and laser-produced plasma.

    PubMed

    Ivanov, V V; Anderson, A A; Begishev, I A

    2016-01-20

    Four-color laser diagnostics were developed for Z-pinch and laser plasma at the 1MA pulsed power generator. Four harmonics of the Nd:YAG laser at wavelengths of 1064, 532, 266, and 213nm were produced during the cascade conversion in three nonlinear crystals and propagated together in one beampath. Deep UV probing allows better penetration of the dense plasma. Laser probing at four wavelengths allows observation of plasma in a wide range of densities in one shot of the diagnostic laser. Examples of four-color laser shadowgraphy and interferometry of the wire-array load and laser plasma interaction are presented and discussed. PMID:26835923

  3. Shock model description of the interaction radiation pulse in nested wire array z-pinches

    SciTech Connect

    Ampleford, D. J.; Jennings, C. A.; Cuneo, M. E.; Sinars, D. B.; Lebedev, S. V.; Bland, S. N.; Hall, G. N.; Suzuki-Vidal, F.; Palmer, J. B. A.; Chittenden, J. P.; Bott, S. C.

    2012-12-15

    Bow shock structures are observed in a nested wire array z-pinch as ablation streams from the outer array pass the inner array. The jump in plasma conditions across these shocks results in an enhancement of snowplow emission from the imploding plasma piston. Results from a snowplow model modified to account for the shock jumps are discussed and compared to experimental data from MAGPIE. Magnetohydrodynamic simulations indicate that this is the primary heating mechanism responsible for the interaction pulse recorded on the Z generator, which is required for pulse shaping for inertial confinement fusion.

  4. Radiative power and x-ray spectrum numerical estimations for wire array Z-pinches

    NASA Astrophysics Data System (ADS)

    Olkhovskaya, O. G.; Basko, M. M.; Sasorov, P. V.; Vitchev, I. Yu; Novikov, V. G.; Boldarev, A. S.; Gasilov, V. A.; Tkachenko, S. I.

    2015-11-01

    Magnetically driven plasma implosion is studied numerically with the use of a 3D radiative MHD model. We consider a Z-pinch formed by an array of thin tungsten wires. In our calculations we take into account a time-extended plasma production due to a material evaporation by an individual wire caused by the heating electric current. Using a detailed model of the pinch kernel, a soft x-ray radiation intensity is analyzed numerically with resolution of temporal, spatial, angular and spectral radiation characteristics. The results are represented for the conditions pertinent to experiments with cylindrical tungsten wire arrays at Angara-5-1 facility (TRINITI, RF).

  5. Self-consistent particle tracking in a simulation of the entropy mode in a Z pinch

    SciTech Connect

    Gustafson, K.; Broemstrup, I.; Dorland, W.; Barnes, M.; Castillo-Negrete, D. del

    2008-11-01

    A single particle tracking technique for studying nondiffusive transport is implemented in a new particle-in-cell gyrokinetic simulation of the entropy mode in a Z pinch geometry. Radial transport is characterized in terms of the time dependence of the variance of displacements. The vertical zonal flow dynamics of the nonlinear phase of the instability seem to cause subdiffusive transport for ions during the simulation lengths used here. Electrons follow subdiffusive transport, except for later times in the case of the largest gradient, where the transport becomes superdiffusive. The probability distribution of displacements shows a positive skew and long tails relative to the Gaussian distribution for both ions and electrons.

  6. Analysis of x-ray spectra obtained in foam Z-pinch experiments

    NASA Astrophysics Data System (ADS)

    MacFarlane, J. J.; Wang, P.; Nash, T. J.; Derzon, M. S.; Allshouse, G. A.; Deeney, C.

    1997-01-01

    Foam Z-pinch experiments have recently been performed on SATURN to study issues associated with the initiation, acceleration, and stagnation phases of the pinch. Time-integrated x-ray crystal spectra have been recorded from experiments with 5 mg/cc Si aerogel loads and 10 mg/cc agar loads. In this article, we describe results from collisional-radiative equilibrium calculations performed to analyze the Si, Na, and S K-shell emission observed in the spectra. Particular attention is paid to density and opacity effects on intensity ratios involving He?, He intercombination, and Li-like satellite lines.

  7. Characteristics of ICF Relevant Hohlraums Driven by X-Rays from a Z-Pinch

    SciTech Connect

    BOWERS,R.L.; CHANDLER,GORDON A.; HEBRON,DAVID E.; LEEPER,RAMON J.; MATUSKA,W.; MOCK,RAYMOND CECIL; NASH,THOMAS J.; OLSON,RICHARD E.; PETERSON,D.L.; PETERSON,R.R.; RUGGLES,LAURENCE E.; RUIZ,CARLOS L.; SANFORD,THOMAS W. L.; SIMPSON,WALTER W.; VESEY,ROGER A.

    1999-11-03

    Radiation environments characteristic of those encountered during the low-temperature foot pulse and subsequent higher-temperature early-step pulses (without the foot pulse) required for indirect-drive ICF ignition on the National ignition Facility have been produced in hohlraums driven by x-rays from a z-pinch. These environments provide a platform to better understand the dynamics of full-scale NIF hohlraums, ablator material, and capsules prior to NIF completion. Radiation temperature, plasma fill, and wall motion of these hohlraums are discussed.

  8. Use of spherically bent crystals to diagnose wire array z pinches

    SciTech Connect

    Shelkovenko, T.A.; Pikuz, S.A.; Hammer, D.A.; Ampleford, D.J.; Bland, S.N.; Bott, S.C.; Chittenden, J.P.; Lebedev, S.V.

    2004-10-01

    Spherically bent mica and quartz crystals have provided time-integrated spectra and monochromatic images in self-radiation of wire array z-pinch implosions on the MAGPIE generator (1 MA, 240 ns) at Imperial College. Diagnostics based on spherically bent crystals offer higher efficiencies than those based on flat or convex dispersion elements, allowing positioning far from the pinch with good debris shielding. A mica crystal spectrometer produced an image of the pinch in each emission line with about 100 {mu}m axial resolution. Combining the results of monochromatic imaging and spectra confirmed the presence of bright spots, probably generated by energetic electrons inside the pinch.

  9. Time and space resolved vacuum-ultraviolet spectroscopy of an argon gas-puff Z pinch

    SciTech Connect

    Marrs, R.E.; Dietrich, D.D.; Fortner, R.J.; Levine, M.A.; Price, D.F.; Stewart, R.E.; Young, B.K.F.

    1983-06-01

    Time and radially resolved vacuum-ultraviolet spectra from an argon gas-puff Z pinch have been obtained using a grazing incidence spectrometer with gated microchannel plates curved to the Rowland circle. Most of the 50--300-A radiation is emitted from a dense core (rroughly-equal0.4 mm, n/sub e/> or approx. =10/sup 19/ cm/sup -3/, T/sub e/roughly-equal150 eV) which forms when the plasma assembles on the axis.

  10. Z-Pinch Generated X-Rays Demonstrate Indirect-Drive ICF Potential

    SciTech Connect

    Bowers, R.L.; Chandler, G.A.; Derzon, M.S.; Hebron, D.E.; Leeper, R.J.; Matzen, M.K.; Mock, R.C.; Nash, T.J.; Olson, R.E.; Peterson, D.L.; Ruggles, L.E.; Sanford, T.W.L.; Simpson, W.W.; Struve, K.W.; Vesey, R.A.

    1999-06-16

    Hohlraums (measuring 6-mm in diameter by 7-mm in height) have been heated by x-rays from a z-pinch. Over measured x-ray input powers P of 0.7 to 13 TW, the hohlraum radiation temperature T increases from {approximately}55 to {approximately}130 eV, and is in agreement with the Planckian relation P-T{sup 4}. The results suggest that indirect-drive ICF studies involving NIF relevant pulse shapes and <2-mm diameter capsules can he studied using this arrangement.

  11. Effect of radial-electric-field polarity on wire-array Z-pinch dynamics.

    PubMed

    Bland, S N; Lebedev, S V; Chittenden, J P; Ampleford, D J; Bott, S C; Gmez, J A; Haines, M G; Hall, G N; Hammer, D A; Mitchell, I H; Palmer, J B A

    2005-09-23

    The formation of plasma in wire-array Z-pinch experiments was found to depend upon the polarity of the radial-electric field near the wires. Reversing the radial-electric field midway along the length of an array resulted in the ablation rate of one-half of the array being reduced by 50%, significantly delaying the start of its implosion and altering its acceleration towards the axis. The observed phenomena cannot be explained by the standard magnetohydrodynamic models of array behavior, suggesting that effects such as electron emission may be important, especially during wire initiation. PMID:16197143

  12. Fully kinetic particle-in-cell simulations of a deuterium gas puff z pinch.

    PubMed

    Welch, D R; Rose, D V; Clark, R E; Mostrom, C B; Stygar, W A; Leeper, R J

    2009-12-18

    We present the first fully kinetic, collisional, and electromagnetic simulations of the complete time evolution of a deuterium gas puff z pinch. Recent experiments with 15-MA current pinches have suggested that the dominant neutron-production mechanism is thermonuclear. We observe distinct differences between the kinetic and magnetohydrodynamic simulations in the pinch evolution with the kinetic simulations producing both thermonuclear and beam-target neutrons. The kinetic approach demonstrated in this Letter represents a viable alternative for performing future plasma physics calculations. PMID:20366259

  13. Optical Thomson scattering measurements of plasma parameters in the ablation stage of wire array Z pinches.

    PubMed

    Harvey-Thompson, A J; Lebedev, S V; Patankar, S; Bland, S N; Burdiak, G; Chittenden, J P; Colaitis, A; De Grouchy, P; Doyle, H W; Hall, G N; Khoory, E; Hohenberger, M; Pickworth, L; Suzuki-Vidal, F; Smith, R A; Skidmore, J; Suttle, L; Swadling, G F

    2012-04-01

    A Thomson scattering diagnostic has been used to measure the parameters of cylindrical wire array Z pinch plasmas during the ablation phase. The scattering operates in the collective regime (?>1) allowing spatially localized measurements of the ion or electron plasma temperatures and of the plasma bulk velocity. The ablation flow is found to accelerate towards the axis reaching peak velocities of 1.2-1.310(7) cm/s in aluminium and ?110(7) cm/s in tungsten arrays. Precursor ion temperature measurements made shortly after formation are found to correspond to the kinetic energy of the converging ablation flow. PMID:22540799

  14. Doppler measurement of implosion velocity in fast Z-pinch x-ray sources.

    PubMed

    Jones, B; Jennings, C A; Bailey, J E; Rochau, G A; Maron, Y; Coverdale, C A; Yu, E P; Hansen, S B; Ampleford, D J; Lake, P W; Dunham, G; Cuneo, M E; Deeney, C; Fisher, D V; Fisher, V I; Bernshtam, V; Starobinets, A; Weingarten, L

    2011-11-01

    The observation of Doppler splitting in K-shell x-ray lines emitted from optically thin dopants is used to infer implosion velocities of up to 70 cm/?s in wire-array and gas-puff Z pinches at drive currents of 15-20 MA. These data can benchmark numerical implosion models, which produce reasonable agreement with the measured velocity in the emitting region. Doppler splitting is obscured in lines with strong opacity, but red-shifted absorption produced by the cooler halo of material backlit by the hot core assembling on axis can be used to diagnose velocity in the trailing mass. PMID:22181529

  15. Demonstration of radiation symmetry control for inertial confinement fusion in double Z-pinch hohlraums.

    PubMed

    Vesey, R A; Cuneo, M E; Bennett, G R; Porter, J L; Adams, R G; Aragon, R A; Rambo, P K; Ruggles, L E; Simpson, W W; Smith, I C

    2003-01-24

    Simulations of a double Z-pinch hohlraum, relevant to the high-yield inertial-confinement-fusion concept, predict that through geometry design the time-integrated P2 Legendre mode drive asymmetry can be systematically controlled from positive to negative coefficient values. Studying capsule elongation, recent experiments on Z confirm such control by varying the secondary hohlraum length. Since the experimental trend and optimum length are correctly modeled, confidence is gained in the simulation tools; the same tools predict capsule drive uniformity sufficient for high-yield fusion ignition. PMID:12570498

  16. Time-resolved voltage measurements of Z-pinch radiation sources with a vacuum voltmeter.

    PubMed

    Murphy, D P; Allen, R J; Weber, B V; Commisso, R J; Apruzese, J P; Phipps, D G; Mosher, D

    2008-10-01

    A vacuum-voltmeter (VVM) was fielded on the Saturn pulsed power generator during a series of argon gas-puff Z-pinch shots. Time-resolved voltage and separately measured load current are used to determine several dynamic properties as the load implodes, namely, the inductance, L(t), net energy coupled to the load, E(coupled)(t), and the load radius, r(t). The VVM is a two-stage voltage divider, designed to operate at voltages up to 2 MV. The VVM is presently being modified to operate at voltages up to 6 MV for eventual use on the Z generator. PMID:19044468

  17. Radiation energetics of ICF-relevant wire-array Z pinches.

    PubMed

    Sinars, D B; Lemke, R W; Cuneo, M E; Lebedev, S V; Waisman, E M; Stygar, W A; Jones, B; Jones, M C; Yu, E P; Porter, J L; Wenger, D F

    2008-04-11

    Short-implosion-time 20-mm diameter, 300-wire tungsten arrays maintain high peak x-ray powers despite a reduction in peak current from 19 to 13 MA. The main radiation pulse on tests with a 1-mm on-axis rod may be explained by the observable j x B work done during the implosion, but bare-axis tests require sub-mm convergence of the magnetic field not seen except perhaps in >1 keV emission. The data include the first measurement of the imploding mass density profile of a wire-array Z pinch that further constrains simulation models. PMID:18518042

  18. High energy density z-pinch plasma conditions with picosecond time resolution.

    PubMed

    Pikuz, S A; Sinars, D B; Shelkovenko, T A; Chandler, K M; Hammer, D A; Ivanenkov, G V; Stepniewski, W; Skobelev, I Yu

    2002-07-15

    Using an X-pinch configuration, we have determined that micropinches produced by exploding-wire z pinches can have densities approaching solid density and temperatures of 0.5-1.8 keV, depending upon the wire material used. These plasma parameters, determined from x-ray spectra recorded using an x-ray streak camera, vary drastically on time scales ranging from <10 to 100 ps. Computer simulations require radiation loss to reproduce the observed plasma implosion, suggesting that a radiative-collapse hypothesis for micropinch plasma formation may be correct. PMID:12144399

  19. Characterization of plasma expansion dynamics in a high power diode with a carbon-fiber-aluminum cathode

    SciTech Connect

    Ju, J.-C.; Liu, L.; Cai, D.

    2014-06-09

    Thermal plasma expansion is characterised during the operation of a high power diode with an explosive emission carbon-fiber-aluminum cathode driven by a 250 kV, 150 ns accelerating pulse. It is found that a quasi-stationary state of plasma expansion is obtained during the main part of the accelerating pulse and the whole plasma expansion exhibits an “U”-shape velocity evolution. A theoretical model describing the dynamics of plasma expansion is developed, which indicates that the plasma expansion velocity is determined by equilibrium between the diode current density and plasma thermal electron current density.

  20. Z pinches as intense x-ray sources for inertial confinement fusion applications

    SciTech Connect

    Matzen, M.K.

    1997-05-01

    Fast z-pinch implosions can convert more than 10% of the stored electrical energy in a pulsed-power accelerator into x-rays. On the Saturn pulsed-power accelerator at Sandia National Laboratories, currents of 6 to 8 MA with a risetime of less than 50 ns have been used to drive cylindrically-symmetric arrays of wires, producing x-ray energies greater than 400 kJ with x-ray pulsewidths less than 5 ns and peak x-ray powers of 75 {+-} 10 TW. Using similar loads, PBFA Z has produced > 1.5 MJ and > 150 TW of x-rays in the first four months of operation in the z-pinch mode. These x-ray energies and powers are records for laboratory x-ray production. The x-ray output can be thermalized into a near-Planckian x-ray source by containing it within a cylindrical radiation case (a hohlraum). These energetic, intense, large volume, long-lived hohlraum x-ray sources have recently been used for ICF-relevant ablator physics experiments and offer the potential for performing many new basic physics and fusion-relevant experiments.

  1. Cylindrical liner Z-pinch experiments for fusion research and high-energy-density physics

    NASA Astrophysics Data System (ADS)

    Burdiak, G. C.; Lebedev, S. V.; Suzuki-Vidal, F.; Swadling, G. F.; Bland, S. N.; Niasse, N.; Suttle, L.; Bennet, M.; Hare, J.; Weinwurm, M.; Rodriguez, R.; Gil, J.; Espinosa, G.

    2015-06-01

    A gas-filled cylindrical liner z-pinch configuration has been used to drive convergent radiative shock waves into different gases at velocities of 20-50 km s-1. On application of the 1.4 MA, 240 ns rise-time current pulse produced by the Magpie generator at Imperial College London, a series of cylindrically convergent shock waves are sequentially launched into the gas-fill from the inner wall of the liner. This occurs without any bulk motion of the liner wall itself. The timing and trajectories of the shocks are used as a diagnostic tool for understanding the response of the liner z-pinch wall to a large pulsed current. This analysis provides useful data on the liner resistivity, and a means to test equation of state (EOS) and material strength models within MHD simulation codes. In addition to providing information on liner response, the convergent shocks are interesting to study in their own right. The shocks are strong enough for radiation transport to influence the shock wave structure. In particular, we see evidence for both radiative preheating of material ahead of the shockwaves and radiative cooling instabilities in the shocked gas. Some preliminary results from initial gas-filled liner experiments with an applied axial magnetic field are also discussed.

  2. Magnetic Field Measurements in Wire-Array Z-Pinches using Magneto-Optically Active Waveguides

    SciTech Connect

    Syed, Wasif; Blesener, Isaac; Hammer, David A.; Lipson, Michal

    2009-01-21

    Understanding the magnetic field topology in wire-array Z-pinches as a function of time is of great significance to understanding these high-energy density plasmas especially for their ultimate application to stockpile stewardship and inertial confinement fusion. We are developing techniques to measure magnetic fields as a function of space and time using Faraday rotation of a single longitudinal mode (SLM) laser through a magneto-optically active bulk waveguide (multicomponent terbium borate glass) placed adjacent to, or within, the wire array in 1 MA experiments. We have measured fields >10 T with 100 ns rise times outside of a wire-array for the entire duration of the current pulse and as much as {approx}2 T inside a wire-array for {approx}40 ns from the start of current. This is the first time that such rapidly varying and large fields have been measured using these materials. In a dense Z-pinch, these sensing devices may not survive for long but may provide the magnetic field at the position of the sensor that can be used to corroborate magnetic probes, with which we compare our results.

  3. Investigation of Magnetic Field Geometry in Exploding Wire Z-Pinches via Proton Deflectometry

    NASA Astrophysics Data System (ADS)

    Mariscal, Derek; Beg, Farhat; Wei, Mingsheng; Chittenden, Jeremy; Presura, Radu

    2012-10-01

    It is often difficult to determine the configuration of B-fields within z-pinch plasma systems. Typical laser probing diagnostics are limited by the critical density, and electrical diagnostics are prone to failure as well as perturbation of the system. The use of proton beams launched by high intensity lasers, and the subsequent tracking of their deflected trajectories, will enable access to field measurements in previously inaccessible plasma densities.The experimental testing of this method is performed at the Nevada Test Facility (NTF) using the 10J 0.3ps Leopard laser coupled to the 1.6MA ZEBRA pulsed power generator. MHD simulations of the z-pinch plasmas are performed with the 3D resistive MHD code, GORGON. Protons are then injected and tracked through the plasma using the 3D PIC Large Scale Plasma code in order to produce possible proton image plane data. The first computational demonstration of protons propagating through single wire and x-pinch plasmas, along with comparison to recent experimental data will be presented.

  4. Observations of Radial Straight Tubular Channels in Gaseous Z-Pinch and Plasma Focus

    NASA Astrophysics Data System (ADS)

    Rantsev-Kartinov, V. A.; Kukushkin, A. B.

    2000-10-01

    The evidences for the tubular straight long-living filaments (LLFs) of macroscopic size (few centimeter long) are found in a gaseous Z-pinch and plasmas focus. The long-livingness of similar straight filaments was proven in [1(a)] via 3D imaging of their dynamics in a Z-pinch during almost entire discharge. Here, identification of straight LLFs directed radially suggests the possibility of a direct (non-diffusive) transport of magnetic field from external circuit to discharge's axis -- not only on the stage of the formation of a precursor on the axis but at the quasi-steady-state stage (stagnation) as well. The respective typical LLF appears to be a straight cylindrical formation varying in length from few millimeters up to the radius (and even diameter) of the discharge volume. Such an LLF often resembles a cable: it has a distinct inner cylinder of few hundreds of microns in diameter and an axisymmetric tubular sheath, with a distinct boundary. An extension of the interpretation [1(b)] of observations [1(b)] of ``wild cables" in tokamak plasmas to the case of inertially confined plasmas is given. References: [1] Kukushkin A.B. Rantsev-Kartinov V.A. (a) Proc. 26-th EPS conf., Maastricht, Netherlands, 1999, P2-087 (http://epsppd.epfl.ch/cross/p2087.htm); (b) Proc. Innovative Confinement Concepts Workshop, February 2000, Lawrence Berkeley Lab., USA (http://icc2000.lbl.gov/...). format.

  5. High-Z Pusher Experiments on the Cobra Triple Nozzle Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    de Grouchy, Philip; Qi, Niansheng; Kusse, Bruce; Seyler, Charles; Atoyan, Levon; Byvank, Tom; Cahill, Adam; Greenly, John; Hoyt, Cad; Pikuz, Sergei; Shelkovenko, Tania; Hammer, David

    2014-10-01

    For inertial confinement fusion application and as efficient hard x-ray sources, the imploding sheath of a gas-puff z-pinch or thin liner must be accelerated to the highest possible velocity before hydrodynamic instabilities significantly disrupt the implosion symmetry. Much recent work has focused on increasing implosion stability using radially structured mass-density profiles produced by multi-nozzle gas-puff valves. The introduction of a high-Z element such as xenon into the outer gas shells in such experiments can modify radiation output during the implosion phase as well as at stagnation. In these experiments xenon is introduced into the triple-nozzle gas valve fielded on the (1 MA, 200 ns) COBRA z-pinch machine at Cornell University. The xenon is introduced only in the outer shell, only in the inner shell or in both, to investigate the radiative effects on implosion hydrodynamics and x-ray yield. Results are compared to those obtained during pure argon implosions with the same mass-density profile. Sheath thicknesses and stability are recorded using laser interferometry (532 nm) and multi-frame imaging systems. The distribution of flow velocities and of high-Z material across the pinch is investigated using a (5 GW, 527 nm) Thomson scattering probe. Work supported by DOE Grant No. DE-NA0001836.

  6. An alternative scaling model for neutron production in Z-pinch devices

    SciTech Connect

    Bures, Brian L.; Krishnan, Mahadevan

    2012-11-15

    The DD neutron yield (Y{sub n}) from z-pinches, either dense plasma foci or fast radial pinches, has been fitted for decades to the scaling model Y{sub n} {approx} {alpha}(I{sub max}){sup {delta}}, where {alpha} is a numerical scaling coefficient, I{sub max} the peak current, and 3 < {delta} < 5. The data from 12 000 pulses analyzed from eight different z-pinches presented in this paper show that Y{sub n} varies by as much as {+-}15 000% about the best fit value of the conventional scaling model with {delta} = 4. A revised scaling model derived from the reaction rate equation and a circuit model that includes the time derivative of the current dI/dt (normalized to its initial value) reduces the scatter in data from {+-}15 000% to {+-}100%. For the special case of very high normalized dI/dt, the standard deviation between the revised scaling prediction and the measured neutron yields is reduced to just {+-}30%. Implications of this revised scaling for higher current pinches are discussed.

  7. Ion probe beam experiments and kinetic modeling in a dense plasma focus Z-pinch

    SciTech Connect

    Schmidt, A. Ellsworth, J. Falabella, S. Link, A. McLean, H. Rusnak, B. Sears, J. Tang, V.; Welch, D.

    2014-12-15

    The Z-pinch phase of a dense plasma focus (DPF) emits multiple-MeV ions in a ∼cm length. The mechanisms through which these physically simple devices generate such high energy beams in a relatively short distance are not fully understood. We are exploring the origins of these large gradients using measurements of an ion probe beam injected into a DPF during the pinch phase and the first kinetic simulations of a DPF Z-pinch. To probe the accelerating fields in our table top experiment, we inject a 4 MeV deuteron beam along the z-axis and then sample the beam energy distribution after it passes through the pinch region. Using this technique, we have directly measured for the first time the acceleration of an injected ion beam. Our particle-in-cell simulations have been benchmarked on both a kJ-scale DPF and a MJ-scale DPF. They have reproduced experimentally measured neutron yields as well as ion beams and EM oscillations which fluid simulations do not exhibit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for accelerator and neutron source applications.

  8. Study of Bright Spots in Wire-Array Z-Pinches

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Papp, D.; Anderson, A. A.; Talbot, B.; Astanovitskiy, A. L.; Nalajala, V.; Dmitriev, O.; Chittenden, J. P.; Niasse, N.

    2013-10-01

    Bright areas with a high plasma density and temperature (hot spots) were observed in all kinds of Z-pinches. Hot spots may be interpreted as results of the collapse of the plasma necks due to plasma outflowing and radiative losses of energy. We studied bright radiating spots in cylindrical and planar wire-arrays at the 1 MA Zebra generator using x-ray streak cameras synchronized with laser diagnostics, x-ray time-gated pinhole camera and spectroscopy. Hot spots in Al wire arrays generate x-ray bursts with durations of 0.4-1 ns in the soft range and 0.1-0.4 ns in the keV range. UV two-frame shadowgraphy shows spatial correlation of hot spots with micropinches. Hot spots can generate continuum radiation with energy >2.5 keV. An analysis of x-ray streak images shows that hot spots can generate >20% of the x-ray energy of the Z pinches. Work was supported by the DOE grant DE-SC0008824 and DOE/NNSA UNR grant DE-FC52-06NA27616.

  9. PBFA II-Z: A 20-MA driver for z-pinch experiments

    SciTech Connect

    1995-12-01

    Sandia is modifying the PBFA II accelerator into a dual use facility. While maintaining the present ion-beam capability, we are developing a long-pulse, high-current operating mode for magnetically-driven implosions. This option, called PBFA II-Z, will require new water transmission lines, a new insulator stack, and new magnetically-insulated transmission lines (MITLs). Each of the existing 36, coaxial water pulse-forming sections will couple to a 4.5-{Omega}, bi-plate water-transmission line. The water transmission lines then feed a four-level insulator stack. The insulators are expected to operate at a maximum, spatially-averaged electric field of {approximately}l00 kV/cm. The MITL design is based on the successful biconic Saturn design. The four ``disk`` feeds will each have a vacuum impedance of {approximately}2.0 {Omega}. The disk feeds are added in parallel using a double post-hole convolute at a diameter of 15 cm. We predict that the accelerator will deliver 20 MA to a 15-mg z-pinch load in 100 ns, making PBFA II-Z the most powerful z-pinch driver in the world providing a pulsed power and load physics scaling testbed for future 40-80-MA drivers.

  10. Analysis of spatially resolved Z-pinch spectra to investigate the nature of ``bright spots''

    NASA Astrophysics Data System (ADS)

    Apruzese, J. P.; Giuliani, J. L.; Thornhill, J. W.; Coverdale, C. A.; Jones, B.; Ampleford, D. J.

    2013-02-01

    Localized, intensely radiating regions are often observed in Z pinches. High resolution images of such areas have been recorded at least as far back as the 1970s. However, there is as yet no widely accepted consensus on the nature of these "bright spots" or how they are formed. This phenomenon has also been referred to "hot spots" or "micropinches." To shed further light on this issue, we have analyzed axially resolved K-shell spectra from 4 Z pinches driven by the refurbished Z generator ("ZR") at Sandia National Laboratories, and the previous version of the Z machine ("Z"). The atomic numbers of the loads varied from 13 to 29. We find that higher spatial K-shell intensity in the Al pinch correlates with density. The K-shell intensity within a copper shot taken on ZR correlates strongly with increased electron temperature, but another, somewhat less well-diagnosed copper shot from Z shows correlation with density. The bright spots in a Ti pinch correlate with neither density nor temperature, but do correlate with the product of density and diameter (proportional to opacity). This opacity correlation is also observed in the other 3 pinches.

  11. Three-dimensional electromagnetic model of the pulsed-power Z-pinch accelerator

    NASA Astrophysics Data System (ADS)

    Rose, D. V.; Welch, D. R.; Madrid, E. A.; Miller, C. L.; Clark, R. E.; Stygar, W. A.; Savage, M. E.; Rochau, G. A.; Bailey, J. E.; Nash, T. J.; Sceiford, M. E.; Struve, K. W.; Corcoran, P. A.; Whitney, B. A.

    2010-01-01

    A three-dimensional, fully electromagnetic model of the principal pulsed-power components of the 26-MA ZR accelerator [D. H. McDaniel , in Proceedings of the 5th International Conference on Dense Z-Pinches (AIP, New York, 2002), p. 23] has been developed. This large-scale simulation model tracks the evolution of electromagnetic waves through the accelerators intermediate-storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, triplate transmission lines, and water convolute to the vacuum insulator stack. The insulator-stack electrodes are coupled to a transmission-line circuit model of the four-level magnetically insulated vacuum-transmission-line section and double-post-hole convolute. The vacuum-section circuit model is terminated by a one-dimensional self-consistent dynamic model of an imploding z-pinch load. The simulation results are compared with electrical measurements made throughout the ZR accelerator, and are in good agreement with the data, especially for times until peak load power. This modeling effort demonstrates that 3D electromagnetic models of large-scale, multiple-module, pulsed-power accelerators are now computationally tractable. This, in turn, presents new opportunities for simulating the operation of existing pulsed-power systems used in a variety of high-energy-density-physics and radiographic applications, as well as even higher-power next-generation accelerators before they are constructed.

  12. Primary experimental results of wire-array Z-pinches on PTS

    SciTech Connect

    Huang, X. B. Zhou, S. T. Ren, X. D. Dan, J. K. Wang, K. L. Zhang, S. Q. Li, J. Xu, Q. Cai, H. C. Duan, S. C. Ouyang, K. Chen, G. H. Ji, C. Wang, M. Feng, S. P. Yang, L. B. Xie, W. P. Deng, J. J.

    2014-12-15

    The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a multiterawatt pulsed power driver, which can deliver a ∼10 MA, 70 ns rise-time (10%-90%) current to a short circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. In this paper, primary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 14.4-26.4 mm, and consisting of 132∼276 tungsten wires with 5∼10 μm in diameter. Multiple diagnostics were fielded to determine the characteristics of x-ray radiations and to obtain self-emitting images of imploding plasmas. X-ray power up to 80 TW with ∼3 ns FWMH is achieved by using nested wire arrays. The total x-ray energy exceeds 500 kJ and the peak radiation temperature is about 150 eV. Typical velocity of imploding plasmas goes around 3∼5×10{sup 7} cm/s and the radial convergence ratio is between 10 and 20.

  13. Ion probe beam experiments and kinetic modeling in a dense plasma focus Z-pinch

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Ellsworth, J.; Falabella, S.; Link, A.; McLean, H.; Rusnak, B.; Sears, J.; Tang, V.; Welch, D.

    2014-12-01

    The Z-pinch phase of a dense plasma focus (DPF) emits multiple-MeV ions in a cm length. The mechanisms through which these physically simple devices generate such high energy beams in a relatively short distance are not fully understood. We are exploring the origins of these large gradients using measurements of an ion probe beam injected into a DPF during the pinch phase and the first kinetic simulations of a DPF Z-pinch. To probe the accelerating fields in our table top experiment, we inject a 4 MeV deuteron beam along the z-axis and then sample the beam energy distribution after it passes through the pinch region. Using this technique, we have directly measured for the first time the acceleration of an injected ion beam. Our particle-in-cell simulations have been benchmarked on both a kJ-scale DPF and a MJ-scale DPF. They have reproduced experimentally measured neutron yields as well as ion beams and EM oscillations which fluid simulations do not exhibit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for accelerator and neutron source applications.

  14. Azimuthal instability of a cylindrical radiative Z-pinch; estimate of the corresponding growth rate

    SciTech Connect

    Imshennik, V.S.; Neudachin, V.V.

    1987-10-01

    It is clear from both the theoretical and experimental standpoints that azimuthal variations can arise in the later stages of the existence of a Z-pinch (or plasma focus). The physical mechanism for this process is the onset of a radiative instability, driven by the volume loss due to the radiation of heavy impurities in the plasma column. A physical formulation of a problem describing the evolution of an azimuthal instability of a cylindrical radiative Z-pinch is proposed. In particular, a linearized system of MHD equations for an arbitrary azimuthal mode m is formulated. The problem reduces to the familiar thermal instability in the important case of short-wave perturbations, with wave vector directed along the magnetic field lines (and under certain other restrictions). The growth rate of the radiative instability is derived in this approximation. This growth rate is then estimated for the conditions corresponding to a plasma focus. For a deuterium density n/sub 0/approx.10/sup 20/ cm/sup -3/, at a temperature T/sub 0/approx.1 keV, and with a concentration X/sub 0/approx.0.01--0.1 of a heavy impurity (such as Xe) this growth rate is extremely close the reciprocal of the Alfv-acute-accenten time of the plasma focus. The role played by the electron thermal conductivity in this instability is evaluated.

  15. Ion Beam Driven Shock Device Using Accelerated High Density Plasmoid by Phased Z-Pinch

    NASA Astrophysics Data System (ADS)

    Horioka, Kazuhiko; Aizawa, Tatsuhiko; Tsuchida, Minoru

    1997-07-01

    Different from three methods to generate high shock pressure by acceleration of high density plasma or particles (intense ion beams, plasma gun and rail gun) having their intrinsic deficiencies, new frontier is proposed to propel the shock physics and chemistry by using the high density plasma. In the present paper, new scheduled Z-pinch method is developed as a new device to generate high shock pressure. In the present method, plasma density can be compressed to the order of 10^18 to 10^19 cm-3, and high density plasma can be accelerated by zippering together with axial shock pressure, resulting in high-velocity launching of flyer. In the present paper, systematic experimental works are performed to demonstrate that high energy plasma flow can be electro-magnetically driven by the scheduled capillary Z-pinch, and to characterize the ion velocity and its current density. The estimated value of ion speed from the plasma-measurement reaches to 7 x 10^7 cm/s corresponding to 70 to 100 KeV for Ar. Copper flyer can be shot with the velocity range from 1km/s to 3km/s in the standard condition.

  16. On the possibility of neutron generation in an imploding TiD{sub 2} puff Z pinch

    SciTech Connect

    Baksht, Rina B.; Tel-Aviv University, Tel Aviv ; Oreshkin, Vladimir I.; Tomsk Polytechnic University, Tomsk ; Rousskikh, Alexander G.

    2013-08-15

    Simulation of implosion of a TiD{sub 2} puff Z pinch is reported. The Z pinch is supposed to be produced by the plasma flow generated by a vacuum arc, as described by Rousskikh et al.[Phys. Plasmas 18, 092707 (2011)]. To simulate the implosion, a one-dimensional two-temperature radiative magnetohydrodynamics code was used. The simulation has shown that neutrons are generated during the implosion of a TiD{sub 2} puff Z pinch due to thermalization of the pinch plasma stagnated on axis. It has been shown that the necessary condition for neutron generation is that the ion temperature must be substantially higher than the electron temperature. For a pinch current of 1 MA, the predicted yield of 'thermal' neutrons is 2.5 × 10{sup 9} neutrons/shot.

  17. Z-Pinch Magneto-Inertial Fusion Propulsion Engine Design Concept

    NASA Technical Reports Server (NTRS)

    Miernik, Janie H.; Statham, Geoffrey; Adams, Robert B.; Polsgrove, Tara; Fincher, Sharon; Fabisinski, Leo; Maples, C. Dauphne; Percy, Thomas K.; Cortez, Ross J.; Cassibry, Jason

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human spaceflight missions. Magneto-Inertial Fusion (MIF) is an approach which has been shown to potentially lead to a low cost, small fusion reactor/engine assembly (1). The Z-Pinch dense plasma focus method is an MIF concept in which a column of gas is compressed to thermonuclear conditions by an estimated axial current of approximately 100 MA. Recent advancements in experiments and the theoretical understanding of this concept suggest favorable scaling of fusion power output yield as I(sup 4) (2). The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this is repeated over short timescales (10(exp -6) sec). This plasma formation is widely used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, as well as in fusion energy research. There is a wealth of literature characterizing Z-Pinch physics and existing models (3-5). In order to be useful in engineering analysis, a simplified Z-Pinch fusion thermodynamic model was developed to determine the quantity of plasma, plasma temperature, rate of expansion, energy production, etc. to calculate the parameters that characterize a propulsion system. The amount of nuclear fuel per pulse, mixture ratio of the D-T and nozzle liner propellant, and assumptions about the efficiency of the engine, enabled the sizing of the propulsion system and resulted in an estimate of the thrust and Isp of a Z-Pinch fusion propulsion system for the concept vehicle. MIF requires a magnetic nozzle to contain and direct the nuclear pulses, as well as a robust structure and radiation shielding. The structure, configuration, and materials of the nozzle must meet many severe requirements. The configuration would focus, in a conical manner, the Deuterium-Tritium (D-T) fuel and Lithium-6/7 liner fluid to meet at a specific point that acts as a cathode so the Li-6 can serve as a current return path to complete the circuit. In addition to serving as a current return path, the Li liner also serves as a radiation shield. The advantage to this configuration is the reaction between neutrons and Li-6 results in the production of additional Tritium, thus adding further fuel to the fusion reaction and boosting the energy output. To understand the applicability of Z-Pinch propulsion to interplanetary travel, it is necessary to design a concept vehicle that uses it. The propulsion system significantly impacts the design of the electrical, thermal control, avionics, radiation shielding, and structural subsystems of a vehicle. The design reference mission is the transport of crew and cargo to Mars and back, with the intention that the vehicle be reused for other missions. Several aspects of this vehicle are based on a previous crewed fusion vehicle study called Human Outer Planet Exploration (HOPE), which employed a Magnetized Target Fusion (MTF) propulsion concept. Analysis of this propulsion system concludes that a 40-fold increase of Isp over chemical propulsion is predicted. This along with a greater than 30% predicted payload mass fraction certainly warrants further development of enabling technologies. The vehicle is designed for multiple interplanetary missions and conceivably may be suited for an automated one-way interstellar voyage.

  18. Design of the PST: A Diagnostic for 1-D Imaging of Fast Z-Pinch Power Emissions

    SciTech Connect

    ROCHAU,GREGORY A.; DERZON,MARK S.; CHANDLER,GORDON A.; LAZIER,STEVEN EARL

    2000-08-03

    Fast Z-pinch technology developed on the Z machine at Sandia National Laboratories can produce up to 230 TW of thermal x-ray power for applications in inertial confinement fusion (ICF) and weapons physics experiments. During implosion, these Z-pinches develop Rayleigh-Taylor (R-T) instabilities which are very difficult to diagnose and which functionally diminish the overall pinch quality. The Power-Space-Time (PST) instrument is a newly configured diagnostic for measuring the pinch power as a function of both space and time in a Z-pinch. Placing the diagnostic at 90 degrees from the Z-pinch axis, the PST provides a new capability in collecting experimental data on R-T characteristics for making meaningful comparisons to magneto-hydrodynamic computer models. This paper is a summary of the PST diagnostic design. By slit-imaging the Z-pinch x-ray emissions onto a linear scintillator/fiber-optic array coupled to a streak camera system, the PST can achieve {approximately}100 {micro}m spatial resolution and {approximately}1.3 ns time resolution. Calculations indicate that a 20 {micro}m thick scintillating detection element filtered by 1,000 {angstrom} of Al is theoretically linear in response to Plankian x-ray distributions corresponding to plasma temperatures from 40 eV to 150 eV, By calibrating this detection element to x-ray energies up to 5,000 eV, the PST can provide pinch power as a function of height and time in a Z-pinch for temperatures ranging from {approximately}40 eV to {approximately}400 eV. With these system pm-meters, the PST can provide data for an experimental determination of the R-T mode number, amplitude, and growth rate during the late-time pinch implosion.

  19. Pinch me - I'm fusing! Fusion Power - what is it? What is a z pinch? And why are z-pinches a promising fusion power technology?

    SciTech Connect

    DERZON,MARK S.

    2000-03-01

    The process of combining nuclei (the protons and neutrons inside an atomic nucleus) together with a release of kinetic energy is called fusion. This process powers the Sun, it contributes to the world stockpile of weapons of mass destruction and may one day generate safe, clean electrical power. Understanding the intricacies of fusion power, promised for 50 years, is sometimes difficult because there are a number of ways of doing it. There is hot fusion, cold fusion and con-fusion. Hot fusion is what powers suns through the conversion of mass energy to kinetic energy. Cold fusion generates con-fusion and nobody really knows what it is. Even so, no one is generating electrical power for you and me with either method. In this article the author points out some basic features of the mainstream approaches taken to hot fusion power, as well as describe why z pinches are worth pursuing as a driver for a power reactor and how it may one day generate electrical power for mankind.

  20. Visualization of the magnetic field and current path in Z-pinch and X-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Anderson, A. A.; Ivanov, V. V.; Papp, D.

    2015-06-01

    Laser diagnostics at the wavelength of 266 nm allow investigation of wire array Z-pinches and X-pinches at the 1 MA pulse power generator. Faraday rotation diagnostics at 266 nm is applied to study MG magnetic fields in Z-pinch plasma. Faraday diagnostics can qualitatively visualize magnetic fields in dense plasma and give additional information about the current flow even if the plasma density cannot be reconstructed with interferometry. A comparison of images from the three-channel polarimeter shows strong localized magnetic fields, revealing the path for the electric current inside the plasma. Faraday images present current switched to the trailing plasma.

  1. Effects of mass ablation on the scaling of X-ray power with current in wire-array Z pinches.

    PubMed

    Lemke, R W; Sinars, D B; Waisman, E M; Cuneo, M E; Yu, E P; Haill, T A; Hanshaw, H L; Brunner, T A; Jennings, C A; Stygar, W A; Desjarlais, M P; Mehlhorn, T A; Porter, J L

    2009-01-16

    X-ray production by imploding wire-array Z pinches is studied using radiation magnetohydrodynamics simulation. It is found that the density distribution created by ablating wire material influences both x-ray power production, and how the peak power scales with applied current. For a given array there is an optimum ablation rate that maximizes the peak x-ray power, and produces the strongest scaling of peak power with peak current. This work is consistent with trends in wire-array Z pinch x-ray power scaling experiments on the Z accelerator. PMID:19257285

  2. Theoretical and Experimental Studies of Radiation from Z-Pinch Complex Wire Arrays and Applications

    NASA Astrophysics Data System (ADS)

    Weller, Michael Eugene

    In the research area of high energy density plasmas an ever increasing goal is searching for higher efficient radiators, particularly in z-pinch plasmas, and their applications. This goal is a major focus of this dissertation and implements both theoretical and experimental tools in the process. The theoretical tools involve the Wire Ablation Dynamics Model (WADM) to infer z-pinch implosion characteristics and various non-local thermodynamic equilibrium (LTE) kinetic models to understand the radiative properties of plasmas, including a new model for L-shell Ag. The experimental tools includes an advanced set of diagnostics, in particular a newly developed time-gated hard x-ray spectrometer to gain an understanding as to how these plasmas radiate in time, particularly in the 0.7 - 4.4 A range. The experiments predominately took place on the 1.7 MA Zebra generator at the Nevada Terawatt Facility (NTF) at the University of Nevada, Reno (UNR). Traditional nested cylindrical wire arrays with mixed materials (brass and Al, Mo and Al) were tested to understand how the inner and outer arrays implode and radiate. Novel planar wire arrays, which have been shown to be very powerful radiation sources, arranged in single, double, and triple wire array configurations were tested with Mo and Ag materials, which have both been shown to be powerful radiators, and also mixed with Al to understand opacity effects and how a mixture of two different plasmas radiate. Radiation from the extreme ultraviolet (EUV) range has also been of recent interest due the substantial contribution into total radiation yields. Therefore EUV radiation of M-shell Cu was modeled and benchmarked with spheromak and laser-produced plasma data. Lastly, lasing gain from L-shell Ag is calculated as an application of the aforementioned model to evaluate whether lasing might be occurring in wire array z-pinches. In connection to creating a uniform plasma column to measure lasing lines, the split double planar wire array is introduced and preliminary results discussed.

  3. Application of 2-D simulations to hollow Z-pinch implosions

    NASA Astrophysics Data System (ADS)

    Peterson, D. L.; Bowers, R. L.; Brownell, J. H.; Lund, C.; Matuska, W.; McLenithan, K.; Oona, H.; Deeney, C.; Derzon, M.; Spielman, R. B.; Nash, T. J.; Chandler, G.; Mock, R. C.; Sanford, T. W. L.; Matzen, M. K.; Roderick, N. F.

    1997-05-01

    The application of simulations of z-pinch implosions should have at least two goals: first, to properly model the most important physical processes occurring in the pinch allowing for a better understanding of the experiments and second, provide a design capability for future experiments. Beginning with experiments fielded at Los Alamos on the Pegasus I and Pegasus II capacitor banks, we have developed a methodology for simulating hollow z-pinches in two dimensions which has reproduced important features of the measured experimental current drive, spectrum, radiation pulse shape, peak power and total radiated energy (1,2,3). This methodology employs essentially one free parameter, the initial level of the random density perturbations imposed at the beginning of the 2-D simulation, but in general no adjustments to other parameters (such as the resistivity) are required (1). Limitations in the use of this approach include the use of the 3-T, gray diffusion treatment of radiation and the fact that the initial perturbation conditions are not known a priori. Nonetheless, the approach has been successful in reproducing important experimental features of such implosions over a wide variety of timescales (tens of nanoseconds to microseconds), current drives (3 to 16 MA), masses (submilligram to tens of milligrams), initial radii (<1 cm to 5 cm), materials (Al and W) and initial configurations (thin foils and wire arrays with 40 to 240 wires). Currently we are applying this capability to the analysis of recent Saturn and PBFA-Z experiments (4,5). The code results provide insight into the nature of the pinch plasma prior to arrival on-axis, during thermalization and development after peak pinch time. Among other things, the simulation results provide an explanation for the production of larger amounts of radiated energy than would be expected from a simple slug-model kinetic energy analysis and the appearance of multiple peaks in the radiation power. The 2-D modeling has also been applied to the analysis of Saturn ``dynamic hohlraum'' experiments and is being used in the design of this and other Z-Pinch applications on PBFA-Z.

  4. X-ray spectroscopy of Cu impurities on NSTX and comparison with Z-pinch plasmas.

    PubMed

    Safronova, A S; Ouart, N D; Lepson, J K; Beiersdorfer, P; Stratton, B; Bitter, M; Kantsyrev, V L; Cox, P G; Shlyaptseva, V; Williamson, K M

    2010-10-01

    X-ray spectroscopy of mid-Z metal impurities is important in the study of tokamak plasmas and may reveal potential problems if their contribution to the radiated power becomes substantial. The analysis of the data from a high-resolution x-ray and extreme ultraviolet grating spectrometer, XEUS, installed on NSTX, was performed focused on a detailed study of x-ray spectra in the range 7-18 A?. These spectra include not only commonly seen iron spectra but also copper spectra not yet employed as an NSTX plasma impurity diagnostic. In particular, the L-shell Cu spectra were modeled and predictions were made for identifying contributions from various Cu ions in different spectral bands. Also, similar spectra, but from much denser Cu plasmas produced on the UNR Z-pinch facility and collected using the convex-crystal spectrometer, were analyzed and compared with NSTX results. PMID:21034004

  5. Non-thermal x-ray emission from wire array z-pinches

    SciTech Connect

    Ampleford, David; Hansen, Stephanie B.; Jennings, Christopher Ashley; Webb, Timothy Jay; Harper-Slaboszewicz, V.; Loisel, Guillaume Pascal; Flanagan, Timothy McGuire; Bell, Kate Suzanne; Jones, Brent M.; McPherson, Leroy A.; Rochau, Gregory A.; Chittenden, Jeremy P.; Sherlock, Mark; Appelbe, Brian; Giuliani, John; Ouart, Nicholas; Seely, John

    2015-12-01

    We report on experiments demonstrating the transition from thermally-dominated K-shell line emission to non-thermal, hot-electron-driven inner-shell emission for z pinch plasmas on the Z machine. While x-ray yields from thermal K-shell emission decrease rapidly with increasing atomic number Z, we find that non-thermal emission persists with favorable Z scaling, dominating over thermal emission for Z=42 and higher (hn ≥ 17keV). Initial experiments with Mo (Z=42) and Ag (Z=47) have produced kJ-level emission in the 17-keV and 22-keV Kα lines respectively. We will discuss the electron beam properties that could excite these non - thermal lines. We also report on experiments that have attempted to control non - thermal K - shell line emission by modifying the wire array or load hardware setup.

  6. Kinetic simulation of neutron production in a deuterium z-pinch.

    SciTech Connect

    Mostrom, C.; Stygar, William A.; Thoma, Carsten; Welch, Dale Robert; Clark, R. E.; Leeper, Ramon Joe; Rose, David V.

    2010-11-01

    We have found computationally that, at sufficiently high currents, half of the neutrons produced by a deuterium z pinch are thermonuclear in origin. Early experiments below 1-MA current found that essentially all of the neutrons produced by a deuterium pinch are not thermonuclear, but are initiated by an instability that creates beam-target neutrons. Many subsequent authors have supported this result while others have claimed that pinch neutrons are thermonuclear. To resolve this issue, we have conducted fully kinetic, collisional, and electromagnetic simulations of the complete time evolution of a deuterium pinch. We find that at 1-MA pinch currents, most of the neutrons are, indeed, beam-target in origin. At much higher current, half of the neutrons are thermonuclear and half are beam-target driven by instabilities that produce a power law fall off in the ion energy distribution function at large energy. The implications for fusion energy production with such pinches are discussed.

  7. Imaging XUV spectroscopy of a Z-pinch plasma in the former Soviet Union

    SciTech Connect

    Bruns, H.C.; Springer, P.T.; Emig, J.A.; Lanier, N.E.; Hernandez, J.A.

    1993-08-11

    In 1991 a group of scientists from the Angara 5 pulsed power facility at the Kurchatov Institute in Troitsk, Russia had determined the thermal emission from an implosion of xenon gas onto an annular, molybdenum doped foam liner to be 30 TW/cm{sup 2}. This represents an extremely efficient conversion of energy into a high fluence radiation field. In order to verify this claim and better understand the process of producing radiation by means of a Z-pinch plasma device, a series of experiments were proposed through a collaboration from Sandia National Laboratory, Albuquerque, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory. Due to previous experience with x-ray spectroscopic measurements in the XUV region, the team from Lawrence Livermore Lab took on the task of designing, constructing, and fielding the necessary diagnostic equipment to spatially and temporally resolve plasma temperatures throughout the implosion of the high Z foam target.

  8. Beryllium liner z-pinch implosions for equation of state studies on Z

    NASA Astrophysics Data System (ADS)

    Lemke, R. W.; McBride, R. D.; Martin, M. R.; Knudson, M. D.; Davis, J. P.

    2010-11-01

    We are investigating the feasibility of determining equation of state data from a temporal sequence of x-ray radiography images of an imploding z-pinch liner on the Z accelerator. Time and space dependent density profiles of the imploding liner are obtained via Abel inverting the x-ray images. The density profiles are then used to calculate pressure on either the Hugoniot or isentrope of the material depending on the form of the drive magnetic pressure. We present experimental and computational results for beryllium (Be) liners shock and quasi-isentropically compressed to pressures of 3 Mb, and discuss techniques for unfolding pressure using the x-ray images. We have captured multiple images of a shock moving through a Be liner and, by shaping the 20 MA current pulse on Z, have successfully imploded a Be liner quasi-isentropically and captured multiple images of the dynamic compression.

  9. The Influence of Temperature and Density Gradients on Yield Scaling in Titanium Z-pinches

    NASA Astrophysics Data System (ADS)

    Thornhill, J. W.; Whitney, K. G.; Pulsifer, P. E.; Apruzese, J. P.; Davis, J.; Clark, R. W.; Deeney, C.; Nash, T. J.; Spielman, R. B.; Chandler, G. A.; Fehl, D.

    1997-11-01

    Experiments have recently been conducted on the PBFA-Z generator at Sandia using titanium wire loads. These experiments allow investigation of how K-shell yields scale in the presence of large temperature and density gradients with the atomic number of the load. We investigate these scalings using 1-D MHD simulations of the PBFA-Z experiments. Near the plasma surface, where magnetic field strengths are large, tensor conductivities are important. In this paper, in particular, we investigate the influence of axial currents driven by radial temperature gradients and radial heat flow driven by axial electric fields on the implosion dynamics of a mid-atomic number z-pinch. The ionization state dependence of these quantities as a function of time is fully taken into account. Comparisons of predicted K-shell output in the presence of the PBFA-Z current-generated gradients will be compared to experimentally observed outputs from the PBFA-Z experiments

  10. The effects of insulating coatings and current prepulse on tungsten planar wire array Z-pinches

    NASA Astrophysics Data System (ADS)

    Li, M.; Sheng, L.; Wang, L. P.; Li, Y.; Zhao, C.; Yuan, Y.; Zhang, X. J.; Zhang, M.; Peng, B. D.; Zhang, J. H.; Zhang, S. G.; Qiu, M. T.; Li, X. W.

    2015-12-01

    This paper presents experimental results on the effects of insulating coatings and current prepulse on tungsten planar wire array Z-pinches on ˜100 ns main current facility. Optical framing images indicated that without a current prepulse the wire ablation process was asymmetrical and the implosion was zippered. The x-ray peak power was ˜320 GW. By using insulating coatings on the wire surface the asymmetry remained, and the processes of ablation and implosion were delayed by ˜30 ns. The x-ray burst was narrow and decreased to ˜200 GW. When current prepulses were used on both standard and insulated wire arrays, implosion symmetry was improved and the x-ray burst was improved (to ˜520 GW peak power). In addition, there was a strong emitting precursor column for insulated loads with the current prepulse.

  11. MAIZE: a 1 MA LTD-Driven Z-Pinch at The University of Michigan

    SciTech Connect

    Gilgenbach, R. M.; Gomez, M. R.; Zier, J. C.; Tang, W. W.; French, D. M.; Lau, Y. Y.; Mazarakis, M. G.; Cuneo, M. E.; Johnston, M. D.; Oliver, B. V.; Mehlhorn, T. A.; Kim, A. A.; Sinebryukhov, V. A.

    2009-01-21

    Researchers at The University of Michigan have constructed and tested a 1-MA Linear Transformer Driver (LTD), the first of its type to reach the USA. The Michigan Accelerator for Inductive Z-pinch Experiments, (MAIZE), is based on the LTD developed at the Institute of High Current Electronics in collaboration with Sandia National Labs and UM. This LTD utilizes 80 capacitors and 40 spark gap switches, arranged in 40 'bricks,' to deliver a 1 MA, 100 kV pulse with 100 ns risetime into a matched resistive load. Preliminary resistive-load test results are presented for the LTD facility.Planned experimental research programs at UM include: a) Studies of Magneto-Raleigh-Taylor instability of planar foils, and b) Vacuum convolute studies including cathode and anode plasma.

  12. Magneto-Hydrodynamic Modeling in the Design and Interpretation of Wire Array Z-pinches

    SciTech Connect

    Chittenden, J. P.; Niasse, N. P.; Jennings, C. A.

    2009-01-21

    Magneto-hydrodynamic simulations provide a powerful tool for improving our understanding of the complex physical processes underlying the behavior of wire array Z-pinches. We show how, by using large scale parallel 3D simulations of the array as a whole, it is possible to encompass all of the important features of the wire ablation, implosion and stagnation phases and to observe how these phenomena control the X-ray pulse that is achieved. Comparison of code results with experimental data from the 'Z' and MAGPIE pulsed power generators is shown to provide a detailed benchmark test for the models. The simulation results are also used to highlight key areas for future research.

  13. 3D MHD Simulations of Radial Wire Array Z-pinches

    SciTech Connect

    Niasse, N.; Chittenden, J. P.; Bland, S. N.; Suzuki-Vidal, F. A.; Hall, G. N.; Lebedev, S. V.; Calamy, H.; Zucchini, F.; Lassalle, F.; Bedoch, J. P.

    2009-01-21

    Recent experiments carried out on the MAGPIE (1 MA, 250 ns), OEDIPE (730 kA, 1.5 {mu}s) and SPHINX (4 MA, 700 ns)[1] facilities have shown the relatively high level of scalability of the Radial Wire Array Z-pinches. These configurations where the wires stretch radially outwards from a central cathode offer numerous advantages over standard cylindrical arrays. In particular, imploding in a very stable and compact way, they seem suitable for coupling to small scale hohlraums. Making use of the 3D resistive magneto-hydrodynamic code GORGON[2] developed at Imperial College, the dynamic of the radial wire arrays is investigated. Influence of the cathode hotspots and wires angle on the x-ray emissions is also discussed. Comparison with experiments is offered to validate the numerical studies.

  14. The role of Z-pinch fusion transmutation of waste in the nuclear fuel cycle.

    SciTech Connect

    Smith, James Dean; Drennen, Thomas E.; Rochau, Gary Eugene; Martin, William Joseph; Kamery, William; Phruksarojanakun, Phiphat; Grady, Ryan; Cipiti, Benjamin B.; Wilson, Paul Philip Hood; Mehlhorn, Thomas Alan; Guild-Bingham, Avery; Tsvetkov, Pavel Valeryevich

    2007-10-01

    The resurgence of interest in reprocessing in the United States with the Global Nuclear Energy Partnership has led to a renewed look at technologies for transmuting nuclear waste. Sandia National Laboratories has been investigating the use of a Z-Pinch fusion driver to burn actinide waste in a sub-critical reactor. The baseline design has been modified to solve some of the engineering issues that were identified in the first year of work, including neutron damage and fuel heating. An on-line control feature was added to the reactor to maintain a constant neutron multiplication with time. The transmutation modeling effort has been optimized to produce more accurate results. In addition, more attention was focused on the integration of this burner option within the fuel cycle including an investigation of overall costs. This report presents the updated reactor design, which is able to burn 1320 kg of actinides per year while producing 3,000 MWth.

  15. MAIZE: a 1 MA LTD-Driven Z-Pinch at The University of Michigan

    NASA Astrophysics Data System (ADS)

    Gilgenbach, R. M.; Gomez, M. R.; Zier, J. C.; Tang, W. W.; French, D. M.; Lau, Y. Y.; Mazarakis, M. G.; Cuneo, M. E.; Johnston, M. D.; Oliver, B. V.; Mehlhorn, T. A.; Kim, A. A.; Sinebryukhov, V. A.

    2009-01-01

    Researchers at The University of Michigan have constructed and tested a 1-MA Linear Transformer Driver (LTD), the first of its type to reach the USA. The Michigan Accelerator for Inductive Z-pinch Experiments, (MAIZE), is based on the LTD developed at the Institute of High Current Electronics in collaboration with Sandia National Labs and UM. This LTD utilizes 80 capacitors and 40 spark gap switches, arranged in 40 "bricks," to deliver a 1 MA, 100 kV pulse with 100 ns risetime into a matched resistive load. Preliminary resistive-load test results are presented for the LTD facility. Planned experimental research programs at UM include: a) Studies of Magneto-Raleigh-Taylor instability of planar foils, and b) Vacuum convolute studies including cathode and anode plasma.

  16. 250 kA compact linear transformer driver for wire array z-pinch loads

    NASA Astrophysics Data System (ADS)

    Bott, S. C.; Haas, D. M.; Madden, R. E.; Ueda, U.; Eshaq, Y.; Collins, G., IV; Gunasekera, K.; Mariscal, D.; Peebles, J.; Beg, F. N.; Mazarakis, M.; Struve, K.; Sharpe, R.

    2011-05-01

    We present the application of a short rise (150ns) 250 kA linear transformer driver (LTD) to wire array z-pinch loads for the first time. The generator is a modification of a previous driver in which a new conical power feed provides a low inductance coupling to wire loads. Performance of the new design using both short circuit and plasma loads is presented and discussed. The final design delivers 200kA to a wire array load which is in good agreement with SCREAMER calculations using a simplified representative circuit. Example results demonstrate successful experiments using cylindrical, conical, and inverse wire arrays as well as previously published work on x-pinch loads.

  17. Development of absorption spectroscopy for wire-array Z-pinches

    NASA Astrophysics Data System (ADS)

    Anderson, A.; Ivanov, V. V.; Hakel, P.; Mancini, R. C.; Wiewior, P.; Durmaz, T.; Astanovitskiy, A. L.; Chalyy, O.; Altemara, S. D.; Papp, D.; McKee, E.; Chittenden, J. P.; Niasse, N.; Shevelko, A. P.

    2010-11-01

    The 50 TW Leopard laser was coupled with the 1 MA Zebra generator for the x-ray backlighting of wire arrays. The Leopard laser is based on the chirped pulse amplification and can operate in subpicosecond or subnanosecond regimes. Several materials were tested in both regimes and samarium was selected for subnanosecond backlighting in the range of 7-9 å. One ray of Al wire-arrays was investigated at the ablation and implosion stages. Two focusing conical spectrometers with mica crystals recorded reference and main spectra on x-ray film. Collimators protected spectrometers against the x-ray burst from the main Z-pinch. Comparison of spectra of backlighting radiation with reference spectra indicates absorption lines in the range of 8.2-8.4 å. The electron temperature of wire-array plasma was estimated from simulations with atomic kinetics models.

  18. Dense Plasma Focus Z-pinches for High Gradient Particle Acceleration

    SciTech Connect

    Tang, V; Adams, M L; Rusnak, B

    2009-07-24

    The final Z-pinch stage of a Dense Plasma Focus (DPF) could be used as a simple, compact, and potentially rugged plasma-based high-gradient accelerator with fields at the 100 MV/m level. In this paper we review previously published experimental beam data that indicate the feasibility of such an DPF-based accelerator, qualitatively discuss the physical acceleration processes in terms of the induced voltages, and as a starting point examine the DPF acceleration potential by numerically applying a self-consistent DPF system model that includes the induced voltage from both macroscopic and instability driven plasma dynamics. Applications to the remote detection of high explosives and a multi-staged acceleration concept are briefly discussed.

  19. Z-pinch X-ray spectra obtained with a polarization splitting crystal

    NASA Astrophysics Data System (ADS)

    Presura, R.; Wallace, M. S.; Pereira, N. R.

    2014-10-01

    Anisotropy in a plasma may cause polarization of the spectral lines emitted. For example, the X-rays emitted by Z-pinch plasmas may be polarized if electron beams are present. To detect the polarization, we developed an X-ray spectropolarimeter using a single polarization-splitting crystal. Reflections on intersecting internal planes of the crystal select lines with mutually orthogonal linear polarization. The (10-10) internal planes of a quartz crystal can be used to split several lines of the Al K-shell spectrum according to polarization. We applied this technique to several types of Al wire arrays (cylindrical, conical, and X-pinches), expected to produce increasing beam contributions to the electron population. Peculiarities of the instrument set-up and of the spectra analysis will be presented. This work was supported by DOE, NNSA Grant DE-NA0001834 and cooperative Agreement DE-FC52-06NA27616.

  20. 2D radiation-magnetohydrodynamic simulations of SATURN imploding Z-pinches

    SciTech Connect

    Hammer, J.H.; Eddleman, J.L.; Springer, P.T.

    1995-11-06

    Z-pinch implosions driven by the SATURN device at Sandia National Laboratory are modeled with a 2D radiation magnetohydrodynamic (MHD) code, showing strong growth of magneto-Rayleigh Taylor (MRT) instability. Modeling of the linear and nonlinear development of MRT modes predicts growth of bubble-spike structures that increase the time span of stagnation and the resulting x-ray pulse width. Radiation is important in the pinch dynamics keeping the sheath relatively cool during the run-in and releasing most of the stagnation energy. The calculations give x-ray pulse widths and magnitudes in reasonable agreement with experiments, but predict a radiating region that is too dense and radially localized at stagnation. We also consider peaked initial density profiles with constant imploding sheath velocity that should reduce MRT instability and improve performance. 2D krypton simulations show an output x-ray power > 80 TW for the peaked profile.

  1. Circuit model for the inverse Z-pinch wire array switch.

    SciTech Connect

    Waisman, Eduardo Mario; Cuneo, Michael Edward; Harvey-Thompson, A.; Lebedev, Sergey V.

    2010-06-01

    A 0D circuit code is introduced to study the wire array switch concept introduced in. It has been implemented and researched at Imperial College. An exploding wire array, the switch, is in parallel with the load, an imploding wire array. Most of the current flows in the exploding array until it expands and becomes highly resistive. The 0D code contains simple models of Joule energy deposition and plasma expansion for W and Al wires. The purpose of the device is to produce fast Z-pinch implosion, below 100ns on MAGPIE and the Sandia Z machine. Self and mutual inductances are taken into consideration as well as the rocket model for wire ablation. The switch characteristics of the exploding array are prescribed and tuned up to agree with MAGPIE shots. The dependence of the device on the configuration of the arrays is studied and scaling to ZR conditions is explored.

  2. Current initiation in low-density foam z-pinch plasmas

    SciTech Connect

    Derzon, M.; Nash, T.; Allshouse, G.

    1996-07-01

    Low density agar and aerogel foams were tested as z-pinch loads on the SATURN accelerator. In these first experiments, we studied the initial plasma conditions by measuring the visible emission at early times with a framing camera and 1-D imaging. At later time, near the stagnation when the plasma is hotter, x-ray imaging and spectral diagnostics were used to characterize the plasma. Filamentation and arcing at the current contacts was observed. None of the implosions were uniform along the z-axis. The prime causes of these problems are believed to be the electrode contacts and the current return configuration and these are solvable. Periodic phenomena consistent with the formation of instabilities were observed on one shot, not on others, implying that there may be a way of controlling instabilities in the pinch. Many of the issues involving current initiation may be solvable. Solutions are discussed.

  3. Use of vacuum arc plasma guns for a metal puff Z-pinch system

    SciTech Connect

    Rousskikh, A. G.; Zhigalin, A. S.; Oreshkin, V. I.; Chaikovsky, S. A.; Labetskaya, N. A.; Baksht, R. B.

    2011-09-15

    The performance of a metal puff Z-pinch system has been studied experimentally. In this type of system, the initial cylindrical shell 4 cm in diameter was produced by ten plasma guns. Each gun initiates a vacuum arc operating between magnesium electrodes. The net current of the guns was 80 kA. The arc-produced plasma shell was compressed by using a 450-kA, 450-ns driver, and as a result, a plasma column 0.3 cm in diameter was formed. The electron temperature of the plasma reached 400 eV at an average ion concentration of 1.85 {center_dot} 10{sup 18} cm{sup -3}. The power of the Mg K-line radiation emitted by the plasma for 15-30 ns was 300 MW/cm.

  4. End-On Laser Interferometry of Wire Array Z-Pinch Implosions on the MAGPIE Generator

    NASA Astrophysics Data System (ADS)

    Swadling, George; Lebedev, Sergey; Chittenden, Jeremy; Hall, Gareth; Suzuki-Vidal, Francisco; Harvey-Thompson, Adam; Niasse, Nicolas; Burdiak, Guy; Khoory, Essa; Pickworth, Louisa; de Grouchi, Philip; Suttle, Lee; Magpie Project Team

    2011-10-01

    New end-on measurements have taken of the areal electron density distribution of wire array z-pinches during the ablation phase. These measurements have been used to investigate the differences in dynamics between aluminium and tungsten arrays. The experiments were carried out on the 1.4 MA peak current, 240ns rise-time MAGPIE generator at Imperial College, London. The measurements were taken using a two colour Mach-Zender style imaging interferometer. Probing is provided by the 2nd and 3rd harmonics (532nm and 355nm) of a pulsed Nd:YAG laser with a pulse duration of 500ps. Analysis of the results is presented and comparisons made to both the rocket model and simulations produced using the GORGON MHD code.

  5. 2D Radiation MHD Simulations of Neon-Argon SATURN Z-pinches

    NASA Astrophysics Data System (ADS)

    Hammer, J. H.; Eddleman, J. L.; Estabrook, K. G.; Foord, M.; Maxon, S.; Springer, P.; Tabak, M.; Toor, A.; Wong, K.; Zimmerman, G. B.; Degroot, J. S.

    1996-11-01

    We have extended previous modeling of well-characterized neon-argon z-pinches driven by the SATURN accelerator at SNL. The entire pinch length is modeled and non-LTE (local thermodynamic equilibrium) effects are included. The initial density distribution is given a parabolic variation in z to reproduce the observed ``zippering'' and a 1% random perturbation to stimulate Rayleigh-Taylor (RT) instability. RT modes grow to large amplitude, as observed experimentally. Stagnation conditions differ markedly for the LTE (max. ? ~ few g/cc) and non-LTE cases (max. ? ~ few 10-2 g/cc). The difference is due to reduced radiative loss in the non-LTE case that results in higher temperatures, higher plasma pressures and a softer implosion. Remaining differences with experiment (max. ? ~ few 10-3 g/cc) may be due to 3D effects.

  6. Design of Z-Pinch and Dense Plasma Focus Powered Vehicles

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Fincher, Sharon; Adams, Robert B.; Cassibry, Jason; Cortez, Ross; Turner, Matthew; Maples, C. Daphne; Miermik, Janie N.; Statham, Geoffrey N.; Fabisinski, Leo; Santarius, John; Percy, Tom

    2011-01-01

    Z-pinch and Dense Plasma Focus (DPF) are two promising techniques for bringing fusion power to the field of in-space propulsion. A design team comprising of engineers and scientists from UAHuntsville, NASA's George C. Marshall Space Flight Center and the University of Wisconsin developed concept vehicles for a crewed round trip mission to Mars and an interstellar precursor mission. Outlined in this paper are vehicle concepts, complete with conceptual analysis of the mission profile, operations, structural and thermal analysis and power/avionics design. Additionally engineering design of the thruster itself is included. The design efforts adds greatly to the fidelity of estimates for power density (alpha) and overall performance for these thruster concepts

  7. Improvements in the EQ-10 electrodeless Z-pinch EUV source for metrology applications

    NASA Astrophysics Data System (ADS)

    Horne, Stephen F.; Gustafson, Deborah; Partlow, Matthew J.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.

    2011-04-01

    Now that EUV lithography systems are beginning to ship into the fabs for next generation chips it is more critical that the EUV infrastructure developments are keeping pace. Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinch light source since 2005. The source is currently being used for metrology, mask inspection, and resist development. These applications require especially stable performance in both power and source size. Over the last 5 years Energetiq has made many source modifications which have included better thermal management as well as high pulse rate operation6. Recently we have further increased the system power handling and electrical pulse reproducibility. The impact of these modifications on source performance will be reported.

  8. Time-resolved K-shell line spectra measurement of z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Yang, Qingguo; Zhou, Shaotong; Chen, Guanhua; Huang, Xianbin; Cai, Hongchun; Li, Zeren

    2013-11-01

    A Johann-type crystal spectrometer integrated with x-ray PIN diodes has been developed for measuring the time-resolved K-shell line spectra of the imploding Al wire array. In this spectrometer, the PIN diodes are mounted on the Rowland circle of the cylindrical bent crystal with an appointed position to collect the line emissions from z-pinch plasmas. The spectrometer with four typical channels, which are keyed to the Al ion hydrogen-like (Hα, 0.7171 nm and Hβ, 0.6052 nm) and helium-like (Heα, 0.7757 nm and Heβ, 0.6634 nm) resonance lines is designed and fabricated. Example data from the experiment on the Yang accelerator are shown and the time-dependent electron temperature is determined from the signal ratios of Al ion Hα line to Heα line using the collisional and radiative model.

  9. 3D MHD Simulations of Radial Wire Array Z-pinches

    NASA Astrophysics Data System (ADS)

    Niasse, N.; Chittenden, J. P.; Bland, S. N.; Suzuki-Vidal, F. A.; Hall, G. N.; Lebedev, S. V.; Calamy, H.; Zucchini, F.; Lassalle, F.; Bedoch, J. P.

    2009-01-01

    Recent experiments carried out on the MAGPIE (1 MA, 250 ns), OEDIPE (730 kA, 1.5 ?s) and SPHINX (4 MA, 700 ns)[1] facilities have shown the relatively high level of scalability of the Radial Wire Array Z-pinches. These configurations where the wires stretch radially outwards from a central cathode offer numerous advantages over standard cylindrical arrays. In particular, imploding in a very stable and compact way, they seem suitable for coupling to small scale hohlraums. Making use of the 3D resistive magneto-hydrodynamic code GORGON[2] developed at Imperial College, the dynamic of the radial wire arrays is investigated. Influence of the cathode hotspots and wires angle on the x-ray emissions is also discussed. Comparison with experiments is offered to validate the numerical studies.

  10. Exact self-similar solutions for the magnetized Noh Z pinch problem

    SciTech Connect

    Velikovich, A. L.; Giuliani, J. L.; Thornhill, J. W.; Zalesak, S. T.; Gardiner, T. A.

    2012-01-15

    A self-similar solution is derived for a radially imploding cylindrical plasma with an embedded, azimuthal magnetic field. The plasma stagnates through a strong, outward propagating shock wave of constant velocity. This analysis is an extension of the classic Noh gasdynamics problem to its ideal magnetohydrodynamics (MHD) counterpart. The present exact solution is especially suitable as a test for MHD codes designed to simulate linear Z pinches. To demonstrate the application of the new solution to code verification, simulation results from the cylindrical R-Z version of Mach2 and the 3D Cartesian code Athena are compared against the analytic solution. Alternative routines from the default ones in Athena lead to significant improvement of the results, thereby demonstrating the utility of the self-similar solution for verification.

  11. Plasma density measurements in tungsten wire-array Z-pinches

    SciTech Connect

    Douglass, J. D.; Hammer, D. A.; Pikuz, S. A.; Shelkovenko, T. A.; Blesener, K. S.

    2012-07-15

    Measurements of the plasma density profile near the exploding wires in 1 MA tungsten (W) wire-array Z-pinches have been made using calibrated x-ray absorption. As many as 5 x-ray images per pulse were obtained between 65 and 160 ns after the start of the 100 ns rise time current pulse. Measured W ion densities range from above 10{sup 19}/cm{sup 3} close to the wire to {approx}10{sup 17}/cm{sup 3} about 1 mm away from the wire in the plasma stream. After accurate geometrical registration of the individual wires in each successive image in a pulse using the Genetic Algorithm, the temporal evolution of the axial modulation wavelength distribution of the ablation rate from the wires in each array and the global mass-ablation rate as a function of time are presented.

  12. Hot dense capsule-implosion cores produced by Z-pinch dynamic Hohlraum radiation.

    PubMed

    Bailey, J E; Chandler, G A; Slutz, S A; Golovkin, I; Lake, P W; MacFarlane, J J; Mancini, R C; Burris-Mog, T J; Cooper, G; Leeper, R J; Mehlhorn, T A; Moore, T C; Nash, T J; Nielsen, D S; Ruiz, C L; Schroen, D G; Varnum, W A

    2004-02-27

    Hot dense capsule implosions driven by Z-pinch x rays have been measured using a approximately 220 eV dynamic Hohlraum to implode 1.7-2.1 mm diameter gas-filled CH capsules. The capsules absorbed up to approximately 20 kJ of x rays. Argon tracer atom spectra were used to measure the T(e) approximately 1 keV electron temperature and the n(e) approximately 1-4 x 10(23) cm(-3) electron density. Spectra from multiple directions provide core symmetry estimates. Computer simulations agree well with the peak emission values of T(e), n(e), and symmetry, indicating reasonable understanding of the Hohlraum and implosion physics. PMID:14995784

  13. A compact capacitive probe for high-voltage diagnostic in Z-pinches.

    PubMed

    Wang, Liangping; Han, Juanjuan; Li, Mo; Zhang, Xinjun; Sun, Tieping; Lei, Tianshi

    2013-03-01

    A capacitive divider was arranged on Qiangguang pulsed power generator during a series of wire-array Z-pinch experiments. This divider was designed to measure the voltage acted on the gap of the cathode and anode boards. The probe has a compact construction and is conveniently assembled on the facility. It is also a cheap voltage probe and easy to build by research groups. The probe can monitor a 1 MV high voltage with a 100 ns rise time. The calibration results showed that the probe had an attenuation ratio of 3.3 10(5) and a response time less than 5 ns. The uncertainty was estimated to be 3%. PMID:23556818

  14. Symmetric inertial-confinement-fusion-capsule implosions in a double-z-pinch-driven hohlraum.

    PubMed

    Bennett, G R; Cuneo, M E; Vesey, R A; Porter, J L; Adams, R G; Aragon, R A; Caird, J A; Landen, O L; Rambo, P K; Rovang, D C; Ruggles, L E; Simpson, W W; Smith, I C; Wenger, D F

    2002-12-01

    An inertial-confinement-fusion (ICF) concept using two 60-MA Z pinches to drive a cylindrical hohlraum to 220 eV has been recently proposed. The first capsule implosions relevant to this concept have been performed at the same physical scale with a lower 20-MA current, yielding a 70+/-5 eV capsule drive. The capsule shell shape implies a polar radiation symmetry, the first high-accuracy measurement of this type in a pulsed-power-driven ICF configuration, within a factor of 1.6-4 of that required for scaling to ignition. The convergence ratio of 14-21 is to date the highest in any pulsed-power ICF system. PMID:12484951

  15. Sheared flow stabilization of the {ital m}=1 kink mode in {ital Z} pinches

    SciTech Connect

    Shumlak, U.; Hartman, C.W.

    1995-10-30

    The effect of a sheared axial flow on the {ital m}=1 kink instability in {ital Z} pinches is studied numerically by reducing the linearized magnetohydrodynamic equations to a one-dimensional displacement equation. An equilibrium is used that is made marginally stable against the {ital m}=0 sausage mode by tailoring its pressure profile. The principal result reveals that a sheared axial flow stabilizes the kink mode when the shear exceeds a threshold that is dependent on the location of the conducting wall. For the equilibria studied here the maximum threshold shear ({ital v}{sub {ital z}}{sup {prime}}/{ital kV}{sup 0}{sub {ital A}}) was about 0.1. {copyright} {ital 1995} {ital The} {ital American} {ital Physical} {ital Society}.

  16. Magnetohydrodynamic simulation of solid-deuterium-initiated Z-pinch experiments

    SciTech Connect

    Sheehey, P.T.

    1994-02-01

    Solid-deuterium-initiated Z-pinch experiments are numerically simulated using a two-dimensional resistive magnetohydrodynamic model, which includes many important experimental details, such as ``cold-start`` initial conditions, thermal conduction, radiative energy loss, actual discharge current vs. time, and grids of sufficient size and resolution to allow realistic development of the plasma. The alternating-direction-implicit numerical technique used meets the substantial demands presented by such a computational task. Simulations of fiber-initiated experiments show that when the fiber becomes fully ionized rapidly developing m=0 instabilities, which originated in the coronal plasma generated from the ablating fiber, drive intense non-uniform heating and rapid expansion of the plasma column. The possibility that inclusion of additional physical effects would improve stability is explored. Finite-Larmor-radius-ordered Hall and diamagnetic pressure terms in the magnetic field evolution equation, corresponding energy equation terms, and separate ion and electron energy equations are included; these do not change the basic results. Model diagnostics, such as shadowgrams and interferograms, generated from simulation results, are in good agreement with experiment. Two alternative experimental approaches are explored: high-current magnetic implosion of hollow cylindrical deuterium shells, and ``plasma-on-wire`` (POW) implosion of low-density plasma onto a central deuterium fiber. By minimizing instability problems, these techniques may allow attainment of higher temperatures and densities than possible with bare fiber-initiated Z-pinches. Conditions for significant D-D or D-T fusion neutron production may be realizable with these implosion-based approaches.

  17. Modeling Enhanced Energy Coupling of Z-pinches to Pulsed-power Generators

    NASA Astrophysics Data System (ADS)

    Whitney, K. G.; Thornhill, J. W.; Deeney, C.; Coverdale, C. A.; Apruzese, J. P.; Davis, J.; Velikovich, A. L.; Rudakov, L. I.

    2002-12-01

    It has been observed over the years that the energy coupled to the load in many z-pinch experiments is larger than can be accounted for by the sum of the jxB work and classical Ohmic heating. Moreover, this energy enhancement appears to be a function of the generator design, increasing as the risetime of the current is increased. In recent experiments on the Saturn generator, for example, which was operated at current risetimes in excess of 160 ns, observed energy enhancements were factors of 2 to 4 times the energy input expected from JxB work alone. When Saturn operates with risetimes of less than 90 ns, much smaller energy enhancements over the JxB energy are seen. In the past, it was conjectured that some form of anomalous resistivity was needed to account for the extra energy input, while recently, a new idea was proposed based on the buildup of internally generated tubes of magnetic flux energy.[1,2] It was hypothesized that the growth of the Rayleigh-Taylor instability at the surface of the z-pinch plasma would generate bubbles of magnetic flux-tube energy that deposit their energy in the plasma at a current-to-the-third-power rate. While 0-D modeling of the Saturn experiments shows that an anomalously high load resistance can input the required energy needed to match the x-ray data, an alternate mechanism than magnetic flux-tubes exists for anomalous heating that is based on the production of micro-instabilities at the pinch surface. Both this and the flux-tube model are phenomenological and require guidance from experiments to be implemented. Several issues that arise from these enhanced energy coupling mechanisms are discussed in this paper.

  18. Effective versus ion thermal temperatures in the Weizmann Ne Z-pinch: Modeling and stagnation physics

    SciTech Connect

    Giuliani, J. L.; Thornhill, J. W.; Dasgupta, A.; Velikovich, A. L.; Chong, Y. K.; Mehlhorn, T. A.; Kroupp, E.; Osin, D.; Maron, Y.; Starobinets, A.; Fisher, V.; Zarnitsky, Yu.; Bernshtam, V.; Apruzese, J. P.; Fisher, A.; Deeney, C.

    2014-03-15

    The difference between the ion thermal and effective temperatures is investigated through simulations of the Ne gas puff z-pinch reported by Kroupp et al. [Phys. Rev. Lett. 107, 105001 (2011)]. Calculations are performed using a 2D, radiation-magnetohydrodynamic code with Tabular Collisional-Radiative Equilibrium, namely Mach2-TCRE [Thornhill et al., Phys. Plasmas 8, 3480 (2001)]. The extensive data set of imaging and K-shell spectroscopy from the experiments provides a challenging validation test for z-pinch simulations. Synthetic visible images of the implosion phase match the observed large scale structure if the breakdown occurs at the density corresponding to the Paschen minimum. At the beginning of stagnation (−4 ns), computed plasma conditions change rapidly showing a rising electron density and a peak in the ion thermal temperature of ∼1.8 keV. This is larger than the ion thermal temperature (<400 eV) inferred from the experiment. By the time of peak K-shell power (0 ns), the calculated electron density is similar to the data and the electron and ion thermal temperatures are equilibrated, as is observed. Effective ion temperatures are obtained from calculated emission line widths accounting for thermal broadening and Doppler velocity shifts. The observed, large effective ion temperatures (∼4 keV) early in the stagnation of this Ne pinch can be explained solely as a combination of compressional ion heating and steep radial velocity gradients near the axis. Approximations in the modeling are discussed in regard to the higher ion thermal temperature and lower electron density early in the stagnation compared to the experimental results.

  19. A Compact Soft X-Ray Microscope using an Electrode-less Z-Pinch Source.

    PubMed

    Horne, S F; Silterra, J; Holber, W

    2009-01-01

    Soft X-rays (< 1Kev) are of medical interest both for imaging and microdosimetry applications. X-ray sources at this low energy present a technological challenge. Synchrotrons, while very powerful and flexible, are enormously expensive national research facilities. Conventional X-ray sources based on electron bombardment can be compact and inexpensive, but low x-ray production efficiencies at low electron energies restrict this approach to very low power applications. Laser-based sources tend to be expensive and unreliable. Energetiq Technology, Inc. (Woburn, MA, USA) markets a 92 eV, 10W(2pi sr) electrode-less Z-pinch source developed for advanced semiconductor lithography. A modified version of this commercial product has produced 400 mW at 430 eV (2pi sr), appropriate for water window soft X-ray microscopy. The US NIH has funded Energetiq to design and construct a demonstration microscope using this source, coupled to a condenser optic, as the illumination system. The design of the condenser optic matches the unique characteristics of the source to the illumination requirements of the microscope, which is otherwise a conventional design. A separate program is underway to develop a microbeam system, in conjunction with the RARAF facility at Columbia University, NY, USA. The objective is to develop a focused, sub-micron beam capable of delivering > 1 Gy/second to the nucleus of a living cell. While most facilities of this type are coupled to a large and expensive particle accelerator, the Z-pinch X-ray source enables a compact, stand-alone design suitable to a small laboratory. The major technical issues in this system involve development of suitable focusing X-ray optics. Current status of these programs will be reported. PMID:20198115

  20. A Compact Soft X-Ray Microscope using an Electrode-less Z-Pinch Source

    PubMed Central

    Silterra, J; Holber, W

    2009-01-01

    Soft X-rays (< 1Kev) are of medical interest both for imaging and microdosimetry applications. X-ray sources at this low energy present a technological challenge. Synchrotrons, while very powerful and flexible, are enormously expensive national research facilities. Conventional X-ray sources based on electron bombardment can be compact and inexpensive, but low x-ray production efficiencies at low electron energies restrict this approach to very low power applications. Laser-based sources tend to be expensive and unreliable. Energetiq Technology, Inc. (Woburn, MA, USA) markets a 92 eV, 10W(2pi sr) electrode-less Z-pinch source developed for advanced semiconductor lithography. A modified version of this commercial product has produced 400 mW at 430 eV (2pi sr), appropriate for water window soft X-ray microscopy. The US NIH has funded Energetiq to design and construct a demonstration microscope using this source, coupled to a condenser optic, as the illumination system. The design of the condenser optic matches the unique characteristics of the source to the illumination requirements of the microscope, which is otherwise a conventional design. A separate program is underway to develop a microbeam system, in conjunction with the RARAF facility at Columbia University, NY, USA. The objective is to develop a focused, sub-micron beam capable of delivering > 1 Gy/second to the nucleus of a living cell. While most facilities of this type are coupled to a large and expensive particle accelerator, the Z-pinch X-ray source enables a compact, stand-alone design suitable to a small laboratory. The major technical issues in this system involve development of suitable focusing X-ray optics. Current status of these programs will be reported. PMID:20198115

  1. Nonlinear simulations of the m=0 instability development in z-pinch equilibria with axial sheared flows

    NASA Astrophysics Data System (ADS)

    Paraschiv, Ioana; Bauer, Bruno S.; Lindemuth, Irvin R.; Makhin, Volodymyr

    2007-11-01

    A detailed study of the linear and nonlinear development of the m=0 instability in the presence of sheared axial flows has been performed using a two-dimensional magnetohydrodynamic numerical code, MHRDR, to solve single-fluid ideal MHD equations. In order to accurately study the sheared flow effects on the z-pinch stability, the code was modified to include periodic boundary conditions and a monotonic van Leer advection algorithm. Linear growth rates obtained with MHRDR were in good agreement with the linear theory (<10% difference). Nonlinear mode coupling and saturation of the sausage instability have been studied for z-pinch equilibria with and without sheared flows. It was found that sheared flows changed the m=0 development by reducing the linear growth rates, decreasing the saturation amplitude, and modifying the instability spectrum. High spatial frequency modes were stabilized to small amplitudes, and only the long wavelengths continued to grow. Full stabilization was predicted for supersonic plasma flows.

  2. Properties of the Best Ar K-Shell Radiators: Two Decades of Data Analysis from Seven Z-Pinch Drivers

    SciTech Connect

    Apruzese, J. P.; Commisso, R. J.; Weber, B. V.; Thornhill, J. W.; Giuliani, J. L.; Mosher, D.; Young, F. C.; Coverdale, C. A.; Deeney, C.

    2009-01-21

    Z Pinches formed from Ar gas puffs have been investigated for more than two decades. Experiments have been performed on many generators; a frequent objective has been maximization of the yield in the K-shell lines. The increase in available current during that time, from 2 to 15 MA, has resulted in a remarkable enhancement in yield from a few kJ on PITHON to {approx}300 kJ on Sandia's Z generator. We have analyzed spectroscopic and other radiation data from seven Z-pinch drivers, some dating back to 1991, in an effort to determine what properties of the pinches correlate with high K-shell yield. The strongest correlation is with the amount of mass that is heated to K-shell emitting temperatures. Those temperatures, effective at emitting Ar K-shell x rays, exhibit a range of {approx}1 to 2.4 keV.

  3. Conversion of electromagnetic energy in Z-pinch process of single planar wire arrays at 1.5 MA

    NASA Astrophysics Data System (ADS)

    Liangping, Wang; Mo, Li; Juanjuan, Han; Jian, Wu; Ning, Guo; Aici, Qiu

    2014-06-01

    The electromagnetic energy conversion in the Z-pinch process of single planar wire arrays was studied on Qiangguang generator (1.5 MA, 100 ns). Electrical diagnostics were established to monitor the voltage of the cathode-anode gap and the load current for calculating the electromagnetic energy. Lumped-element circuit model of wire arrays was employed to analyze the electromagnetic energy conversion. Inductance as well as resistance of a wire array during the Z-pinch process was also investigated. Experimental data indicate that the electromagnetic energy is mainly converted to magnetic energy and kinetic energy and ohmic heating energy can be neglected before the final stagnation. The kinetic energy can be responsible for the x-ray radiation before the peak power. After the stagnation, the electromagnetic energy coupled by the load continues increasing and the resistance of the load achieves its maximum of 0.6-1.0 ? in about 10-20 ns.

  4. Effects of compressibility on the magneto-Rayleigh-Taylor instability in Z-pinch implosions with sheared axial flows

    SciTech Connect

    Zhang Yang; Ding Ning

    2006-02-15

    A linear analysis of the ideal magnetohydrodynamic (MHD) stability of the compressible Z-pinch plasma with axial flow is presented. Comparing with results of incompressible models, compressibility can reduce the growth rate of the magneto-Rayleigh-Taylor (MRT)/Kelvin-Helmholtz (KH) instability and allow sheared axial flows to mitigate the MRT instability far more effectively. The effect of magnetic field, which cannot be detected in an incompressible model, is also investigated. The result indicates that the mitigation effect of magnetic field on the MRT instability becomes significant as the perturbation wave-number increases. Therefore, with the cooperation of sheared axial flow, magnetic field, and plasma compressibility, the stability of the Z-pinch plasma is improved remarkably. In addition, the analysis also suggests that in an early stage of the implosion, because the plasma temperature is relatively low, the compressible model is much more suitable than the incompressible one based on the framework of MHD theory.

  5. 2 and 3-D MHD calculations of the plasma focus and flow-through Z-pinch

    SciTech Connect

    Eddleman, J.; Hartman, C.; Shumlak, U.

    1994-12-31

    The authors report on 2 and 3-D MHD calculations of the focus and flow-through Z-pinch using TRAC2 and TRAC3 codes and stability calculations using a 3-D, linearized stability code. The effects of rotation can be studied with all the codes. Axisymmetric perturbations in the current sheath velocity at the beginning of pinching in the focus are calculated in TRAC2 to wash out suggesting stabilization against sausage-like modes because of axial flow during pinching. Rotation of a sharp profile stationary Z-pinch is found to reduce the growth rate of the kink instability. Further studies of the stability of rotating, diffuse-profile pinches will be reported. 2-D calculations have established subAlfvenic, diffuse profile flow states which will be analyzed for stability. It is important to have subAlfvenic flow speeds to achieve a high Q fusion reactor system.

  6. Quasi-steady accelerator operation on the ZAP flow Z-pinch

    SciTech Connect

    Hughes, M. C. Shumlak, U. Golingo, R. P. Nelson, B. A. Ross, M. P.

    2014-12-15

    The ZaP Flow Z-Pinch Experiment utilizes sheared flows to stabilize an otherwise unstable equilibrium. The sheared flows are maintained by streaming high velocity plasma parallel to the pinch. Previous operations of the machine show depletion of the accelerators neutral gas supply late in the pulse leading to pinch instability. The current distribution in the accelerator exhibits characteristic modes during this operation, which is corroborated by interferometric signals. The decrease in density precipitates a loss of plasma quiescence in the pinch, which occurs on a timescale related to the flow velocity from the plasma source. To abate the depletion, the geometry of the accelerator is altered to increase the neutral gas supply. The design creates a standing deflagration front in the accelerator that persists for the pulse duration. The new operating mode is characterized by the same diagnostics as the previous mode. The lessons learned in the accelerator operations have been applied to the design of a new experiment, ZaP-HD. This work was supported by grants from the Department of Energy and the National Nuclear Security Administration.

  7. Z-pinch diagnostics, plasma and liner instabilities and new x-ray techniques

    SciTech Connect

    Oona, H.; Anderson, B.; Benage, J.

    1996-09-01

    Pulse power experiments of the last several decades have contributed greatly to the understanding of high temperature and high density plasmas and, more recently, to the study of hydrodynamic effects in thick imploding cylinders. Common to all these experiments is the application of a large current pulse to a cylindrically symmetric load, with the resulting Lorenz force compressing the load to produce hydrodynamic motion and/or high temperature, high density plasma. In Los Alamos, Pulsed power experiments are carried out at two facilities. Experiments at low current (from several million to ten million Amperes) are conducted on the Pegasus II capacitor bank. Experiments with higher currents (10`s to 100`s MA range) are performed in Ancho Canyon with the explosively driven Procyon and MAGO magnetic flux compression generator systems. In this paper, the authors present a survey of diagnostic capabilities and results from several sets of experiments. First, they discuss the initiation and growth of instabilities in plasmas generated from the implosion of hollow z-pinches in the pegasus and Procyon experiments. Next they discuss spectroscopic data from the plasmas produced by the MAGO system. They also show time resolved imaging data from thick ({approximately} .4 mm) liner implosions. Finally, the authors discuss improvements to x-ray and visible light imaging and spectrographic diagnostic techniques. The emphasis of this paper is not so much a detailed discussion of the experiments, but a presentation of imaging and spectroscopic results and the implications of these observations to the experiments.

  8. Preradiation studies for non-thermal Z-pinch wire load experiments on Saturn

    SciTech Connect

    Sanford, T.W.L.; Humphreys, D.R.; Poukey, J.W.; Marder, B.M.; Halbleib, J.A.; Crow, J.T.; Spielman, R.B.; Mock, R.C.

    1994-06-01

    The implosion dynamics of compact wire arrays on Saturn are explored as a function of wire mass m, wire length {ell}, wire radii R, and radial power-flow feed geometry using the ZORK code. Electron losses and the likelihood of arcing in the radial feed adjacent the wire load are analyzed using the TWOQUICK and CYLTRAN codes. The physical characteristics of the implosion and subsequent thermal radiation production are estimated using the LASNEX code in one dimension. These analyses show that compact tungsten wire arrays with parameters suggested by D. Mosher and with a 21-nH vacuum feed geometry satisfy the empirical scaling criterion I/(M/{ell}) {approximately} 2 MA/(mg/cm) of Mosher for optimizing non-thermal radiation from z pinches, generate low electron losses in the radial feeds, and generate electric fields at the insulator stack below the Charlie Martin flashover limit thereby permitting full power to be delivered to the load. Under such conditions, peak currents of {approximately}5 MA can be delivered to wire loads {approximately}20 ns before the driving voltage reverses at the insulator stack, potentially allowing the m = 0 instability to develop with the subsequent emission of non-thermal radiation as predicted by the Mosher model.

  9. Analyzing Spatially Resolved Z-pinch Spectra to Determine the Nature of ``Bright Spots''*

    NASA Astrophysics Data System (ADS)

    Apruzese, J. P.; Giuliani, J. L.; Thornhill, J. W.; Ampleford, D. J.; Jones, B.; Coverdale, C. A.

    2011-10-01

    Wire array Z-pinch implosions which access the K-shell stages of their load elements are usually characterized by spatially nonuniform emission. But, is the existence of the ``bright spots'' due to density enhancement, higher temperature, or some combination of the two? Does the answer vary with atomic number of the load? To investigate this issue we have analyzed spatially resolved spectra from Cu and Al pinches driven by the Z generator. Correlation studies and regression analyses from the derived conditions are employed in order to infer the cause(s) of the local enhancements of K-shell powers. Work supported by U. S. Department of Energy, National Nuclear Security Administration. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's NNSA under contract DE-AC04-94AL85000. JPA is a consultant to NRL through L3 Communications, Chantilly, VA 20151.

  10. X-ray Diode Measurements of Z-pinch Driven Internal Loads on Z

    NASA Astrophysics Data System (ADS)

    Chandler, G. A.; Fehl, D. L.; Derzon, M. S.; Nash, T. J.; Olson, R. E.; Torres, J.; Deeney, C.

    1997-11-01

    We are pursuing the concept of Z-pinch driven internal targets or 'dynamic' hohlraums for ICF and high energy density physics applications. Utilizing the Z accelerator at Sandia National Laboratories we implode tungsten wires on internal targets at 40 cm/?s with the ultimate goal of generating a high temperature, long lived radiation environment. Nominal parameters for the Z accelerator are a 20 MA peak current with a 100 ns risetime. Wire arrays are configured utilizing 30 and 40 mm diameters, 1-2 cm long with 2.4-2.75 mg/cm. Initial experiments to study the energy coupling, strike physics and the reproducibility of these target configurations have been initiated. Radiation measurements of the off-axis pinch radiation as well as on-axis flux measurements taken with absolutely calibrated x-ray diode arrays will be presented. *Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the US-DOE under contract DE-AC04- 94AL85000.

  11. Computational investigation of the limits to Pease-Braginskii collapse of a Z-pinch

    SciTech Connect

    Nielsen, P.D.

    1981-06-01

    This dissertation investigates the one-dimensional limits to such a radiation enhanced collapse through the use of a Lagrangian simulation code, LASNEX. The code includes the effects of a wide range of phenomena - opacity, ionization, experimentally determined equations of state, magnetic effects on transport coefficients, and external electrical circuits. Special attention was given to the magnetic field subroutines. They were revised to include ion acoustic and lower hybrid drift induced resistivity and to increase accuracy and efficiency. The magnetic pressure term was differenced in a manner that eliminates any influence of zone size, allowing large, low density zones outside the plasma column. In these large zones, magnetic flux and energy were determined by direct integration instead of summation to increase overall conservation. With these changes, the computational timesteps were determined by phenomena in the plasma instead of the Alfven velocity in the low density region. These modifications improved the accuracy of the code on Z-pinch problems by a factor of 10-100 depending on the minimum pinch radius reached.

  12. NUMERICAL SIMULATIONS OF Z-PINCH EXPERIMENTS TO CREATE SUPERSONIC DIFFERENTIALLY ROTATING PLASMA FLOWS

    SciTech Connect

    Bocchi, M.; Ummels, B.; Chittenden, J. P.; Lebedev, S. V.; Frank, A.; Blackman, E. G.

    2013-04-10

    The physics of accretion disks is of fundamental importance for understanding of a wide variety of astrophysical sources that includes protostars, X-ray binaries, and active galactic nuclei. The interplay between hydrodynamic flows and magnetic fields and the potential for turbulence-producing instabilities is a topic of active research that would benefit from the support of dedicated experimental studies. Such efforts are in their infancy, but in an effort to push the enterprise forward we propose an experimental configuration which employs a modified cylindrical wire array Z-pinch to produce a rotating plasma flow relevant to accretion disks. We present three-dimensional resistive magnetohydrodynamic simulations which show how this approach can be implemented. In the simulations, a rotating plasma cylinder or ring is formed, with typical rotation velocity {approx}30 km s{sup -1}, Mach number {approx}4, and Reynolds number in excess of 10{sup 7}. The plasma is also differentially rotating. Implementation of different external magnetic field configurations is discussed. It is found that a modest uniform vertical field of 1 T can affect the dynamics of the system and could be used to study magnetic field entrainment and amplification through differential rotation. A dipolar field potentially relevant to the study of accretion columns is also considered.

  13. Soft X-ray Spectra Analysis in a High-Current Z-Pinch

    NASA Astrophysics Data System (ADS)

    Rosmej, F. B.; Rosmej, O. N.; Komarov, S. A.; Mishensky, V. O.; Utjugov, J. G.

    1994-03-01

    Experiments at the high current (up to 2.5 MA) Z-pinch facility "ANGARA-V-1" were performed with Al, Cu, W and CD2 wires and outer Ar, Xe and D2 gas shells (p=0-1.8 atm). Single shot soft X-ray spectra were recorded by means of a curved X-ray cristal spectrograph in a wide spectral wavelength interval. The characteristic X-ray emission lines of H-, He- and Li-like ions were analysed with the elaborated spectra simulation codes "SAT" and "META". The electron temperature Te, density ne and ionisation temperature Tz were determined with respect to the non-equilibrium plasma state, optical thickness and electron beam excitation. Additional information about the plasma developement was obtained from the emission lines of Na, Cl and Si, which were added to the wire material for diagnostic purposes. For Ar we obtained electron temperatures up to Te 1.2 keV and electron densities of about ne 1021cm-3, for Al Te 600 eV, ne 3.1020 cm-3. A low ionisation temperature in practically all discharges indicates non-equilibrium states of overheated plasmas. Information about the plasma geometrie was obtained from pinhole framings in different spectral ranges. Discharges with copper wires showed a strong decrease of the hot spot creation with outer gas shells. Pinhole framings were analysed with a high resolution by means of a topographical method.

  14. The Physics of Long-Pulse Wire Array Z-Pinch Implosions

    SciTech Connect

    DOUGLAS,MELISSA R.; DEENEY,CHRISTOPHER; SPIELMAN,RICK B.; COVERDALE,CHRISTINE A.; RODERICK,N.F.; PETERSON,D.L.

    1999-12-14

    Recent improvements in z-pinch wire array load design at Sandia National Laboratories have led to a substantial increase in pinch performance as measured by radiated powers of up to 280 TW in 4 ns and 1.8 MJ of total radiated energy. Next generation, higher current machines will allow for larger mass arrays and comparable or higher velocity implosions to be reached, possibly extending these result.dis the current is pushed above 20 MA, conventional machine design based on a 100 ns implosion time results in higher voltages, hence higher cost and power flow risk. Another approach, which shifts the risk to the load configuration, is to increase the implosion time to minimize the voltage. This approach is being investigated in a series of experimental campaigns on the Saturn and Z machines. In this paper, both experimental and two dimensional computational modeling of the fist long implosion Z experiments will be presented. The experimental data shows broader pulses, lower powers, and larger pinch diameters compared to the corresponding short pulse data. By employing a nested array configuration, the pinch diameter was reduced by 50% with a corresponding increase in power of > 30%. Numerical simulations suggest load velocity is the dominating mechanism behind these results.

  15. Wire Array Z-pinch Experiment on Inductive Energy Storage Generator ASO-X

    NASA Astrophysics Data System (ADS)

    Teramoto, Yusuke; Urakami, Hideyuki; Kohno, Susumu; Shimomura, Naoyuki; Katsuki, Sunao; Akiyama, Hidenori

    2002-12-01

    Wire-array z-pinch experiment was carried out on ASO-X generator. ASO-X is a 3-stage inductive voltage adder, and works as the inductive energy storage system with the plasma opening switch. The array diameter was 3 cm, and had 36 tungsten wires of 20 ?m in diameter and 1 cm long. Taking time-resolved pictures of imploding plasma and observing x-ray signals, it was investigated that how the wire-array implodes for the different current rise times. For the x-ray diagnostics, the X-ray diode (XRD) and the diamond detector were used. When the current rise time is slow, the peaks of XRD and diamond detector were observed at the different time. In the time-resolved picture, the implosion of precursor plasma was observed followed by the main implosion. The strong kink instability was observed when the pinched plasma was completely created. When the current rise time is fast, no kink instability was observed. However, the implosion did not fully cover between the electrodes. The diamond detector did not detect the x-ray, although the XRD detected.

  16. The role of Z-pinches and related configurations in magnetized target fusion

    SciTech Connect

    Lindemuth, I.R.

    1997-07-10

    The use of a magnetic field within a fusion target is now known as Magnetized Target Fusion in the US and as MAGO (Magnitnoye Obzhatiye, or magnetic compression) in Russia. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (e.g., ICF), MTF involves two steps: (a) formation of a warm, magnetized, wall-confined plasma of intermediate density within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression and heating of the plasma by imploding the confining wall, or pusher. In many ways, MTF can be considered a marriage between the more mature MFE and ICF approaches, and this marriage potentially eliminates some of the hurdles encountered in the other approaches. When compared to ICF, MTF requires lower implosion velocity, lower initial density, significantly lower radial convergence, and larger targets, all of which lead to substantially reduced driver intensity, power, and symmetry requirements. When compared to MFE, MTF does not require a vacuum separating the plasma from the wall, and, in fact, complete magnetic confinement, even if possible, may not be desirable. The higher density of MTF and much shorter confinement times should make magnetized plasma formation a much less difficult step than in MFE. The substantially lower driver requirements and implosion velocity of MTF make z-pinch magnetically driven liners, magnetically imploded by existing modern pulsed power electrical current sources, a leading candidate for the target pusher of an MTF system.

  17. Construction and Initial Tests of MAIZE: 1 MA LTD-Driven Z-Pinch *

    NASA Astrophysics Data System (ADS)

    Gilgenbach, R. M.; Gomez, M. R.; Zier, J. C.; Tang, W.; French, D. M.; Lau, Y. Y.; Mazarakis, M. G.; Cuneo, M. E.; Johnston, M. D.; Oliver, B. V.; Mehlhorn, T. A.; Kim, A. A.; Sinebryukhov, V. A.

    2008-11-01

    We report construction and initial testing of a 1-MA Linear Transformer Driver (LTD), The Michigan Accelerator for Inductive Z-pinch Experiments, (MAIZE). This machine, the first of its type to reach the USA, is based on the joint HCEI, Sandia Laboratories, and UM development effort. The compact LTD uses 80 capacitors and 40 spark gap switches, in 40 ``bricks'', to deliver 1 MA, 100 kV pulses with 70 ns risetime into a matched resistive load. Test results will be presented for a single brick and the full LTD. Design and construction will be presented of a low-inductance MITL. Experimental research programs under design and construction at UM include: a) Studies of Magneto-Raleigh-Taylor Instability of planar foils, and b) Vacuum convolute studies including cathode and anode plasma. Theory and simulation results will be presented for these planned experiments. Initial experimental designs and moderate-current feasibility experiments will be discussed. *Research supported by U. S. DoE through Sandia National Laboratories award document numbers 240985, 768225, 790791 and 805234 to the UM. MRG supported by NNSA Fellowship and JCZ supported by NPSC Fellowship / Sandia National Labs.

  18. New compact hohlraum configuration research at the 1.7 MA Z-pinch generator

    SciTech Connect

    Kantsyrev, V. L. Shrestha, I. K.; Esaulov, A. A.; Safronova, A. S.; Shlyaptseva, V. V.; Osborne, G. C.; Astanovitsky, A. L.; Weller, M. E.; Stafford, A.; Schultz, K. A.; Cooper, M. C.; Chuvatin, A. S.; Rudakov, L. I.; Velikovich, A. L.; Cuneo, M. E.; Jones, B.; Vesey, R. A.

    2014-12-15

    A new compact Z-pinch x-ray hohlraum design with parallel-driven x-ray sources was experimentally demonstrated in a full configuration with a central target and tailored shine shields (to provide a symmetric temperature distribution on the target) at the 1.7 MA Zebra generator. This presentation reports on the joint success of two independent lines of research. One of these was the development of new sources – planar wire arrays (PWAs). PWAs turned out to be a prolific radiator. Another success was the drastic improvement in energy efficiency of pulsed-power systems, such as the Load Current Multiplier (LCM). The Zebra/LCM generator almost doubled the plasma load current to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum design for ICF, as jointly proposed by SNL and UNR. Good agreement between simulated and measured radiation temperature of the central target is shown. Experimental comparison of PWAs with planar foil liners (PFL) - another viable alternative to wire array loads at multi-MA generators show promising data. Results of research at the University of Nevada Reno allowed for the study of hohlraum coupling physics at University-scale generators. The advantages of new hohlraum design applications for multi-MA facilities with W or Au double PWAs or PFL x-ray sources are discussed.

  19. Neutron spectra from beam-target reactions in dense Z-pinches

    NASA Astrophysics Data System (ADS)

    Appelbe, B.; Chittenden, J.

    2015-10-01

    The energy spectrum of neutrons emitted by a range of deuterium and deuterium-tritium Z-pinch devices is investigated computationally using a hybrid kinetic-MHD model. 3D MHD simulations are used to model the implosion, stagnation, and break-up of dense plasma focus devices at currents of 70 kA, 500 kA, and 2 MA and also a 15 MA gas puff. Instabilities in the MHD simulations generate large electric and magnetic fields, which accelerate ions during the stagnation and break-up phases. A kinetic model is used to calculate the trajectories of these ions and the neutron spectra produced due to the interaction of these ions with the background plasma. It is found that these beam-target neutron spectra are sensitive to the electric and magnetic fields at stagnation resulting in significant differences in the spectra emitted by each device. Most notably, magnetization of the accelerated ions causes the beam-target spectra to be isotropic for the gas puff simulations. It is also shown that beam-target spectra can have a peak intensity located at a lower energy than the peak intensity of a thermonuclear spectrum. A number of other differences in the shapes of beam-target and thermonuclear spectra are also observed for each device. Finally, significant differences between the shapes of beam-target DD and DT neutron spectra, due to differences in the reaction cross-sections, are illustrated.

  20. Fully kinetic simulations of dense plasma focus Z-pinch devices.

    PubMed

    Schmidt, A; Tang, V; Welch, D

    2012-11-16

    Dense plasma focus Z-pinch devices are sources of copious high energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood. We now have, for the first time, demonstrated a capability to model these plasmas fully kinetically, allowing us to simulate the pinch process at the particle scale. We present here the results of the initial kinetic simulations, which reproduce experimental neutron yields (~10(7)) and high-energy (MeV) beams for the first time. We compare our fluid, hybrid (kinetic ions and fluid electrons), and fully kinetic simulations. Fluid simulations predict no neutrons and do not allow for nonthermal ions, while hybrid simulations underpredict neutron yield by ~100x and exhibit an ion tail that does not exceed 200 keV. Only fully kinetic simulations predict MeV-energy ions and experimental neutron yields. A frequency analysis in a fully kinetic simulation shows plasma fluctuations near the lower hybrid frequency, possibly implicating lower hybrid drift instability as a contributor to anomalous resistivity in the plasma. PMID:23215497

  1. Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion

    SciTech Connect

    Calamy, H.; Lassalle, F.; Loyen, A.; Zucchini, F.; Chittenden, J. P.; Hamann, F.; Maury, P.; Georges, A.; Bedoch, J. P.; Morell, A.

    2008-01-15

    The Sphinx machine [F. Lassalle et al., 'Status on the SPHINX machine based on the 1microsecond LTD technology'] based on microsecond linear transformer driver (LTD) technology is used to implode an aluminium wire array with an outer diameter up to 140 mm and maximum current from 3.5 to 5 MA. 700 to 800 ns implosion Z-pinch experiments are performed on this driver essentially with aluminium. Best results obtained before the improvement described in this paper were 1-3 TW radial total power, 100-300 kJ total yield, and 20-30 kJ energy above 1 keV. An auxiliary generator was added to the Sphinx machine in order to allow a multi microsecond current to be injected through the wire array load before the start of the main current. Amplitude and duration of this current prepulse are adjustable, with maxima {approx}10 kA and 50 {mu}s. This prepulse dramatically changes the ablation phase leading to an improvement of the axial homogeneity of both the implosion and the final radiating column. Total power was multiplied by a factor of 6, total yield by a factor of 2.5 with a reproducible behavior. This paper presents experimental results, magnetohydrodynamic simulations, and analysis of the effect of such a long current prepulse.

  2. A Concept for Containing Inertial Fusion Energy Pulses in a Z-Pinch-Driven Power Plant

    SciTech Connect

    Rochau, Gary E.; Morrow, Charles W.; Pankuch, Peter J.

    2003-05-15

    The Z-Pinch Power Plant (ZP-3) is the first concept to use the results at Sandia National Laboratories' Z accelerator in a power plant application. Assuming high-yield fusion pulses (of 1 to 20 GJ per shot at a rate of 0.1 Hz), we consider a unique shock and energy absorbing system to contain the energy. One concept answers the need for system standoff from the fusion reaction with a replaceable mechanical cartridge manufactured on-site. System studies suggest integrated blanket designs for absorbing the fusion energy, cartridge manufacture of recycled materials, and cartridge installation/replacement to maintain a reasonable duty cycle. An effective system design for ZP-3 requires an integrated blanket to shield the permanent structures from the high-energy neutron flux and strong shock wave, breed tritium, and simultaneously absorb the released fusion energy. We investigate the feasibility of this integrated blanket concept and explore the principles of a containment chamber - a crucible - and the containment mechanisms. An operational cycle is proposed to physically load hardware in 10-s intervals while maintaining operational conditions. Preliminary pressure and shock calculations demonstrate that high-yield inertial fusion energy pulses can be contained if the appropriate energy-absorbing materials are used.

  3. Diagnostics of deuterium gas-puff z-pinch experiments on the GIT-12 generator

    NASA Astrophysics Data System (ADS)

    Cikhardt, J.; Klir, D.; Rezac, K.; Kubes, P.; Kravarik, J.; Batobolotova, B.; Sila, O.; Turek, K.; Shishlov, A.; Labetsky, A.; Kokshenev, V.; Chedizov, R.; Ratakhin, N.; Varlachev, V.; Garapatsky, A.; Dudkin, G.; Padalko, V.; GIT-12 Team

    2014-10-01

    Z-pinch experiments with a deuterium gas-puff and an outer plasma shell generated by plasma guns were carried out on the GIT-12 generator at the IHCE in Tomsk. Using this novel configuration of the load, the neutron yields from the DD reaction were significantly increased from 2×1011 up to 3×1012 neutrons per shot at the current level of about 3 MA. In addition to recent experiments, the threshold activation detectors were used in order to get the information about the energy spectrum of the generated neutrons. The copper, indium, and lead samples were irradiated by the pulse of the neutrons generated during the experimental shot. The decay radiation of the products from the reactions 63Cu(n,2n)62Cu, 115In(n, γ) 116 mIn and 206Pb (n,3n)204mPb was observed using gamma spectrometer. According to the used neutron ToF scintillation detectors, the energy of neutrons reaches up to 20 MeV. The work was supported by the MSMT of the Czech Republic research Programs No. ME090871, No. LG13029, by the GACR Grant No. P205/12/0454, Grant CRA IAEA No. 17088 and RFBR research Project No. 13-08-00479-a.

  4. Ion viscous heating in a magnetohydrodynamically unstable Z-pinch at over two billion Kelvin.

    SciTech Connect

    Jones, Brent Manley; Coverdale, Christine Anne; LePell, Paul David; Haines, Malcolm G.; Deeney, Christopher

    2005-02-01

    Pulsed power driven metallic wire-array Z pinches are the most powerful and efficient laboratory x-ray sources. Furthermore, under certain conditions the soft x-ray energy radiated in a 5 ns pulse at stagnation can exceed the estimated kinetic energy of the radial implosion phase by a factor of 3 to 4. A theoretical model is developed here to explain this, allowing the rapid conversion of magnetic energy to a very high ion temperature plasma through the generation of fine scale, fast-growing m=0 interchange MHD instabilities at stagnation. These saturate nonlinearly and provide associated ion viscous heating. Next the ion energy is transferred by equipartition to the electrons and thus to soft x-ray radiation. Recent time-resolved iron spectra at Sandia confirm an ion temperature T{sub i} of over 200 keV (2 x 10{sup 9} degrees), as predicted by theory. These are believed to be record temperatures for a magnetically confined plasma.

  5. Two-dimensional radiation-magnetohydrodynamic simulations of SATURN imploding Z pinches

    NASA Astrophysics Data System (ADS)

    Hammer, James H.; Eddleman, James L.; Springer, Paul T.; Tabak, Max; Toor, Arthur; Wong, Keith L.; Zimmerman, George B.; Deeney, Chris; Humphreys, Russ; Nash, Thomas J.; Sanford, Thomas W. L.; Spielman, Rick B.; De Groot, John S.

    1996-05-01

    Z-pinch implosions driven by the SATURN device [D. D. Bloomquist et al., Proceedings of the 6th Institute of Electrical and Electronics Engineers (IEEE) Pulsed Power Conference, Arlington, VA, edited by P. J. Turchi and B. H. Bernstein (IEEE, New York, 1987), p. 310] at Sandia National Laboratory are modeled with a two-dimensional radiation magnetohydrodynamic (MHD) code, showing strong growth of the magneto-Rayleigh-Taylor (MRT) instability. Modeling of the linear and nonlinear development of MRT modes predicts growth of bubble-spike structures that increase the time span of stagnation and the resulting x-ray pulse width. Radiation is important in the pinch dynamics, keeping the sheath relatively cool during the run-in and releasing most of the stagnation energy. The calculations give x-ray pulse widths and magnitudes in reasonable agreement with experiments, but predict a radiating region that is too dense and radially localized at stagnation. We also consider peaked initial density profiles with constant imploding sheath velocity that should reduce MRT instability and improve performance. Krypton simulations show an output x-ray power ?80 TW for the peaked profile.

  6. Effect of driver impedance on dense plasma focus Z-pinch neutron yield

    SciTech Connect

    Sears, Jason E-mail: schmidt36@llnl.gov; Link, Anthony E-mail: schmidt36@llnl.gov; Schmidt, Andrea E-mail: schmidt36@llnl.gov; Welch, Dale

    2014-12-15

    The Z-pinch phase of a dense plasma focus (DPF) heats the plasma by rapid compression and accelerates ions across its intense electric fields, producing neutrons through both thermonuclear and beam-target fusion. Driver characteristics have empirically been shown to affect performance, as measured by neutron yield per unit of stored energy. We are exploring the effect of driver characteristics on DPF performance using particle-in-cell (PIC) simulations of a kJ scale DPF. In this work, our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase, capturing kinetic instabilities, anomalous resistivity, and beam formation during the pinch. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. It is known that the driver impedance plays an important role in the neutron yield: first, it sets the peak current achieved at pinch time; and second, it affects how much current continues to flow through the pinch when the pinch inductance and resistance suddenly increase. Here we show from fully kinetic simulations how total neutron yield depends on the impedance of the driver and the distributed parameters of the transmission circuit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for neutron source applications.

  7. New compact hohlraum configuration research at the 1.7 MA Z-pinch generator

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Chuvatin, A. S.; Rudakov, L. I.; Velikovich, A. L.; Shrestha, I. K.; Esaulov, A. A.; Safronova, A. S.; Shlyaptseva, V. V.; Osborne, G. C.; Astanovitsky, A. L.; Weller, M. E.; Stafford, A.; Schultz, K. A.; Cooper, M. C.; Cuneo, M. E.; Jones, B.; Vesey, R. A.

    2014-12-01

    A new compact Z-pinch x-ray hohlraum design with parallel-driven x-ray sources was experimentally demonstrated in a full configuration with a central target and tailored shine shields (to provide a symmetric temperature distribution on the target) at the 1.7 MA Zebra generator. This presentation reports on the joint success of two independent lines of research. One of these was the development of new sources - planar wire arrays (PWAs). PWAs turned out to be a prolific radiator. Another success was the drastic improvement in energy efficiency of pulsed-power systems, such as the Load Current Multiplier (LCM). The Zebra/LCM generator almost doubled the plasma load current to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum design for ICF, as jointly proposed by SNL and UNR. Good agreement between simulated and measured radiation temperature of the central target is shown. Experimental comparison of PWAs with planar foil liners (PFL) - another viable alternative to wire array loads at multi-MA generators show promising data. Results of research at the University of Nevada Reno allowed for the study of hohlraum coupling physics at University-scale generators. The advantages of new hohlraum design applications for multi-MA facilities with W or Au double PWAs or PFL x-ray sources are discussed.

  8. Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion

    NASA Astrophysics Data System (ADS)

    Calamy, H.; Lassalle, F.; Loyen, A.; Zucchini, F.; Chittenden, J. P.; Hamann, F.; Maury, P.; Georges, A.; Bedoch, J. P.; Morell, A.

    2008-01-01

    The Sphinx machine [F. Lassalle et al., "Status on the SPHINX machine based on the 1microsecond LTD technology"] based on microsecond linear transformer driver (LTD) technology is used to implode an aluminium wire array with an outer diameter up to 140mm and maximum current from 3.5to5MA. 700to800ns implosion Z-pinch experiments are performed on this driver essentially with aluminium. Best results obtained before the improvement described in this paper were 1-3TW radial total power, 100-300kJ total yield, and 20-30kJ energy above 1keV. An auxiliary generator was added to the Sphinx machine in order to allow a multi microsecond current to be injected through the wire array load before the start of the main current. Amplitude and duration of this current prepulse are adjustable, with maxima 10kA and 50?s. This prepulse dramatically changes the ablation phase leading to an improvement of the axial homogeneity of both the implosion and the final radiating column. Total power was multiplied by a factor of 6, total yield by a factor of 2.5 with a reproducible behavior. This paper presents experimental results, magnetohydrodynamic simulations, and analysis of the effect of such a long current prepulse.

  9. Characterisation of the current switch mechanism in two-stage wire array Z-pinches

    NASA Astrophysics Data System (ADS)

    Burdiak, G. C.; Lebedev, S. V.; Harvey-Thompson, A. J.; Hall, G. N.; Swadling, G. F.; Suzuki-Vidal, F.; Khoory, E.; Bland, S. N.; Pickworth, L.; de Grouchy, P.; Skidmore, J.; Suttle, L.; Waisman, E. M.

    2015-11-01

    In this paper, we describe the operation of a two-stage wire array z-pinch driven by the 1.4 MA, 240 ns rise-time Magpie pulsed-power device at Imperial College London. In this setup, an inverse wire array acts as a fast current switch, delivering a current pre-pulse into a cylindrical load wire array, before rapidly switching the majority of the generator current into the load after a 100-150 ns dwell time. A detailed analysis of the evolution of the load array during the pre-pulse is presented. Measurements of the load resistivity and energy deposition suggest significant bulk heating of the array mass occurs. The ˜5 kA pre-pulse delivers ˜0.8 J of energy to the load, leaving it in a mixed, predominantly liquid-vapour state. The main current switch occurs as the inverse array begins to explode and plasma expands into the load region. Electrical and imaging diagnostics indicate that the main current switch may evolve in part as a plasma flow switch, driven by the expansion of a magnetic cavity and plasma bubble along the length of the load array. Analysis of implosion trajectories suggests that approximately 1 MA switches into the load in 100 ns, corresponding to a doubling of the generator dI/dt. Potential scaling of the device to higher current machines is discussed.

  10. Effect of driver impedance on dense plasma focus Z-pinch neutron yield

    NASA Astrophysics Data System (ADS)

    Sears, Jason; Link, Anthony; Schmidt, Andrea; Welch, Dale

    2014-12-01

    The Z-pinch phase of a dense plasma focus (DPF) heats the plasma by rapid compression and accelerates ions across its intense electric fields, producing neutrons through both thermonuclear and beam-target fusion. Driver characteristics have empirically been shown to affect performance, as measured by neutron yield per unit of stored energy. We are exploring the effect of driver characteristics on DPF performance using particle-in-cell (PIC) simulations of a kJ scale DPF. In this work, our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase, capturing kinetic instabilities, anomalous resistivity, and beam formation during the pinch. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. It is known that the driver impedance plays an important role in the neutron yield: first, it sets the peak current achieved at pinch time; and second, it affects how much current continues to flow through the pinch when the pinch inductance and resistance suddenly increase. Here we show from fully kinetic simulations how total neutron yield depends on the impedance of the driver and the distributed parameters of the transmission circuit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for neutron source applications.

  11. Gas puff Z-pinch implosions with external Bz field on COBRA

    NASA Astrophysics Data System (ADS)

    Qi, N.; de Grouchy, P.; Schrafel, P. C.; Atoyan, L.; Potter, W. M.; Cahill, A. D.; Gourdain, P.-A.; Greenly, J. B.; Hammer, D. A.; Hoyt, C. L.; Kusse, B. R.; Pikuz, S. A.; Shelkovenko, T. A.

    2014-12-01

    We present preliminary experimental results on mitigating Magneto-Rayleigh-Taylor (MRT) instabilities by applying an external Bz field. The experiments were conducted on the 1-MA, 200-ns COBRA generator at Cornell University. In the experiments, a triple-nozzle was used to produce z-pinch loads from concentric outer and inner annular gas puffs and a center gas puff column. A single coil was used to produce a Bz field in the pinch region. We have used two 4-frame 2-ns gated EUV cameras to obtain images of the imploding plasmas, in which the MRT instabilities were observed. The MRT instabilities can grow when the plasma accelerates toward the axis. With a triple gas puff (outer, inner and center puff), reduced acceleration or de-acceleration of the imploding plasma occurred when the outer puff plasma imploded onto the inner annular puff plasma resulting a relatively stable implosion. In the absent of the inner annular gas puff, the imploding outer annular plasma continued to accelerate toward the axis. Large turbulent flares at the edge of the implosion or pinch plasma were observed. The implosion was not stable. To stabilize the implosion without the inner gas puff, a Bz field was applied. This external Bz field was compressed by the outer imploding plasma shell. A relatively stable implosion was observed. Increasing the Bz field to 2-kG resulted in a relatively fatter pinch plasma.

  12. Measurements of high energy photons in Z-pinch experiments on primary test stand.

    PubMed

    Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-08-01

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 10(10) cm(-2) (20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region. PMID:26329192

  13. Measurements of high energy photons in Z-pinch experiments on primary test stand

    NASA Astrophysics Data System (ADS)

    Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-08-01

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 1010 cm-2 (20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.

  14. Quasi-steady accelerator operation on the ZAP flow Z-pinch

    NASA Astrophysics Data System (ADS)

    Hughes, M. C.; Shumlak, U.; Golingo, R. P.; Nelson, B. A.; Ross, M. P.

    2014-12-01

    The ZaP Flow Z-Pinch Experiment utilizes sheared flows to stabilize an otherwise unstable equilibrium. The sheared flows are maintained by streaming high velocity plasma parallel to the pinch. Previous operations of the machine show depletion of the accelerator's neutral gas supply late in the pulse leading to pinch instability. The current distribution in the accelerator exhibits characteristic modes during this operation, which is corroborated by interferometric signals. The decrease in density precipitates a loss of plasma quiescence in the pinch, which occurs on a timescale related to the flow velocity from the plasma source. To abate the depletion, the geometry of the accelerator is altered to increase the neutral gas supply. The design creates a standing deflagration front in the accelerator that persists for the pulse duration. The new operating mode is characterized by the same diagnostics as the previous mode. The lessons learned in the accelerator operations have been applied to the design of a new experiment, ZaP-HD. This work was supported by grants from the Department of Energy and the National Nuclear Security Administration.

  15. Inward radial transport in differentially rotated plasma discs formed in z-pinch experiments

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergey; Bennett, M.; Swadling, G. F.; Suttle, L.; Blackman, E.; Burdiak, G.; Chittenden, J. P.; Ciardi, A.; Drake, R. P.; Frank, A.; Hall, G. N.; Hare, J.; Patankar, S.; Smith, R. A.; Suzuki-Vidal, F.

    2014-10-01

    We will present experimental results showing the development of instabilities and an inward transport of matter in a differentially rotating supersonic plasma disc with dimensionless parameters relevant to modeling physics of astrophysical discs. The converging off-axis plasma flow forming the disc is produced by ablation of wires in a cylindrical wire array z-pinch (1.4 MA, 250 ns) combined with a cusp magnetic field, and the rotating disc is supported in equilibrium by the ram pressure of the flow. The radial profile of rotation velocity in the disc is measured using Doppler shifts of the ion feature of Thomson scattering spectra, while the broadening of the spectra yields the plasma temperature. The evolution of the disc structure is observed with multi-frame XUV and optical cameras, and the plasma density is measured using end-on laser interferometry. The Reynolds number in the disc is sufficiently large (>105) to allow development of turbulence on the time-scale of the experiment, and the observed inward transport of matter with the growth of small scale structures suggests that turbulence is responsible for the transport.

  16. Dynamics of cylindrically converging precursor plasma flow in wire-array Z -pinch experiments.

    PubMed

    Bott, S C; Lebedev, S V; Ampleford, D J; Bland, S N; Chittenden, J P; Ciardi, A; Haines, M G; Jennings, C; Sherlock, M; Hall, G; Rapley, J; Beg, F N; Palmer, J

    2006-10-01

    This paper summarizes the present understanding of the processes leading to precursor column formation in cylindrical wire arrays on the 1 MA MAGPIE generator at Imperial College London. Direct experimental measurements of the diameter variation during the collapse and formation phase of the precursor column are presented, along with soft x-ray emission, and quantitative radiography. In addition, data from twisted cylindrical arrays are presented which give additional information on the behavior of coronal plasma generated in wire array z pinches. Three stages in precursor column formation are identifiable from the data: broad initial density profile, rapid contraction to small diameter, and slow expansion after formation. The correlation of emission to column diameter variation indicates the contraction phase is a nonlinear collapse resulting from the increasing on-axis density and radiative cooling rate. The variation in the minimum diameter is measured for several array materials, and data show good agreement with a pressure balance model. Comparison of column expansion rates to analytical models allows an estimate of column temperature variation, and estimates of the current in the column are also made. Formation data are in good agreement with both fluid and kinetic modeling, but highlight the need to include collisionless flow in the early time behavior. PMID:17155178

  17. Electron heating in strongly beaded high-Z pinch discharges at high densities. Technical report

    SciTech Connect

    Guillory, J.

    1981-05-01

    The late-time, fully-developed stage of sausage-like 'beading' of z-pinch discharges can give rise to enhanced electron heating (and thus enhanced radiative losses), caused by Ohmic anomalous heating in the constricted regions. In this report, this transfer of energy from condensations of magnetic field energy to radiation is examined quantitatively, based on a simplified dynamical model for the nonlinear instability driving terms. Constricted portions of the discharge, with low density and cross-section, and mostly or entirely anomalous current, alternate with the higher density beads, which carry current classically. The extreme limit of this phenomenon is that of multiple diodes in series, with the nearly-evacuated low density regions considered as bipolar-flow diodes, with pinched electron flow. In all probability, the low-density regions cannot evacuate to the extent required for such vacuum-diode behavior. The overall resistive heating rate is of course VI, with the total current I given by appropriate circuit equations, but the local heating rates for electrons in the low density regions are balanced by increased radiative loss when these hotter electrons collide with the denser blobs of plasma. The blobs cannot respond hydrodynamically to the increased heating before radiation loses the deposited energy.

  18. Magnetohydrodynamic solution for a Z pinch showing the production of a hot spot

    SciTech Connect

    Maxon, S.; Hammer, J.H.; Eddleman, J.L.; Tabak, M.; Zimmerman, G.B.; Alley, W.E.; Estabrook, K.G.; Harte, J.A.; Nash, T.J.; Sanford, T.W.; De Groot, J.S.

    1996-05-01

    Two-dimensional LASNEX [National Technical Information Service Document No. DE 81026329 (Zimmerman, Report No. UCRL-74811, 1973)] calculations are made for a Z pinch on Saturn, the low-impedance, low-inductance electron accelerator at the Sandia National Laboratories [D. D. Bloomquist {ital et} {ital al}. {ital Proceedings} {ital of} {ital the} {ital Sixth} {ital IEEE} {ital Pulsed} {ital Power} {ital Conference}, Arlington, VA, edited by P. J. Turchi and B. H. Bernstein (Institute of Electronics and Electrical Engineers, New York, 1987), p. 310]. The experiment is characterized by a current of 6 MA with a tungsten wire load (4 mg) at 2 mm. Two-dimensional calculations show the evolution of the Rayleigh{endash}Taylor instability to the bubble and spike phase, causing high-density islands to form in the pinch opposite the bubbles. The two-dimensional energy flow causes a {open_quote}{open_quote}hot spot{close_quote}{close_quote} to evolve, which is shown to agree in its size and brightness with pinhole camera measurements. This is the first explicit calculation of a hot spot in two dimensions employing the full magnetohydrodynamic equations. {copyright} {ital 1996 American Institute of Physics.}

  19. ANTHEM simulations of the early time magnetic field penetration of the plasma surrounding a high density Z-pinch

    SciTech Connect

    Mason, R.J. )

    1989-12-01

    The early time penetration of magnetic field into the low density coronal plasma of a Z-pinch fiber is studied with the implict plasma simulation code ANTHEM. Calculations show the emission of electrons from the cathode, pinching of the electron flow, magnetic insulation of the electrons near the anode, and low density ion blow off. PIC-particle ion calculations show a late time clumping of the ion density not seen with a fluid ion treatment.

  20. ANTHEM simulation of the early time magnetic field penetration of the plasma surrounding a high density Z-pinch

    SciTech Connect

    Mason, R.J.

    1989-01-01

    The early time penetration of magnetic field into the low density coronal plasma of a Z-pinch fiber is studied with the implicit plasma simulation code ANTHEM. Calculations show the emission of electrons from the cathode, pinching of the electron flow, magnetic insulation of the electrons near the anode, and low density ion blow off. PIC-particle ion calculations show a late time clumping of the ion density not seen with a fluid ion treatment. 4 refs., 4 figs.

  1. Effects of various axial flow profiles on the magneto-Rayleigh-Taylor instability in Z-pinch implosions

    SciTech Connect

    Zhang, Y.; Ding, N.

    2006-06-15

    The stabilizing effect of different axial flow profiles on the magneto-Rayleigh-Taylor (MTR) instability in Z-pinch implosions is investigated with a compressible skin-current model. The numerical results show that the mitigation effect of the axial flow on the MRT instability is caused by the radial velocity shear, and it is highly susceptible to the shear value nearby the plasma outer surface. By adjusting the flow profile, the mitigation effect can be improved markedly.

  2. Radiation symmetry control for inertial confinement fusion capsule implosions in double Z-pinch hohlraums on Z

    NASA Astrophysics Data System (ADS)

    Vesey, Roger A.; Cuneo, Michael E.; Porter, John L.; Adams, Richard G.; Aragon, Rafael A.; Rambo, Patrick K.; Ruggles, Laurence E.; Simpson, Walter W.; Smith, Ian C.; Bennett, Guy R.

    2003-05-01

    The double Z-pinch hohlraum high-yield concept [Hammer et al., Phys. Plasmas 6, 2129 (1999)] utilizes two 63-MA Z pinches to heat separate primary hohlraums at either end of a secondary hohlraum containing the cryogenic fusion capsule. Recent experiments on the Z accelerator [Spielman et al., Phys. Plasmas 5, 2105 (1998)] at Sandia National Laboratories have developed an advanced single-sided power feed, double Z-pinch load to study radiation symmetry and pinch power balance using implosion capsules [Cuneo et al., Phys. Rev. Lett. 88, 215004 (2002)]. Point-projection x-ray imaging with the Z-Beamlet Laser mapped the trajectory and distortion of 2-mm diameter plastic ablator capsules. Using the backlit capsule distortion as a symmetry diagnostic, the ability to predictably tune symmetry at the <10% level in fluence by modifying the hohlraum geometry has been demonstrated. Systematic control of the time-integrated P2 Legendre mode asymmetry coefficient over a range of 6% (2% considering points nearest the optimum) was achieved by varying the length of the cylindrical secondary hohlraum containing the capsule, in agreement with viewfactor and radiation-hydrodynamics simulations.

  3. Investigating the density structure of the ZaP-HD Flow Z-Pinch with digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Ross, Michael; Shumlak, Uri; Nelson, Brian; Golingo, Raymond; Hughes, Michal; Forbes, Eleanor; Paliwoda, Matt

    2014-10-01

    The ZaP-HD Flow Z-Pinch experiment investigates how flow shear stabilized Z-pinches scale to higher densities and temperatures. Determining how such plasmas scale up may reveal their utility as test beds for HEDP physics. Scaling towards HEDP conditions requires compressing the plasma to a smaller size with increased plasma current. Measuring the internal structure of a smaller, hotter plasma requires high-resolution diagnostics. To measure electron density profiles, the ZaP-HD team uses holographic interferometry with 30 micron resolution. A new Nd:YAG laser is employed in concert with a consumer digital camera to record holograms, which are numerically reconstructed to obtain the phase shift caused by the interaction of the laser with the plasma. The numerical reconstruction provides a two-dimensional map of chord-integrated electron density, which can be inverted to radial profiles under the assumption of axisymmetry. Measurements of Z-pinch density structure are presented. This work is supported by grants from the U.S. Department of Energy and the U.S. National Nuclear Security Administration.

  4. Deuterium z-pinch as a powerful source of multi-MeV ions and neutrons for advanced applications

    NASA Astrophysics Data System (ADS)

    Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu.; Rezac, K.; Cherdizov, R. K.; Cikhardt, J.; Cikhardtova, B.; Dudkin, G. N.; Fursov, F. I.; Garapatsky, A. A.; Kovalchuk, B. M.; Krasa, J.; Kravarik, J.; Kurmaev, N. E.; Orcikova, H.; Padalko, V. N.; Ratakhin, N. A.; Sila, O.; Turek, K.; Varlachev, V. A.; Velyhan, A.; Wagner, R.

    2016-03-01

    A novel configuration of a deuterium z-pinch has been used to generate a nanosecond pulse of fast ions and neutrons. At a 3 MA current, the peak neutron yield of (3.6 ± 0.5) × 1012 was emitted within 20 ns implying the production rate of 1020 neutrons/s. High neutron yields resulted from the magnetization of MeV deuterons inside plasmas. Whereas deuterons were trapped in the radial direction, a lot of fast ions escaped the z-pinch along the z-axis. A large number of >25 MeV ions were emitted into a 250 mrad cone. The cut-off energy of broad energy spectra of hydrogen ions approached 40 MeV. The total number of >1 MeV and >25 MeV deuterons were 1016 and 1013, respectively. Utilizing these ions offers a real possibility of various applications, including the increase of neutron yields or the production of short-lived isotopes in samples placed in ion paths. On the basis of our experiments with various samples, we concluded that a single shot would have been sufficient to obtain GBq positron activity of 13N isotopes via the 12C(d,n)13N reaction. Furthermore, the first z-pinch generated neutron radiograph produced by ≈20 ns pulses is presented in this paper.

  5. Dense Z-pinch plasma as a dynamical percolating network: from laboratory plasmas to a magnetoplasma universe.

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. B.; Rantsev-Kartinov, V. A.

    The results of a high-resolution processing, based on techniques of fractal dimension analysis, of experimental data from earlier experiments on the linear Z-pinches are presented, which prove the electric current-carrying plasmas to be a random fractal medium. The basic building block of this medium is identified to be an almost-closed helical filamentary magnetoplasma configuration (called heteromac). The heteromacs are coupled together through long-range self-sustained filamentation and, thus, form a dynamical percolating network with dissipation. The results (i) extend recently identified phenomenon of the 3D large-scale (up to several centimeter size) helical filamentary plasma structures (Kukushkin et al. 1994, 1995, 1997) in plasma focus gaseous discharges to the case of Z-pinch gaseous discharges and (ii) provide a novel view into the dynamics of Z-pinch's necks, plasma spikes, and magnetic bubbles as well as into generic features of electric current-carrying plasmas varying from low-electric current laboratory plasmas to cosmic plasmas. This covers about 30 orders of magnitude of length scale and suggests unprecedented opportunities for interpolating between and extrapolating from well-understood phenomena. A magnetoplasma universe model is suggested.

  6. Large-Scale Stratification and Short-Scale Filamented Helical Structures in Linear Z-Pinch Gaseous Discharges

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. B.; Rantsev-Kartinov, V. A.

    1997-11-01

    Experimental results are presented which extend recently identified phenomena(Kukushkin A.B., Rantsev-Kartinov V.A., Terentiev A.R., Fusion Technology, 8 (1997)) of 3D helical filamented structures in plasma focus gaseous discharges to the case of linear Z-pinch gaseous discharges. High--resolution processing of numerous experimental data (400 kA, 30 kJ, pinch length 60 cm, ne ~ 10^18 cm-3, Te ~ 100 eV, D_2, 0.2 Torr; Hz = 0-80 G; visible light pictures, 15 ns exposure time, space resolution 25 μ m) revealed the following structure of the Z-pinch plasma at the quasi-stationary stage of maximum compression, of 100 ns duration, 250 ns before first singularity of electric current: (i) large--scale stratification of Z-pinch main body which includes denser core and outer layers of a distorted cylindrical form, with growing axial inhomogeneity for outer strata; (ii) essentially 3D inhomogeneity at smaller space scales, in particular, filamented helical structure of each stratum; (iii) fine structure (e.g. longitudinal inhomogeneity) of the filaments, both in the core and outer strata. A theoretical approach to numerical modelling of these structures is formulated.

  7. The Role of Strong Coupling in Z-Pinch-Driven Approaches to High Yield Inertial Confinement Fusion

    SciTech Connect

    MEHLHORN,THOMAS A.; DESJARLAIS,MICHAEL P.; HAILL,THOMAS A.; LASH,JOEL S.; ROSENTHAL,STEPHEN E.; SLUTZ,STEPHEN A.; STOLTZ,PETER H.; VESEY,ROGER A.; OLIVER,B.

    1999-11-08

    Peak x-ray powers as high as 280 {+-} 40 TW have been generated from the implosion of tungsten wire arrays on the Z Accelerator at Sandia National Laboratories. The high x-ray powers radiated by these z-pinches provide an attractive new driver option for high yield inertial confinement fusion (ICF). The high x-ray powers appear to be a result of using a large number of wires in the array which decreases the perturbation seed to the magnetic Rayleigh-Taylor (MRT) instability and diminishes other 3-D effects. Simulations to confirm this hypothesis require a 3-D MHD code capability, and associated databases, to follow the evolution of the wires from cold solid through melt, vaporization, ionization, and finally to dense imploded plasma. Strong coupling plays a role in this process, the importance of which depends on the wire material and the current time history of the pulsed power driver. Strong coupling regimes are involved in the plasmas in the convolute and transmission line of the powerflow system. Strong coupling can also play a role in the physics of the z-pinch-driven high yield ICF target. Finally, strong coupling can occur in certain z-pinch-driven application experiments.

  8. Optimal welding parameters for very high power ultrasonic additive manufacturing of smart structures with aluminum 6061 matrix

    NASA Astrophysics Data System (ADS)

    Wolcott, Paul J.; Hehr, Adam; Dapino, Marcelo J.

    2014-03-01

    Ultrasonic additive manufacturing (UAM) is a recent solid state manufacturing process that combines ad- ditive joining of thin metal tapes with subtractive milling operations to generate near net shape metallic parts. Due to the minimal heating during the process, UAM is a proven method of embedding Ni-Ti, Fe-Ga, and PVDF to create active metal matrix composites. Recently, advances in the UAM process utilizing 9 kW very high power (VHP) welding has improved bonding properties, enabling joining of high strength materials previously unweldable with 1 kW low power UAM. Consequently, a design of experiments study was conducted to optimize welding conditions for aluminum 6061 components. This understanding is critical in the design of UAM parts containing smart materials. Build parameters, including weld force, weld speed, amplitude, and temperature were varied based on a Taguchi experimental design matrix and tested for me- chanical strength. Optimal weld parameters were identi ed with statistical methods including a generalized linear model for analysis of variance (ANOVA), mean e ects plots, and interaction e ects plots.

  9. Initiation, ablation, precursor formation, and instability analysis of thin foil liner Z-pinches

    NASA Astrophysics Data System (ADS)

    Blesener, Isaac Curtis

    This dissertation presents the results of mostly experimental work studying the early-time behavior of thin foil liners as compared to wire-array Z-pinches. It involves three studies, covering initiation, ablation and precursor formation, and instability analysis. Initiation was studied by observing the optical emission of various thickness (0.6-23.5 ?m Cu) liners using a streak camera. It was found that thinner liners initiated sooner, more quickly, and more uniformly than thicker liners. This correlated well with both an increase in instantaneous dJ/dt at the time of first emission as well as the inductive voltage at the time of first emission. The threshold for uniform initiation was dJ/dt>3.51016Acm -2s-1. Uniform initiation is important for liners because nonuniformities could lead to enhanced instabilities and poor liner performance (compression, x-ray production, etc.). Ablation and precursor formation of wire-arrays (16x75 ?m Cu) and liners (6 ?m Cu) were studied using r-? density maps and radial mass profiles created by an axial X pinch radiography diagnostic. These images show very strong differences in this stage of the Z-pinch. Wire-arrays develop complex, azimuthally varying ablation structures that lead to dense precursors. Liners, however, show significantly reduced and azimuthally uniform ablation leading to an order of magnitude less dense precursor on axis. This is likely due to the discrete versus continuous nature of wire-arrays versus liners. With wire-arrays, plasma that is created on the outside of the wires can reach the array axis by being swept through the gaps between the stationary wire cores. In contrast, liners have no gaps for plasma to flow through. Therefore, any plasma that is created on the outside of the liner is trapped there until the bulk of the liner moves with the implosion. Consequently, only the plasma that is created on the inside of the liner is able to contribute to precursor formation. This is an important result because reduced precursor formation is important for fuel compression and heating in MagLIF. Less precursor can also lead to enhanced x-ray production because there is less mass on axis to cushion the conversion of kinetic energy into x-rays during the implosion and stagnation phases. Finally, in the instability studies, it was observed in laser shadow graph images that liners develop a much larger amplitude instability on their outside surface as compared to wire-arrays. This is an important discovery and could be detrimental to liner performance (compression, x-ray production, etc.) because it could lead to enhanced magnetic Rayleigh-Taylor (MRT) instability during the implosion phase. The reason for the larger instability in liners is again probably due to the fact that plasma builds up on the outside of the liners with no where to go. A possible source of the enhanced instability was found using 2D (xy) PERSEUS simulations comparing the results of MHD and Hall MHD simulations. The instability only developed in the Hall MHD case. The 2D nature of the simulation, along with all simulation parameters being equal between the two cases, rules out the possibility of MRT or m=0 for the cause of the instability (in the simulation). It was found that the Hall term was responsible for causing a shear-flow instability that developed later in time to resemble the experimental results.

  10. a Computational Investigation of the Limits to Pease-Braginskii Collapse of a Z-Pinch

    NASA Astrophysics Data System (ADS)

    Nielsen, Paul Douglas

    1981-10-01

    A Z-pinch is a magnetohydrodynamic phenomenon that consists of a current carrying cylinder of plasma confined by its self-induced azimuthal magnetic field. The interaction of the z-directed current and the azimuthal field produces a JxB force that is directed radially inward. Ignoring two-dimensional effects, the plasma compresses radially until its internal pressure balances the magnetic pressure. This pressure equilibrium was first described by Bennett in 1934 and is called a Bennett equilibrium. In the late 1950's, Pease and Braginskii independently demonstrated that the Bennett equilibrium was not sufficient for a true equilibrium. Radiative cooling and resistive heating could perturb the plasma's internal pressure. Due to these effects, a plasma otherwise at pressure equilibrium could contract or expand. The current at which a plasma is in Bennett equilibrium and radiative cooling equals ohmic heating is called the Pease-Braginskii current. For an optically thin plasma, a current higher than the Pease -Braginskii current would cause a catastrophic collapse --internal energy continually would be lost through radiation faster than it could be developed through joule heating and the plasma's radius would approach zero. This dissertation investigated the one-dimensional limits to such a radiation enhanced collapse through the use of a Lagrangian simulation code, LASNEX. The code includes the effects of a wide range of phenomena--opacity, ionization, experimentally determined equations of state, magnetic effects on transport coefficients, and external electrical circuits. Special attention was given to the magnetic field subroutines. They were revised to include ion acoustic and lower hybrid drift induced resistivity and to increase accuracy and efficiency. The magnetic pressure term was differenced in a manner that eliminates any influence of zone size, allowing large, low density zones outside the plasma column. In these large zones, magnetic flux and energy were determined by direct integration instead of summation to increase overall conservation. With these changes, the computational timesteps were determined by phenomena in the plasma instead of the Alfven velocity in the low density region. These modifications improved the accuracy of the code on Z-pinch problems by a factor of 10-100 depending on the minimum pinch radius reached. The one-dimensional simulations contained in this report demonstrate limits to radiation enhanced collapse that depend on the initial plasma density and the rate of current rise. First, there is a low density, fast current rise limit due to strong shock heating and poor electron -ion and electron-radiation coupling. Second, there is a high density, fast current rise limit due to the relative scaling of the pinch time and the LC circuit's quarter cycle time. Third, there is a high density, slow current rise limit due to the plasma's inertia and opacity. Despite these limits, these simulations indicate a significant regime where one-dimensional radiation enhanced collapse does occur, where radiation fluences are prodigious, and where the collapse is terminated only when the plasma becomes optically thick, trapping energy in the interior of the pinch. Apparent discrepancies between these simulations and experiments are explainable by dimensional and geometric arguments and by the effects of enhanced resistivity. Resistivities of only 5-10 times classical values significantly affect pinch dynamics and reduce pinch densities and radiation fluences. In one dimension, however, neither the ion acoustic nor the lower hybrid drift instabilities significantly affect pinch behavior despite the fact that their thresholds are exceeded. Two-dimensional simulations demonstrate the development of axial flow that reduces densities, energy coupling and radiation while increasing instability induced resistivity. The cumulative effect of this axial flow will terminate Pease-Braginskii collapse earlier than the one-dimensional limit based on the plasma becoming optically thick.

  11. Characteristics and scaling of tungsten-wire-array z -pinch implosion dynamics at 20 MA.

    PubMed

    Cuneo, M E; Waisman, E M; Lebedev, S V; Chittenden, J P; Stygar, W A; Chandler, G A; Vesey, R A; Yu, E P; Nash, T J; Bliss, D E; Sarkisov, G S; Wagoner, T C; Bennett, G R; Sinars, D B; Porter, J L; Simpson, W W; Ruggles, L E; Wenger, D F; Garasi, C J; Oliver, B V; Aragon, R A; Fowler, W E; Hettrick, M C; Idzorek, G C; Johnson, D; Keller, K; Lazier, S E; McGurn, J S; Mehlhorn, T A; Moore, T; Nielsen, D S; Pyle, J; Speas, S; Struve, K W; Torres, J A

    2005-04-01

    We present observations for 20-MA wire-array z pinches of an extended wire ablation period of 57%+/-3% of the stagnation time of the array and non-thin-shell implosion trajectories. These experiments were performed with 20-mm-diam wire arrays used for the double- z -pinch inertial confinement fusion experiments [M. E. Cuneo, Phys. Rev. Lett. 88, 215004 (2002)] on the Z accelerator [R. B. Spielman, Phys. Plasmas 5, 2105 (1998)]. This array has the smallest wire-wire gaps typically used at 20 MA (209 microm ). The extended ablation period for this array indicates that two-dimensional (r-z) thin-shell implosion models that implicitly assume wire ablation and wire-to-wire merger into a shell on a rapid time scale compared to wire acceleration are fundamentally incorrect or incomplete for high-wire-number, massive (>2 mg/cm) , single, tungsten wire arrays. In contrast to earlier work where the wire array accelerated from its initial position at approximately 80% of the stagnation time, our results show that very late acceleration is not a universal aspect of wire array implosions. We also varied the ablation period between 46%+/-2% and 71%+/-3% of the stagnation time, for the first time, by scaling the array diameter between 40 mm (at a wire-wire gap of 524 mum ) and 12 mm (at a wire-wire gap of 209 microm ), at a constant stagnation time of 100+/-6 ns . The deviation of the wire-array trajectory from that of a thin shell scales inversely with the ablation rate per unit mass: f(m) proportional[dm(ablate)/dt]/m(array). The convergence ratio of the effective position of the current at peak x-ray power is approximately 3.6+/-0.6:1 , much less than the > or = 10:1 typically inferred from x-ray pinhole camera measurements of the brightest emitting regions on axis, at peak x-ray power. The trailing mass at the array edge early in the implosion appears to produce wings on the pinch mass profile at stagnation that reduces the rate of compression of the pinch. The observation of precursor pinch formation, trailing mass, and trailing current indicates that all the mass and current do not assemble simultaneously on axis. Precursor and trailing implosions appear to impact the efficiency of the conversion of current (driver energy) to x rays. An instability with the character of an m = 0 sausage grows rapidly on axis at stagnation, during the rise time of pinch power. Just after peak power, a mild m = 1 kink instability of the pinch occurs which is correlated with the higher compression ratio of the pinch after peak power and the decrease of the power pulse. Understanding these three-dimensional, discrete-wire implosion characteristics is critical in order to efficiently scale wire arrays to higher currents and powers for fusion applications. PMID:15903793

  12. Characteristics and scaling of tungsten-wire-array z-pinch implosion dynamics at 20 MA

    SciTech Connect

    Cuneo, M.E.; Waisman, E.M.; Stygar, W.A.; Chandler, G.A.; Vesey, R.A.; Yu, E.P.; Nash, T.J.; Bliss, D.E.; Bennett, G.R.; Sinars, D.B.; Porter, J.L.; Simpson, W.W.; Ruggles, L.E.; Wenger, D.F.; Garasi, C.J.; Aragon, R.A.; Fowler, W.E.; Johnson, D.; Keller, K.; McGurn, J.S.

    2005-04-01

    We present observations for 20-MA wire-array z pinches of an extended wire ablation period of 57%{+-}3% of the stagnation time of the array and non-thin-shell implosion trajectories. These experiments were performed with 20-mm-diam wire arrays used for the double-z-pinch inertial confinement fusion experiments [M. E. Cuneo et al., Phys. Rev. Lett. 88, 215004 (2002)] on the Z accelerator [R. B. Spielman et al., Phys. Plasmas 5, 2105 (1998)]. This array has the smallest wire-wire gaps typically used at 20 MA (209 {mu}m). The extended ablation period for this array indicates that two-dimensional (r-z) thin-shell implosion models that implicitly assume wire ablation and wire-to-wire merger into a shell on a rapid time scale compared to wire acceleration are fundamentally incorrect or incomplete for high-wire-number, massive (>2 mg/cm), single, tungsten wire arrays. In contrast to earlier work where the wire array accelerated from its initial position at {approx}80% of the stagnation time, our results show that very late acceleration is not a universal aspect of wire array implosions. We also varied the ablation period between 46%{+-}2% and 71%{+-}3% of the stagnation time, for the first time, by scaling the array diameter between 40 mm (at a wire-wire gap of 524 {mu}m) and 12 mm (at a wire-wire gap of 209 {mu}m), at a constant stagnation time of 100{+-}6 ns. The deviation of the wire-array trajectory from that of a thin shell scales inversely with the ablation rate per unit mass: f{sub m}{proportional_to}[dm{sub ablate}/dt]/m{sub array}. The convergence ratio of the effective position of the current at peak x-ray power is {approx}3.6{+-}0.6:1, much less than the {>=}10:1 typically inferred from x-ray pinhole camera measurements of the brightest emitting regions on axis, at peak x-ray power. The trailing mass at the array edge early in the implosion appears to produce wings on the pinch mass profile at stagnation that reduces the rate of compression of the pinch. The observation of precursor pinch formation, trailing mass, and trailing current indicates that all the mass and current do not assemble simultaneously on axis. Precursor and trailing implosions appear to impact the efficiency of the conversion of current (driver energy) to x rays. An instability with the character of an m=0 sausage grows rapidly on axis at stagnation, during the rise time of pinch power. Just after peak power, a mild m=1 kink instability of the pinch occurs which is correlated with the higher compression ratio of the pinch after peak power and the decrease of the power pulse. Understanding these three-dimensional, discrete-wire implosion characteristics is critical in order to efficiently scale wire arrays to higher currents and powers for fusion applications.

  13. Spectroscopic Investigation of Z-Pinch with a Spatial and Temporal Resolution

    NASA Astrophysics Data System (ADS)

    Yanagidaira, Takeshi; Yamamoto, Toshikazu; Shan, Bing; Hirano, Katsumi

    1999-03-01

    Soft X-rays generated by a plasma focus device with an Ar gas puff are studied using a composite system which consists of an imaging Bragg spectrometer and a soft X-ray high speed imaging system.Two modes of soft X-ray emitting sources in Z-pinch plasma, filamentary and scattered spots, are generated in this experiment depending on the delay time from the gas puff to the main discharge.Spectroscopic observation revealed that even the case of the filamentary mode is not really filamentary but is actually X-ray emitting spots (hot spots) densely arranged in a column along the electrode axis.By using the soft X-ray high speed imaging system, the streak mode display is restructured from the data obtained in a single shot.Temporally resolved observations in streak mode showed that a spot appeared at a point near the electrode face first, then different hot spots appeared successively along the axis and in a direction away from the electrode face.It is clarified that the hot spot is a small region from which intense H-like and He-like spectral lines are emitted.The size and the distance between spots are from 0.1 to 0.5 mm in radius and 0.5 mm in length, respectively.The lifetime of the spots is 5 10 ns.The average electron temperature and density calculated from the intensity ratio of those spectral lines are 1.8 keV and 1.71022 / cm3, respectively.They did not show a notable change along the axis.

  14. Effects of uneven mass distribution on plasma dynamics in cylindrical wire array Z-pinches

    NASA Astrophysics Data System (ADS)

    Veloso, Felipe; Donoso, Luis; Swadling, George; Chittenden, Jeremy; Muoz, Gonzalo; Valenzuela, Vicente; Suzuki-Vidal, Francisco; Favre, Mario; Wyndham, Edmund

    2015-03-01

    The formation and dynamics of cylindrical wire array Z-pinch plasmas using uneven mass distribution is studied through experiments and computer simulations. In this study, the initial mass distribution is modified using different wire sizes within the same array, in contrast to the most standard wire arrays. Since the ablation rate of a particular wire material is related to current driver characteristics but not to the wire size, the use of different wires within an array produces time differences for complete ablation of each size. This changes the plasma dynamics and precursor plasma formation as compared to standard arrays. The experiments have been carried out on the Llampudken pulsed power generator (~350kA in ~300ns) using a 1:6 mass ratio among different wires of a single array. Plasma dynamics are studied using time-resolved laser interferometry (532nm, 5ns FWHM) and XUV imaging (5ns exposure time) in both side-on and end-on directions respect to the array. Experimental results show the formation of a dense, precursor plasma column on the array axis at early times, which shifts its position toward the thicker wires at later times at velocities of the order of 104 m/s. Numerical simulations using the 3-D MHD code GORGON are able to reproduce the experimental observations. They show that the larger mass of thicker wires induces modifications in the global magnetic field topology, producing the shifting in the precursor position as observed in the experiments. Further details on the changes of ablation dynamics and precursor formation are presented and discussed.

  15. Oblique shock structures formed during the ablation phase of aluminium wire array z-pinches

    NASA Astrophysics Data System (ADS)

    Swadling, G. F.; Lebedev, S. V.; Niasse, N.; Chittenden, J. P.; Hall, G. N.; Suzuki-Vidal, F.; Burdiak, G.; Harvey-Thompson, A. J.; Bland, S. N.; De Grouchy, P.; Khoory, E.; Pickworth, L.; Skidmore, J.; Suttle, L.

    2013-02-01

    A series of experiments has been conducted in order to investigate the azimuthal structures formed by the interactions of cylindrically converging plasma flows during the ablation phase of aluminium wire array Z pinch implosions. These experiments were carried out using the 1.4 MA, 240 ns MAGPIE generator at Imperial College London. The main diagnostic used in this study was a two-colour, end-on, Mach-Zehnder imaging interferometer, sensitive to the axially integrated electron density of the plasma. The data collected in these experiments reveal the strongly collisional dynamics of the aluminium ablation streams. The structure of the flows is dominated by a dense network of oblique shock fronts, formed by supersonic collisions between adjacent ablation streams. An estimate for the range of the flow Mach number (M = 6.2-9.2) has been made based on an analysis of the observed shock geometry. Combining this measurement with previously published Thomson Scattering measurements of the plasma flow velocity by Harvey-Thompson et al. [Physics of Plasmas 19, 056303 (2012)] allowed us to place limits on the range of the ZTe of the plasma. The detailed and quantitative nature of the dataset lends itself well as a source for model validation and code verification exercises, as the exact shock geometry is sensitive to many of the plasma parameters. Comparison of electron density data produced through numerical modelling with the Gorgon 3D MHD code demonstrates that the code is able to reproduce the collisional dynamics observed in aluminium arrays reasonably well.

  16. Wire Array Z-Pinch Insights for Enhanced X-Ray Production

    SciTech Connect

    Apruzese, J.P.; Chittenden, J.P.; Greenly, J.B.; Haines, M.G.; Mock, R.C.; Mosher, D.; Peterson, D.L.; Reisman, D.B.; Sanford, T.W.L.; Sinars, D.B.; Spielman, R.B.; Whitnery, K.G.

    1999-01-04

    Comparisons of measured total radiated x-ray power from annular wire-array z-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci., 26, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh-Taylor instability in the r-z plane, interact. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the 2-D Eulerian-radiation-magnetohydrodynamics code (E-RMHC) [Phys. Plasmas 3, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh-Taylor instability in the r-z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels.

  17. [Contrast of Z-Pinch X-Ray Yield Measure Technique].

    PubMed

    Li, Mo; Wang, Liang-ping; Sheng, Liang; Lu, Yi

    2015-03-01

    Resistive bolometer and scintillant detection system are two mainly Z-pinch X-ray yield measure techniques which are based on different diagnostic principles. Contrasting the results from two methods can help with increasing precision of X-ray yield measurement. Experiments with different load material and shape were carried out on the "QiangGuang-I" facility. For Al wire arrays, X-ray yields measured by the two techniques were largely consistent. However, for insulating coating W wire arrays, X-ray yields taken from bolometer changed with load parameters while data from scintillant detection system hardly changed. Simulation and analysis draw conclusions as follows: (1) Scintillant detection system is much more sensitive to X-ray photons with low energy and its spectral response is wider than the resistive bolometer. Thus, results from the former method are always larger than the latter. (2) The responses of the two systems are both flat to Al plasma radiation. Thus, their results are consistent for Al wire array loads. (3) Radiation form planar W wire arrays is mainly composed of sub-keV soft X-ray. X-ray yields measured by the bolometer is supposed to be accurate because of the nickel foil can absorb almost all the soft X-ray. (4) By contrast, using planar W wire arrays, data from scintillant detection system hardly change with load parameters. A possible explanation is that while the distance between wires increases, plasma temperature at stagnation reduces and spectra moves toward the soft X-ray region. Scintillator is much more sensitive to the soft X-ray below 200 eV. Thus, although the total X-ray yield reduces with large diameter load, signal from the scintillant detection system is almost the same. (5) Both Techniques affected by electron beams produced by the loads. PMID:26117906

  18. The quest for a z-pinch based fusion energy source{emdash}a historical perspective

    SciTech Connect

    Sethian, J.

    1997-05-01

    Ever since 1958, when Oscar Anderson observed copious neutrons emanating from a {open_quotes}magnetically self-constricted column of deuterium plasma,{close_quotes} scientists have attempted to develop the simple linear pinch into a fusion power source. After all, simple calculations show that if one can pass a current of slightly less than 2 million amperes through a stable D-T plasma, then one could achieve not just thermonuclear break-even, but thermonuclear {ital gain}. Moreover, several reactor studies have shown that a simple linear pinch could be the basis for a very attractive fusion system. The problem is, of course, that the seemingly simple act of passing 2 MA through a stable pinch has proven to be quite difficult to accomplish. The pinch tends to disrupt due to instabilities, either by the m=0 (sausage) or m=1 (kink) modes. Curtailing the growth of these instabilities has been the primary thrust of z-pinch fusion research, and over the years a wide variety of formation techniques have been tried. The early pinches were driven by relatively slow capacitive discharges and were formed by imploding a plasma column. The advent of fast pulsed power technology brought on a whole new repertoire of formation techniques, including: fast implosions, laser or field-enhanced breakdown in a uniform volume of gas, a discharge inside a small capillary, a frozen deuterium fiber isolated by vacuum, and staged concepts in which one pinch implodes upon another. And although none of these have yet to be successful, some have come tantalizingly close. This paper will review the history of this four-decade long quest for fusion power. {copyright} {ital 1997 American Institute of Physics.}

  19. The quest for a z-pinch based fusion energy source--a historical perspective

    SciTech Connect

    Sethian, John

    1997-05-05

    Ever since 1958, when Oscar Anderson observed copious neutrons emanating from a 'magnetically self-constricted column of deuterium plasma', scientists have attempted to develop the simple linear pinch into a fusion power source. After all, simple calculations show that if one can pass a current of slightly less than 2 million amperes through a stable D-T plasma, then one could achieve not just thermonuclear break-even, but thermonuclear gain. Moreover, several reactor studies have shown that a simple linear pinch could be the basis for a very attractive fusion system. The problem is, of course, that the seemingly simple act of passing 2 MA through a stable pinch has proven to be quite difficult to accomplish. The pinch tends to disrupt due to instabilities, either by the m=0 (sausage) or m=1 (kink) modes. Curtailing the growth of these instabilities has been the primary thrust of z-pinch fusion research, and over the years a wide variety of formation techniques have been tried. The early pinches were driven by relatively slow capacitive discharges and were formed by imploding a plasma column. The advent of fast pulsed power technology brought on a whole new repertoire of formation techniques, including: fast implosions, laser or field-enhanced breakdown in a uniform volume of gas, a discharge inside a small capillary, a frozen deuterium fiber isolated by vacuum, and staged concepts in which one pinch implodes upon another. And although none of these have yet to be successful, some have come tantalizingly close. This paper will review the history of this four-decade long quest for fusion power.

  20. Plasma flow control in the ablation and implosion phases in nested cylindrical and star wire array Z-pinches

    NASA Astrophysics Data System (ADS)

    Papp, Daniel

    Wire array Z-pinches are the most powerful laboratory x-ray sources, and the optimization of the x-ray radiation output requires the understanding of diverse phenomena. During the wire array implosion in such arrays, the jxB forces ablate plasma from the wires to the center, before the whole array mass implodes. We studied the ablation and implosion dynamics in nested cylindrical and star wire array Z-pinches. The two implosion modes of nested arrays were simulated by Al star wire arrays with "gates". Arrays with regular-length gate wires imploded in the "nontransparent regime". Arrays with long, higher-Z gate wires imploded in the "transparent" regime. A two-frame end-on UV laser probing diagnostics was developed for the Zebra generator. Modified nested cylindrical arrays, called closely spaced arrays, were designed to implode without a precursor. Low-wire number arrays imploded accordingly. Precursor plasma was observed in higher wire-number arrays, despite outward jxB forces on the inner wires. The Al K-shell yield was highest for low wire-number nested arrays, which also imploded earlier. The presence of precursor in star wire arrays was determined by the direction of the jxB forces. Star wire array pairs were designed such that precursor and non-precursor arrays would have minimal differences. The presence of precursor decreased the x-ray yield parameters by 3-15%. Plasma flow control was achieved in these loads by varying the array configuration. Radiative properties of multicomponent Z-pinches and laser produced plasmas were studied. When high-Z element (W, Au) was mixed with Al plasma in a wire array, a decrease of the electron temperature was observed. The cooling effect was not present in laser-produced Al-Au plasmas, which may be explained by different heating mechanisms.

  1. Numerical studies of the effects of precursor plasma on the performance of wire-array Z-pinches

    SciTech Connect

    Ning Cheng; Sun Shunkai; Xiao Delong; Zhang Yang; Ding Ning; Huang Jun; Xue Chuang; Shu Xiaojian

    2010-06-15

    This paper is to numerically investigate, in one dimension, the effects of precursor plasma resulted from wire-array ablation on the performance of its following implosion after the ablation. The wire-array ablation is described by an analytic model, which consists of a rocket model or Sasorov's expression of wire-array mass ablation rate, the evolution equation of magnetic field, and several roughly reasonable assumptions. The following implosion is governed by the radiation magnetohydrodynamics. The implosion processes of wire-array Z-pinch from plasma shells prefilled and un-prefilled by the low-density plasma inside them are studied, and that from the wire-array ablations, which may be changed through varying the ablation time, ablation rate, and ablation velocity V{sub abl}, are also simulated. The obtained results reveal that the prefilled low-density plasma and the precursor plasma from the wire-array ablation help to enhance the plasma shell pinch and the final implosion of the wire array, respectively, compared to the pinch of un-prefilled plasma shell. With the same plasma masses, which are distributed in the interior of the array and the shell, and modified Spitzer resistivity, the implosions that start from the wire ablation develop faster than that from the plasma shell with the prefill. If more substance ablates from the wire array before the start of its implosion, the final Z-pinch performance could be better. The Z-pinch plasma is highly magnetized with driven current more than 3 MA.

  2. Z-pinches as intense x-ray sources for high energy density physics application

    SciTech Connect

    Matzen, M.K.

    1997-02-01

    Fast z-pinch implosions can convert more than 10% of the stored electrical energy in a pulsed-power accelerator into x rays. These x rays are produced when an imploding cylindrical plasma, driven by the magnetic field pressure associated with very large axial currents, stagnates upon the cylindrical axis of symmetry. On the Saturn pulsed-power accelerator at Sandia National Laboratories, for example, currents of 6 to 8 MA with a risetime of less than 50 ns are driven through cylindrically-symmetric loads, producing implosions velocities as high as 100 cm/{mu}s and x-ray energies as high as 500 kJ. The keV component of the resulting x-ray spectrum has been used for many years 8 a radiation source for material response studies. Alternatively, the x-ray output can be thermalized into a near-Planckian x-ray source by containing it within a large cylindrical radiation case. These large volume, long-lived radiation sources have recently been used for ICF-relevant ablator physics experiments as well as astrophysical opacity and radiation-material interaction experiments. Hydromagnetic Rayleigh-Taylor instabilities and cylindrical load symmetry are critical, limiting factors in determining the assembled plasma densities and temperatures, and thus in the x-ray pulse widths that can be produced on these accelerators. In recent experiments on the Saturn accelerator, these implosion nonuniformities have been minimized by using uniform-fill gas puff loads or by using wire arrays with as many a 192 wires. These techniques produced significant improvements in the pinched plasma quality, Zn reproducibility, and x-ray output power. X-ray pulse widths of less than 5 ns and peak powers of 75{+-}10 TW have been achieved with arrays of 120 tungsten wires. These powers represent greater than a factor of three in power amplification over the electrical power of the Saturn n accelerator, and are a record for x-ray powers in the laboratory.

  3. Investigating radial wire array Z pinches as a compact x-ray source on the Saturn generator

    SciTech Connect

    Ampleford, David J.; Bland, S. N.; Jennings, Christopher A.; Lebedev, S. V.; Chittenden, J. P.; Cuneo, Michael E.; McBride, Ryan D.; Jones, Brent Manley; Hall, G. N.; Suzuki-Vidal, F.; Serrano, Jason D.; Bott-Suzuki, S. C.

    2015-08-27

    Radial wire array z pinches, where wires are positioned radially outward from a central cathode to a concentric anode, can act as a compact bright x-ray source that could potentially be used to drive a hohlraum. Experiments were performed on the 7-MA Saturn generator using radial wire arrays. These experiments studied a number of potential risks in scaling radial wire arrays up from the 1-MA level, where they have been shown to be a promising compact X-ray source. Data indicates that at 7 MA, radial wire arrays can radiate ~9 TW with 10-ns full-width at half-maximum from a compact pinch.

  4. Pressure and energy balance of stagnating plasmas in z-pinch experiments: implications to current flow at stagnation.

    PubMed

    Maron, Y; Starobinets, A; Fisher, V I; Kroupp, E; Osin, D; Fisher, A; Deeney, C; Coverdale, C A; Lepell, P D; Yu, E P; Jennings, C; Cuneo, M E; Herrmann, M C; Porter, J L; Mehlhorn, T A; Apruzese, J P

    2013-07-19

    Detailed spectroscopic diagnostics of the stagnating plasma in two disparate z pinches allow, for the first time, the examination of the plasma properties within a 1D shock wave picture, demonstrating a good agreement with this picture. The conclusion is that for a wide range of imploding-plasma masses and current amplitudes, in experiments optimizing non-Planckian hard radiation yields, contrary to previous descriptions the stagnating plasma pressure is balanced by the implosion pressure, and the radiation energy is provided by the imploding-plasma kinetic energy, rather than by the magnetic-field pressure and magnetic-field-energy dissipation, respectively. PMID:23909333

  5. A simple technique to estimate the fully time-resolved x-ray diameter of a z pinch.

    PubMed

    Coleman, Philip L

    2007-11-01

    Occultations are routinely used to derive information about astronomical objects. Here an occultation scheme is used to derive a fully time-resolved estimate of the x-ray emitting diameter of a z pinch. By using different filtrations on the sensors, one could for example, distinguish the size of the K-line emitting region compared to the higher energy K-continuum emitting volume. Or with suitable apertures and detector arrays, the pinch diameter could be axially and temporally resolved. PMID:18052469

  6. Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions.

    PubMed

    Cuneo, M E; Vesey, R A; Porter, J L; Bennett, G R; Hanson, D L; Ruggles, L E; Simpson, W W; Idzorek, G C; Stygar, W A; Hammer, J H; Seamen, J J; Torres, J A; McGurn, J S; Green, R M

    2002-05-27

    A double Z pinch driving a cylindrical secondary hohlraum from each end has been developed which can indirectly drive intertial confinement fusion capsule implosions with time-averaged radiation fields uniform to 2%-4%. 2D time-dependent view factor and 2D radiation hydrodynamic simulations using the measured primary hohlraum temperatures show that capsule convergence ratios of at least 10 with average distortions from sphericity of /r200 MJ. PMID:12059481

  7. Simulation of the dynamics of sausage development in a z pinch with a high rate of thermonuclear heat production

    SciTech Connect

    Vikhrev, V.V.; Rozanova, G.A.

    1993-01-01

    The development of the sausage instability in a z pinch is accompanied by the formulation of a high-temperature plasma. This high-temperature region initiates a wave of thermonuclear burning propagating along the pinch. A numerical solution of the MHD equations has been carried out, taking into account plasma energy losses through radiation and thermonuclear heating. Results of calculations on the growth of the sausage instability are presented for {rho}r = 0.23 g/cm{sup 2}. It is accompanied by the development of a stable wave of thermonuclear burning. 12 refs., 4 figs.

  8. Conversion of electromagnetic energy in Z-pinch process of single planar wire arrays at 1.5 MA

    SciTech Connect

    Liangping, Wang; Mo, Li; Juanjuan, Han; Ning, Guo; Jian, Wu; Aici, Qiu

    2014-06-15

    The electromagnetic energy conversion in the Z-pinch process of single planar wire arrays was studied on Qiangguang generator (1.5 MA, 100 ns). Electrical diagnostics were established to monitor the voltage of the cathode-anode gap and the load current for calculating the electromagnetic energy. Lumped-element circuit model of wire arrays was employed to analyze the electromagnetic energy conversion. Inductance as well as resistance of a wire array during the Z-pinch process was also investigated. Experimental data indicate that the electromagnetic energy is mainly converted to magnetic energy and kinetic energy and ohmic heating energy can be neglected before the final stagnation. The kinetic energy can be responsible for the x-ray radiation before the peak power. After the stagnation, the electromagnetic energy coupled by the load continues increasing and the resistance of the load achieves its maximum of 0.6–1.0 Ω in about 10–20 ns.

  9. Formation of hot spots in the plasma of a Z-pinch produced from low-density deuterated polyethylene

    SciTech Connect

    Akunets, A. A.; Anan'ev, S. S.; Bakshaev, Yu. L.; Blinov, P. I.; Bryzgunov, V. A.; Vikhrev, V. V.; Volobuev, I. V.; Dan'ko, S. A.; Zelenin, A. A.; Kazakov, E. D.; Korolev, V. D.; Meshcherov, B. R.; Nedoseev, S. L.; Pimenov, V. G.; Smirnova, E. A.; Ustroev, G. I.; Chernenko, A. S.; Shchagin, V. A.

    2010-08-15

    Results are presented from experimental studies of the plasma formation dynamics in a Z-pinch produced from a cylindrical microporous agar-agar load. The experiments were performed on the S-300 facility at a current of 2 MA and current rise time of 100 ns. To enhance the energy concentration, a deuterated polyethylene neck with a mass density of 50-75 {mu}g/cm{sup 3} and diameter of 1-2 mm was made in the central part of the load. The spatiotemporal characteristics of the Z-pinch were studied using an optical streak camera and fast frame photography in the optical and soft X-ray spectral ranges. X-ray emission was detected using semiconductor and vacuum diodes, and neutron emission was studied by means of the time-of-flight method. It is found that, in the course of continuous plasma production, hot spots with a diameter of 100 {mu}m form in the pinch plasma. The hot spots emit short soft X-ray pulses with a duration of 2-4 ns, as well as neutron pulses with an average neutron energy of about 2.45 MeV. The maximum neutron yield was found to be 4.5 x 10{sup 9} neutrons per shot. The scenario of hot spot formation is adequately described by two-dimensional MHD simulations.

  10. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    DOE PAGESBeta

    Vogman, G. V.; Shumlak, U.

    2011-10-13

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian functionmore »associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. As a result, these measurements are used to gain a better understanding of Z-pinch equilibria.« less

  11. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    SciTech Connect

    Vogman, G. V.; Shumlak, U.

    2011-10-13

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian function associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. As a result, these measurements are used to gain a better understanding of Z-pinch equilibria.

  12. X-ray absorption spectroscopy for wire-array Z-pinches at the non-radiative stage

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Hakel, P.; Mancini, R. C.; Chittenden, J. P.; Anderson, A.; Shevelko, A. P.; Wiewior, P.; Durmaz, T.; Altemara, S. D.; Papp, D.; Astanovitskiy, A. L.; Nalajala, V.; Chalyy, O.; Dmitriev, O.

    2011-12-01

    Absorption spectroscopy was applied to wire-array Z-pinches on the 1 MA pulsed-power Zebra generator at the Nevada Terawatt Facility (NTF). The 50 TW Leopard laser was coupled with the Zebra generator for X-ray backlighting of wire arrays at the ablation stage. Broadband X-ray emission from a laser-produced Sm plasma was used to backlight Al star wire arrays in the range of 7-9 Å. Two time-integrated X-ray conical spectrometers recorded reference and absorption spectra. The spectrometers were shielded from the bright Z-pinch X-ray burst by collimators. The comparison of plasma-transmitted spectra with reference spectra indicates absorption lines in the range of 8.1-8.4 Å. Analysis of Al K-shell absorption spectra with detailed atomic kinetics models shows a distribution of electron temperature in the range of 10-30 eV that was fitted with an effective two-temperature model. Temperature and density distributions in wire-array plasma were simulated with a three-dimension magneto-hydrodynamic code. Post-processing of this code's output yields synthetic transmission spectrum which is in general agreement with the data.

  13. Polar Radiation-Flux Symmetry Measurements in Z-Pinch-Driven Hohlraums with Symmetric Double-Pinch Drive

    NASA Astrophysics Data System (ADS)

    Hanson, D. L.; Vesey, R. A.; Cuneo Porter, M. E., Jr.; Chandler, G. A.; Ruggles, L. E.; Simpson, W. W.; Seamen, H.; Primm, P.; Torres, J.; McGurn, J.; Gilliland, T. L.; Reynolds, P.; Hebron, D. E.; Dropinski, S. C.; Schroen-Carey, D. G.; Hammer, J. H.; Landen, O.; Koch, J.

    2000-10-01

    We are currently exploring symmetry requirements of the z-pinch-driven hohlraum concept [1] for high-yield inertial confinement fusion. In experiments on the Z accelerator, the burnthrough of a low-density self-backlit foam ball has been used to diagnose the large time-dependent flux asymmetry of several single-sided-drive hohlraum geometries [2]. We are currently applying this technique to study polar radiation flux symmetry in a symmetric double z-pinch geometry. Wire arrays on opposite ends of the hohlraum, connected in series to a single current drive of 18 MA, implode and stagnate on axis, efficiently radiating about 100 TW of x rays which heat the secondary to 75 eV. Comparisons with 3-D radiosity and 2-D rad-hydro models of hohlraum symmetry performance will be presented. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. 1 J. H. Hammer et al., Phys. Plasmas 6, 2129 (1999). 2 D. L. Hanson et al., Bull. Am. Phys. Soc. 44, 40 (1999).

  14. Richtmyer-Meshkov-like instabilities and early-time perturbation growth in laser targets and Z-pinch loads

    SciTech Connect

    Velikovich, A. L.; Dahlburg, J. P.; Schmitt, A. J.; Gardner, J. H.; Phillips, L.; Cochran, F. L.; Chong, Y. K.; Dimonte, G.; Metzler, N.; Science Applications International Corporation, McLean, Virginia 22150

    2000-05-01

    The classical Richtmyer-Meshkov (RM) instability develops when a planar shock wave interacts with a corrugated interface between two different fluids. A larger family of so-called RM-like hydrodynamic interfacial instabilities is discussed. All of these feature a perturbation growth at an interface, which is driven mainly by vorticity, either initially deposited at the interface or supplied by external sources. The inertial confinement fusion relevant physical conditions that give rise to the RM-like instabilities range from the early-time phase of conventional ablative laser acceleration to collisions of plasma shells (like components of nested-wire-arrays, double-gas-puff Z-pinch loads, supernovae ejecta and interstellar gas). In the laser ablation case, numerous additional factors are involved: the mass flow through the front, thermal conduction in the corona, and an external perturbation drive (laser imprint), which leads to a full stabilization of perturbation growth. In contrast with the classical RM case, mass perturbations can exhibit decaying oscillations rather than a linear growth. It is shown how the early-time perturbation behavior could be controlled by tailoring the density profile of a laser target or a Z-pinch load, to diminish the total mass perturbation seed for the Rayleigh-Taylor instability development. (c) 2000 American Institute of Physics.

  15. Comparison of 1D stagnation solutions to 3D wire-array Z pinch simulations in absence of radiation

    NASA Astrophysics Data System (ADS)

    Yu, Edmund; Velikovich, Alexander; Maron, Yitzhak

    2013-10-01

    In the idealized picture of a Z pinch, a cylindrically symmetric plasma shell implodes towards axis. In this 1D (radial) picture, the resulting stagnation is very efficient: all the kinetic energy of the shell converts to internal energy, as for instance in the Noh shock solution or the homogeneous stagnation flow. If we generalize the problem to 2D by deforming the shell from perfectly circular to oblate, the resulting stagnation will not be as efficient. As in the Hiemenz flow, in which a jet of fluid strikes a rigid flat boundary and squirts out to the sides, the more complicated flows allowed in 2D allow flow kinetic energy to redirect rather than stagnate. With this picture in mind, we might expect the stagnation of a wire-array Z pinch, which in actuality forms a highly distorted 3D imploding plasma, to dissipate its kinetic energy inefficiently due to the lack of symmetry, and be indescribable by means of the idealized 1D stagnation solutions. On the other hand, one might expect that if the imploding plasma is sufficiently messy, the non-uniformities might ``wash out,'' allowing a quasi-1D description of the averaged quantities of plasma. In this work we explore this idea, comparing predictions of 1D stagnation solutions with 3D simulation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC0 4-94AL85000.

  16. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch.

    PubMed

    Vogman, G V; Shumlak, U

    2011-10-01

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian function associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. These measurements are used to gain a better understanding of Z-pinch equilibria. PMID:22047291

  17. Investigation of the Resistance and Inductance of Planar Wire Array Z-Pinch at the Qiangguang Accelerator

    NASA Astrophysics Data System (ADS)

    Wang, Liangping; Wu, Jian; Guo, Ning; Han, Juanjuan; Li, Mo; Li, Yan; Qiu, Aici

    2012-09-01

    The resistance and inductance of a wire array during an implosion are very important parameters of interest to researchers. A variety of inductances and resistances directly affect the kinetic energy and resistance heat energy coupled from a pulsed-power generator. In this paper, the inductance and resistance of a planar wire array during the Z-pinch process are analyzed. The inductance is calculated from the data obtained by a time-resolved soft X-ray framed camera, while the resistance is calculated through the voltage and the current of the wire array load combined with the variety of the inductance. The results show that the resistance of the load increases with the development of the implosion, and reaches its maximum at 0.29 0.16 ? near the pinched time.

  18. Physics of Multi-Planar and Compact Cylindrical Wire Arrays Implosions on University-Scale Z-pinch Generators

    SciTech Connect

    Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Williamson, K. M.; Shrestha, I.; Ouart, N. D.; Yilmaz, M. F.; Wilcox, P. G.; Osborne, G. C.; Weller, M. E.; Shlyaptseva, V. V.; Chuvatin, A. S.; Rudakov, L. I.; Greenly, J. B.; McBride, R. D.; Knapp, P. F.; Blessener, I. C.; Bell, K. S.; Chalenski, D. A.; Hammer, D. A.

    2009-01-21

    The presented research focuses on investigation of Z-pinch plasma formation, implosion, and radiation characteristics as a function of the load configuration. The single planar and multi-planar wire arrays as well as compact cylindrical wire arrays were studied on the 1.3 MA UNR Zebra and 1 MA Cornell COBRA generators. The largest yields and powers were found for W and Mo double planar and compact wire arrays. A possibility of radiation pulse shaping was demonstrated. Two types of bright spots were observed in plasmas. A comparison of Mo double planar and compact wire array data indicates the possibility that the same heating mechanism operates during the final implosion and stagnation stages.

  19. Investigating plasma viscosity with fast framing photography in the ZaP-HD Flow Z-Pinch experiment

    NASA Astrophysics Data System (ADS)

    Weed, Jonathan Robert

    The ZaP-HD Flow Z-Pinch experiment investigates the stabilizing effect of sheared axial flows while scaling toward a high-energy-density laboratory plasma (HEDLP > 100 GPa). Stabilizing flows may persist until viscous forces dissipate a sheared flow profile. Plasma viscosity is investigated by measuring scale lengths in turbulence intentionally introduced in the plasma flow. A boron nitride turbulence-tripping probe excites small scale length turbulence in the plasma, and fast framing optical cameras are used to study time-evolved turbulent structures and viscous dissipation. A Hadland Imacon 790 fast framing camera is modified for digital image capture, but features insufficient resolution to study turbulent structures. A Shimadzu HPV-X camera captures the evolution of turbulent structures with great spatial and temporal resolution, but is unable to resolve the anticipated Kolmogorov scale in ZaP-HD as predicted by a simplified pinch model.

  20. Fusion neutron detector for time-of-flight measurements in z-pinch and plasma focus experiments

    SciTech Connect

    Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Litseva, E.; Tomaszewski, K.; Karpinski, L.; Paduch, M.; Scholz, M.

    2011-03-15

    We have developed and tested sensitive neutron detectors for neutron time-of-flight measurements in z-pinch and plasma focus experiments with neutron emission times in tens of nanoseconds and with neutron yields between 10{sup 6} and 10{sup 12} per one shot. The neutron detectors are composed of a BC-408 fast plastic scintillator and Hamamatsu H1949-51 photomultiplier tube (PMT). During the calibration procedure, a PMT delay was determined for various operating voltages. The temporal resolution of the neutron detector was measured for the most commonly used PMT voltage of 1.4 kV. At the PF-1000 plasma focus, a novel method of the acquisition of a pulse height distribution has been used. This pulse height analysis enabled to determine the single neutron sensitivity for various neutron energies and to calibrate the neutron detector for absolute neutron yields at about 2.45 MeV.

  1. Z-pinch research at the Chilean Nuclear Energy Commission: from basic research to portable devices for field applications

    NASA Astrophysics Data System (ADS)

    Avaria, Gonzalo; Moreno, Jose; Pavez, Cristian; Tarifeno-Saldivia, Ariel; Zambra, Marcelo; Soto, Leopoldo

    2012-10-01

    Research in pinch discharges at the Chilean Nuclear Energy Commission includes: a) experimental studies in plasma dynamics, stability, X-ray and particles radiation, fusion mechanisms using gas embedded z-pinch, wire arrays and plasma foci; b) development of transportable and portable non radioactive sources based upon plasma focus devices for field applications; c) development and improvements of diagnostics suitable for the extreme conditions of this research. This work will present an overview of recent results in coupling studies of SPEED 2 generator (2.4MA achieved in 450ns) working in cylindrical wire array configuration, as well as the main conclusions from the scalability work in plasma focus devices from MJ to less than 1J. Ultimate results in a 2J portable PF device as non radioactive neutron source for field applications are presented.

  2. Construction of a Low-energy Single-wire Z-pinch Apparatus for Metal-catalyzed Fusion Studies

    NASA Astrophysics Data System (ADS)

    Walch, Shannon; Jones, Steven; Ellsworth, John

    2006-10-01

    Numerous beam and foil experiments have been undertaken in an effort to explore fusion enhanced by condensed matter and have produced substantial evidence for the catalyzing effect of metals and the variation in effectiveness of different types of metal. A group at Brigham Young University studying low energy nuclear reactions is currently building a low-energy single-wire z-pinch apparatus to test it as a tool for producing such reactions. If useful, it will expedite our studying the relationships between the type of metal used and the number of emitted particles, and it will assist in the development of a theory for this type of reaction, as no current theory can predict the outcomes of these experiments.

  3. Comparative calculations of plasma ionization balance, collisionality and resistivity using various models in application to z-pinch physics

    NASA Astrophysics Data System (ADS)

    Esaulov, Andrey; Johnson, Walter; Safronova, Alla; Safronova, Ulyana; Ouart, Nick; Weller, Mike; Kantsyrev, Victor

    2010-11-01

    High energy density plasmas produced by the imploding wire array loads, including single- and multi-planar wire arrays, has been extensively studied for the past few years at the University of Nevada, Reno at 1.7 MA Zebra facility. Various modeling tools such as the magnetohydrodynamic (MHD) codes and non-LTE atomic kinetic models have been applied to analyze plasma dynamics and radiation features. In this work the results of the aforementioned models are compared with the average atom model (Thomas--Fermi and Ziman approximations). The analysis is accomplished for low (Al) and moderate (Cu) atomic number elements in broad ranges of Te and ne. The advantage of application of such approach to the analysis of z-pinch experiments is discussed.

  4. Charge-coupled device systems for recording two-dimensional multi-mega-ampere z-pinch data

    NASA Astrophysics Data System (ADS)

    Failor, B. H.; Coleman, P. L.; Levine, J. S.; Song, Y.; Sze, H.; LePell, P. D.; Coverdale, C. A.; Deeney, C.; Pressley, L.; Schneider, R.

    2001-04-01

    Hardware and software have been developed for recording and displaying accurate image and spectral data produced by z-pinch plasma radiation sources at the Double-EAGLE facility at Maxwell Physics International. Desktop computers are used to acquire the data, analyze it, and display and print the results. Of the four charge-coupled device (CCD) image recording systems implemented, two record x rays directly and two record optical light emission from electron-excited phosphors. The CCD systems required careful shielding to allow them to operate in the harsh radio frequency noise environment. During a series of shots at the SATURN facility at Sandia National Laboratories, the quality of a keV x-ray spectrum recorded directly with a CCD compared well with an equivalent spectrum recorded with 2497 film.

  5. A dual-channel, focusing x-ray spectrograph with uniform dispersion for Z pinch plasmas measurement

    SciTech Connect

    Yang Qingguo; Li Zeren; Chen Guanhua; Ye Yan; Huang Xianbin; Cai Hongchun; Li Jing; Xiao Shali

    2012-01-15

    A dual-channel, focusing x-ray spectrograph with uniform dispersion (i.e., the linear dispersion of this spectrograph is a constant) is described for measuring the x-ray spectra emission from the hot, dense Al Z pinch plasmas. The spectrograph uses double uniform-dispersed crystals (e.g., a Quartz 1010 crystal and a Mica 002 crystal) as dispersion elements and a double-film box as detector to achieve the simultaneous recording of the time integrated spectrum covering a wide spectral range of {approx}5-9 A. Since this spectrograph disperse the x-rays on the detector plane with uniform spacing for every wavelength, it needs not the calibration of the wavelength with spatial coordinate, thereby own the advantages of easiness and veracity for spectra identification. The design of this spectrograph and the example of experiment on the ''Yang'' accelerator are presented.

  6. Fusion neutron detector for time-of-flight measurements in z-pinch and plasma focus experiments.

    PubMed

    Klir, D; Kravarik, J; Kubes, P; Rezac, K; Litseva, E; Tomaszewski, K; Karpinski, L; Paduch, M; Scholz, M

    2011-03-01

    We have developed and tested sensitive neutron detectors for neutron time-of-flight measurements in z-pinch and plasma focus experiments with neutron emission times in tens of nanoseconds and with neutron yields between 10(6) and 10(12) per one shot. The neutron detectors are composed of a BC-408 fast plastic scintillator and Hamamatsu H1949-51 photomultiplier tube (PMT). During the calibration procedure, a PMT delay was determined for various operating voltages. The temporal resolution of the neutron detector was measured for the most commonly used PMT voltage of 1.4 kV. At the PF-1000 plasma focus, a novel method of the acquisition of a pulse height distribution has been used. This pulse height analysis enabled to determine the single neutron sensitivity for various neutron energies and to calibrate the neutron detector for absolute neutron yields at about 2.45 MeV. PMID:21456735

  7. A dual-channel, focusing x-ray spectrograph with uniform dispersion for Z pinch plasmas measurement.

    PubMed

    Yang, Qingguo; Li, Zeren; Chen, Guanhua; Ye, Yan; Huang, Xianbin; Cai, Hongchun; Li, Jing; Xiao, Shali

    2012-01-01

    A dual-channel, focusing x-ray spectrograph with uniform dispersion (i.e., the linear dispersion of this spectrograph is a constant) is described for measuring the x-ray spectra emission from the hot, dense Al Z pinch plasmas. The spectrograph uses double uniform-dispersed crystals (e.g., a Quartz 1010 crystal and a Mica 002 crystal) as dispersion elements and a double-film box as detector to achieve the simultaneous recording of the time integrated spectrum covering a wide spectral range of ~5-9 A?. Since this spectrograph disperse the x-rays on the detector plane with uniform spacing for every wavelength, it needs not the calibration of the wavelength with spatial coordinate, thereby own the advantages of easiness and veracity for spectra identification. The design of this spectrograph and the example of experiment on the "Yang" accelerator are presented. PMID:22299928

  8. Efficient radiation production in long implosions of structured gas-puff Z pinch loads from large initial radius.

    PubMed

    Sze, H; Banister, J; Failor, B H; Levine, J S; Qi, N; Velikovich, A L; Davis, J; Lojewski, D; Sincerny, P

    2005-09-01

    We have proposed and demonstrated successfully a new approach for generating high-yield K-shell radiation with large-diameter gas-puff Z pinches. The novel load design consists of an outer region plasma that carries the current and couples energy from the driver, an inner region plasma that stabilizes the implosion, and a high-density center jet plasma that radiates. It increased the Ar K-shell yield at 3.46 MA in 200 ns implosions from 12 cm initial diameter by a factor of 2, to 21 kJ, matching the yields obtained earlier on the same accelerator with 100 ns implosions. A new "pusher-stabilizer-radiator" physical model is advanced to explain this result. PMID:16196936

  9. A novel extreme ultraviolet four channels normal incidence imaging system for plasma diagnostics of Z-pinch facility.

    PubMed

    Wang, Xin; Mu, Baozhong; Zhu, Jingtao; Wang, Ling; Yi, Shengzhen; Li, Wenbin; Wang, Zhanshan; Qin, Yi; Xu, Zeping; Xu, Rongkun; Li, Zhenghong

    2013-07-01

    A novel EUV four channels normal incidence imaging system for plasma diagnostics of Z-pinch facility was presented in this paper, which consists of four concave mirrors and one convex mirror used for focusing an object onto four different positions with about 30 ?m resolution on the same image plane. In addition, this imaging system can work at the energies of 50 eV, 95 eV, 150 eV, and broadband of 50-100 eV by using different multilayer films deposited on the concave and convex mirrors. This instrument, combined with framing camera, can achieve the power of two-dimensional spatial and temporal resolution, as well as the ability to imaging the plasma at the specific temperature. In the paper, the four channels microscope centering at multi-energies was developed. PMID:23902074

  10. Two-dimensional direct simulation of deuterium-fiber-initiated Z pinches with detailed comparison to experiment

    SciTech Connect

    Sheehey, P. ); Hammel, J.E.; Lindemuth, I.R.; Scudder, D.W.; Shlachter, J.S. ); Lovberg, R.H.; Riley, R.A. Jr. )

    1992-11-01

    Deuterium-fiber-initiated Z-pinch experiments have been simulated using a two-dimensional resistive magnetohydrodynamic model, which includes many important experimental details, such as cold-start'' initial conditions, thermal conduction, radiation, actual discharge current versus time, and grids of sufficient size and resolution to allow realistic development of the plasma. When the fiber becomes fully ionized (at a time depending on current ramp and fiber thickness), the simulations show rapidly developing [ital m]=0 instabilities, which originated in the corona surrounding the fiber, drive intense nonuniform heating and rapid expansion of the plasma column. Diagnostics generated from the simulation results, such as shadowgrams and interferograms, are in good agreement with experiment.

  11. Linear and nonlinear development of m=0 instability in a diffuse Bennett Z-pinch equilibrium with sheared axial flow

    SciTech Connect

    Paraschiv, I.; Bauer, B. S.; Lindemuth, I. R.; Makhin, V.

    2010-07-15

    The effect of sheared axial flow on the Z-pinch sausage instability has been examined with two-dimensional magnetohydrodynamic simulations. Diffuse Bennett equilibria in the presence of axial flows with parabolic and linear radial profiles have been considered, and a detailed study of the linear and nonlinear development of small perturbations from these equilibria has been performed. The consequences of both single-wavelength and random-seed perturbations were calculated. It was found that sheared flows changed the internal m=0 mode development by reducing the linear growth rates, decreasing the saturation amplitude, and modifying the instability spectrum. High spatial frequency modes were stabilized to small amplitudes and only long wavelengths continued to grow. Full stability was obtained for supersonic plasma flows.

  12. Efficient generation of fast neutrons by magnetized deuterons in an optimized deuterium gas-puff z-pinch

    NASA Astrophysics Data System (ADS)

    Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cherdizov, R. K.; Cikhardt, J.; Cikhardtova, B.; Dudkin, G. N.; Fursov, F. I.; Garapatsky, A. A.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Orcikova, H.; Padalko, V. N.; Ratakhin, N. A.; Sila, O.; Turek, K.; Varlachev, V. A.

    2015-04-01

    Z-pinch experiments with deuterium gas puffs have been carried out on the GIT-12 generator at 3 MA currents. Recently, a novel configuration of a deuterium gas-puff z-pinch was used to accelerate deuterons and to generate fast neutrons. In order to form a homogeneous, uniformly conducting layer at a large initial radius, an inner deuterium gas puff was surrounded by an outer hollow cylindrical plasma shell. The plasma shell consisting of hydrogen and carbon ions was formed at the diameter of 350 mm by 48 plasma guns. A linear mass of the plasma shell was about 5 µg cm-1 whereas a total linear mass of deuterium gas in single or double shell gas puffs was about 100 µg cm-1. The implosion lasted 700 ns and seemed to be stable up to a 5 mm radius. During stagnation, m = 0 instabilities became more pronounced. When a disruption of necks occurred, the plasma impedance reached 0.4 Ω and high energy (>2 MeV) bremsstrahlung radiation together with high energy deuterons were produced. Maximum neutron energies of 33 MeV were observed by axial time-of-flight detectors. The observed neutron spectra could be explained by a suprathermal distribution of deuterons with a high energy tail f≤ft({{E}\\text{d}}\\right)\\propto E\\text{d}-(1.8+/- 0.2) . Neutron yields reached 3.6 × 1012 at a 2.7 MA current. A high neutron production efficiency of 6 × 107 neutrons per one joule of plasma energy resulted from the generation of high energy deuterons and from their magnetization inside plasmas.

  13. Wire array Z-pinch length variations for K-shell x-ray generation on Z.

    SciTech Connect

    Giuliani, J. L.; Davis, J.; Waisman, Eduardo Mario; DasGupta, A.; Apruzese, John P.; Jennings, Christopher A.; Clark, R. W.; Ampleford, David J.; Thornhill, Joseph W.; Cuneo, Michael Edward; Coverdale, Christine Anne; Jones, Brent Manley; Hansen, Stephanie B.

    2010-06-01

    Large diameter (50-70 mm) wire array z pinches are fielded on the refurbished Z machine to generate 1-10 keV K-shell x-ray radiation. Imploding with velocities approaching 100 cm/{micro}s, these loads create large dL/dt which generates a high voltage, stresses the convolute, and leads to current loss. High velocities are required to reach the few-keV electron temperatures required to strip moderate-atomic-number plasmas to the K shell, thus there is an inherent trade-off between achieving high velocity and stressing the pulsed power driver via the large dL/dt.Here, we present experiments in which the length of stagnated Cu and stainless steel z pinches was varied from 12-24 mm. The motivation in reducing the pinch height is to lower the final inductance and improve coupling to the generator. Shortening a Cu pinch from 20 to 12 mm by angling the anode glide plane reduced the final L and dL/dt, enhancing the feed current by 1.4 MA, nearly doubling the K-shell power per unit length, and increasing the net K-shell yield by 20%. X-ray spectroscopy is employed to assess differences in plasma conditions between the loads. Lengthening the pinch could lead to yield enhancements by increasing the mass participating in the implosion, provided the increased inductance is not overly detrimental to the current coupling. In addition to the experimental results, these scenarios are studied via thin-shell 0D and also magneto-hydrodynamic modeling with a coupled driver circuit model.

  14. Microstructural characterization and mechanical properties of high power ultrasonic spot welded aluminum alloy AA6111–TiAl6V4 dissimilar joints

    SciTech Connect

    Zhang, C.Q. Robson, J.D.; Ciuca, O.; Prangnell, P.B.

    2014-11-15

    Aluminum alloy AA6111 and TiAl6V4 dissimilar alloys were successfully welded by high power ultrasonic spot welding. No visible intermetallic reaction layer was detected in as-welded AA6111/TiAl6V4 welds, even when transmission electron microscopy was used. The effects of welding time and natural aging on peak load and fracture energy were investigated. The peak load and fracture energy of welds increased with an increase in welding time and then reached a plateau. The lap shear strength (peak load) can reach the same level as that of similar Al–Al joints. After natural aging, the fracture mode of welds transferred from ductile fracture of the softened aluminum to interfacial failure due to the strength recovery of AA6111. - Highlights: • Dissimilar Al/Ti welds were produced by high power ultrasonic spot welding. • No visible intermetallic reaction layer was detected on weld interface. • The lap shear strength can reach the same level as that of similar Al–Al joints. • The fracture mode becomes interfacial failure after natural aging.

  15. Time- and space-resolved X-ray absorption spectroscopy of aluminum irradiated by a subpicosecond high-power laser

    NASA Astrophysics Data System (ADS)

    Tzortzakis, S.; Audebert, P.; Renaudin, P.; Bastiani-Ceccotti, S.; Geindre, J. P.; Chenais-Popovics, C.; Nagels, V.; Gary, S.; Shepherd, R.; Girard, F.; Matsushima, I.; Peyrusse, O.; Gauthier, J.-C.

    2006-05-01

    The ionization and recombination dynamics of transient aluminum plasmas was measured using point projection K-shell absorption spectroscopy. An aluminum plasma was produced with a subpicosecond beam of the 100-TW laser at the LULI facility and probed at different times with a picosecond X-ray backlighter created with a synchronized subpicosecond laser beam. Fourier-Domain-Interferometry (FDI) was used to measure the electron temperature at the peak of the heating laser pulse. Absorption X-ray spectra at early times are characteristic of a dense and rather homogeneous plasma, with limited longitudinal gradients as shown by hydrodynamic simulations. The shift of the Al K-edge was measured in the cold dense plasma located at the edge of the heated plasma. From the 1s 2p absorption spectra, the average ionization was measured as a function of time and was also modeled with a collisional-radiative atomic physics code coupled with hydrodynamic simulations.

  16. Modifying wire-array Z-pinch ablation structure using coiled arrays.

    PubMed

    Hall, G N; Chittenden, J P; Bland, S N; Lebedev, S V; Bott, S C; Jennings, C; Palmer, J B A; Suzuki-Vidal, F

    2008-02-15

    A new wire-array configuration has been used to control the modulation of ablated plasma flow for the first time. Cylindrical aluminum coiled arrays, in which each straight wire is replaced with a single helix, were driven by a 1 MA, 240 ns current pulse. Ablated plasma is directed away from the coiled wire cores in a manner that can be understood in terms of Lorentz forces that arise from a complex current path modeled by 3D magnetohydrodynamic simulations. Outside the diameter of the helix, the flow of ablated plasma is axially modulated at the wavelength of the coil. PMID:18352483

  17. One- and two-dimensional modeling of argon K-shell emission from gas-puff Z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Thornhill, J. W.; Chong, Y. K.; Apruzese, J. P.; Davis, J.; Clark, R. W.; Giuliani, J. L.; Terry, R. E.; Velikovich, A. L.; Commisso, R. J.; Whitney, K. G.; Frese, M. H.; Frese, S. D.; Levine, J. S.; Qi, N.; Sze, H.; Failor, B. H.; Banister, J. W.; Coleman, P. L.; Coverdale, C. A.; Jones, B.; Deeney, C.

    2007-06-01

    In this paper, a theoretical model is described and demonstrated that serves as a useful tool for understanding K-shell radiating Z-pinch plasma behavior. Such understanding requires a self-consistent solution to the complete nonlocal thermodynamic equilibrium kinetics and radiation transport in order to realistically model opacity effects and the high-temperature state of the plasma. For this purpose, we have incorporated into the MACH2 two-dimensional magnetohydrodynamic (MHD) code [R. E. Peterkin et al., J. Comput. Phys. 140, 148 (1998)] an equation of state, called the tabular collisional radiative equilibrium (TCRE) model [J. W. Thornhill et al., Phys. Plasmas 8, 3480 (2001)], that provides reasonable approximations to the plasma's opacity state. MACH2 with TCRE is applied toward analyzing the multidimensional implosion behavior that occurred in Decade Quad (DQ) [D. Price et al., Proceedings of the 12th IEEE Pulsed Power Conference, Monterey, CA, edited by C. Stallings and H. Kirbie (IEEE, New York, 1999), p. 489] argon gas puff experiments that employed a 12cm diameter nozzle with and without a central gas jet on axis. Typical peak drive currents and implosion times in these experiments were 6MA and 230ns. By using Planar Laser Induced Fluorescence measured initial density profiles as input to the calculations, the effect these profiles have on the ability of the pinch to efficiently produce K-shell emission can be analyzed with this combined radiation-MHD model. The calculated results are in agreement with the experimental result that the DQ central-jet configuration is superior to the no-central-jet experiment in terms of producing more K-shell emission. These theoretical results support the contention that the improved operation of the central-jet nozzle is due to the better suppression of instabilities and the higher-density K-shell radiating conditions that the central-jet configuration promotes. When we applied the model toward projecting argon K-shell yield behavior for Sandia National Laboratories' ZR machine (25MA peak drive currents, 100ns implosion times) [D. McDaniel et al., Proceedings of the 5th International Conference on Dense Z-Pinches, Albuquerque, NM, 2002, edited by J. Davis, C. Deeney, and N. R. Pereira (American Institute of Physics, New York, 2002), Vol. 651, p. 23] for experiments that utilize the 12cm diameter central-jet nozzle configuration, it predicts over 1MJ of K-shell emission is attainable.

  18. Formation of radiatively cooled, supersonically rotating, plasma flows in Z-pinch experiments: Towards the development of an experimental platform to study accretion disk physics in the laboratory

    NASA Astrophysics Data System (ADS)

    Bennett, M. J.; Lebedev, S. V.; Hall, G. N.; Suttle, L.; Burdiak, G.; Suzuki-Vidal, F.; Hare, J.; Swadling, G.; Patankar, S.; Bocchi, M.; Chittenden, J. P.; Smith, R.; Frank, A.; Blackman, E.; Drake, R. P.; Ciardi, A.

    2015-12-01

    We present data from the first Z-pinch experiments aiming to simulate aspects of accretion disk physics in the laboratory. Using off axis ablation flows from a wire array z-pinch we demonstrate the formation of a supersonically (M ? 2) rotating hollow plasma cylinder of height ?4 mm and radius 2 mm. Using a combination of diagnostics we measure the rotation speed (?60 kms-1), electron density (1019 cm-3), ion temperature (Ti ? 60 eV) and the product of electron temperature and average ionisation (ZTe ? 150 to 200 eV). Using these parameters we calculate the Reynolds number for the plasma on the order 105 and magnetic Reynolds number as 10 - 100. The plasma flow is maintained for 150 ns, corresponding to one rotation period, which should allow for studying fast instabilities which develop on this time-scale.

  19. A kinetic model of the plasma flow at the magnetic z-pinch and the plasmoid structure. Part 2 (in English)

    NASA Astrophysics Data System (ADS)

    Kubes, P.; Prykarpatsky, A. K.; Zagrodzinski, J.; Prykarpatsky, Y. A.

    In this article we will follow the approach developed in articles N.~N.~Bogoliubov, V.~Hr.~Samoilenko, Ukr. Fiz. Zh., 37, 147 (1992); J.~Gibbon, Physica D, 3, 503 (1981) using modern Lie--algebraic and symplectic geometry methods. It is devoted to the description of Boltzman--Vlasov type kinetic equations and some two--dimensional hydrodynamic Benney type flows associated with them. In our case of the cylindrical symmetry taking place at the interrupted magnetic z--pinch in plasma we used intensively the corresponding two--dimensionality of the plasma flow under consideration which made it possible to build a kinetic model of the plasmoid vortex structure with a conserved number of linkages of vortex lines. The latter can be used to explain the observed earlier stability of the plasmoid structure at the magnetic z--pinch.

  20. Finite Larmor radius magnetohydrodynamic analysis of the Rayleigh-Taylor instability in Z pinches with sheared axial flow

    SciTech Connect

    Qiu, X. M.; Huang, L.; Jian, G. D.

    2007-03-15

    The Rayleigh-Taylor (RT) instability in Z pinches with sheared axial flow (SAF) is analyzed using finite Larmor radius (FLR) magnetohydrodynamic theory, in whose momentum equation the FLR effect (also referred to as the effect of gyroviscosity) is introduced through an anisotropic ion (FLR) stress tensor. A dispersion relation is derived for the linear RT instability. Both analytical and numerical solutions of the dispersion equation are given. The results indicate that the short-wavelength modes of the RT instability can be stabilized by a sufficient FLR, whereas the long-wavelength modes can be stabilized by a sufficient SAF. In the small-wavenumber region, for normalized wavenumber K<2.4, the hybrid RT/KH (Kelvin-Helmholtz) instability is shown to be the most difficult to stabilize. However the synergistic effect of the SAF and gyroviscosity can mitigate both the RT instability in the large-wavenumber region (K>2.4) and the hybrid RT/KH instability in the small-wavenumber region. In addition, this synergistic effect can compress the RT instability to a narrow wavenumber region. Even the thorough stabilization of the RT instability in the large-wavenumber region is possible with a sufficient SAF and a sufficient gyroviscosity.

  1. The production and evolution of multiple converging radiative shock waves in gas-filled cylindrical liner z-pinch experiments

    NASA Astrophysics Data System (ADS)

    Burdiak, G. C.; Lebedev, S. V.; Drake, R. P.; Harvey-Thompson, A. J.; Swadling, G. F.; Suzuki-Vidal, F.; Skidmore, J.; Suttle, L.; Khoory, E.; Pickworth, L.; de Grouchy, P.; Hall, G. N.; Bland, S. N.; Weinwurm, M.; Chittenden, J. P.

    2013-03-01

    A cylindrical liner z-pinch configuration has been used to drive converging radiative shock waves into different gases. On application of a 1.4 MA, 240 ns rise-time current pulse, a series of cylindrical shocks moving at typical velocities of 20 km s-1 are consecutively launched from the inside liner wall into an initially static gas-fill of density 10-5 g cm-3. The drive current skin depth calculated prior to resistive heating was slightly less than the liner wall thickness and no bulk liner implosion occurred. Axial laser probing images show the shock fronts to be smooth and azimuthally symmetric, with instabilities developing downstream of each shock. Evidence for a radiative precursor ahead of the first shock was seen in laser interferometry imaging and time-gated, spatially resolved optical spectroscopy. The interferometry diagnostic was able to simultaneously resolve the radiative precursor and the density jumps at the shock fronts. Optical streak photography provided information on shock timing and shock trajectories and was used to gain insight into the shock launching mechanisms.

  2. Radiation Power Scaling of >75TW, >500kJ Tungsten Z-Pinch X-ray Sources.*

    NASA Astrophysics Data System (ADS)

    Deeney, C.; Spielman, R. B.; Porter, J. L.; Chandler, G. A.; Nash, T. J.; Seamen, J. F.; Saturn; Pbfaz Z-Pinch Teams; Peterson, D.; Matuska, W.; Macfarlane, J. J.; Whitney, K. G.; Thornhill, J. W.

    1996-11-01

    For fusion applications, there are significant efforts being devoted to the optimization of high Z radiators. Experiments on the 20-TW, 7- MA Saturn generator with increased wire number (T. Sanford, this meeting, C. Deeney & K.G. Whitney , sub. to PRE) and radius scaling demonstrated that the power from tungsten Z-pinches could be increased from 20 TW to 75110 TW ( C. Deeney et al, sub. to PRE). Analyses of the data, coupled with two-dimensional radiation- hydrodynamic simulationsfootnote(D.L. Peterson et al, Phys Plasmas 3, 368, (1996)), indicate that the pinch becomes tighter (1 mm in diameter versus 1.5 mm) and more uniform : XRDs also show increased higher energy emissions (G. Chandler , this meeting). We will present these data and calculations along with similar measurements from tungsten wire implosions on the new, 20 MA PBFA Z generator. PBFA Z(R.B. Spielman, Proc Beams 96) is predicted to produce >150 TW and >1.5 MJ of X-rays. *Supported by DOE , Cont. DE-AC04-94AL85000.

  3. Hard X-ray and Particle Beams Research on 1.7 MA Z-pinch and Laser Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Shrestha, Ishor; Kantsyrev, Victor; Safronova, Alla; Esaulov, Andrey; Nishio, Mineyuki; Shlyaptseva, Veronica; Keim, Steven; Weller, Michael; Stafford, Austin; Petkov, Emil; Schultz, Kimberly; Cooper, Matthew; PPDL Team

    2013-10-01

    Studies of hard x-ray (HXR) emission, electron and ion beam generation in z-pinch and laser plasmas are important for Inertial Confinement Fusion (ICF) and development of HXR sources from K-shell and L-shell radiation. The characteristics of HXR and particle beams produced by implosions of planar wire arrays, nested and single cylindrical wire arrays, and X-pinches were analyzed on 100 ns UNR Zebra generator with current up to 1.7 MA. In addition, the comparison of characteristics of HXR and electron beams on Zebra and 350 fs UNR Leopard laser experiments with foils has been performed. The diagnostics include Faraday cups, HXR diodes, different x-ray spectrometers and imaging systems, and ion mass spectrometer using the technique of Thomson parabola. Future work on HXRs and particle beams in HED plasmas is discussed. This work was supported by the DOE/NNSA Cooperative agreement DE-NA0001984 and in part by DE-FC52-06NA27616. This work was also supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-13-1-0033, to University of Nevada, Reno.

  4. Initial magnetic field compression studies using gas-puff Z-pinches and thin liners on COBRA

    NASA Astrophysics Data System (ADS)

    Gourdain, P.-A.; Concepcion, R. J.; Evans, M. T.; Greenly, J. B.; Hammer, D. A.; Hoyt, C. L.; Kroupp, E.; Kusse, B. R.; Maron, Y.; Novick, A. S.; Pikuz, S. A.; Qi, N.; Rondeau, G.; Rosenberg, E.; Schrafel, P. C.; Seyler, C. E.; Shelkovenko, T. C.

    2013-08-01

    This magnetic compression of cylindrical liners filled with DT gas has promise as an efficient way to achieve fusion burn using pulsed-power machines. However, to avoid rapid cooling of the fuel by transfer of heat to the liner an axial magnetic field is required. This field has to be compressed during the implosion since the thermal insulation is more demanding as the compressed DT plasma becomes hotter and its volume smaller. This compression of the magnetic field is driven both by the imploding liner and plasma. To highlight how this magnetic field compression by the plasma and liner evolves we have separately studied Z-pinch implosions generated by gas puff and liner loads. The masses of the gas puff and liner loads were adjusted to match COBRA's current rise times. Our results have shown that Ne gas-puff implosions are well described by a snowplow model where electrical currents are predominately localized to the outer surface of the imploding plasma and the magnetic field is external to the imploding plasma. Liner implosions are dominated by the plasma ablation process on the inside surface of the liner and the electrical currents and magnetic fields are advected into the inner plasma volume; the sharp radial gradient associated with the snowplow process is not present.

  5. Proposed design and mass production of wire arrays and targets for a Z-pinch IFE power plant

    NASA Astrophysics Data System (ADS)

    Gallix, R.; Rickman, W. S.; Alexander, N. B.

    2006-06-01

    This paper summarizes the results of a detailed study reported in Ref. [1]. A concept for a 1000MW(e) Z-Pinch IFE power plant has ten reactor chambers. A Load, consisting of a wire array surrounding a cryogenic dynamic hohlraum target with a 3-GJ yield, must be produced, inserted into a Replaceable Transmission Lines (RTL), transported to one of the chambers, and shot every second. The conceptual design of the load facilitates automatic mass manufacturing and insertion at 1 Hz at minimum cost. A sequence of operations necessary to (1) fabricate each wire array on a holding and insertion tool, (2)manufacture, evacuate, fill with DT, freeze, layer, and assemble each target with helium gas and liquid hydrogen, (3) insert a wire array and a target under vacuum into an RTL, and (4) remove their debris, is described. Detailed cost estimates derived for the complete load production and solid debris removal cycle in a commercial-scale facility are summarized.

  6. One- and two-dimensional density and temperature measurements of an argon-neon Z-pinch plasma at stagnation

    NASA Astrophysics Data System (ADS)

    Wong, K. L.; Springer, P. T.; Hammer, J. H.; Iglesias, C. A.; Osterheld, A. L.; Foord, M. E.; Bruns, H. C.; Emig, J. A.; Deeney, C.

    1997-02-01

    In order to benchmark and improve current 2D radiation magnetohydrodynamic (MHD) models of Z-pinch plasmas, we have performed experiments which characterize the plasma conditions at stagnation. In the experiments the SATURN pulsed power facility at Sandia National Laboratory was used to create an imploding Ar-Ne plasma. An absolutely calibrated, high resolution space- and time-resolving Johann crystal spectrometer was used to infer the electron temperature Te from the slope of the hydrogenlike Ne free-bound continuum, and the ion density ni from the Stark broadening of the Ar heliumlike Rydberg series. 2D electron temperature profiles of the plasma are obtained from a set of imaging crystals also focused on the Ne free-bound continuum. We shot two types of gas nozzles in the experiment, annular and uniform fill, which varies the amount of mass in the plasma. 2D local thermodynamic equilibrium (LTE) and non-LTE MHD models predict a radiating region denser and cooler than measured.

  7. Dynamics of a Z Pinch X Ray Source for Heating ICF Relevant Hohlraums to 120-160eV

    SciTech Connect

    SANFORD,THOMAS W. L.; OLSON,RICHARD E.; MOCK,RAYMOND CECIL; CHANDLER,GORDON A.; LEEPER,RAMON J.; NASH,THOMAS J.; RUGGLES,LAURENCE E.; SIMPSON,WALTER W.; STRUVE,KENNETH W.; PETERSON,D.L.; BOWERS,R.L.; MATUSKA,W.

    2000-07-10

    A z-pinch radiation source has been developed that generates 60 {+-} 20 KJ of x-rays with a peak power of 13 {+-} 4 TW through a 4-mm diameter axial aperture on the Z facility. The source has heated NIF (National Ignition Facility)-scale (6-mm diameter by 7-mm high) hohlraums to 122 {+-} 6 eV and reduced-scale (4-mm diameter by 4-mm high) hohlraums to 155 {+-} 8 eV -- providing environments suitable for indirect-drive ICF (Inertial Confinement Fusion) studies. Eulerian-RMHC (radiation-hydrodynamics code) simulations that take into account the development of the Rayleigh-Taylor instability in the r-z plane provide integrated calculations of the implosion, x-ray generation, and hohlraum heating, as well as estimates of wall motion and plasma fill within the hohlraums. Lagrangian-RMHC simulations suggest that the addition of a 6 mg/cm{sup 3} CH{sub 2} fill in the reduced-scale hohlraum decreases hohlraum inner-wall velocity by {approximately}40% with only a 3--5% decrease in peak temperature, in agreement with measurements.

  8. Numerical investigation on the implosion dynamics of wire-array Z-pinches in (r, {theta}) geometry

    SciTech Connect

    Huang Jun; Ding Ning; Ning Cheng; Sun Shunkai; Zhang Yang; Xiao Delong; Xue Chuang

    2012-06-15

    The implosion dynamics of wire-array Z-pinches are investigated numerically in 2D (r, {theta}) geometry by using a resistive MHD code. It is assumed that the wires have expanded to plasmas with diameter d{sub 0}, which is used as the initial condition for the consequent implosion process. In fact, the explosion process of individual wires is not included. By changing d{sub 0}, the effects of the wire expansion degree on the implosion dynamics are analyzed. When d{sub 0} is larger, the current density is more concentrated at the outer side of the wires and the fraction of current flow around the wire plasmas is nearly in proportion to d{sub 0}. As a result, the ablation rate of wires is increased and the implosion phase starts earlier. This conclusion agrees with the simulation works of other authors [Chittenden et al., Phys. Plasmas 11(3), 1118 (2004)]. When the array radius and initial wire plasma diameter are fixed, the increase of wire number leads to the azimuthal merge of wires during implosion. When the wires number exceed a critical value, which is related to d{sub 0}, wire plasmas can merge to a continuous shell with an azimuthal perturbation in density, which depends on the initial wires number.

  9. Ion viscous heating in a magnetohydrodynamically unstable Z pinch at over 2 x 10(9) Kelvin.

    PubMed

    Haines, M G; LePell, P D; Coverdale, C A; Jones, B; Deeney, C; Apruzese, J P

    2006-02-24

    Pulsed power driven metallic wire-array Z pinches are the most powerful and efficient laboratory x-ray sources. Furthermore, under certain conditions the soft x-ray energy radiated in a 5 ns pulse at stagnation can exceed the estimated kinetic energy of the radial implosion phase by a factor of 3 to 4. A theoretical model is developed here to explain this, allowing the rapid conversion of magnetic energy to a very high ion temperature plasma through the generation of fine scale, fast-growing m = 0 interchange MHD instabilities at stagnation. These saturate nonlinearly and provide associated ion viscous heating. Next the ion energy is transferred by equipartition to the electrons and thus to soft x-ray radiation. Recent time-resolved iron spectra at Sandia confirm an ion temperature Ti of over 200 keV (2 x 10(9) degrees), as predicted by theory. These are believed to be record temperatures for a magnetically confined plasma. PMID:16606100

  10. The First Pulsed-Power Z-Pinch Liner-On-Target Hydrodynamics Experiment Diagnosed with Proton Radiography

    NASA Astrophysics Data System (ADS)

    Rousculp, C. L.; Reass, W. A.; Oro, D. M.; Griego, J. R.; Turchi, P. J.; Reinovsky, R. E.; Saunders, A.; Mariam, F. G.; Morris, C.

    2014-10-01

    The first pulse-power driven, dynamic, liner-on-target experiment was successfully conducted at the Los Alamos proton radiography (pRad) facility. 100% data return was achieved on this experiment including a 21-image pRad movie. The experiment was driven with the PHELIX pulsed-power machine that utilizes a high-efficiency (k ~ 0.93) transformer to couple a small capacitor bank (U ~ 300 kJ) to a low inductance condensed-matter experimental load in a Z-pinch configuration. The current pulse (Ipeak = 3.7 MA, ?t ~10 ?s) was measured via a fiber optic Faraday rotation diagnostic. The experimental load consisted of a cylindrical Al liner (6 cm diam, 3 cm tall, 0.8 mm thick) and a cylindrical Al target (3 cm diam, 3 cm tall, 0.1 mm thick) that was coated with a thin (0.1 mm) uniform layer of tungsten powder (1 micron diam). It is observed that the shock-launched powder layer fully detaches from the target into a spatially correlated, radially converging (vr ~ 800 m/s) ring. The powder distribution is highly modulated in azimuth indicating particle interactions are significant. Results are compared to MHD simulations. Work supported by United States-DOE under Contract DE-AC52-06NA25396.

  11. Interpenetration, stagnation and deflection of supersonic tungsten plasma flows produced by wire-array Z-pinches

    NASA Astrophysics Data System (ADS)

    Swadling, George; Lebedev, Sergey; Burdiak, Guy; Suttle, Lee; Patankar, Siddharth; Smith, Roland; Bennett, Matthew; Hall, Garteth; Suzuki-Vidal, Francisco; Yuan, Jianqiang; Harvey-Thompson, Adam; Rozmus, Woichech

    2014-10-01

    We present Thomson Scattering measurements [G. F. Swadling et al., Phys. Rev. Lett. (Accepted 17 June 2014)] of the interpenetration, stagnation and deflection of supersonic tungsten plasma flows, produced in wire array z-pinch experiments on the MAGPIE (1.4 MA, 240 ns) pulsed power generator at Imperial College London. These measurements were made at early times in the evolution of the arrays, prior to the formation of the dense precursor column (120 ns), when the collisional scale length between the streams was still significant compared to the scale length of the array. The scattering geometry used in these experiments allowed independent measurements of the radial and axial velocity distributions of the interacting flows; temporally and spatially resolved measurements were made over seven points across the array diameter. Analysis of the Thomson spectra provides evidence of flow interpenetration; the flows decelerate and are heated over an extended distance (1.5 mm) before they fully stagnate. A previously unobserved axial deflection of the plasma flow towards the anode as it approaches the array axis provides evidence of the presence of a significant (20 T) toroidal magnetic field embedded within the precursor column at early times.

  12. One- and two-dimensional density and temperature measurements of an argon-neon Z-pinch plasma at stagnation

    SciTech Connect

    Wong, K.L.; Springer, P.T.; Hammer, J.H.; Iglesias, C.A.; Osterheld, A.L.; Foord, M.E.; Bruns, H.C.; Emig, J.A.; Deeney, C.

    1996-10-01

    In order to benchmark and improve current 2D radiation magnetohydrodynamic (MHD) models of Z-pinch plasmas, we have performed experiments which characterize the plasma -conditions at stagnation. In the experiments the SATURN pulsed power facility at Sandia National Laboratory was used to create an imploding -Ar-Ne plasma. An absolutely calibrated, high resolution space- and time- resolving Johann crystal spectrometer was used to infer the electron temperature Te from the slope of the hydrogenlike Ne free-bound continuum, and the ion density ni from the Stark broadening of the Ar heliunlike Rydberg series. 2D electron temperature profiles of the plasma are obtained from a set of imaging crystals also focused on the Ne free-bound continuum. We shot two types of gas nozzles in the experiment, annular and uniform fill which varies the amount of mass in the plasma. 2D local thermodynamic equilibrium (LTE) and non-LTE MM models predict a radiating region denser and cooler than measured.

  13. Experimental study of surface insulated-standard hybrid tungsten planar wire array Z-pinches at "QiangGuang-I" facility

    NASA Astrophysics Data System (ADS)

    Sheng, Liang; Peng, Bodong; Li, Yang; Yuan, Yuan; Li, Mo; Zhang, Mei; Zhao, Chen; Zhao, Jizhen; Wang, Liangping

    2016-01-01

    The experimental results of the insulated-standard hybrid wire array Z pinches carried out on "QiangGuang-I" facility at Northwest Institute of Nuclear Technology were presented and discussed. The surface insulating can impose a significant influence on the dynamics and radiation characteristics of the hybrid wire array Z pinches, especially on the early stage (t/timp < 0.6). The expansion of insulated wires at the ablation stage is suppressed, while the streams stripped from the insulated wires move faster than that from the standard wires. The foot radiation of X-ray is enhanced by increment of the number of insulated wires, 19.6 GW, 33.6 GW, and 68.6 GW for shots 14037S, 14028H, and 14039I, respectively. The surface insulation also introduces nonhomogeneity along the single wire—the streams move much faster near the electrodes. The colliding boundary of the hybrid wire array Z pinches is bias to the insulated side approximately 0.6 mm.

  14. A high-resolution (100-ps, 100-{micro}m) microchannel plate gated pinhole camera to study fast Z-pinch implosions

    SciTech Connect

    Breeze, S.; Ruggles, L.; Anderson, L.; Deeney, C.; Spielman, R.B.; Porter, J.L.

    1999-07-01

    Fast, high current Z-pinch implosions are used to produce intense x-ray pulses for various applications. For high-energy photon production and for inertial fusion applications, the imploding Z pinch can achieve velocities between 50 and 100 cm/{micro}s. to image such implosions, a high time resolution is needed. Furthermore, the final pinches formed can be only 1 to 1.5 mm in diameter but 20 mm long. Given a basic microchannel plate resolution of 80 {micro}m, then a high magnification (>1.5) is required to maintain good spatial resolution. To satisfy these requirements, the authors have designed and fielded a nine-frame, gated-MCP pinhole camera on the 20-MA Z accelerator. Each MCP frame is 6 cm by 2 cm, and is gated with a 100 ps duration pulse. They will describe the design and operation of this camera, in addition to showing data form Z-pinch and hohlraum experiments using this camera.

  15. Multicolor, time-gated, soft x-ray pinhole imaging of wire array and gas puff Z pinches on the Z and Saturn pulsed power generators.

    PubMed

    Jones, B; Coverdale, C A; Nielsen, D S; Jones, M C; Deeney, C; Serrano, J D; Nielsen-Weber, L B; Meyer, C J; Apruzese, J P; Clark, R W; Coleman, P L

    2008-10-01

    A multicolor, time-gated, soft x-ray pinhole imaging instrument is fielded as part of the core diagnostic set on the 25 MA Z machine [M. E. Savage et al., in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, New York, 2007), p. 979] for studying intense wire array and gas puff Z-pinch soft x-ray sources. Pinhole images are reflected from a planar multilayer mirror, passing 277 eV photons with <10 eV bandwidth. An adjacent pinhole camera uses filtration alone to view 1-10 keV photons simultaneously. Overlaying these data provides composite images that contain both spectral as well as spatial information, allowing for the study of radiation production in dense Z-pinch plasmas. Cu wire arrays at 20 MA on Z show the implosion of a colder cloud of material onto a hot dense core where K-shell photons are excited. A 528 eV imaging configuration has been developed on the 8 MA Saturn generator [R. B. Spielman et al., and A. I. P. Conf, Proc. 195, 3 (1989)] for imaging a bright Li-like Ar L-shell line. Ar gas puff Z pinches show an intense K-shell emission from a zippering stagnation front with L-shell emission dominating as the plasma cools. PMID:19044561

  16. Numerical and experimental investigations on the interaction of light wire-array Z-pinches with embedded heavy foam converters

    SciTech Connect

    Xiao, Delong; Ding, Ning; Sun, Shunkai; Ye, Fan; Ning, Jiamin; Hu, Qingyuan; Chen, Faxin; Qin, Yi; Xu, Rongkun; Li, Zhenghong

    2014-04-15

    The interaction of a light tungsten wire-array Z-pinch with an embedded heavy foam converter, whose mass ratio is typically less than 0.16, is numerically analyzed and experimentally investigated on the 1.3 MA “QiangGuang I” facility. Computational results show that this implosion process can be divided into three stages: acceleration of the tungsten wire-array plasma, collision, and stagnation. The tungsten plasma is accelerated to a high speed by the J × B force and interacts weakly with the foam plasma in the first stage. Strong energy conversions take place in the second collision stage. When the high speed tungsten plasma impacts on the foam converter, the plasma is thermalized and a radial radiation peak is produced. Meanwhile, a shock wave is generated due to the collision. After the shock rebounds from the axis and meets the W/Foam boundary, the plasma stagnates and the second radial radiation peak appears. The collision and stagnation processes were observed and the two-peak radial radiation pulse was produced in experiments. Increasing the wire-array radius from 4 mm to 6 mm, the kinetic energy of the tungsten plasma is increased, causing a stronger thermalization and generating a higher first radiation peak. Experimental results also showed a higher ratio of the first peak to the second peak in the case of larger wire-array radius. If we add a thin CH film cover onto the surface of the embedded foam converter, the first radiation peak will be hardly changed, because the acceleration of the tungsten plasma is not evidently affected by the film cover. However, the second radiation peak decreases remarkably due to the large load mass and the corresponding weak compression.

  17. The high-density Z-pinch as a pulsed fusion neutron source for fusion nuclear technology and materials testing

    SciTech Connect

    Krakowski, R.A.; Sethian, J.D.; Hagenson, R.L.

    1989-01-01

    The dense Z-pinch (DZP) is one of the earliest and simplest plasma heating and confinement schemes. Recent experimental advances based on plasma initiation from hair-like (10s ..mu..m in radius) solid hydrogen filaments have so far not encountered the usually devastating MHD instabilities that plagued early DZP experiments. These encouraging results along with debt of a number of proof-of principle, high-current (1--2 MA in 10--100 ns) experiments have prompted consideration of the DZP as a pulsed source of DT fusion neutrons of sufficient strength (/dot S//sub N/ greater than or equal to 10/sup 19/ n/s) to provide uncollided neutron fluxes in excess of I/sub ..omega../ = 5--10 MW/m/sup 2/ over test volumes of 10--30 litre or greater. While this neutron source would be pulsed (100s ns pulse widths, 10--100 Hz pulse rate), giving flux time compressions in the range 10/sup 5/--10/sup 6/, its simplicity, near-time feasibility, low cost, high-Q operation, and relevance to fusion systems that may provide a pulsed commercial end-product (e.g., inertial confinement or the DZP itself) together create the impetus for preliminary considerations as a neutron source for fusion nuclear technology and materials testings. The results of a preliminary parametric systems study (focusing primarily on physics issues), conceptual design, and cost versus performance analyses are presented. The DZP promises an expensive and efficient means to provide pulsed DT neutrons at an average rate in excess of 10/sup 19/ n/s, with neutron currents I/sub ..omega../ /approx lt/ 10 MW/m/sup 2/ over volumes V/sub exp/ greater than or equal to 30 litre using single-pulse technologies that differ little from those being used in present-day experiments. 34 refs., 17 figs., 6 tabs.

  18. Observed Multi-Decade DD and DT Z-Pinch Fusion Rate Scaling in 5 Dense Plasma Focus Fusion Machines

    SciTech Connect

    Hagen, E. C.; Lowe, D. R.; O'Brien, R.; Meehan, B. T.

    2013-06-18

    Dense Plasma Focus (DPF) machines are in use worldwide or a wide variety of applications; one of these is to produce intense, short bursts of fusion via r-Z pinch heating and compression of a working gas. We have designed and constructed a series of these, ranging from portable to a maximum energy storage capacity of 2 MJ. Fusion rates from 5 DPF pulsed fusion generators have been measured in a single laboratory using calibrated activation detectors. Measured rates range from ~ 1015 to more than 1019 fusions per second have been measured. Fusion rates from the intense short (20 – 50 ns) periods of production were inferred from measurement of neutron production using both calibrated activation detectors and scintillator-PMT neutron time of flight (NTOF) detectors. The NTOF detectors are arranged to measure neutrons versus time over flight paths of 30 Meters. Fusion rate scaling versus energy and current will be discussed. Data showing observed fusion cutoff at D-D fusion yield levels of approximately 1∗1012, and corresponding tube currents of ~ 3 MA will be shown. Energy asymmetry of product neutrons will also be discussed. Data from the NTOF lines of sight have been used to measure energy asymmetries of the fusion neutrons. From this, center of mass energies for the D(d,n)3He reaction are inferred. A novel re-entrant chamber that allows extremely high single pulse neutron doses (> 109 neutrons/cm2 in 50 ns) to be supplied to samples will be described. Machine characteristics and detector types will be discussed.

  19. What can spectroscopy and imaging of multi-planar wire arrays reveal about Z-pinch radiation physics?

    SciTech Connect

    Osborne, Glenn C.; Esaulov, Andrey A.; Apruzese, John P.; Shrestha, I.; Kantsyrev, Victor Leonidovich; Shlyaptseva, V.; Coverdale, Christine Anne; Rudakov, Leonid I.; Williamson, K. M.; Deeney, Christopher; Ouart, Nicholas D.; Weller, M. E.; Safronova, Alla S.

    2010-07-01

    The planar wire array research on Zebra at UNR that started in 2005 continues experiments with new types of planar loads with results for consideration and comprehensive analysis [see, for example, Kantsyrev et al, HEDP 5, 115 (2009)]. The detailed studies of radiative properties of such loads are important and spectroscopy and imaging constitute a very valuable and informative diagnostic tool. The set of theoretical codes is implemented which provides non-LTE kinetics, wire ablation dynamic, and MHD modeling. This talk is based on the results of new recent experiments with planar wire arrays on Zebra at UNR. We start with results on radiative properties of a uniform single planar wire array (SPWA) from alloyed Al wires and move to combined triple planar wire arrays (TPWA) made from two materials, Cu and Al. Such combined TPWA includes three planar wire rows that are parallel to each other and made of either Cu or Al alloyed wires. Three different configurations (Al/Cu/Al, Cu/Al/Cu, and Cu/Cu/Al) are considered and compared with each other, and with the results from SPWA of the same materials. X-ray time-gated and time integrated pinhole images and spectra are analyzed together with bolometer, PCD, and XRD measurements, and optical images. Emphasis is made on the radiative properties and temporal and spatial evolution of plasma parameters of such two-component plasmas. The opacity effects are considered and the important question of what causes K-shell Al lines to be optically thin in combined TPWAs is addressed. In conclusion, the new findings from studying multi-planar wire array implosions are summarized and their input to Z-pinch radiation physics is discussed.

  20. Z-Pinch Generated X-Rays in Static-Wall Hohlraum Geometry Demonstrate Potential for Indirect-Drive ICF Studies

    SciTech Connect

    BOWERS,RICHARD; CHANDLER,GORDON A.; HEBRON,DAVID E.; LEEPER,RAMON J.; MATUSLKA,WALTER; MOCK,RAYMOND CECIL; NASH,THOMAS J.; OLSON,CRAIG L.; PETERSON,BOB; PETERSON,DARRELL; RUGGLES,LAURENCE E.; SANFORD,THOMAS W. L.; SIMPSON,WALTER W.; STRUVE,KENNETH W.; VESEY,ROGER A.

    1999-11-01

    Hohlraums of full ignition scale (6-mm diameter by 7-mm length) have been heated by x-rays from a z-pinch magnet on Z to a variety of temperatures and pulse shapes which can be used to simulate the early phases of the National Ignition Facility (NIF) temperature drive. The pulse shape is varied by changing the on-axis target of the z pinch in a static-wall-hohlraum geometry. A 2-{micro}m-thick walled Cu cylindrical target of 8-mm diameter filled with 10 mg/cm{sup 3} CH, for example, produces foot-pulse conditions of {approx}85 eV for a duration of {approx}10 ns, while a solid cylindrical target of 5-mm diameter and 14-mg/cm{sup 3} CH generates first-step-pulse conditions of {approx}122 eV for a duration of a few ns. Alternatively, reducing the hohlraum size (to 4-mm diameter by 4-mm length) with the latter target has increased the peak temperature to {approx}150 eV, which is characteristic of a second-step-pulse temperature. In general, the temperature T of these x-ray driven hohlraums is in agreement with the Planckian relation T{approx}(P/A){sup 1/4}. P is the measured x-ray input power and A is the surface area of the hohlraum. Fully-integrated 2-D radiation-hydrodynamic simulations of the z pinch and subsequent hohlraum heating show plasma densities within the useful volume of the hohlraums to be on the order of air or less.

  1. Z-Pinch Generated X-Rays in Static-Wall Hohlraum Geometry Demonstrate Potential for Indirect-Drive ICF Studies

    SciTech Connect

    Sandord, T.W.L.; Olson, R.E.; Chandler, G.A.; Hebron, D.E.; Mock, R.C.; Leeper, R.J.; Nash, T.J.; Ruggles, L.E.; Simpson, W.W.; Struve, K.W.; Vesey, R.A.; Bowers, R.L.; Matuska, W.; Peterson, D.L.; Peterson, R.R.

    1999-08-25

    Hohlraums of full ignition scale (6-mm diameter by 7-mm length) have been heated by x-rays from a z-pinch target on Z to a variety of temperatures and pulse shapes which can be used to simulate the early phases of the National Ignition Facility (NIF) temperature drive. The pulse shape is varied by changing the on-axis target of the z pinch in a static-wall-hohlraum geometry. A 2-{micro}m-thick walled Cu cylindrical target of 8-mm diameter filled with 10 mg/cm{sup 3} CH, for example, produces foot-pulse conditions of {minus}85 eV for a duration of {approximately} 10 ns, while a solid cylindrical target of 5-mm diameter and 14-mg/cm{sup 3} CH generates first-step-pulse conditions of {approximately} 122 eV for a duration of a few ns. Alternatively, reducing the hohlraum size (to 4-mm diameter by 4-mm length) with the latter target has increased the peak temperature to {approximately} 150 eV, which is characteristic of a second-step-pulse temperature. In general, the temperature T of these x-ray driven hohlraums is in agreement with the Planckian relation (T-(P/A){sup 1/4}). P is the measured x-ray input power and A is the surface area of the hohlraum. Fully-integrated 2-D radiation-hydrodynamic simulations of the z pinch and subsequent hohlraum heating show plasma densities within the useful volume of the hohlraums to be on the order of air or less.

  2. Anisotropy of energy losses in high-current Z-pinches produced by the implosion of cylindrical tungsten wire arrays

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. V.; Volkov, G. S.; Grabovski, E. V.; Gritsuk, A. N.; Lakhtyushko, N. I.; Medovshchikov, S. F.; Oleinik, G. M.; Svetlov, E. V.

    2014-02-01

    Results are presented from measurements of the anisotropy of energy losses in high-current Z-pinches produced by the implosion of wire arrays at the ANGARA-5-1 facility at load currents of up to 4MA. The energy losses were measured in the radial direction and along the pinch axis from the anode side. The main diagnostics were time-integrated thermocouple calorimeters, nanosecond X-ray diodes (XRDs) with different filters, and a foil radiation calorimeter with a time resolution of 2 μs. The azimuthal anisotropy of energy losses was measured for different wire array configurations and different shapes of the high-voltage electrode. The presence of strong initial azimuthal inhomogeneity of the wire mass distribution (sectioned arrays), as well as the use of conical electrodes instead of plane ones, does not increase the azimuthal inhomogeneity of the total energy losses. For cylindrical wire arrays, energy losses in the radial direction are compared with those along the pinch axis. According to XRD and calorimetric measurements, the radiation yield per unit solid angle along the pinch axis is two to three times lower than that in the radial direction. In the axial direction, the energy flux density of the expanding plasma is two to three times lower than the radiation intensity. The measured radiation yield across the pinch is 2.5-5 kJ/sr, while that along the pinch axis is 1-2 kJ/sr. The results obtained by means of XRDs agree to within measurement errors with those obtained using the radiation calorimeter. It is found that the energy per unit solid angle carried by the expanding plasma in the radial direction does not exceed 10% of the soft X-ray yield. Analysis of the structure of time-integrated pinhole images and signals from the radial and axial XRDs shows that radiation emitted in the radial direction from the hot central region of the pinch is partially screened by the less dense surrounding plasma halo, whereas radiation emitted in the axial direction is a superposition of the emissions from the hot dense central region of the pinch and the colder less dense peripheral plasma.

  3. Observation of emission process in hydrogen-like nitrogen Z-pinch discharge with time integrated soft X-ray spectrum pinhole image

    SciTech Connect

    Sakai, Y.; Kumai, H.; Nakanishi, Y.; Ishizuka, Y.; Takahashi, S.; Komatsu, T.; Xiao, Y.; Bin, H.; Quishi, Z.; Hayashi, Y.; Song, I.; Kawamura, T.; Watanabe, M.; Hotta, E.; Rosenzweig, J.

    2013-02-15

    The emission spectra of hydrogen-like nitrogen Balmer at the wavelength of 13.4 nm in capillary Z-pinch discharge plasma are experimentally examined. Ionization to fully strip nitrogen at the pinch maximum, and subsequent rapid expansion cooling are required to establish the population inversion between the principal quantum number of n = 2 and n = 3. The ionization and recombination processes with estimated plasma parameters are evaluated by utilizing a time integrated spectrum pinhole image containing radial spatial information. A cylindrical capillary plasma is pinched by a triangular pulsed current with peak amplitude of 50 kA and pulse width of 50 ns.

  4. Pulsed current wave shaping with a transmission line by utilizing superposition of a forward and a backward voltage wave for fast capillary Z-pinch discharge

    SciTech Connect

    Sakai, Y.; Takahashi, S.; Watanabe, M.; Hotta, E.; Kim, G.-H.

    2010-04-15

    By using a water transmission line, current wave shaping was demonstrated for a fast capillary Z-pinch discharge recombination soft x-ray laser study. The pulsed power system consists of a water capacitor, a gap switch, a transmission line, and a capillary plasma load. A voltage wave initiated at the water capacitor propagates toward the capillary load through the transmission line. Control of the pulse delay that occurred in the transmission line provides the superposition of the forward and the backward voltage waves effectively in order to perform current wave shaping with higher current amplitude and rapid current decay.

  5. Planar Wire-Array Z-Pinch Implosion Dynamics and X-Ray Scaling at Multiple-MA Drive Currents for a Compact Multisource Hohlraum Configuration

    SciTech Connect

    Jones, B.; Ampleford, D. J.; Vesey, R. A.; Cuneo, M. E.; Coverdale, C. A.; Waisman, E. M.; Jones, M. C.; Fowler, W. E.; Stygar, W. A.; Serrano, J. D.; Vigil, M. P.; Esaulov, A. A.; Kantsyrev, V. L.; Safronova, A. S.; Williamson, K. M.; Chuvatin, A. S.; Rudakov, L. I.

    2010-03-26

    An indirect drive configuration is proposed wherein multiple compact Z-pinch x-ray sources surround a secondary hohlraum. Planar compact wire arrays allow reduced primary hohlraum surface area compared to cylindrical loads. Implosions of planar arrays are studied at up to 15 TW x-ray power on Saturn with radiated yields exceeding the calculated kinetic energy, suggesting other heating paths. X-ray power and yield scaling studied from 1-6 MA motivates viewfactor modeling of four 6-MA planar arrays producing 90 eV radiation temperature in a secondary hohlraum.

  6. Mass-profile and instability-growth measurements for 300-wire Z-pinch implosions driven by 14-18 MA.

    PubMed

    Sinars, D B; Cuneo, M E; Yu, E P; Bliss, D E; Nash, T J; Porter, J L; Deeney, C; Mazarakis, M G; Sarkisov, G S; Wenger, D F

    2004-10-01

    We present the first comprehensive study of high wire-number, wire-array Z-pinch dynamics at 14-18 MA using x-ray backlighting and optical shadowgraphy diagnostics. The cylindrical arrays retain slowly expanding, dense wire cores at the initial position up to 60% of the total implosion time. Azimuthally correlated instabilities at the array edge appear during this stage which continue to grow in amplitude and wavelength after the start of bulk motion, resulting in measurable trailing mass that does not arrive on axis before peak x-ray emission. PMID:15524803

  7. Observations of modified three-dimensional instability structure for imploding z-pinch liners that are premagnetized with an axial field.

    PubMed

    Awe, T J; McBride, R D; Jennings, C A; Lamppa, D C; Martin, M R; Rovang, D C; Slutz, S A; Cuneo, M E; Owen, A C; Sinars, D B; Tomlinson, K; Gomez, M R; Hansen, S B; Herrmann, M C; McKenney, J L; Nakhleh, C; Robertson, G K; Rochau, G A; Savage, M E; Schroen, D G; Stygar, W A

    2013-12-01

    Novel experimental data are reported that reveal helical instability formation on imploding z-pinch liners that are premagnetized with an axial field. Such instabilities differ dramatically from the mostly azimuthally symmetric instabilities that form on unmagnetized liners. The helical structure persists at nearly constant pitch as the liner implodes. This is surprising since, at the liner surface, the azimuthal drive field presumably dwarfs the axial field for all but the earliest stages of the experiment. These fundamentally 3D results provide a unique and challenging test for 3D-magnetohydrodynamics simulations. PMID:24476283

  8. Planar wire-array Z-pinch implosion dynamics and X-ray scaling at multiple-MA drive currents for a compact multisource hohlraum configuration.

    PubMed

    Jones, B; Ampleford, D J; Vesey, R A; Cuneo, M E; Coverdale, C A; Waisman, E M; Jones, M C; Fowler, W E; Stygar, W A; Serrano, J D; Vigil, M P; Esaulov, A A; Kantsyrev, V L; Safronova, A S; Williamson, K M; Chuvatin, A S; Rudakov, L I

    2010-03-26

    An indirect drive configuration is proposed wherein multiple compact Z-pinch x-ray sources surround a secondary hohlraum. Planar compact wire arrays allow reduced primary hohlraum surface area compared to cylindrical loads. Implosions of planar arrays are studied at up to 15 TW x-ray power on Saturn with radiated yields exceeding the calculated kinetic energy, suggesting other heating paths. X-ray power and yield scaling studied from 1-6 MA motivates viewfactor modeling of four 6-MA planar arrays producing 90 eV radiation temperature in a secondary hohlraum. PMID:20366539

  9. Pulsed current wave shaping with a transmission line by utilizing superposition of a forward and a backward voltage wave for fast capillary Z-pinch discharge.

    PubMed

    Sakai, Y; Takahashi, S; Watanabe, M; Kim, G-H; Hotta, E

    2010-04-01

    By using a water transmission line, current wave shaping was demonstrated for a fast capillary Z-pinch discharge recombination soft x-ray laser study. The pulsed power system consists of a water capacitor, a gap switch, a transmission line, and a capillary plasma load. A voltage wave initiated at the water capacitor propagates toward the capillary load through the transmission line. Control of the pulse delay that occurred in the transmission line provides the superposition of the forward and the backward voltage waves effectively in order to perform current wave shaping with higher current amplitude and rapid current decay. PMID:20441338

  10. High energy axial ion beam generated by deuterium gas-puff Z-pinch at the current level of 3 MA

    NASA Astrophysics Data System (ADS)

    Rezac, K.; Klir, D.; Kubes, P.; Cikhardt, J.; Batobolotova, B.; Kravarik, J.; Orcikova, H.; Turek, K.; Shishlov, A.; Labetsky, A.; Kokshenev, V.; Ratakhin, N.; GIT-12 Team

    2014-10-01

    The contribution presents results from Z-pinch experiments with a plasma shell on deuterium gas-puff (with deuterium linear mass of about 100 ?g/cm) carried out on the GIT-12 generator at IHCE in Tomsk at the current level slightly below 3 MA. The first purpose of experiments was to study the influence of different parameters on the production of neutrons. Neutron yield up to 5 1012 neutrons/shot was measured in the shot with LiF catcher. The second purpose was the examination of high-energy ions generated on the Z-pinch axis using RCF and CR-39. Very interesting results were provided by ion pinhole camera, where the influence of magnetic field on the ion beam could be studied. One of the conclusions is that the ions with energy below 10 MeV were significantly deflected by magnetic field. Work supported by MEYS CR research Programs No. ME090871, No. LG13029, by GACR Grant No. P205/12/0454, Grant CRA IAEA No. 17088 and RFBR Grant No. 13-08-00479-a.

  11. Study of Ablation and Implosion Stages of 1-MA Wire Array Z-Pinch using X-ray Laser-Based Backlighting

    NASA Astrophysics Data System (ADS)

    Anderson, Austin; Ivanov, Vladimir; Papp, Daniel; Talbot, Bjorn; Astanovitskiy, Alexey

    2013-10-01

    The ablation and implosion stages of wire array z-pinches were studied using laser-based x-ray imaging at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. X-ray backlighting at the wavelength of 6.65 Å was provided by hitting a Si target with the 50 TW Leopard laser. Laser-based radiography allows flexibility in both the timing and the position of the x-ray source. The issue of the method is the small energy of the laser pulse compared to radiation of the Z pinch. A spherically bent quartz crystal can give spatial resolution <10 microns and spectral linewidth of the x-ray on the order of 10-4. X-ray imaging allows viewing of the dense core of plasma column during the ablation stage. Wires with diameters 7.6-15 were resolved in test shots. Images of the wire-array at the ablation stage are discussed. Work was supported by the DOE grant DE-SC0008824 and DOE/NNSA UNR grant DE-FC52-06NA27616.

  12. Simulation and mitigation of the magneto-Rayleigh-Taylor instabilities in Z-pinch gas discharge extreme ultraviolet plasma radiation sources

    SciTech Connect

    Huang, B.; Tomizuka, T.; Xie, B.; Sakai, Y.; Zhu, Q.; Song, I.; Okino, A.; Xiao, F.; Watanabe, M.; Hotta, E.

    2013-11-15

    The development and use of a single-fluid two-temperature approximated 2-D Magneto-Hydrodynamics code is reported. Z-pinch dynamics and the evolution of Magneto-Rayleigh-Taylor (MRT) instabilities in a gas jet type Extreme Ultraviolet (EUV) source are investigated with this code. The implosion and stagnation processes of the Z-pinch dynamics and the influence of initial perturbations (single mode, multi- mode, and random seeds) on MRT instability are discussed in detail. In the case of single mode seeds, the simulation shows that the growth rates for mm-scale wavelengths up to 4 mm are between 0.05 and 0.065 ns{sup ?1}. For multi-mode seeds, the mode coupling effect leads to a series of other harmonics, and complicates MRT instability evolution. For perturbation by random seeds, the modes evolve to longer wavelengths and finally converge to a mm-scale wavelength approximately 1 mm. MRT instabilities can also alter the pinch stagnation state and lead to temperature and density fluctuations along the Z axis, which eventually affects the homogeneity of the EUV radiation output. Finally, the simulation results are related to experimental results to discuss the mitigations of MRT instability.

  13. Effect of axial B-field on shock structure within gas-filled liner z-pinch experiments performed on MAGPIE

    NASA Astrophysics Data System (ADS)

    Burdiak, Guy; Lebedev, Sergey; Suzuki-Vidal, Francisco; Swadling, George; Bland, Simon; Suttle, Lee; Bennet, Matthew; Hare, Jack

    2014-10-01

    Cylindrical liner z-pinches can be used to drive convergent shock waves through gas contained inside with a striking degree of azimuthal symmetry. Here we present data from gas-filled liner experiments that include an azimuthally anisotropic axial magnetic field. The 4-fold azimuthal symmetry of the magnetic field distribution imprints itself upon the shape of the convergent shocks. This occurs despite a ratio of shock ram pressure to magnetic pressure of order 100. Interferometry and emission imaging data that show the evolution of the shock structure as it converges are presented alongside potential explanations for the dynamics. These experiments provide a potential platform for studying magnetized plasma physics with relevance to magnetized fusion schemes. Experiments were performed on the 1.4 MA, 240 ns rise-time MAGPIE pulsed-power device at Imperial College London.

  14. Development and use of a two-dimensional interferometer to measure mass flow from a multi-shell Z-pinch gas puff.

    PubMed

    Coleman, P L; Lamppa, D C; Madden, R E; Wilson-Elliott, K; Jones, B; Ampleford, D J; Bliss, D E; Jennings, C; Bixler, A; Krishnan, M

    2012-08-01

    For gas puff Z-pinches, the K-shell x-ray yield is maximized with the use of a multi-shell nozzle. Optimization of the yield, verification of hydrodynamic models of the nozzle flows, and plausible MHD code modeling of the implosions require data on the radial and axial (R,Z) distribution of mass in the nozzle's flow field. Interferometry is a well-established technique for acquiring such data. We describe the development and use of a two-dimensional interferometer with emphasis on the required data reduction methods. We also show that the instrument can derive the flow from each individual nozzle in a multi-shell system. PMID:22938283

  15. COBRA-STAR, a five frame point-projection x-ray imaging system for 1 MA scale wire-array Z pinches.

    PubMed

    Douglass, J D; Hammer, D A

    2008-03-01

    A new imaging system for 1 MA scale wire-array Z-pinch experiments that produces up to five high-resolution x-ray images per experimental pulse has been developed. Calibrated areal density measurements of the Z-pinch plasma can be obtained from each pulse. The system substitutes five molybdenum (Mo) X pinches for the normal copper return-current conductors to provide point sources of x-rays for point-projection radiography. Each backlighting X pinch consists of four Mo wires, the x-ray burst timing of which was controlled by varying the wire diameter (mass) from 10.2 to 30 microm in the five X pinches. Typical images have a 16x8 mm2 field of view at the wire array and a magnification of about 6.5:1 on the x-ray-sensitive film. Titanium (Ti) filters in front of the films transmit continuum radiation in the spectral range of 3-5 keV. Inclusion on the Ti of a step wedge having known thickness increments of the same material as the wires enables the calibrated areal density measurements to be made of the exploding wire plasmas. Here, we used tungsten (W) step wedges with step thicknesses ranging from 0.015 to 1.1 microm to obtain accurate (+/-10%) areal density measurements of W plasmas from the spatial profile of film exposure. When imaging arrays that produce intense radiation pulses, a plastic monofilament "quencher" is placed on axis to avoid film saturation. Images have subnanosecond temporal resolution and about 7 microm spatial resolution. PMID:18377006

  16. Electrical Resistivity Measurements of Hot Dense Aluminum

    NASA Astrophysics Data System (ADS)

    Benage, J. F.; Shanahan, W. R.; Murillo, M. S.

    1999-10-01

    Electrical transport properties of dense aluminum are measured in the disordered liquidlike phase using a well-tamped, thermally equilibrated, exploding wire z pinch. Direct measurements of the electrical conductivity have been made using voltage and current measurements. Our measurements span the minimum conductivity regime, at higher densities than have been produced previously. We find that some Ziman-like theoretical predictions are in fair agreement with the data and one Ziman-like theoretical approach is in good agreement, in contrast to other experiments performed in similar regimes which indicate poor agreement with such theories.

  17. Electrical Resistivity Measurements of Hot Dense Aluminum

    SciTech Connect

    Benage, J.F.; Shanahan, W.R.; Murillo, M.S.

    1999-10-01

    Electrical transport properties of dense aluminum are measured in the disordered liquidlike phase using a well-tamped, thermally equilibrated, exploding wire {ital z} pinch. Direct measurements of the electrical conductivity have been made using voltage and current measurements. Our measurements span the minimum conductivity regime, at higher densities than have been produced previously. We find that some Ziman-like theoretical predictions are in fair agreement with the data and one Ziman-like theoretical approach is in good agreement, in contrast to other experiments performed in similar regimes which indicate poor agreement with such theories. {copyright} {ital 1999} {ital The American Physical Society }

  18. Thermal stress anomaly in rare-earth-doped fiber materials for high-power fiber lasers codoped with aluminum and phosphorus

    NASA Astrophysics Data System (ADS)

    Just, F.; Unger, S.; Kirchhof, J.; Reichel, V.; Bartelt, H.

    2010-05-01

    It is well known that thermal stress can significantly influence the properties of optical fibers. These stresses are caused by variations in the coefficient of thermal expansion (CTE) of the differently doped areas in the fiber, like the core and the cladding. On the one hand, the stress has a strong effect on the mechanical stability of fibers. On the other hand, the stress also modifies the most essential property of a fiber, the refractive index distribution, and therefore also the propagation properties. Similar to the effect of generation of birefringence in polarisation maintaining fibers, thermal stress also generates changes in the refractive index of the differently doped regions in the fiber. We report on results of non-destructive polarimetric stress measurements in ytterbium doped fiber preforms, that are codoped with aluminum as well as with phosphorus. Simple models of changes in the CTE for samples doped with multiple elements assume an additive superposition of the changes caused by each dopant. In contrast to such simple models, our investigations have shown that the induced stress cannot be explained by an additive change in the CTE of the glass material. The occurring stresses turn out to be smaller than the simple sum of the effects generated by the respective dopants. This result is also in agreement with measurements of the refractive index profile of these samples. The changes in the index are again not additive for doping with both aluminum and phosphorus.

  19. Optical guidance of terrawatt laser pulses by the implosion phase of a fast Z-pinch discharge in a gas-filled capillary.

    PubMed

    Hosokai, T; Kando, M; Dewa, H; Kotaki, H; Kondo, S; Hasegawa, N; Nakajima, K; Horioka, K

    2000-01-01

    A new method of optical guidance by the implosion phase of a fast Z-pinch discharge in a gas-filled capillary is proposed. An imploding plasma column has a concave electron-density profile in the radial direction, just before a stagnation phase driven by a converging current sheet and a shock wave. The feasibility of optical guidance of a high-intensity (>1 x 10(17) W/cm(2)) Ti:sapphire laser pulse by use of this method over a distance of 2 cm, corresponding to 12.5 times the Rayleigh length, has been experimentally demonstrated. The guiding-channel formation process was directly probed with a He-Ne laser beam. The electron density in the fully ionized channel was estimated to be 2.0 x 10(17) cm(-3) on the axis and 7.0 x 10(17) cm(-3) on the peaks of the channel edge, with a diameter of 70 mum, as indicated by the experimental results, which were corroborated by a magnetohydrodynamics simulation. PMID:18059765

  20. Operational aspects of an externally driven neutron multiplier assembly concept using a Z-pinch 14-MeV Neutron Source (ZEDNA).

    SciTech Connect

    Smith, David Lewis; Heames, Terence John; Parma, Edward J., Jr.; Peters, Curtis D.; Suo-Anttila, Ahti Jorma

    2007-09-01

    This report documents the key safety and operational aspects of a Z-pinch Externally Driven Nuclear Assembly (ZEDNA) reactor concept which is envisioned to be built and operated at the Z-machine facility in Technical Area IV. Operating parameters and reactor neutronic conditions are established that would meet the design requirements of the system. Accident and off-normal conditions are analyzed using a point-kinetics, one-dimensional thermo-mechanical code developed specifically for ZEDNA applications. Downwind dose calculations are presented to determine the potential dose to the collocated worker and public in the event of a hypothetical catastrophic accident. Current and magnetic impulse modeling and the debris shield design are examined for the interface between the Z machine and the ZEDNA. This work was performed as part of the Advanced Fusion Grand Challenge Laboratory Directed Research and Development Program. The conclusion of this work is that the ZEDNA concept is feasible and could be operated at the Z-machine facility without undue risk to collocated workers and the public.

  1. Spatially-Resolved Argon and Neon K-Shell X-Ray Spectra from Triple-Nozzle Gas-Puff Z-Pinches on Cobra

    NASA Astrophysics Data System (ADS)

    Qi, Niansheng; de Grouchy, Philip; Hoyt, Cad; Shelkovenko, Tania; Pikuz, Sergei; Atoyan, Levon; Potter, William; Cahill, Adam; Greenly, John; Kusse, Bruce; Hammer, David

    2014-10-01

    We present the x-ray spectra obtained during Ar/Ne gas puff z-pinch experiments on the 1MA, 200ns COBRA pulsed power generator at Cornell University. A triple-nozzle gas-puff, which produces two annular (``outer'' and ``inner'') gas puffs and a high density center jet, is used to tailor the radial mass density distribution. Argon and/or neon plasmas are imploded. Filtered x-ray photo-conducting detectors are used for timing the neon and argon K-shell emission and a filtered x-ray pinhole camera images the K-shell x-ray source size. A spectrometer with three spherical mica crystals is used to capture the K-shell x-ray emission. Our objective is to diagnose the Ar and Ne pinch plasma densities (1019-1020 cm-3) and temperatures (0.5-2 keV) with 0.1 mm axial and/or radial spatial resolution from the K-shell X-ray spectra. The He-like resonance to intercombination line ratio will be used to estimate the electron density and the He-like resonance to Li-like satellite line ratio will be used to estimate the electron temperature. We will also add Cl as a dopant in either the center Ar gas jet or inner annular puff for K-shell x-ray spectrum studies. Work supported by DOE Grant No. DE-NA0001836.

  2. Measurements of the Time-Resolved Spatial Magnetic Field Distribution and Structure of a Z-Pinch Plasma throughout the Stagnation Process

    NASA Astrophysics Data System (ADS)

    Rosenzweig, Guy; Kroupp, Eyal; Starobinets, Alexander; Fisher, Amnon; Maron, Yitzhak

    2014-10-01

    Knowledge of the time resolved magnetic field spatial distribution in imploding plasma is of high importance due to its role in determining the plasma characteristics. Theoretical models of Z pinch plasmas strongly rely on the magnetic field distribution for the predictions of the hydrodynamic and atomic processes, and of the energy coupling. Recently, we have employed a new spectroscopic technique to measure the magnetic field, by recording the individual shapes of the left and right circularly polarized components of Zeeman-split emission lines. This technique is applicable even for Stark- or Doppler-dominated lines. Measuring selected lines from various charge states allowed determining unambiguously the spatial dependence of the magnetic field and current. It was found that at stagnation the current spreads over the entire plasma column with only a small fraction flowing through the stagnating plasma. These results are combined with the determination of the radial distribution of the electron and ion densities and temperatures. The variations in the z dimension is also studied. Understanding the magnetic field distribution and the detailed plasma structure here found, should be pursued with MHD modelling. This research is supported by the Israel Science Foundation.

  3. Deposition and thermal characterization of nano-structured aluminum nitride thin film on Cu-W substrate for high power light emitting diode package.

    PubMed

    Cho, Hyun Min; Kim, Min-Sun

    2014-08-01

    In this study, we developed AlN thick film on metal substrate for hybrid type LED package such as chip on board (COB) using metal printed circuit board (PCB). Conventional metal PCB uses ceramic-polymer composite as electrical insulating layer. Thermal conductivities of such type dielectric film are typically in the range of 1~4 W/m · K depending on the ceramic filler. Also, Al or Cu alloy are mainly used for metal base for high thermal conduction to dissipate heat from thermal source mounted on metal PCB. Here we used Cu-W alloy with low thermal expansion coefficient as metal substrate to reduce thermal stress between insulating layer and base metal. AlN with polyimide (PI) powder were used as starting materials for deposition. We could obtain very high thermal conductivity of 28.3 W/m · K from deposited AlN-PI thin film by AlN-3 wt% PI powder. We made hybrid type high power LED package using AlN-PI thin film. We tested thermal performance of this film by thermal transient measurement and compared with conventional metal PCB substrate. PMID:25936009

  4. Specific features of the structure of the Z-pinch emitting region formed during the implosion of a foam-wire load at the ANGARA-5-1 facility

    SciTech Connect

    Mitrofanov, K. N. Grabovski, E. V.; Gritsuk, A. N.; Laukhin, Ya. N.; Aleksandrov, V. V.; Oleinik, G. M.; Medovshchikov, S. F.; Shevel'ko, A. P.

    2013-01-15

    Results are presented from experimental studies of the structure of the compressed plasma of a Z-pinch produced during the implosion of a foam-wire load at the current of up to 3 MA. The foam-wire load consisted of two nested cylindrical cascades, one of which was a solid or hollow cylinder made of low-density agar-agar foam, while the other was a wire array. The wall thickness of a hollow foam cylinder was 100-200 {mu}m. The images of the pinch and its spectrum obtained with the help of multiframe X-ray cameras and a grazing incidence spectrograph with a spatial resolution were analyzed. Data on the spatial structure of the emitting regions and the soft X-ray (SXR) spectrum of the Z-pinch in the final stage of compression of a foam-wire load were obtained. The implosion modes characterized by the formation of hot regions during implosion of such loads were revealed. The characteristic scale lengths of the hot regions were determined. It is shown that the energy distribution of SXR photons in the energy range from 80 eV to 1 keV forms the spatial structure of Z-pinch images recorded during the implosion of foam-wire loads. It is revealed that the spectral density of SXR emission in the photon energy range of 300-600 eV from hot Z-pinch regions exceeds the spectral density of radiation from the neighboring Z-pinch regions by more than one order of magnitude. Groups of lines related to the absorption and emission of radiation by atoms and multicharged ions of carbon and oxygen in the outer foam cascade of a foam-wire load were recorded for the first time by analyzing the spatial distribution of the SXR spectra of multicharged ions of the Z-pinch. The groups of absorption lines of ions (C III, O III, O IV, and O VI) corresponding to absorption of SXR photons in the Z-pinch of a tungsten wire array, which served as the inner cascade of a foam-wire load, were identified. The plasma electron temperature measured from the charge composition of carbon and oxygen ions in the outer agar-agar foam cascade was 10-40 eV. During the implosion of foam-wire loads at currents of up to 3 MA, SXR pulses (h{nu} > 100 eV) with a duration of 10 ns and peak power of 3 TW were detected. It is shown that the temporal profile of single-peak and double-peak SXR pulses can be controlled by varying the parameters of the outer and inner cascades of the foam-wire load.

  5. X-ray emission from z pinches at 10 7 A: current scaling, gap closure, and shot-to-shot fluctuations.

    PubMed

    Stygar, W A; Ives, H C; Fehl, D L; Cuneo, M E; Mazarakis, M G; Bailey, J E; Bennett, G R; Bliss, D E; Chandler, G A; Leeper, R J; Matzen, M K; McDaniel, D H; McGurn, J S; McKenney, J L; Mix, L P; Muron, D J; Porter, J L; Ramirez, J J; Ruggles, L E; Seamen, J F; Simpson, W W; Speas, C S; Spielman, R B; Struve, K W; Torres, J A; Vesey, R A; Wagoner, T C; Gilliland, T L; Horry, M L; Jobe, D O; Lazier, S E; Mills, J A; Mulville, T D; Pyle, J H; Romero, T M; Seamen, J J; Smelser, R M

    2004-04-01

    We have measured the x-ray power and energy radiated by a tungsten-wire-array z pinch as a function of the peak pinch current and the width of the anode-cathode gap at the base of the pinch. The measurements were performed at 13- and 19-MA currents and 1-, 2-, 3-, and 4-mm gaps. The wire material, number of wires, wire-array diameter, wire-array length, wire-array-electrode design, normalized-pinch-current time history, implosion time, and diagnostic package were held constant for the experiments. To keep the implosion time constant, the mass of the array was increased as I2 (i.e., the diameter of each wire was increased as I), where I is the peak pinch current. At 19 MA, the mass of the 300-wire 20-mm-diam 10-mm-length array was 5.9 mg. For the configuration studied, we find that to eliminate the effects of gap closure on the radiated energy, the width of the gap must be increased approximately as I. For shots unaffected by gap closure, we find that the peak radiated x-ray power P(r) proportional to I1.24+/-0.18, the total radiated x-ray energy E(r) proportional to I1.73+/-0.18, the x-ray-power rise time tau(r) proportional to I0.39+/-0.34, and the x-ray-power pulse width tau(w) proportional to demonstrate that the internal energy and radiative opacity of the pinch are not responsible for the observed subquadratic power scaling. Heuristic wire-ablation arguments suggest that quadratic power scaling will be achieved if the implosion time tau(i) is scaled as I(-1/3). The measured 1sigma shot-to-shot fluctuations in P(r), E(r), tau(r), tau(w), and tau(i) are approximately 12%, 9%, 26%, 9%, and 2%, respectively, assuming that the fluctuations are independent of I. These variations are for one-half of the pinch. If the half observed radiates in a manner that is statistically independent of the other half, the variations are a factor of 2(1/2) less for the entire pinch. We calculate the effect that shot-to-shot fluctuations of a single pinch would have on the shot-success probability of the double-pinch inertial-confinement-fusion driver proposed by Hammer et al. [Phys. Plasmas 6, 2129 (1999)]. We find that on a given shot, the probability that two independent pinches would radiate the same peak power to within a factor of 1+/-alpha (where 0< or =alpha<1) is equal to erf(alpha/2sigma), where sigma is the 1sigma fractional variation of the peak power radiated by a single pinch. Assuming alpha must be < or =7% to achieve adequate odd-Legendre-mode radiation symmetry for thermonuclear-fusion experiments, sigma must be <3% for the shot-success probability to be > or =90%. The observed (12/2(1/2))%=8.5% fluctuation in P(r) would provide adequate symmetry on 44% of the shots. We propose that three-dimensional radiative-magnetohydrodynamic simulations be performed to quantify the sensitivity of the x-ray emission to various initial conditions, and to determine whether an imploding z pinch is a spatiotemporal chaotic system. PMID:15169102

  6. Recyclable transmission line (RTL) and linear transformer driver (LTD) development for Z-pinch inertial fusion energy (Z-IFE) and high yield.

    SciTech Connect

    Sharpe, Robin Arthur; Kingsep, Alexander S. (Kurchatov Institute, Moscow, Russia); Smith, David Lewis; Olson, Craig Lee; Ottinger, Paul F. (Naval Research Laboratory, Washington, DC); Schumer, Joseph Wade (Naval Research Laboratory, Washington, DC); Welch, Dale Robert (Voss Scientific, Albuquerque, NM); Kim, Alexander (High Currents Institute, Tomsk, Russia); Kulcinski, Gerald L. (University of Wisconsin, Madison, WI); Kammer, Daniel C. (University of Wisconsin, Madison, WI); Rose, David Vincent (Voss Scientific, Albuquerque, NM); Nedoseev, Sergei L. (Kurchatov Institute, Moscow, Russia); Pointon, Timothy David; Smirnov, Valentin P.; Turgeon, Matthew C.; Kalinin, Yuri G. (Kurchatov Institute, Moscow, Russia); Bruner, Nichelle "Nicki" (Voss Scientific, Albuquerque, NM); Barkey, Mark E. (University of Alabama, Tuscaloosa, AL); Guthrie, Michael (University of Wisconsin, Madison, WI); Thoma, Carsten (Voss Scientific, Albuquerque, NM); Genoni, Tom C. (Voss Scientific, Albuquerque, NM); Langston, William L.; Fowler, William E.; Mazarakis, Michael Gerrassimos

    2007-01-01

    Z-Pinch Inertial Fusion Energy (Z-IFE) complements and extends the single-shot z-pinch fusion program on Z to a repetitive, high-yield, power plant scenario that can be used for the production of electricity, transmutation of nuclear waste, and hydrogen production, all with no CO{sub 2} production and no long-lived radioactive nuclear waste. The Z-IFE concept uses a Linear Transformer Driver (LTD) accelerator, and a Recyclable Transmission Line (RTL) to connect the LTD driver to a high-yield fusion target inside a thick-liquid-wall power plant chamber. Results of RTL and LTD research are reported here, that include: (1) The key physics issues for RTLs involve the power flow at the high linear current densities that occur near the target (up to 5 MA/cm). These issues include surface heating, melting, ablation, plasma formation, electron flow, magnetic insulation, conductivity changes, magnetic field diffusion changes, possible ion flow, and RTL mass motion. These issues are studied theoretically, computationally (with the ALEGRA and LSP codes), and will work at 5 MA/cm or higher, with anode-cathode gaps as small as 2 mm. (2) An RTL misalignment sensitivity study has been performed using a 3D circuit model. Results show very small load current variations for significant RTL misalignments. (3) The key structural issues for RTLs involve optimizing the RTL strength (varying shape, ribs, etc.) while minimizing the RTL mass. Optimization studies show RTL mass reductions by factors of three or more. (4) Fabrication and pressure testing of Z-PoP (Proof-of-Principle) size RTLs are successfully reported here. (5) Modeling of the effect of initial RTL imperfections on the buckling pressure has been performed. Results show that the curved RTL offers a much greater buckling pressure as well as less sensitivity to imperfections than three other RTL designs. (6) Repetitive operation of a 0.5 MA, 100 kV, 100 ns, LTD cavity with gas purging between shots and automated operation is demonstrated at the SNL Z-IFE LTD laboratory with rep-rates up to 10.3 seconds between shots (this is essentially at the goal of 10 seconds for Z-IFE). (7) A single LTD switch at Tomsk was fired repetitively every 12 seconds for 36,000 shots with no failures. (8) Five 1.0 MA, 100 kV, 100 ns, LTD cavities have been combined into a voltage adder configuration with a test load to successfully study the system operation. (9) The combination of multiple LTD coaxial lines into a tri-plate transmission line is examined. The 3D Quicksilver code is used to study the electron flow losses produced near the magnetic nulls that occur where coax LTD lines are added together. (10) Circuit model codes are used to model the complete power flow circuit with an inductive isolator cavity. (11) LTD architectures are presented for drivers for Z-IFE and high yield. A 60 MA LTD driver and a 90 MA LTD driver are proposed. Present results from all of these power flow studies validate the whole LTD/RTL concept for single-shot ICF high yield, and for repetitive-shot IFE.

  7. Experimental study of star-like and small-diameter wire-array z-pinches on the 1-MA Zebra generator

    SciTech Connect

    Ivanov, V. V.; Sotnikov, V. I.; Kindel, J. M.; Hakel, P.; Mancini, R. C.; Astanovitskiy, A. L.; Haboub, A.; Altemara, S. D.; Le Galloudec, B.; Nalajala, V.; Shevelko, A. P.; Kazakov, E. D.

    2009-01-21

    Star-like wire arrays and small-diameter (1-3 mm in diameter) cylindrical loads were tested in the 1-MA Zebra generator. Mitigation of plasma inhomogeneity was observed in the implosions of star-like loads, which consisted of multiple nested, cylindrical arrays aligned azimuthally such that the wires appear as linear array 'rays' extending from the axis of symmetry. The implosion in these loads is directed along the 'rays' of the star and cascades from wire to wire to the center to form moving plasma columns with smooth leading edges. Despite the low azimuthal symmetry, a star-like wire array produces a stable x-ray pulse with a high peak power and a short duration of 8-12-ns. This can be linked to the stabilization of instabilities due to the multiple nesting. X-ray generation and implosion dynamics in wire arrays 1-16 mm in diameter were investigated to find a transition between the regime with prevailing kinetic energy and 'non-kinetic' plasma heating. Loads 3-8 mm in diameter generate the highest x-ray power at the Zebra generator. The fall of x-ray power in 1-2-mm loads can be linked to the lack of kinetic energy. Laser probing diagnostics show the formation of 'necks' on the pinch during the bubble-like implosion. The energy balance provides the evidence of the enhanced plasma heating in z-pinches. Features of the implosions in small-diameter wire-arrays can help to identify the mechanisms of energy dissipation.

  8. Status On Multi-microsecond Prepulse Technique On Sphinx Machine Going From Nested To Single Wire Array For 800 ns Implosion Time Z-pinch

    SciTech Connect

    Maury, P.; Calamy, H.; Grunenwald, J.; Lassalle, F.; Zucchini, F.; Loyen, A.; Georges, A.; Morell, A.; Bedoch, J. P.

    2009-01-21

    The Sphinx machine{sup [1]} is a 6 MA, 1 {mu}S driver based on the LTD technology, used for Z-pinch experiments. Important improvements of Sphinx radiation output were recently obtained using a multi-microsecond current prepulse{sup [2]}. Total power per unit of length is multiplied by a factor of 6 and FWHM divided by a factor of 2.5. Early breakdown of the wires during the prepulse phase dramatically changes the ablation phase leading to an improvement of axial homogeneity of both the implosion and the final radiating column. As a consequence, the cathode bubble observed on classical shots is definitively removed. The implosion is then centered and zippering effect is reduced, leading to simultaneous x-ray emission of the whole length. A great reproducibility is obtained. Nested arrays were used before to mitigate the Rayleigh-Taylor instabilities during the implosion phase. Further experiments with pre-pulse technique are described here were inner array was removed. The goal of these experiments was to see if long prepulse could give stable enough implosion with single array and at the same time increase the {eta} parameter by reducing the mass of the load. Experimental results of single wire array loads of typical dimension 5 cm in height with implosion time between 700 and 900 ns and diameter varying between 80 and 140 mm are given. Parameters of the loads were varying in term of radius and number of wires. Comparisons with nested wire array loads are done and trends are proposed. Characteristics of both the implosion and the final radiating column are shown. 2D MHD numerical simulations of single wire array become easier as there is no interaction between outer and inner array anymore. A systematic study was done using injection mass model to benchmark simulation with experiments.

  9. Viscous Heating of Ions through Saturated Fine-Scale MHD Instabilities in a Z-Pinch at 200-300 KeV Temperature

    NASA Astrophysics Data System (ADS)

    Haines, Malcolm; Coverdale, Christine; Deeney, Chris; Lepell, P. David; Jones, Brent; Apruzese, J. P.

    2006-10-01

    Pulsed power driven Z-pinches yield large X-ray powers at stagnation, the energy of which can exceed by up to factors of 3 or 4, the estimated kinetic energy of the implosion. Furthermore, when electron temperatures are measured at stagnation similar in temperatures would not lead to pressure balance. These problems can be resolved by a theoretical model in which short wavelength (ka >> 1, and viscous Lundquist number 1), fast growing, m=O MHD instabilities reach a saturated amplitude, and the associated viscous dissipation of the vortices leads to ion heating. Equating this heating rate to the equipartition of energy to electrons leads to an estimate of the ion temperature and pinch radius at pressure balance. Extremely high ion temperatures in the range of 200-300 KeV are predicted from this model for stainless steel wire array experiments on Z at Sandia. These have been confirmed from time-resolved Doppler broadening spectroscopic measurements of the optically thin Fe He-? line. This conversion of magnetic energy into ion thermal energy occurs on the nanosecond timescale, and can prevent radiative collapse. Any accompanying loss of magnetic flux in this highly conducting plasma can be explained by the occurrence of a large number of hot spots along the axis, with electron density and temperature variating not exactly in phase. This leads to a significant value of the integral of E.dl. Dl along the axis due to the grad Pe term in Ohm's law, analogous to the magnetic field generating term found in laser-plasma interactions. Ref 1. M.G. Haines, et al; Phys. Rev. Lett. 96, 075003 (2006) Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-ACO4-94AL85000.

  10. Implementation of the thermonuclear process in D3He-9Be plasma on the basis of a Z pinch with an ultrafast laser ignition

    NASA Astrophysics Data System (ADS)

    Voronchev, V. T.; Kukulin, V. I.

    2010-01-01

    A new concept of inertial-magnetic confinement fusion is proposed. This concept is based on a high-current Z pinch combined with a femtosecond laser. The fusion target is composed of a D3He fuel contained under a high pressure inside a sealed cylindrical capsule made from metallic 9Be. An electric discharge along the capsule preheats the target and transforms it into a state of compressed liner. A subsequent TW femtosecond-laser pulse focused on a target end face causes ultrafast cold ignition of a small portion of the D3He fuel. This laser impact generates energetic electrons and ions, which trigger a nuclear-physics mechanism of a catalytic heating of the fuel and also creates a detonation shock wave capable of propagating along the plasma filament. It is shown that the self-sustaining fusion burn wave can appear in the D3He-9Be plasma, in which case the bulk of the energy release is carried by nonradioactive ions, with the energy gain being in excess of 50. The possibility of probing the fusion process by means of gamma-ray spectroscopy is also discussed. The radiative-capture reactions 3He( d, ?), D( d, ?), and 3He(3He, ?) naturally accompanying the burning of the D3He fuel are shown to serve as a convenient diagnostic tool. A nuclear marker of D3He fusion on the basis of the detection of monochromatic gamma rays produced in the reaction 9Be( ?, ?n), which is induced in the liner beryllium shell by energetic fusion alpha particles, is also examined.

  11. Implementation of the thermonuclear process in D{sup 3}He-{sup 9}Be plasma on the basis of a Z pinch with an ultrafast laser ignition

    SciTech Connect

    Voronchev, V. T. Kukulin, V. I.

    2010-01-15

    A new concept of inertial-magnetic confinement fusion is proposed. This concept is based on a high-current Z pinch combined with a femtosecond laser. The fusion target is composed of a D{sup 3}He fuel contained under a high pressure inside a sealed cylindrical capsule made from metallic {sup 9}Be. An electric discharge along the capsule preheats the target and transforms it into a state of compressed liner. A subsequent TW femtosecond-laser pulse focused on a target end face causes ultrafast cold ignition of a small portion of the D{sup 3}He fuel. This laser impact generates energetic electrons and ions, which trigger a nuclear-physics mechanism of a catalytic heating of the fuel and also creates a detonation shock wave capable of propagating along the plasma filament. It is shown that the self-sustaining fusion burn wave can appear in the D{sup 3}He-{sup 9}Be plasma, in which case the bulk of the energy release is carried by nonradioactive ions, with the energy gain being in excess of 50. The possibility of probing the fusion process by means of gamma-ray spectroscopy is also discussed. The radiative-capture reactions {sup 3}He(d, {gamma}), D(d, {gamma}), and {sup 3}He({sup 3}He, {gamma}) naturally accompanying the burning of the D{sup 3}He fuel are shown to serve as a convenient diagnostic tool. A nuclear 'marker' of D{sup 3}He fusion on the basis of the detection of monochromatic gamma rays produced in the reaction {sup 9}Be({alpha}, {gamma}n), which is induced in the liner beryllium shell by energetic fusion alpha particles, is also examined.

  12. Status On Multi-microsecond Prepulse Technique On Sphinx Machine Going From Nested To Single Wire Array For 800 ns Implosion Time Z-pinch

    NASA Astrophysics Data System (ADS)

    Maury, P.; Calamy, H.; Grunenwald, J.; Lassalle, F.; Zucchini, F.; Loyen, A.; Georges, A.; Morell, A.; Bedoch, J. P.

    2009-01-01

    The Sphinx machine[1] is a 6 MA, 1 ?S driver based on the LTD technology, used for Z-pinch experiments. Important improvements of Sphinx radiation output were recently obtained using a multi-microsecond current prepulse[2]. Total power per unit of length is multiplied by a factor of 6 and FWHM divided by a factor of 2.5. Early breakdown of the wires during the prepulse phase dramatically changes the ablation phase leading to an improvement of axial homogeneity of both the implosion and the final radiating column. As a consequence, the cathode bubble observed on classical shots is definitively removed. The implosion is then centered and zippering effect is reduced, leading to simultaneous x-ray emission of the whole length. A great reproducibility is obtained. Nested arrays were used before to mitigate the Rayleigh-Taylor instabilities during the implosion phase. Further experiments with pre-pulse technique are described here were inner array was removed. The goal of these experiments was to see if long prepulse could give stable enough implosion with single array and at the same time increase the ? parameter by reducing the mass of the load. Experimental results of single wire array loads of typical dimension 5 cm in height with implosion time between 700 and 900 ns and diameter varying between 80 and 140 mm are given. Parameters of the loads were varying in term of radius and number of wires. Comparisons with nested wire array loads are done and trends are proposed. Characteristics of both the implosion and the final radiating column are shown. 2D MHD numerical simulations of single wire array become easier as there is no interaction between outer and inner array anymore. A systematic study was done using injection mass model to benchmark simulation with experiments.

  13. Fabrication of high power aluminum: Free 0.8 micron to 1.0 micron InGaAsP/InGaP/GaAs lasers for optical pumping

    NASA Astrophysics Data System (ADS)

    Diaz, Jacqueline Estela

    1997-10-01

    A majority of commercially produced diode lasers are based on AlGaAs semiconductor material. This material system is unable to satisfy all of the requirements that are imposed by modern applications. Structural defects such as dark line defects and dark spot defects can spread through the active region of the laser, causing laser degradation. The mirror facets suffer from overheating which leads to local melting of the crystal. The use of special coatings is necessary for the AlGaAs lasers to minimize mirror absorption, and to maintain the reliability performance of the device. To overcome such problems as oxidation, structural dark line defect formation, and lifetime in AlGaAs lasers, the development of 808 nm InGaAsP/InGaP/GaAs lasers grown by metalorganic chemical vapor deposition has been performed in this study. In order to fabricate lasers with high output power levels, it was necessary to optimize metallization, etching, alloying, and cleaving for the Al-free system. Various metal deposition sequences, and annealing regimes to obtain ohmic contact behavior and low series resistance were investigated and optimized. Special high reflective coatings have been successfully developed for the aluminum-free lasers. Results of laser diode characterization are presented. High output powers of 7 W in pulse operation, and 5 W in continuous wave operation have been demonstrated with 100 ?m-wide aperture diode lasers. Laser arrays have achieved 70 W output power levels in quasi-cw operation with slope efficiencies of 0.70 W/A. These values are comparable to those of commercially available AlGaAs lasers. The lifetime performance of aluminum-free 808 nm uncoated lasers is longer than current state-of-the-art AlGaAs lasers. Six InGaAsP/InGaP/GaAs lasers ran continuously at 60oC with 1 W output power for more than 30,000 hours without degradation. To summarize, the subject of this dissertation is the fabrication and optimization of high power 808 nm InGaAsP/InGaP/GaAs lasers. The success of these 808 nm high power lasers has proven the overall superiority of the InGaAsP material system over AlGaAs. With these developments, the expansion of optoelectronics devices made of this unique material is inevitable for a wide range of commercial applications.

  14. High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert; Tverdokhlebov, Sergery; Manzella, David

    1999-01-01

    The development of Hall thrusters with powers ranging from tens of kilowatts to in excess of one hundred kilowatts is considered based on renewed interest in high power. high thrust electric propulsion applications. An approach to develop such thrusters based on previous experience is discussed. It is shown that the previous experimental data taken with thrusters of 10 kW input power and less can be used. Potential mass savings due to the design of high power Hall thrusters are discussed. Both xenon and alternate thruster propellant are considered, as are technological issues that will challenge the design of high power Hall thrusters. Finally, the implications of such a development effort with regard to ground testing and spacecraft intecrati'on issues are discussed.

  15. High power density targets

    NASA Astrophysics Data System (ADS)

    Pellemoine, Frederique

    2013-12-01

    In the context of new generation rare isotope beam facilities based on high-power heavy-ion accelerators and in-flight separation of the reaction products, the design of the rare isotope production targets is a major challenge. In order to provide high-purity beams for science, high resolution is required in the rare isotope separation. This demands a small beam spot on the production target which, together with the short range of heavy ions in matter, leads to very high power densities inside the target material. This paper gives an overview of the challenges associated with this high power density, discusses radiation damage issues in targets exposed to heavy ion beams, and presents recent developments to meet some of these challenges through different projects: FAIR, RIBF and FRIB which is the most challenging. Extensive use of Finite Element Analysis (FEA) has been made at all facilities to specify critical target parameters and R&D work at FRIB successfully retired two major risks related to high-power density and heavy-ion induced radiation damage.

  16. High Power Cryogenic Targets

    SciTech Connect

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  17. Plasma evolution and dynamics in high-power vacuum-transmission-line post-hole convolutes

    NASA Astrophysics Data System (ADS)

    Rose, D. V.; Welch, D. R.; Hughes, T. P.; Clark, R. E.; Stygar, W. A.

    2008-06-01

    Vacuum-post-hole convolutes are used in pulsed high-power generators to join several magnetically insulated transmission lines (MITL) in parallel. Such convolutes add the output currents of the MITLs, and deliver the combined current to a single MITL that, in turn, delivers the current to a load. Magnetic insulation of electron flow, established upstream of the convolute region, is lost at the convolute due to symmetry breaking and the formation of magnetic nulls, resulting in some current losses. At very high-power operating levels and long pulse durations, the expansion of electrode plasmas into the MITL of such devices is considered likely. This work examines the evolution and dynamics of cathode plasmas in the double-post-hole convolutes used on the Z accelerator [R. B. Spielman , Phys. Plasmas 5, 2105 (1998)PHPAEN1070-664X10.1063/1.872881]. Three-dimensional particle-in-cell (PIC) simulations that model the entire radial extent of the Z accelerator convolutefrom the parallel-plate transmission-line power feeds to the z-pinch load regionare used to determine electron losses in the convolute. The results of the simulations demonstrate that significant current losses (1.5 MA out of a total system current of 18.5 MA), which are comparable to the losses observed experimentally, could be caused by the expansion of cathode plasmas in the convolute regions.

  18. Influence of insulating coating on aluminum wire explosions

    SciTech Connect

    Li, Yang; Wu, Jian; Sheng, Liang; Zhao, Jizhen; Zhang, Mei; Yuan, Yuan; Peng, Bodong; Li, Xingwen

    2014-10-15

    Single wire explosions are widely used in understanding the early stages of z-pinch experiments. This paper presents a serial of experiments conducted on the pulse power generator with ∼1 kA peak current and ∼10 ns rising time in Xi'an Jiao Tong University. Polyimide coated aluminum wires and uncoated ones were tested under three different voltages to analyze the effect of insulating coating. Experimental results showed that insulating coating can increase the energy deposition 10%∼30% in aluminum wires by delaying the voltage collapse and raising the maximum load resistance. The substantial energy deposition resulted in about 20% faster expansion rates for coated wires. Experimental evidence that plasma channel shunts the current from the wire core was observed by streak camera and schlieren graphs. This paper also briefly discussed the influence of nonuniform coating on the morphology of wire expansion.

  19. Influence of insulating coating on aluminum wire explosions

    NASA Astrophysics Data System (ADS)

    Li, Yang; Sheng, Liang; Wu, Jian; Li, Xingwen; Zhao, Jizhen; Zhang, Mei; Yuan, Yuan; Peng, Bodong

    2014-10-01

    Single wire explosions are widely used in understanding the early stages of z-pinch experiments. This paper presents a serial of experiments conducted on the pulse power generator with 1 kA peak current and 10 ns rising time in Xi'an Jiao Tong University. Polyimide coated aluminum wires and uncoated ones were tested under three different voltages to analyze the effect of insulating coating. Experimental results showed that insulating coating can increase the energy deposition 10%30% in aluminum wires by delaying the voltage collapse and raising the maximum load resistance. The substantial energy deposition resulted in about 20% faster expansion rates for coated wires. Experimental evidence that plasma channel shunts the current from the wire core was observed by streak camera and schlieren graphs. This paper also briefly discussed the influence of nonuniform coating on the morphology of wire expansion.

  20. High power arcjet

    NASA Technical Reports Server (NTRS)

    Auweter-Kurtz, M.; Glocker, B.; Goelz, T. M.; Habiger, H.; Kurtz, H. L.; Schrade, H. O.; Wegmann, T.

    1990-01-01

    The activities on the development of the high power arc jet HIPARC, the thrust balance, and plasma diagnostic probes are discussed. Modifications of the HIPARC design and a synopsis of the materials used are given. Further experimental results with the TT30 thruster in the 50 kW range are presented. Some first calibration measurements of the thrust balance are also included. Progress concerning the development of plasma diagnostic devices is documented.

  1. High power microwave generator

    DOEpatents

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  2. High power microwave generator

    SciTech Connect

    Ekdahl, Carl A.

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  3. K-shell emission x-ray imaging of z-pinch plasmas with a pinhole and a logarithmic spiral crystal

    SciTech Connect

    Yang Qingguo; Li Zeren; Peng Qixian; Yang Libing; Chen Guanhua; Ye Yan; Huang Xianbin; Cai Hongchun; Li Jing; Xiao Shali

    2011-09-15

    An in-chamber, mini x-ray imaging instrument employs a pinhole and a logarithmic spiral crystal has been developed for obtaining K-shell line images of the imploding aluminum wire array on the ''Yang'' accelerator. The logarithmic spiral crystal acts as a monochromator and a non-dispersive mirror that reflects the pinhole image to a x-ray film detector with a very narrow photon energy bandwidth (<1 eV, mainly determined by the width of rocking curve of the crystal). Two imaging configurations with the use of Quartz (1010) crystal and Mica (002) crystal are designed, respectively, to image the Al Ly{sub {alpha}2} line (1727.7 eV) emission and Al He{sub {alpha}} intercombination line (1588.3 eV) emission. The primary experimental data corresponding to these two configurations are presented and discussed.

  4. K-shell emission x-ray imaging of Z-pinch plasmas with a pinhole and a logarithmic spiral crystal.

    PubMed

    Yang, Qingguo; Li, Zeren; Peng, Qixian; Yang, Libing; Chen, Guanhua; Ye, Yan; Huang, Xianbin; Cai, Hongchun; Li, Jing; Xiao, Shali

    2011-09-01

    An in-chamber, mini x-ray imaging instrument employs a pinhole and a logarithmic spiral crystal has been developed for obtaining K-shell line images of the imploding aluminum wire array on the "Yang" accelerator. The logarithmic spiral crystal acts as a monochromator and a non-dispersive mirror that reflects the pinhole image to a x-ray film detector with a very narrow photon energy bandwidth (<1 eV, mainly determined by the width of rocking curve of the crystal). Two imaging configurations with the use of Quartz (10 ?10) crystal and Mica (002) crystal are designed, respectively, to image the Al Ly(?2) line (1727.7 eV) emission and Al He(?) intercombination line (1588.3 eV) emission. The primary experimental data corresponding to these two configurations are presented and discussed. PMID:21974579

  5. High power microwave generator

    SciTech Connect

    Minich, Roger W.

    1988-01-01

    A device (10) for producing high-powered and coherent microwaves is described. The device comprises an evacuated, cylindrical, and hollow real cathode (20) that is driven to inwardly field emit relativistic electrons. The electrons pass through an internally disposed cylindrical and substantially electron-transparent cylindrical anode (24), proceed toward a cylindrical electron collector electrode (26), and form a cylindrical virtual cathode (32). Microwaves are produced by spatial and temporal oscillations of the cylindrical virtual cathode (32), and by electrons that reflex back and forth between the cylindrical virtual cathode (32) and the cylindrical real cathode (20).

  6. High power arcjet

    NASA Technical Reports Server (NTRS)

    Goelz, T. M.; Auweter-Kurtz, M.; Kurtz, H. L.; Schrade, H. O.

    1991-01-01

    The activities of the High Power Arcjet Project (HIPARC) from August 1990 to January 1991 are discussed. In this period the HIPARC thruster was ignited for the first time. Power levels up to 140 kW with a mass flow rate of 300 mg/s hydrogen were reached. Specific impulse values of more than 1300 s were shown to be possible. Tests were performed with the baseline thruster version only, which has a 6 mm throat diameter and a conical nozzle with a 20 degree half angle. Measurement data summing up all tests carried out until now is included. All measuring methods are described, including a check on possible error sources.

  7. High power coaxial ubitron

    NASA Astrophysics Data System (ADS)

    Balkcum, Adam J.

    In the ubitron, also known as the free electron laser, high power coherent radiation is generated from the interaction of an undulating electron beam with an electromagnetic signal and a static periodic magnetic wiggler field. These devices have experimentally produced high power spanning the microwave to x-ray regimes. Potential applications range from microwave radar to the study of solid state material properties. In this dissertation, the efficient production of high power microwaves (HPM) is investigated for a ubitron employing a coaxial circuit and wiggler. Designs for the particular applications of an advanced high gradient linear accelerator driver and a directed energy source are presented. The coaxial ubitron is inherently suited for the production of HPM. It utilizes an annular electron beam to drive the low loss, RF breakdown resistant TE01 mode of a large coaxial circuit. The device's large cross-sectional area greatly reduces RF wall heat loading and the current density loading at the cathode required to produce the moderate energy (500 keV) but high current (1-10 kA) annular electron beam. Focusing and wiggling of the beam is achieved using coaxial annular periodic permanent magnet (PPM) stacks without a solenoidal guide magnetic field. This wiggler configuration is compact, efficient and can propagate the multi-kiloampere electron beams required for many HPM applications. The coaxial PPM ubitron in a traveling wave amplifier, cavity oscillator and klystron configuration is investigated using linear theory and simulation codes. A condition for the dc electron beam stability in the coaxial wiggler is derived and verified using the 2-1/2 dimensional particle-in-cell code, MAGIC. New linear theories for the cavity start-oscillation current and gain in a klystron are derived. A self-consistent nonlinear theory for the ubitron-TWT and a new nonlinear theory for the ubitron oscillator are presented. These form the basis for simulation codes which, along with MAGIC, are used to design a representative 200 MW, 40% efficient, X-band amplifier for linear accelerators and a 1 GW, 21% efficient, S-band oscillator for directed energy. The technique of axial mode profiling in the ubitron cavity oscillator is also proposed and shown to increase the simulated interaction efficiency to 46%. These devices are realizable and their experimental implementation, including electron beam formation and spurious mode suppression techniques, is discussed.

  8. High power arcjet

    NASA Technical Reports Server (NTRS)

    Goelz, T. M.; Auweter-Kurtz, M.; Kurtz, H. L.; Schrade, H. O.

    1992-01-01

    In this period a new mass flow controller was brought into the gas supply system, so that the upper limit for the mass flow rate could be increased up to 500 mg/s with hydrogen. A maximum specific impulse of 1500 s could be achieved with the high powered arcjet (HIPARC) at an efficiency of slightly better than 20 percent. Different nozzle throat diameters had been tested. The 100 kilo-watt input power limit was reached with the 4 mm nozzle throat diameter at a mass flow rate of 400 mg/s. Tests were carried out with different cathode gaps and with three different cathodes. In addition measurements of pressure and gas temperature were taken in the feed line in order to determine the pressure drop in the propellant injectors.

  9. Collisional-radiative simulations of a supersonic and radiatively cooled aluminum plasma jet

    NASA Astrophysics Data System (ADS)

    Espinosa, G.; Gil, J. M.; Rodriguez, R.; Rubiano, J. G.; Mendoza, M. A.; Martel, P.; Minguez, E.; Suzuki-Vidal, F.; Lebedev, S. V.; Swadling, G. F.; Burdiak, G.; Pickworth, L. A.; Skidmore, J.

    2015-12-01

    A computational investigation based on collisional-radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet.

  10. High Power Density Motors

    NASA Technical Reports Server (NTRS)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it generates. By increasing the heat transfer out of the wire, the wires can carry a larger current and therefore produce more force. This was done by increasing the surface area of the wire to allow more coolant to flow over it. Litz wire was used because it can carry high frequency current. It also can be deformed into configurations that would increase the surface area. The best configuration was determined by heat transfer and force plots that were generated using Maxwell 2D. Future work will be done by testing and measuring the thrust force produced by the wires in a magnetic field.

  11. High power connection system

    DOEpatents

    Schaefer, Christopher E.; Beer, Robert C.; McCall, Mark D.

    2000-01-01

    A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.

  12. VUV absorption spectroscopy measurements of the role of fast neutral atoms in high-power gap breakdown

    SciTech Connect

    FILUK,A.B.; BAILEY,JAMES E.; CUNEO,MICHAEL E.; LAKE,PATRICK WAYNE; NASH,THOMAS J.; NOACK,DONALD D.; MARON,Y.

    2000-03-20

    The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently-discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. The authors describe a newly-developed diagnostic tool that provides the first direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1 mm spatial resolution in the 10 mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectra collected during Ar RF glow discharges and with CO{sub 2} gas fills confirm the reliability of the diagnostic technique. Throughout the 50--100 ns ion diode pulses no measurable neutral absorption is seen, setting upper limits of 0.12--1.5 x 10{sup 14} cm{sup {minus}3} for ground state fast neutral atom densities of H, C, N, O, F. The absence of molecular absorption bands also sets upper limits of 0.16--1.2 x 10{sup 15} cm{sup {minus}3} for common simple molecules. These limits are low enough to rule out ionization throughout the gap as a breakdown mechanism. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.

  13. Silver based batteries for high power applications

    NASA Astrophysics Data System (ADS)

    Karpinski, A. P.; Russell, S. J.; Serenyi, J. R.; Murphy, J. P.

    The present status of silver oxide-zinc technology and applications has been described by Karpinski et al. [A.P. Karpinski, B. Makovetski, S.J. Russell, J.R. Serenyi, D.C. Williams, Silver-Zinc: status of technology and applications, Journal of Power Sources, 80 (1999) 53-60], where the silver-zinc couple is still the preferred choice where high specific energy/energy density, coupled with high specific power/power density are important for high-rate, weight or size/configuration sensitive applications. Perhaps the silver oxide cathode can be considered one of the most versatile electrode materials. When coupled with other anodes and corresponding electrolyte management system, the silver electrode provides for a wide array of electrochemical systems that can be tailored to meet the most demanding, high power requirements. Besides zinc, the most notable include cadmium, iron, metal hydride, and hydrogen electrode for secondary systems, while primary systems include lithium and aluminum. Alloys including silver are also available, such as silver chloride, which when coupled with magnesium or aluminum are primarily used in many seawater applications. The selection and use of these couples is normally the result of a trade-off of many factors. These include performance, safety, risk, reliability, and cost. When high power is required, silver oxide-zinc, silver oxide-aluminum, and silver oxide-lithium are the most energetic. For moderate performance (i.e., lower power), silver oxide-zinc or silver-cadmium would be the system of choice. This paper summarizes the suitability of the silver-based couples, with an emphasis on the silver-zinc system, as primary or rechargeable power sources for high energy/power applications.

  14. Estimating Z-Pinch computing resources.

    SciTech Connect

    Brunner, Thomas A.

    2007-04-01

    The Z facility at Sandia National Laboratories produces high energy density environments. Computer simulations of the experiments provide key insights and help make the most efficient use of the facility. This document estimates the computer resources needed in order to support the experimental program. The resource estimate is what we would like to have in about five years and assumes that we will have a robust, scalable simulation capability as well as enough physicists to run the simulations.

  15. Microfabricated wire arrays for Z-pinch.

    SciTech Connect

    Spahn, Olga Blum; Rowen, Adam M.; Cich, Michael Joseph; Peake, Gregory Merwin; Arrington, Christian L.; Nash, Thomas J.; Klem, John Frederick; Romero, Dustin Heinz

    2008-10-01

    Microfabrication methods have been applied to the fabrication of wire arrays suitable for use in Z. Self-curling GaAs/AlGaAs supports were fabricated as an initial route to make small wire arrays (4mm diameter). A strain relief structure that could be integrated with the wire was designed to allow displacements of the anode/cathode connections in Z. Electroplated gold wire arrays with integrated anode/cathode bus connections were found to be sufficiently robust to allow direct handling. Platinum and copper plating processes were also investigated. A process to fabricate wire arrays on any substrate with wire thickness up to 35 microns was developed. Methods to handle and mount these arrays were developed. Fabrication of wire arrays of 20mm diameter was demonstrated, and the path to 40mm array fabrication is clear. With some final investment to show array mounting into Z hardware, the entire process to produce a microfabricated wire array will have been demonstrated.

  16. High power ferrite microwave switch

    NASA Technical Reports Server (NTRS)

    Bardash, I.; Roschak, N. K.

    1975-01-01

    A high power ferrite microwave switch was developed along with associated electronic driver circuits for operation in a spaceborne high power microwave transmitter in geostationary orbit. Three units were built and tested in a space environment to demonstrate conformance to the required performance characteristics. Each unit consisted of an input magic-tee hybrid, two non-reciprocal latching ferrite phase shifters, an out short-slot 3 db quadrature coupler, a dual driver electronic circuit, and input logic interface circuitry. The basic mode of operation of the high power ferrite microwave switch is identical to that of a four-port, differential phase shift, switchable circulator. By appropriately designing the phase shifters and electronic driver circuits to operate in the flux-transfer magnetization mode, power and temperature insensitive operation was achieved. A list of the realized characteristics of the developed units is given.

  17. Autonomously managed high power systems

    NASA Technical Reports Server (NTRS)

    Weeks, D. J.; Bechtel, R. T.

    1985-01-01

    The need for autonomous power management capabilities will increase as the power levels of spacecraft increase into the multi-100 kW range. The quantity of labor intensive ground and crew support consumed by the 9 kW Skylab cannot be afforded in support of a 75-300 kW Space Station or high power earth orbital and interplanetary spacecraft. Marshall Space Flight Center is managing a program to develop necessary technologies for high power system autonomous management. To date a reference electrical power system and automation approaches have been defined. A test facility for evaluation and verification of management algorithms and hardware has been designed with the first of the three power channel capability nearing completion.

  18. High power solid state lasers

    SciTech Connect

    Weber, H.

    1988-01-01

    These proceedings discuss the following subjects: trends in materials processing with laser radiation; slabs and high power systems; glasses and new crystals; solid state lasers at HOYA Corp.; lamps, resonators and transmission; glasses as active materials for high average power solid state lasers; flashlamp pumped GGG-crystals; alexandrite lasers; designing telescope resonators; mode operation of neodymium: YAG lasers; intracavity frequency doubling with KTP crystal and thermal effects in cylinder lasers.

  19. High power gas laser amplifier

    DOEpatents

    Leland, Wallace T. (Los Alamos, NM); Stratton, Thomas F. (Los Alamos, NM)

    1981-01-01

    A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

  20. Anode arc motion in high power arcjets

    NASA Technical Reports Server (NTRS)

    Harris, W. J.; O'Hair, E. A.; Hatfield, L. L.; Kristiansen, M.; Mankins, J. S.

    1992-01-01

    The long-term operational lifetime of most medium to high power arcjets is currently limited by the rapid deterioration of the arcjet electrodes. To a large extent, the rate of this deterioration is related to the motion of the arc discharge on the electrode surfaces. This paper details a series of experiments aimed at studying the temporal behavior of dc arcs on a water-cooled radially-segmented 30 kW class arcjet anode. The experimental anode used for these tests was made of copper, and was divided into four equivalent radial segments which were electrically isolated with aluminum oxide gaskets. The current carried by each segment was measured independently using four calibrated resistive shunts, and was analyzed by digital computer. The tests were limited to nitrogen propellant over a current range of 100-250 A dc. Results show that for the range of total currents considered here, the current distribution in the segmented arcjet anode is generally asymmetric, exhibiting random fluctuations over a wide range of frequencies.

  1. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  2. High power excimer laser micromachining

    NASA Astrophysics Data System (ADS)

    Herbst, Ludolf; Paetzel, Rainer

    2006-02-01

    Today's excimer lasers are well-established UV laser sources for a wide variety of micromachining applications. The excimer's high pulse energy and average power at short UV wavelengths make them ideal for ablation of various materials, e. g., polyimide, PMMA, copper, and diamond. Excimer micromachining technology, driven by the ever-shrinking feature sizes of micro-mechanical and micro-electronic devices, is used for making semiconductor packaging microvias, ink jet nozzle arrays, and medical devices. High-power excimer laser systems are capable of processing large areas with resolution down to several microns without using wet chemical processes. For instance, drilling precise tapered holes and reel-to-reel manufacturing of disposable sensors have proven to be very cost-effective manufacturing techniques for volume production. Specifically, the new industrial excimer laser-the LAMBDA SX 315C-easily meets the high demands of cost-effective production. The stabilized output power of 315 watts at 300 Hz (308 nm) and its outstanding long-term stability make this laser ideal for high-duty-cycle, high-throughput micromachining. In this paper, high-power excimer laser technology, products, applications, and beam delivery systems will be discussed.

  3. High power excimer-laser

    NASA Astrophysics Data System (ADS)

    Cirkel, H.-J.

    High-power excimer lasers are of special interest for advanced industrial applications in the fields of materials processing, photochemistry, and especially laser isotope separation. A pulse-forming network (PFN) made up of a large number of parallel waterline capacitor arranged normal to the laser optical axis has been developed for exiciting high-power excimer lasers. An elongated X-ray gun employing a hollow cathode preionizes the 45 cm gain length laser. Up to 4 J, optical energy has been measured at 308 nm up to 4 J. Between 1 J and 2.5 J, the laser emits at other known rare gas-halide wavelengths for a lower stored energy in the PFN. Low divergence operation has been achieved with an injection-locked amplifier. Results of a 20-channel pseudospark switch are presented which show a current rise of 2.6 x 10 to the 12th A/s for 100 kA peak current.

  4. Broadband, high-power devices

    NASA Astrophysics Data System (ADS)

    Pallakoff, B.

    1985-02-01

    For the first traveling-wave tube (TWT) amplifier, which was demonstrated in 1943, a helical line had been chosen as the RF slow-wave circuit. Subsequent developments have provided a variety of circuits with advantages over the helix for narrow-band applications. However, no slow-wave circuit yet invented has improved on the helix's ability to interact efficiently with an electron beam over an extremely broad frequency band. For this reason, the helix-type TWT is now the most widely used device in broadband, high-power Electronic Warfare (EW) amplifiers. Attention is given to progress and limitations concerning helix type TWTs, the controversy about the best way to minimize temperature rise across the ceramic-to-metal interfaces, the helix-type TWT power output, bandwidth, the current status of mm-wave helix TWTs, future trends, coupled-cavity TWTs, crossed-field devices, and miscellaneous microwave vacuum tubes.

  5. High power cladding light strippers

    NASA Astrophysics Data System (ADS)

    Wetter, Alexandre; Faucher, Mathieu; Svigny, Benoit

    2008-02-01

    The ability to strip cladding light from double clad fiber (DCF) fibers is required for many different reasons, one example is to strip unwanted cladding light in fiber lasers and amplifiers. When removing residual pump light for example, this light is characterized by a large numerical aperture distribution and can reach power levels into the hundreds of watts. By locally changing the numerical aperture (N.A.) of the light to be stripped, it is possible to achieve significant attenuation even for the low N.A. rays such as escaped core modes in the same device. In order to test the power-handling capability of this device, one hundred watts of pump and signal light is launched from a tapered fusedbundle (TFB) 6+1x1 combiner into a high power-cladding stripper. In this case, the fiber used in the cladding stripper and the output fiber of the TFB was a 20/400 0.06/0.46 N.A. double clad fiber. Attenuation of over 20dB in the cladding was measured without signal loss. By spreading out the heat load generated by the unwanted light that is stripped, the package remained safely below the maximum operating temperature internally and externally. This is achieved by uniformly stripping the energy along the length of the fiber within the stripper. Different adhesive and heat sinking techniques are used to achieve this uniform removal of the light. This suggests that these cladding strippers can be used to strip hundreds of watts of light in high power fiber lasers and amplifiers.

  6. High power microwave source development

    NASA Astrophysics Data System (ADS)

    Benford, James N.; Miller, Gabriel; Potter, Seth; Ashby, Steve; Smith, Richard R.

    1995-05-01

    The requirements of this project have been to: (1) improve and expand the sources available in the facility for testing purposes and (2) perform specific tasks under direction of the Defense Nuclear Agency about the applications of high power microwaves (HPM). In this project the HPM application was power beaming. The requirements of this program were met in the following way: (1) We demonstrated that a compact linear induction accelerator can drive HPM sources at repetition rates in excess of 100 HZ at peak microwave powers of a GW. This was done for the relativistic magnetron. Since the conclusion of this contract such specifications have also been demonstrated for the relativistic klystron under Ballistic Missile Defense Organization funding. (2) We demonstrated an L band relativistic magnetron. This device has been used both on our single pulse machines, CAMEL and CAMEL X, and the repetitive system CLIA. (3) We demonstrated that phase locking of sources together in large numbers is a feasible technology and showed the generation of multigigawatt S-band radiation in an array of relativistic magnetrons.

  7. High-Power Rf Load

    DOEpatents

    Tantawi, Sami G. (San Mateo, CA); Vlieks, Arnold E. (Livermore, CA)

    1998-09-01

    A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.

  8. High power coaxial ubitron oscillator

    SciTech Connect

    Balkcum, A.J.; McDermott, D.B.; Luhmann, N.C. Jr.; Phillips, R.M.

    1998-12-31

    Coaxial ubitron oscillators are well suited for the production of high power and high energy microwaves. The device utilizes a high current relativistic annular electron beam to drive the TE{sub 01} mode of a coaxial cavity. Previous work on the ubitron oscillator included the derivation of a linear theory for the cavity`s start of oscillation current, the development of a nonlinear simulation code, and the design of a compact 1 GW 21% efficient source for directed energy applications. Recent design efforts have increased the interaction efficiency to 46% using axial mode profiling in a TE{sub 011} diffraction coupled cavity. In this technique, which is widely employed in gyrotrons, the radius of the cavity is tapered so that the peak of the wave`s field is displaced towards the output end. The beam then bunches more adiabatically in a lower rf field level while transferring its energy quickly in a higher field level. Additionally, the usage of diffraction coupling alleviates axial mode competition due to the decrease of cavity Q with axial mode number. A design for a 46% efficient S-band oscillator along with a 3.6 kA annular electron gun will be presented.

  9. High power ion thruster performance

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.; Patterson, Michael J.

    1987-01-01

    The ion thruster is one of several forms of space electric propulsion being considered for use on future SP-100 based missions. One possible major mission ground rule is the use of single Space Shuttle launch. Thus, the mass in orbit at the reactor activation altitude would be limited by the Shuttle mass constraints. When the spacecraft subsystem masses are subtracted from this available mass limit, a maximum propellant mass may be calculated. Knowing the characteristics of each type of electric thruster allow maximum values of total impulse, mission velocity increment, and thrusting time to be calculated. Because ion thrusters easily operate at high values of efficiency (60 to 70 percent) and specific impulse (3000 to 5000 sec), they can impart large values of total impulse to a spacecraft. They also can be operated with separate control of the propellant flow rate and exhaust velocity. Values are presented of demonstrated and projected performance of high power ion thrusters used in an analysis of electric propulsion for an SP-100 based mission.

  10. High power ion thruster performance

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.; Patterson, Michael J.

    1987-01-01

    The ion thruster is one of several forms of space electric propulsion being considered for use on future SP-100-based missions. One possible major mission ground rule is the use of a single Space Shuttle launch. Thus, the mass in orbit at the reactor activation altitude would be limited by the Shuttle mass constraints. When the spacecraft subsystem masses are subtracted from this available mass limit, a maximum propellant mass may be calculated. Knowing the characteristics of each type of electric thruster allows maximum values of total impulse, mission velocity increment, and thrusting time to be calculated. Because ion thrusters easily operate at high values of efficiency (60 to 70%) and specific impulse (3000 to 5000 sec), they can impart large values of total impulse to a spacecraft. They also can be operated with separate control of the propellant flow rate and exhaust velocity. This paper presents values of demonstrated and projected performance of high power ion thrusters used in an analysis of electric propulsion for an SP-100 based mission.

  11. Status of high power electric propulsion technology

    NASA Technical Reports Server (NTRS)

    Byers, David C.; Stone, James R.

    1988-01-01

    The growing emphasis on very challenging missions and the anticipated availability of high power levels in space have led to renewed interest in high power electric propulsion. The status of high power electric propulsion technology and its applicability to various missions are reviewed. The major thruster and system technology issues are identified which must be addressed in a focussed program in order to assure technology readiness for these missions.

  12. High-Power Electromagnetic Thruster Being Developed

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Mikellides, Pavlos G.

    2001-01-01

    High-power electromagnetic thrusters have been proposed as primary in-space propulsion options for several bold new interplanetary and deep-space missions. As the lead center for electric propulsion, the NASA Glenn Research Center designs, develops, and tests high-power electromagnetic technologies to meet these demanding mission requirements. Two high-power thruster concepts currently under investigation by Glenn are the magnetoplasmadynamic (MPD) thruster and the Pulsed Inductive Thruster (PIT).

  13. Photoconductive switching for high power microwave generation

    SciTech Connect

    Pocha, M.D.; Hofer, W.W.

    1990-10-01

    Photoconductive switching is a technology that is being increasingly applied to generation of high power microwaves. Two primary semiconductors used for these devices are silicon and gallium arsenide. Diamond is a promising future candidate material. This paper discusses the important material parameters and switching modes, critical issues for microwave generation, and future directions for this high power, photoconductive switching technology.

  14. High power laser perforating tools and systems

    SciTech Connect

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  15. Aluminum Hydroxide

    MedlinePLUS

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  16. NASA GRC High Power Electromagnetic Thruster Program

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Pensil, Eric J.

    2004-01-01

    High-power electromagnetic thrusters have been proposed as primary in-space propulsion options for several bold new interplanetary and deep-space missions. As the lead center for electric propulsion, the NASA Glenn Research Center designs, develops, and tests high-power electromagnetic technologies to meet these demanding mission requirements. Two high-power thruster concepts currently under investigation by Glenn are the magnetoplasmadynamic (MPD) thruster and the Pulsed Inductive Thruster (PIT). This paper describes the MPD thruster and the test facility.

  17. High power millimeter wave source development program

    NASA Technical Reports Server (NTRS)

    George, T. V.

    1989-01-01

    High power millimeter wave sources for fusion program; ECH source development program strategy; and 1 MW, 140 GHz gyrotron experiment design philosophy are briefly outlined. This presentation is represented by viewgraphs only.

  18. High power plasma spraying of oxide ceramics

    SciTech Connect

    Lugscheider, E.; Jungklaus, H.; Schwier, G.; Mathesius, H.; Heinrich, P.

    1995-12-31

    New developed high power plasma spray (HPPS) systems offer opportunities for generating both high thermal as well as high kinetic energy transfer to the powder particles. The operation level can be elevated up to 250 kW for continuous processing. PLCs and mass flow controls support high power processing under production conditions. The process is designed for applying large quantities even of high melt materials, such as oxide ceramics. High power plasma processing may result in enhanced coating characteristics. The work in this paper shows first conclusions for processing commercial powders such as alumina, alumina-titania, chromia and a recently developed multicomponent oxide with a HPPS system. Particle velocities were measured after optimizing spraying parameters. Coatings were evaluated by optical microscopy (microstructure and porosity), microhardness and pin-on-disc abrasive wear tests. Powder types and sizes as well as the systems configuration are considered for a general discussion of the capability and limitation in high power plasma spraying.

  19. High power, high frequency component test facility

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Krawczonek, Walter

    1990-01-01

    The NASA Lewis Research Center has available a high frequency, high power laboratory facility for testing various components of aerospace and/or terrestrial power systems. This facility is described here. All of its capabilities and potential applications are detailed.

  20. Coupling output of multichannel high power microwaves

    SciTech Connect

    Li Guolin; Shu Ting; Yuan Chengwei; Zhang Jun; Yang Jianhua; Jin Zhenxing; Yin Yi; Wu Dapeng; Zhu Jun; Ren Heming; Yang Jie

    2010-12-15

    The coupling output of multichannel high power microwaves is a promising technique for the development of high power microwave technologies, as it can enhance the output capacities of presently studied devices. According to the investigations on the spatial filtering method and waveguide filtering method, the hybrid filtering method is proposed for the coupling output of multichannel high power microwaves. As an example, a specific structure is designed for the coupling output of S/X/X band three-channel high power microwaves and investigated with the hybrid filtering method. In the experiments, a pulse of 4 GW X band beat waves and a pulse of 1.8 GW S band microwave are obtained.

  1. High power conditioning for space applications

    NASA Astrophysics Data System (ADS)

    Capel, A.; O'Sullivan, D.

    High power conditioning technologies for space applications are described. High power conditioning is defined as the platform power supply concept that interfaces the energy sources, i.e., battery and solar array, with the users, as well as the payload electrical distribution that defines the interfaces with the platform, and the power supply concept of the payload. The state of the art topologies are based on regulated bus voltage concepts, including conductance regulators.

  2. High power lasers: achievements, challenges, and opportunities

    NASA Astrophysics Data System (ADS)

    Patel, C. Kumar N.

    2006-02-01

    Lasers with ever increasing high powers, CW as well as pulsed, have been targets for research and developments from the very invention of the laser. Availability of high powers facilitate many practical applications in industry, medicine and research in quantum electronics. This presentation will summarize some of the key advances that have occurred since early 1960's and provide a guide for what can be expected in the future.

  3. High power laser apparatus and system

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (inventors)

    1975-01-01

    A high-power, continuous-wave laser was designed for use in power transmission and energy-collecting systems, and for producing incoherent light for pumping a laser material. The laser has a high repetitive pulsing rate per unit time, resulting in a high-power density beam. The laser is composed of xenon flash tubes powered by fast-charging capacitors flashed in succession by a high-speed motor connected to an automobile-type distributor.

  4. Test facilities for high power electric propulsion

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Vetrone, Robert H.; Grisnik, Stanley P.; Myers, Roger M.; Parkes, James E.

    1991-01-01

    Electric propulsion has applications for orbit raising, maneuvering of large space systems, and interplanetary missions. These missions involve propulsion power levels from tenths to tens of megawatts, depending upon the application. General facility requirements for testing high power electric propulsion at the component and thrust systems level are defined. The characteristics and pumping capabilities of many large vacuum chambers in the United States are reviewed and compared with the requirements for high power electric propulsion testing.

  5. ICAN: High power neutral beam generation

    NASA Astrophysics Data System (ADS)

    Moustaizis, S. D.; Lalousis, P.; Perrakis, K.; Auvray, P.; Larour, J.; Ducret, J. E.; Balcou, P.

    2015-10-01

    During the last few years there is an increasing interest on the development of alternative high power new negative ion source for Tokamak applications. The proposed new neutral beam device presents a number of advantages with respect to: the density current, the acceleration voltage, the relative compact dimension of the negative ion source, and the coupling of a high power laser beam for photo-neutralization of the negative ion beam. Here we numerically investigate, using a multi-fluid 1-D code, the acceleration and the extraction of high power ion beam from a Magnetically Insulated Diode (MID). The diode configuration will be coupled to a high power device capable of extracting a current up to few kA with an accelerating voltage up to MeV. An efficiency of up to 92% of the coupling of the laser beam, is required in order to obtain a high power, up to GW, neutral beam. The new high energy, high average power, high efficiency (up to 30%) ICAN fiber laser is proposed for both the plasma generation and the photo-neutralizer configuration [1].

  6. High Power Co-Axial Coupler

    SciTech Connect

    Neubauer, M.; Dudas, A.; Rimmer, Robert A.; Guo, Jiquan; Williams, R. Scott

    2013-12-01

    A very high power Coax RF Coupler (MW-Level) is very desirable for a number of accelerator and commercial applications. For example, the development of such a coupler operating at 1.5 GHz may permit the construction of a higher-luminosity version of the Electron-Ion Collider (EIC) being planned at JLab. Muons, Inc. is currently funded by a DOE STTR grant to develop a 1.5-GHz high-power doublewindowcoax coupler with JLab (about 150 kW). Excellent progress has been made on this R&D project, so we propose an extension of this development to build a very high power coax coupler (MW level peak power and a max duty factor of about 4%). The dimensions of the current coax coupler will be scaled up to provide higher power capability.

  7. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.

  8. Driver Circuit For High-Power MOSFET's

    NASA Technical Reports Server (NTRS)

    Letzer, Kevin A.

    1991-01-01

    Driver circuit generates rapid-voltage-transition pulses needed to switch high-power metal oxide/semiconductor field-effect transistor (MOSFET) modules rapidly between full "on" and full "off". Rapid switching reduces time of overlap between appreciable current through and appreciable voltage across such modules, thereby increasing power efficiency.

  9. Automated System Tests High-Power MOSFET's

    NASA Technical Reports Server (NTRS)

    Huston, Steven W.; Wendt, Isabel O.

    1994-01-01

    Computer-controlled system tests metal-oxide/semiconductor field-effect transistors (MOSFET's) at high voltages and currents. Measures seven parameters characterizing performance of MOSFET, with view toward obtaining early indication MOSFET defective. Use of test system prior to installation of power MOSFET in high-power circuit saves time and money.

  10. Targets for high power neutral beams

    SciTech Connect

    Kim, J.

    1980-01-01

    Stopping high-power, long-pulse beams is fast becoming an engineering challenge, particularly in neutral beam injectors for heating magnetically confined plasmas. A brief review of neutral beam target technology is presented along with heat transfer calculations for some selected target designs.

  11. High-power VCSEL systems and applications

    NASA Astrophysics Data System (ADS)

    Moench, Holger; Conrads, Ralf; Deppe, Carsten; Derra, Guenther; Gronenborn, Stephan; Gu, Xi; Heusler, Gero; Kolb, Johanna; Miller, Michael; Pekarski, Pavel; Pollmann-Retsch, Jens; Pruijmboom, Armand; Weichmann, Ulrich

    2015-03-01

    Easy system design, compactness and a uniform power distribution define the basic advantages of high power VCSEL systems. Full addressability in space and time add new dimensions for optimization and enable "digital photonic production". Many thermal processes benefit from the improved control i.e. heat is applied exactly where and when it is needed. The compact VCSEL systems can be integrated into most manufacturing equipment, replacing batch processes using large furnaces and reducing energy consumption. This paper will present how recent technological development of high power VCSEL systems will extend efficiency and flexibility of thermal processes and replace not only laser systems, lamps and furnaces but enable new ways of production. High power VCSEL systems are made from many VCSEL chips, each comprising thousands of low power VCSELs. Systems scalable in power from watts to multiple ten kilowatts and with various form factors utilize a common modular building block concept. Designs for reliable high power VCSEL arrays and systems can be developed and tested on each building block level and benefit from the low power density and excellent reliability of the VCSELs. Furthermore advanced assembly concepts aim to reduce the number of individual processes and components and make the whole system even more simple and reliable.

  12. NASA GRC High Power Electromagnetic Thruster Program

    NASA Astrophysics Data System (ADS)

    Lapointe, Michael R.; Pencil, Eric J.

    2004-02-01

    Interest in high power electromagnetic propulsion has been revived to support a variety of future space missions, such as platform maneuvering in low earth orbit, cost-effective cargo transport to lunar and Mars bases, asteroid and outer planet sample return, deep space robotic exploration, and piloted missions to Mars and the outer planets. Magnetoplasmadynamic (MPD) thrusters have demonstrated, at the laboratory level, the capacity to process megawatts of electrical power while providing higher thrust densities than current electric propulsion systems. The ability to generate higher thrust densities permits a reduction in the number of thrusters required to perform a given mission and alleviates the system complexity associated with multiple thruster arrays. The specific impulse of an MPD thruster can be optimized to meet given mission requirements, from a few thousand seconds with heavier gas propellants up to 10,000 seconds with hydrogen propellant. In support of NASA space science and human exploration strategic initiatives, Glenn Research Center is developing and testing pulsed, MW-class MPD thrusters as a prelude to long-duration high power thruster tests. The research effort includes numerical modeling of self-field and applied-field MPD thrusters and experimental testing of quasi-steady MW-class MPD thrusters in a high power pulsed thruster facility. This paper provides an overview of the GRC high power electromagnetic thruster program and the pulsed thruster test facility.

  13. Continuous high-power gas lasers

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1979-01-01

    High power gas laser concepts are discussed with emphasis on the role that fluid mechanics has played in their development. Consideration is given to three types of systems: gasdynamic lasers, HF supersonic diffusion lasers, and electric discharge lasers. Flow effects and aerodynamic windows in such lasers are briefly described. Future directions of research are outlined.

  14. Diagnostics of the thick carbon fibre z-pinch

    SciTech Connect

    Davies, H.; Lorenz, A.; Kravarik, J.; Kubes, P.

    1997-05-05

    Results of a recent experiment on the IMP generator (11 kJ, 600 kV) at Imperial College are presented 360 {mu}m carbon fibres were used. The plasma was diagnosed with time resolved (from PIN diodes) and time integrated (pinhole camera) x-ray diagnostics, and time resolved optical emission diagnostics. The plasma was found to expand little during the main current pulse. Fragments of fibre recovered from the machine indicated that <1% of the fibre had been ionised. The x-ray diagnostics revealed a low-temperature, narrow diameter coronal plasma.

  15. Instability Control in a Staged Z-pinch

    SciTech Connect

    Frank J. WESSEL

    2011-04-22

    A \\Staged Z-Pinch? is a fusion-energy concept in which stored-electric energy is first converted into plasma-liner-kinetic energy, and then transferred to a coaxialtarget plasma [H. U. Rahman, F. J. Wessel, and N. Rostoker, Phys. Rev. Lett. 74, p. 714(1996)]. Proper choice of the liner and target materials, and their initial radii and mass densities, leads to dynamic stabilization, current amplification, and shock heating of the target. Simulations suggest that this configuration has merit as a alternative inertial-confinement-fusion concept, and may provide an energy release exceeding thermonuclear break-even, if tested on one of many newer pulsed power systems, for example those located at Sandia National Laboratories.

  16. Azimuthal clumping instabilities in a Z-pinch wire array

    SciTech Connect

    Strickler, Trevor; Lau, Y.Y.; Gilgenbach, R.M.; Cuneo, M.E.; Mehlhorn, T.A.

    2005-05-15

    A simple model is constructed to evaluate the temporal evolution of azimuthal clumping instabilities in a cylindrical array of current-carrying wires. An analytic scaling law is derived, which shows that randomly seeded perturbations evolve at the rate of the fastest unstable mode, almost from the start. This instability is entirely analogous to the Jeans instability in a self-gravitating disk, where the mutual attraction of gravity is replaced by the mutual attraction among the current-carrying wires.

  17. Vacuum Hohlraums Driven by Z-Pinch Implosions

    NASA Astrophysics Data System (ADS)

    Chrien, Robert E.; Swenson, Fritz J.; Wilde, Bernhard H.; Peterson Matuska, Darrell L., Jr.; Anderson, Wallace E.; Idzorek, George; Porter, John L.; Spielman, Rick B.; Deeney, Chris; Chandler, Gordon A.; Fehl, David L.; Ruggles, Laurence E.

    1997-11-01

    We are developing vacuum hohlraums for radiation experiments on the Z (formerly PBFA-II) facility at Sandia National Lab in Albuquerque. A current of 17--20 MA with a rise time of 90--100 ns implodes a 20-mm-diameter 15-mm-long array of 300 W wires with a load mass of 8.4 mg. The stagnation of the wires on axis generates a 7-ns FWHM x-ray pulse with a peak power of 125 TW, producing a peak black-body temperature of 115 eV in a 26-mm diameter hohlraum. The x-rays are coupled through 2.4-mm-diameter plastic-tamped holes to an experimental package for radiation transport studies. Time- and energy-resolved x-ray emission from the pinch and the hohlraum wall are measured using x-ray diode arrays and gated x-ray imagers. Partial closure of the tamped holes is observed by 10-ns after the peak of the radiation pulse.

  18. Ablation dynamics in coiled wire-array Z-pinches

    SciTech Connect

    Hall, G. N.; Lebedev, S. V.; Suzuki-Vidal, F.; Swadling, G.; Chittenden, J. P.; Bland, S. N.; Harvey-Thompson, A.; Knapp, P. F.; Blesener, I. C.; McBride, R. D.; Chalenski, D. A.; Blesener, K. S.; Greenly, J. B.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Kusse, B. R.

    2013-02-15

    Experiments to study the ablation dynamics of coiled wire arrays were performed on the MAGPIE generator (1 MA, 240 ns) at Imperial College, and on the COBRA generator at Cornell University's Laboratory of Plasma Studies (1 MA, 100 ns). The MAGPIE generator was used to drive coiled wires in an inverse array configuration to study the distribution of ablated plasma. Using interferometry to study the plasma distribution during the ablation phase, absolute quantitative measurements of electron line density demonstrated very high density contrasts between coiled ablation streams and inter-stream regions many millimetres from the wire. The measured density contrasts for a coiled array were many times greater than that observed for a conventional array with straight wires, indicating that a much greater axial modulation of the ablated plasma may be responsible for the unique implosion dynamics of coiled arrays. Experiments on the COBRA generator were used to study the complex redirection of plasma around a coiled wire that gives rise to the ablation structure exhibited by coiled arrays. Observations of this complex 3D plasma structure were used to validate the current model of coiled array ablation dynamics [Hall et al., Phys. Rev. Lett. 100, 065003 (2008)], demonstrating irrefutably that plasma flow from the wires behaves as predicted. Coiled wires were observed to ablate and implode in the same manner on both machines, indicating that current rise time should not be an issue for the scaling of coiled arrays to larger machines with fast current rise times.

  19. The Effect of Magnetic Bubbles on Z-Pinch Dynamcis

    NASA Astrophysics Data System (ADS)

    Clark, R. W.; Giuliani, J. L.; Velikovich, A. L.; Davis, J.; Rudakov, L. I.

    2000-10-01

    Experiments on the SATURN driver in the long pulse mode have revealed that the total radiated energy from Al wire array implosions could be several times more than the coupled kinetic energy. Recently Velikovich, et al., (Physics of Plasmas, 7, p.3265, 2000) proposed a magnetic bubble model with 0-D scaling laws to explain this enhanced energy coupling. The present work develops the model equations into a radially resolved 1-D radiation magneto-hydrodynamic model for the pinch dynamics. The pinch is treated as a two fluid medium with a volume fraction comprised of low density magnetic voids and the remaining fraction of plasma gas. The key factors which could lead to enhanced radiation are the flux of vacuum magnetic energy across the plasma interface due to instabilities and the dissipation rate as the plasma converges toward the axis. Comparison of the model with the radiation and current profiles from the long pulse experiments will be presented.

  20. Non-LTE Effects in Imploding Z-Pinches

    NASA Astrophysics Data System (ADS)

    Degroot, J. S.; Deeney, C.; Eddleman, J. L.; Estabrook, K. G.; Hammer, J. H.; Spielman, R. B.; Toor, A.

    1996-11-01

    Distributed fill gas puff loads on the SATURN accelerator at SNL are observed to be more stable than annular loads. Strong growth of the magneto-Rayleigh-Taylor (MRT) instability is seen in 2-D rad-hydro calculations of these experiments. The ions are strongly shock heated in the distributed fill loads so that finite gyro radius and ion viscosity reduce the growth rate of the MRT instability. The ionic atomic levels are not in LTE so the radiation rate is reduced from LTE calculations and the electrons are hotter, reducing the ion-electron coupling. The ions are therefore hot in the region where the magnetic field accelerates the plasma and the MRT growth is reduced for distributed fill loads.