Science.gov

Sample records for high-power rf amplifiers

  1. RF System High Power Amplifier Software Conversion at Jefferson Lab

    SciTech Connect

    G. Lahti; H. Dong; T. Seegerger

    2006-10-31

    Jefferson Lab is in the process of converting the RF system from analog RF modules and non-smart high power amplifiers (HPAs) to digital RF modules and smart HPAs. The present analog RF module controls both the RF signal and the non-smart HPA hardware. The new digital RF module will only control the RF signal, so the new HPA must include embedded software. This paper will describe the conversion from a software perspective, including the initial testing, the intermediate mixed system of old and new units, and finally the totally new RF system.

  2. High power RF solid state power amplifier system

    NASA Technical Reports Server (NTRS)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2011-01-01

    A high power, high frequency, solid state power amplifier system includes a plurality of input multiple port splitters for receiving a high-frequency input and for dividing the input into a plurality of outputs and a plurality of solid state amplifier units. Each amplifier unit includes a plurality of amplifiers, and each amplifier is individually connected to one of the outputs of multiport splitters and produces a corresponding amplified output. A plurality of multiport combiners combine the amplified outputs of the amplifiers of each of the amplifier units to a combined output. Automatic level control protection circuitry protects the amplifiers and maintains a substantial constant amplifier power output.

  3. High power solid state rf amplifier for proton accelerator

    SciTech Connect

    Jain, Akhilesh; Sharma, Deepak Kumar; Gupta, Alok Kumar; Hannurkar, P. R.

    2008-01-15

    A 1.5 kW solid state rf amplifier at 352 MHz has been developed and tested at RRCAT. This rf source for cw operation will be used as a part of rf system of 100 MeV proton linear accelerator. A rf power of 1.5 kW has been achieved by combining output power from eight 220 W rf amplifier modules. Amplifier modules, eight-way power combiner and divider, and directional coupler were designed indigenously for this development. High efficiency, ease of fabrication, and low cost are the main features of this design.

  4. Thermal management of space-based, high-power solid-state RF amplifiers. Final report

    SciTech Connect

    Rose, M.F.; Chow, L.C.; Johnson, J.H.

    1990-08-01

    The advanced weapons concepts envisioned by the SDIO employed a wide array of highly energetic devices, which due to inefficiencies, generate large quantities of waste heat. Power and thermal management are integrally related. In the vacuum of space, disposing of waste energy is a major problem which can contribute as much as 50% to the overall spacecraft mass and volume. The problem becomes more acute as the temperature at which the energy must be rejected is lowered. In an earlier study, thermal management issues associated with megawatt class RF microwave tubes were explored to determine if there were simple, approximately mass neutral schemes which might be adapted to dispose of the waste energy generated within a tube collector operating in space. The assumptions for that study were: (1) Tubes were in the megawatt class-70% efficient for single simple collector and 90% efficient for depressed collectors, (2) On-board, super critical hydrogen was available at a pressure of 35 bars and a temperature of 35 K. (3) The largest single event run time was 500 seconds. (4) The device would be dormant for long periods of time, be required to become active in tens of seconds followed by long periods of dormancy. (5) The only allowable effluent is hydrogen. (6) System impact must be minimal.

  5. High power gas laser amplifier

    DOEpatents

    Leland, Wallace T.; Stratton, Thomas F.

    1981-01-01

    A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

  6. High-Power Rf Load

    DOEpatents

    Tantawi, Sami G.; Vlieks, Arnold E.

    1998-09-01

    A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.

  7. DEVELOPMENT AND TESTING OF HIGH POWER RF VECTOR MODULATORS*

    SciTech Connect

    Kang, Yoon W; Wilson, Joshua L; Champion, Mark; Hardek, Thomas W; Kim, Sang-Ho; McCarthy, Mike; Vassioutchenko, Alexandre V

    2007-01-01

    A fan-out RF power distribution system can allow many accelerating cavities to be powered by a single high-power klystron amplifier. High-power vector modulators can perform independent control of amplitudes and phases of RF voltages at the cavities without changing the klystron signal. A prototype highpower RF vector modulator employing a quadrature hybrid and two ferrite phase shifters in coaxial TEM transmission lines has been built and tested for 402.5 MHz. RF properties of the design and results of high power testing are presented.

  8. High Power 35GHz Gyroklystron Amplifiers

    NASA Astrophysics Data System (ADS)

    Choi, Jin; McCurdy, A.; Wood, F.; Kyser, R.; Danly, B.; Levush, B.; Parker, R.

    1997-05-01

    High power coherent radiation sources at 35GHz are attractive for next generation high gradient particle accelerators. A multi-cavity gyroklystron amplifier is considered a promising candidate for high power millimeter wave generation. Experiments on two-cavity and three cavity gyroklystron amplifiers are underway to demonstrate a 140kW, 35GHz coherent radiation amplification. Though this power is low compared with that needed for colliders, many of the issues associated with the bandwidth of such devices can be addressed in the present experiments. High bandwidth is important to permit the rapid phase shifts required for RF pulse compression schemes presently under investigation. Large signal calculations (P.E. Latham, W. Lawson, V. Irwin, IEEE Trans. Plasma Sci., Vol. 22, No. 5, pp. 804-817, 1994.) predict that the two-cavity gyroklystron produces a peak power of 140kW, corresponding to 33% efficiency. Calculations also show that a stagger tuned three cavity circuit increases a bandwidth to more than 0.7%. Experimental results of the amplifier will be presented and compared with the theory.

  9. Improved RF Isolation Amplifier

    NASA Technical Reports Server (NTRS)

    Stevens, G. L.; Macconnell, J.

    1985-01-01

    Circuit has high reverse isolation and wide bandwidth. Wideband isolation amplifier has low intermodulation distortion and high reverse isolation. Circuit does not require selected or matched components or directional coupling device. Circuit used in applications requiring high reverse isolation such as receiver intermediate-frequency (IF) strips and frequency distribution systems. Also applicable in RF and video signaling.

  10. High power regenerative laser amplifier

    DOEpatents

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  11. High power regenerative laser amplifier

    DOEpatents

    Miller, John L.; Hackel, Lloyd A.; Dane, Clifford B.; Zapata, Luis E.

    1994-01-01

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.

  12. High Power RF Transmitters for ICRF Applications on EAST

    NASA Astrophysics Data System (ADS)

    Mao, Yuzhou; Yuan, Shuai; Zhao, Yanping; Zhang, Xinjun; Chen, Gen; Kumazawa, R.; Cheng, Yan; Wang, Lei; Ju, Songqing; Deng, Xu; Qin, Chengming; Yang, Lei

    2013-03-01

    An Ion Cyclotron Range of Frequency (ICRF) system with a radio frequency (RF) power of 4 × 1.5 MW was developed for the Experimental Advanced Superconducting Tokamak (EAST). High RF power transmitters were designed as a part of the research and development (R&D) for an ICRF system with long pulse operation at megawatt levels in a frequency range of 25 MHz to 70 MHz. Studies presented in this paper cover the following parts of the high power transmitter: the three staged high power amplifier, which is composed of a 5 kW wideband solid state amplifier, a 100 kW tetrode drive stage amplifier and a 1.5 MW tetrode final stage amplifier, and the DC high voltage power supply (HVPS). Based on engineering design and static examinations, the RF transmitters were tested using a matched dummy load where an RF output power of 1.5 MW was achieved. The transmitters provide 6 MW RF power in primary phase and will reach a level up to 12 MW after a later upgrade. The transmitters performed successfully in stable operations in EAST and HT-7 devices. Up to 1.8 MW of RF power was injected into plasmas in EAST ICRF heating experiments during the 2010 autumn campaign and plasma performance was greatly improved.

  13. Development of High Power Microwave and Millimeter Wave Gyroklystron Amplifiers

    NASA Astrophysics Data System (ADS)

    Han, W. K.; Baik, S. W.; Lee, S. H.; Choi, J. J.; Park, D. M.; Oh, J. H.; Yang, J. G.; Hwang, S. M.; Temkin, R.

    1999-11-01

    A design study of a 28GHz gyroklystron amplifier for application of ECR plasma heating at Hanbit has been completed. Numerical simulation codes predict that a stable amplifier radiation of 200kW is produced with a 54dB saturated gain and an electronic efficiency of 35 percent from a 70kV and 8.2A high power electron beam. Major experimental equipments including a high power modulator, a 2 Tesla superconducting magnet, and a double-anode magnetro-injection-gun have been procured and are expected to set up in laboratory by this fall. Fabrication of tube components is currently underway. Cold-tests of the rf components are presented. In addition, experiments on a 10GHz gyroklystron amplifier which is a scale-down version of 28GHz gyroklystron amplifier are planned in the near future.

  14. High Power Amplifier Harmonic Output Level Measurement

    NASA Technical Reports Server (NTRS)

    Perez, R. M.; Hoppe, D. J.; Khan, A. R.

    1995-01-01

    A method is presented for the measurement of the harmonic output power of high power klystron amplifiers, involving coherent hemispherical radiation pattern measurements of the radiated klystron output. Results are discussed for the operation in saturated and unsaturated conditions, and with a waveguide harmonic filter included.

  15. High power Ka band TWT amplifier

    SciTech Connect

    Golkowski, C.; Ivers, J.D.; Nation, J.A.; Wang, P.; Schachter, L.

    1999-07-01

    Two high power 35 GHz TWT amplifiers driven by a relativistic pencil, 850 kV, 200A electron beam have been assembled and tested. The first had a dielectric slow wave structure and was primarily used to develop diagnostics, and to gain experience in working with high power systems in Ka band. The source of the input power for the amplifier was a magnetron producing a 30 kW, 200ns long pulse of which 10 kW as delivered to the experiment. The 30 cm long dielectric (Teflon) amplifier produced output power levels of about 1 MW with a gain of about 23 dB. These results are consistent with expectations from PIC code simulations for this arrangement. The second amplifier, which is a single stage disk loaded slow wave structure, has been designed. It consists of one hundred uniform cells with two sets of ten tapered calls at the ends to lower the reflection coefficient. The phase advance per cell is {pi}/2. The amplifier passband extends from 28 to 40 GHz. It is designed to increase the output power to about 20 MW. The amplifier is in construction and will be tested in the near future. Details of the design of both systems will be provided and initial results from the new amplifier presented.

  16. Design and performance of high voltage power supply with crowbar protection for 3-Φ  high power rf amplifier system of cyclotron

    NASA Astrophysics Data System (ADS)

    Thakur, S. K.

    2016-07-01

    The superconducting cyclotron at VECC consists of three rf cavities separated at 120° and each cavity is fed power from an individual rf amplifier, based on a tetrode tube, in the frequency range of 9–27 MHz. All the three tetrode tubes are powered by individual power supplies for their biasing which are fabricated and commissioned with the rf system of the cyclotron. The dc power to the anodes of all three tubes is fed from a high voltage power supply rated at 20 kV dc, 22 A along with suitable interlocks and crowbar protection. The tubes are protected by a single ignitron based crowbar system against an internal arc fault by diverting the stored energy very fast, minimizing the deposited amount of energy at load and allowing the fault to clear. The performance and protective capability of the crowbar system is demonstrated by using wire survivability test. The design criteria of anode power supply along with the crowbar protection system, in-house development, testing and performance is presented in this paper.

  17. A high-power compact regenerative amplifier FEL

    SciTech Connect

    Nguyen, D.C.; Sheffield, R.L.; Fortgang, C.M.; Kinross-Wright, J.M.; Ebrahim, N.A.; Goldstein, J.C.

    1997-08-01

    The Regenerative Amplifier FEL (RAFEL) is a new FEL approach aimed at achieving the highest optical power from a compact rf-linac FEL. The key idea is to feed back a small fraction (< 10%) of the optical power into a high-gain ({approximately}10{sup 5} in single pass) wiggler to enable the FEL to reach saturation in a few passes. This paper summarizes the design of a high-power compact regenerative amplifier FEL and describes the first experimental demonstration of the RAFEL concept.

  18. High power RF systems for the BNL ERL project

    SciTech Connect

    Zaltsman, A.; Lambiase, R.

    2011-03-28

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  19. R&D ERL: High power RF systems

    SciTech Connect

    Zaltsman, A.

    2010-01-15

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2.5 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  20. High power, high beam quality regenerative amplifier

    DOEpatents

    Hackel, Lloyd A.; Dane, Clifford B.

    1993-01-01

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  1. High power, high beam quality regenerative amplifier

    DOEpatents

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  2. High power X-band TWT amplifiers

    SciTech Connect

    Naqvi, S.; Kuang, E.; Kerslick, G.S.; Nation, J.A.; Schaechter, L.

    1995-12-31

    The recent research into multi-stage X-Band TWT`s producing output powers of 100--200 MW has shown that it is essential to minimize the reflections in each stage of the amplifier in order to avoid sideband development. These reflections also cause fluctuations in the RF output power envelope. Following extensive MAGIC code simulations they have designed tapers that adiabatically increase the iris diameter in the output sections of the amplifier to provide a smooth, broad-band transition from the slow-wave structure to cylindrical waveguide. They report results, extracting in the TM{sub 01} mode, showing smooth output pulses in the range 30--50 MW, with no evidence of sidebands. A second approach seeks to isolate the first amplifier stage with a drift tube beyond cutoff. The second stage and output section are quasi-periodic structures designed to minimize reflections, and allow the radial or longitudinal RF power extraction to be distributed over an extended region. The first stage of this system has been developed and initial operation results using an 0.8--1.0 MV, 0.5--1.0 kA, 50 ns cylindrical beam will be reported.

  3. CLIC RF High Power Production Testing Program

    SciTech Connect

    Syratchev, I.; Riddone, G.; Tantawi, S.G.; /SLAC

    2011-11-02

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and generate RF power for the main linac accelerating structure. The demands on the high power production ({approx} 150 MW) and the needs to transport the 100 A drive beam for about 1 km without losses, makes the PETS design rather unique and the operation very challenging. In the coming year, an intense PETS testing program will be implemented. The target is to demonstrate the full performance of the PETS operation. The testing program overview and test results available to date are presented.

  4. The design of a linear L-band high power amplifier for mobile communication satellites

    NASA Technical Reports Server (NTRS)

    Whittaker, N.; Brassard, G.; Li, E.; Goux, P.

    1990-01-01

    A linear L-band solid state high power amplifier designed for the space segment of the Mobile Satellite (MSAT) mobile communication system is described. The amplifier is capable of producing 35 watts of RF power with multitone signal at an efficiency of 25 percent and with intermodulation products better than 16 dB below carrier.

  5. Low Cost RF Amplifier for Community TV

    NASA Astrophysics Data System (ADS)

    Ch, Syafaruddin; Sasongko, Sudi Mariyanto Al; Made Budi Suksmadana, I.; Mustiko Okta Muvianto, Cahyo; Ariessaputra, Suthami

    2016-01-01

    he capability of television to deliver audio video makes this media become the most effective method to spread information. This paper presents an experiment of RF amplifier design having low-cost design and providing sufficient RF power particularly for community television. The RF amplifier consists of two stages of amplifier. The first stage amplifier was used to leverage output of TV modulator from 11dBm to enable to drive next stage amplifier. CAD simulation and fabrication were run to reach optimum RF amplifier design circuit. The associated circuit was made by determining stability circle, stability gain, and matching impedance. Hence, the average power of first stage RF amplifier was 24.68dBm achieved. The second stage used RF modules which was ready match to 50 ohm for both input and output port. The experiment results show that the RF amplifier may operate at frequency ranging from 174 to 230MHz. The average output power of the 2nd stage amplifier was 33.38 Watt with the overall gain of 20.54dB. The proposed RF amplifier is a cheap way to have a stable RF amplifier for community TV. The total budget for the designed RF amplifier is only a 1/5 compared to local design of final TV amplifier.

  6. Low reflectance high power RF load

    DOEpatents

    Ives, R. Lawrence; Mizuhara, Yosuke M.

    2016-02-02

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  7. Overview of High Power Vacuum Dry RF Load Designs

    SciTech Connect

    Krasnykh, Anatoly

    2015-08-27

    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is to use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.

  8. LCLS-II high power RF system overview and progress

    SciTech Connect

    Yeremian, Anahid Dian

    2015-10-07

    A second X-ray free electron laser facility, LCLS-II, will be constructed at SLAC. LCLS-II is based on a 1.3 GHz, 4 GeV, continuous-wave (CW) superconducting linear accelerator, to be installed in the first kilometer of the SLAC tunnel. Multiple types of high power RF (HPRF) sources will be used to power different systems on LCLS-II. The main 1.3 GHz linac will be powered by 280 1.3 GHz, 3.8 kW solid state amplifier (SSA) sources. The normal conducting buncher in the injector will use four more SSAs identical to the linac SSAs but run at 2 kW. Two 185.7 MHz, 60 kW sources will power the photocathode dual-feed RF gun. A third harmonic linac section, included for linearizing the bunch energy spread before the first bunch compressor, will require sixteen 3.9 GHz sources at about 1 kW CW. A description and an update on all the HPRF sources of LCLS-II and their implementation is the subject of this paper.

  9. High power single-frequency Innoslab amplifier.

    PubMed

    Han, Ke-Zhen; Ning, Jian; Zhang, Bai-Tao; Wang, Yi-Ran; Zhang, Hai-Kun; Nie, Hong-Kun; Sun, Xiao-Li; He, Jing-Liang

    2016-07-10

    A laser diode array (LDA) end-pumped continuous-wave single-frequency Innoslab amplifier has been demonstrated. The Gaussian ray bundle method was used to model the light propagation in the Innoslab amplifier for the first time to the best of our knowledge. With discrete reflectors, the maximum output of 60 W with a linewidth of 44 MHz was achieved under the pump power of 245 W, corresponding to the optical-optical efficiency of 24.5%. The beam quality factor M2 at the output power of 51 W in the horizontal and vertical direction was measured to be 1.4 and 1.3, respectively. The long-term power instability in 2 h was less than 0.25%. PMID:27409308

  10. Cryogenic cooling for high power laser amplifiers

    NASA Astrophysics Data System (ADS)

    Perin, J. P.; Millet, F.; Divoky, M.; Rus, B.

    2013-11-01

    Using DPSSL (Diode Pumped Solid State Lasers) as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz). The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K-170 K with a heat flux of 1 MW*m-2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

  11. High power rf klystrons for linear accelerators

    SciTech Connect

    Konrad, G.T.

    1984-04-01

    Recent klystron developments at SLAC are described. The standard 40 MW klyston, which typically operates at 35 MW on the SLAC linac, is the starting point for the push to higher peak and average power. The standard tube is capable of a 2.5 ..mu..s rf pulse width at 360 pps. For the SLC a 50 MW klystron capable of 5 ..mu..s pulse width at 180 pps is under development. Another tube currently being worked on is a 150 MW klystron capable of 1 ..mu..s rf and 180 pps. Design criteria and actual operating experience for both developmental tubes are described. 10 references, 11 figures, 3 tables.

  12. Ku-band high power amplifier system functionality and operation

    NASA Astrophysics Data System (ADS)

    Feng, Cheng C.

    1990-06-01

    The subsystems and their respective functionality of a ku-band high power amplifier are carefully documented. Figures identifying physical components, wiring, contact points, switches, and valves with their labels on the system blueprints are presented. These figures will be helpful if system performance parameter adjustments are desired. Operation, maintenance, troubleshooting, and testing procedures are also included to make this thesis a self-contained operator's manual for the high power amplifier.

  13. High-power Ka-band amplifier

    NASA Technical Reports Server (NTRS)

    Cormier, R.

    1993-01-01

    Development of a high-power tube suitable to power a Ka-band (34.5-GHz) antenna transmitter located at the Goldstone, California, tracking station is continuing. The University of Maryland Laboratory for Plasma Research and JPL are conducting a joint effort to test the feasibility of phase locking a second-harmonic gyrotron both by direct injection at the output cavity and by using a priming cavity to bunch the electrons in the beam. This article describes several design options and the results of computer simulation testing.

  14. Active high-power RF switch and pulse compression system

    DOEpatents

    Tantawi, Sami G.; Ruth, Ronald D.; Zolotorev, Max

    1998-01-01

    A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.

  15. Implementation of envelope tracking for RF solid state amplifiers

    NASA Astrophysics Data System (ADS)

    Larter, Thomas Leigh

    The Facility for Rare Isotope Beams (FRIB) is currently in its development stages at Michigan State University. The facility uses a large linear accelerator system to accelerate ionized particles which are then collided with other particles in the hopes of finding rare isotopes of elements. This accelerating action depends on several systems to function, with one of the major systems being superconducting cavity structures. These cavities are driven by high-power RF amplifiers which account for a large portion of the accelerator's power consumption. It is important to maximize the efficiency of these amplifiers in order to keep energy costs for the facility low. One of the ways to increase efficiency is to choose an amplifier topology that is highly efficient. A study was done for FRIB testing the prospect of using amplifiers with the envelope tracking (ET) topology. An amplifier's efficiency relies on its output power and the power supplied to it, which are in turn directly related to the output signal voltage and supply rail voltage. In an ET RF amplifier, the supply voltage is made to closely follow the envelope of the output signal voltage. This tracking action allows the RF amplifier to operate with much improved efficiency at low power levels and nearly constant efficiency at high power levels. The ET tests performed for FRIB attempted to verify the validity of ET efficiency gains for RF amplifiers. These tests included the characterization of an RF amplifier, development and verification of an ET control algorithm, and implementation of an ET test bench using FRIB equipment. These tests should attest to the purported increase in efficiency possible with ET and prove that the power consumption budget for the FRIB will benefit from the use of such amplifiers.

  16. High-power, solid-state rf source for accelerator cavities

    SciTech Connect

    Vaughan, D.R.; Mols, G.E.; Reid, D.W.; Potter, J.M.

    1985-01-01

    During the past few years the Defense and Electronics Center of Westinghouse Electric Corporation has developed a solid-state, 250-kW peak, rf amplifier for use with the SPS-40 radar system. This system has a pulse length of 60 ..mu..s and operates across the frequency band from 400 to 450 MHz. Because of the potential use of such a system as an rf source for accelerator applications, a collaborative experiment was initiated between Los Alamos National Laboratory and Westinghouse to simulate the resonant load conditions of an accelerator cavity. This paper describes the positive results of that experiment as well as the solid-state amplifier architecture. It also explores the future of high-power, solid-state amplifiers as rf sources for accelerator structures.

  17. Klystron based high power rf system for proton accelerator

    SciTech Connect

    Pande, Manjiri; Shrotriya, Sandip; Sharma, Sonal; Patel, Niranjan; Handu, Verander E-mail: manjiri08@gmail.com

    2011-07-01

    As a part of ADS program a proton accelerator (20 MeV, 30 mA) and its high power RF systems (HPRF) are being developed in BARC. This paper explains design details of this klystron based HPRF system. (author)

  18. Development of high-power holmium-doped fibre amplifiers

    NASA Astrophysics Data System (ADS)

    Hemming, Alexander; Simakov, Nikita; Davidson, Alan; Oermann, Michael; Corena, Len; Stepanov, Dmitrii; Carmody, Neil; Haub, John; Swain, Robert; Carter, Adrian

    2014-03-01

    Resonantly pumped holmium fibre lasers present a range of opportunities for the development of novel fibre laser and amplifier devices due to the availability of mature, efficient high power thulium fibre pump lasers. In this paper we describe the operation of a large mode area holmium-doped fibre amplifier. The master-oscillator is an all-fibre linearly polarised, core pumped single mode laser operating at 27 W at 2.11 μm. This laser was amplified in a large mode area fibre producing up to 265 W of output power. This system is the first demonstration of a resonantly pumped holmiumdoped fibre amplifier. It is also the highest power fibre amplifier that is capable of operating in an atmospheric transmission window <2.05 μm. This monolithic all-fibre system is able to address a wide range of remote sensing, scientific, medical and defence applications.

  19. Experimental demonstration of high power millimeter wave gyro-amplifiers

    NASA Astrophysics Data System (ADS)

    Blank, M.; Garven, M.; Calame, J. P.; Choi, J. J.; Danly, B. G.; Levush, B.; Nguyen, K.; Pershing, D. E.

    1999-05-01

    The Naval Research Laboratory is currently investigating gyro-amplifiers as high power, broadband sources for millimeter wave radars. A three-cavity Ka-band gyroklystron achieved 225 kW peak output power with 0.82% bandwidth. At W-band, several multi-cavity gyro-amplifiers have been experimentally demonstrated. A four-cavity gyroklystron amplifier has achieved 84 kW peak output power at 34% efficiency with 370 MHz bandwidth. A five-cavity gyroklystron demonstrated 72 kW peak output power with 410 MHz bandwidth and 50 dB saturated gain. For applications requiring greater bandwidth, gyrotwystron amplifiers are also under study. A four section W-band gyrotwystron demonstrated 50 kW peak output power at 925 MHz bandwidth. The results of recent Ka-band and W-band gyro-amplifier experiments and comparisons of measured data with predictions of theory are presented.

  20. Possible high power limitations from RF pulsed heating

    SciTech Connect

    Pritzkau, D.P.; Bowden, G.B.; Menegat, A.; Siemann, R.H.

    1999-05-01

    One of the possible limitations to achieving high power in RF structures is damage to metal surfaces due to RF pulsed heating. Such damage may lead to degradation of RF performance. An experiment to study RF pulsed heating on copper has been developed at SLAC. The experiment consists of operating two pillbox cavities in the TE{sub 011} mode using a 50 MW X-Band klystron. The estimated temperature rise of the surface of copper is 350&hthinsp;{degree}C for a power input of 20 MW to each cavity with a pulse length of 1.5 {mu}s. Preliminary results from an experiment performed earlier are presented. A revised design for continued experiments is also presented along with relevant theory and calculations. {copyright} {ital 1999 American Institute of Physics.}

  1. Development of 3 kW at 325 MHz solid-state RF power amplifier using four power amplifier modules

    NASA Astrophysics Data System (ADS)

    Ramarao, B. V.; Sonal, S.; Mishra, J. K.; Pande, M.; Singh, P.; Kumar, G.; Mukherjee, J.

    2014-01-01

    A high power solid-state RF power amplifier of 3 kW at 325 MHz has been developed using only four RF power amplifier modules of 850 W power output each. The design and characterization of RF power modules have been presented. A four way Wilkinson power combiner adds the output of four power amplifier modules with a total transmission loss of less than 6%. The combined power amplifier has a power gain of 20.2 dB at 1-dB compression point, and the corresponding output power is 2.8 kW at 325 MHz. The drain efficiency of the power amplifier is 65.3% at 3 kW. All the harmonics of this amplifier are below -40 dBc. The amplifier has better characteristics like fewer numbers of active devices per kilo watt, high efficiency, high gain, and ruggedness etc for RF accelerator applications.

  2. High power testing of a 17 GHz photocathode RF gun

    SciTech Connect

    Chen, S.C.; Danly, B.G.; Gonichon, J.

    1995-12-31

    The physics and technological issues involved in high gradient particle acceleration at high microwave (RF) frequencies are under study at MIT. The 17 GHz photocathode RF gun has a 1 1/2 cell ({pi} mode) room temperature cooper cavity. High power tests have been conducted at 5-10 MW levels with 100 ns pulses. A maximum surface electric field of 250 MV/m was achieved. This corresponds to an average on-axis gradient of 150 MeV/m. The gradient was also verified by a preliminary electron beam energy measurement. Even high gradients are expected in our next cavity design.

  3. Experiments of High Power 35GHz Gyro-Klystron Amplifiers

    NASA Astrophysics Data System (ADS)

    Choi, Jin; McCurdy, A.; Wood, F.; Kyser, R.; Danly, B.; Levush, B.; Calame, J.; Parker, R.

    1997-11-01

    Experiments on a two-cavity gyroklystron amplifier operating at 35GHz were successfully carried out. The amplifier produced a saturated radiation power of 210kW which corresponds to an efficiency of 37% and a gain of 23.6dB. The experimental results are in good agreement with predicted performance from non-linear gyroklystron codes, MAGYKL and MAGY. Experiments on a staggered tuned three-cavity gyroklystron amplifier is currently underway to demonstrate a high gain and wideband rf amplification. Simulations on the three-cavity gyroklystron circuit predict an instantaneous bandwidth of 0.9% and a gain of 35dB. Experimental results of the amplifiers will be presented.

  4. A design study on high power RF system for the TARLA facility of TAC

    NASA Astrophysics Data System (ADS)

    Karslı, Özlem; Yavaş, Ömer

    2012-11-01

    The Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) is a superconducting electron linac based IR FEL and Bremsstrahlung facility and it is under construction in Ankara as the first facility of the Turkish Accelerator Center (TAC) Project. TARLA will compose of two optical cavity systems to produce oscillator FEL in infrared region (2-250 μm) and also Bremsstrahlung radiation to be used in basic and applied sciences. In this study, main parameters of TARLA's high power RF and power transmission line systems are defined and a 20 kW RF solid state power amplifier is optimized.

  5. High power diode laser Master Oscillator-Power Amplifier (MOPA)

    NASA Technical Reports Server (NTRS)

    Andrews, John R.; Mouroulis, P.; Wicks, G.

    1994-01-01

    High power multiple quantum well AlGaAs diode laser master oscillator - power amplifier (MOPA) systems were examined both experimentally and theoretically. For two pass operation, it was found that powers in excess of 0.3 W per 100 micrometers of facet length were achievable while maintaining diffraction-limited beam quality. Internal electrical-to-optical conversion efficiencies as high as 25 percent were observed at an internal amplifier gain of 9 dB. Theoretical modeling of multiple quantum well amplifiers was done using appropriate rate equations and a heuristic model of the carrier density dependent gain. The model gave a qualitative agreement with the experimental results. In addition, the model allowed exploration of a wider design space for the amplifiers. The model predicted that internal electrical-to-optical conversion efficiencies in excess of 50 percent should be achievable with careful system design. The model predicted that no global optimum design exists, but gain, efficiency, and optical confinement (coupling efficiency) can be mutually adjusted to meet a specific system requirement. A three quantum well, low optical confinement amplifier was fabricated using molecular beam epitaxial growth. Coherent beam combining of two high power amplifiers injected from a common master oscillator was also examined. Coherent beam combining with an efficiency of 93 percent resulted in a single beam having diffraction-limited characteristics. This beam combining efficiency is a world record result for such a system. Interferometric observations of the output of the amplifier indicated that spatial mode matching was a significant factor in the less than perfect beam combining. Finally, the system issues of arrays of amplifiers in a coherent beam combining system were investigated. Based upon experimentally observed parameters coherent beam combining could result in a megawatt-scale coherent beam with a 10 percent electrical-to-optical conversion efficiency.

  6. High-power RF testing of a 352-MHZ fast-ferrite RF cavity tuner at the Advanced Photon Source.

    SciTech Connect

    Horan, D.; Cherbak, E.; Accelerator Systems Division

    2006-01-01

    A 352-MHz fast-ferrite rf cavity tuner, manufactured by Advanced Ferrite Technology, was high-power tested on a single-cell copper rf cavity at the Advanced Photon Source. These tests measured the fast-ferrite tuner performance in terms of power handling capability, tuning bandwidth, tuning speed, stability, and rf losses. The test system comprises a single-cell copper rf cavity fitted with two identical coupling loops, one for input rf power and the other for coupling the fast-ferrite tuner to the cavity fields. The fast-ferrite tuner rf circuit consists of a cavity coupling loop, a 6-1/8-inch EIA coaxial line system with directional couplers, and an adjustable 360{sup o} mechanical phase shifter in series with the fast-ferrite tuner. A bipolar DC bias supply, controlled by a low-level rf cavity tuning loop consisting of an rf phase detector and a PID amplifier, is used to provide a variable bias current to the tuner ferrite material to maintain the test cavity at resonance. Losses in the fast-ferrite tuner are calculated from cooling water calorimetry. Test data will be presented.

  7. High-power phase locking of a fiber amplifier array

    NASA Astrophysics Data System (ADS)

    Shay, T. M.; Baker, J. T.; Sanchez, A. D.; Robin, C. A.; Vergien, C. L.; Zeringue, C.; Gallant, D.; Lu, Chunte A.; Pulford, Benjamin; Bronder, T. J.; Lucero, Arthur

    2009-02-01

    We report high power phase locked fiber amplifier array using the Self-Synchronous Locking of Optical Coherence by Single-detector Electronic-frequency Tagging technique. We report the first experimental results for a five element amplifier array with a total locked power of more than 725-W. We will report on experimental measurements of the phase fluctuations versus time when the control loop is closed. The rms phase error was measured to be λ/60. Recent results will be reported. To the best of the authors' knowledge this is the highest fiber laser power to be coherently combined.

  8. A High Power Amplifier for a Single Mode 1064 Laser

    NASA Astrophysics Data System (ADS)

    Stites, R. W.; O'Hara, K. M.

    2011-05-01

    We report on the construction of a high power amplifier system for a single mode 1064 nm laser. At the heart of this device is a 0.27% neodymium doped yttrium orthovanadate crystal that is double end pumped by two 30 Watt broadband diode arrays at 808 nm. For a 50 Watt TEM00 single freqency seed laser, we have observed an amplified power output in excess of 60 Watts for single pass configuration. A further increase in output power can be attained by retroreflecting the beam back through the crystal a second time. Such a device has direct application in the construction of optical lattices where high power single frequency lasers are required.

  9. Recent advances in high-power microwave amplifiers

    SciTech Connect

    Reid, D.W.

    1988-01-01

    Recent advances in microwave amplifiers have increased efficiencies and power levels at frequencies from 0.3--150 GHz. These improvements have occurred in both solid-state and vacuum-tube systems. Of special note is the very high power device where power levels of 1 GW are routinely generated. This paper will review the latest results of these RandD efforts. 3 refs., 4 figs.

  10. New high power 200 MHz RF system for the LANSCE drift tube linac

    SciTech Connect

    Lyles, J.; Friedrichs, C.; Lynch, M.

    1998-12-31

    The Los Alamos Neutron Science Center (LANSCE) linac provides an 800 MeV direct H{sup +} proton beam, and injects H{sup {minus}} to the upgraded proton storage ring for charge accumulation for the Short Pulse Spallation Source. Accelerating these interlaced beams requires high average power from the 201.25 MHz drift tube linac (DTL) RF system. Three power amplifiers have operated at up to three Megawatts with 12% duty factor. The total number of electron power tubes in the RF amplifiers and their modulators has been reduced from fifty-two to twenty-four. The plant continues to utilize the original design of a tetrode driving a super power triode. Further increases in the linac duty factor are limited, in part, by the maximum dissipation ratings of the triodes. A description of the system modifications proposed to overcome these limitations includes new power amplifiers using low-level RF modulation for tank field control. The first high power Diacrode{reg_sign} is being delivered and a new amplifier cavity is being designed. With only eight power tubes, the new system will deliver both peak power and high duty factor, with lower mains power and cooling requirements. The remaining components needed for the new RF system will be discussed.

  11. High-power polymer optical fiber amplifiers and their applications

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tsuyoshi; Fujii, Kazuhito; Teramoto, Shigehiro; Tagaya, Akihiro; Nihei, Eisuke; Kinoshita, Takeshi; Koike, Yasuhiro; Sasaki, Keisuke

    1994-10-01

    Amplification characteristics of graded-index (GI) type organic dye doped polymer optical fiber amplifiers (POFAs) are discussed. As an organic dye for optical amplification, Rhodamine 6G, Rhodamine B, and Perylene Red are doped in the core region of polymer optical fibers (POFs). These POFA can obtain optical gain in the visible region of wavelength from 570 nm to 620 nm. POFA is promising for extraordinary high power optical amplification in comparison with rare-earth ions doped silica fiber amplifier. For example, output power of 1 kW with a gain of 30 dB can be obtained by using a Rhodamine B doped POFA at a low dye concentration of 1 ppm. Additionally, a novel solid-state POFA amplifier system is demonstrated.

  12. High Power RF Test Facility at the SNS

    SciTech Connect

    Y.W. Kang; D.E. Anderson; I.E. Campisi; M. Champion; M.T. Crofford; R.E. Fuja; P.A. Gurd; S. Hasan; K.-U. Kasemir; M.P. McCarthy; D. Stout; J.Y. Tang; A.V. Vassioutchenko; M. Wezensky; G.K. Davis; M. A. Drury; T. Powers; M. Stirbet

    2005-05-16

    RF Test Facility has been completed in the SNS project at ORNL to support test and conditioning operation of RF subsystems and components. The system consists of two transmitters for two klystrons powered by a common high voltage pulsed converter modulator that can provide power to two independent RF systems. The waveguides are configured with WR2100 and WR1150 sizes for presently used frequencies: 402.5 MHz and 805 MHz. Both 402.5 MHz and 805 MHz systems have circulator protected klystrons that can be powered by the modulator capable of delivering 11 MW peak and 1 MW average power. The facility has been equipped with computer control for various RF processing and complete dual frequency operation. More than forty 805 MHz fundamental power couplers for the SNS superconducting linac (SCL) cavities have been RF conditioned in this facility. The facility provides more than 1000 ft2 floor area for various test setups. The facility also has a shielded cave area that can support high power tests of normal conducting and superconducting accelerating cavities and components.

  13. High Power and Efficiency Space Traveling-Wave Tube Amplifiers With Reduced Size and Mass for NASA Missions

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wilson, Jeffrey D.; Force, Dale A.

    2008-01-01

    Recent advances in high power and efficiency space traveling-wave tube amplifiers (TWTAs) for NASA s space-to-Earth communications are presented in this paper. The RF power and efficiency of a new K-Band amplifier are 40 W and 50 percent and that of a new Ka-Band amplifier are 200 W and 60 percent. An important figure-of-merit, which is defined as the ratio of the RF power output to the mass (W/kg) of a TWT has improved by a factor of ten over the previous generation Ka-Band devices.

  14. A high-power 95 GHz gyro-TWT amplifier

    SciTech Connect

    Kreischer, K.E.; Basten, M.; Blank, M.; Danly, B.G.; Guss, W.C.; Temkin, R.J.

    1992-07-01

    The need for radar systems with greater resolution has led to renewed interest in the development of efficient high-power amplifiers at 95 GHz. The gyro-TWT is capable of producing high power with the added attraction of having lower ohmic loading on the smooth fast-wave interaction circuit than conventional slow-wave sources. We have completed a comprehensive desip of a 95 GHz gyro-TWT amplifier that is capable of producing 120 kill of output power with an efficiency of 30%, a saturated gain of 38 dB and an instantaneous bandwidth of over 5 GHz. Our concept uses an annular beam produced by a MIG electron source and operates in the TE{sub 5,1} cylindrical waveguide mode. Realistic beam parameters from gun simulations were, included in our efficiency calculations. In addition, our design includes the use of a compact superconducting magnet, quasi-optical input and output couplers and a sever to supress oscillations. The overall mechanical design shows that a compact, lightweight amplifier with adequate beam clearance is possible. This report also includes a study of a gyro-TWT using a solid on-axis beam from a Pierce-wiggler electron source coupling with a TE{sub 1,n} waveguide mode. Nonlinear models indicated that an efficient interaction with the waveguide mode was possible, however, beam simulations indicated that the high current density beam had large internal space charge forces that caused a substantial degradation of the beam quality.

  15. A high-power 95 GHz gyro-TWT amplifier

    SciTech Connect

    Kreischer, K.E.; Basten, M.; Blank, M.; Danly, B.G.; Guss, W.C.; Temkin, R.J.

    1992-07-01

    The need for radar systems with greater resolution has led to renewed interest in the development of efficient high-power amplifiers at 95 GHz. The gyro-TWT is capable of producing high power with the added attraction of having lower ohmic loading on the smooth fast-wave interaction circuit than conventional slow-wave sources. We have completed a comprehensive desip of a 95 GHz gyro-TWT amplifier that is capable of producing 120 kill of output power with an efficiency of 30%, a saturated gain of 38 dB and an instantaneous bandwidth of over 5 GHz. Our concept uses an annular beam produced by a MIG electron source and operates in the TE[sub 5,1] cylindrical waveguide mode. Realistic beam parameters from gun simulations were, included in our efficiency calculations. In addition, our design includes the use of a compact superconducting magnet, quasi-optical input and output couplers and a sever to supress oscillations. The overall mechanical design shows that a compact, lightweight amplifier with adequate beam clearance is possible. This report also includes a study of a gyro-TWT using a solid on-axis beam from a Pierce-wiggler electron source coupling with a TE[sub 1,n] waveguide mode. Nonlinear models indicated that an efficient interaction with the waveguide mode was possible, however, beam simulations indicated that the high current density beam had large internal space charge forces that caused a substantial degradation of the beam quality.

  16. 94 GHz pulsed coherent radar for high power amplifier evaluation

    NASA Astrophysics Data System (ADS)

    Robertson, Duncan A.; Hunter, Robert I.; Gallacher, Thomas F.

    2016-05-01

    We present the design and characterization of a 94 GHz pulsed coherent radar to be used for the evaluation and demonstration of novel wideband, high power vacuum tube amplifier technology. The radar is designed to be fully coherent and exploits a low phase noise architecture to maximize Doppler performance. We selected to use horn-fed Fresnel zone plate lens antennas (FZPs) with 4-level phase quantization as a low cost method of realizing large aperture (0.5 m) antennas. The measured performance of these FZPs agrees closely with the design predictions and exceeds that obtainable with a Cassegrain of an equivalent size.

  17. High-Power RF Sources for Advanced Accelerator R and D

    SciTech Connect

    Hirshfield, J. L.; Kozyrev, E. V.; LaPointe, M. A.; Nezhevenko, O. A.; Shchelkunov, S. V.; Yakovlev, V. P.

    2006-11-27

    Improved understanding of the processes that limit RF electric and magnetic fields at material surfaces is needed to enable development of new accelerator structures that can sustain accelerating fields in the range of 150 MeV/m, and in turn to allow design of a future multi-TeV electron-positron collider. For this purpose, stand-alone RF sources are needed to carry out RF breakdown and pulsed heating studies on test structures of novel design, structures fabricated from a variety of alternate materials, and structures processed using alternate techniques. These new RF sources should operate at frequencies above 11.4 GHz (where high-power klystrons built for NLC are already available), and should incorporate a high-power phase-stable amplifier or harmonic multiplier delivering several 10's of MW's of peak power in near-microsecond-long pulses at a repetition rate in the range of 100 Hz. These sources would be operated together with pulse compression systems that can multiply the peak power to 100's of MW. This paper briefly reviews current performance of the Yale/Omega-P 34-GHz magnicon as a point of departure, and discusses alternative candidates for RF sources at other frequencies. These include a 30-GHz, 50 MW magnicon; and 20.0, 22.8, 34.3, and 45.6 GHz harmonic multipliers.

  18. Commissioning the new high power rf system for the AGS with high intensity beam

    SciTech Connect

    Brennan, J.M.; Ciardullo, D.J.; Deng, D.P; Hayes, T.; Onillon, E.; Otis, A.; Sanders, R.T.; Zaltsman, A.

    1994-08-01

    A new high power rf system has been installed in the AGS in order to raise the beam loading limit to beyond 6 {times} 10{sup 13} protons per pulse. The old system was limited to 2.2 {times} 10{sup l3} ppp by: available real power, multi-loop instability, and transient beam loading during batch filling from the Booster. The key components of the new system are: new power amplifiers in the tunnel using the Thomson-CSF TH573 300kW tetrode, rf feedback around the power stage, and reduction of the 10 cavities` R/Q by 1.8 by additional gap capacitors. Commissioning of the new rf system with high intensity beam is described. The intensity goal for the 1994 running period is 4 {times} 10{sup 13} ppp. To date, 3.7 {times} 10{sup 13} ppp has been achieved.

  19. A HIGH POWER RF COUPLER DESIGN FOR MUON COOLING RF CAVITIES.

    SciTech Connect

    CORLETT,J.; LI,DERUN; RIMMER,R.; HOLTKAMP,N.; MORETTI,A.; KIRK,H.G.

    1999-03-29

    We present a high power RF coupler design for an interleaved {pi}/2 805 MHz standing wave accelerating structure proposed for an muon cooling experiment at FNAL. The coupler, in its simplest form, is a rectangular waveguide directly connected to an accelerating Cell through an open slot on the cavity side-wall or end-plates. Two of such couplers are needed to feed the interleaved cavities. Current high power RF test requires the coupler to be at critical coupling. Numerical simulations on the coupler designs using MAFIA will be presented.

  20. Phase noise in RF and microwave amplifiers.

    PubMed

    Boudot, Rodolphe; Rubiola, Enrico

    2012-12-01

    Understanding amplifier phase noise is a critical issue in many fields of engineering and physics, such as oscillators, frequency synthesis, telecommunication, radar, and spectroscopy; in the emerging domain of microwave photonics; and in exotic fields, such as radio astronomy, particle accelerators, etc. Focusing on the two main types of base noise in amplifiers, white and flicker, the power spectral density of the random phase φ(t) is Sφ(f) = b(0) + b(-1)/f. White phase noise results from adding white noise to the RF spectrum in the carrier region. For a given RF noise level, b(0) is proportional to the reciprocal of the carrier power P(0). By contrast, flicker results from a near-dc 1/f noise-present in all electronic devices-which modulates the carrier through some parametric effect in the semiconductor. Thus, b(-1) is a parameter of the amplifier, constant in a wide range of P(0). The consequences are the following: Connecting m equal amplifiers in parallel, b(-1) is 1/m times that of one device. Cascading m equal amplifiers, b(-1) is m times that of one amplifier. Recirculating the signal in an amplifier so that the gain increases by a power of m (a factor of m in decibels) as a result of positive feedback (regeneration), we find that b(-1) is m(2) times that of the amplifier alone. The feedforward amplifier exhibits extremely low b(-1) because the carrier is ideally nulled at the input of its internal error amplifier. Starting with an extensive review of the literature, this article introduces a system-oriented model which describes the phase flickering. Several amplifier architectures (cascaded, parallel, etc.) are analyzed systematically, deriving the phase noise from the general model. There follow numerous measurements of amplifiers using different technologies, including some old samples, and in a wide frequency range (HF to microwaves), which validate the theory. In turn, theory and results provide design guidelines and give suggestions for CAD and

  1. Results of a preliminary, high power RF thruster test

    SciTech Connect

    Brewer, L.; Karras, T.; Frind, G.; Holmes, D.G.

    1989-01-01

    The objective of this program was to demonstrate a high power electrodeless, RF electric propulsion concept. This was successfully accomplished. No attempt was made to optimize the design of the thruster with regard to physical dimensions, mass flow, nozzle shape, operational frequency, or power level. Measurements made were chamber pressure, total and static pressures at the nozzle exit plane and exhaust tank pressure. Mass flows range from about 0.4 to 1 gm/sec and, assuming perfect gas relationships, specific impulses up to 580 sec were obtained. Typical chamber pressure was 300 torr exhausting to a tank pressure of about 10 torr. Working fluids used were argon, helium and mixtures of the two. No degration of the device was detected after 12 start/stop cycles, about three hours of total run time, and a maximum input power of 70 kW. 10 refs.

  2. Silicon on Insulator MESFETs for RF Amplifiers

    PubMed Central

    Balijepalli, Asha; Ervin, Joseph; Lepkowski, William; Thornton, Trevor J.

    2010-01-01

    CMOS compatible, high voltage SOI MESFETs have been fabricated using a standard 3.3V CMOS process without any changes to the process flow. A 0.6μm gate length device operates with a cut-off frequency of 7.3GHz and a maximum oscillation frequency of 21GHz. There is no degradation in device performance up to its breakdown voltage, which greatly exceeds that of CMOS devices on the same process. Other figures of merit of relevance to RF front-end design are presented, including the maximum stable gain and noise figure. An accurate representation of the device in SPICE has been developed using the commercially available TOM3 model. Using the SOI MESFET model, a source degenerated low noise RF amplifier targeting operation near 1GHz has been designed. The amplifier was fabricated on a PCB board and operates at 940MHz with a minimum NF of 3.8dB and RF gain of 9.9dB while only consuming 5mW of DC power. PMID:20657816

  3. Silicon on Insulator MESFETs for RF Amplifiers.

    PubMed

    Wilk, Seth J; Balijepalli, Asha; Ervin, Joseph; Lepkowski, William; Thornton, Trevor J

    2010-03-01

    CMOS compatible, high voltage SOI MESFETs have been fabricated using a standard 3.3V CMOS process without any changes to the process flow. A 0.6μm gate length device operates with a cut-off frequency of 7.3GHz and a maximum oscillation frequency of 21GHz. There is no degradation in device performance up to its breakdown voltage, which greatly exceeds that of CMOS devices on the same process. Other figures of merit of relevance to RF front-end design are presented, including the maximum stable gain and noise figure. An accurate representation of the device in SPICE has been developed using the commercially available TOM3 model. Using the SOI MESFET model, a source degenerated low noise RF amplifier targeting operation near 1GHz has been designed. The amplifier was fabricated on a PCB board and operates at 940MHz with a minimum NF of 3.8dB and RF gain of 9.9dB while only consuming 5mW of DC power. PMID:20657816

  4. Publications of Proceedings for the RF 2005 7th Workshop on High Energy Density and High Power RF

    SciTech Connect

    Luhmann, Jr, N C

    2006-01-01

    The University of California, Davis hosted the High Energy Density and High Power RF 7th Workshop on High Energy Density and High Power RF in Kalamata, Greece, 13-17 June, 2005. The Proceedings cost was supported by these funds from the U.S. Department of Energy. The Proceedings was published through the American Institute of Physics.

  5. Klystron Cluster Scheme for ILC High Power RF Distribution

    SciTech Connect

    Nantista, Christopher; Adolphsen, Chris; /SLAC

    2009-07-06

    We present a concept for powering the main linacs of the International Linear Collider (ILC) by delivering high power RF from the surface via overmoded, low-loss waveguides at widely spaced intervals. The baseline design employs a two-tunnel layout, with klystrons and modulators evenly distributed along a service tunnel running parallel to the accelerator tunnel. This new idea eliminates the need for the service tunnel. It also brings most of the warm heat load to the surface, dramatically reducing the tunnel water cooling and HVAC requirements. In the envisioned configuration, groups of 70 klystrons and modulators are clustered in surface buildings every 2.5 km. Their outputs are combined into two half-meter diameter circular TE{sub 01} mode evacuated waveguides. These are directed via special bends through a deep shaft and along the tunnel, one upstream and one downstream. Each feeds approximately 1.25 km of linac with power tapped off in 10 MW portions at 38 m intervals. The power is extracted through a novel coaxial tap-off (CTO), after which the local distribution is as it would be from a klystron. The tap-off design is also employed in reverse for the initial combining.

  6. Normal conducting RF cavity of high current photoinjector for high power CW FEL.

    SciTech Connect

    Kurennoy, S.; Schrage, D. L.; Wood R. L.; Schultheiss, T.; Rathke, J.; Christina, V.; Young, L. M.

    2004-01-01

    An RF photoinjector capable of producing high continuous average current with low emittance and energy spread is a key enabling technology for high power CW FEL. The design of a 2.5-cell {pi}-mode 700-MHz normal-conducting RF photoinjector cavity with magnetic emittance compensation is completed. With the electric field gradients of 7, 7, and 5 MV/m in the three cells, the photoinjector will produce a 2.5-MeV electron beam with 3-nC charge per bunch and 7 mm-mrad transverse rms emittance. Electromagnetic modeling was used extensively to optimize ridge-loaded tapered waveguides and RF couplers, which led to a new improved coupler-iris design. The results, combined with a thermal/stress analysis, show that the challenging problem of cavity cooling can be successfully solved. A demo 100-mA (at 35-MHz bunch-repetition rate) photoinjector is being manufactured. The design is scalable to higher power levels by increasing the bunch repetition rate, and provides a path to a MW-class amplifier FEL. The cavity design and details of RF coupler modeling are presented.

  7. Normal-conducting RF cavity of high current photoinjector for high power CW FEL.

    SciTech Connect

    Kurennoy, S.; Schrage, D. L.; Wood R. L.; Schultheiss, T.; Rathke, J.; Young, L. M.

    2004-01-01

    An RF photoinjector capable of producing high continuous average current with low emittance and energy spread is a key enabling technology for high power CW FEL. The design of a 2.5-cell, {pi}-mode, 700-MHz normal-conducting RF photoinjector cavity with magnetic emittance compensation is completed. With the electric field gradients of 7.7, and 5 MV/m in the three cells, the photoinjector will produce a 2.5-MeV electron beam with 3-nC charge per bunch and the transverse rms emittance 7 mm-mrad. Electromagnetic modeling was used extensively to optimize ridge-loaded tapered waveguides and RF couplers, which led to a new, improved coupler iris design. The results, combined with a thermal and stress analysis, show that the challenging problem of cavity cooling can be successfully solved. The manufacturing of a demo 100-mA (at 35 MHz bunch repetition rate) photoinjector is underway. The design is scalable to higher power levels by increasing the electron bunch repetition rate, and provides a path to a MW-class amplifier FEL. This paper presents the cavity design and details of RF coupler modeling.

  8. A wideband RF amplifier for satellite tuners

    NASA Astrophysics Data System (ADS)

    Xueqing, Hu; Zheng, Gong; Yin, Shi; Foster, Dai Fa

    2011-11-01

    This paper presents the design and measured performance of a wideband amplifier for a direct conversion satellite tuner. It is composed of a wideband low noise amplifier (LNA) and a two-stage RF variable gain amplifier (VGA) with linear gain in dB and temperature compensation schemes. To meet the system linearity requirement, an improved distortion compensation technique and a bypass mode are applied on the LNA to deal with the large input signal. Wideband matching is achieved by resistive feedback and an off-chip LC-ladder matching network. A large gain control range (over 80 dB) is achieved by the VGA with process voltage and temperature compensation and dB linearization. In total, the amplifier consumes up to 26 mA current from a 3.3 V power supply. It is fabricated in a 0.35-μm SiGe BiCMOS technology and occupies a silicon area of 0.25 mm2.

  9. Multi-pass amplifier architecture for high power laser systems

    DOEpatents

    Manes, Kenneth R; Spaeth, Mary L; Erlandson, Alvin C

    2014-04-01

    A main amplifier system includes a first reflector operable to receive input light through a first aperture and direct the input light along an optical path. The input light is characterized by a first polarization. The main amplifier system also includes a first polarizer operable to reflect light characterized by the first polarization state. The main amplifier system further includes a first and second set of amplifier modules. Each of the first and second set of amplifier modules includes an entrance window, a quarter wave plate, a plurality of amplifier slablets arrayed substantially parallel to each other, and an exit window. The main amplifier system additionally includes a set of mirrors operable to reflect light exiting the first set of amplifier modules to enter the second set of amplifier modules and a second polarizer operable to reflect light characterized by a second polarization state.

  10. Theory, Design and Operation of a High-Power Second - Gyro-Twt Amplifier.

    NASA Astrophysics Data System (ADS)

    Wang, Qinsong

    1995-01-01

    Based on the cyclotron resonance maser (CRM) instability, the gyrotron traveling wave tube (gyro-TWT) amplifier is an efficient high power microwave and millimeter wave coherent radiation source. As evidenced in previous experiments, gyro-TWTs, however, can be very susceptible to spontaneous oscillations, and their output powers have thus been limited to relatively low levels. In this dissertation work, thorough theoretical and experimental studies have been conducted to demonstrate and confirm a novel "marginal stability design" (MSD) concept that a harmonic gyro-TWT amplifier is more stable to spontaneous oscillation than a fundamental harmonic gyro-TWT amplifier. Since their interactions are, in general, weaker and allow higher levels of electron beam current, harmonic gyro-TWTs can yield, in principle, a significantly higher RF output power than a fundamental gyro-TWT. The study results also show that a magnetron injection gun (MIG) type electron beam is applicable to harmonic gyro-TWTs. A complete analytic linear theory employing Laplace transforms and a three dimensional nonlinear theory using a slow time-scale formalism are developed in Chapt. 2 for the general CRM interaction to address the issue of stability. Two designs were developed to demonstrate the MSD procedure. The design and development of the proof -of-principle experiment are discussed in Chapt. 3. The accompanying cold test results indicate that all the components have met their respective design goals. The RF diagnostic circuit employed to characterize the gyro-TWT amplifier is also described. Chapter 4 presents the hot-test results of the second-harmonic TE_{21} gyro-TWT amplifier experiment in which an 80 kV, 20 A MIG beam with alpha(equivupsilon _|/upsilon_|) = 1 was used to generate a peak RF output power of 207 kW in Ku-band with an efficiency of 12.9%. In addition, the saturated gain is 16 dB, the small signal gain is 22 dB, the measured bandwidth is 2.1%, and the amplifier was zero

  11. Coaxial extraction of RF power from a traveling wave amplifier

    SciTech Connect

    Naqvi, S.; Kerslick, G.S.; Nation, J.A.; Schaecter, L.

    1996-12-31

    The authors present new results from a high-power relativistic traveling wave tube amplifier experiment in which the RF power is extracted in a coaxial output section. The amplifier consists of two slow-wave structures separated by a resistive sever. The first stage imparts a small modulation to the beam. The second stage consists of an iris-loaded circular waveguide which is tapered from both ends by an adiabatic increase in the iris aperture with each successive period. The periodic length and the external cavity radius are kept constant. This provides a low-reflection transition from the slow-wave structure to the empty circular waveguide. A coaxial inner conductor is inserted into the output tapered section of the slow-wave structure and its` position and radius chosen to minimize reflections and maximize extracted RF power. It is shown both experimentally and through MAGIC simulations that a fairly low reflection circular TM{sub 01} to coaxial TEM mode transition can be made this way. Any small reflections form the output end travel backwards and are absorbed in the sever. In contrast to the traditional transverse extraction of power into a rectangular waveguide, the coaxial extraction is fairly broadband and exhibits much lower sensitivity to dimensions. The beam is dumped through an aperture in the inner conductor. Presently, the power is extracted into the coaxial waveguide and absorbed into a tapered resistive load. This will be later converted to the TE{sub 10} mode of a rectangular waveguide.

  12. Recent Advances in High Power Millimeter Wave Gyroklystron Amplifiers at NRL

    NASA Astrophysics Data System (ADS)

    Danly, B. G.

    1998-04-01

    Amplifiers based on the electron cyclotron resonance maser or gyrotron interaction are capable of producing both high peak and high average powers in the millimeter wave band. These devices are of interest for a variety of applications including use in millimeter wave radars and as drivers for high frequency RF accelerators. Recent progress on 35 GHz and 93 GHz gyroklystron and gyrotwystron amplifiers in the Vacuum Electronics Branch of the Naval Research Laboratory will be described. At 35 GHz, a two-cavity device has produced up to 210 kW peak power at 37% efficiency with limited bandwidth( J.J. Choi, A.H. McCurdy, F. Wood, R.H. Kyser, J. Calame, K. Nguyen, B.G. Danly, T.M. Antonsen Jr., B. Levush, and R.K. Parker, Experimental Investigation of a High Power, Two-Cavity, 35 GHz Gyroklystron Amplifier IEEE Trans.Plasma Sci., To Be Published, 1998.), and a three-cavity device has produced up to 225 kW peak power with 0.6% bandwidth. At 93 GHz, successive experimental four-cavity gyroklystrons have produced up to 67 kW with 460 MHz bandwidth and 60 kW with 640 MHz bandwidth(M. Blank, B.G. Danly, B. Levush, P.E. Latham, and D. Pershing, Experimental Demonstration of a W-Band Gyroklystron Amplifier Phys.Rev.Lett., vol. 79, pp. 4485-4488, 1997.). These amplifiers have had gains in the 27 - 30 dB range. The experimental results are in excellent agreement with theoretical predictions. Recent progress will be detailed, and opportunities for higher power and bandwidth will be discussed.

  13. Theoretical studies of high-power Cerenkov amplifiers

    SciTech Connect

    Schaechter, L.; Nation, J.A.; Shiffler, D.A. )

    1991-07-01

    The main theoretical aspects of the experiments performed and reported recently are discussed here. First the one stage amplifier is considered. As a preliminary step the behavior of the electrons is followed in the phase space at different points along the interaction region. This analysis reveals that about 30% of the interaction region is utilized for construction of the electron bunches. It is shown that although the average energy of the electrons remains unchanged along most of the amplifier, their energy spread increases substantially. Since the system consists of two long tapered sections, it is suggested that the effective length of the interaction region might be significantly longer than the physical length of the uniform structure. It is further suggested that the electrostatic periodic potential induced by the beam may also improve the interaction process. The next subject addressed here is the bandwidth of a single stage amplifier. It is shown that the reason for the narrow measured bandwidth is the gain of the system. In fact the output signal from a short amplifier is narrowed by exactly the same amount the amplitude of the electromagnetic wave is increased. This result is general as long as part of the radiation field is reflected from both ends of the amplifier. In the second part of this paper the two stage amplifier is analyzed. As in the case of the single stage amplifier the behavior of the electrons is followed in phase space at various locations along the system. This discussion leads to an analysis of the development of sidebands'' which are not symmetrically located around the initial frequency at power levels that do not correspond to a nonlinear process. It is suggested that these sidebands are amplified noise{minus}produced basically in the first stage.

  14. A high power cross-field amplifier at X-Band

    SciTech Connect

    Eppley, K.; Feinstein, J.; Ko, K.; Kroll, N.; Lee, T.; Nelson, E.

    1991-05-01

    A high power cross-field amplifier is under development at SLAC with the objective of providing sufficient peak power to feed a section of an X-Band (11.424 GHz) accelerator without the need for pulse compression. The CFA being designed employs a conventional distributed secondary emission cathode but a novel anode structure which consists of an array of vane resonators alternatively coupled to a rectangular waveguide. The waveguide impedance (width) is tapered linearly from input to output so as to provide a constant RF voltage at the vane tips, leading to uniform power generation along the structure. Nominal design for this tube calls for 300 MW output power, 20 dB gain, DC voltage 142 KV, magnetic field 5 KG, anode-cathode gap 3.6 mm and total interaction length of about 60 cm. These specifications have been supported by computer simulations of both the RF slow wave structure as well as the electron space charge wave interaction. We have used ARGUS to model the cold circuit properties and CONDOR to model the electronic power conversion. An efficiency of 60 percent can be expected. We will discuss the details of the design effort. 5 refs., 6 figs.

  15. High power metallic halide laser. [amplifying a copper chloride laser

    NASA Technical Reports Server (NTRS)

    Pivirotto, T. J. (Inventor)

    1982-01-01

    A laser amplification system is disclosed whereby a metallic halide vapor such as copper chloride is caused to flow through a laser amplifier and a heat exchanger in a closed loop system so that the flow rate is altered to control the temperature rise across the length of the laser amplifier. The copper atoms within the laser amplifier should not exceed a temperature of 3000 K, so that the number of copper atoms in the metastable state will not be high enough to prevent amplification in the amplifier. A molecular dissociation apparatus is provided at the input to the laser amplifier for dissociating the copper chloride into copper atoms and ions and chlorine atoms and ions. The dissociation apparatus includes a hollow cathode tube and an annular ring spaced apart from the tube end. A voltage differential is applied between the annular ring and the hollow cathode tube so that as the copper chloride flows through, it is dissociated into copper and chlorine ions and atoms.

  16. Experiments with very-high-power RF pulses at SLAC

    SciTech Connect

    Hogg, H.A.; Loew, G.A.; Price, V.G.

    1983-03-01

    Experiments in which the powers of two SLAC klystrons were combined and fed into a resonant cavity pulse-compression system (SLED) are described. Pulse powers up to 65 MW into SLED were reached. The corresponding instantaneous peak power out of SLED was 390 MW. After normal initial aging, no persistent RF breakdown problems were encountered. X-radiation at the SLED cavities was generally less than 400 mR/h after aging. The theoretical relationship between x-radiation intensity and RF electric field strength is discussed.

  17. HIGH POWER RF DISTRIBUTION AND CONTROL FOR MULTI-CAVITY CRYOMODULE TESTING

    SciTech Connect

    Kang, Yoon W; Broyles, Michael R; Crofford, Mark T; Geng, Xiaosong; Kim, Sang-Ho; Lee, Sung-Woo; Phibbs, Curtis L; Shin, Ki; Strong, William Herb

    2011-01-01

    Qualification of the superconducting radio-frequency (SRF) cavities in the cryomodules for the accelerating performance needs to be done through high power processing. A four-way waveguide power distribution system with independent control of power outputs has been being developed for testing the multi-cavity cryomodules for the SNS linac. SNS is employing two types of cryomodules: one type with three medium beta six-cell cavities and the other with four high beta six-cell cavities. The cryomodule that is being manufactured as a spare and the new crymodules for the future power upgrade project (PUP) of SNS will be high beta types. The four-way power distribution with independently controlled power outputs was considered useful for powering all cavities at the same time with a klystron amplifier since the SNS test facility was configured for a single klystron operation. Since certain interaction between the cavities under severe field emission was suspected in existing cryomodules, this type of high power test can be valuable for characterization of SRF cavities. By implementing a vector modulator at each arm of the splitting system, the amplitudes and the phases of RF outputs can be controlled independently. This paper discusses the present status of the development.

  18. High power 938 nanometer fiber laser and amplifier

    DOEpatents

    Dawson, Jay W.; Liao, Zhi Ming; Beach, Raymond J.; Drobshoff, Alexander D.; Payne, Stephen A.; Pennington, Deanna M.; Hackenberg, Wolfgang; Calia, Domenico Bonaccini; Taylor, Luke

    2006-05-02

    An optical fiber amplifier includes a length of silica optical fiber having a core doped with neodymium, a first cladding and a second cladding each with succeeding lower refractive indices, where the first cladding diameter is less than 10 times the diameter of the core. The doping concentration of the neodymium is chosen so that the small signal absorption for 816 nm light traveling within the core is less than 15 dB/m above the other fiber losses. The amplifier is optically pumped with one laser into the fiber core and with another laser into the first cladding.

  19. High power singlemode edge-emitting master oscillator power amplifier

    NASA Technical Reports Server (NTRS)

    O'Brien, S.; Parke, R.; Welch, D. F.; Mehuys, D.; Scifres, D.

    1992-01-01

    An edge-emitting monolithically integrated master oscillator power amplifier (M-MOPA) has been fabricated by integrating a distributed Bragg reflector laser with a 500 microns long single mode amplifier. The M-MOPA contains a strained InGaAs quantum well in the active region and operates at about 981.5 nm in an edge-emitting fashion with maximum powers in excess of 175 mW. Single longitudinal and transverse mode operation is maintained to powers in excess of 110 mW CW.

  20. Using a Balun Transformer Combiner for High Power RF Experiments

    NASA Astrophysics Data System (ADS)

    Kaufman, M. C.; Pesavento, P. V.

    2011-10-01

    A novel coaxial power combiner design has been duplicated that has distinct advantages over other combiner geometries that can handle high power. This design is being applied to combine four 3 kW power supplies to obtain a 12 kW, 5 MHz system for an ICRF antenna on HSX. In the past, Wilkinson type combiners have had limited application to high power systems because of the lack of non-inductive, high power, 100 Ω balance loads. With this new design, standard 50 Ω dummy loads can be used instead for the balance load. The cost is considerably lower than lumped element combiner designs which are dominated by capacitor costs. At such a relatively low frequency, a 3-dB quarter-wave coupled-line coupler becomes impractically long, and a conventional branch-line hybrid requires 35 Ω-line, which is commercially unavailable. The balun combiner uses less transmission line than a ring hybrid and has good bandwidth characteristics even away from its best line impedance. Theoretical calculations and modeling were performed for line impedances from 65 Ω to 75 Ω. Measurements from a low-power test device show excellent agreement with theory, and construction of the high power system is underway. Work supported by US DOE under Contract No DE-AC05-00OR22725.

  1. NASA satellite communications application research. Phase 2: Efficient high power, solid state amplifier for EFH communications

    NASA Technical Reports Server (NTRS)

    Benet, James

    1993-01-01

    The final report describes the work performed from 9 Jun. 1992 to 31 Jul. 1993 on the NASA Satellite Communications Application Research (SCAR) Phase 2 program, Efficient High Power, Solid State Amplifier for EHF Communications. The purpose of the program was to demonstrate the feasibility of high-efficiency, high-power, EHF solid state amplifiers that are smaller, lighter, more efficient, and less costly than existing traveling wave tube (TWT) amplifiers by combining the output power from up to several hundred solid state amplifiers using a unique orthomode spatial power combiner (OSPC).

  2. A brief history of high power RF proton linear accelerators

    SciTech Connect

    Browne, J.C.

    1996-12-31

    The first mention of linear acceleration was in a paper by G. Ising in 1924 in which he postulated the acceleration of positive ions induced by spark discharges which produced electric fields in gaps between a series of {open_quotes}drift tubes{close_quotes}. Ising apparently was not able to demonstrate his concept, most likely due to the limited state of electronic devices. Ising`s work was followed by a seminal paper by R. Wideroe in 1928 in which he demonstrated the first linear accelerator. Wideroe was able to accelerate sodium or potassium ions to 50 keV of energy using drift tubes connected alternately to high frequency waves and to ground. Nuclear physics during this period was interested in accelerating protons, deuterons, electrons and alpha particles and not heavy ions like sodium or potassium. To accelerate the light ions required much higher frequencies than available at that time. So linear accelerators were not pursued heavily at that time. Research continued during the 1930s but the development of high frequency RF tubes for radar applications in World War 2 opened the potential for RF linear accelerators after the war. The Berkeley laboratory of E. 0. Lawrence under the leadership of Luis Alvarez developed a new linear proton accelerator concept that utilized drift tubes that required a full RF period to pass through as compared to the earlier concepts. This development resulted in the historic Berkeley 32 MeV proton linear accelerator which incorporated the {open_quotes}Alvarez drift tube{close_quotes} as the basic acceleration scheme using surplus 200 MHz radar components.

  3. Neutral particle dynamics in a high-power RF source

    NASA Astrophysics Data System (ADS)

    Todorov, D.; Paunska, Ts.; Tarnev, Kh.; Shivarova, A.

    2015-04-01

    Previous studies on the spatial discharge structure in the SPIDER source of negative hydrogen/deuterium ions carried out at low applied power are extended towards description of the discharge maintenance under the conditions of the actual rf power deposition of 100 kW planned for a single driver of the source. In addition to the expected higher electron density, the results show strong increase of the electron temperature and of the temperatures of the neutral species (hydrogen atoms and molecules). In the discussions, not only the spatial distribution of the plasma parameters but also that of the fluxes in the discharge (particle and energy fluxes) is involved. The obtained results come in confirmation of basic concepts for low-pressure discharge maintenance: (i) mutually related electron density and temperature as a display of the generalized Schottky condition, (ii) discharge behavior governed by the fluxes, i.e. strong nonlocality in the discharge, and (iii) a non-ambipolarity in the discharge regime, which originates from shifted maxima of the electron density and temperature and shows evidence in a vortex electron flux and in a dc current in a rf discharge, the latter resulting from a shift in the positions of the maxima of the electron density and plasma potential.

  4. Neutral particle dynamics in a high-power RF source

    SciTech Connect

    Todorov, D. Paunska, Ts.; Shivarova, A.; Tarnev, Kh.

    2015-04-08

    Previous studies on the spatial discharge structure in the SPIDER source of negative hydrogen/deuterium ions carried out at low applied power are extended towards description of the discharge maintenance under the conditions of the actual rf power deposition of 100 kW planned for a single driver of the source. In addition to the expected higher electron density, the results show strong increase of the electron temperature and of the temperatures of the neutral species (hydrogen atoms and molecules). In the discussions, not only the spatial distribution of the plasma parameters but also that of the fluxes in the discharge (particle and energy fluxes) is involved. The obtained results come in confirmation of basic concepts for low-pressure discharge maintenance: (i) mutually related electron density and temperature as a display of the generalized Schottky condition, (ii) discharge behavior governed by the fluxes, i.e. strong nonlocality in the discharge, and (iii) a non-ambipolarity in the discharge regime, which originates from shifted maxima of the electron density and temperature and shows evidence in a vortex electron flux and in a dc current in a rf discharge, the latter resulting from a shift in the positions of the maxima of the electron density and plasma potential.

  5. A high power microwave triggered RF opening switch.

    PubMed

    Beeson, S; Dickens, J; Neuber, A

    2015-03-01

    A 4-port S-band waveguide structure was designed and fabricated such that a signal of any amplitude (less than 1 MW) can be switched from a normally closed state, <0.5 dB insertion loss (IL), to an open state >30 dB IL by initiating plasma in a gas cell situated at the junction of this waveguide and one propagating a megawatt level magnetron pulse. The 90/10 switching time is as low as 20 ns with a delay of ∼30 ns between the onset of the high power microwave pulse and the initial drop of the signal. Two ports of this device are for the high power triggering pulse while the other two ports are for the triggered signal in a Moreno-like coupler configuration. In order to maintain high isolation, these two sets of waveguides are rotated 90° from each other with a TE111 resonator/plasma cell located at the intersection. This manuscript describes the design and optimization of this structure using COMSOL 4.4 at the design frequency of 2.85 GHz, comparison of simulated scattering parameters with measured "cold tests" (testing without plasma), and finally the temporal waveforms of this device being used to successfully switch a low power CW signal from 2 W to <5 mW on a sub-microsecond timescale. PMID:25832255

  6. High power 1018 nm monolithic Yb3+-doped fiber laser and amplifier High power 1018 nm monolithic Yb3+-doped fiber laser and amplifier

    NASA Astrophysics Data System (ADS)

    Xiao, H.; Zhou, P.; Wang, X. L.; Guo, S. F.; Xu, X. J.

    2012-10-01

    In this letter high power monolithic 1018 nm fiber laser and amplifier are presented. The output characteristics of 1018 nm laser with amplified spontaneous emission (ASE) feedback, fiber Bragg gratings (FBG) reflectivity, gain fiber length and other parameters are experimentally investigated. The difference between 1018 and 1064 nm amplification are also compared in experiment. Based on these experimental results, we find viable approaches to improve the laser and amplifier's performances. 85 W 1018 nm fiber laser with a slope efficiency of 71% and 110 W 1018 nm fiber amplifier with the slope efficiency of 77% are achieved, both of which we believe are the highest output at this wavelength that ever reported in open detail.

  7. Electron Gun For a High-Power X-Band Magnicon Amplifier

    NASA Astrophysics Data System (ADS)

    Yakovlev, V. P.; Nezhevenko, O. A.; True, R.

    1997-05-01

    This paper describes a 500 kV, 210 amp, advanced Pierce gun for a high power, 11.4 GHz, 60% efficient, second harmonic magnicon amplifier. This magnicon, being developed jointly by a collaboration of workers from Omega-P, NRL, and Litton, represents a prototype RF power source for future linear colliders. High magnicon efficiency requires use of a small diameter electron beam. From a 7.5 cm diameter low temperature dispenser cathode, the diameter of the focussed beam is 1.5 mm in a 0.65 T main field. In this case, beam area compression is 2500:1, and beam energy density is over 10 kJ/cm^2 per pulse. A unique feature of the gun is that the focus electrode is electrically isolated from the cathode. This not only help in achievement of the high beam intensity, it eliminates emission from the side of the cathode which is often the major ultimate origin of beam halo.

  8. High Power Testing of an X-Band RF Gun

    NASA Astrophysics Data System (ADS)

    Le Sage, G. P.; Hartemann, F. V.; Luhmann, N. C., Jr.; Ho, C. H.; Lau, W. K.; Yang, T. T.; Hwang, J. Y.; Liu, Y. C.

    1997-05-01

    A high brightness X-band photoinjector, capable of multibunch operation has been developed as a collaborative effort between the UC Davis Department of Applied Science and the Synchrotron Radiation Research Center in Hsinchu, Taiwan. The high power, UHV structure is in the initial stages of high gradient testing. Simulations using SUPERFISH and PARMELA show that approximately 10 MW of drive power at 8.548 GHz will produce 4.1 MeV electron bunches. A cold test cavity model has demonstrated a ohmic Q value of 4,718 with cavity components pressed together. The closed cavity ohmic Q value simulated using SUPERFISH is 7,168. Phase stabilization measurements of a 1 kW signal from a TWTA filtered by the high Q cold test cavity are also presented.(Work supported by DoD/AFOSR MURI F49620-95-1-0253, AFOSR (ATRI) F30602-94-2-001, ARO DAAHO4-95-1-0336, LLNL/LDRD DoE W-7405-ENG-48 IUT B335885)

  9. A High-Power RF-Focusing CW Electron LINAC.

    NASA Astrophysics Data System (ADS)

    Sobenin, N. P.; Kostin, D. V.; Shvedunov, V. I.; Trower, W. P.

    1997-05-01

    Using a biperiodic accelerating structure with rectangular cavities in a high-power Continuous Wave electron LINear ACcelerator simplifies accelerator construction and reduces beam losses. By optimizing the beam aperture and coupling slots, we have obtained high focusing gradients, shunt impedances (N.P. Sobenin, V.N. Kandurin, A.I. Karev, V.N. Melekhin, V.I. Shvedunov, and W.P. Trower, in Proc. 1995 Particle Accelerator Conf., L. Gennari ed. (IEEE, Piscataway,1996) v. 3, p. 1827.), and couplings (around 20 percent). By successively rotating six rectangular accelerating cavity sections through 90^o about the beam axis and separating the sections by axially symmetric cavities which serve as drift spaces, we obtain focusing similar to that of a quadrupole magnets system. We find that a 500 mA beam accelerated from 2 to 10 MeV in a 4 m structure suffers negligible beam losses. A similar axially symmetric structure without external focusing begins losing substantial beam at around 100 mA.

  10. Theory of intermodulation in high power microwave amplifiers

    NASA Astrophysics Data System (ADS)

    Wilsen, Craig Bisset

    2001-12-01

    This thesis presents the first general theory of klystron intermodulation. The klystron is a powerful microwave vacuum electronics amplifier, finding widespread application in linear accelerators, radar, television broadcasting, and long-distance communication. NASA's Jet Propulsion Laboratory is concerned about klystron intermodulation in their Deep Space Network. The intermodulation theory solves the nonlinear force law, the continuity equation, and Poisson's Equation exactly in one dimension. The electron trajectory is thus obtained. An exact expression for the modulated current at the next cavity is written in terms of the inter- cavity time-of-flight. This expression contains intermodulation products and harmonics to all orders and includes the effects of charge overtaking. A circuit model yields the cavity voltage, also complete in spectral content, which defines the initial condition for the electron trajectory across the subsequent section of drift tube. A simple numerical algorithm is constructed. Excellent precision (down to -150 dB) and high spectral resolution (up to one part in 105) is achieved. A collaborative effort with the University of Wisconsin provided experimental validation. The comparison between theory and experiment is most gratifying. The loading of a resonant cavity by the intense space charge of an electron beam will change its resonant frequency and bandwidth. These beam-loaded parameters are required to define the circuit model in the intermodulation algorithm. Beam loading is investigated using MAGIC2D, an electromagnetic particle-in-cell code. Several of the results are surprising. The degree of beam loading is found to be primarily a function of perveance. Both AC beam current and neutralization of the beam exert a negligible influence on beam loading. Theoretical approaches are also investigated. Finally, the intermodulation theory is extended to the traveling wave tube (TWT), which has a broader bandwidth than the klystron and is

  11. A High-performance Hybrid RF Isolation Amplifier

    NASA Technical Reports Server (NTRS)

    Stevens, G. L.

    1984-01-01

    A high-performance hybrid RF Isolation Amplifier (Iso-Amp) has been developed at JPL. The circuit exhibits a unique combination of RF characteristics at performance levels exceeding those of any commercially available device. Recent improvments in the design have resulted in significantly higher reverse isolation, a four-fold increase in bandwidth and improve reliability. These devices are very useful in RF and IF signal conditioners, instrumentation, and signal generation and distribution equipment. These Iso-Amps should find wide application in future DSN and R&D RF systems.

  12. High-power piezo drive amplifier for large stack and PFC applications

    NASA Astrophysics Data System (ADS)

    Clingman, Dan J.; Gamble, Mike

    2001-08-01

    This paper describes the continuing development of Boeing High Power Piezo Drive Amplifiers. Described is the development and testing of a 1500 Vpp, 8 amp switching amplifier. This amplifier is used to drive a piezo stack driven rotor blade trailing edge flap on a full size helicopter. Also discuss is a switching amplifier designed to drive a Piezo Fiber Composite (PFC) active twist rotor blade. This amplifier was designed to drive the PFC material at 2000 Vpp and 0.5 amps. These amplifiers recycle reactive energy, allowing for a power and weight efficient amplifier design. This work was done in conjunction with the DARPA sponsored Phase II Smart Rotor Blade program and the NASA Langley Research Center sponsored Active Twist Rotor (ATR) blade program.

  13. High-power testing of the first PEP-II RF cavity

    SciTech Connect

    Rimmer, R.A.; Allen, M.; Fant, K.; Hill, A.; Hoyt, M.; Judkins, J.; Saba, J.; Schwarz, H.; Franks, R.M.

    1996-06-01

    This paper describes the high-power testing of the first RF cavity for the PEP-II B-factory. The cavity is designed for continuous operation at 476 MHz with up to 150 kW wall dissipation and heavy beam loading. Three rectangular waveguides and broad-band loads are used to damp the cavity higher-order modes. The test configuration, RF conditioning history and high-power performance are described and plans for processing of the production run of cavities are discussed.

  14. Publication of Proceedings for the 6th Workshop on High Energy Density and High Power RF (RF 2003)

    SciTech Connect

    Victor L. Granatstein

    2004-08-08

    The 6th Workshop on High Energy Density and High Power RF (RF 2003) was held from June 22 to June 26 at the Coolfont Resort and Conference Center in Berkeley Springs, West Virginia. The Workshop was hosted by the Institute for Research in Electronics and Applied Physics (IREAP) of the University of Maryland, College Park and by the Naval Research Laboratory, Washington DC. As its name implies this was the sixth in a series of biennial workshops devoted to exchanging information and ideas on high power microwave sources and components. The applications addressed included particle accelerators, radar, HPM, space exploration, neutron sources and plasma heating and current driven in controlled thermonuclear fusion research. This Final Report includes a brief description of the RF 2003 Workshop and the distribution of the published proceedings.

  15. High-Power Multimode X-Band RF Pulse Compression System for Future Linear Colliders

    SciTech Connect

    Tantawi, S.G.; Nantista, C.D.; Dolgashev, V.A.; Pearson, C.; Nelson, J.; Jobe, K.; Chan, J.; Fant, K.; Frisch, J.; Atkinson, D.; /LLNL, Livermore

    2005-08-10

    We present a multimode X-band rf pulse compression system suitable for a TeV-scale electron-positron linear collider such as the Next Linear Collider (NLC). The NLC main linac operating frequency is 11.424 GHz. A single NLC rf unit is required to produce 400 ns pulses with 475 MW of peak power. Each rf unit should power approximately 5 m of accelerator structures. The rf unit design consists of two 75 MW klystrons and a dual-moded resonant-delay-line pulse compression system that produces a flat output pulse. The pulse compression system components are all overmoded, and most components are designed to operate with two modes. This approach allows high-power-handling capability while maintaining a compact, inexpensive system. We detail the design of this system and present experimental cold test results. We describe the design and performance of various components. The high-power testing of the system is verified using four 50 MW solenoid-focused klystrons run off a common 400 kV solid-state modulator. The system has produced 400 ns rf pulses of greater than 500 MW. We present the layout of our system, which includes a dual-moded transmission waveguide system and a dual-moded resonant line (SLED-II) pulse compression system. We also present data on the processing and operation of this system, which has set high-power records in coherent and phase controlled pulsed rf.

  16. The Development of the Electrically Controlled High Power RF Switch and Its Application to Active RF Pulse Compression Systems

    SciTech Connect

    Guo, Jiquan

    2008-12-01

    In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

  17. Long pulse H- beam extraction with a rf driven ion source on a high power level.

    PubMed

    Kraus, W; Fantz, U; Franzen, P

    2010-02-01

    IPP Garching is investigating the applicability of rf driven negative ion sources for the neutral beam injection of International Thermonuclear Experimental Reactor. The setup of the tested source was improved to enable long pulses up to 100 kW rf power. The efficiency of negative ion production decreases at high power. The extracted H(-) currents as well as the symmetry of the plasma density close to the plasma grid and of the beam divergence depend on the magnetic filter field. The pulse duration is limited by the increase in coextracted electrons, which depends on the rf power and the caesium conditions on the plasma grid. PMID:20192417

  18. Beamline considerations for a compact, high current, high power linear RF electron accelerator

    SciTech Connect

    Marder, B.

    1987-06-01

    A design for a compact, high current, high power linear electron accelerator using an rf power source is investigated. It consists of adjacent cavities into which rf power is injected and through which electron pulses pass. The source is assumed to be capable of delivering sufficient rf power to the desired location at the proper phase. Beamline issues such as cavity loading, energy extraction, longitudinal and transverse pulse focusing, and beam breakup are considered. A device which, given the required source, can deliver beam parameters comparable to existing induction accelerators but which is more than an order of magnitude smaller appears feasible.

  19. High-power microwave amplifier based on overcritical relativistic electron beam without external magnetic field

    SciTech Connect

    Kurkin, S. A. Koronovskii, A. A.; Frolov, N. S.; Hramov, A. E.; Rak, A. O.; Kuraev, A. A.

    2015-04-13

    The high-power scheme for the amplification of powerful microwave signals based on the overcritical electron beam with a virtual cathode (virtual cathode amplifier) has been proposed and investigated numerically. General output characteristics of the virtual cathode amplifier including the dependencies of the power gain on the input signal frequency and amplitude have been obtained and analyzed. The possibility of the geometrical working frequency tuning over the range about 8%–10% has been shown. The obtained results demonstrate that the proposed virtual cathode amplifier scheme may be considered as the perspective high-power microwave amplifier with gain up to 18 dB, and with the following important advantages: the absence of external magnetic field, the simplicity of construction, the possibility of geometrical frequency tuning, and the amplification of relatively powerful microwave signals.

  20. Possibility of a high-power, high-gain amplifier FEL

    SciTech Connect

    Nguyen, D. C.; Freund, H. P.

    2002-01-01

    High-gain amplifier FEL offer many unique advantages such as robust operation without a high-Q optical cavity and potentially high extraction eaciencies with the use of tapered wigglers. Although a high average power, cw amplifier FEL has not been demonstrated, many key physics issues such as electron beam brightness requirements, single-pass gains, saturation, etc. have been resolved. In this paper, we study the feasibility of a high-power FEL based on the high-gain amplifier concept. We show that with suitable electron beam parameters, i.e. high peak current, low emittance, low energy spread, and sufficient tapered wiggler length, peak output power of 1 QW and optical pulse energy of 8 mJ can be achieved. We also outline a possible configuration of a high-power, high-gain amplifier FEL with energy recovery.

  1. Materials and Device Optimization for High Power SiGe HBT Amplifiers at X-Band Frequencies

    NASA Technical Reports Server (NTRS)

    Mueller, C. H.; Alterovitz, S. A.; Croke, E. T.

    1999-01-01

    The driving force behind SiGe development is the potential for high frequency and high power devices that provide comparable functionality as more expensive semiconductors such as InP and GaAs, but at a much lower cost. Additional advantages are the potential for incorporating SiGe devices onto monolithic Si chips and fabricating entire systems, such as receiver front-ends or RF power amplifiers, on a single chip. The work reported in this paper summarizes the materials and simulation aspects of a much larger project, which will eventually lead to SiGe HBT amplifiers with output powers greater than 1 W and over 35 dB gain at X-band frequencies. To achieve these goals, accurate analysis of the materials properties, especially in the base region, and highly refined amplifier design procedures must be established. In this paper we report the precision that may be obtained using optical ellipsometry to monitor the base and emitter thicknesses and Ge content of the base. We also report the extent of crystalline degradation in state-of-the-art SiGe films with high Ge contents. The objective of this work is to access the materials quality of HBT structures, and then use this data to model how various defects impact device performance, and which defects are most likely to limit high power and/or high frequency performance.

  2. High power all-fiber amplifier with different seed power injection.

    PubMed

    Wang, Jianming; Yan, Dapeng; Xiong, Songsong; Huang, Bao; Li, Cheng

    2016-06-27

    We report a high power all-fiber amplifier with suitable seed power injected by an all-fiber laser. Different seed powers were injected into the all-fiber amplifier during our amplification experiments, and we found the stimulated Raman scattering (SRS) threshold was inversely proportional to the injected seed power. More than 3 kW signal light with good beam quality (M2 = 1.28) has been obtained with a suitable seed power injected, and the slope efficiency of the all-fiber amplifier was about 84.4%. PMID:27410599

  3. Hybrid ultra-short Yb:YAG ceramic master-oscillator high-power fiber amplifier.

    PubMed

    Zhou, Hui; Li, Wenxue; Yang, Kangwen; Lin, Niannian; Jiang, Benxue; Pan, Yubai; Zeng, Heping

    2012-07-01

    We demonstrated a hybrid ceramic master-oscillator high-power fiber amplifier with a diode-pumped Yb:YAG ceramic laser as the seeding oscillator, which was passively mode-locked at 103.29 MHz repetition rate around 1031 nm by using a semiconductor saturable absorption mirror, and a two-stage double-clad photonic crystal fiber amplifier, which power-scaled the ceramic laser oscillator up to an average power of 303 W. The amplified pulses were further compressed to 237 and 418 fs at 50 and 150 W output powers, respectively. The compressed pulses exhibited about 0.05% deviation from the Gaussian fit, implying that the high-power fiber amplification induced neither observable temporal and spectral distortion nor significant nonlinear de-chirping of the chirped pulses. PMID:22828617

  4. Lumped circuit model of RF amplifier for SPICE simulator

    NASA Astrophysics Data System (ADS)

    Opalska, Katarzyna

    2014-11-01

    The paper presents the lumped model of RF amplifier for the generic SPICE circuit simulator. Model is constructed on the basis of measured s-parameter data set of the amplifier. Data - transformed to admittance (y) domain - is approximated by rational functions, which later are synthesized as RLC (sub)circuits. Final amplifier model - obtained by representing Y matrix of two-port circuit by the set of passive components and controlled voltage/current sources - is shown to be equivalent to the original s-based model and may be used in any generic circuit simulator.

  5. High power tests of dressed supconducting 1.3 GHz RF cavities

    SciTech Connect

    Hocker, A.; Harms, E.R.; Lunin, A.; Sukhanov, A.; /Fermilab

    2011-03-01

    A single-cavity test cryostat is used to conduct pulsed high power RF tests of superconducting 1.3 GHz RF cavities at 2 K. The cavities under test are welded inside individual helium vessels and are outfitted ('dressed') with a fundamental power coupler, higher-order mode couplers, magnetic shielding, a blade tuner, and piezoelectric tuners. The cavity performance is evaluated in terms of accelerating gradient, unloaded quality factor, and field emission, and the functionality of the auxiliary components is verified. Test results from the first set of dressed cavities are presented here.

  6. Design of a new VHF RF power amplifier system for LANSCE

    SciTech Connect

    Lyles, John T M

    2010-01-01

    A major upgrade is replacing much of the 40 year-old proton drift tube linac RF system with new components at the Los Alamos Neutron Science Center (LANSCE). When installed, the new system will reduce the total number of electron power tubes from twenty-four to eight in the RF powerplant. A new 200 MHz high power cavity amplifier has being developed at LANSCE. This 3.2 MW final power amplifier (FPA) uses a Thales TH628 Diacrode{reg_sign}, a state-of-the-art tetrode that eliminates the large anode modulator of the triode-based FPA that has been in use for four decades. Drive power for the FPA is provided by a new tetrode intermediate power amplifier (and a solid-state driver stage). The new system has sufficient duty-factor capability to allow LANSCE to return to 1 MW beam operation. Prototype RF power amplifiers have been designed, fabricated, and assembled, and are being tested. High voltage DC power became available through innovative re-engineering of an installed system. Details of the electrical and mechanical design of the FPA and ancillary systems are discussed.

  7. Development of deflector cavity and RF amplifier for bunch length detector system

    NASA Astrophysics Data System (ADS)

    Pandey, H. K.; Bhattacharya, T. K.; Chakrabarti, A.

    2016-02-01

    A minimally-interceptive bunch length detector system is being developed for measurement of longitudinal dimension of the bunch beam from RFQ of the radioactive ion beam (RIB) facility at VECC. This detector system is based on secondary electrons emission produced by the primary ion beam hitting a thin tungsten wire placed in the beam path. In this paper we report the design, development and off line testing results of deflector cavity together with its RF sysytem. The deflector cavity is a capacitive loaded helical type λ/2 resonator driven by RF source of 500 W at 37.8 MHz solid state amplifier, realized by combining two amplifier modules of 300 W each. The measured RF characteristics of the resonator, such as frequency, Q value and shunt impedance have been found to be reasonably good and close to the analytical estimation and results of simulation. The design philosophy and test results of individual components of the amplifier are discussed. The test result upto full power shows a good harmonic separation at the individual module level and this is found to improve further when modules are combined together.The results of high power performance test of the deflector cavity together with amplifier are also reported.

  8. High energy quadruple pass amplifier for high power laser preamplifier module

    NASA Astrophysics Data System (ADS)

    Peng, Yujie; Wang, Jiangfeng; Pan, Xue; Lu, Xinghua; Li, Xuechun

    2013-09-01

    Pre-amplifier between the frontend and main power amplifier is the key unit of high power laser divers. The recent progresses on the off-axis quadruple pass amplifier are presented, which include the beam path design, parasitic oscillation research and experimental results. A single longitudinal mode, temporally shaped laser pulse with 5ns pulse duration at 1053nm is injected into a Nd: Glass regenerative amplifier, which can provide a 12mJ energy output with 0.5% long term energy stability. The quadruple pass amplifier is designed as an off-axis pattern. With 1.3mJ energy injection, amplified pulse with 16.5J can be achieved, and the measured output energy stability of the amplifier is 7.3% (PV) at this output energy level, corresponding to a 21 shot result. The total gain of the amplifier is more than 10,000. The parasitic oscillation was analyzed and discussed, and the parasitic mode and pencil beam are neither observed in the experiment.

  9. Integration of LHCD system with SST1 machine and its high power rf performance in vacuum

    NASA Astrophysics Data System (ADS)

    Sharma, P. K.; Ambulkar, K. K.; Dalakoti, S.; Parmar, P. R.; Virani, C. G.; Thakur, A. L.

    2014-02-01

    A 2.0 MW CW lower hybrid current drive (LHCD) system based on 3.7 GHz klystron sources, is in advanced stage of commissioning, which would drive and sustain plasma current, non-inductively, in superconducting steadystate tokamak (SST1) for long pulse operation. Four klystrons, each rated for 0.5 MW CW rf power, delivers 2.0 MW of rf power to four layer of the LHCD system, which finally feeds the rf power to grill antenna. The antenna system along with vacuum window and vacuum transmission line is successfully integrated on the machine. Its vacuum and pressurization compatibility has been successfully established. To validate the high power performance of LHCD system for SST1 machine, stage-wise commissioning of LHCD system in staggered manner is planned. It has been envisaged that LHCD power may be gradually increased initially, since full power may not be required during the initial phases of SST1 plasma operation. Also if the system is integrated in steps or in phases, then integration issues, as well as high power operational issues, if any, can be addressed, attended and handled in a simpler way before integrating all the layers to the grill antenna. To begin with, one klystron is connected to one layer, out of four layers, which energizes a quarter of the grill antenna. Gradually, the rf power and its pulse length is increased to validate high power performance of the system. Arcing and reflections are observed as rf power is gradually increased. The problems are analysed and after taking appropriate remedial action the system performance is improved for operation up to 160kW. Several trains of short pulses are launched in SST1 vacuum vessel for rf conditioning of the LHCD system. Normally, reflections are high when power is launched in vacuum; therefore the pulse length is restricted up to 100 milliseconds. The high power performance of this layer, connected with grill antenna is validated by launching high power microwaves in vacuum vessel of SST1 machine

  10. High-power RF window and coupler development for the PEP-II B Factory

    SciTech Connect

    Neubauer, M.; Fant, K.; Hodgson, J.; Judkins, J.; Schwarz, H.; Rimmer, R.A.

    1995-05-01

    We describe the fabrication and testing of the RF windows designed to transmit power to the PEP-II 476 MHz cavities. Design choices to maximize the reliability of the window are discussed. Fabrication technologies for the window are described and finite-element analysis of the assembly process is presented. Conditioning and high-power testing of the window are discussed. Design of the coupler assembly including the integration of the window and other components is reported.

  11. A novel technique for electronic phasing of high power fiber amplifier arrays

    NASA Astrophysics Data System (ADS)

    Shay, T. M.; Baker, J. T.; Sanchez, Anthony D.; Robin, C. A.; Vergien, C. L.; Zeringue, C.; Gallant, D.; Lu, Chunte A.; Pulford, Benjamin; Bronder, T. J.; Lucero, Arthur

    2009-06-01

    We report high power phase locked fiber amplifier array using the Self-Synchronous Locking of Optical Coherence by Single-detector Electronic-frequency Tagging technique. We report the first experimental results for a five element amplifier array with a total locked power of more than 725-W. We will report on experimental measurements of the phase fluctuations versus time when the control loop is closed. The rms phase error was measured to be λ/60. Recent results will be reported. To the best of the authors' knowledge this is the highest fiber laser power to be coherently combined.

  12. A 15 MHz bandwidth, 60 Vpp, low distortion power amplifier for driving high power piezoelectric transducers.

    PubMed

    Capineri, Lorenzo

    2014-10-01

    This paper presents the design and the realization of a linear power amplifier with large bandwidth (15 MHz) capable of driving low impedance ultrasonic transducers. The output current driving capability (up to 5 A) and low distortion makes it suitable for new research applications using high power ultrasound in the medical and industrial fields. The electronic design approach is modular so that the characteristics can be scaled according to specific applications and implementation details for the circuit layout are reported. Finally the characterization of the power amplifier module is presented. PMID:25362428

  13. Transverse amplified spontaneous emission: The limiting factor for output energy of ultra-high power lasers

    NASA Astrophysics Data System (ADS)

    Chvykov, Vladimir; Nees, John; Krushelnick, Karl

    2014-02-01

    For the new generation of the ultra-high power lasers with tens of PW of output power, kJ-level energies have to be reached. Our modeling, applied to Ti:sapphire amplifiers, demonstrates for the first time, according our knowledge, that Transverse Amplified Spontaneous Emission (TASE) places an additional restriction on storing and extracting energy in larger gain apertures, even stronger than transverse parasitic generation (TPG). Nevertheless, we demonstrate that extracting during pumping (EDP) can significantly reduce parasitic losses due to both TASE and TPG.

  14. Advanced concepts for high power RF generation using solid state materials

    SciTech Connect

    Fazio, M.V.; Erickson, G.A.

    1999-05-01

    Traditionally, high power radio frequency and microwave energy have been generated using electron beam driven hard-vacuum tubes such as klystrons and magnetrons. High-power solid-state sources of RF have not been available. It is well known that a non-linear, dispersive system can convert a pulse into an array of solitons. Although this effect has been exploited in the optical field, using non-linear optical materials, little work has been done in the field of high voltage electronics. It is the goal of this work, which is just beginning, to develop sources of RF in the few hundreds of megahertz to gigahertz range with power levels in the hundreds of megawatts to the gigawatt level. To generate solitons a high voltage pulse is fed onto a transmission line that is periodically loaded with a non-linear ceramic dielectric in the paraelectric phase. The combination of the non-linearity and dispersion causes the pulse to break up into an array of solitons. A soliton-based system has several components: the solid state, high voltage, high current switch to provide the initial high voltage pulse; a shock line to decrease the rise time of the initial pulse to less than a few nanoseconds; and the soliton generating transmission line where the high power RF is generated when driven by the fast rising pulse from the shock line. The approach and progress to date will be described. {copyright} {ital 1999 American Institute of Physics.}

  15. Design and 3D simulation of a two-cavity wide-gap relativistic klystron amplifier with high power injection

    NASA Astrophysics Data System (ADS)

    Bai, Xianchen; Yang, Jianhua; Zhang, Jiande

    2012-08-01

    By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.

  16. Design and 3D simulation of a two-cavity wide-gap relativistic klystron amplifier with high power injection

    SciTech Connect

    Bai Xianchen; Yang Jianhua; Zhang Jiande

    2012-08-15

    By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.

  17. Investigations of SBS and laser gain competition in high-power phase modulated fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Flores, Angel; Dajani, Iyad; Hult, Dane; Robin, Craig

    2014-02-01

    We present experimental results of SBS suppression in high power, monolithic, Yb-doped fiber amplifiers via phase modulated laser gain competition. To narrow the linewidth, two-tone laser gain competition between broad (1036 nm) and narrow linewidth (1064 nm) laser signals is investigated in conjunction with phase modulation and yields pump limited output powers of 600 W. Here integration of both two-tone and pseudo random bit sequence (PRBS) phase modulation concepts, generated SBS enhancement factors of greater than 17x at a modulation frequency of 500 MHz, without reaching the SBS threshold. Significantly, the results represent a near order of magnitude reduction in linewidth over current high-power, monolithic, Yb-doped fiber amplifiers.

  18. Radar Waveform Pulse Analysis Measurement System for High-Power GaN Amplifiers

    NASA Technical Reports Server (NTRS)

    Thrivikraman, Tushar; Perkovic-Martin, Dragana; Jenabi, Masud; Hoffman, James

    2012-01-01

    This work presents a measurement system to characterize the pulsed response of high-power GaN amplifiers for use in space-based SAR platforms that require very strict amplitude and phase stability. The measurement system is able to record and analyze data on three different time scales: fast, slow, and long, which allows for greater detail of the mechanisms that impact amplitude and phase stability. The system is fully automated through MATLAB, which offers both instrument control capability and in-situ data processing. To validate this system, a high-power GaN HEMT amplifier operated in saturation was characterized. The fast time results show that variations to the amplitude and phase are correlated to DC supply transients, while long time characteristics are correlated to temperature changes.

  19. High power single frequency solid state master oscillator power amplifier for gravitational wave detection.

    PubMed

    Basu, Chandrajit; Wessels, Peter; Neumann, Jörg; Kracht, Dietmar

    2012-07-15

    High power single frequency, single mode, linearly polarized laser output at the 1 μm regime is in demand for the interferometric gravitational wave detectors (GWDs). A robust single frequency solid state master oscillator power amplifier (MOPA) is a promising candidate for such applications. We present a single frequency solid state multistage MOPA system delivering 177 W of linearly polarized output power at 1 μm with 83.5% TEM(00) mode content. PMID:22825159

  20. High Power SiGe X-Band (8-10 GHz) Heterojunction Bipolar Transistors and Amplifiers

    NASA Technical Reports Server (NTRS)

    Ma, Zhenqiang; Jiang, Ningyue; Ponchak, George E.; Alterovitz, Samuel A.

    2005-01-01

    Limited by increased parasitics and thermal effects as the device size becomes large, current commercial SiGe power HBTs are difficult to operate at X-band (8-12 GHz) with adequate power added efficiencies at high power levels. We found that, by changing the heterostructure and doping profile of SiGe HBTs, their power gain can be significantly improved without resorting to substantial lateral scaling. Furthermore, employing a common-base configuration with proper doping profile instead of a common-emitter configuration improves the power gain characteristics of SiGe HBTs, which thus permits these devices to be efficiently operated at X-band. In this paper, we report the results of SiGe power HBTs and MMIC power amplifiers operating at 8-10 GHz. At 10 GHz, 22.5 dBm (178 mW) RF output power with concurrent gain of 7.32 dB is measured at the peak power-added efficiency of 20.0% and the maximum RF output power of 24.0 dBm (250 mW) is achieved from a 20 emitter finger SiGe power HBT. Demonstration of single-stage X-band medium-power linear MMIC power amplifier is also realized at 8 GHz. Employing a 10-emitter finger SiGe HBT and on-chip input and output matching passive components, a linear gain of 9.7 dB, a maximum output power of 23.4 dBm and peak power added efficiency of 16% is achieved from the power amplifier. The MMIC exhibits very low distortion with third order intermodulation (IM) suppression C/I of -13 dBc at output power of 21.2 dBm and over 20dBm third order output intercept point (OIP3).

  1. Developments and directions in 200 MHz very high power RF at LAMPF

    SciTech Connect

    Cliff, R.; Bush, E.D.; DeHaven, R.A.; Harris, H.W.; Parsons, M.

    1991-01-01

    The Los Alamos Meson Physics Facility (LAMPF), is a linear particle accelerator a half-mile long. It produces an 800 million electron- volt hydrogen-ion beam at an average current of more than one milliamp. The first RF section of the accelerator consists of four Alvarez drift-tube structures. Each of these structures is excited by an amplifier module at a frequency of 201.25 MHz. These amplifiers operate at a duty of 13 percent or more and at peak pulsed power levels of about 2.5 million watts. The second RF accelerator section consists of forty-four side-coupled-cavity structures. Each of these is excited by an amplifier module at a frequency of 805 MHz. These amplifiers operate at a duty of up to 12 percent and at peak pulsed power levels of about 1.2 million watts. The relatively high average beam current in the accelerator places a heavy demand upon components in the RF systems. The 201-MHz modules have always required a large share of maintenance efforts. In recent years, the four 201.25 MHz modules have been responsible for more than twice as much accelerator down-time as have the forty-four 805 MHz modules. This paper reviews recent, ongoing, and planned improvements in the 201-MHz systems. The Burle Industries 7835 super power triode is used in the final power amplifiers of each of the 201-MHz modules. This tube has been modified for operation at LAMPF by the addition of Penning ion vacuum pumps.'' This has enabled more effective tube conditioning and restarting. A calorimetry system of high accuracy is in development to monitor tube plate-power dissipation.

  2. Design considerations for a high power, ultrabroadband optical parametric chirped-pulse amplifier.

    PubMed

    Prandolini, M J; Riedel, R; Schulz, M; Hage, A; Höppner, H; Tavella, F

    2014-01-27

    A conceptual design of a high power, ultrabroadband optical parametric chirped-pulse amplifier (OPCPA) was carried out comparing nonlinear crystals (LBO and BBO) for 810 nm centered, sub-7.0 fs pulses with energies above 1 mJ. These amplifiers are only possible with a parallel development of kilowatt-level OPCPA-pump amplifiers. It is therefore important to know good strategies to use the available OPCPA-pump energy efficiently. Numerical simulations, including self- and cross-phase modulation, were used to investigate the critical parameters to achieve sufficient spectral and spatial quality. At high output powers, thermal absorption in the nonlinear crystals starts to degrade the output beam quality. Strategies to minimize thermal effects and limits to the maximum average power are discussed. PMID:24515165

  3. 47 CFR 97.315 - Certification of external RF power amplifiers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Certification of external RF power amplifiers... power amplifiers. (a) Any external RF power amplifier (see § 2.815 of the FCC Rules) manufactured or... accordance with subpart J of part 2 of the FCC Rules. No amplifier capable of operation below 144 MHz may...

  4. 47 CFR 97.315 - Certification of external RF power amplifiers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Certification of external RF power amplifiers... power amplifiers. (a) Any external RF power amplifier (see § 2.815 of the FCC Rules) manufactured or... accordance with subpart J of part 2 of the FCC Rules. No amplifier capable of operation below 144 MHz may...

  5. 47 CFR 97.315 - Certification of external RF power amplifiers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Certification of external RF power amplifiers... power amplifiers. (a) Any external RF power amplifier (see § 2.815 of the FCC Rules) manufactured or... accordance with subpart J of part 2 of the FCC Rules. No amplifier capable of operation below 144 MHz may...

  6. 47 CFR 97.315 - Certification of external RF power amplifiers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Certification of external RF power amplifiers... power amplifiers. (a) Any external RF power amplifier (see § 2.815 of the FCC Rules) manufactured or... accordance with subpart J of part 2 of the FCC Rules. No amplifier capable of operation below 144 MHz may...

  7. 47 CFR 97.315 - Certification of external RF power amplifiers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Certification of external RF power amplifiers... power amplifiers. (a) Any external RF power amplifier (see § 2.815 of the FCC Rules) manufactured or... accordance with subpart J of part 2 of the FCC Rules. No amplifier capable of operation below 144 MHz may...

  8. Results of the SLAC LCLS Gun High-Power RF Tests

    SciTech Connect

    Dowell, D.H.; Jongewaard, E.; Limborg-Deprey, C.; Schmerge, J.F.; Li, Z.; Xiao, L.; Wang, J.; Lewandowski, J.; Vlieks, A.; /SLAC

    2007-11-02

    The beam quality and operational requirements for the Linac Coherent Light Source (LCLS) currently being constructed at SLAC are exceptional, requiring the design of a new RF photocathode gun for the electron source. Based on operational experience at SLAC's GTF and SDL and ATF at BNL as well as other laboratories, the 1.6cell s-band (2856MHz) gun was chosen to be the best electron source for the LCLS, however a significant redesign was necessary to achieve the challenging parameters. Detailed 3-D analysis and design was used to produce near-perfect rotationally symmetric rf fields to achieve the emittance requirement. In addition, the thermo-mechanical design allows the gun to operate at 120Hz and a 140MV/m cathode field, or to an average power dissipation of 4kW. Both average and pulsed heating issues are addressed in the LCLS gun design. The first LCLS gun is now fabricated and has been operated with high-power RF. The results of these high-power tests are presented and discussed.

  9. Design and fabrication of the high-power RF transmission line into the PEFP linac tunnel

    NASA Astrophysics Data System (ADS)

    Seol, Kyung-Tae; Kwon, Hyeok-Jung; Kim, Han-Sung; Cho, Yong-Sub

    2012-07-01

    The 100-MeV proton linear accelerator (linac) for the Proton Engineering Frontier Project (PEFP) has been developed and will be installed at the Gyeong-ju site. For the linac, a total of 11 sets of RF systems are required, and the waveguide layout was fixed to install high-power RF (HPRF) systems. One of the important interfaces with the building construction is the high-power radio-frequency (HPRF) transmission line embedded in the tunnel, which is used to transmit 1-MW RF power to each cavity in the tunnel. The waveguide section penetrating into the linac tunnel was designed with a bending structure for radiation shielding, and the dependence of its voltage standing-wave ratio (VSWR) on the chamfer length of the bending was calculated. The HPRF transmission line was fabricated into a piece of waveguide to prevent moisture and any foreign debris inside the 2.5-m thick concrete block. Air leakage was checked with a pressure of 0.25 psig of nitrogen gas, and a maximum VSWR of 1.196 was obtained by measuring the vector reflection coefficients with the quarter-wave transmission section. In this paper, the design and the fabrication of the HPRF transmission line into the PEFP linac tunnel are presented.

  10. Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source.

    PubMed

    Liu, Wei; Ma, Pengfei; Lv, Haibin; Xu, Jiangming; Zhou, Pu; Jiang, Zongfu

    2016-04-18

    In this paper the stimulated Raman scattering (SRS) effect in high-power fiber amplifiers seeded by the narrow-band filtered superfluorescent source (SFS) is firstly analyzed both theoretically and experimentally. Spectral models for the formation of the SFS and the spectral evolution in high-power fiber amplifiers seeded by filtered SFS are proposed. It is found that the SRS effect in high-power fiber amplifiers depends on the spectral width of the filtered SFS seed. The theoretical predictions are in qualitative agreements with the experimental results. PMID:27137305

  11. High-power-handling linear-integrated coherent photoreceivers for RF photonics

    NASA Astrophysics Data System (ADS)

    Joshi, Abhay; Datta, Shubhashish; Rue, Jim; Rajagopalan, Sruti; Lemke, Shaun

    2013-05-01

    We report integrated coherent optical receivers designed specifically for RF Photonics applications. These receivers may be implemented in either single- or dual-polarization (DP) systems which utilize I/Q (in-phase, quadrature) phase modulation. The integrated receivers incorporate a monolithic 90 degree optical hybrid followed by eight high power-handling InGaAs photodiodes. Linear operation to +27 dBm of total optical input power, 20 mA photocurrent per diode, output third-order intercept (OIP3) > 40 dBm, third-order harmonic distortion < -100 dBc, and RF bandwidths > 4 GHz is presented. Such photoreceiver power-handling and linearity is required to optimize the photonic system spurious free dynamic range (SFDR), noise figure (NF) and link gain.

  12. RF Distribution System for High Power Test of the SNS Cryomodule

    SciTech Connect

    Lee, Sung-Woo; Kang, Yoon W; Broyles, Michael R; Crofford, Mark T; Geng, Xiaosong; Kim, Sang-Ho; Phibbs, Curtis L; Strong, William Herb; Peglow, Robert C; Vassioutchenko, Alexandre V

    2012-01-01

    A four-way waveguide RF power distribution system for testing the Spallation Neutron Source (SNS) multi-cavity cryomodule to investigate the collective behavior has been developed. A single klystron operating at 805MHz for 1.3 msec at 60Hz powers the 4-way waveguide splitter to deliver up to 400 kW to individual cavities. Each cavity is fed through a combination of waveguide splitters and vector modulators (VM) to provide independent magnitude and phase controls. The waveguide vector modulator consists of two quadrature hybrids and two motorized waveguide phase shifters. The phase shifters and the assembled waveguide vector modulators were individually tested and characterized for low power and high RF power in the SNS RF test facility. Precise calibrations of magnitude and phase were performed to generate the look up tables (LUTs) to provide operational references during the cryomodule test. An I-Q demodulator module was developed and utilized to measure relative phases in pulsed high RF power operation. PLC units were developed for mechanical control of the phase shifters. Initial low/high power measurements were made using LabVIEW. An operation algorithm has been implemented into EPICS control for the cryomodule test stand.

  13. Engineering development of superconducting RF linac for high-power applications

    SciTech Connect

    Dominic Chan, K.C.; Rusnak, B.; Gentzlinger, R.C.; Campbell, B.M.; Kelley, J.P.; Safa, H.

    1998-12-31

    High-power proton linacs are a promising source of neutrons for material processing and research applications. Superconducting radiofrequency (SCRF) Rf linac technology is preferred for such applications because of power efficiency. A multi-year engineering development program is underway at Los Alamos National Laboratory to demonstrate the required SCRF technology. The program consists of development of SC cavities, power couplers, and cryomodule integration. Prototypes will be built and operated to obtain performance and integration information, and for design improvement. This paper describes the scope and present status of the development program.

  14. High-power 140-GHz quasioptical gyrotron traveling-wave amplifier.

    PubMed

    Sirigiri, J R; Shapiro, M A; Temkin, R J

    2003-06-27

    We present the design and experimental results of a novel quasioptical gyrotron traveling-wave tube (gyro-TWT) amplifier at 140 GHz. The gyro-TWT produced up to 30 kW of peak power in 2 micros pulsed operation at 6 Hz achieving a peak gain of 29 dB, a peak efficiency of 12%, and a bandwidth of 2.3 GHz. The device was operated in a very higher-order mode of an open quasioptical interaction structure, namely, a confocal waveguide. The diffraction loss from the open sidewalls of the confocal waveguide was used to suppress mode competition in this highly overmoded circuit resulting in a stable single-mode operation. The experiment achieved record high power levels at 140 GHz for a gyro-TWT. These experiments demonstrate the effectiveness of using overmoded quasioptical waveguide interaction structures for generating high power in the millimeter and submillimeter wave bands with a gyro-TWT. PMID:12857176

  15. Selecting RF Amplifiers for Impedance Controlled LLRF Systems - Nonlinear Effects and System Implications

    SciTech Connect

    Fox, John D.; Mastorides, Themis; Rivetta, Claudio Hector; Van Winkle, Daniel; /SLAC

    2007-07-06

    Several high-current accelerators use feedback techniques in the accelerating RF systems to control the impedances seen by the circulating beam. These Direct and Comb Loop architectures put the high power klystron and LLRF signal processing components inside feedback loops, and the ultimate behavior of the systems depends on the individual sub-component properties. Imperfections and non-idealities in the signal processing leads to reduced effectiveness in the impedance control loops. In the PEP-II LLRF systems non-linear effects have been shown to reduce the achievable beam currents, increase low-mode longitudinal growth rates and reduce the margins and stability of the LLRF control loops. We present measurements of the driver amplifiers used in the PEP-II systems, and present measurement techniques needed to quantify the small-signal gain, linearity, transient response and image frequency generation of these amplifiers.

  16. Design of an Ultra-High Efficiency GaN High-Power Amplifier for SAR Remote Sensing

    NASA Technical Reports Server (NTRS)

    Thrivikraman, Tushar; Hoffman, James

    2013-01-01

    This work describes the development of a high-power amplifier for use with a remote sensing SAR system. The amplifier is intended to meet the requirements for the Sweep-SAR technique for use in the proposed DESDynI SAR instrument. In order to optimize the amplifier design, active load-pull technique is employed to provide harmonic tuning to provide efficiency improvements. In addition, some of the techniques to overcome the challenges of load-pulling high power devices are presented. The design amplifier was measured to have 49 dBm of output power with 75% PAE, which is suitable to meet the proposed system requirements.

  17. Note: Efficient generation of optical sidebands at GHz with a high-power tapered amplifier

    SciTech Connect

    Zappala, J. C.; Lu, Z.-T.; Bailey, K.; O’Connor, T. P.; Jiang, W.

    2014-04-15

    Two methods using a laser-diode tapered amplifier to produce high-power, high-efficiency optical frequency sidebands over a wide tunable frequency range are studied and compared. For a total output of 500 mW at 811 nm, 20% of the power can be placed in each of the first-order sidebands. Functionality and characterization are presented within the sideband frequency region of 0.8–2.3 GHz, and it is shown that both methods can be applied beyond this frequency range. These methods provide a versatile and effective tool for atomic physics experiments.

  18. Note: efficient generation of optical sidebands at GHz with a high-power tapered amplifier.

    PubMed

    Zappala, J C; Bailey, K; Lu, Z-T; O'Connor, T P; Jiang, W

    2014-04-01

    Two methods using a laser-diode tapered amplifier to produce high-power, high-efficiency optical frequency sidebands over a wide tunable frequency range are studied and compared. For a total output of 500 mW at 811 nm, 20% of the power can be placed in each of the first-order sidebands. Functionality and characterization are presented within the sideband frequency region of 0.8-2.3 GHz, and it is shown that both methods can be applied beyond this frequency range. These methods provide a versatile and effective tool for atomic physics experiments. PMID:24784682

  19. Note: Efficient generation of optical sidebands at GHz with a high-power tapered amplifier

    NASA Astrophysics Data System (ADS)

    Zappala, J. C.; Bailey, K.; Lu, Z.-T.; O'Connor, T. P.; Jiang, W.

    2014-04-01

    Two methods using a laser-diode tapered amplifier to produce high-power, high-efficiency optical frequency sidebands over a wide tunable frequency range are studied and compared. For a total output of 500 mW at 811 nm, 20% of the power can be placed in each of the first-order sidebands. Functionality and characterization are presented within the sideband frequency region of 0.8-2.3 GHz, and it is shown that both methods can be applied beyond this frequency range. These methods provide a versatile and effective tool for atomic physics experiments.

  20. 47 CFR 97.317 - Standards for certification of external RF power amplifiers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... power amplifiers. 97.317 Section 97.317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... certification of external RF power amplifiers. (a) To receive a grant of certification, the amplifier must: (1... amplifier is operated at the lesser of 1.5 kW PEP or its full output power and when the amplifier is...

  1. 47 CFR 97.317 - Standards for certification of external RF power amplifiers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... power amplifiers. 97.317 Section 97.317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... certification of external RF power amplifiers. (a) To receive a grant of certification, the amplifier must: (1... amplifier is operated at the lesser of 1.5 kW PEP or its full output power and when the amplifier is...

  2. 47 CFR 97.317 - Standards for certification of external RF power amplifiers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... power amplifiers. 97.317 Section 97.317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... certification of external RF power amplifiers. (a) To receive a grant of certification, the amplifier must: (1... amplifier is operated at the lesser of 1.5 kW PEP or its full output power and when the amplifier is...

  3. 47 CFR 97.317 - Standards for certification of external RF power amplifiers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... power amplifiers. 97.317 Section 97.317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... certification of external RF power amplifiers. (a) To receive a grant of certification, the amplifier must: (1... amplifier is operated at the lesser of 1.5 kW PEP or its full output power and when the amplifier is...

  4. 47 CFR 97.317 - Standards for certification of external RF power amplifiers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... power amplifiers. 97.317 Section 97.317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... certification of external RF power amplifiers. (a) To receive a grant of certification, the amplifier must: (1... amplifier is operated at the lesser of 1.5 kW PEP or its full output power and when the amplifier is...

  5. Practical technique for improving all-fiber coherent combination of multistage high-power ytterbium fiber amplifiers.

    PubMed

    Wang, Shuoqin; Mangir, Metin S; Nee, Phillip

    2015-04-10

    We demonstrate coherent combination of two high-gain and high-power single-mode 1 μm fiber amplifiers via direct pump current modulation. Each all-fiber amplifier channel, which is built as a master oscillator-multiple amplifier architecture, can operate either continuous waves or 4 ns, 1 MHz pulses with average power of 50 W and more than 55 dB gain. These two amplifiers are coherently combined by modulating the pump currents of the preamplifiers in a multidither arrangement. The key feature of the scaling scheme is the insertion of a designated second stage preamplifier between the first stage preamplifier and the final power amplifier stage, so as to improve the coherency and to minimize the gain variation of the preamplifier to the power amplifier. Otherwise, overall phase control of the fiber amplifiers with this method is not possible at such a high power level. PMID:25967298

  6. Ultra High Power and Efficiency Space Traveling-Wave Tube Amplifier Power Combiner with Reduced Size and Mass for NASA Missions

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.; Wilson, Jeffrey D.; Force, Dale A.

    2009-01-01

    In the 2008 International Microwave Symposium (IMS) Digest version of our paper, recent advances in high power and efficiency space traveling-wave tube amplifiers (TWTAs) for NASA s space-to-Earth communications are presented. The RF power and efficiency of a new K-Band amplifier are 40 W and 50 percent and that of a new Ka-Band amplifier are 200 W and 60 percent. An important figure-of-merit, which is defined as the ratio of the RF power output to the mass (W/kg) of a TWT, has improved by a factor of ten over the previous generation Ka-Band devices. In this extended paper, a high power, high efficiency Ka-band combiner for multiple TWTs, based on a novel hybrid magic-T waveguide circuit design, is presented. The measured combiner efficiency is as high as 90 percent. In addition, at the design frequency of 32.05 GHz, error-free uncoded BPSK/QPSK data transmission at 8 megabits per second (Mbps), which is typical for deep space communications is demonstrated. Furthermore, QPSK data transmission at 622 Mbps is demonstrated with a low bit error rate of 2.4x10(exp -8), which exceeds the deep space state-of-the-art data rate transmission capability by more than two orders of magnitude. A potential application of the TWT combiner is in deep space communication systems for planetary exploration requiring transmitter power on the order of a kilowatt or higher.

  7. HIGH POWER TEST OF RF SEPARATOR FOR 12 GEV UPGRADE OF CEBAF AT JLAB

    SciTech Connect

    S. Ahmed, M. Wissmann, J. Mammosser, C. Hovater, M. Spata, G. Krafft, J. Delayen

    2012-07-01

    CEBAF at JLab is in the process of an energy upgrade from 6 GeV to 12 GeV. The existing setup of the RF separator cavities in the 5th pass will not be adequate to extract the highest energy (11 GeV) beam to any two existing halls (A, B or C) while simultaneously delivering to the new hall D in the case of the proposed 12 GeV upgrade of the machine. To restore this capability, we are exploring the possibility of extension of existing normal conducting 499 MHz TEM-type rf separator cavities. Detailed numerical studies suggest that six 2-cell normal conducting structures meet the requirements; each 2-cell structure will require up to 4 kW RF input power in contrast with the current nominal operating power of 1.0 to 2.0 kW. A high power test of 4 kW confirms that the cavity meet the requirement.

  8. RF Variable-Gain Amplifiers and AGC Loops for Digital TV Receivers

    NASA Astrophysics Data System (ADS)

    Iizuka, Kunihiko; Koutani, Masato; Mitsunaka, Takeshi; Kawamura, Hiroshi; Toyoyama, Shinji; Miyamoto, Masayuki; Matsuzawa, Akira

    RF Variable Gain Amplifiers (RF-VGA) are important components for integrated TV broadcast receivers. Analog and digital controlled RF-VGAs are compared in terms of linearity and an AGC loop architecture suitable for digitally controlled RF-VGA is proposed. Further linearity enhancement applicable for CMOS implementation is also discussed.

  9. Systematic Observation of Time-Dependent Phenomena in the RF Output Spectrum of High Power Gyrotrons

    NASA Astrophysics Data System (ADS)

    Schlaich, Andreas; Gantenbein, Gerd; Kern, Stefan; Thumm, Manfred

    2012-09-01

    At IHM/KIT, high power gyrotrons with conventional cavity (e.g. 1 MW CW at 140 GHz for the stellarator Wendelstein 7-X) and coaxial cavity (2 MW shortpulse at 170 GHz for ITER) for fusion applications are being developed and verified experimentally. Especially with respect to the problem of parasitic RF oscillations in the beam tunnel of some W7-X tubes, investigations of the gyrotron RF output spectrum have proved to be a valuable source of diagnostic information. Signs of transient effects in millisecond pulses, like frequency switching or intermittent low-frequency modulation, have indicated that truly time-dependent measurements with high frequency resolution and dynamic range could give deeper insight into these phenomena. In this paper, an improved measurement system is presented, which employs a fast oscilloscope as receiver. Shorttime Fourier transform (STFT) is applied to the time-domain signal, yielding time-variant spectra with frequency resolutions only limited by acquisition length and STFT segmentation choice. Typical reasonable resolutions are in the range of 100 kHz to 10 MHz with a currently memory-limited maximum acquisition length of 4 ms. A key feature of the system consists in the unambiguity of frequency measurement: The system receives through two parallel channels, each using a harmonic mixer (h = 9 - 12) to convert the signal from RF millimeter wave frequencies (full D-Band, 110 - 170 GHz) to IF (0 - 3 GHz). For each IF output signal of each individual mixer, injection side and receiving harmonic are initially not known. Using accordingly determined LO frequencies, this information is retrieved from the redundancy of the channels, yielding unambiguously reconstructed RF spectra with a total span of twice the usable receiver IF bandwidth, up to ≈ 6 GHz in our case. Using the system, which is still being improved continuously, various transient effects like cavity mode switching, parasitic oscillation frequency variation, and lowfrequency

  10. Pulse compression of a high-power thin disk laser using rod-type fiber amplifiers.

    PubMed

    Saraceno, C J; Heckl, O H; Baer, C R E; Südmeyer, T; Keller, U

    2011-01-17

    We report on two pulse compressors for a high-power thin disk laser oscillator using rod-type fiber amplifiers. Both systems are seeded by a standard SESAM modelocked thin disk laser that delivers 16 W of average power at a repetition rate of 10.6 MHz with a pulse energy of 1.5 μJ and a pulse duration of 1 ps. We discuss two results with different fiber parameters with different trade-offs in pulse duration, average power, damage and complexity. The first amplifier setup consists of a Yb-doped fiber amplifier with a 2200 μm2 core area and a length of 55 cm, resulting in a compressed average power of 55 W with 98-fs pulses at a repetition rate of 10.6 MHz. The second system uses a shorter 36-cm fiber with a larger core area of 4500 μm2. In a stretcher-free configuration we obtained 34 W of compressed average power and 65-fs pulses. In both cases peak powers of > 30 MW were demonstrated at several μJ pulse energies. The power scaling limitations due to damage and self-focusing are discussed. PMID:21263681

  11. S-band low noise amplifier and 40 kW high power amplifier subsystems of Japanese Deep Space Earth Station

    NASA Astrophysics Data System (ADS)

    Honma, K.; Handa, K.; Akinaga, W.; Doi, M.; Matsuzaki, O.

    This paper describes the design and the performance of the S-band low noise amplifier and the S-band high power amplifier that have been developed for the Usuda Deep Space Station of the Institute of Space and Astronautical Science (ISAS), Japan. The S-band low noise amplifier consists of a helium gas-cooled parametric amplifier followed by three-stage FET amplifiers and has a noise temperature of 8 K. The high power amplifier is composed of two 28 kW klystrons, capable of transmitting 40 kW continuously when two klystrons are combined. Both subsystems are operating quite satisfactorily in the tracking of Sakigake and Suisei, the Japanese interplanetary probes for Halley's comet exploration, launched by ISAS in 1985.

  12. Study of dopant concentrations on thermally induced mode instability in high-power fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Tao, Rumao; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Liu, Zejin

    2016-06-01

    The dependence of mode instabilities (MIs) on ytterbium dopant concentrations in high-power fiber amplifiers has been investigated. It is theoretically shown that, by only varying the fiber length to maintain the same total small-signal pump absorption, the MI threshold is independent of dopant concentration. MI thresholds of gain fibers with ytterbium dopant concentrations of 5.93  ×  1025 m‑3 and 1.02  ×  1026 m‑3 have been measured which exhibit similar MI thresholds and agree with the theoretical results. The result indicates that heavy doping of active fiber can be adopted to suppress nonlinear effects without decreasing the MI threshold. This provides a method of maximizing the power output of fiber laser, taking into account the stimulated Brillouin scattering, stimulated Raman Scattering, and MI thresholds simultaneously.

  13. High-power rf pulse compression with SLED-II at SLAC

    SciTech Connect

    Nantista, C.; Kroll, N.M.; Farkas, Z.D.; Lavine, T.L.; Menegat, A.; Ruth, R.D.; Tantawi, S.G.; Vlieks, A.E.; Wilson, P.B.

    1993-04-01

    Increasing the peak rf power available from X-band microwave tubes by means of rf pulse compression is envisioned as a way of achieving the few-hundred-megawatt power levels needed to drive a next-generation linear collider with 50--100 MW klystrons. SLED-II is a method of pulse compression similar in principal to the SLED method currently in use on the SLC and the LEP injector linac. It utilizes low-los resonant delay lines in place of the storage cavities of the latter. This produces the added benefit of a flat-topped output pulse. At SLAC, we have designed and constructed a prototype SLED-II pulse-compression system which operates in the circular TE{sub 01} mode. It includes a circular-guide 3-dB coupler and other novel components. Low-power and initial high-power tests have been made, yielding a peak power multiplication of 4.8 at an efficiency of 40%. The system will be used in providing power for structure tests in the ASTA (Accelerator Structures Test Area) bunker. An upgraded second prototype will have improved efficiency and will serve as a model for the pulse compression system of the NLCTA (Next Linear Collider Test Accelerator).

  14. Impedance matched, high-power, rf antenna for ion cyclotron resonance heating of a plasma

    DOEpatents

    Baity, Jr., Frederick W.; Hoffman, Daniel J.; Owens, Thomas L.

    1988-01-01

    A resonant double loop radio frequency (rf) antenna for radiating high-power rf energy into a magnetically confined plasma. An inductive element in the form of a large current strap, forming the radiating element, is connected between two variable capacitors to form a resonant circuit. A real input impedance results from tapping into the resonant circuit along the inductive element, generally near the midpoint thereof. The impedance can be matched to the source impedance by adjusting the separate capacitors for a given tap arrangement or by keeping the two capacitances fixed and adjustng the tap position. This results in a substantial reduction in the voltage and current in the transmission system to the antenna compared to unmatched antennas. Because the complete circuit loop consisting of the two capacitors and the inductive element is resonant, current flows in the same direction along the entire length of the radiating element and is approximately equal in each branch of the circuit. Unidirectional current flow permits excitation of low order poloidal modes which penetrate more deeply into the plasma.

  15. New High Power Test Facility for VHF Power Amplifiers at LANSCE

    SciTech Connect

    Lyles, John T.; Archuletta, Steve; Baca, David M.; Bratton, Ray E.; Brennan, Nicholas W.; Davis, Jerry L.; Lopez, Luis J.; Rees, Daniel E.; Rodriguez, Manuelita B.; Sandoval, Gilbert M. Jr.; Steck, Andy I.; Summers, Richard D.; Vigil, Danny J.

    2011-01-01

    A new test facility was designed and constructed at Los Alamos Neutron Science Center (LANSCE) for testing the Thales TH628 Diacrode{sup R} and TH781 tetrode power amplifiers. Anode power requirements for the TH628 are 28 kV DC, with peak currents of 190 Amperes in long pulses. A charging power supply was obtained by reconfiguring a 2 MW beam power supply remaining from another project. A traditional ignitron crowbar was designed to rapidly discharge the 88 kJ stored energy. The anode power supply was extensively tested using a pulsed tetrode switch and resistor load. A new Fast Protect and Monitor System (FPMS) was designed to take samples of RF reflected power, anode HV, and various tube currents, with outputs to quench the HV charging supply, remove RF drive and disable the conduction bias pulse to the grid of each tube during fault events. The entire test stand is controlled with a programmable logic controller (PLC), for normal startup sequencing and timing, protection against loss of cooling, and provision for operator GUI.

  16. Modular 20 kW solid state RF amplifier for Indus-2 syncrotron radiation source

    NASA Astrophysics Data System (ADS)

    Jain, Akhilesh; Hannurkar, P. R.; Sharma, D. K.; Gupta, A. K.; Tiwari, A. K.; Lad, M.; Kumar, R.; Badapanda, M. K.; Gupta, P. D.

    2012-06-01

    This article presents the design and development of 505.8 MHz modular solid state Radio frequency (RF) amplifier capable of delivering 20 kW continuous RF power. It has been successfully commissioned for serving as the modern RF power source in Indus-2 synchrotron radiation source. For this amplifier, design procedure has been formulated for the solid state amplifier modules, radial combiner, divider, directional coupler and overall system architecture, with specifications suited to RF source for particle accelerator. This article describes underlying design principles and indigenous development of this amplifier, consisting of 400 W amplifier modules, 5 kW 16-port radial combiner/divider and directional couplers. Detail performance characterization of amplifier on component level as well as system level serves as useful data for higher power solid state amplifier designers. Simple design, indigenous technology, high efficiency and ease of fabrication, are the main features of this design.

  17. NASA satellite communications application research, phase 2 addendum. Efficient high power, solid state amplifier for EHF communications

    NASA Technical Reports Server (NTRS)

    Benet, James

    1994-01-01

    This document is an addendum to the NASA Satellite Communications Application Research (SCAR) Phase 2 Final Report, 'Efficient High Power, Solid State Amplifier for EHF Communications.' This report describes the work performed from 1 August 1993 to 11 March 1994, under contract number NASW-4513. During this reporting period an array of transistor amplifiers was repaired by replacing all MMIC amplifier chips. The amplifier array was then tested using three different feedhorn configurations. Descriptions, procedures, and results of this testing are presented in this report, and conclusions are drawn based on the test results obtained.

  18. RF power amplifier: pushing the boundaries of performance versus cost

    NASA Astrophysics Data System (ADS)

    De Souza, M. M.; Chevaux, N.; Rasheduzzaman, M.

    2012-10-01

    The Radio Frequency Power Amplifier lies at the heart of all modern day communication systems ranging from the cellular infrastructure market to broadcast, radar, medical, automotive and military to name a few. Transmission systems not only require substantial power at high frequencies, but they are also one of the most demanding of semiconductor applications on account of their requirements for efficiency and linearity, which inherently introduces a tradeoff during design. Three types of device technologies have been in typical use for RF power amplification: the VDMOS (at frequencies upto 1 GHz), the LDMOS (at frequencies upto 3.5 GHz), and more recently the Gallium Nitride HEMT, which extends the frequency range upto 5-7 GHz. As an emerging technology, GaN has huge potential, but its widespread use is still currently limited by the level of experience, absence of reliable device models and prices which are roughly (6-10 times that of silicon). This overview highlights the distinct features of the RF Power devices and touches upon the performance metrics of the above technologies (in silicon and GaN).

  19. Peak power tunable mid-infrared oscillator pumped by a high power picosecond pulsed fiber amplifier with bunch output

    NASA Astrophysics Data System (ADS)

    Wei, Kaihua; Guo, Yan; Lai, Xiaomin; Fan, Shanhui

    2016-07-01

    A high power mid-infrared optical parametric oscillator (OPO) with picosecond pulse bunch output is experimentally demonstrated. The pump source was a high power master oscillation power amplifier (MOPA) picosecond pulsed fiber amplifier. The seed of the MOPA was a gain-switched distributed Bragg reflector (DBR) laser diode (LD) with picosecond pulse operation at a high repetition rate. The seed laser was amplified to 50 W by two-stage pre-amplifiers and a large mode area (LMA) Yb fiber based power-amplifier. A fiber-pigtailed acousto-optic modulator with the first order diffraction transmission was inserted into the second pre-amplifier to form a picosecond pulse bunch train and to change the peak power simultaneously. The power-amplified pulse bunches were focused to pump a wavelength-tunable OPO for emitting high power mid-infrared laser. By adjusting the OPO cavity length, the maximum average idler powers obtained at 3.1, 3.3 and 3.5 μm were 7, 6.6 and 6.4 W respectively.

  20. Design and implementation of a high power rf oscillator on a printed circuit board for multipole ion guides

    NASA Astrophysics Data System (ADS)

    Mathur, Raman; O'Connor, Peter B.

    2006-11-01

    Radio frequency (rf) oscillators are commonly used to drive electrodes of ion guides. In this article a rf oscillator circuit design and its implementation is presented. The printed circuit board for the rf oscillator is designed and fabricated. The performance of the circuit was tested to transfer ions through a hexapole in a matrix-assisted laser desorption/ionization Fourier transform mass spectrometer. A comprehensive discussion of several aspects of printed circuit board design for high power and high frequency circuits is presented.

  1. An overview of the VASIMR engine: High power space propulsion with RF plasma generation and heating

    NASA Astrophysics Data System (ADS)

    Díaz, F. R. Chang

    2001-10-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is a high power, radio frequency-driven magnetoplasma rocket, capable of exhaust modulation at constant power. While the plasma is produced by a helicon discharge, the bulk of the energy is added in a separate downstream stage by ion cyclotron resonance heating (ICRH). Axial momentum is obtained by the adiabatic expansion of the plasma in a magnetic nozzle. Exhaust variation in the VASIMR is primarily achieved by the selective partitioning of the RF power to the helicon and ICRH systems, with the proper adjustment of the propellant flow. However, other complementary techniques are also being studied. Operational and performance considerations favor the light gases. The physics and engineering of this device have been under study since the late 1970s. A NASA-led, research effort, involving several terms in the United States, continues to explore the scientific and technological foundations of this concept. The research involves theory, experiment, engineering design, mission analysis, and technology development. Experimentally, high density, stable plasma discharges have been generated in Helium, Hydrogen and Deuterium, as well as mixtures of these gases. Key issues involve the optimization of the helicon discharge for high-density operation and the efficient coupling of ICRH to the plasma, prior to acceleration by the magnetic nozzle. Theoretically, the dynamics of the magnetized plasma are being studied from kinetic and fluid perspectives. Plasma acceleration by the magnetic nozzle and subsequent detachment has been demonstrated in numerical simulations. These results are presently undergoing experimental verification. A brisk technology development effort for space-qualified, compact, solid-state RF equipment, and high temperature superconducting magnets is under way in support of this project. A conceptual point design for an early space demonstrator on the International Space Station has been defined

  2. ADX: a high field, high power density, advanced divertor and RF tokamak

    NASA Astrophysics Data System (ADS)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept

  3. High power test results of the first SRRC/ANL high current L-band RF gun.

    SciTech Connect

    Ho, C. H.

    1998-09-11

    A joint program is underway between the SRRC (Synchrotrons Radiation Research Center, Taiwan) and ANL (Argonne National Laboratory, USA) for developing a high current L-band photocathode rf guns. We have constructed an L-Band (1.3 Ghz), single cell rf photocathode gun and conducted low power tests at SRRC. High power rf conditioning of the cavity has been completed at ANL. In this paper we report on the construction and high power test results. So far we have been able to achieve > 120 MV/m axial electric field with minimal dark current. This gun will be used to replace the AWA (Argonne Wakefield Accelerator)[l] high current gun.

  4. Utilization of a Vircator to drive a High Power Relativistic Klystron Amplifier

    NASA Astrophysics Data System (ADS)

    Gardelle, J.; Bardy, J.; Cassany, B.; Desanlis, T.; Eyl, P.; Galtié, A.; Modin, P.; Voisin, L.; Balleyguier, P.; Gouard, P.; Donohue, J.

    2002-11-01

    At CESTA, we have been producing electron beams for some fifteen years by using induction accelerators and pulse diodes. First we had performed Frre-Electron Lasers experiments and we are currently studying the production of High-Power microwaves in the S-band. Among the possible sources we have chosen to perform Relativistic Klystron (RK) experiments with a pulse diode capable of generating a 700kV, 15 kA, 100 ns annular electron beam. In an amplifier configuration, we are testing the idea of using a Vircator as the driver for the first cavity of the klystron. This Vircator uses a simple electrical generator (Marx capacitor bank) which operates in the S-band in the GW class. By reducing the power level to about 100 MW, a 200 ns reliable and reproducible input driver pulse is obtained. First, we present the results of a preliminary experiment for which a coaxial cavity has been built in order to be fed by the Vircator emission at 2.45 GHz. Secondly, we give the experimental results in an oscillator configuration which corresponds to the fisrt step of our RK studies. Comparisons with the results of numerical simulations performed with MAGIC and MAFIA will be given for both experiments.

  5. High core and cladding isolation termination for high-power lasers and amplifiers

    NASA Astrophysics Data System (ADS)

    Wetter, Alexandre; Faucher, Mathieu; Sévigny, Benoit; Vachon, Nelson

    2009-02-01

    As overall power increases in fiber lasers and amplifiers, the amount of optical power which must be dealt with in order to obtain high core to core and core to cladding isolation also increases. This unwanted light can represent hundreds of watts and must be managed adequately. By combining a proper termination (end cap) design and cladding stripping techniques it is possible to obtain a robust output beam delivery component. The cladding stripping techniques are inspired by previous work done on high power cladding strippers. All measurement presented here are done with a flat end cap. Both core to core and core to cladding isolation will be better with an angled end cap. A core-to-core isolation of over 25dB was measured, while core to cladding was over 30dB. Power handling was characterized by the capability of the device to handle optical power loss, rather than transmitted power. The component dissipated over 50 watts of optical power due to isolation. The above results show that understanding the mechanisms of optical loss for forward and backward propagating light in a end cap and the heat load that these losses generate is the key to deliver kilowatts of optical power and protect the integrity of the system.

  6. High-efficiency (6+1)x1 combiner for high power fiber lasers and amplifiers

    NASA Astrophysics Data System (ADS)

    Neugroschl, Dan; Park, Jongchul; Wlodawski, Mitchell; Singer, Jonathan; Kopp, Victor I.

    2013-02-01

    We have developed a (6+1)x1 combiner for fiber lasers and amplifiers based on a glass fusion technology. We have combined a conventional fiber fusion technology for pump channels with a new design for a single mode signal channel, which utilizes a vanishing core technology. The approach has been developed for single channel spot size converters and pitch reducing optical fiber arrays (PROFAs). Flexibility of this technology allows a custom design to match both a single or large mode area fiber at the input and a required active fiber at the output. The technology allows two parameters, mode field diameter (MFD) and taper diameter or channel spacing to be adjusted independently resulting in low loss coupling for signal channel at input and output. Utilizing this approach we have obtained better than 0.3 dB coupling for a signal channel at 1550 nm with a standard SMF28 fiber at the input and an active fiber at the output, while using six conventional 105/125 micron fibers as pump channels operating at 974 nm efficiently coupled to a double-clad fiber. Low signal loss results in high efficiency lasing or amplification suitable for high power applications. This unique technology allows excellent coupling for the signal channel as well as for the pump channels and is amenable to even more pump channels if desired.

  7. Low-timing-jitter high-power mode-locked 1063 nm Nd:GdVO₄ master oscillator power amplifier.

    PubMed

    Wang, Zhi-min; Zhang, Feng-feng; Zuo, Jun-wei; Yang, Jing; Yuan, Lei; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2015-10-01

    A low-timing-jitter high-power semiconductor saturable absorber mirror mode-locked picosecond (ps) 1063 nm Nd:GdVO4 master oscillator power amplifier is presented. Using a single-pass Nd:GdVO4 amplifier, an amplified laser with 21.5 W output power and 8.3 ps pulsewidth was achieved at 250 MHz repetition rate. Employing a servo control, an average RMS timing jitter of ∼222  fs was realized. This laser can be used as a drive laser for photocathode injectors in free-electron lasers. PMID:26479619

  8. Measurement of SFDR and noise in EDF amplified analog RF links using all-optical down-conversion and balanced receivers

    NASA Astrophysics Data System (ADS)

    Middleton, Charles; Borbath, Michael; Wyatt, Jeff; DeSalvo, Richard

    2008-04-01

    Optical down-conversion techniques have become an increasingly popular architecture to realize Multi-band Enterprise Terminals (MET), Synthetic Aperture Radar (SAR), Optical Arbitrary Waveform Generation (OAWG), RF Channelizers and other technologies that need rapid frequency agile tunability in the microwave and millimeter RF bands. We describe recent SFDR, NF, Gain, and Noise modeling and measurements of Erbium-doped-fiber amplified analog RF optical links implementing all-optical down-conversion and balanced photodiode receivers. We describe measurements made on our newly designed extensive test-bed utilizing a wide array of high powered single and balanced photodiodes, polarization preserving output LN modulators, EAMs, LIMs, tunable lasers, EDFAs, RF Amplifiers, and other components to fully characterize direct and coherent detection techniques. Additionally, we compare these experimental results to our comprehensive MATLAB system modeling and optimization software tools.

  9. Time-reversal duality of high-efficiency RF power amplifiers

    SciTech Connect

    Reveyrand, T; Ramos, I; Popovic, Z

    2012-12-06

    The similarity between RF power amplifiers and rectifiers is discussed. It is shown that the same high-efficiency harmonically-terminated power amplifier can be operated in a dual rectifier mode. Nonlinear simulations with a GaN HEMT transistor model show the time-reversal intrinsic voltage and current waveform relationship between a class-F amplifier and rectifier. Measurements on a class-F-1 amplifier and rectifier at 2.14 GHz demonstrate over 80% efficiency in both cases.

  10. High power testing of the 402.5 MHZ and 805 MHZ RF windows for the spallation neutron source accelerator

    SciTech Connect

    Cummings, K. A.; De Baca, J. M.; Harrison, J. S.; Rodriguez, M. B.; Torrez, P. A.; Warner, D. K.

    2003-01-01

    Hisorically, Radio Frequency (RF) windows have been a common point of failure in input power couplers; therefore, reliable RF windows are critical to the success of the Spallation Neutron Source (SNS) project. The normal conducting part of the SNS accelerator requires six RF windows at 402.5 MHz and eight RF windows at 805 MHz[l]. Each RF window will transmit up to 180 kW of average power and 2.5 MW peak power at 60 Hz with 1.2 millisecond pulses. The RF windows, designed and manufactured by Thales, were tested at the full average power for 4 hours to ensure no problems with the high average power and then tested to an effective forward power level of 10 MW by testing at 2.5 MW forward power into a short and varying the phase of the standing wave. The sliding short was moved from 0 to 180 degrees to ensure no arcing or breakdown problems occur in any part of the window. This paper discusses the results of the high power testing of both the 402.5 MHz and the 805 MHz RF windows. Problems encountered during testing and the solutions for these problems are discussed.

  11. Spallation Neutron Source high-power Rf transmitter design for high availablility, ease of installation and cost containment

    SciTech Connect

    Bradley, J. T. , III; Rees, D. E.; Hardek, T. W.; Lynch, M. T.; Roybal, W. T.; Tallerico, P. J.

    2003-01-01

    The availability goals and installation schedule for the Spallation Neutron Source (SNS) have driven the availability and installation of the SNS linac's high-power RF systems. This paper discusses how the high-power RF systems' availability and installation goals have been addressed in the RF transmitter design and procurement. Design features that allow R1; component failures to be quickly diagnosed and repaired are also presented. Special attention has been given lo interlocks, PLC fault logging and real-time interfaces to thc accelerator's Experimental Physics and Industrial Control System (EPICS) archive system. The availability and cost motivations for the use of different RF transmitter designs in the normalconducting and super-conducting sections of the linac are reviewed. Factory iicceptance tests used to insure fully functional equipment and thereby reduce the time spent on installation and cotnmissioning of the RF transmitters are discussed. Transmitter installation experience and klystron conditioning experience is used to show how these design features have helped and will continue to help the SNS linac to meet its availability and schedule goals.

  12. Demonstration of Multi-Gbps Data Rates at Ka-Band Using Software-Defined Modem and Broadband High Power Amplifier for Space Communications

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.; Landon, David G.; Sun, Jun Y.; Winn, James S.; Laraway, Stephen; McIntire, William K.; Metz, John L.; Smith, Francis J.

    2011-01-01

    The paper presents the first ever research and experimental results regarding the combination of a software-defined multi-Gbps modem and a broadband high power space amplifier when tested with an extended form of the industry standard DVB-S2 and LDPC rate 9/10 FEC codec. The modem supports waveforms including QPSK, 8-PSK, 16-APSK, 32-APSK, 64-APSK, and 128-QAM. The broadband high power amplifier is a space qualified traveling-wave tube (TWT), which has a passband greater than 3 GHz at 33 GHz, output power of 200 W and efficiency greater than 60 percent. The modem and the TWTA together enabled an unprecedented data rate at 20 Gbps with low BER of 10(exp -9). The presented results include a plot of the received waveform constellation, BER vs. E(sub b)/N(sub 0) and implementation loss for each of the modulation types tested. The above results when included in an RF link budget analysis show that NASA s payload data rate can be increased by at least an order of magnitude (greater than 10X) over current state-of-practice, limited only by the spacecraft EIRP, ground receiver G/T, range, and available spectrum or bandwidth.

  13. Steady-state operation of a large-area high-power RF ion source for the neutral beam injector

    NASA Astrophysics Data System (ADS)

    Chang, Doo-Hee; Park, Min; Jeong, Seung Ho; Kim, Tae-Seong; Lee, Kwang Won; In, Sang Ryul

    2014-10-01

    A large-area high-power RF-driven ion source is being developed in Germany for the heating and current drive (H&CD) of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion devices such as an the ITER and the DEMO. The first and the second long-pulse ion sources (LPIS-1 and LPIS-2) have been successfully developed with a magnetic-bucket plasma generator, including a filament heating structure for the first NBI (NBI-1) system of the KSTAR tokamak. A development plan exists for a large-area high-power RF ion source for steady-state operation (more than 300 seconds) at the Korea Atomic Energy Research Institute (KAERI) to extract positive ions, which can be used for the NBI heating and current drive systems, and to extract negative ions for future fusion devices such as a Fusion Neutron Source and Korea — DEMO. The RF ion source consists of a driver region, including a helical antenna and a discharge chamber, and an expansion region (magnetic bucket of the prototype LPIS-1). RF power can be transferred at up to 10 kW with a fixed frequency of 2 MHz through an optimized RF matching system. An actively water-cooled Faraday shield is located inside the driver region of the ion source for stable and steady-state operation of the RF discharge. The uniformities of the plasma parameters are measured at the lowest area of the expansion bucket by using two RF-compensated electrostatic probes along the directions of the short and the long dimensions of the expansion region.

  14. Design of an RF Antenna for a Large0Bore, High Power, Steady State Plasma Processing Chamber for Material Separation

    SciTech Connect

    Rasmussen, D.A.; Freeman, R.L.

    2001-11-07

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC, (Contractor), and Archimedes Technology Group, (Participant) is to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure. The project objectives are to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure.

  15. A 15 MHz bandwidth, 60 V{sub pp}, low distortion power amplifier for driving high power piezoelectric transducers

    SciTech Connect

    Capineri, Lorenzo

    2014-10-01

    This paper presents the design and the realization of a linear power amplifier with large bandwidth (15 MHz) capable of driving low impedance ultrasonic transducers. The output current driving capability (up to 5 A) and low distortion makes it suitable for new research applications using high power ultrasound in the medical and industrial fields. The electronic design approach is modular so that the characteristics can be scaled according to specific applications and implementation details for the circuit layout are reported. Finally the characterization of the power amplifier module is presented.

  16. High Power Passive Phase Locking of Four Yb-Doped Fiber Amplifiers by an All-Optical Feedback Loop

    NASA Astrophysics Data System (ADS)

    Xue, Yu-Hao; He, Bing; Zhou, Jun; Li, Zhen; Fan, Yuan-Yuan; Qi, Yun-Feng; Liu, Chi; Yuan, Zhi-Jun; Zhang, Hai-Bo; Lou, Qi-Hong

    2011-05-01

    We report the passive phase locking of four high power Yb-doped fiber amplifiers with ring cavity. The interference patterns at different output power are observed and the Strehl ratios are measured. The maximum coherent output power of the fiber array is up to 1062 W by multi-stage amplification. The stable beam profiles of various phase relationships are observed by controlling the position of the feedback fiber, in good agreement with the calculated results. By using master oscillator power-amplifier (MOPA) architecture and broadband operation of passively phased systems, higher power scaling with high beam quality appears to be feasible.

  17. Gyroharmonic converter as a high power cm-wavelength rf source for future e--e+ colliders

    NASA Astrophysics Data System (ADS)

    Hirshfield, J. L.; Ganguly, A. K.; Wang, Changbiao

    1995-07-01

    The principles governing gyroharmonic conversion for production of high-power cm-wavelength rf power to drive a future e--e+ collider are reviewed. Results of projected performance of the Yale 14.28 GHz converter are presented, as predicted using a seamless slow-time-scale simulation code that follows the beam particles through a cyclotron autoresonance acceleration region, through an rf absorbing drift tube, and through a fifth-harmonic traveling-wave output section. Approximate scaling relations are developed to give converter parameters with power levels appropriate for collider applications. Possible means to control beam quality, and thus to retain good converter efficiency, are described. A single-beam, multiple-source converter concept is suggested that may make unnecessary more than one gun and gun modulator to supply a large number of accelerator rf feeds.

  18. High-power top-hat pulses from a Yb master oscillator power amplifier for efficient optical parametric amplifier pumping.

    PubMed

    Balčiūnas, T; Fan, G Y; Andriukaitis, G; Pugžlys, A; Baltuška, A

    2012-07-01

    We demonstrate shaping of high-energy broadband Yb amplifier pulses for the generation of a (sub)picosecond top-hat temporal pulse profile that significantly improves pumping efficiency of an optical parametric amplifier (OPA). Phase-only modulation is applied by an acousto-optic programmable dispersion filter. This simple scheme is scalable to a high average power due to a relatively broad bandwidth of the Yb:CaF(2) gain medium used in the amplifier that supports a sub-150-fs transform-limited pulse duration. Additionally we show that OPA seeding with supercontinuum remains possible because top-hat-shaped pulses passed through a glass block recompress to ≈200 fs with minimum satellite production. PMID:22743450

  19. 938 nm Nd-Doped High Power Cladding Pumped Fiber Amplifier

    SciTech Connect

    Dawson, J; Beach, R; Drobshoff, A; Liao, Z; Pennington, D; Payne, S; Taylor, L; Hackenberg, W; Bonaccini, D

    2002-09-19

    2.1W of 938nm light has been produced in an Nd{sup 3+} doped fiber amplifier. Wavelength dependent bend losses can be employed to minimize 1088nm amplified spontaneous emission giving the optical fiber a distinct advantage over bulk media.

  20. High power operation of an X-band coaxial multi-beam relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Liu, Zhenbang; Huang, Hua; Jin, Xiao; Zhao, Yucong; He, Hu; Lei, Lurong; Chen, Zhaofu

    2013-11-01

    An X-band coaxial multi-beam relativistic klystron amplifier is designed in order to increase output microwave power and operating frequency of the amplifier tube. The experiment is performed on a Tesla-type accelerator. The amplifier is driven by an electron beam of 2.8 kA at 720 kV, and a microwave power of 30 kW and frequency of 9.384 GHz is injected into an input cavity by means of an external source, then a microwave power of over 800 MW is extracted, the amplifier gain is about 44 dB, and conversion efficiency is 40%. The experiment proves that output power of nearly GWs can be generated with the X-band coaxial multi-beam relativistic klystron amplifier driven by a kW-level input power.

  1. High power operation of an X-band coaxial multi-beam relativistic klystron amplifier

    SciTech Connect

    Liu, Zhenbang; Huang, Hua; Jin, Xiao; Zhao, Yucong; He, Hu; Lei, Lurong; Chen, Zhaofu

    2013-11-15

    An X-band coaxial multi-beam relativistic klystron amplifier is designed in order to increase output microwave power and operating frequency of the amplifier tube. The experiment is performed on a Tesla-type accelerator. The amplifier is driven by an electron beam of 2.8 kA at 720 kV, and a microwave power of 30 kW and frequency of 9.384 GHz is injected into an input cavity by means of an external source, then a microwave power of over 800 MW is extracted, the amplifier gain is about 44 dB, and conversion efficiency is 40%. The experiment proves that output power of nearly GWs can be generated with the X-band coaxial multi-beam relativistic klystron amplifier driven by a kW-level input power.

  2. High-power pulsed-current-mode operation of an overdriven tapered amplifier.

    PubMed

    Takase, Ken; Stockton, John K; Kasevich, Mark A

    2007-09-01

    We experimentally investigate the performance of a commercial tapered amplifier diode operating in a pulsed-current mode with a peak current that is significantly higher than the specified maximum continuous current. For a tapered amplifier rated at 500 mW of continuous power, we demonstrate 2.6 W of peak optical output power with 15 mW of injection light for 200 micros, 7 A current pulses. Different failure mechanisms for the tapered amplifier, including thermal and optical damage, are identified under these conditions. PMID:17767324

  3. High-power, 1-ps, all-Yb:YAG thin-disk regenerative amplifier.

    PubMed

    Fattahi, Hanieh; Alismail, Ayman; Wang, Haochuan; Brons, Jonathan; Pronin, Oleg; Buberl, Theresa; Vámos, Lénárd; Arisholm, Gunnar; Azzeer, Abdallah M; Krausz, Ferenc

    2016-03-15

    We report a 100 W, 20 mJ, 1-ps, all-Yb:YAG thin-disk regenerative amplifier seeded by a microjoule-level Yb:YAG thin-disk Kerr-lens mode-locked oscillator. The regenerative amplifier is implemented in a chirped pulse amplification system and operates at an ambient temperature in air, delivering ultrastable output pulses at a 5 kHz repetition rate and with a root mean square power noise value of less than 0.5%. Second harmonic generation of the amplifier's output in a 1.5 mm-thick BBO crystal results in more than 70 W at 515 nm, making the system an attractive source for pumping optical parametric chirped pulse amplifiers in the visible and near-infrared spectral ranges. PMID:26977650

  4. High-power Yb:YAG single-crystal fiber amplifiers for femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Lesparre, Fabien; Martial, Igor; Didierjean, Julien; Gomes, Jean Thomas; Pallmann, Wolfgang; Resan, Bojan; Loescher, André; Negel, Jan-Phillipp; Graf, Thomas; Abdou Ahmed, Marwan; Balembois, François; Georges, Patrick

    2015-02-01

    We describe a multi-stages single crystal fiber (SCF) amplifier for the amplification of femtosecond pulses with radial or azimuthal polarization in view of high speed material processing (surface structuring, drilling). We demonstrate a three stages diode-pumped Yb:YAG single crystal fiber amplifier to achieve femtosecond pulses at an average power of 85W at 20 MHz in radial and azimuthal polarization.

  5. High repetition rate multi-channel source of high-power rf-modulated pulses

    NASA Astrophysics Data System (ADS)

    Ulmaskulov, M. R.; Pedos, M. S.; Rukin, S. N.; Sharypov, K. A.; Shpak, V. G.; Shunailov, S. A.; Yalandin, M. I.; Romanchenko, I. V.; Rostov, V. V.

    2015-07-01

    This paper presents the results of testing a high voltage pulse generator based on parallel gyromagnetic nonlinear transmission lines filled with saturable ferrite. The generator is capable of producing almost identical stable rf-modulated nanosecond high voltage pulses in each of the two, or four, parallel output channels. The output voltage amplitude in each channel can reach -285 or -180 kV, respectively, with a rf modulation depth of up to 60%. Drive pulses were produced as the packets of duration 1-5 s at a pulse repetition frequency of 800 Hz using a driver equipped with all-solid-state switches. Splitting the driver pulse provided electric field strengths in the channels which were below the breakdown field strength of the transmission lines. As a result, the use of nonlinear transmission lines of reduced diameter made it possible to increase the center frequency of the excited rf oscillations to ˜2 GHz.

  6. Modulation characteristics of a high-power semiconductor Master Oscillator Power Amplifier (MOPA)

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald Mitchell, Jr.

    1992-01-01

    A semiconductor master oscillator-power amplifier was demonstrated using an anti-reflection (AR) coated broad area laser as the amplifier. Under CW operation, diffraction-limited single-longitudinal-mode powers up to 340 mW were demonstrated. The characteristics of the far-field pattern were measured and compared to a two-dimensional reflective Fabry-Perot amplifier model of the device. The MOPA configuration was modulated by the master oscillator. Prior to injection into the amplifier, the amplitude and frequency modulation properties of the master oscillator were characterized. The frequency response of the MOPA configuration was characterized for an AM/FM modulated injection beam, and was found to be a function of the frequency detuning between the master oscillator and the resonant amplifier. A shift in the phase was also observed as a function of frequency detuning; this phase shift is attributed to the optical phase shift imparted to a wave reflected from a Fabry-Perot cavity. Square-wave optical pulses were generated at 10 MHz and 250 MHz with diffraction-limited peak powers of 200 mW and 250 mW. The peak power for a given modulation frequency is found to be limited by the injected power and the FM modulation at that frequency. The modulation results make the MOPA attractive for use as a transmitter source in applications such as free-space communications and ranging/altimetry.

  7. High-power RF window design for the PEP-II B Factory

    SciTech Connect

    Neubauer, M.; Hodgson, J.; Ng, C.; Schwarz, H.; Skarpaas, K.; Kroll, N. |; Rimmer, R.

    1994-06-01

    We describe the design of RF windows to transmit up to 500 kW CW to the PEP-II 476 MHz cavities. RF analysis of the windows using high-frequency simulation codes are described. These provide information about the power loss distribution in the ceramic and tim matching properties of the structure. Finite-element analyses of the resulting temperature distribution and thermal stresses are presented. Fabrication methods including a proposed scheme to compensate for thermal expansion s are discussed and hardware tests to validate this approach are described. The effects of surface coatings (intentional and otherwise) and the application of air cooling are considered.

  8. Choke Flange for High Power RF Components Excited by TE01 Mode

    SciTech Connect

    Yeremian, A.Dian; /SLAC

    2009-12-11

    A multifaceted program to study high gradient structures and properties of RF breakdown is under way at SLAC. This program includes testing of simplified versions of traveling wave and standing wave structures at 11.4 GHz. [Dolgashev] RF power is fed into these structures using a TE01 mode-launcher. An RF flange is used to connect the mode-launcher to the test-structure. The rf currents flow through either the stainless steel lip on the flange or, in an alternate assembly, through a copper gasket pressed between the same stainless steel lips. In a recent experiment with a single cell traveling wave structure, a flange with stainless steel lips was irreversibly damaged at RF power about 90 MW and {approx}100 ns pulse length. We suggest an alternative flange that does not rely on metal-to-metal contact in the rf power transfer region. The idea is to use an asymmetric choke flange, where the choke grove is cut into a conflate flange on the mode-launcher. The structures themselves will have a simpler, flat conflate flange with rounded corners on the vacuum side. The Vacuum seal is achieved with a Cu gasket between these two flanges above the RF region. We have designed a flange with a choke which is almost field free in the vacuum gasket region, whose technical specifications and RF properties are presented below. Design simulations were conducted using HFSS, a 3D finite element code that solves electromagnetic fields in complex structures. Figure 1 demonstrates the projected physical look of the choke flange, while the table next to it lists the critical parameters. The maximum electric field for in this geometry is on axis at 33.6MV/m for 100 MW input. The electric field near the gasket, meaning at the top of the choke gap is at 125kV/m or 1.25kV/cm. Figure 2 demonstrates the electric field strength profile in the geometry for 100 MW input power. The maximum magnetic field for in this geometry is near the pipe at 59kA/m for 100 MW input. The magnetic field at the

  9. Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening.

    PubMed

    Jauregui, Cesar; Otto, Hans-Jürgen; Stutzki, F; Limpert, J; Tünnermann, A

    2015-08-10

    In this paper we present a simple model to predict the behavior of the transversal mode instability threshold when different parameters of a fiber amplifier system are changed. The simulation model includes an estimation of the photodarkening losses which shows the strong influence that this effect has on the mode instability threshold and on its behavior. Comparison of the simulation results with experimental measurements reveal that the mode instability threshold in a fiber amplifier system is reached for a constant average heat load value in good approximation. Based on this model, the expected behavior of the mode instability threshold when changing the seed wavelength, the seed power and/or the fiber length will be presented and discussed. Additionally, guidelines for increasing the average power of fiber amplifier systems will be provided. PMID:26367877

  10. High Power RF Tests on WR650 Pre-Stressed Planar Windows

    SciTech Connect

    Stirbet, Mircea; Davis, G. Kirk; Elliott, Thomas S.; King, Larry; Powers, Thomas J.; Rimmer, Robert A.; Walker, Richard L.

    2009-11-01

    A new planar, ceramic window intended to be used with WR650 waveguide fundamental power couplers at 1300 MHz or 1500 MHz has been developed. It is based on the pre-stressed planar window concept tested in PEP II and LEDA. A test stand that made use of the 100kW CW 1500 MHz RF system in the JLAB FEL was commissioned and used to apply up to 80 kW traveling wave (TW)to the windows. Two different types of RF windows (brazed and diffusion bonded ceramics) with design specification of 50 kW CW in TW mode were successfully tested both as a gas barrier (intended to operate up to 2 psi) and as a vacuum barrier. The vacuum windows were able to maintain UHV quality vacuum and were successfully operated in the 10{sup -9} mbar range. An overview of the pre-stressed power windows, RF test stand, procedures and RF power testing results will be presented.

  11. Study of high power, two-stage, TWT X-band amplifier

    SciTech Connect

    Wang, P.; Golkowski, C.; Hayashi, Y.; Ivers, J.D.; Nation, J.A.; Schachter, L.

    1999-07-01

    A disk loaded slow wave structure with a cold wave phase (without electron beam) velocity of the TM{sub 01} wave greater than the speed of light (1.05c) is used as the electron bunching stage of a two stage X-band amplifier. The high phase velocity section produces well defined electron bunches. The second section, where the cold wave phase velocity is (0.84c), i.e., less than beam velocity of 0.91c, is used to generate the high output power microwave radiation. The tightly bunched beam from the high phase velocity section enhances the beam energy conversion into microwave radiation compared to that obtained with a synchronous electron-wave bunches. The amplifier is driven by a 7mm diameter 750 kV, 500A pencil electron beam. The structure, which has a 4 GHz bandwidth, produces an amplified output with a power in the range of 20--60 MW. At higher output powers (>60MW) pulse shortening develops. The authors suspect that the pulse shortening is a result of excitation of the hybrid mode, HEM{sub 11}, which overlaps (about 0.5 GHz separation) with the frequency domain of the desired TM{sub 0.1} mode. A new amplifier with similar phase velocity characteristics but with a 1 GHz bandwidth and an HEM{sub 11}, TM{sub 01} mode frequency separation of 3.3 GHz has been designed and constructed. The interaction frequency for the HEM mode is above the passband of the TM mode. Testing is in progress. The performance of the new amplifier will be compared with results obtained using the earlier configuration.

  12. Tunable high-power narrow-spectrum external-cavity diode laser based on tapered amplifier at 668 nm.

    PubMed

    Chi, Mingjun; Erbert, G; Sumpf, B; Petersen, Paul Michael

    2010-05-15

    A 668 nm tunable high-power narrow-spectrum diode laser system based on a tapered semiconductor optical amplifier in external cavity is demonstrated. The laser system is tunable from 659to675 nm. As high as 1.38 W output power is obtained at 668.35 nm. The emission spectral bandwidth is less than 0.07 nm throughout the tuning range, and the beam quality factor M(2) is 2.0 with the output power of 1.27 W. PMID:20479803

  13. Megahertz-level, high-power picosecond Nd:LuVO4 regenerative amplifier free of period doubling.

    PubMed

    Gao, Peng; Lin, Hua; Li, Jinfeng; Guo, Jie; Yu, Haohai; Zhang, Huaijin; Liang, Xiaoyan

    2016-06-27

    We report on a high repetition rate, high-power picosecond Nd:LuVO4 regenerative amplifier. Period doubling caused energy instability was eliminated at megahertz-level repetition rate with the modified seeding source. A multi-pass cell was used to improve the seed pulse energy to achieve complete suppression of the onset of bifurcation. At a maximum repetition rate of 1.43 MHz, the system produced 7.0-ps-long pulses with an average output power of 25.1 W, corresponding to a pulse energy of 17.6 μJ. At 100 kHz, the pulse energy increased to 205 μJ with an average power of 20.5 W. Moreover, the injected pulses with pulse duration of 5.1 ps broadened to 8.9 ps because of gain narrowing in the amplifier. PMID:27410559

  14. Hybrid master oscillator power amplifier high-power narrow-linewidth nanosecond laser source at 257 nm.

    PubMed

    Délen, Xavier; Deyra, Loïc; Benoit, Aurélien; Hanna, Marc; Balembois, François; Cocquelin, Benjamin; Sangla, Damien; Salin, François; Didierjean, Julien; Georges, Patrick

    2013-03-15

    We report on a high-power narrow-linewidth pulsed laser source emitting at a wavelength of 257 nm. The system is based on a master oscillator power amplifier architecture, with Yb-doped fiber preamplifiers, a Yb:YAG single crystal fiber power amplifier used to overcome the Brillouin limitation in glass fiber and nonlinear frequency conversion stages. This particularly versatile architecture allows the generation of Fourier transform-limited 15 ns pulses at 1030 nm with 22 W of average power and a diffraction-limited beam (M(2)<1.1). At a repetition rate of 30 kHz, 106 μJ UV pulses are generated corresponding to an average power of 3.2 W. PMID:23503285

  15. Suppression of beam induced pulse shortening modes in high power RF generator TW output structures

    SciTech Connect

    Haimson, J.; Mecklenburg, B.

    1992-12-31

    Several different style 11.4 GHz relativistic klystrons, operating with beam pulse widths of 50 ns and using large aperture, tapered phase-velocity TW structures,` have recently demonstrated output RF power levels in the range of 100 to 300 MW without breakdown or pulse shortening. To extend this performance into the long pulse regime (1 {mu}s) or to demonstrate a threefold increase in output power by using higher currents, the existing TW circuit designs must be modified (a) to reduce the cavity maximum surface E-fields by a factor of 2 to 3, and (b) to elevate the current threshold values of the beam induced higher order modes (HOM) to ensure avoidance of RF pulse shortening and associated instabilities. A technique for substantially elevating this threshold current is described, and microwave data and photographs are presented showing the degree of HOM damping achieved in a recently constructed 11.4 GHz TW structure.

  16. Pseudo-random binary sequency phase modulation in high power Yb-doped fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Robin, Craig; Dajani, Iyad; Zernigue, Clint; Flores, Angel; Pulford, Ben; Lanari, Ann; Naderi, Shadi

    2013-03-01

    We present experimental and theoretical studies on the stimulated Brillouin scattering (SBS) threshold in fiber amplifiers seeded with a spectrally broadened single-frequency laser source. An electro-optic phase modulator is driven with various pseudo-random binary sequence (PRBS) patterns to highlight the unique characteristics of this linewidth broadening technique and its facility in SBS mitigation. Theoretical predictions show a variation in SBS suppression based on PRBS pattern and modulation frequency. These predictions are experimentally investigated in a kilowatt level monolithic fiber amplifier operating with near diffraction-limited beam quality. We also show Rayleigh scattering and other sources of back reflected light in phase modulated signals can seed the SBS process and significantly reduce the nonlinear threshold.

  17. High power continuous operation of a widely tunable quantum cascade laser with an integrated amplifier

    SciTech Connect

    Slivken, S.; Sengupta, S.; Razeghi, M.

    2015-12-21

    Wide electrical tuning and high continuous output power is demonstrated from a single mode quantum cascade laser emitting at a wavelength near 4.8 μm. This is achieved in a space efficient manner by integrating an asymmetric sampled grating distributed feedback tunable laser with an optical amplifier. An initial demonstration of high peak power operation in pulsed mode is demonstrated first, with >5 W output over a 270 nm (113 cm{sup −1}) spectral range. Refinement of the geometry leads to continuous operation with a single mode spectral coverage of 300 nm (120 cm{sup −1}) and a maximum continuous power of 1.25 W. The output beam is shown to be nearly diffraction-limited, even at high amplifier current.

  18. High power gain-switched diode laser master oscillator and amplifier

    SciTech Connect

    Poelker, M.

    1995-11-06

    A tapered-stripe, traveling-wave semiconductor optical amplifier was seeded with 3.3 mW of gain-switched diode laser light to obtain over 200 mW average power with pulse widths{approx}105 ps full width at half-maximum (FWHM) and a pulse repetition rate of 499 MHz corresponding to a peak power of 3.8 W. Shorter pulse widths were obtained when the amplifier was driven with less current at the expense of reduced output power. Pulse widths as short as 31 ps FWHM and an average power of 98 mW corresponding to a peak power of 6.3 W were obtained when a different, lower power seed laser was used. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  19. High-power operation of silica-based Raman fiber amplifier at 2147 nm.

    PubMed

    Liu, Jiang; Tan, Fangzhou; Shi, Hongxing; Wang, Pu

    2014-11-17

    We demonstrated a 2147 nm silica-based Raman fiber amplifier with output power of 14.3 W directly pumped with a 1963 nm CW thulium-doped all-fiber MOPA. The 1963 nm thulium-doped all-fiber MOPA is seeded with a 2147 nm thulium-doped all-fiber laser at the same time. The Raman Stokes power shift from 1963 nm to 2147 nm is accomplished in a piece of 50 m silica-based highly nonlinear fiber (HNLF). The conversion efficiency was 38.5% from 1963 nm to 2147 nm in the HNLF. The output power achieved was only currently limited by available 1963 nm input power and the architecture has significant scaling potential. To the best of our knowledge, this is the highest power operation of a Raman fiber amplifier at >2 µm wavelength region. PMID:25402080

  20. Simulation of high power broadband cyclotron autoresonance maser amplifier and electron beam experiments

    NASA Astrophysics Data System (ADS)

    Speirs, D. C.; Phelps, A. D. R.; Konoplev, I. V.; Cross, A. W.; He, W.

    2004-04-01

    The design, simulation, and preliminary experimental implementation of an efficient, broadband cyclotron autoresonance maser (CARM) amplifier operating over the 9-13 GHz frequency band is presented. The amplifier is based on a high current accelerator capable of generating a ˜35 A pencil electron beam at an accelerating voltage of ˜450 kV. A full three-dimensional numerical model of the CARM amplifier has been constructed within the particle-in-cell code KARAT taking into account electron beam parameters derived from simulation and experiment. An electron beam current of 32A at an accelerating voltage of 400 kV was measured. Numerical simulations demonstrate the possibility of obtaining 37 dB gain and an interaction efficiency of 17%. In addition a viable amplification bandwidth of 9-13 GHz is apparent, with a minimum gain and efficiency of 25 dB and 10%, respectively, at the boundaries of the amplification band. The peak modeled efficiency and gain (17%, 37 dB) were obtained at a frequency of 12 GHz. Computational simulations have also revealed correlation between the instantaneous amplification bandwidth and the spectral width of cyclotron superradiant emission within the system.

  1. A high power active circulator using GaN MMIC power amplifiers

    NASA Astrophysics Data System (ADS)

    Liming, Gu; Wenquan, Che; Huang, Fan-Hsiu; Chiu, Hsien-Chin

    2014-11-01

    This paper presents a 2.4 GHz hybrid integrated active circulator consisting of three power amplifiers and three PCB-based Wilkinson power dividers. The power amplifiers were designed and fabricated in a standard 0.35-μm AlGaN/GaN HEMT technology, and combined with three traditional power dividers on FR4 using bonding wires. Due to the isolation of power dividers, the isolation between three ports is achieved; meanwhile, due to the unidirectional characteristics of the power amplifiers, the nonreciprocal transfer characteristic of the circulator is realized. The measured insertion gain of the proposed active circulator is about 2-2.7 dB at the center frequency of 2.4 GHz, the isolation between three ports is better than 20 dB over 1.2-3.4 GHz, and the output power of the designed active circulator achieves up to 20.1-21.2 dBm at the center frequency.

  2. Materials physics and device development for improved efficiency of GaN HEMT high power amplifiers.

    SciTech Connect

    Kurtz, Steven Ross; Follstaedt, David Martin; Wright, Alan Francis; Baca, Albert G.; Briggs, Ronald D.; Provencio, Paula Polyak; Missert, Nancy A.; Allerman, Andrew Alan; Marsh, Phil F.; Koleske, Daniel David; Lee, Stephen Roger; Shul, Randy John; Seager, Carleton Hoover; Tigges, Christopher P.

    2005-12-01

    GaN-based microwave power amplifiers have been identified as critical components in Sandia's next generation micro-Synthetic-Aperture-Radar (SAR) operating at X-band and Ku-band (10-18 GHz). To miniaturize SAR, GaN-based amplifiers are necessary to replace bulky traveling wave tubes. Specifically, for micro-SAR development, highly reliable GaN high electron mobility transistors (HEMTs), which have delivered a factor of 10 times improvement in power performance compared to GaAs, need to be developed. Despite the great promise of GaN HEMTs, problems associated with nitride materials growth currently limit gain, linearity, power-added-efficiency, reproducibility, and reliability. These material quality issues are primarily due to heteroepitaxial growth of GaN on lattice mismatched substrates. Because SiC provides the best lattice match and thermal conductivity, SiC is currently the substrate of choice for GaN-based microwave amplifiers. Obviously for GaN-based HEMTs to fully realize their tremendous promise, several challenges related to GaN heteroepitaxy on SiC must be solved. For this LDRD, we conducted a concerted effort to resolve materials issues through in-depth research on GaN/AlGaN growth on SiC. Repeatable growth processes were developed which enabled basic studies of these device layers as well as full fabrication of microwave amplifiers. Detailed studies of the GaN and AlGaN growth of SiC were conducted and techniques to measure the structural and electrical properties of the layers were developed. Problems that limit device performance were investigated, including electron traps, dislocations, the quality of semi-insulating GaN, the GaN/AlGaN interface roughness, and surface pinning of the AlGaN gate. Surface charge was reduced by developing silicon nitride passivation. Constant feedback between material properties, physical understanding, and device performance enabled rapid progress which eventually led to the successful fabrication of state of the art

  3. High power switch mode linear amplifiers for flexible ac transmission system

    SciTech Connect

    Mwinyiwiwa, B.; Wolanski, Z.; Ooi, B.T.

    1996-10-01

    The Pulse Width Modulation (PWM) technique has been proposed for the force-commutated Shunt and Series VAR Controllers and Unified Power Flow Controllers in Flexible AC Transmission Systems. The PWM converters can be operated as linear amplifiers of constant gain so that treasure trove of linear control system theory can be brought to bear more easily when applying feedback controls. For example, pole-placement and active filtering have been successfully applied in laboratory models. This paper is written as a tutorial describing the stages of signal processing: modulation, amplification and demodulation, without reference to power electronics since the solid-state switches are modelled as ON-OFF switches.

  4. Method and apparatus for reducing diffraction-induced damage in high power laser amplifier systems

    DOEpatents

    Campillo, Anthony J.; Newnam, Brian E.; Shapiro, Stanley L.; Terrell, Jr., N. James

    1976-01-01

    Self-focusing damage caused by diffraction in laser amplifier systems may be minimized by appropriately tailoring the input optical beam profile by passing the beam through an aperture having a uniform high optical transmission within a particular radius r.sub.o and a transmission which drops gradually to a low value at greater radii. Apertures having the desired transmission characteristics may readily be manufactured by exposing high resolution photographic films and plates to a diffuse, disk-shaped light source and mask arrangement.

  5. High-power near-infrared supercontinuum source generated in an ytterbium-doped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Jin, Ai-Jun; Chen, Sheng-Ping; Si, Lei; Zhang, Bin; Hou, Jing; Jiang, Zong-Fu

    2015-10-01

    A supercontinuum source with larger than 200 W average power covering 1 μm to beyond 1.7 μm is constructed in a four-stage master-oscillator power-amplifier (MOPA) configuration. The process of power amplification and spectral evolution during supercontinuum generation and the influence of pulse duration on this process are investigated. For the signal light in normal dispersion region, Raman effect plays dominant role in the first phase and the power transfer from amplified signal light to long wavelength region can be substantially achieved. When the spectrum is extended across the zero dispersion wavelength, soliton effect becomes the main effect for spectral broadening and the power transfer efficiency is lower to make the signal light a high peak. With similar average output power, narrower seed pulse leads to higher peak power and can induce Stokes waves earlier which leaves longer fiber for soliton propagating. Thus the spectrum can be shifted to longer wavelength. However, the signal light becomes a higher spike. In a word, narrower seed pulse leads to higher signal peak and wider SC source.

  6. A Compact Two-Stage 120 W GaN High Power Amplifier for SweepSAR Radar Systems

    NASA Technical Reports Server (NTRS)

    Thrivikraman, Tushar; Horst, Stephen; Price, Douglas; Hoffman, James; Veilleux, Louise

    2014-01-01

    This work presents the design and measured results of a fully integrated switched power two-stage GaN HEMT high-power amplifier (HPA) achieving 60% power-added efficiency at over 120Woutput power. This high-efficiency GaN HEMT HPA is an enabling technology for L-band SweepSAR interferometric instruments that enable frequent repeat intervals and high-resolution imagery. The L-band HPA was designed using space-qualified state-of-the-art GaN HEMT technology. The amplifier exhibits over 34 dB of power gain at 51 dBm of output power across an 80 MHz bandwidth. The HPA is divided into two stages, an 8 W driver stage and 120 W output stage. The amplifier is designed for pulsed operation, with a high-speed DC drain switch operating at the pulsed-repetition interval and settles within 200 ns. In addition to the electrical design, a thermally optimized package was designed, that allows for direct thermal radiation to maintain low-junction temperatures for the GaN parts maximizing long-term reliability. Lastly, real radar waveforms are characterized and analysis of amplitude and phase stability over temperature demonstrate ultra-stable operation over temperature using integrated bias compensation circuitry allowing less than 0.2 dB amplitude variation and 2 deg phase variation over a 70 C range.

  7. High-power monolithic fiber amplifiers based on advanced photonic crystal fiber designs

    NASA Astrophysics Data System (ADS)

    Sipes, Donald L.; Tafoya, Jason D.; Schulz, Daniel S.; Alkeskjold, Thomas Tanggaard; Weirich, Johannes; Olausson, Christina B.

    2014-03-01

    We report on the development and performance of a fully monolithic PCF amplifier that has achieved over 400 W with near diffraction limited beam quality with an approximately 1GHz phase modulated input. The key components for these amplifiers are an advanced PCF fiber design that combines segmented acoustically tailored (SAT) fiber that is gain tailored, a novel multi fiber-coupled laser diode stack and a monolithic 6+1x1 large fiber pump/signal multiplexer. The precisely aligned 2-D laser diode emitter array found in laser diode stacks is utilized by way of a simple in-line imaging process with no mirror reflections to process a 2-D array of 380-450 elements into 3 400/440μm 0.22NA pump delivery fibers. The fiber combiner is an etched air taper design that transforms low numerical aperture (NA), large diameter pump radiation into a high NA, small diameter format for pump injection into an air-clad large mode area PCF, while maintaining a constant core size through the taper for efficient signal coupling and throughput. The fiber combiner has 6 400/440/0.22 core/clad/NA pump delivery fibers and a 25/440 PM step-index signal delivery fiber on the input side and a 40/525 PM undoped PCF on the output side. The etched air taper transforms the six 400/440 μm 0.22 NA pump fibers to the 525 μm 0.55 NA core of the PCF fiber with a measured pump combining efficiency of over 95% with a low brightness drop. The combiner also operates as a stepwise mode converter via a 30 μm intermediate core region in the combiner between the 20 μm core of the input fiber and the 40 μm fiber core of the PCF with a measured signal efficiency of 60% to 70% while maintaining polarization with a measured PER of 20 dB. These devices were integrated in to a monolithic fiber amplifier with high efficiency and near diffraction limited beam quality.

  8. High power, high beam quality laser source with narrow, stable spectra based on truncated-tapered semiconductor amplifier

    NASA Astrophysics Data System (ADS)

    Wang, X.; Erbert, G.; Wenzel, H.; Crump, P.; Eppich, B.; Knigge, S.; Ressel, P.; Ginolas, A.; Maaßdorf, A.; Tränkle, G.

    2013-02-01

    High power diode lasers are increasingly important in many industrial applications. However, an ongoing challenge is to simultaneously obtain high output power, diffraction-limited beam quality and narrow spectral width. One approach to fulfill these requirements is to use a "master oscillator - power amplifier (MOPA)" system. We present recent data on MOPAs using PA designs that have low confinement factor (1%), leading to low modal gain, and low optical loss (<0.5cm-1). Quantum barriers with low refractive index are used to reduce the optical waveguiding due to the active region, which should decrease susceptibility to filament formation. A truncated tapered lateral design was used. Conventional tapered designs have a ridge waveguide (RW) at the entrance of the devices with etched cavity- spoiling grooves at the transition to the tapered gain region. Our amplifier used a truncated tapered design with no RW entrance section. We show that for this approach cavity-spoiling grooves are not necessary, and achieve improved performance when they are omitted, which we attribute to the filament insensitivity of our structure. High beam quality was achieved from a 970nm amplifier with M2 (1/e2) = 1.9, with efficiency of <48% in QCW condition, and <17W diffraction-limited beam maintained in the central lobe. The impact of the in-plane geometrical design was assessed and we show that large surface area is advantageous for device performance. The spectral properties of the amplifier replicated that of the DBRtapered laser, which is used as the master oscillator, with a spectral width of <30pm (FWHM). Design options for further increases in power are presented.

  9. High-power gyrotron traveling-wave amplifier with distributed wall losses and attenuating severs

    SciTech Connect

    Yeh, Y.S.; Shin, Y.Y.; You, Y.C.; Chen, L.K.

    2005-04-15

    Distributed-loss gyrotron traveling-wave amplifiers (gyro-TWTs) with high-gain, broadband, and millimeter-wave capabilities have been demonstrated. Most structures with distributed wall losses are stabilized in gyro-TWTs that operate at low beam currents. Attenuating severs are added to the interaction circuit of a distributed-loss gyro-TWT to prevent high beam currents that result in mode competition. Simulation results show that gyrotron backward-wave oscillations (gyro-BWOs) are not effectively suppressed by the lossy section; in contrast, the severed sections can effectively enhance the start-oscillation threshold of gyro-BWOs in the proposed gyro-TWT. Meanwhile, localized reflective oscillations seem not to occur in the gyro-TWT unless it operates at a high magnetic field or with a high interaction length. The stable gyro-TWT, operating in the low-loss TE{sub 01} mode, is predicted to yield a peak output power of 405 kW at 33 GHz with an efficiency of 20%, a saturated gain of 77 dB and a 3 dB bandwidth of 2.5 GHz for a 100 kV, 20 A electron beam with an axial velocity spread of {delta}v{sub z}/v{sub z}=5%.

  10. High power burst-mode optical parametric amplifier with arbitrary pulse selection.

    PubMed

    Pergament, M; Kellert, M; Kruse, K; Wang, J; Palmer, G; Wissmann, L; Wegner, U; Lederer, M J

    2014-09-01

    We present results from a unique burst-mode femtosecond non-collinear optical parametric amplifier (NOPA) under development for the optical - x-ray pump-probe experiments at the European X-Ray Free-Electron Laser Facility. The NOPA operates at a burst rate of 10 Hz, a duty cycle of 2.5% and an intra-burst repetition rate of up to 4.5 MHz, producing high fidelity 15 fs pulses at a center wavelength of 810 nm. Using dispersive amplification filtering of the super-continuum seed pulses allows for selectable pulse duration up to 75 fs, combined with a tuning range in excess of 100 nm whilst remaining nearly transform limited. At an intra-burst rate of 188 kHz the single pulse energy from two sequential NOPA stages reached 180 µJ, corresponding to an average power of 34W during the burst. Acousto- and electro-optic switching techniques enable the generation of transient free bursts of required length and the selection of arbitrary pulse sequences inside the burst. PMID:25321596

  11. High-power narrow-linewidth large mode area photonic bandgap fiber amplifier

    NASA Astrophysics Data System (ADS)

    Pulford, Benjamin; Dajani, Iyad; Ehrenreich, Thomas; Holten, Roger; Vergien, Christopher; Naderi, Nader; Mart, Cody; Gu, Guancheng; Kong, Fanting; Hawkins, Thomas; Dong, Liang

    2015-03-01

    Ytterbium-doped large mode area all-solid photonic bandgap fiber amplifiers were used to demonstrate <400 W of output power at 1064 nm. In an initial set of experiments, a fiber with a core diameter of ~50 μm, and a calculated effective area of 1450 μm2 in a straight fiber, was used to generate approximately 600 W. In this case, the input seed was modulated using a sinusoidal format at a frequency of 400 MHz. The output, however, was multimode as the fiber design did not allow for single-mode operation at this wavelength. A second fiber was then fabricated to operate predominantly in single mode at 1064 nm by having the seed closer to the short wavelength edge of the bandgap. This fiber was used to demonstrate 400 W of single-frequency output with excellent beam quality. As the signal power exceeded 450 W, there was significant degradation in the beam quality due to the modal instability. Nevertheless, to the best of our knowledge, the power scaling results obtained in this work far exceed results from prior state of the art all-solid photonic bandgap fiber lasers.

  12. Computer simulations of low noise states in a high-power crossed-field amplifier

    SciTech Connect

    Chernin, D.P.

    1996-11-01

    A large body of experimental data has been accumulated over the past 15 years or so on the remarkable ability of both magnetrons and CFA`s to operate under certain conditions at noise levels comparable to those achieved in linear beam tubes. The physical origins of these low noise states have been the subjects of considerable speculation, fueled at least in part by results from computer simulation. While computer models have long been able to predict basic operating parameters like gain, efficiency, and peak power dissipation on electrode surfaces with reasonable accuracy, it is only within the past few years that any success could be reported on the simulation of noise. SAIC`s MASK code, a 2{1/2}-D particle-in-cell code, has been able to compute total, integrated noise power to an accuracy of {+-} a few dB in a high-power CFA, operating with a typical intra-pulse spectral noise density of {approximately}47--50 dB/MHz. Under conditions that produced low noise ({approximately}60--100 dB/MHz) in laboratory experiments, the MASK code has been, until now, unable to reproduce similar results. The present paper reports the first successful production of a very low noise state in a CFA simulation using the MASK code. The onset of this low noise state is quite sudden, appearing abruptly as the current is raised to a point near which the cathode operates as nearly emission limited. This behavior is similar to that seen in an experimentally observed transition between low noise and high noise operation in the SFD-266, a Varian[CPI] low noise CFA. Some comments are made concerning the nature of the noise as observed in the simulation and in the laboratory.

  13. Concentric Parallel Combining Balun for Millimeter-Wave Power Amplifier in Low-Power CMOS with High-Power Density

    NASA Astrophysics Data System (ADS)

    Han, Jiang-An; Kong, Zhi-Hui; Ma, Kaixue; Yeo, Kiat Seng; Lim, Wei Meng

    2016-07-01

    This paper presents a novel balun for a millimeter-wave power amplifier (PA) design to achieve high-power density in a 65-nm low-power (LP) CMOS process. By using a concentric winding technique, the proposed parallel combining balun with compact size accomplishes power combining and unbalance-balance conversion concurrently. For calculating its power combination efficiency in the condition of various amplitude and phase wave components, a method basing on S-parameters is derived. Based on the proposed parallel combining balun, a fabricated 60-GHz industrial, scientific, and medical (ISM) band PA with single-ended I/O achieves an 18.9-dB gain and an 8.8-dBm output power at 1-dB compression and 14.3-dBm saturated output power (P sat) at 62 GHz. This PA occupying only a 0.10-mm2 core area has demonstrated a high-power density of 269.15 mW/mm2 in 65 nm LP CMOS.

  14. (6+1) x1 fiber combiner based on thermally expanded core technique for high power amplifiers

    NASA Astrophysics Data System (ADS)

    Zhao, Ke; Chen, Zilun; Zhou, Xuanfeng; Wang, Zefeng; Jiang, Houman

    2015-07-01

    A high-efficiency pump-signal combiner for high power fiber amplifiers based on thermally expanded core (TEC) technique is reported in this paper. TEC technique is used to fabricate mode-field adapter which allows optimization of signal fibers in a monolithic (6+1) ×1 fiber combiner. The combiner is fabricated by connecting a tapered fiber bundle (TFB) to a passive 25/250 (NA=0.06/0.46) double-clad fiber (DCF). By this method, the coupling efficiency of SMF-28 signal fiber at 1064nm improves from 54% to 92.7%. The average pump coupling efficiencies of six 105/125 (NA=0.15) fibers are measured to be 96.7% at 976nm. Furthermore, the average signal transmission efficiency is around 93.3%. The fabricated fiber combiner is spliced to an Yb-doped DCF for use as an all-fiber amplifier. The slope efficiency is measured to be 71.6%.

  15. Tunable high-power narrow-linewidth semiconductor laser based on an external-cavity tapered amplifier.

    PubMed

    Chi, Mingjun; Jensen, Ole Bjarlin; Holm, Jesper; Pedersen, Christian; Andersen, Peter Eskil; Erbert, Götz; Sumpf, Bernd; Petersen, Paul Michael

    2005-12-26

    A high-power narrow-linewidth laser system based on a tapered semiconductor optical amplifier in external cavity is demonstrated. The external cavity laser system uses a new tapered amplifier with a super-large optical-cavity (SLOC) design that leads to improved performance of the external cavity diode lasers. The laser system is tunable over a 29 nm range centered at 802 nm. As high as 1.95 W output power is obtained at 803.84 nm, and an output power above 1.5 W is achieved from 793 to 812 nm at operating current of 3.0 A. The emission linewidth is below 0.004 nm and the beam quality factor M2 is below 1.3 over the 29 nm tunable range. As an example of application, the laser system is used as a pump source for the generation of 405 nm blue light by single-pass frequency doubling in a periodically poled KTiOPO4. An output power of 24 mW at 405 nm, corresponding to a conversion efficiency of 0.83%/W is attained. PMID:19503273

  16. RF Design and Operating Results for a New 201.25 MHz RF Power Amplifier for LANSCE

    SciTech Connect

    Lyles, John T.; Baca, David M.; Bratton, Ray E.; Brennan, Nicholas W.; Bultman, Nathan K.; Chen, Zukun; Davis, Jerry L.; Naranjo, Angela C.; Rees, Daniel E.; Sandoval, Gilbert M. Jr.; Summers, Richard D.

    2011-01-01

    A prototype VHF RF Final Power Amplifier (FPA) for Los Alamos Neutron Science Center (LANSCE) has been designed, fabricated, and tested. The cavity amplifier has met the goals of generating 2.5 MW peak and 260 kW of average power, at an elevation of 2.1 km. It was designed to use a Thales TH628 Diacrode{sup R}, a state-of-art tetrode power tube that is double-ended, providing roughly twice the power of a conventional tetrode. The amplifier is designed with tunable input and output transmission line cavity circuits, a grid decoupling circuit, an adjustable output coupler, TE mode suppressors, blocking, bypassing and decoupling capacitors, and a cooling system. The tube is connected in a full wavelength output circuit, with the lower main tuner situated 3/4{lambda} from the central electron beam region in the tube and the upper slave tuner 1/4{lambda} from the same point. We summarize the design processes and features of the FPA along with significant test results. A pair of production amplifiers are planned to be power-combined and installed at the LANSCE DTL to return operation to full beam duty factor.

  17. A high power, continuous-wave, single-frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm

    NASA Astrophysics Data System (ADS)

    Stappel, M.; Steinborn, R.; Kolbe, D.; Walz, J.

    2013-07-01

    We present a high power single-frequency ytterbium fiber amplifier system with an output power of 30 W at 1091 nm. The amplifier system consists of two stages, a preamplifier stage in which amplified spontaneous emission is efficiently suppressed (>40 dB) and a high power amplifier with an efficiency of 52%. Two different approaches to frequency doubling are compared. We achieve 8.6 W at 545.5 nm by single-pass frequency doubling in a MgO-doped periodically poled stoichiometric LiTaO3 crystal and up to 19.3 W at 545.5 nm by frequency doubling with a lithium-triborate crystal in an external enhancement cavity.

  18. Theoretical and experimental analysis of high-power frequency-stabilized semiconductor master oscillator power-amplifier system.

    PubMed

    Ji, Encai; Liu, Qiang; Nie, Mingming; Fu, Xing; Gong, Mali

    2016-04-10

    We present a compact high-power 780 nm frequency-stabilized diode laser with a power of as high as 2.825 W, corresponding to an estimated overall efficiency of 38.5%. The tapered amplifier (TPA) gain was about 24.5 dB, which was basically consistent with the simulation results. The beam quality factor was M2<1.72. The core feature of the system was stabilizing the frequency of the narrowband semiconductor TPA system with the matured saturated absorption spectrum technique. The laser frequency was stabilized against mode hops for a period of >4200  s with a frequency fluctuation around 6.7×10-10 within 1 s of the observation period, and the linewidth was no more than 0.95 MHz. The laser performance indicates that the current frequency-stabilized semiconductor laser has great potential in certain conditions that require several watts of output power. PMID:27139853

  19. Mechanical Design and Fabrication of a New RF Power Amplifier for LANSCE

    SciTech Connect

    Chen, Zukun

    2011-01-01

    A Full-scale prototype of a new 201.25 MHz RF Final Power Amplifier (FPA) for Los Alamos Neutron Science Center (LANSCE) has been designed, fabricated, assembled and installed in the test facility. This prototype was successfully tested and met the physics and electronics design criteria. The team faced design and manufacturing challenges, having a goal to produce 2 MW peak power at 13% duty factor, at the elevation of over 2 km in Los Alamos. The mechanical design of the final power amplifier was built around a Thales TH628 Diacrode{sup R}, a state-of-art tetrode power tube. The main structure includes Input circuit, Output circuit, Grid decoupling circuit, Output coupler, Tuning pistons, and a cooling system. Many types of material were utilized to make this new RF amplifier. The fabrication processes of the key components were completed in the Prototype Fabrication Division shop at Los Alamos National Laboratory. The critical plating procedures were achieved by private industry. The FPA mass is nearly 600 kg and installed in a beam structural support stand. In this paper, we summarize the FPA design basis and fabrication, plating, and assembly process steps with necessary lifting and handling fixtures. In addition, to ensure the quality of the FPA support structure a finite element analysis with seismic design forces has also been carried out.

  20. Design of an Ultra-Efficient GaN High Power Amplifier for Radar Front-Ends Using Active Harmonic Load-Pull

    NASA Technical Reports Server (NTRS)

    Thrivikraman, Tushar; Hoffman, James

    2012-01-01

    This work presents a new measurement technique, mixed-signal active harmonic load-pull (MSALP) developed by Anterverta-mw in partnership with Maury Microwave, that allows for wide-band ultra-high efficiency amplifiers to be designed using GaN technology. An overview of the theory behind active load-pull is presented and why load-pull is important for high-power device characterization. In addition, an example procedure is presented that outlines a methodology for amplifier design using this measurement system. Lastly, measured results of a 10W GaN amplifier are presented. This work aims to highlight the benefit of using this sophisticated measurement systems for to optimize amplifier design for real radar waveforms that in turn will simplify implementation of space-based radar systems

  1. Development toward high-power sub-1-ohm DC-67 GHz RF switches using phase change materials for reconfigurable RF front-end

    NASA Astrophysics Data System (ADS)

    Moon, Jeong-sun; Seo, Hwa-chang; Le, Duc

    2014-06-01

    We report GeTe-based phase change material RF switches with on-state resistance of 0.07 ohm*mm and off-state capacitance of 20 fF/mm. The RF switch figure-of-merit, Ron*Coff is comparable to RF MEMS ohmic switches. The PCM RF shunt and series switches were fabricated for the first time in a lateral FET configuration to reduce parasitics, different from the vertical via switches. In a shunt switch configuration, isolation of 30 dB was achieved up to 67 GHz with return loss of 15 dB. RF power handling was tested with ~10 W for series and 3 W for shunt configurations. Harmonic powers were suppressed more than 100 dBc at fundamental power of 1 W, for future tunable and reconfigurable RF technology.

  2. Difference-frequency mixing in AgGaS(2) by use of a high-power GaAlAs tapered semiconductor amplifier at 860 nm.

    PubMed

    Simon, U; Tittel, F K; Goldberg, L

    1993-11-15

    As much as 47 microW of cw infrared radiation and 89 microW of pulsed infrared radiation, tunable near 4.3 microm, have been generated by mixing the outputs of a high-power tapered semiconductor amplifier at 858 nm (signal wave) and a Ti:Al(2)O(3) laser at 715 nm (pump wave) in AgGaS(2). The GaAlAs tapered traveling-wave amplifier delivered as much as 1.5 W of diffraction-limited cw power into the nonlinear crystal. Output powers, conversion efficiencies, and spectral characteristics of this novel midinfrared source are discussed. PMID:19829451

  3. Ultra-low output impedance RF power amplifier for parallel excitation.

    PubMed

    Chu, Xu; Yang, Xing; Liu, Yunfeng; Sabate, Juan; Zhu, Yudong

    2009-04-01

    Inductive coupling between coil elements of a transmit array is one of the key challenges faced by parallel RF transmission. An ultra-low output impedance RF power amplifier (PA) concept was introduced to address this challenge. In an example implementation, an output-matching network was designed to transform the drain-source impedance of the metallic oxide semiconductor field effect transistor (MOSFET) into a very low value for suppressing interelement coupling effect, and meanwhile, to match the input impedance of the coil to the optimum load of the MOSFET for maximizing the available output power. Two prototype amplifiers with 500-W output rating were developed accordingly, and were further evaluated with a transmit array in phantom experiments. Compared to the conventional 50-Omega sources, the new approach exhibited considerable effectiveness suppressing the effects of interelement coupling. The experiments further indicated that the isolation performance was comparable to that achieved by optimized overlap decoupling. The new approach, benefiting from a distinctive current-source characteristic, also exhibited a superior robustness against load variation. Feasibility of the new approach in high-field MR was demonstrated on a 3T clinical scanner. PMID:19189287

  4. Development of a Movable Plunger Tuner for the High Power RF Cavity for the PEP II B Factory

    SciTech Connect

    Schwarz, H.D.; Fant, K.; Neubauer, Mark Stephen; Rimmer, R.A.; /LBL, Berkeley

    2011-08-26

    A 10 cm diameter by 5 cm travel plunger tuner was developed for the PEP-II RF copper cavity system. The single cell cavity including the tuner is designed to operate up to 150 kW of dissipated RF power. Spring finger contacts to protect the bellows from RF power are specially placed 8.5 cm away from the inside wall of the cavity to avoid fundamental and higher order mode resonances. The spring fingers are made of dispersion-strengthened copper to accommodate relatively high heating. The design, alignment, testing and performance of the tuner is described.

  5. RF power upgrade at the superconducting 1.3 GHz CW LINAC "ELBE" with solid state amplifiers

    NASA Astrophysics Data System (ADS)

    Büttig, Hartmut; Arnold, A.; Büchner, A.; Justus, M.; Kuntsch, M.; Lehnert, U.; Michel, P.; Schurig, R.; Staats, G.; Teichert, J.

    2013-03-01

    The RF power for the superconducting 1.3 GHz CW LINAC "ELBE" has been doubled from less than 10 kW to 20 kW per cavity. In January 2012 the four 10 kW klystrons used to drive the four superconducting cavities of the LINAC have been replaced by pairs of 10 kW solid state power amplifiers (SSPA). ELBE is now worldwide the first 1.3 GHz CW LINAC equipped with solid state RF power amplifiers. This technical note details on this project.

  6. High Power Experiment of X-Band Thermionic Cathode RF Gun for Compton Scattering X-ray Source

    SciTech Connect

    Sakamoto, Fumito; Uesaka, Mitsuru; Dobashi, Katsuhiro; Yamamoto, Tomohiko; Meng, De; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Matsuo, Kenichi; Sakae, Hisaharu; Yamamoto, Masashi

    2006-11-27

    We are currently developing a compact monochromatic X-ray source based on laser-electron collision. To realize remarkably compact-, high-intensity- and highly-stable-system, we adopt an X-band multi-bunch liner accelerator (linac) and reliable Q-switch laser. The X-ray yields by the multi-bunch electron beam and Q-switch Nd: YAG laser of 1.4 J/10 ns (FWHM) (532 nm, second harmonic) is 107 photons/RF-pulse (108 photons/sec for 10 Hz operation). The injector of the system consists of a 3.5-cell X-band thermionic cathode RF gun and an alpha magnet. So far we have achieved beam generation from the X-band thermionic cathode RF gun. The peak beam energy is 2 MeV. This experimental high energy ({approx}2 MeV) beam generation from the X-band thermionic cathode RF gun is the first in the world. In this paper, we describe the system of the Compton scattering X-ray source based on the X-band linac, experimental results of X-band thermionic cathode RF gun and the details of the experimental setup for Compton scattering X-ray generation that are under construction.

  7. Optimizing high-power Yb-doped fiber amplifier systems in the presence of transverse mode instabilities.

    PubMed

    Jauregui, Cesar; Otto, Hans-Jürgen; Breitkopf, Sven; Limpert, J; Tünnermann, A

    2016-04-18

    The average output power of Yb-doped fiber amplifier systems is currently limited by the onset of transverse mode instabilities. Besides, it has been recently shown that the transverse mode instability threshold can be significantly reduced by the presence of photodarkening in the fiber. Therefore, reducing the photodarkening level of the core material composition is the most straightforward way to increase the output average power of fiber amplifier systems but, unfortunately, this is not always easy or possible. In this paper we present guidelines to optimize the output average power of fiber amplifiers affected by transverse mode instabilities and photodarkening. The guidelines derived from the simulations do not involve changes in the composition of the active material (except for its doping concentration), but can still lead to a significant increase of the transverse mode instability threshold. The dependence of this parameter on the active ion concentration and the core conformation, among others, will be studied and discussed. PMID:27137230

  8. RF Single Electron Transistor Readout Amplifiers for Superconducting Astronomical Detectors for X-Ray to Sub-mm Wavelengths

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas; Aassime, Abdelhanin; Delsing, Per; Frunzio, Luigi; Li, Li-Qun; Prober, Daniel; Schoelkopf, Robert; Segall, Ken; Wilson, Chris; Stahle, Carl

    2000-01-01

    We report progress on using a new type of amplifier, the Radio-Frequency Single-Electron Transistor (RF-SET), to develop multi-channel sensor readout systems for fast and sensitive readout of high impedance cryogenic photodetectors such as Superconducting Tunnel Junctions and Single Quasiparticle Photon Counters. Although cryogenic, these detectors are desirable because of capabilities not other-wise attainable. However, high impedances and low output levels make low-noise, high-speed readouts challenging, and large format arrays would be facilitated by compact, low-power, on-chip integrated amplifiers. Well-suited for this application are RF-SETs, very high performance electrometers which use an rf readout technique to provide 100 MHz bandwidth. Small size, low power, and cryogenic operation allow direct integration with detectors, and using multiple rf carrier frequencies permits simultaneous readout of 20-50 amplifiers with a common electrical connection. We describe both the first 2-channel demonstration of this wavelength division multiplexing technique for RF-SETs, and Charge-Locked-Loop operation with 100 kHz of closed-loop bandwidth.

  9. Single-clad Tm-Ho:fiber amplifier for high-power sub-100-fs pulses around 1.9 μm.

    PubMed

    Coluccelli, Nicola; Cassinerio, Marco; Laporta, Paolo; Galzerano, Gianluca

    2013-08-01

    A Tm-Ho:fiber amplifier based on single-clad geometry is demonstrated for the generation of high-power femtosecond pulses around 1.9 μm. The amplifier is seeded by the low-power Raman soliton generated by an Er:fiber femtosecond laser. Pulse trains at a repetition rate of 250 MHz tunable from 1.84 to 1.92 μm with corresponding powers from 2.6 to 3 W and durations from 80 to 105 fs have been obtained. Beating with a single-frequency Tm laser has shown that the pulse coherence is highly preserved. The overall power fluctuations have been measured to be as low as 0.6%. PMID:23903133

  10. Broadband high-power mid-IR femtosecond pulse generation from an ytterbium-doped fiber laser pumped optical parametric amplifier.

    PubMed

    Hu, Chengzhi; Chen, Tao; Jiang, PeiPei; Wu, Bo; Su, Jianjia; Shen, Yonghang

    2015-12-15

    We report on a high-power periodically poled MgO-doped lithium niobate (MgO:PPLN)-based femtosecond optical parametric amplifier (OPA), featuring a spectral seamless broadband mid-infrared (MIR) output. By modifying the initial chirp and spectrum of the mode-locked seed laser, the Yb fiber pump laser exhibits a final output power of 14 W with sub-200-fs pulse duration after power amplification and compression. When the OPA was seeded with a broadband amplified spontaneous emission (ASE) source, a damage-limited 0.6 W broadband MIR radiation was experimentally obtained under the pump power of 10.15 W at 82 MHz repetition rate, corresponding to an overall OPA conversion efficiency of 32.7%. The 3 dB bandwidth of the mid-IR idler was 291.9 nm, centering at 3.34 μm. PMID:26670509

  11. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber pumped by amplified picosecond pulses at 2 μm

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Liu, Jiang; Shi, Hongxing; Tan, Fangzhou; Jiang, Yijian; Wang, Pu

    2015-03-01

    We report high power all fiber mid-infrared (mid-IR) supercontinuum (SC) generation in a single-mode ZBLAN (ZrF4- BaF2-LaF3-AlF3-NaF) fiber with up to 21.8 W average output power from 1.9 to beyond 3.8 μm pumped by amplified picosecond pulses from a master oscillator power amplifier (MOPA) based on small-core single-mode thulium-doped fiber (TDF) with injected seed pulse width of 24 ps and repetition of 93.6 MHz at 1963 nm. The optical-optical conversion efficiency from the 793 nm pump laser of the last stage thulium-doped fiber amplifier (TDFA) to mid-IR SC output is 17%. It is, to the best of our knowledge, the highest average power mid-IR SC generation in a ZBLAN fiber to date. In addition, a noise-like fiber oscillator based on a nonlinear loop mirror (NOLM) with wavepacket width of ~1.4 ns and repetition rate of 3.36 MHz at 1966 nm is also used as a seed of the MOPA for mid-IR SC generation in the ZBLAN fiber. At last, a mid-IR SC from 1.9 to beyond 3.6 μm with average output power of 14.3W, which is limited by injected noise-like pulses power, is generated. The optical-optical conversion efficiency from the 793 nm pump laser of the last stage TDFA to mid-IR SC output is 14.9%. This proves the amplified noise-like pulses are also appropriate for high power mid-IR SC generation in the ZBLAN fiber.

  12. 60kV, 10Amp DC power supply multiple input control and monitoring provision for the operation of various high power RF generation systems

    NASA Astrophysics Data System (ADS)

    Parmar, Kirit M.; Srinivas, Y. S. S.; Kulkarni, S. V.; ICRH-RF Group

    2010-02-01

    A 60 kV, 10 A DC power supply is used for testing of high power RF and microwave tubes e.g. Klystron, Gyrotron. Two 500 kW, 3.7 GHz klystrons, and one 82.6 GHz Gyrotron are located in SST1 Hall where as 200 kW; 28 GHz Gyrotron is located in Aditya Hall. The same power supply is required to operate, control and monitor various systems at different locations with easy change over from one system to other as per experimental requirements. An off line, control change over system, is designed to accomplish the above requirements, with control panels installed at desired different locations. The input (0 to 11 kV) A.C. voltage to power supply is given from a motorized voltage variation system (VVS). The control panels provide indication of A.C. input voltage to power supply from 11 kV potential transformers of VVS. In addition, the control panel is provided with 11 kV circuit breaker status indication and control i.e. Emergency OFF switch. The control panels are designed and developed indigenously which are successfully installed and are in continuous use for the safe and easy operation of different high power rf systems from the same DC power supply. The paper presents the design of the controls, monitoring and indications. Safety aspects of the system are also highlighted.

  13. High power resonant pumping of Tm-doped fiber amplifiers in core- and cladding-pumped configurations.

    PubMed

    Creeden, Daniel; Johnson, Benjamin R; Rines, Glen A; Setzler, Scott D

    2014-11-17

    We have demonstrated ultra-high efficiency amplification in Tm-doped fiber with both core- and cladding-pumped configurations using a resonant tandem-pumping approach. These Tm-doped fiber amplifiers are pumped in-band with a 1908 nm Tm-doped fiber laser and operate at 1993 nm with >90% slope efficiency. In a core-pumped configuration, we have achieved 92.1% slope efficiency and 88.4% optical efficiency at 41 W output power. In a cladding-pumped configuration, we have achieved 123.1 W of output power with 90.4% optical efficiency and a 91.6% slope efficiency. We believe these are the highest optical efficiencies achieved in a Tm-doped fiber amplifier operating in the 2-micron spectral region. PMID:25402145

  14. High-power linearly-polarized picosecond thulium-doped all-fiber master-oscillator power-amplifier.

    PubMed

    Liu, Jiang; Liu, Chen; Shi, Hongxing; Wang, Pu

    2016-06-27

    We demonstrated a linearly-polarized picosecond thulium-doped all-fiber-integrated master-oscillator power-amplifier system, which yielded 240 W of average output power at 127 MHz repetition rate. The seed source is a passively mode-locked polarization-maintaining thulium-doped all-fiber oscillator with a nearly transform-limited pulse duration of 10 ps. In combination with a pre-chirp fiber having a positive group velocity dispersion and a three stage polarization-maintaining thulium-doped all-fiber amplifier, output pulse energies up to 1.89 µJ with 42 kW pulse peak power are obtained without the need of complex free-space stretcher or compressor setups. To the best of our knowledge, this is the highest average output power ever reported for a picosecond all-fiber-integrated laser at 2 µm wavelength region. PMID:27410651

  15. High-power dual-wavelength external-cavity diode laser based on tapered amplifier with tunable terahertz frequency difference.

    PubMed

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2011-07-15

    Tunable dual-wavelength operation of a diode laser system based on a tapered diode amplifier with double-Littrow external-cavity feedback is demonstrated around 800 nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5.0 THz. An output power of 1.54 W is achieved with a frequency difference of 0.86 THz, the output power is higher than 1.3 W in the 5.0 THz range of frequency difference, and the amplified spontaneous emission intensity is more than 20 dB suppressed in the range of frequency difference. To our knowledge, this is the highest output power from a dual-wavelength diode laser system operating with tunable terahertz frequency difference. PMID:21765489

  16. Optimal design of a high-power picosecond laser system using a dual-stage ytterbium-doped fibre amplifier

    NASA Astrophysics Data System (ADS)

    You, Yi-Jing; Lin, Chih-Hsuan; Zaytsev, Alexey; Tsai, Feng-Hua; Wang, Chi-Luen; Pan, Ci-Ling

    2013-07-01

    An average power as high as 60 W with 73 W of pumping was achieved for an ytterbium-doped fibre-based dual-stage amplifier (MOFA) system seeded by a diode-pumped solid-state (DPSS) laser. The corresponding optical conversion efficiency is 80%. The laser system generates a steady pulse train with a pulse width of 11 ps at a repetition rate of 250 MHz or a peak power of 21.8 kW. Moreover, the output beam quality M2 ≈ 1.6. The length and pumping power for the Yb-doped fibres were optimized to suppress stimulated Raman scattering (SRS) and amplified spontaneous emission (ASE) while maintaining desirable output characteristics.

  17. Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped Raman fiber amplifiers.

    PubMed

    Naderi, Shadi; Dajani, Iyad; Grosek, Jacob; Madden, Timothy

    2016-07-25

    Raman fiber lasers have been proposed as potential candidates for scaling beyond the power limitations imposed on near diffraction-limited rare-earth doped fiber lasers. One limitation is the modal instability (MI) and we explore the physics of this phenomenon in Raman fiber amplifiers (RFAs). By utilizing the conservation of number of photons and conservation of energy in the absence of loss, the 3 × 3 governing system of nonlinear equations describing the pump and the signal modal content are decoupled and solved analytically for cladding-pumped RFAs. By comparing the extracted signal at MI threshold for the same step index-fiber, it is found that the MI threshold is independent of the length of the amplifier or whether the amplifier is co-pumped or counter-pumped; dictated by the integrated heat load along the length of fiber. We extend our treatment to gain-tailored RFAs and show that this approach is of limited utility in suppressing MI. Finally, we formulate the physics of MI in core-pumped RFAs where both pump and signal interferences participate in writing the time-dependent index of refraction grating. PMID:27464110

  18. High-power Yb:YAG single-crystal fiber amplifiers for femtosecond lasers in cylindrical polarization.

    PubMed

    Lesparre, Fabien; Gomes, Jean Thomas; Délen, Xavier; Martial, Igor; Didierjean, Julien; Pallmann, Wolfgang; Resan, Bojan; Eckerle, Michael; Graf, Thomas; Abdou Ahmed, Marwan; Druon, Frederic; Balembois, François; Georges, Patrick

    2015-06-01

    We demonstrate a three-stage diode-pumped Yb:YAG single-crystal-fiber amplifier to generate femtosecond pulses at high average powers with linear or cylindrical (i.e., radial or azimuthal) polarization. At a repetition rate of 20 MHz, 750-fs pulses were obtained at an average power of 85 W in cylindrical polarization and at 100 W in linear polarization. The report includes investigations on the use of Yb:YAG single-crystal fibers with different length/doping ratio and the zero-phonon pumping at a wavelength of 969 nm in order to optimize the performance. PMID:26030546

  19. High power coaxial ubitron

    NASA Astrophysics Data System (ADS)

    Balkcum, Adam J.

    In the ubitron, also known as the free electron laser, high power coherent radiation is generated from the interaction of an undulating electron beam with an electromagnetic signal and a static periodic magnetic wiggler field. These devices have experimentally produced high power spanning the microwave to x-ray regimes. Potential applications range from microwave radar to the study of solid state material properties. In this dissertation, the efficient production of high power microwaves (HPM) is investigated for a ubitron employing a coaxial circuit and wiggler. Designs for the particular applications of an advanced high gradient linear accelerator driver and a directed energy source are presented. The coaxial ubitron is inherently suited for the production of HPM. It utilizes an annular electron beam to drive the low loss, RF breakdown resistant TE01 mode of a large coaxial circuit. The device's large cross-sectional area greatly reduces RF wall heat loading and the current density loading at the cathode required to produce the moderate energy (500 keV) but high current (1-10 kA) annular electron beam. Focusing and wiggling of the beam is achieved using coaxial annular periodic permanent magnet (PPM) stacks without a solenoidal guide magnetic field. This wiggler configuration is compact, efficient and can propagate the multi-kiloampere electron beams required for many HPM applications. The coaxial PPM ubitron in a traveling wave amplifier, cavity oscillator and klystron configuration is investigated using linear theory and simulation codes. A condition for the dc electron beam stability in the coaxial wiggler is derived and verified using the 2-1/2 dimensional particle-in-cell code, MAGIC. New linear theories for the cavity start-oscillation current and gain in a klystron are derived. A self-consistent nonlinear theory for the ubitron-TWT and a new nonlinear theory for the ubitron oscillator are presented. These form the basis for simulation codes which, along

  20. High-field actively detuneable transverse electromagnetic (TEM) coil with low-bias voltage for high-power RF transmission.

    PubMed

    Avdievich, Nikolai I; Bradshaw, Ken; Kuznetsov, Andrey M; Hetherington, Hoby P

    2007-06-01

    The design and construction of a 4T (170 MHz) transverse electromagnetic (TEM) actively detuneable quadrature head coil is described. Conventional schemes for active detuning require high negative bias voltages (>300 V) to prevent leakage of RF pulses with amplitudes of 1-2 kW. To extend the power handling capacity and avoid the use of high DC bias voltages, we developed an alternate method of detuning the volume coil. In this method the PIN diodes in the detuning circuits are shorted when the RF volume coil is tuned, and negatively biased with -12 V when the coil is detuned. To preserve the high Q(U)/Q(L) ratio of the TEM coil, we modified the method of Nabetani and Watkins (Proceedings of the 13th Annual Meeting of ISMRM, Kyoto, Japan, 2004, abstract 1574) by utilizing a high-impedance (approximately 200 Omega), lumped-element, quarter-wavelength transformer. A Q(U) of 500 was achieved for the detuneable TEM, such that incorporation of the detuning network had minimal effect (<1 dB) on the performance of the coil in vivo. PMID:17534919

  1. High power fiber amplifier with adjustable repetition rate for use in all-fiber supercontinuum light sources

    NASA Astrophysics Data System (ADS)

    Baselt, T.; Taudt, Ch.; Hartmann, P.

    2014-03-01

    In recent years the use of supercontinuum light sources has encouraged the development of various optical measurement techniques, like microscopy and optical coherence-tomography. Some disadvantages of common supercontinuum solutions, in particular the rather poor stability and the absence of modulation abilities limit the application potential of this technique. We present a directly controllable all-fiber laser source with appropriate parameters in order to generate a broad supercontinuum spectrum with the aid of microstructured fibers. Through the application of a laser seed-diode, which is driven by a custom built controller to generate nanosecond pulses with repetition rates in the MHz range in a reproducible manner, a direct control of the laser system is enabled. The seedsignal is amplified to the appropriate power level in a 2-step amplification stage. Wide supercontinuum is finally generated by launching the amplified laser pulses into different microstructured fibers. The system has been optimized in terms of stability, power-output, spectral width and beam-quality by employing different laser pulse parameters and several different microstructured fibers. Finally, the system as a whole has been characterized in reference to common solid state-laser-based supercontinuum light sources

  2. High-power, narrow linewidth 1.5-μm fiber amplifier lidar transmitter for atmospheric CO2 detection

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Engin, Doruk; Storm, Mark; Gupta, Shantanu

    2014-03-01

    This paper demonstrates a next-generation high-energy, eye-safe light detection and ranging (LIDAR) transmitter for the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The system design is based on an advanced eye-safe, polarization-maintaining (PM) master oscillator-power amplifier (MOPA) LIDAR transmitter platform currently under development at Fibertek. This platform consists of a narrow linewidth (400 Hz - 1MHz) and highly stable seed laser, a flexible and reconfigurable pulse generator, and multiple stages of PM Erbium (Er)-doped fiber amplifiers (EDFAs) with increasing mode-field area. Using this architecture, we have demonstrated more than 20W continuous wave (CW) at 1571nm, up to 475 μJ energy per pulse at 1572 nm, and up to 250 μJ energy per pulse at 1529 nm wavelength with 1.5 μs pulsewidth and 10 kHz repetition rate. The output beams at the highest energy levels are diffraction limited, and the polarization extinction ratio (PER) is ~17dB. The optical efficiency is about 36% at CW operation and the optical-to-optical conversion efficiency is ~17% with respect to total pump power when the laser is in pulse operation mode. We also demonstrate a comparable optical efficiency (30%) with CW operation using radiationharden Er-doped gain fiber.

  3. High-power multiple-frequency narrow-linewidth laser source based on a semiconductor tapered amplifier.

    PubMed

    Ferrari, G; Mewes, M O; Schreck, F; Salomon, C

    1999-02-01

    The output of two grating-stabilized external-cavity diode lasers was injected into a semiconductor tapered amplif ier in a master oscillator-power amplif ier (MOPA) configuration. At a wavelength of 671 nm this configuration produced 210 mW of power in a diffraction-limited mode with two frequency components of narrow linewidth. The frequency difference delta was varied from 20 MHz to 12 GHz, while the power ratio of the two components was freely adjustable. For delta < 2 GHz additional frequency sidebands appear in the output of the MOPA. This configuration is a f lexible and simple high-power cw laser source for light with multiple narrow-linewidth frequency components. PMID:18071437

  4. A high-power diode-pumped Nd:YVO4 slab amplifier with a hybrid resonator

    NASA Astrophysics Data System (ADS)

    Mao, Y. F.; Zhang, H. L.; Yuan, J. H.; Hao, X. L.; Xing, J. C.; Xin, J. G.; Jiang, Y.

    2016-06-01

    We demonstrated a compact and efficient in-band diode-pumped Nd:YVO4 partially end-pumped slab (Innoslab) nanosecond amplifier based on a hybrid resonator. For the seeder source, a-6 W, 5 ns Q-switched laser with a repetition rate of 30 kHz was obtained with beam quality factors M 2  <  1.3 . A beam-shaping system consisting of cylindrical lenses was designed according to the different sizes of the active medium in two orthogonal directions. A maximum average output power of 77 W was obtained. The optical-to-optical efficiency was 27.9%. The beam quality factors M 2 in the unstable and stable directions were 1.52 and 1.36, respectively.

  5. Experimental results of a sheet-beam, high power, FEL amplifier with application to magnetic fusion research

    SciTech Connect

    Cheng, S.; Destler, W.W.; Granatstein, V.L.

    1995-12-31

    The experimental study of sheet-beam FELs as candidate millimeter-wave sources for heating magnetic fusion plasmas has achieved a major milestone. In a proof-of-principle, pulsed experiment, saturated FEL amplifier operation was achieved with 250 kW of output power at 86 GHz. Input microwave power was 1 kW, beam voltage was 450 kV and beam current was 17 A. The planar wiggler had a peak value of 3.8 kG, a period of 0.96 cm and was 71 cm long. The linear gain of 30 dB, saturated gain of 24 dB and saturated efficiency of 3% all are in good agreement with theoretical prediction. Follow-on work would include development of a thermionic sheet-beam electron-gun compatible with CW FEL operation, adding a section of tapered wiggler to increase the output power to levels in excess of 1 megawatt, and increasing the FEL frequency.

  6. Towards coherent combining of X-band high power microwaves: phase-locked long pulse radiations by a relativistic triaxial klystron amplifier

    PubMed Central

    Ju, Jinchuan; Zhang, Jun; Qi, Zumin; Yang, Jianhua; Shu, Ting; Zhang, Jiande; Zhong, Huihuang

    2016-01-01

    The radio-frequency breakdown due to ultrahigh electric field strength essentially limits power handling capability of an individual high power microwave (HPM) generator, and this issue becomes more challenging for high frequency bands. Coherent power combining therefore provides an alternative approach to achieve an equivalent peak power of the order of ∼100 GW, which consequently provides opportunities to explore microwave related physics at extremes. The triaxial klystron amplifier (TKA) is a promising candidate for coherent power combing in high frequency bands owing to its intrinsic merit of high power capacity, nevertheless phase-locked long pulse radiation from TKA has not yet been obtained experimentally as the coaxial structure of TKA can easily lead to self-excitation of parasitic modes. In this paper, we present investigations into an X-band TKA capable of producing 1.1 GW HPMs with pulse duration of about 103 ns at the frequency of 9.375 GHz in experiment. Furthermore, the shot-to-shot fluctuation standard deviation of the phase shifts between the input and output microwaves is demonstrated to be less than 10°. The reported achievements open up prospects for accomplishing coherent power combining of X-band HPMs in the near future, and might also excite new development interests concerning high frequency TKAs. PMID:27481661

  7. Towards coherent combining of X-band high power microwaves: phase-locked long pulse radiations by a relativistic triaxial klystron amplifier

    NASA Astrophysics Data System (ADS)

    Ju, Jinchuan; Zhang, Jun; Qi, Zumin; Yang, Jianhua; Shu, Ting; Zhang, Jiande; Zhong, Huihuang

    2016-08-01

    The radio-frequency breakdown due to ultrahigh electric field strength essentially limits power handling capability of an individual high power microwave (HPM) generator, and this issue becomes more challenging for high frequency bands. Coherent power combining therefore provides an alternative approach to achieve an equivalent peak power of the order of ∼100 GW, which consequently provides opportunities to explore microwave related physics at extremes. The triaxial klystron amplifier (TKA) is a promising candidate for coherent power combing in high frequency bands owing to its intrinsic merit of high power capacity, nevertheless phase-locked long pulse radiation from TKA has not yet been obtained experimentally as the coaxial structure of TKA can easily lead to self-excitation of parasitic modes. In this paper, we present investigations into an X-band TKA capable of producing 1.1 GW HPMs with pulse duration of about 103 ns at the frequency of 9.375 GHz in experiment. Furthermore, the shot-to-shot fluctuation standard deviation of the phase shifts between the input and output microwaves is demonstrated to be less than 10°. The reported achievements open up prospects for accomplishing coherent power combining of X-band HPMs in the near future, and might also excite new development interests concerning high frequency TKAs.

  8. Towards coherent combining of X-band high power microwaves: phase-locked long pulse radiations by a relativistic triaxial klystron amplifier.

    PubMed

    Ju, Jinchuan; Zhang, Jun; Qi, Zumin; Yang, Jianhua; Shu, Ting; Zhang, Jiande; Zhong, Huihuang

    2016-01-01

    The radio-frequency breakdown due to ultrahigh electric field strength essentially limits power handling capability of an individual high power microwave (HPM) generator, and this issue becomes more challenging for high frequency bands. Coherent power combining therefore provides an alternative approach to achieve an equivalent peak power of the order of ∼100 GW, which consequently provides opportunities to explore microwave related physics at extremes. The triaxial klystron amplifier (TKA) is a promising candidate for coherent power combing in high frequency bands owing to its intrinsic merit of high power capacity, nevertheless phase-locked long pulse radiation from TKA has not yet been obtained experimentally as the coaxial structure of TKA can easily lead to self-excitation of parasitic modes. In this paper, we present investigations into an X-band TKA capable of producing 1.1 GW HPMs with pulse duration of about 103 ns at the frequency of 9.375 GHz in experiment. Furthermore, the shot-to-shot fluctuation standard deviation of the phase shifts between the input and output microwaves is demonstrated to be less than 10°. The reported achievements open up prospects for accomplishing coherent power combining of X-band HPMs in the near future, and might also excite new development interests concerning high frequency TKAs. PMID:27481661

  9. Phase locking of an S-band wide-gap klystron amplifier with high power injection driven by a relativistic backward wave oscillator

    SciTech Connect

    Bai Xianchen; Zhang Jiande; Yang Jianhua; Jin Zhenxing

    2012-12-15

    Theoretical analyses and preliminary experiments on the phase-locking characteristics of an inductively loaded 2-cavity wide-gap klystron amplifier (WKA) with high power injection driven by a GW-class relativistic backward wave oscillator (RBWO) are presented. Electric power of the amplifier and oscillator is supplied by a single accelerator being capable of producing dual electron beams. The well phase-locking effect of the RBWO-WKA system requires the oscillator have good frequency reproducibility and stability from pulse to pulse. Thus, the main switch of the accelerator is externally triggered to stabilize the diode voltage and then the working frequency. In the experiment, frequency of the WKA is linearly locked by the RBWO. With a diode voltage of 530 kV and an input power of {approx}22 MW, an output power of {approx}230 MW with the power gain of {approx}10.2 dB is obtained from the WKA. As the main switch is triggered, the relative phase difference between the RBWO and the WKA is less than {+-}15 Degree-Sign in a single shot, and phase jitter of {+-}11 Degree-Sign is obtained within a series of shots with duration of about 40 ns.

  10. Phase locking of an S-band wide-gap klystron amplifier with high power injection driven by a relativistic backward wave oscillator

    NASA Astrophysics Data System (ADS)

    Bai, Xianchen; Zhang, Jiande; Yang, Jianhua; Jin, Zhenxing

    2012-12-01

    Theoretical analyses and preliminary experiments on the phase-locking characteristics of an inductively loaded 2-cavity wide-gap klystron amplifier (WKA) with high power injection driven by a GW-class relativistic backward wave oscillator (RBWO) are presented. Electric power of the amplifier and oscillator is supplied by a single accelerator being capable of producing dual electron beams. The well phase-locking effect of the RBWO-WKA system requires the oscillator have good frequency reproducibility and stability from pulse to pulse. Thus, the main switch of the accelerator is externally triggered to stabilize the diode voltage and then the working frequency. In the experiment, frequency of the WKA is linearly locked by the RBWO. With a diode voltage of 530 kV and an input power of ˜22 MW, an output power of ˜230 MW with the power gain of ˜10.2 dB is obtained from the WKA. As the main switch is triggered, the relative phase difference between the RBWO and the WKA is less than ±15° in a single shot, and phase jitter of ±11° is obtained within a series of shots with duration of about 40 ns.

  11. Design of refractive-index and rare-earth-dopant distributions for large-mode-area fibers used in coiled high-power amplifiers

    NASA Astrophysics Data System (ADS)

    Farrow, Roger L.; Hadley, G. Ronald; Kliner, Dahv A. V.; Koplow, Jeffrey P.

    2007-02-01

    We have numerically compared the performance of various designs for the core refractive-index (RI) and rare-earth-dopant distributions of large-mode-area fibers for use in bend-loss-filtered, high-power amplifiers. We first established quantitative targets for the key parameters that determine fiber-amplifier performance, including effective LP 01 modal area (A eff, both straight and coiled), bend sensitivity (for handling and packaging), high-order mode discrimination, mode-field displacement upon coiling, and index contrast (manufacturability). We compared design families based on various power-law and hybrid profiles for the RI and evaluated confined rare-earth doping for hybrid profiles. Step-index fibers with straight-fiber A eff values > 1000 μm2 exhibit large decreases in A eff and transverse mode-field displacements upon coiling, in agreement with recent calculations of Hadley et al. [Proc. of SPIE, Vol. 6102, 61021S (2006)] and Fini [Opt. Exp. 14, 69 (2006)]. Triangular-profile fibers substantially mitigate these effects, but suffer from excessive bend sensitivity at A eff values of interest. Square-law (parabolic) profile fibers are free of modal distortion but are hampered by high bend sensitivity (although to a lesser degree than triangular profiles) and exhibit the largest mode displacements. We find that hybrid (combined power-law) profiles provide some decoupling of these tradeoffs and allow all design goals to be achieved simultaneously. We present optimized fiber designs based on this analysis.

  12. High-power SiC MESFET using a dual p-buffer layer for an S-band power amplifier

    NASA Astrophysics Data System (ADS)

    Deng, Xiao-Chuan; Sun, He; Rao, Cheng-Yuan; Zhang, Bo

    2013-01-01

    A silicon carbide (SiC) based metal semiconductor field effect transistor (MESFET) is fabricated by using a standard SiC MESFET structure with the application of a dual p-buffer layer and a multi-recessed gate to the process for an S-band power amplifier. The lower doped upper-buffer layer serves to maintain the channel current, while the higher doped lower-buffer layer is used to provide excellent electron confinement in the channel layer. A 20-mm gate periphery SiC MESFET biased at a drain voltage of 85 V demonstrates a pulsed wave saturated output power of 94 W, a linear gain of 11.7 dB, and a maximum power added efficiency of 24.3% at 3.4 GHz. These results are improved compared with those of the conventional single p-buffer MESFET fabricated in this work using the same process. A radio-frequency power output greater than 4.7 W/mm is achieved, showing the potential as a high-voltage operation device for high-power solid-state amplifier applications.

  13. Low-noise RF-amplifier-free slab-coupled optical waveguide coupled optoelectronic oscillators: physics and operation.

    PubMed

    Loh, William; Yegnanarayanan, Siva; Plant, Jason J; O'Donnell, Frederick J; Grein, Matthew E; Klamkin, Jonathan; Duff, Shannon M; Juodawlkis, Paul W

    2012-08-13

    We demonstrate a 10-GHz RF-amplifier-free slab-coupled optical waveguide coupled optoelectronic oscillator (SCOW-COEO) system operating with low phase-noise (<-115 dBc/Hz at 1 kHz offset) and large sidemode suppression (>70 dB measurement-limited). The optical pulses generated by the SCOW-COEO exhibit 26.8-ps pulse width (post compression) with a corresponding spectral bandwidth of 0.25 nm (1.8X transform-limited). We also investigate the mechanisms that limit the performance of the COEO. Our measurements indicate that degradation in the quality factor (Q) of the optical cavity significantly impacts COEO phase-noise through increases in the optical amplifier relative intensity noise (RIN). PMID:23038585

  14. Measurements of the temporal and spatial phase variations of a 33 GHz pulsed free electron laser amplifier and application to high gradient RF acceleration

    SciTech Connect

    Volfbeyn, P.; Bekefi, G.

    1995-12-31

    We report the results of temporal and spatial measurements of phase of a pulsed free electron laser amplifier (FEL) operating in combined wiggler and axial guide magnetic fields. The 33 GHz FEL is driven by a mildly relativistic electron beam (750 kV, 90-300 A, 30 ns) and generates 61 MW of radiation with a high power magnetron as the input source. The phase is measured by an interferometric technique from which frequency shifting is determined. The results are simulated with a computer code. Experimental studies on a CERN-CLIC 32.98 GHz 26-cell high gradient accelerating section (HGA) were carried out for input powers from 0.1 MW to 35 MW. The FEL served as the r.f. power source for the HGA. The maximum power in the transmitted pulse was measured to be 15 MW for an input pulse of 35 MW. The theoretically calculated shunt impedance of 116 M{Omega}/m predicts a field gradient of 65 MeV/m inside the HGA. For power levels >3MW the pulse transmitted through the HGA was observed to be shorter than the input pulse and pulse shortening became more serious with increasing power input. At the highest power levels the output pulse length (about 5 nsec) was about one quarter of the input pulse length. Various tests suggest that these undesirable effects occur in the input coupler to the HGA. Light and X-ray production inside the HGA have been observed.

  15. High-Speed, high-power, switching transistor

    NASA Technical Reports Server (NTRS)

    Carnahan, D.; Ohu, C. K.; Hower, P. L.

    1979-01-01

    Silicon transistor rate for 200 angstroms at 400 to 600 volts combines switching speed of transistors with ruggedness, power capacity of thyristor. Transistor introduces unique combination of increased power-handling capability, unusally low saturation and switching losses, and submicrosecond switching speeds. Potential applications include high power switching regulators, linear amplifiers, chopper controls for high frequency electrical vehicle drives, VLF transmitters, RF induction heaters, kitchen cooking ranges, and electronic scalpels for medical surgery.

  16. Gyrotron: A high-frequency microwave amplifier

    NASA Technical Reports Server (NTRS)

    Kupiszewski, A.

    1979-01-01

    A proposed microwave amplifier mechanism for future generations of millimeter high power uplinks to spacecraft and planetary radar transmitters is introduced. Basic electron-electromagnetic field interaction theory for RF power gain is explained. The starting point for general analytical methods leading to detailed design results is presented.

  17. THE DESIGN OF AN RF ANTENNA FOR A LARGE-BORE, HIGH POWER, STEADY STATE PLASMA PROCESSING CHAMBER FOR MATERIAL SEPARATION - CRADA FINAL REPORT for CRADA Number ORNL00-0585

    SciTech Connect

    Rasmussen, D. A.; Freeman, R. L.

    2001-11-07

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC, (Contractor), and Archimedes Technology Group, (Participant) is to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure. The project objectives are to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure.

  18. Unique mechanization to fault isolate failures of an electron tube Radio Frequency (RF) amplifier and its high voltage power supply

    NASA Astrophysics Data System (ADS)

    Miller, D. G.

    1986-03-01

    An electronics circuit for improving the fault isolation of failures between an electron tube radio frequency (RF) amplifier and its high voltage power supply is disclosed. High voltage power supplies control their output voltage by comparing a feedback voltage against a reference. This comparison is used to develop an error voltage which, in turn, drives a pulsewidth modulator that corrects the feedback voltage to the reference. The output of a digital-to-analog converter (DAC) is used as the reference voltage. The DAC is driven by a counter which would count to the correct reference voltage represented by a specific count. The final count is determined by a comparator which compares the counter output to the desired final counter and stops the counter when it is reached.

  19. Design, construction and operational results of the IGBT controlled solid state modulator high voltage power supply used in the high power RF systems of the Low Energy Demonstration Accelerator of the accelerator production of tritium (APT) project

    SciTech Connect

    Bradley, J.T. III; Rees, D.; Przeklasa, R.S.; Scott, M.C.

    1998-12-31

    The 1700 MeV, 100 mA Accelerator Production of Tritium (APT) Proton Linac will require 244 1 MW, continuous wave RF systems. 1 MW continuous wave klystrons are used as the RF source and each klystron requires 95 kV, 17 A of beam voltage and current. The cost of the DC power supplies is the single largest percentage of the total RF system cost. Power supply reliability is crucial to overall RF system availability and AC to DC conversion efficiency affects the operating cost. The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory (LANL) will serve as the prototype and test bed for APT. The design of the RF systems used in LEDA is driven by the need to field test high efficiency systems with extremely high reliability before APT is built. The authors present a detailed description and test results of one type of advanced high voltage power supply system using Insulated Gate Bipolar Transistors (IGBTs) that has been used with the LEDA High Power RF systems. The authors also present some of the distinctive features offered by this power supply topology, including crowbarless tube protection and modular construction which allows graceful degradation of power supply operation.

  20. Fast switching, modular high-voltage DC/AC-power supplies for RF-Amplifiers and other applications

    SciTech Connect

    Alex, J.; Schminke, W.

    1995-12-31

    A new kind of high voltage high-power Pulse-Step Modulator (PSM) for broadcast transmitters, accelerator sources, for NBI (Neutral Beam Injection for Plasma Heating), gyrotrons and klystrons has been developed. Since its first introduction in 1984 for broadcast transmitters, more than 100 high-power sound broadcast transmitters had been equipped with the first generation of the PSM modulators, using Gate Turn-Off Thyristors (GTOs) as switching elements. Recently, due to faster switching elements and making use of the latest DSP technologies (Digital Signal Processing), the performance data and areas of application could be extended further. In 1994, a precision high voltage source for MW gyrotrons was installed at CRPP in Lausanne. Supplementary very low cost solutions for lower powers but high voltages had been developed. Hence, today, a large area of applications can be satisfied with the family of solutions. The paper describes the principle of operation, the related control systems and refers to some particular applications of the PSM amplifiers, especially the newest developments and corresponding field results.

  1. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 31: RF, IF, and Video Amplifiers. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on radio frequency (RF), intermediate frequency (IF), and video amplifiers is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a…

  2. Design of high power radio frequency radial combiner for proton accelerator

    SciTech Connect

    Jain, Akhilesh; Sharma, Deepak Kumar; Gupta, Alok Kumar; Hannurkar, P. R.

    2009-01-15

    A simplified design method has been proposed for systematic design of novel radio frequency (rf) power combiner and divider, incorporating radial slab-line structure, without using isolation resistor and external tuning mechanism. Due to low insertion loss, high power capability, and rigid mechanical configuration, this structure is advantageous for modern solid state rf power source used for feeding rf energy to superconducting accelerating structures. Analysis, based on equivalent circuit and radial transmission line approximation, provides simple design formula for calculating combiner parameters. Based on this method, novel 8-way and 16-way power combiners, with power handling capability of 4 kW, have been designed, as part of high power solid state rf amplifier development. Detailed experiments showed good performance in accordance with theory.

  3. Design of high power radio frequency radial combiner for proton accelerator.

    PubMed

    Jain, Akhilesh; Sharma, Deepak Kumar; Gupta, Alok Kumar; Hannurkar, P R

    2009-01-01

    A simplified design method has been proposed for systematic design of novel radio frequency (rf) power combiner and divider, incorporating radial slab-line structure, without using isolation resistor and external tuning mechanism. Due to low insertion loss, high power capability, and rigid mechanical configuration, this structure is advantageous for modern solid state rf power source used for feeding rf energy to superconducting accelerating structures. Analysis, based on equivalent circuit and radial transmission line approximation, provides simple design formula for calculating combiner parameters. Based on this method, novel 8-way and 16-way power combiners, with power handling capability of 4 kW, have been designed, as part of high power solid state rf amplifier development. Detailed experiments showed good performance in accordance with theory. PMID:19191467

  4. High Power Beam Test and Measurement of Emittance Evolution of a 1.6-Cell Photocathode RF Gun at Pohang Accelerator Laboratory

    NASA Astrophysics Data System (ADS)

    Park, Jang-Ho; Park, Sung-Ju; Kim, Changbum; Parc, Yong-Woon; Hong, Ju-Ho; Huang, Jung-Yun; Xiang, Dao; Wang, Xijie; Ko, In Soo

    2007-04-01

    A Brookhaven National Laboratory (BNL) GUN-IV type photocathode rf gun has been fabricated to use in femtosecond electron diffraction (FED), femtosecond far infrared radiation (fs-FIR) facility, and X-ray free electron laser (XFEL) facilities at the Pohang Accelerator Laboratory (PAL). The gun consists of a 1.6-cell cavity with a copper cathode, a solenoid magnet, beam diagnostic components and auxiliary systems. We report here the measurement of the basic beam parameters which confirm a successful fabrication of the photocathode RF gun system. The emittance evolution is measured by an emittance meter and compared with the PARMELA simulation, which shows a good agreement.

  5. High power pulsed magnicon at 34-GHz

    SciTech Connect

    Nezhevenko, O.A.; Yakovlev, V.P.; Ganguly, A.K.; Hirshfield, J.L.

    1999-05-01

    A high efficiency, high power magnicon amplifier at 34.272 GHz has been designed as a radiation source to drive multi-TeV electron-positron linear colliders. Simulations show peak output power of 45 MW in a 1.5 microsecond wide pulse with an efficiency of 45{percent} and gain of 55 dB. The repetition rate is 10 Hz. The amplifier is a frequency tripler, or third harmonic amplifier, in that the output frequency of 34.272 GHz is three times the input drive frequency of 11.424 GHz. Thus the rotating TM{sub 110} modes in the drive cavity, 3 gain cavities and double decoupled penultimate cavities are resonant near 11.424 GHz; and the rotating TM{sub 310} mode in the output cavity is resonant at 34.272 GHz. A 500 kV, 200 A high area compression electron gun will provide a low emittance electron beam with a diameter of about 0.8 mm. A superconducting solenoid magnet will provide a magnetic field of 13 kG in the deflection system and 22 kG in the output cavity. A collector for the spent beam has also been designed. Detailed simulation results for the operation of the entire magnicon amplifier (gun, magnetic system, rf system and collector) will be given. {copyright} {ital 1999 American Institute of Physics.}

  6. Cold and high-power tests of a multibunch X-band photoinjector

    SciTech Connect

    LeSage, G.P.; Bennett, C.V.; Laurent, L.L.; Van Meter, J.A.; Dinh, V.; Troha, A.L.; Kolner, B.H.; Hartemann, F.V.; Luhmann, N.C. Jr.

    1997-12-31

    A high brightness X-band photoinjector, capable of multi-bunch operation at GHz repetition rates, and developed as a collaboration between the UC Davis DAD and SRRC, is reaching the initial phase of high power tests. The photoinjector was designed using SUPERFISH, PARMELA, POISSON, URMEL, and HFSS. Cold test showed excellent agreement between the design parameters and the rf characteristics of the prototype. In addition, the phase noise and jitter characteristics of the laser and rf systems of the high gradient X-band photoinjector have been measured experimentally. The laser oscillator is a self-modeled Titanium:Sapphire system operating at the 108th subharmonic of the rf gun. The X-band signal is produced phase-locking a dielectric resonance oscillator to the laser oscillator, and amplified by a pulsed TWT. A comparison between the TWT phase noise and the fields excited in the rf gun demonstrates the filtering effect of the high Q structure, thus indicating that the rf gun can be used as a master oscillator, and could be energized by either a magnetron or a cross-field amplifier. Finally, high power tests are currently underway, including the 20 MW SLAC klystron, the rf system, and the rf gun. In particular, dark current, spatial, temporal, and momentum beam distributions will be fully characterized.

  7. High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier.

    PubMed

    Wang, Xiong; Jin, Xiaoxi; Zhou, Pu; Wang, Xiaolin; Xiao, Hu; Liu, Zejin

    2015-02-01

    We present a widely tunable narrowband superfluorescent source near 2 μm employing a monolithic Tm-doped fiber amplifier (TDFA), and the output power exceeds 250 W. A broadband superfluorescent source with a narrowband tunable band pass filter was used as the seed source. The spectra of the seed source can be tuned in a range of ~1930-2030 nm with full width at half maximum (FWHM) of ~1.7 nm. The Tm-doped fiber amplifier scales up the power of the seed source to a level of more than 250 W with a tuning range of ~35 nm (1966-2001 nm) and a FWHM of ~1.5-2.0 nm, and the slope efficiency is about 0.50. The output power is limited by the available pump power, and the tuning range is limited by the amplifier spontaneous emission at other wavelengths. Higher output power can be achieved if launching more pump power into the amplifier, and the tuning range can be further improved by optimizing the parameters of the TDFA. To the best of our knowledge, this is the first demonstration on a widely tunable narrowband superfluorescent source at 2 μm with average output power exceeding 250 W. PMID:25836195

  8. CARM and harmonic gyro-amplifier experiments at 17 GHz

    SciTech Connect

    Menninger, W.L.; Danly, B.G.; Alberti, S.; Chen, C.; Rullier, J.L.; Temkin, R.J.; Giguet, E. |

    1993-11-01

    Cyclotron resonance maser amplifiers are possible sources for applications such as electron cyclotron resonance heating of fusion plasmas and driving high-gradient rf linear accelerators. For accelerator drivers, amplifiers or phase locked-oscillators are required. A 17 GHz cyclotron autoresonance maser (CARM) amplifier experiment and a 17 GHz third harmonic gyro-amplifier experiment are presently underway at the MIT Plasma Fusion Center. Using the SRL/MIT SNOMAD II introduction accelerator to provide a 380 kV, 180 A, 30 ns flat top electron beam, the gyro-amplifier experiment has produced 5 MW of rf power with over 50 dB of gain at 17 GHz. The gyro-amplifier operates in the TE{sub 31} mode using a third harmonic interaction. Because of its high power output, the gyro-amplifier will be used as the rf source for a photocathode rf electron gun experiment also taking place at MIT. Preliminary gyro-amplifier results are presented, including measurement of rf power, gain versus interaction length, and the far-field pattern. A CARM experiment designed to operate in the TE{sub 11} mode is also discussed.

  9. High-power near-infrared linearly-polarized supercontinuum generation in a polarization-maintaining Yb-doped fiber amplifier.

    PubMed

    Zhang, Bin; Jin, Aijun; Ma, Pengfei; Chen, Shengping; Hou, Jing

    2015-11-01

    We report an all-fiber linearly-polarized (LP) supercontinuum (SC) source with high average power generated in a polarization-maintaining (PM) master-oscillation power-amplifier (MOPA). The experimental configuration comprises an LP picosecond pulsed laser and three PM Yd-doped fiber amplifiers (YDFA). The output has the average power of 124.8 W with the spectrum covering from 850 to 1900 nm. The measured polarization extinction ratio (PER) of the whole SC source is about 85% which verifies the SC an LP source. This work is, to our best knowledge, the highest output average power of an LP SC source that ever reported. The influence of PM fiber splicing method on the LP SC property is investigated by splicing the PM fibers with slow axis parallel or perpendicularly aligned, and also an LP SC with low output power is demonstrated. PMID:26561136

  10. High-power continuous-wave tunable 544- and 272-nm beams based on a diode-oscillator fiber-amplifier for calcium spectroscopy

    NASA Astrophysics Data System (ADS)

    Ko, Kwang-Hoon; Kim, Yonghee; Park, Hyunmin; Cha, Yong-Ho; Kim, Taek-Soo; Lee, Lim; Lim, Gwon; Han, Jaemin; Ko, Kwang-Hee; Jeong, Do-Young

    2015-08-01

    Continuous-wave single-frequency tunable 544- and 272-nm beams have been demonstrated by the second- and fourth-harmonic conversions of a 1088-nm fundamental beam from a diode-oscillator fiber-amplifier. The single-pass second-harmonic generation with a MgO-doped periodically poled stoichiometric LiTaO3 crystal and the external-cavity frequency-doubling technique with a bulk BBO crystal were employed to achieve an approximately 6-W 544-nm beam and a 1.5-W 272-nm beam, respectively. We characterized the second- and fourth-harmonic generations and discussed their applications to calcium spectroscopy.

  11. High power (130 mW) 40 GHz 1.55 μm mode-locked distributed Bragg reflector lasers with integrated optical amplifiers.

    PubMed

    Akbar, Jehan; Hou, Lianping; Haji, Mohsin; Strain, Michael J; Marsh, John H; Bryce, A Catrina; Kelly, Anthony E

    2012-02-01

    High output power 40 GHz 1.55 μm passively mode-locked surface-etched distributed Bragg reflector (DBR) lasers with monolithically integrated semiconductor optical amplifiers are reported. These are based on an optimized AlGaInAs/InP epitaxial structure with a three quantum well active layer and an optical trap layer. The device produces near transform limited Gaussian pulses with a pulse duration of 3.3 ps. An average output power during mode-locked operation of 130 mW was achieved with a corresponding peak power of >1 W. PMID:22297347

  12. High-power single-element pseudomorphic InGaAs/GaAs/AlGaAs single quantum well lasers for pumping Er-doped fiber amplifiers

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.; Andrekson, P. A.

    1991-01-01

    A 980-nm-ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs single-quantum-well laser with a maximum single-ended output power of 240 mW from a facet-coated device is fabricated from a graded-index separate-confinement heterostructure grown by molecular-beam epitaxy. The laser oscillates in the fundamental spatial mode, allowing 22 percent coupling efficiency into a 1.55-micron single-mode optical fiber. Life testing at an output power of 30 mW per facet from uncoated devices reveals a superior reliability to GaAs/AlGaAs quantum-well lasers but also the need for protective facet coatings for long term reliability at power levels required for pumping Er-doped fiber amplifiers.

  13. High-power LD side-pump Nd: YAG regenerative amplifier at 1 kHz repetition rate with volume Bragg gratings (VBG) for broadening and compressor

    NASA Astrophysics Data System (ADS)

    Long, Ming-Liang; Chen, Li-Yuan; Chen, Meng; Li, Gang

    2016-05-01

    Pulse width of 8.7 ps was broadened to 102.2, 198 ps with single and double pass the VBG respectively. When the 102.2 ps pulse was injected into 1 kHz repetition rate of LD side-pump Nd: YAG regenerative amplifier (RA), pulse width of 87.5 ps at 1 kHz was obtained with the pulse energy of 9.4 mJ, the beam quality of M^2 factor was 1.2. The pulse width was compressed to 32.7 ps with a single pass VBG and the pulse energy reduced to 8.8 mJ, and the power density was up to 15.2 GW/cm2, the stability for pulse to pulse rms is about 0.6 %, beam pointing was about 35 μrad. In addition, when 198 ps pulse was injected into RA, pulse width of 156 ps was obtained which energy was 9.6 mJ, the pulse width was compressed to 38 ps by double passing the VBG, the pulse energy decreased to 8.5 mJ. Chirped VBG is a new way to obtain high-intensity picosecond pulse laser system simple and smaller.

  14. Scanning beam switch experiment for intense rf power generation

    NASA Astrophysics Data System (ADS)

    Humphries, Stanley, Jr.; Babcock, Steven R.; Wilson, J. M.; Adler, Richard J.

    1991-04-01

    1407_57The SBS_1 experiment at Sandia National Laboratories is designed to demonstrate the feasibility of the Scanning Beam Switch for high-power rf generation. The primary application is to pulsed rf linacs and high-frequency induction accelerators. It is expected that the apparatus will generate rf output power exceeding 100 MW at 50 MHz over a 5 microsecond(s) pulse. The device can operate as an oscillator or high gain amplifier. To achieve the capability for long-macropulse and high-duty-cycle operation, SBS_1 uses a large dispenser cathode and vacuum triode input driver.

  15. A prototype 7.5 MHz Finemet(Trademark) loaded RF cavity and 200kW amplifier for the Fermilab proton driver

    SciTech Connect

    David W. Wildman et al.

    2001-07-09

    A 7.5 MHz RF cavity and power amplifier have been built and tested at Fermilab as part of the proton Driver Design Study. The project goal was to achieve the highest possible 7.5 MHz accelerating gradient at 15 Hz with a 50% duty cycle. To reduce beam loading effects, a low shunt impedance (500{Omega}) design was chosen. The 46 cm long single gap cavity uses 5 inductive cores, consisting of the nanocrystalline soft magnetic alloy Finemet, to achieve a peak accelerating voltage of 15 kV. The 95 cm OD tape wound cores have been cut in half to increase the cavity Q and are cooled from both sides using large water-cooled copper heat sinks. The prototype cavity has a shunt impedance of 550{Omega}, Q = 11, and is powered by a 200 kW cw cathode driven tetrode amplifier. Both cavity and amplifier designs are described. Results from recent cavity tests coalescing beam in the Fermilab Main Injector is also presented.

  16. Characterization of a 30-GHz IMPATT solid state amplifier

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.

    1988-01-01

    Described are the characterization and testing of a 20 W solid state amplifier operating in the Ka band to be used in low cost experimental ground terminals. The amplifier was developed by the TRW Electronic Systems Group under NASA Contract NAS3-23266 as a proof-of-concept (POC) device in support of the Advanced Communications Technology Satellite (ACTS) program. Additional goals were development of high-power IMPATT devices and circulators, and multistage diode circuits, which are an integral part of the amplifier. The amplifier underwent acceptance testing at the NASA Lewis Research Center, Cleveland, Ohio. Characteristics measured include the output power of 42 dB m, gain of 30 dB, an injection-locking RF bandwidth of 260 MHz, and an overall direct current-to-radiofrequency (dc-to-RF) efficiency of 6.7 percent.

  17. High Power Amplifier and Power Supply

    NASA Technical Reports Server (NTRS)

    Duong, Johnny; Stride, Scot; Harvey, Wayne; Haque, Inam; Packard, Newton; Ng, Quintin; Ispirian, Julie Y.; Waian, Christopher; Janes, Drew

    2008-01-01

    A document discusses the creation of a high-voltage power supply (HVPS) that is able to contain voltages up to -20 kV, keep electrical field strengths to below 200 V/mil (approximately equal to 7.87 kV/mm), and can provide a 200-nanosecond rise/fall time focus modulator swinging between cathode potential of 16.3 kV and -19.3 kV. This HVPS can protect the 95-GHz, pulsed extended interaction klystron (EIK) from arcs/discharges from all sources, including those from within the EIK fs vacuum envelope. This innovation has a multi-winding pulse transformer design, which uses new winding techniques to provide the same delays and rise/fall times (less than 10 nanoseconds) at different potential levels ranging from -20 kV to -16 kV. Another feature involves a high-voltage printed-wiring board that was corona-free at -20 kV DC with a 3- kV AC swing. The corona-free multilayer high-voltage board is used to simulate fields of less than 200 V/mil (approximately equal to 7.87 kV/mm) at 20 kV DC. Drive techniques for the modulator FETs (field-effect transistors) (four to 10 in a series) were created to change states (3,000-V swing) without abrupt steps, while still maintaining required delays and transition times. The packing scheme includes a potting mold to house a ten-stage modulator in the space that, in the past, only housed a four-stage modulator. Problems keeping heat down were solved using aluminum oxide substrate in the high-voltage section to limit temperature rise to less than 10 while withstanding -20 kV DC voltage and remaining corona-free.

  18. High-power PPMgLN-based optical parametric oscillator pumped by a linearly polarized, semi-fiber-coupled acousto-optic Q-switched fiber master oscillator power amplifier.

    PubMed

    Chen, Tao; Jiang, Peipei; Yang, Dingzhong; Hu, Chengzhi; Wu, Bo; Shen, Yonghang

    2013-09-01

    We have experimentally demonstrated a periodically poled magnesium-oxide-doped lithium niobate (PPMgLN)-based, fiber-laser-pumped optical parametric oscillator (OPO) generating idler wavelength of 3.82 μm. The pump fiber laser was constructed with a linearly polarized, semi-fiber-coupled acousto-optic Q-switched fiber oscillator and a polarization-maintaining fiber amplifier with pulse duration of 190 ns at the highest output power. The OPO was specifically configured in single-pass, singly resonant linear cavity structure to avoid the damage risk of the pump fiber laser, which is always a serious issue in the fiber-laser-pumped, double-pass, singly oscillating structured OPOs. Under the highest pump power of 25 W, an idler average output power of 3.27 W with one-hour peak-to-peak instability of 5.2% was obtained. The measured M2 factors were 1.98 and 1.44 for horizontal and vertical axis, respectively. The high power stability and good beam quality demonstrated the suitability of such technology for practical application. PMID:24085093

  19. High-power frequency comb in the range of 2-2.15  μm based on a holmium fiber amplifier seeded by wavelength-shifted Raman solitons from an erbium-fiber laser.

    PubMed

    Coluccelli, Nicola; Cassinerio, Marco; Gambetta, Alessio; Laporta, Paolo; Galzerano, Gianluca

    2014-03-15

    We demonstrate a room-temperature high-power frequency comb source covering the spectral region from 2 to 2.15 μm. The source is based on a femtosecond erbium-fiber laser operating at 1.55 μm with a repetition rate of 250 MHz, wavelength-shifted up to 2.06 μm by the solitonic Raman effect, seeding a large-mode-area holmium (Ho) fiber amplifier pumped by a thulium (Tm) fiber laser emitting at 1.94 μm. The frequency comb has an integrated power of 2 W, with overall power fluctuations as low as 0.3%. The beatnote between the comb and a high-spectral-purity, single-frequency Tm-Ho laser has a linewidth of 32 kHz over 1 ms observation time, with a signal-to-noise ratio in excess of 30 dB. PMID:24690863

  20. Design and simulation of a gyroklystron amplifier

    SciTech Connect

    Chauhan, M. S. Swati, M. V.; Jain, P. K.

    2015-03-15

    In the present paper, a design methodology of the gyroklystron amplifier has been described and subsequently used for the design of a typically selected 200 kW, Ka-band, four-cavity gyroklystron amplifier. This conceptual device design has been validated through the 3D particle-in-cell (PIC) simulation and nonlinear analysis. Commercially available PIC simulation code “MAGIC” has been used for the electromagnetic study at the different location of the device RF interaction structure for the beam-absent case, i.e., eigenmode study as well as for the electron beam and RF wave interaction behaviour study in the beam present case of the gyroklystron. In addition, a practical problem of misalignment of the RF cavities with drift tubes within the tube has been also investigated and its effect on device performance studied. The analytical and simulation results confirmed the validity of the gyroklystron device design. The PIC simulation results of the present gyroklystron produced a stable RF output power of ∼218 kW for 0% velocity spread at 35 GHz, with ∼45 dB gain, 37% efficiency, and a bandwidth of 0.3% for a 70 kV, 8.2 A gyrating electron beam. The simulated values of RF output power have been found in agreement with the nonlinear analysis results within ∼5%. Further, the PIC simulation has been extended to study a practical problem of misalignment of the cavities axis and drift tube axis of the gyroklystron amplifier and found that the RF output power is more sensitive to misalignments in comparison to the device bandwidth. The present paper, gyroklystron device design, nonlinear analysis, and 3D PIC simulation using commercially available code had been systematically described would be of use to the high-power gyro-amplifier tube designers and research scientists.

  1. Design and simulation of a gyroklystron amplifier

    NASA Astrophysics Data System (ADS)

    Chauhan, M. S.; Swati, M. V.; Jain, P. K.

    2015-03-01

    In the present paper, a design methodology of the gyroklystron amplifier has been described and subsequently used for the design of a typically selected 200 kW, Ka-band, four-cavity gyroklystron amplifier. This conceptual device design has been validated through the 3D particle-in-cell (PIC) simulation and nonlinear analysis. Commercially available PIC simulation code "MAGIC" has been used for the electromagnetic study at the different location of the device RF interaction structure for the beam-absent case, i.e., eigenmode study as well as for the electron beam and RF wave interaction behaviour study in the beam present case of the gyroklystron. In addition, a practical problem of misalignment of the RF cavities with drift tubes within the tube has been also investigated and its effect on device performance studied. The analytical and simulation results confirmed the validity of the gyroklystron device design. The PIC simulation results of the present gyroklystron produced a stable RF output power of ˜218 kW for 0% velocity spread at 35 GHz, with ˜45 dB gain, 37% efficiency, and a bandwidth of 0.3% for a 70 kV, 8.2 A gyrating electron beam. The simulated values of RF output power have been found in agreement with the nonlinear analysis results within ˜5%. Further, the PIC simulation has been extended to study a practical problem of misalignment of the cavities axis and drift tube axis of the gyroklystron amplifier and found that the RF output power is more sensitive to misalignments in comparison to the device bandwidth. The present paper, gyroklystron device design, nonlinear analysis, and 3D PIC simulation using commercially available code had been systematically described would be of use to the high-power gyro-amplifier tube designers and research scientists.

  2. Precision 0.5 GW X-band rf system for advanced Compton scattering source

    NASA Astrophysics Data System (ADS)

    Chu, T. S.; Anderson, G.; Gibson, D.; Hartemann, F. V.; Barty, C. P. J.; Vlieks, A.; Tantawi, S.; Jongewaard, E.; Anderson, S. G.

    2009-11-01

    A Mono-Energetic Gamma-Ray (MEGa-Ray) Compton scattering light source is being developed at LLNL. The electron beam for the Compton scattering interaction will be generated by a X-band RF gun and a X-band LINAC at the frequency of 11.424 GHz. High power RF in excess of 500 MW is needed to accelerate the electrons to energy of 250 MeV or greater for the interaction. Two high power klystron amplifiers, each capable of generating 50 MW, 1.5 msec pulses, will be the main high power RF sources for the system. These klystrons will be powered by state of the art solid-state high voltage modulators. A RF pulse compressor, similar to the SLED II pulse compressor, will compress the klystron output pulse with a power gain factor of five. This will give us 500 MW (0.5 GW) at output of the compressor. The compressed pulse will then be distributed to the RF gun and to the LINAC with specific phase and amplitude control points to allow for parameter control during operation. This high power RF system is being designed and constructed. In this paper, we will present the design, layout, and status of this RF system.

  3. High power continuous wave microwave system at 3.7 GHz

    NASA Astrophysics Data System (ADS)

    Bora, D.; Dani, S.; Gangopadhyay, S.; Jadav, B.; Jha, M.; Kadia, B. R.; Khilar, P. L.; Kulkarni, S. V.; Kushwah, M.; Patel, A. P.; Parmar, K. G.; Parmar, K. M.; Parmar, P.; Rajnish, K.; Raghuraj, S.; Rao, S. L.; Samanta, K. K.; Sathyanarayana, K.; Shah, P.; Sharma, P. K.; Srinivas, Y. S. S.; Trivedi, R. G.; Verghese, G.

    2001-03-01

    The lower hybrid current drive (LHCD) system is an important system in superconducting steady state tokamak (SST-1). It is used to drive and maintain the plasma current for 1000 s with a duty cycle of 17%. The LHCD system is being designed to launch 1 MW of radio frequency (rf) power at 3.7 GHz. The rf source is comprised of two high power klystron amplifiers, each capable of delivering 500 kW rf power. In this article, the results obtained during installation and commissioning of these klystrons are presented. Two klystrons (model TH2103D) have been successfully installed and commissioned on dummy loads, delivering ˜200 kW power for more than 1000 s. The maximum output power that could be obtained is limited due to the available direct current (dc) power supply. The test system is comprised of a TH2103D klystron, a low power rf (3.7 GHz/25 W) source, two high power four port circulators, two high power dual directional couplers, two arc detector systems, and two dummy water loads. To avoid rf breakdown in the rf components of the transmission line, the system has been pressurized with dry air to 3 bar. To energize and operate the klystron, a high voltage dc power supply, a magnet power supply, an ion pump power supply, a -65 kV floating anode modulator power supply, and a filament power supply are used. An arc detector unit has been installed to detect and initiate action within a few microseconds to protect the klystron, waveguides, and other rf passive components during arcing. To protect the klystron in the event of an arc, a fast responding (<10 μs), rail gap based pressurized crowbar unit has been used. The entire system is water cooled to avoid excess temperature rise during high power continuous wave operation of the klystron and other rf components. The tube requires initial conditioning. Thereafter, the output rf power is studied as a function of beam parameters such as cathode voltage and beam current.

  4. High Efficiency Microwave Power Amplifier: From the Lab to Industry

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    Since the beginnings of space travel, various microwave power amplifier designs have been employed. These included Class-A, -B, and -C bias arrangements. However, shared limitation of these topologies is the inherent high total consumption of input power associated with the generation of radio frequency (RF)/microwave power. The power amplifier has always been the largest drain for the limited available power on the spacecraft. Typically, the conversion efficiency of a microwave power amplifier is 10 to 20%. For a typical microwave power amplifier of 20 watts, input DC power of at least 100 watts is required. Such a large demand for input power suggests that a better method of RF/microwave power generation is required. The price paid for using a linear amplifier where high linearity is unnecessary includes higher initial and operating costs, lower DC-to-RF conversion efficiency, high power consumption, higher power dissipation and the accompanying need for higher capacity heat removal means, and an amplifier that is more prone to parasitic oscillation. The first use of a higher efficiency mode of power generation was described by Baxandall in 1959. This higher efficiency mode, Class-D, is achieved through distinct switching techniques to reduce the power losses associated with switching, conduction, and gate drive losses of a given transistor.

  5. Gyromagnetron amplifier

    SciTech Connect

    Lau, Y.-Y.; Barnett, L. R.

    1985-10-29

    A gyromagnetron amplifier for radiation at millimeter wavelengths comprising a tapered waveguide tube with longitudinally running vanes in the walls of the tube with the number of vanes chosen to coincide with a desired cyclotron harmonic frequency to be amplified. A beam of spiralling mildly relativistic electrons with an energy of 100 keV or less is directed into the small end of the tapered waveguide tube. A tapered axial magnetic field is set up within the waveguide tube with a low value appropriate to the amplification of a cyclotron harmonic frequency. An electromagnetic wave to be amplified is launched into the waveguide tube to co-propagate and be amplified by the spiralling electron beam. This device is characterized by a wide bandwidth, a low operating magnetic field, a relatively low operating beam voltage, with high power, and the capability of continuous wave operation.

  6. Halo formation in high-power klystrons

    SciTech Connect

    Pakter, R.; Chen, C.

    1999-07-01

    Beam losses and radio-frequency (rf) pulse shortening are important issues in the development of high-power microwave (HPM) sources such as high-power klystrons and relativistic magnetrons. In this paper, the authors explore the formation and characteristics of halos around intense relativistic electron beams in a Periodic Permanent Magnet focusing klystron as well as in a uniform solenoidal focusing klystron. A self-consistent electrostatic model is used to investigate intense relativistic electron beam transport as an rf field induced mismatch between the electron beam and the focusing field develops. To model the effect of such mismatch in the PPM klystron experiment, they initialize the beam with an envelope mismatch. For zero canonical angular momentum and an initial mismatch of 100 percent, for example, the preliminary results show halo particles with a maximum radius extending up to several core radii at the rf output section. Transient effects and the influence of finite canonical angular momentum are being studied.

  7. Phase-noise reduction in surface wave oscillators by using nonlinear sustaining amplifiers.

    PubMed

    Avramov, Ivan D

    2006-04-01

    Nonlinear sustaining amplifier operation has been investigated and applied to high-power negative resistance oscillators (NRO), using single-port surface transverse wave (STW) resonators, and single-transistor sustaining amplifiers for feedback-loop STW oscillators (FLSO) stabilized with two-port STW devices. In all cases, self-limiting, silicon (Si)-bipolar sustaining amplifiers that operate in the highly nonlinear AB-, B-, or C-class modes are implemented. Phase-noise reduction is based on the assumption that a sustaining amplifier, operating in one of these modes, uses current limiting and remains cut off over a significant portion of the wave period. Therefore, it does not generate 1/f noise over the cut-off portion of the radio frequency (RF) cycle, and this reduces the close-in oscillator phase noise significantly. The proposed method has been found to provide phase-noise levels in the -111 to -119 dBc/Hz range at 1 KHz carrier offset in 915 MHz C-class power NRO and FLSO generating up to 23 dBm of RF-power at RF versus dc (RF/dc) efficiencies exceeding 40%. C-class amplifier design techniques are used for adequate matching and high RF/dc efficiency. PMID:16615574

  8. A compact high efficiency 8 kW 325 MHz power amplifier for accelerator applications

    NASA Astrophysics Data System (ADS)

    Mishra, Jitendra Kumar; Ramarao, B. V.; Pande, Manjiri M.; Singh, P.

    2014-11-01

    A solid state RF power amplifier (SSRFPA) has been designed and developed for 8 kW RF power at 325 MHz. The work was carried out to achieve high efficiency (over 70% efficiency), high gain and compact size for the amplifier module. The sub-components of this amplifier like a 1 kW amplifier module at 325 MHz, an 8-way RF power combiner rated for 8 kW RF power and a micro-strip based power divider have been designed and developed in-house. The size of the amplifier is miniaturized by incorporating innovative design techniques and proper selection of the substrate material in the input/output matching networks. Measured power gain and conversion efficiency of the solid state RF power amplifier module at 1.06 kW output is 21.7 dB and 73.2%, respectively. A coaxial line based 8-way Wilkinson power combiner has been designed and developed. Return loss of the combiner at the output (combined) port is 26.4 dB at 325 MHz. Transmission parameters of the combiner from each input (splitting) port to output port are 9.1 dB±0.15 dB. This amplifier uses a pre-driver of 20 W and a driver amplifier of 150 W. Total power gain and efficiency of 8 kW SSRFPA have been 92.3 dB (including the driver stages) and 68.3%, respectively. The harmonic content in the RF output is less than -50 dBc for all the harmonics. Main features of this development are high power density (kW/cm3), large value for kW/module, high efficiency (68.3%) for 8 kW SSRFPA at 325 MHz and rugged operation.

  9. An improved RF circuit for Overhauser magnetometer excitation

    NASA Astrophysics Data System (ADS)

    Zheng, Di; Zhang, Shuang; Guo, Xin; Fu, Haoyang

    2015-08-01

    Overhauser magnetometer is a high-precision device for magnetostatic field measurement, which can be used in a wide variety of purposes: UXO detection, pipeline mapping and other engineering and environmental applications. Traditional proton magnetometer adopts DC polarization, suffering from low polarization efficiency, high power consumption and low signal noise ratio (SNR). Compared with the traditional proton magnetometer, nitroxide free radicals are used for dynamic nuclear polarization (DNP) to enhance nuclear magnetic resonance (NMR). RF excitation is very important for electron resonance in nitrogen oxygen free radical solution, and it is primarily significant for the obtention of high SNR signal and high sensitive field observation. Therefore, RF excitation source plays a crucial role in the development of Overhauser magnetometer. In this paper, an improved design of a RF circuit is discussed. The new RF excitation circuit consists of two parts: Quartz crystal oscillator circuit and RF power amplifier circuit. Simulation and optimization designs for power amplifier circuit based on software ADS are presented. Finally we achieve a continuous and stable sine wave of 60MHz with 1-2.5 W output power, and the second harmonic suppression is close to -20dBc. The improved RF circuit has many merits such as small size, low-power consumption and high efficiency, and it can be applied to Overhauser magnetometer to obtain high sensitive field observation.

  10. 500 MW X-Band RF System of a 0.25 GeV Electron LINAC for Advanced Compton Scattering Source Application

    SciTech Connect

    Chu, Tak Sum; Anderson, Scott; Barty, Christopher; Gibson, David; Hartemann, Fred; Marsh, Roark; Siders, Craig; Adolphsen, Chris; Jongewaard, Erik; Raubenheimer, Tor; Tantawi, Sami; Vlieks, Arnold; Wang, Juwen; /SLAC

    2012-07-03

    A Mono-Energetic Gamma-Ray (MEGa-Ray) Compton scattering light source is being developed at LLNL in collaboration with the SLAC National Accelerator Laboratory. The electron beam for the Compton scattering interaction will be generated by a X-band RF gun and a X-band LINAC at the frequency of 11.424 GHz. High power RF in excess of 500 MW is needed to accelerate the electrons to energy of 250 MeV or greater for the interaction. Two high power klystron amplifiers, each capable of generating 50 MW, 1.5 msec pulses, will be the main high power RF sources for the system. These klystrons will be powered by state of the art solid-state high voltage modulators. A RF pulse compressor, similar to the SLED II pulse compressor, will compress the klystron output pulse with a power gain factor of five. For compactness consideration, we are looking at a folded waveguide setup. This will give us 500 MW at output of the compressor. The compressed pulse will then be distributed to the RF gun and to six traveling wave accelerator sections. Phase and amplitude control are located at the RF gun input and additional control points along the LINAC to allow for parameter control during operation. This high power RF system is being designed and constructed. In this paper, we will present the design, layout, and status of this RF system.

  11. 500 MW X-BAND RF SYSTEM OF A 0.25 GEV ELECTRON LINAC FOR ADVANCED COMPTON SCATTERING SOURCE APPLICATION

    SciTech Connect

    Chu, T S; Anderson, S G; Gibson, D J; Hartemann, F V; Marsh, R A; Siders, C; Barty, C P; Adolphsen, C; Jongewaard, E; Tantawi, S; Vlieks, A; Wang, J W; Raubenheimer, T

    2010-05-12

    A Mono-Energetic Gamma-Ray (MEGa-Ray) Compton scattering light source is being developed at LLNL in collaboration with SLAC National Accelerator Laboratory. The electron beam for the Compton scattering interaction will be generated by a X-band RF gun and a X-band LINAC at the frequency of 11.424 GHz. High power RF in excess of 500 MW is needed to accelerate the electrons to energy of 250 MeV or greater for the interaction. Two high power klystron amplifiers, each capable of generating 50 MW, 1.5 msec pulses, will be the main high power RF sources for the system. These klystrons will be powered by state of the art solid-state high voltage modulators. A RF pulse compressor, similar to the SLED II pulse compressor, will compress the klystron output pulse with a power gain factor of five. For compactness consideration, we are looking at a folded waveguide setup. This will give us 500 MW at output of the compressor. The compressed pulse will then be distributed to the RF gun and to six traveling wave accelerator sections. Phase and amplitude control are located at the RF gun input and additional control points along the LINAC to allow for parameter control during operation. This high power RF system is being designed and constructed. In this paper, we will present the design, layout, and status of this RF system.

  12. High power folded waveguide millimeter-wave gyro-TWT

    SciTech Connect

    Choi, J.J.; Ganguly, A.K.; Armstrong, C.M.

    1994-12-31

    Investigations on a periodic TE serpentine waveguide gyro-TWT are underway at NRL. A high power axis-encircling electron beam interacts with a fundamental TE waveguide mode when it passes through an oversized beam tunnel hole in the narrow wall of the H-plane bend rectangular serpentine waveguide. Potential advantages of the circuit configuration include: easy fabrication, fundamental forward space harmonic operation, large beam tunnel suitable for high power application, natural separation of beam and rf, and simplicity of coupling. To avoid bandwidth reduction due to closely spaced stop-bands and large gap detuning angle, a double rigid TE folded waveguide structure is proposed. To utilize the entire bandwidth, it is necessary to suppress gyro-BWO oscillation at the higher space harmonics. Linear theory predicts that oscillation takes place at {approximately} 7 cm near the stop-band frequency. Therefore, a multi-stage configuration is required to saturate the device without oscillations. An experiment is underway at NRL to verify the negative mass instability in both fast and slow wave regions in a transverse folded waveguide structure and to investigate the basic circuit stability characteristics. Design parameters of the amplifier, large signal simulations using a MAGIC code and cold-test results of the circuit components will be presented.

  13. Demystifying new generation silicon high power FETs

    NASA Astrophysics Data System (ADS)

    McIntyre, S.

    1984-04-01

    In the early 70s, an American company developed a shadow-masked version of a power FET which delivered approximately 5 watts at 2 GHz. By 1975, there was considerable interest in the 'V' groove FET. VMOS was particularly suited for RF work. The ISOFET combines today the short channel and low capacitance of the first developments with some of the process techniques developed for the VMOS structure. Similarities and differences between current ISOFET and bipolar power transistors are examined. It is pointed out that, with good power and gain up through 500 MHz, the power FET can be an excellent choice for the RF designer, especially for wideband exciters. Attention is given to dc biasing, RF FET models, coaxial transformers for wideband matching, wideband circuit design, a 40 watt ISOFET amplifier, power FETs in a pulse amplifier, and developments and remaining challenges for the near future.

  14. Segmented amplifier configurations for laser amplifier

    DOEpatents

    Hagen, Wilhelm F.

    1979-01-01

    An amplifier system for high power lasers, the system comprising a compact array of segments which (1) preserves high, large signal gain with improved pumping efficiency and (2) allows the total amplifier length to be shortened by as much as one order of magnitude. The system uses a three dimensional array of segments, with the plane of each segment being oriented at substantially the amplifier medium Brewster angle relative to the incident laser beam and with one or more linear arrays of flashlamps positioned between adjacent rows of amplifier segments, with the plane of the linear array of flashlamps being substantially parallel to the beam propagation direction.

  15. W-band harmonic gyro-TWT amplifier

    SciTech Connect

    Wang, Q.S.; Huey, H.E.; McDermott, D.B.; Luhmann, N.C. Jr.

    1999-07-01

    Considerable interest exists in developing high power microwave amplifiers at W-band for both commercial industrial and military applications. A multi-purpose harmonic gyrotron traveling wave tube (gyro-TWT) amplifier that can stably deliver moderately high peak and high average power in W-band has been designed and will be presented. The designed 400 kW peak and 400 W average power harmonic gyro-TWT amplifier will be powered by a 2.5 MW electron beam emitted from a magnetron injection gun (MIG). The TE{sub 02} overmoded interaction waveguide will be sufficiently large to handle the RF power generated and provide appropriate clearance for the high current electron beam. Operating in the second harmonic of the electron cyclotron frequency, high RF output power can be generated. An innovative mode selective interaction circuit will further prevent the amplifier from oscillating in undesired modes. Also included in the design to be presented are details of the MIG and RF input coupler.

  16. High power radial klystron oscillator

    SciTech Connect

    Arman, M.J.

    1995-11-01

    The advantages of the radial klystron amplifier over the conventional klystron amplifier have been reported by Arman et al. Briefly, the radial structure of this design allows for much smaller impedances and thus higher power, the beam-cavity coupling is stronger because the beam travels inside the cavity, and the source is much more compact because there is no need for external magnetic fields. Here the author reports on possible advantages of the radial klystron oscillator over the radial klystron amplifier. The amplifying nature of certain HPM sources is often mandated by the requirement for synchronization and phase-locking of a number of sources in specific applications. In situations where amplification is solely adhered to for the purpose of achieving higher powers, the oscillator will be a better choice if a mechanism can be found to grow the desired mode at the required frequency. By switching to the oscillator mode there will be no need for priming the cavity or maintaining the phase. This simplifies the design and reduces the operational and maintenance cost of the source. Here he reports that an oscillator version of the radial klystron is possible and in fact more suitable for many applications. The mechanism for exciting and growing the mode will be transit-time effects thus providing all the beneficial features of the transit-time oscillators. The complications due to the presence of thin foils in the radial design still persist and will be dealt with in subsequent works. Numerical simulations using the PIC codes MAGIC and SOS indicate the radial klystron oscillator is a viable and efficient means of rf generation.

  17. Automatic calorimetry system monitors RF power

    NASA Technical Reports Server (NTRS)

    Harness, B. W.; Heiberger, E. C.

    1969-01-01

    Calorimetry system monitors the average power dissipated in a high power RF transmitter. Sensors measure the change in temperature and the flow rate of the coolant, while a multiplier computes the power dissipated in the RF load.

  18. Klystron 'efficiency loop' for the ALS storage ring RF system

    SciTech Connect

    Kwiatkowski, Slawomir; Julian, Jim; Baptiste, Kenneth

    2002-05-20

    The recent energy crisis in California has led us to investigate the high power RF systems at the Advanced Light Source (ALS) in order to decrease the energy consumption and power costs. We found the Storage Ring Klystron Power Amplifier system operating as designed but with significant power waste. A simple proportional-integrator (PI) analog loop, which controls the klystron collector beam current, as a function of the output RF power, has been designed and installed. The design considerations, besides efficiency improvement, were to interface to the existing system without major expense. They were to also avoid the klystron cathode power supply filter's resonance in the loop's dynamics, and prevent a conflict with the existing Cavity RF Amplitude Loop dynamics. This efficiency loop will allow us to save up to 700 MW-hours of electrical energy per year and increase the lifetime of the klystron.

  19. Low phase noise high power handling InGaAs photodiodes for precise timing applications

    NASA Astrophysics Data System (ADS)

    Datta, Shubhashish; Joshi, Abhay; Becker, Don

    2009-05-01

    Time is the most precisely measured physical quantity. Such precision is achieved by optically probing hyperfine atomic transitions. These high Q-factor resonances demonstrate frequency instability of ~10-18 over 1 s observation time. Conversion of such a stable optical clock signal to an electrical clock through photodetection introduces additional phase noise, thereby resulting in a significant degradation in the frequency stability. This excess phase noise is primarily caused by the conversion of optical intensity noise into electrical phase noise by the phase non-linearity of the photodetector, characterized by its power-to-phase conversion factor. It is necessary to minimize this phase nonlinearity in order to develop the next generation of ultra-high precision electronic clocks. Reduction in excess phase noise must be achieved while ensuring a large output RF signal generated by the photodetector. The phase linearity in traditional system designs that employ a photoreceiver, namely a photodiode followed by a microwave amplifier, is limited by the phase non-linearity of the amplifier. Utilizing high-power handling photodiodes eliminates the need of microwave amplifiers. In this work, we present InGaAs p-i-n photodiodes that display a power-to-phase conversion factor <6 rad/W at a peak-to-peak RF output amplitude of 2 V. In comparison, the photodiode coupled to a transimpedance amplifier demonstrates >44 rad/W at a peak-to-peak RF output amplitude of 0.5 V. These results are supported by impulse response measurements at 1550 nm wavelength at 1 GHz repetition rate. These photodiodes are suitable of applications such as optical clock distribution networks, photonic analog-to-digital converters, and phased array radars.

  20. Three-dimensional relativistic field-electron interaction in a multicavity high-power klystron. Part 2: Working Equations

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G.

    1982-01-01

    A high power multicavity klystron amplifier was designed and a computation package containing all equations and procedures needed is presented. The rigorously derived three dimensional relativistic axisymmetric equations of motion are used to compute the bunched current and the induced RF gap voltage for all interaction cavities except the input and second cavities, where the linear space charge wave theory data are employed in order to reduce the computation time. Both distance step and time step integration methods are used to compute the Fourier coefficients of both the beam current and induced current.

  1. RF cavity with co -based amorphous core

    NASA Astrophysics Data System (ADS)

    Kanazawa, M.; Misu, T.; Sugiura, A.; Sato, K.; Katsuki, K.; Kusaka, T.

    2006-10-01

    A compact cavity for acceleration has been developed with cobalt-based amorphous cores, which is a part of research and development (R&D) for a synchrotron in a cancer therapy facility. This core has high permeability that enables the cavity length to be made short, and its low Q-value of about 0.5 permits an RF system without tuning control of the cavity. The developed acceleration cavity consists of two acceleration gaps; at both sides of the gap there are quarter-wave coaxial resonators. The total length of the cavity is as short as 1.5 m and the inner diameter of the vacuum chamber is 190 mm. Considering the requirements for easy operation and maintenance, a transistor RF amplifier was used instead of the commonly used tetrode in the final stage. Each resonator has a maximum impedance of 400 Ω at 2 MHz, and a 1:9 impedance transformer has been attached to use a solid state amplifier of 50 Ω output impedance. In the frequency range from 0.4 to 8 MHz, an acceleration voltage of more than 4 kV can be obtained with a total input RF power of 8 kW. In this paper the structure of the cavity, the obtained core impedance, and their performances under high-power test are presented.

  2. High-power continuous-wave mid-infrared radiation generated by difference frequency mixing of diode-laser-seeded fiber amplifiers and its application to dual-beam spectroscopy

    NASA Technical Reports Server (NTRS)

    Lancaster, D. G.; Richter, D.; Curl, R. F.; Tittel, F. K.; Goldberg, L.; Koplow, J.

    1999-01-01

    We report the generation of up to 0.7 mW of narrow-linewidth (<60-MHz) radiation at 3.3 micrometers by difference frequency mixing of a Nd:YAG-seeded 1.6-W Yb fiber amplifier and a 1.5-micrometers diode-laser-seeded 0.6-W Er/Yb fiber amplifier in periodically poled LiNbO3. A conversion efficiency of 0.09%/W (0.47 mWW-2 cm-1) was achieved. A room-air CH4 spectrum acquired with a compact 80-m multipass cell and a dual-beam spectroscopic configuration indicates an absorption sensitivity of +/-2.8 x 10(-5) (+/-1 sigma), corresponding to a sub-parts-in-10(9) (ppb) CH4 sensitivity (0.8 ppb).

  3. High power cladding light strippers

    NASA Astrophysics Data System (ADS)

    Wetter, Alexandre; Faucher, Mathieu; Sévigny, Benoit

    2008-02-01

    The ability to strip cladding light from double clad fiber (DCF) fibers is required for many different reasons, one example is to strip unwanted cladding light in fiber lasers and amplifiers. When removing residual pump light for example, this light is characterized by a large numerical aperture distribution and can reach power levels into the hundreds of watts. By locally changing the numerical aperture (N.A.) of the light to be stripped, it is possible to achieve significant attenuation even for the low N.A. rays such as escaped core modes in the same device. In order to test the power-handling capability of this device, one hundred watts of pump and signal light is launched from a tapered fusedbundle (TFB) 6+1x1 combiner into a high power-cladding stripper. In this case, the fiber used in the cladding stripper and the output fiber of the TFB was a 20/400 0.06/0.46 N.A. double clad fiber. Attenuation of over 20dB in the cladding was measured without signal loss. By spreading out the heat load generated by the unwanted light that is stripped, the package remained safely below the maximum operating temperature internally and externally. This is achieved by uniformly stripping the energy along the length of the fiber within the stripper. Different adhesive and heat sinking techniques are used to achieve this uniform removal of the light. This suggests that these cladding strippers can be used to strip hundreds of watts of light in high power fiber lasers and amplifiers.

  4. High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert; Tverdokhlebov, Sergery; Manzella, David

    1999-01-01

    The development of Hall thrusters with powers ranging from tens of kilowatts to in excess of one hundred kilowatts is considered based on renewed interest in high power. high thrust electric propulsion applications. An approach to develop such thrusters based on previous experience is discussed. It is shown that the previous experimental data taken with thrusters of 10 kW input power and less can be used. Potential mass savings due to the design of high power Hall thrusters are discussed. Both xenon and alternate thruster propellant are considered, as are technological issues that will challenge the design of high power Hall thrusters. Finally, the implications of such a development effort with regard to ground testing and spacecraft intecrati'on issues are discussed.

  5. High Power Co-Axial Coupler

    SciTech Connect

    Neubauer, M.; Dudas, A.; Rimmer, Robert A.; Guo, Jiquan; Williams, R. Scott

    2013-12-01

    A very high power Coax RF Coupler (MW-Level) is very desirable for a number of accelerator and commercial applications. For example, the development of such a coupler operating at 1.5 GHz may permit the construction of a higher-luminosity version of the Electron-Ion Collider (EIC) being planned at JLab. Muons, Inc. is currently funded by a DOE STTR grant to develop a 1.5-GHz high-power doublewindowcoax coupler with JLab (about 150 kW). Excellent progress has been made on this R&D project, so we propose an extension of this development to build a very high power coax coupler (MW level peak power and a max duty factor of about 4%). The dimensions of the current coax coupler will be scaled up to provide higher power capability.

  6. High power density targets

    NASA Astrophysics Data System (ADS)

    Pellemoine, Frederique

    2013-12-01

    In the context of new generation rare isotope beam facilities based on high-power heavy-ion accelerators and in-flight separation of the reaction products, the design of the rare isotope production targets is a major challenge. In order to provide high-purity beams for science, high resolution is required in the rare isotope separation. This demands a small beam spot on the production target which, together with the short range of heavy ions in matter, leads to very high power densities inside the target material. This paper gives an overview of the challenges associated with this high power density, discusses radiation damage issues in targets exposed to heavy ion beams, and presents recent developments to meet some of these challenges through different projects: FAIR, RIBF and FRIB which is the most challenging. Extensive use of Finite Element Analysis (FEA) has been made at all facilities to specify critical target parameters and R&D work at FRIB successfully retired two major risks related to high-power density and heavy-ion induced radiation damage.

  7. High Power Cryogenic Targets

    SciTech Connect

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  8. Optical phase conjugation of picosecond pulses at 1.06 mum in Sn(2)P(2)S(6):Te for wavefront correction in high-power Nd-doped amplifier systems.

    PubMed

    Bach, Tobias; Nawata, Kouji; Jazbinsek, Mojca; Omatsu, Takashige; Günter, Peter

    2010-01-01

    We report, for the first time to our knowledge, on picosecondpulse optical phase conjugation using photorefractive Sn(2)P(2)S(6) crystals. For 7.2-ps pulses at 1.06 mum, we have achieved phase-conjugate reflectivities of up to 45% with very fast build-up times, about 15 ms at an intensity of 23 W/cm(2) using Te-doped Sn(2)P(2)S(6). We furthermore demonstrate aberration-free 5 W optical output of 8-ps pulses at 1.06 mum from a side pumped Nd:YVO(4) amplifier using the Sn(2)P(2)S(6)-based phase-conjugate feedback. PMID:20173826

  9. An X-band, high power dielectric resonator oscillator for future military systems.

    PubMed

    Mizan, M A; Sturzebecher, D; Higgins, T; Paolella, A

    1993-01-01

    A 9.0-GHz dielectric resonator oscillator (DRO), generating a CW output power of 2.5 W at room temperature, has been designed and fabricated using a high-power GaAs MESFET and a dielectric resonator (DR) in a parallel feedback configuration. The oscillator exhibited a frequency stability of better than 130 ppm, without any temperature compensation, over the range -50 degrees C to +50 degrees C. The output power varied from +35 dBm (3.2 W) at -50 degrees C to +33 dBm (2 W) at +50 degrees C. The single-sideband phase noise levels were measured and found to be -105 and -135 dBc/Hz, at 10- and 100-kHz carrier offset frequencies, respectively. The oscillator output was then fed into a single-stage high-power MESFET amplifier, resulting in a total RF power output of 6.5 W. The overall DC to RF conversion efficiency of the 6.5-W unit was approximately 15.3% PMID:18263210

  10. High power microwave generator

    DOEpatents

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  11. High power microwave generator

    DOEpatents

    Ekdahl, Carl A.

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  12. Shielding for thermoacoustic tomography with RF excitation

    NASA Astrophysics Data System (ADS)

    Mitchell, M.; Becker, G.; Dey, P.; Generotzky, J.; Patch, S. K.

    2008-02-01

    Radiofrequency (RF) pulses used to generate thermoacoustic computerized tomography (TCT) signal couple directly into the pulser-receiver and oscilloscope, swamping true TCT signal. We use a standard RF enclosure housing both RF amplifier and object being imaged. This is similar to RF shielding of magnetic resonance imaging (MRI) suites and protects electronics outside from stray RF. Unlike MRI, TCT receivers are ultrasound transducers, which must also be shielded from RF. A transducer housing that simultaneously shields RF and permits acoustic transmission was developed specifically for TCT. We compare TCT signals measured with and without RF shielding.

  13. Plasma Switch for High-Power Active Pulse Compressor

    SciTech Connect

    Hirshfield, Jay L.

    2013-11-04

    Results are presented from experiments carried out at the Naval Research Laboratory X-band magnicon facility on a two-channel X-band active RF pulse compressor that employed plasma switches. Experimental evidence is shown to validate the basic goals of the project, which include: simultaneous firing of plasma switches in both channels of the RF circuit, operation of quasi-optical 3-dB hybrid directional coupler coherent superposition of RF compressed pulses from both channels, and operation of the X-band magnicon directly in the RF pulse compressor. For incident 1.2 ?s pulses in the range 0.63 ? 1.35 MW, compressed pulses of peak powers 5.7 ? 11.3 MW were obtained, corresponding to peak power gain ratios of 8.3 ? 9.3. Insufficient bakeout and conditioning of the high-power RF circuit prevented experiments from being conducted at higher RF input power levels.

  14. High power microwave generator

    SciTech Connect

    Minich, Roger W.

    1988-01-01

    A device (10) for producing high-powered and coherent microwaves is described. The device comprises an evacuated, cylindrical, and hollow real cathode (20) that is driven to inwardly field emit relativistic electrons. The electrons pass through an internally disposed cylindrical and substantially electron-transparent cylindrical anode (24), proceed toward a cylindrical electron collector electrode (26), and form a cylindrical virtual cathode (32). Microwaves are produced by spatial and temporal oscillations of the cylindrical virtual cathode (32), and by electrons that reflex back and forth between the cylindrical virtual cathode (32) and the cylindrical real cathode (20).

  15. Science opportunities at high power accelerators like APT

    SciTech Connect

    Browne, J.C.

    1996-12-31

    This paper presents applications of high power RF proton linear accelerators to several fields. Radioisotope production is an area in which linacs have already provided new isotopes for use in medical and industrial applications. A new type of spallation neutron source, called a long-pulse spallation source (LPSS), is discussed for application to neutron scattering and to the production and use of ultra-cold neutrons (UCN). The concept of an accelerator-driven, transmutation of nuclear waste system, based on high power RF linac technology, is presented along with its impact on spent nuclear fuels.

  16. Review of pulsed rf power generation

    SciTech Connect

    Lavine, T.L.

    1992-04-01

    I am going to talk about pulsed high-power rf generation for normal-conducting electron and positron linacs suitable for applications to high-energy physics in the Next Linear Collider, or NLC. The talk will cover some basic rf system design issues, klystrons and other microwave power sources, rf pulse-compression devices, and test facilities for system-integration studies.

  17. Deep Space C3: High Power Uplinks

    NASA Astrophysics Data System (ADS)

    Kodis, Mary Anne; Abraham, Douglas S.; Morabito, David D.

    2003-12-01

    The uplink transmitters of the Deep Space Network (DSN) perform three key functions in support of space missions: navigation, command uplink, and emergency recovery. The transmitters range in frequency from S-band to Ka-band, and range in RF transmit power from 200W to 400kW. Future improvements to the uplink transmitters will focus on higher frequency transmitters for high data rate communications, high power X-band uplinks for emergency recovery, and/or in-phase uplink arraying for either application.

  18. High power phase shifter

    SciTech Connect

    Foster, B.; Gonin, I.; Khabiboulline, T.; Makarov, A.; Solyak, N.; Terechkine, I.; Wildman, D.; /Fermilab

    2005-05-01

    One of the approaches to power distribution system of a superconducting proton linac under discussion at FNAL requires development of a fast-action, megawatt-range phase shifter. Using a couple of this kind of devices with a waveguide hybrid junction can allow independent control of phase and amplitude of RF power at the input of each superconducting cavity, which will result in significant saving in number of klystrons and modulators required for the accelerator. A prototype of a waveguide version of the shifter that uses Yttrium-Iron Garnet (YIG) blocks was developed and tested. This report presents design concept of the device, and main results of simulation and proof-of-principle tests.

  19. High power arcjet

    NASA Technical Reports Server (NTRS)

    Goelz, T. M.; Auweter-Kurtz, M.; Kurtz, H. L.; Schrade, H. O.

    1992-01-01

    In this period a new mass flow controller was brought into the gas supply system, so that the upper limit for the mass flow rate could be increased up to 500 mg/s with hydrogen. A maximum specific impulse of 1500 s could be achieved with the high powered arcjet (HIPARC) at an efficiency of slightly better than 20 percent. Different nozzle throat diameters had been tested. The 100 kilo-watt input power limit was reached with the 4 mm nozzle throat diameter at a mass flow rate of 400 mg/s. Tests were carried out with different cathode gaps and with three different cathodes. In addition measurements of pressure and gas temperature were taken in the feed line in order to determine the pressure drop in the propellant injectors.

  20. HIGH POWER PULSED OSCILLATOR

    DOEpatents

    Singer, S.; Neher, L.K.

    1957-09-24

    A high powered, radio frequency pulse oscillator is described for generating trains of oscillations at the instant an input direct voltage is impressed, or immediately upon application of a light pulse. In one embodiment, the pulse oscillator comprises a photo-multiplier tube with the cathode connected to the first dynode by means of a resistor, and adjacent dynodes are connected to each other through adjustable resistors. The ohmage of the resistors progressively increases from a very low value for resistors adjacent the cathode to a high value adjacent the plate, the last dynode. Oscillation occurs with this circuit when a high negative voltage pulse is applied to the cathode and the photo cathode is bombarded. Another embodiment adds capacitors at the resistor connection points of the above circuit to increase the duration of the oscillator train.

  1. Versatile composite amplifier configuration

    NASA Astrophysics Data System (ADS)

    Gift, Stephan J. G.; Maundy, Brent

    2015-06-01

    This paper describes a versatile composite amplifier in which a current feedback amplifier (CFA) drives an operational amplifier (OPA). In the conventional OPA-CFA composite amplifier, an OPA drives a CFA resulting in a composite structure that combines the DC input stability of the OPA and the high speed capability of the CFA. The proposed composite configuration combines different features of the CFA and OPA, specifically the constant bandwidth property of the CFA and the high power and high current output capacity of the OPA. The new circuit is easily implemented in the standard inverting and non-inverting configurations using commercially available devices, and the accuracy and constant bandwidth features were experimentally verified. Local feedback around the associated CFA ensures that the proposed composite amplifier possesses a higher level of bandwidth constancy than a single CFA.

  2. Applications of Kinetic Inductance: Parametric Amplifier & Phase Shifter, 2DEG Coupled Co-planar Structures & Microstrip to Slotline Transition at RF Frequencies

    NASA Astrophysics Data System (ADS)

    Surdi, Harshad

    Kinetic inductance springs from the inertia of charged mobile carriers in alternating electric fields and it is fundamentally different from the magnetic inductance which is only a geometry dependent property. The magnetic inductance is proportional to the volume occupied by the electric and magnetic fields and is often limited by the number of turns of the coil. Kinetic inductance on the other hand is inversely proportional to the density of electrons or holes that exert inertia, the unit mass of the charge carriers and the momentum relaxation time of these charge carriers, all of which can be varied merely by modifying the material properties. Highly sensitive and broadband signal amplifiers often broaden the field of study in astrophysics. Quantum-noise limited travelling wave kinetic inductance parametric amplifiers offer a noise figure of around 0.5 K +/- 0.3 K as compared to 20 K in HEMT signal amplifiers and can be designed to operate to cover the entire W-band (75 GHz -- 115 GHz). The research cumulating to this thesis involves applying and exploiting kinetic inductance properties in designing a W-band orthogonal mode transducer, quadratic gain phase shifter with a gain of ~49 dB over a meter of microstrip transmission line. The phase shifter will help in measuring the maximum amount of phase shift Deltaφmax(I) that can be obtained from half a meter transmission line which helps in predicting the gain of a travelling wave parametric amplifier. In another project, a microstrip to slot line transition is designed and optimized to operate at 150 GHz and 220 GHz frequencies, that is used as a part of horn antenna coupled microwave kinetic inductance detector proposed to operate from 138 GHz to 250 GHz. In the final project, kinetic inductance in a 2D electron gas (2DEG) is explored by design, simulation, fabrication and experimentation. A transmission line model of a 2DEG proposed by Burke (1999), is simulated and verified experimentally by fabricating a

  3. Tunable photonic microwave generation by directly modulating a dual-wavelength amplified feedback laser

    NASA Astrophysics Data System (ADS)

    Yu, Liqiang; Lu, Dan; Sun, Yu; Zhao, Lingjuan

    2015-06-01

    A compact and simple approach to realizing tunable high-frequency photonic microwave using a directly-modulated dual-wavelength amplified feedback laser (AFL) diode is demonstrated. By directly modulating the AFL at the 1/2 sub-harmonic frequency of its fundamental mode spacing, frequency-doubled microwave is generated. At a low RF driven power of 2.8 dBm, tunable microwave outputs ranging from 15 GHz to 33 GHz are obtained with 2-GHz locking range. The phase noise and frequency stability of the generated microwave signal are also investigated. The proposed scheme requires much lower RF driven power and can be a viable choice for situations where high power and high frequency RF signal is not available.

  4. An S-band high gain relativistic klystron amplifier with high phase stability

    SciTech Connect

    Wu, Y.; Li, Z. H.; Xu, Z.; Ma, Q. S.; Xie, H. Q.

    2014-11-15

    For the purpose of coherent high power microwave combining, an S-band high gain relativistic klystron amplifier with high phase stability is presented and studied. By the aid of 3D particle-in-cell code and circuit simulation software, the mechanism of parasitic oscillation in the device is investigated. And the RF lossy material is adopted in the simulation and experiment to suppress the oscillation. The experimental results show that with an input RF power of 10 kW, a microwave pulse with power of 1.8 GW is generated with a gain of 52.6 dB. And the relative phase difference fluctuation between output microwave and input RF signal is less than ±10° in 90 ns.

  5. 13nm EUV free electron lasers for next generation photolithography: the critical importance of RF stability

    NASA Astrophysics Data System (ADS)

    Keens, Simon; Fritsche, Bodo; Hiltbrunner, Carmen; Frei, Marcel

    2015-03-01

    A Free Electron Laser (FEL) is a highly coherent, highly collimated light source capable of creating extremely high power beams of precisely controlled wavelengths. The semiconductor industry is currently examining these as sources extreme ultraviolet (EUV) light for photolithography applications. An important factor to achieve high quality FEL emission is the careful development of the amplifying RF system as a complete integrated unit, considering each component as part of the amplification chain to maximise RF stability and FEL beam quality. In this paper we review methods to optimise RF amplifier systems without compromising on output stability, compare solid-state with tube based technologies, and discuss the state-of-the-art in RF amplifier technology, highlighting recent case studies. We conclude by examining the benefits of integrated systems and highlight the solutions offered by available technologies to a range of technological challenges, in order to design and build the best possible systems with maximum possible efficiency for the demanding requirements of the semiconductor industry.

  6. High power connection system

    DOEpatents

    Schaefer, Christopher E.; Beer, Robert C.; McCall, Mark D.

    2000-01-01

    A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.

  7. Design Features and Initial RF Performance of a Gradient Hardened 17 GHz TW Linac Structure

    SciTech Connect

    Haimson, J.; Mecklenburg, B.

    2009-01-22

    To avoid surface erosion damage and to assist in studying RF breakdown thresholds in 17 GHz TW linac structures, a gradient hardened structure has been fabricated with high temperature brazed and machined stainless steel surfaces located in the peak E-field region of the beam apertures and the peak H-field regions of the input coupler cavity. The microwave design parameters and physical dimensions of this 22 cavity, 120 degree phase advance structure were chosen to allow the high gradient performance to be compared against a similar design all-copper structure that has been tested in a dual ring, power recirculating amplifier system. The final design parameters of the gradient hardened structure are discussed; the influence of stainless steel RF losses on the power buildup of the resonant ring and on the structure gradient distribution are described; waveforms are shown of the unique ability of the power amplifier to rapidly quench RF breakdown discharges in the linac structure by automatically sensing and redirecting the RF source power to a matched load; and preliminary test results during high power RF processing of the gradient hardened linac structure are presented.

  8. Design Features and Initial RF Performance of a Gradient Hardened 17 GHz TW Linac Structure

    NASA Astrophysics Data System (ADS)

    Haimson, J.; Mecklenburg, B.

    2009-01-01

    To avoid surface erosion damage and to assist in studying RF breakdown thresholds in 17 GHz TW linac structures, a gradient hardened structure has been fabricated with high temperature brazed and machined stainless steel surfaces located in the peak E-field region of the beam apertures and the peak H-field regions of the input coupler cavity. The microwave design parameters and physical dimensions of this 22 cavity, 120 degree phase advance structure were chosen to allow the high gradient performance to be compared against a similar design all-copper structure that has been tested in a dual ring, power recirculating amplifier system. The final design parameters of the gradient hardened structure are discussed; the influence of stainless steel RF losses on the power buildup of the resonant ring and on the structure gradient distribution are described; waveforms are shown of the unique ability of the power amplifier to rapidly quench RF breakdown discharges in the linac structure by automatically sensing and redirecting the RF source power to a matched load; and preliminary test results during high power RF processing of the gradient hardened linac structure are presented.

  9. Coherently coupled high-power fiber arrays

    NASA Astrophysics Data System (ADS)

    Anderegg, Jesse; Brosnan, Stephen; Cheung, Eric; Epp, Paul; Hammons, Dennis; Komine, Hiroshi; Weber, Mark; Wickham, Michael

    2006-02-01

    A four-element fiber array has demonstrated 470 watts of coherently phased, linearly polarized light energy in a single far-field spot. Each element consists of a single-mode fiber-amplifier chain. Phase control of each element is achieved with a Lithium-Niobate phase modulator. A master laser provides a linearly polarized, narrow linewidth signal that is split into five channels. Four channels are individually amplified using polarization maintaining fiber power amplifiers. The fifth channel is used as a reference arm. It is frequency shifted and then combined interferometrically with a portion of each channel's signal. Detectors sense the heterodyne modulation signal, and an electronics circuit measures the relative phase for each channel. Compensating adjustments are then made to each channel's phase modulator. This effort represents the results of a multi-year effort to achieve high power from a single element fiber amplifier and to understand the important issues involved in coherently combining many individual elements to obtain sufficient optical power for directed energy weapons. Northrop Grumman Corporation and the High Energy Laser Joint Technology Office jointly sponsored this work.

  10. SPALLATION NEUTRON SOURCE HIGH-POWER PROTECTION MODULE TEST STAND

    SciTech Connect

    Lee, Sung-Woo; Ball, Jeffrey Allen; Crofford, Mark T; Davidson Jr, Taylor L; Jones, Stacey L; Hardek, Thomas W

    2010-01-01

    The Spallation Neutron Source (SNS) High-Power Protection Module (HPM) provides interlocks and fast shutdown for the radio frequency (RF) system to protect the accelerating structures and high power RF (HPRF) Distribution System. The HPM has required some functional upgrades since the start of beam operations and an upgrade to the HPM test stand was required to support these added features. The HPM test stand currently verifies functionality, RF channel calibration, and measurement of the speed of shutdown to ensure the specifications are met. The upgraded test stand was implemented in a Field Programmable Gate Array (FPGA) to allow for future growth and flexibility. Work is currently progressing on automation of the test stand to better perform the required module calibration schedule.

  11. Tapered fiber bundle couplers for high-power fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Sliwinska, Dorota; Kaczmarek, Pawel; Abramski, Krzysztof M.

    2014-12-01

    In this work, we would like to demonstrate our results on performing (6+1)x1 tapered fiber bundle combiners using a trielectrode fiber splicing system. In our combiners we have used 9/80 μm (core/clad) diameter fibers as single-mode signal input ports. Using this fiber, instead of a conventional 9/125 μm single-mode fiber allowed us to reduce the taper ratio and therefore significantly increase the signal transmission. We have also performed power combiner which is based on the LMA fibers: input signal fiber 20/125μm and passive double clad fiber 25/300 μm at the output.

  12. High power rapidly tunable system for laser cooling.

    PubMed

    Valenzuela, V M; Hernández, L; Gomez, E

    2012-01-01

    We present a laser configuration capable of fast frequency changes with a high power output and a large tuning range. The system integrates frequency tuning with an acousto-optic modulator with a double pass tapered amplifier. A compensation circuit keeps the seed power constant and prevents damage to the amplifier. A single mode fiber decouples the modulation and amplification sections and keeps the alignment fixed. The small power required to saturate the amplifier makes the system very reliable. We use the system to obtain a dipole trap that we image using a beam derived from the same configuration. PMID:22299990

  13. High power cooled mini-DIL pump lasers

    NASA Astrophysics Data System (ADS)

    Liang, Bo; Zayer, Nadhum; Chen, Bob; He, Dylan; Pliska, Tomas

    2009-11-01

    The miniature dual-inline (mini-DIL) pump laser becomes more attactive for compact optical amplifiers designs due to the advantage of smaller footprint, lower power consumption and lower cost. In this paper we report the development of a new generation of small form factor, high power "cooled" mini-DIL 980-nm pump lasers module for compact EDFA application.

  14. Bidirectional pumped high power Raman fiber laser.

    PubMed

    Xiao, Q; Yan, P; Li, D; Sun, J; Wang, X; Huang, Y; Gong, M

    2016-03-21

    This paper presents a 3.89 kW 1123 nm Raman all-fiber laser with an overall optical-to-optical efficiency of 70.9%. The system consists of a single-wavelength (1070nm) seed and one-stage bidirectional 976 nm non-wavelength-stabilized laser diodes (LDs) pumped Yb-doped fiber amplifier. The unique part of this system is the application of non-wavelength-stabilized LDs in high power bidirectional pumping configuration fiber amplifier via refractive index valley fiber combiners. This approach not only increases the pump power, but also shortens the length of fiber by avoiding the usage of multi-stage amplifier. Through both theoretical research and experiment, the bidirectional pumping configuration presented in this paper proves to be able to convert 976 nm pump laser to 1070 nm laser via Yb3+ transfer, which is then converted into 1123 nm Raman laser via the first-order Raman effect without the appearance of any higher-order Raman laser. PMID:27136862

  15. Pulse shortening in high power microwave sources

    SciTech Connect

    Benford, J.; Benford, G.

    1996-12-31

    The authors review the current state of understanding of the universal phenomena that high power microwave pulses are shorter than the applied electrical pulse. Higher power reduces pulse duration, limiting present-day sources to a few hundred joules. Is this limitation fundamental, or are there means to avoid it entirely? There is no reason to think that only one mechanism is responsible. Rather, there are layers of effects which may need to be addressed separately. The authors categories experimental observations in terms of candidate pulse shortening mechanisms such as gap closure, primary and secondary electron bombardment of walls, and RF breakdown. Pulse shortening mechanism theory (microwave field interaction with the beam, resistive filamentation, enhanced closure, etc.) is summarized and compared to observations. They make suggestions for additional experiments and diagnostics to help separate out causes. Finally, means of reducing or eliminating pulse shortening are reviewed.

  16. High-Power Options for LANSCE

    SciTech Connect

    Garnett, Robert W.

    2011-01-01

    The LANSCE linear accelerator at Los Alamos National Laboratory has a long history of successful beam operations at 800 kW. We have recently studied options for restoration of high-power operations including approaches for increasing the performance to multi-MW levels. In this paper we will discuss the results of this study including the present limitations of the existing accelerating structures at LANSCE, and the high-voltage and RF systems that drive them. Several options will be discussed and a preferred option will be presented that will enable the first in a new generation of scientific facilities for the materials community. The emphasis of this new facility is 'Matter-Radiation Interactions in Extremes' (MaRIE) which will be used to discover and design the advanced materials needed to meet 21st century national security and energy security challenges.

  17. SIMULATING ACCELERATOR STRUCTURE OPERATION AT HIGH POWER

    SciTech Connect

    Ivanov, V

    2004-09-15

    The important limiting factors in high-gradient accelerator structure operation are dark current capture, RF breakdown and electron multipacting. These processes involve both primary and secondary electron field emission and produce plasma and X-rays. To better understand these phenomena, they have simulated dark current generation and transport in a linac structure and a square-bend waveguide, both high power tested at SLAC. For these simulations, they use the parallel, time-domain, unstructured-grid code Tau3P and the particle tracking module Track3P. In this paper, they present numerical results and their comparison with measurements on energy spectrum of electrons transmitted in a 30-cell structure and of X-rays emitted from the square-bend waveguide.

  18. Multi-harmonic RF test stand for RF breakdown studies

    SciTech Connect

    Jiang, Y.; Shchelkunov, S.; Yakovlev, V. P.; Solyak, N.; Kuzikov, S. V.; Hirshfield, J. L.

    2012-12-21

    A multi-harmonic RF test stand is under construction at Yale Beam Physics Laboratory. It includes a frequency multiplier which can generate high power harmonics efficiently that are phase locked to the fundamental drive frequency. In a bi-modal asymmetric cavity powered by this RF source, the cavity may experience reduced exposure time to peak fields and sweeping of peak fields across their surfaces, and strong asymmetry between surfaces that may experience cathode-and anode-like fields; these phenomena are to be assessed for their influence on RF breakdown probabilities.

  19. RF breakdown experiments at SLAC

    SciTech Connect

    Laurent, L.; Vlieks, A.; Pearson, C.; Caryotakis, G.; Luhmann, N.C.

    1999-05-01

    RF breakdown is a critical issue in the conditioning of klystrons, accelerator sections, and rf components for the next linear collider (NLC), as well as other high gradient accelerators and high power microwave sources. SLAC is conducting a series of experiments using an X-band traveling wave ring to characterize the processes and trigger mechanisms associated with rf breakdown. The goal of the research is to identify materials, processes, and manufacturing methods that will increase the breakdown threshold and minimize the time required for conditioning. {copyright} {ital 1999 American Institute of Physics.}

  20. PULSE AMPLIFIER

    DOEpatents

    Johnstone, C.W.

    1958-06-17

    The improvement of pulse amplifiers used with scintillation detectors is described. The pulse amplifier circuit has the advantage of reducing the harmful effects of overloading cause by large signal inputs. In general the pulse amplifier circuit comprises two amplifier tubes with the input pulses applied to one amplifier grid and coupled to the second amplifier tube through a common cathode load. The output of the second amplifier is coupled from the plate circuit to a cathode follower tube grid and a diode tube in connected from grid to cathode of the cathode follower tube. Degenerative feedback is provided in the second amplifier by coupling a signal from the cathode follower cathode to the second amplifier grid. The circuit proqides moderate gain stability, and overload protection for subsequent pulse circuits.

  1. Development of pre pre-driver amplifier stage for generator of SST-1 ICRH system

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Sinh Makwana, Azad; Srinivas, Y. S. S.; Kulkarni, S. V.; ICRH-RF Group

    2010-02-01

    The Ion Cyclotron Resonance Heating (ICRH) system for SST1 consists mainly of the cwrf power generator to deliver 1.5MW for 1000sec duration at the frequencies 22.8, 24.3 and 45.6±1MHz, the transmission line and the antenna. This is planned to develop a independent and dedicated cwrf generator that consists of a oscillator, buffer, rf switch, modulator, rf attenuator, directional coupler, three stage solid state low power amplifier and four stage triode & tetrode based high power amplifier with specific performance at 45.6±1MHz including frequencies 22.8 and 24.3±1MHz. The pre pre-driver high power amplifier stage is fabricated about triode 3CX3000A7. The tube has sufficient margin in terms of plate dissipation and grid dissipation that makes it suitable to withstand momentarily load mismatch and to upgrade the source in terms of output power later. This indigenously developed amplifier is integrated inside a radiation resistant rack with all required biasing power supplies, cooling blower, controls, monitors and interlocks for manual or remote control operation. This grounded grid mode amplifier will be operated at plate with 3.8KV/ 800mA in class AB for 1.8KW cwrf output power rating. The input circuit is broadband and the output circuit is tunable with slide variable inductor and a vacuum variable capacitor in the frequency range of 22.8 to 45.6MHz. It is designed for a gain of about 12dB, fabrication completed and undergoing cwrf power testing. This paper presents specifications, design criteria, circuit used, operating parameters, tests conducted and the results obtained.

  2. 2 MW CW RF load for gyrotrons

    SciTech Connect

    Lawrence Ives, R.; Marsden, David; Mizuhara, Max; Collins, George; Neilson, Jeff; Borchard, Philipp

    2011-07-01

    Final design and assembly are in progress for a 2MW CW RF load for gyrotrons. Such loads are required for testing high power gyrotrons for electron cyclotron heating of fusion plasmas. The research is building on experience with a 1 MW load to increase the power capability, reduce backscattered RF power, and improve the mechanical design. (author)

  3. High-Power Ka-Band Window and Resonant Ring

    SciTech Connect

    Jay L. Hirshfield

    2006-11-29

    A stand-alone 200 MW rf test station is needed for carrying out development of accelerator structures and components for a future high-gradient multi-TeV collider, such as CLIC. A high-power rf window is needed to isolate the test station from a structure element under test. This project aimed to develop such a window for use at a frequency in the range 30-35 GHz, and to also develop a high-power resonant ring for testing the window. During Phase I, successful conceptual designs were completed for the window and the resonant ring, and cold tests of each were carried out that confirmed the designs.

  4. High power microwave components for space communications satellite

    NASA Technical Reports Server (NTRS)

    Jankowski, H.; Geia, A.

    1972-01-01

    Analyzed, developed, and tested were high power microwave components for communications satellites systems. Included were waveguide and flange configurations with venting, a harmonic filter, forward and reverse power monitors, electrical fault sensors, and a diplexer for two channel simultaneous transmission. The assembly of 8.36 GHz components was bench tested, and then operated for 60 hours at 3.5 kW CW in a high vacuum. The diplexer was omitted from this test pending a modification of its end irises. An RF leakage test showed only that care is required at flange junctions; all other components were RF tight. Designs were extrapolated for 12 GHz and 2.64 GHz high power satellite systems.

  5. Dye laser traveling wave amplifier

    NASA Technical Reports Server (NTRS)

    Davidson, F.; Hohman, J.

    1984-01-01

    A flashlamp pumped dye laser suitable for use as a single stage amplifier is described. Particular emphasis is placed on the efforts to increase output pulse energy and improve the temporal profile of the injected pulse. By using high power thin film polarizers, output energies reach from 4 to 45 mJ. Various dispersive elements are used to develop an amplified pulse with an extremely clean temporal profile.

  6. Rf power sources for 1990 and beyond

    SciTech Connect

    Reid, D.W.

    1986-01-01

    This paper will discuss the types of devices and system architectures that show promise in providing rf power sources for future space requirements. It will extrapolate these solutions to accelerators that are now being planned for construction and commissioning in the 1990s and will suggest technological advantages of using SDI-developed rf systems. Finally, the present state of the various SDI-sponsored high-powered rf-development programs will be reviewed.

  7. High power ferrite microwave switch

    NASA Technical Reports Server (NTRS)

    Bardash, I.; Roschak, N. K.

    1975-01-01

    A high power ferrite microwave switch was developed along with associated electronic driver circuits for operation in a spaceborne high power microwave transmitter in geostationary orbit. Three units were built and tested in a space environment to demonstrate conformance to the required performance characteristics. Each unit consisted of an input magic-tee hybrid, two non-reciprocal latching ferrite phase shifters, an out short-slot 3 db quadrature coupler, a dual driver electronic circuit, and input logic interface circuitry. The basic mode of operation of the high power ferrite microwave switch is identical to that of a four-port, differential phase shift, switchable circulator. By appropriately designing the phase shifters and electronic driver circuits to operate in the flux-transfer magnetization mode, power and temperature insensitive operation was achieved. A list of the realized characteristics of the developed units is given.

  8. High Power Operation of the JLab IR FEL Driver Accelerator

    SciTech Connect

    Kevin Beard; Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Christopher Gould; Albert Grippo; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; J. Hovater; Kevin Jordan; John Klopf; Rui Li; Steven Moore; George Neil; Benard Poelker; Thomas Powers; Joseph Preble; Robert Rimmer; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Gwyn Williams; Shukui Zhang

    2007-08-01

    Operation of the JLab IR Upgrade FEL at CW powers in excess of 10 kW requires sustained production of high electron beam powers by the driver ERL. This in turn demands attention to numerous issues and effects, including: cathode lifetime; control of beamline and RF system vacuum during high current operation; longitudinal space charge; longitudinal and transverse matching of irregular/large volume phase space distributions; halo management; management of remnant dispersive effects; resistive wall, wake-field, and RF heating of beam vacuum chambers; the beam break up instability; the impact of coherent synchrotron radiation (both on beam quality and the performance of laser optics); magnetic component stability and reproducibility; and RF stability and reproducibility. We discuss our experience with these issues and describe the modus vivendi that has evolved during prolonged high current, high power beam and laser operation.

  9. Integrated high power VCSEL systems

    NASA Astrophysics Data System (ADS)

    Moench, Holger; Conrads, Ralf; Gronenborn, Stephan; Gu, Xi; Miller, Michael; Pekarski, Pavel; Pollmann-Retsch, Jens; Pruijmboom, Armand; Weichmann, Ulrich

    2016-03-01

    High power VCSEL systems are a novel laser source used for thermal treatment in industrial manufacturing. These systems will be applied in many applications, which have not used a laser source before. This is enabled by the unique combination of efficiency, compactness and robustness. High power VCSEL system technology encompasses elements far beyond the VCSEL chip itself: i.e. heat sinks, bonding technology and integrated optics. This paper discusses the optimization of these components and processes specifically for building high-power laser systems with VCSEL arrays. New approaches help to eliminate components and process steps and make the system more robust and easier to manufacture. New cooler concepts with integrated electrical and mechanical interfaces have been investigated and offer advantages for high power system design. The bonding process of chips on sub-mounts and coolers has been studied extensively and for a variety of solder materials. High quality of the interfaces as well as good reliability under normal operation and thermal cycling have been realized. A viable alternative to soldering is silver sintering. The very positive results which have been achieved with a variety of technologies indicate the robustness of the VCSEL chips and their suitability for high power systems. Beam shaping micro-optics can be integrated on the VCSEL chip in a wafer scale process by replication of lenses in a polymer layer. The performance of VCSEL arrays with integrated collimation lenses has been positively evaluated and the integrated chips are fully compatible with all further assembly steps. The integrated high power systems make the application even easier and more robust. New examples in laser material processing and pumping of solid state lasers are presented.

  10. Generation of high-power laser light with Gigahertz splitting.

    PubMed

    Unks, B E; Proite, N A; Yavuz, D D

    2007-08-01

    We demonstrate the generation of two high-power laser beams whose frequencies are separated by the ground state hyperfine transition frequency in (87)Rb. The system uses a single master diode laser appropriately shifted by high frequency acousto-optic modulators and amplified by semiconductor tapered amplifiers. This produces two 1 W laser beams with a frequency spacing of 6.834 GHz and a relative frequency stability of 1 Hz. We discuss possible applications of this apparatus, including electromagnetically induced transparency-like effects and ultrafast qubit rotations. PMID:17764314

  11. High power neutron production targets

    SciTech Connect

    Wender, S.

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  12. A new simplified high radio frequency power amplifier

    SciTech Connect

    Ogawa, Y.; Okutsu, H.; Kobayashi, N.; Hayakawa, A.

    2004-10-01

    In order to simplify a present standard high rf power amplifier of ion cyclotron range of frequency plasma heating system, a new amplifier arrangement composed of a tetrode with a grounded cathode and a field effect transistor (FET) switching circuit providing an input rf power is proposed. The FET switching circuit is so small that it can be installed close to the tetrode in one cubicle. It might be called a single tube high rf power amplifier. A test amplifier composed of the tetrode (8F76R) and the FET (2SK-1310) switching circuit is constructed. The maximum output rf power of 8.5 kW was stably obtained at 70 MHz. The feasibility of the single tube high rf power amplifier was experimentally proved.

  13. Design and analysis of a radio frequency extractor in an S-band relativistic klystron amplifier

    SciTech Connect

    Zhang Zehai; Zhang Jun; Shu Ting; Qi Zumin

    2012-09-15

    A radio frequency (RF) extractor converts the energy of a strongly modulated intense relativistic electron beam (IREB) into the energy of high power microwave in relativistic klystron amplifier (RKA). In the aim of efficiently extracting the energy of the modulated IREB, a RF extractor with all round coupling structure is proposed. Due to the all round structure, the operating transverse magnetic mode can be established easily and its resonant property can be investigated with an approach of group delay time. Furthermore, the external quality factor can be low enough. The design and analysis of the extractor applied in an S-band RKA are carried out, and the performance of the extractor is validated with three-dimensional (3D) particle-in-cell simulations. The extraction efficiency reaches 27% in the simulation with a totally 3D model of the whole RKA. The primary experiments are also carried out and the results show that the RF extractor with the external quality factor of 7.9 extracted 22% of the beam power and transformed it into the high power microwave. Better results are expected after the parasitic mode between the input and middle cavities is suppressed.

  14. Design and analysis of a radio frequency extractor in an S-band relativistic klystron amplifier.

    PubMed

    Zhang, Zehai; Zhang, Jun; Shu, Ting; Qi, Zumin

    2012-09-01

    A radio frequency (RF) extractor converts the energy of a strongly modulated intense relativistic electron beam (IREB) into the energy of high power microwave in relativistic klystron amplifier (RKA). In the aim of efficiently extracting the energy of the modulated IREB, a RF extractor with all round coupling structure is proposed. Due to the all round structure, the operating transverse magnetic mode can be established easily and its resonant property can be investigated with an approach of group delay time. Furthermore, the external quality factor can be low enough. The design and analysis of the extractor applied in an S-band RKA are carried out, and the performance of the extractor is validated with three-dimensional (3D) particle-in-cell simulations. The extraction efficiency reaches 27% in the simulation with a totally 3D model of the whole RKA. The primary experiments are also carried out and the results show that the RF extractor with the external quality factor of 7.9 extracted 22% of the beam power and transformed it into the high power microwave. Better results are expected after the parasitic mode between the input and middle cavities is suppressed. PMID:23020400

  15. Design and analysis of a radio frequency extractor in an S-band relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Zhang, Zehai; Zhang, Jun; Shu, Ting; Qi, Zumin

    2012-09-01

    A radio frequency (RF) extractor converts the energy of a strongly modulated intense relativistic electron beam (IREB) into the energy of high power microwave in relativistic klystron amplifier (RKA). In the aim of efficiently extracting the energy of the modulated IREB, a RF extractor with all round coupling structure is proposed. Due to the all round structure, the operating transverse magnetic mode can be established easily and its resonant property can be investigated with an approach of group delay time. Furthermore, the external quality factor can be low enough. The design and analysis of the extractor applied in an S-band RKA are carried out, and the performance of the extractor is validated with three-dimensional (3D) particle-in-cell simulations. The extraction efficiency reaches 27% in the simulation with a totally 3D model of the whole RKA. The primary experiments are also carried out and the results show that the RF extractor with the external quality factor of 7.9 extracted 22% of the beam power and transformed it into the high power microwave. Better results are expected after the parasitic mode between the input and middle cavities is suppressed.

  16. LOGARITHMIC AMPLIFIER

    DOEpatents

    De Shong, J.A. Jr.

    1957-12-31

    A logarithmic current amplifier circuit having a high sensitivity and fast response is described. The inventor discovered the time constant of the input circuit of a system utilizing a feedback amplifier, ionization chamber, and a diode, is inversely proportional to the input current, and that the amplifier becomes unstable in amplifying signals in the upper frequency range when the amplifier's forward gain time constant equals the input circuit time constant. The described device incorporates impedance networks having low frequency response characteristic at various points in the circuit to change the forward gain of the amplifler at a rate of 0.7 of the gain magnitude for every two times increased in frequency. As a result of this improvement, the time constant of the input circuit is greatly reduced at high frequencies, and the amplifier response is increased.

  17. High Efficiency Microwave Power Amplifier (HEMPA) Design

    NASA Technical Reports Server (NTRS)

    Sims, W. Herbert

    2004-01-01

    This paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  18. 50 W low noise dual-frequency laser fiber power amplifier.

    PubMed

    Kang, Ying; Cheng, Lijun; Yang, Suhui; Zhao, Changming; Zhang, Haiyang; He, Tao

    2016-05-01

    A three-stage dual-frequency laser signal amplification system is presented. An output from a narrow-linewidth Nd:YAG nonplanar ring-oscillator (NPRO) is split into two parts, one of them is frequency shifted by an acoustooptic modulator (AOM) then coupled into a single mode optical fiber. The other part is coupled into another single mode fiber then combined with the frequency-shifted beam with a 2 to 1 single mode fiber coupler. The combined beam has a power of 20 mW containing two frequency components with frequency separation of 150 ± 25 MHz. The dual-frequency signal is amplified via a three-stage Yb3+-doped diode pumped fiber power amplifier. The maximum amplified power is 50.3 W corresponding to a slope efficiency of 73.72% of the last stage. The modulation depth and signal to noise ratio (SNR) of the beat signal are well maintained in the amplifying process. The dual-frequency laser fiber power amplifier provides robust optical carried RF signal with high power and low noise. PMID:27137536

  19. High Power Pulsed Gas Lasers

    NASA Astrophysics Data System (ADS)

    Witteman, W. J.

    1987-09-01

    Gas lasers have shown to be capable of delivering tens of terrawatt aspeak power or tens of kilowatt as average power. The efficiencies of most high power gas lasers are relatively high compared with other types of lasers. For instance molecular lasers, oscillating on low lying vibrational levels, and excimer lasers may have intrinsic efficiencies above 10%.The wavelengths of these gas lasers cover the range from the far infrared to the ultra-violet region, say from 12000 to 193 nm. The most important properties are the scalability, optical homogeneity of the excited medium, and the relatively low price per watt of output power. The disadvantages may be the large size of the systems and the relatively narrow line width with limited tunability compared with solid state systems producing the same peak power. High power gas lasers group into three main categories depending on the waste-heat handling capacity.

  20. High power solid state lasers

    SciTech Connect

    Weber, H.

    1988-01-01

    These proceedings discuss the following subjects: trends in materials processing with laser radiation; slabs and high power systems; glasses and new crystals; solid state lasers at HOYA Corp.; lamps, resonators and transmission; glasses as active materials for high average power solid state lasers; flashlamp pumped GGG-crystals; alexandrite lasers; designing telescope resonators; mode operation of neodymium: YAG lasers; intracavity frequency doubling with KTP crystal and thermal effects in cylinder lasers.

  1. Operational Amplifiers.

    ERIC Educational Resources Information Center

    Foxcroft, G. E.

    1986-01-01

    Addresses the introduction of low cost equipment into high school and college physical science classes. Examines the properties of an "ideal" operational amplifier and discusses how it might be used under saturated and non-saturated conditions. Notes the action of a "real" operational amplifier. (TW)

  2. RF Sources for the ITER Ion Cyclotron Heating and Current Drive System

    SciTech Connect

    Hosea, J.; Brunkhorst, C.; Fredd, E.; Goulding, R. H.; Goulding, R. H.; Greenough, N.; Kung, C.; Rasmussen, D. A.; Swain, D. W.; Wilson, J. R.

    2005-10-04

    The RF source requirements for the ITER ion cyclotron (IC) heating and current drive system are very challenging ? 20 MW CW power into an antenna load with a VSWR of up to 2 over the frequency range of 35-65 MHz. For the two present antenna designs under consideration, 8 sources providing 2.5 MW each are to be employed. For these sources, the outputs of two final power amplifiers (FPAs), using the high power CPI 4CM2500KG tube, are combined with a 180? hybrid combiner to easily meet the ITER IC source requirements ? 2.5 MW is supplied at a VSWR of 2 at ? 70% of the maximum tube power available in class B operation. The cylindrical cavity configuration for the FPAs is quite compact so that the 8 combined sources fit into the space allocated at the ITER site with room to spare. The source configuration is described in detail and its projected operating power curves are presented. Although the CPI tube has been shown to be stable under high power operating conditions on many facilities, a test of the combined FPA source arrangement is in preparation using existing high power 30 MHz amplifiers to assure that this configuration can be made robustly stable for all phases at a VSWR up to 2. The possibility of using 12 sources to feed a suitably modified antenna design is also discussed in the context of providing flexibility for specifying the final IC antenna design.

  3. Amplifier Distortion

    NASA Astrophysics Data System (ADS)

    Keeports, David

    2006-12-01

    By definition, a high fidelity amplifier's instantaneous output voltage is directly proportional to its instantaneous input voltage. While high fidelity is generally valued in the amplification of recorded music, nonlinearity, also known as distortion, is desirable in the amplification of some musical instruments. In particular, guitar amplifiers exploit nonlinearity to increase both the harmonic content and sustain of a guitar's sound. I will discuss how both modifications in sound result from saturation of triode tubes and transistors. Additionally, I will describe the difference in the symmetry of saturation curves for transistors and tubes and the reason why tube guitar amplifiers are generally considered to be superior to solid-state amplifiers. Finally, I will discuss attempts to use solid-state electronics to replicate the sound of tube amplifiers.

  4. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  5. Double rf system for bunch shortening

    SciTech Connect

    Chin, Yong Ho.

    1990-11-01

    It was suggested by Zisman that the combination of the two systems (double rf system) may be more effective to shorten a bunch, compromising between the desirable and the undesirable effects mentioned above. In this paper, we demonstrate that a double rf system is, in fact, quite effective in optimizing the rf performance. The parameters used are explained, and some handy formulae for bunch parameters are derived. We consider an example of bunch shortening by adding a higher-harmonic rf system to the main rf system. The parameters of the main rf system are unchanged. The double rf system, however, can be used for another purpose. Namely, the original bunch length can be obtained with a main rf voltage substantially lower than for a single rf system without necessitating a high-power source for the higher-harmonic cavities. Using a double rf system, the momentum acceptance remains large enough for ample beam lifetime. Moreover, the increase in nonlinearity of the rf waveform increases the synchrotron tune spread, which potentially helps a beam to be stabilized against longitudinal coupled-bunch instabilities. We will show some examples of this application. We discuss the choice of the higher-harmonic frequency.

  6. High-Power Comparison Among Brazed, Clamped and Electroformed X-Band Cavities

    SciTech Connect

    Spataro, B.; Alesini, D.; Chimenti, V.; Dolgashev, V.; Higashi, Y.; Migliorati, M.; Mostacci, A.; Parodi, R.; Tantawi, S.G.; Yeremian, A.D.; /SLAC

    2012-04-25

    We report the building procedure of X-band copper structures using the electroforming and electroplating techniques. These techniques allow the deposition of copper layers on a suitable die and they can be used to build RF structures avoiding the high temperature brazing step in the standard technique. We show the constructed prototypes and low power RF measurements and discuss the results of the high power tests at SLAC National Accelerator Laboratory.

  7. High power excimer laser micromachining

    NASA Astrophysics Data System (ADS)

    Herbst, Ludolf; Paetzel, Rainer

    2006-02-01

    Today's excimer lasers are well-established UV laser sources for a wide variety of micromachining applications. The excimer's high pulse energy and average power at short UV wavelengths make them ideal for ablation of various materials, e. g., polyimide, PMMA, copper, and diamond. Excimer micromachining technology, driven by the ever-shrinking feature sizes of micro-mechanical and micro-electronic devices, is used for making semiconductor packaging microvias, ink jet nozzle arrays, and medical devices. High-power excimer laser systems are capable of processing large areas with resolution down to several microns without using wet chemical processes. For instance, drilling precise tapered holes and reel-to-reel manufacturing of disposable sensors have proven to be very cost-effective manufacturing techniques for volume production. Specifically, the new industrial excimer laser-the LAMBDA SX 315C-easily meets the high demands of cost-effective production. The stabilized output power of 315 watts at 300 Hz (308 nm) and its outstanding long-term stability make this laser ideal for high-duty-cycle, high-throughput micromachining. In this paper, high-power excimer laser technology, products, applications, and beam delivery systems will be discussed.

  8. Development of fundamental power coupler for high-current superconducting RF cavity

    SciTech Connect

    Jain P.; Belomestnykh, S.; Ben-Zvi, I.; Xu, W.

    2012-05-20

    Brookhaven National Laboratory took a project of developing a 704 MHz five-cell superconducting RF cavity for high-current linacs, including Energy Recovery Linac (ERL) for planned electron-hadron collider eRHIC. The cavity will be fed by a high-power RF amplifier using a coaxial Fundamental Power Coupler (FPC), which delivers 20 kW of CW RF power to the cavity. The design of FPC is one of the important aspects as one has to take into account the heat losses dissipated on the surface of the conductor by RF fields along with that of the static heat load. Using a simple simulation model we show the temperature profile and the heat load dissipated along the coupler length. To minimize the heat load on FPC near the cavity end, a thermal intercept is required at an appropriate location on FPC. A 10 K intercept was chosen and its location optimized with our simulation code. The requirement on the helium gas flow rate for the effective heat removal from the thermal intercept is also discussed.

  9. High power input coupler development for BEPCII 500 MHz superconducting cavity

    NASA Astrophysics Data System (ADS)

    Huang, Tongming; Pan, Weimin; Ma, Qiang; Wang, Guangwei; Dai, Xuwen; Zhang, Zhanjun; Furuya, T.; Mitsunobu, S.

    2010-11-01

    A high power input coupler for a 500 MHz superconducting cavity (SCC) of the upgrade project of Beijing Electron Positron Collider (BEPCII) has been developed in China. Several prototypes have been fabricated and tested successfully. A maximum of 420 kW continuous wave (CW) RF power in traveling wave (TW) mode was achieved in the high power test. The detailed design, fabrication and test of the coupler are described in this paper.

  10. Autonomous portable pulsed-periodical generator of high-power radiofrequency-pulses based on gas discharge with hollow cathode

    NASA Astrophysics Data System (ADS)

    Bulychev, Sergey V.; Dubinov, Alexander E.; L'vov, Igor L.; Popolev, Vyacheslav L.; Sadovoy, Sergey A.; Sadchikov, Eugeny A.; Selemir, Victor D.; Valiulina, Valeria K.; Vyalykh, Dmitry V.; Zhdanov, Victor S.

    2016-05-01

    Portable autonomous generator of high-power RF-pulses based on the gas discharge with hollow cathode has been designed, fabricated, and tested. Input and output characteristics are the following: discharge current amplitude is 800 A, duration of generated RF-pulses is 350 ns, carrier frequency is ˜90 MHz, power in RF-pulse is 0.5 MW, pulse repetition rate is 0.5 kHz, and device efficiency is ˜25%.

  11. Autonomous portable pulsed-periodical generator of high-power radiofrequency-pulses based on gas discharge with hollow cathode.

    PubMed

    Bulychev, Sergey V; Dubinov, Alexander E; L'vov, Igor L; Popolev, Vyacheslav L; Sadovoy, Sergey A; Sadchikov, Eugeny A; Selemir, Victor D; Valiulina, Valeria K; Vyalykh, Dmitry V; Zhdanov, Victor S

    2016-05-01

    Portable autonomous generator of high-power RF-pulses based on the gas discharge with hollow cathode has been designed, fabricated, and tested. Input and output characteristics are the following: discharge current amplitude is 800 A, duration of generated RF-pulses is 350 ns, carrier frequency is ∼90 MHz, power in RF-pulse is 0.5 MW, pulse repetition rate is 0.5 kHz, and device efficiency is ∼25%. PMID:27250451

  12. High Power Tests of Normal Conducting Single-Cell Structures

    SciTech Connect

    Dolgashev, V.A.; Tantawi, S.G.; Nantista, C.D.; Higashi, Y.; Higo, T.; /KEK, Tsukuba

    2007-11-07

    We report the results of the first high power tests of single-cell traveling-wave and standing-wave structures. These tests are part of an experimental and theoretical study of rf breakdown in normal conducting structures at 11.4 GHz. The goal of this study is to determine the gradient potential of normal-conducting rf-powered particle beam accelerators. The test setup consists of reusable mode converters and short test structures and is powered by SLAC's XL-4 klystron. This setup was created for economical testing of different cell geometries, cell materials and preparation techniques with short turn-around time. The mode launchers and structures were manufactured at SLAC and KEK and tested in the SLAC Klystron Test Lab.

  13. High power windows for WR650 waveguide couplers

    SciTech Connect

    Mircea Stirbet; Robert Rimmer; Thomas Elliott; Edward Daly; Katherine Wilson; Lynn Vogel; Haipeng Wang; Brian Carpenter; Karl Smith; Thomas Powers; Michael Drury; Robert Nichols; G. Davis

    2007-06-01

    Based on the robust, pre-stressed planar window concept successfully tested for PEP II and LEDA, a new design for planar ceramic windows to be used with WR650 waveguide fundamental power couplers at 1300 MHz or 1500 MHz has been developed. These windows should operate in pulsed or CW mode and sustain at least 100 kW average power levels. This paper describes an overview of the simulations performed to match the ceramics in WR650 waveguides, design details, as well as the RF measurements and performance assessed by RF power tests on several high power windows manufactured at JLAB. Funding Agency: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177, and by The Office of Naval Research under contract to the Dept. of Energy.

  14. Review of high-power microwave source research

    NASA Astrophysics Data System (ADS)

    Gold, Steven H.; Nusinovich, Gregory S.

    1997-11-01

    This article reviews the state-of-the-art in high-power microwave source research. It begins with a discussion of the concepts involved in coherent microwave generation. The main varieties of microwave tubes are classified into three groups, according to the fundamental radiation mechanism involved: Cherenkov, transition, or bremsstrahlung radiation. This is followed by a brief discussion of some of the technical fundamentals of high-power microwave sources, including power supplies and electron guns. Finally, the history and recent developments of both high-peak power and high-average power sources are reviewed in the context of four main areas of application: (1) plasma resonance heating and current drive; (2) rf acceleration of charged particles; (3) radar and communications systems; and (4) high-peak power sources for weapons-effect simulation and exploratory development.

  15. High Power Coaxial Ubitron Oscillator: Theory and Design

    NASA Astrophysics Data System (ADS)

    Balkcum, A. J.; McDermott Luhmann, D. B., Jr.; Phillips, R. M.

    1997-11-01

    The coaxial ubitron is ideally suited for producing high power microwaves. It utilizes an annular beam of electrons which interact with the rf breakdown resistant TE_01 mode in a coaxial circuit. Because the periodic permanent magnetic (PPM) focusing of the device is capable of propagating extremely high currents without an axial guide field, high power operation with high overall efficiency can be achieved. The PPM rings also produce the quiver velocity for the ubitron. The linear theory for the ubitron oscillator and a simple fast timescale particle tracing nonlinear simulation code are presented. These have been used to develop a design for an S-band coaxial cavity oscillator capable of producing 1 GW of power with 21% efficiency. Verification of the design has been achieved using MAGIC, a 2-1/2 dimensional particle-in-cell (PIC) code.

  16. HIGH POWER OPERATIONS AT THE LOW ENERGY DEMONSTRATION ACCELERATOR (LEDA)

    SciTech Connect

    M. DURAN; V. R. HARRIS

    2001-01-01

    Recently, the Low-Energy Demonstration Accelerator (LEDA) portion of the Accelerator Production of Tritium (APT) project reached its 100-mA, 8-hr continuous wave (CW) beam operation milestone. The LEDA accelerator is a prototype of the low-energy front-end of the linear accelerator (linac) that would have been used in an APT plant. LEDA consists of a 75-keV proton injector, 6.7-MeV, 350-MHz CW radio-frequency quadrupole (RFQ) with associated high-power and low-level RF systems, a short high-energy beam transport (HEBT) and high-power (670-kW CW) beam dump. Details of the LEDA design features will be discussed along with the operational health physics experiences that occurred during the LEDA commissioning phase.

  17. High power l-band fast phase shifter

    SciTech Connect

    Terechkine, I.; Khabiboulline, T.; Solyak, N.; /Fermilab

    2008-10-01

    Following successful testing of a concept prototype of a waveguide-based high power phase shifter, a design of a fast, high power device has been developed. The shifter uses two magnetically biased blocks of Yttrium Iron Garnet (YIG) positioned along the side walls of a rectangular waveguide. The cross-section of the waveguide is chosen to suppress unwanted RF modes that could otherwise compromise performance of the phase shifter. Static bias field in the YIG blocks is created by employing permanent magnets. Low inductance coils in the same magnetic circuit excite fast component of the bias field. Design of the device ensures effective heat extraction from the YIG blocks and penetration of the fast magnetic field inside the waveguide with minimum delay. This paper summarizes main steps in this development and gives brief description of the system.

  18. The CEBAF RF Separator System Upgrade

    SciTech Connect

    J. Hovater; Mark Augustine; Al Guerra; Richard Nelson; Robert Terrell; Mark Wissmann

    2004-08-01

    The CEBAF accelerator uses RF deflecting cavities operating at the third sub-harmonic (499 MHz) of the accelerating frequency (1497 MHz) to ''kick'' the electron beam to the experimental halls. The cavities operate in a TEM dipole mode incorporating mode enhancing rods to increase the cavity's transverse shunt impedance [1]. As the accelerators energy has increased from 4 GeV to 6 GeV the RF system, specifically the 1 kW solid-state amplifiers, have become problematic, operating in saturation because of the increased beam energy demands. Two years ago we began a study to look into replacement for the RF amplifiers and decided to use a commercial broadcast Inductive Output Tube (IOT) capable of 30 kW. The new RF system uses one IOT amplifier on multiple cavities as opposed to one amplifier per cavity as was originally used. In addition, the new RF system supports a proposed 12 GeV energy upgrade to CEBAF. We are currently halfway through the upgrade with three IOTs in operation and the remaining one nearly installed. This paper reports on the new RF system and the IOT performance.

  19. High power density spray cooling

    NASA Astrophysics Data System (ADS)

    Tilton, Donald E.; Pais, Martin R.; Chow, Louis C.

    1989-07-01

    The research reported describes experimental and theoretical investigations of high power density evaporative spray cooling. Preliminary experiments demonstrating heat fluxes greater than 1,000 W/sq cm were conducted. Extensive laser phase Doppler measurements of spray characteristics were also taken. These measurements provided valuable insight into the heat transfer process. An in-depth analysis was conducted to determine the mechanisms responsible for critical heat flux. Theoretical modeling was also conducted to determine the most desirable heat transfer conditions. After analysis of these results, an improved experimental apparatus was designed and fabricated. The new apparatus provided greater experimental control and improve accuracy. New tests were conducted in which the critical heat flux was increased, and the heat transfer efficiency was greatly improved. These results are compared to those of previous researchers, and indicated substantial improvement.

  20. Binary rf pulse compression experiment at SLAC

    SciTech Connect

    Lavine, T.L.; Spalek, G.; Farkas, Z.D.; Menegat, A.; Miller, R.H.; Nantista, C.; Wilson, P.B.

    1990-06-01

    Using rf pulse compression it will be possible to boost the 50- to 100-MW output expected from high-power microwave tubes operating in the 10- to 20-GHz frequency range, to the 300- to 1000-MW level required by the next generation of high-gradient linacs for linear for linear colliders. A high-power X-band three-stage binary rf pulse compressor has been implemented and operated at the Stanford Linear Accelerator Center (SLAC). In each of three successive stages, the rf pulse-length is compressed by half, and the peak power is approximately doubled. The experimental results presented here have been obtained at low-power (1-kW) and high-power (15-MW) input levels in initial testing with a TWT and a klystron. Rf pulses initially 770 nsec long have been compressed to 60 nsec. Peak power gains of 1.8 per stage, and 5.5 for three stages, have been measured. This corresponds to a peak power compression efficiency of about 90% per stage, or about 70% for three stages, consistent with the individual component losses. The principle of operation of a binary pulse compressor (BPC) is described in detail elsewhere. We recently have implemented and operated at SLAC a high-power (high-vacuum) three-stage X-band BPC. First results from the high-power three-stage BPC experiment are reported here.

  1. A no-load RF calorimeter

    NASA Technical Reports Server (NTRS)

    Chernoff, R. C.

    1975-01-01

    The described device can be used to measure the output of any dc powered RF source. No dummy load is required for the measurements. The device is, therefore, called the 'no-load calorimeter' (NLC). The NLC measures the power actually fed to the antenna or another useful load. It is believed that the NLC can compete successfully with directional coupler type systems in measuring the output of high-power RF sources.

  2. Radio-frequency spectroscopy of the active fiber heating under condition of high-power lasing generation.

    PubMed

    Ryabushkin, O A; Shaidullin, R I; Zaytsev, I A

    2015-05-01

    A novel method for the precise temperature measurement of active fibers in high-power fiber lasers and amplifiers is introduced. This method allows the determination of active fiber longitudinal temperature distribution at different optical pump powers. PMID:25927761

  3. The Jefferson Lab High Power Light Source

    SciTech Connect

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  4. Optics assembly for high power laser tools

    DOEpatents

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  5. LOGARITHMIC AMPLIFIER

    DOEpatents

    Wade, E.J.; Stone, R.S.

    1959-03-10

    Electronic,amplifier circuits, especially a logai-ithmic amplifier characterizxed by its greatly improved strability are discussed. According to the in ention, means are provided to feed bach the output valtagee to a diode in the amplifier input circuit, the diode being utilized to produce the logarithmic characteristics. The diode is tics, The diode isition therewith and having its filament operated from thc same source s the filament of the logarithmic diode. A bias current of relatively large value compareii with the signal current is continuously passed through the compiting dioie to render the diode insensitivy to variations in the signal current. by this odes kdu to variaelled, so that the stability of the amlifier will be unimpaired.

  6. NASA developments in solid state power amplifiers

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F.

    1990-01-01

    Over the last ten years, NASA has undertaken an extensive program aimed at development of solid state power amplifiers for space applications. Historically, the program may be divided into three phases. The first efforts were carried out in support of the advanced communications technology satellite (ACTS) program, which is developing an experimental version of a Ka-band commercial communications system. These first amplifiers attempted to use hybrid technology. The second phase was still targeted at ACTS frequencies, but concentrated on monolithic implementations, while the current, third phase, is a monolithic effort that focusses on frequencies appropriate for other NASA programs and stresses amplifier efficiency. The topics covered include: (1) 20 GHz hybrid amplifiers; (2) 20 GHz monolithic MESFET power amplifiers; (3) Texas Instruments' (TI) 20 GHz variable power amplifier; (4) TI 20 GHz high power amplifier; (5) high efficiency monolithic power amplifiers; (6) GHz high efficiency variable power amplifier; (7) TI 32 GHz monolithic power amplifier performance; (8) design goals for Hughes' 32 GHz variable power amplifier; and (9) performance goals for Hughes' pseudomorphic 60 GHz power amplifier.

  7. High power 325 MHz vector modulators for the Fermilab High Intensity Neutrino Source (HINS)

    SciTech Connect

    Madrak, Robyn Leigh; Wildman, David; /Fermilab

    2008-10-01

    One of the goals of the low energy 60 MeV section of the HINS H{sup -} linac [1] is to demonstrate that a total of {approx}40 RF cavities can be powered by a single 2.5 MW, 325 MHz klystron. This requires individual vector modulators at the input of each RF cavity to independently adjust the amplitude and phase of the RF input signal during the 3.5 ms RF pulse. Two versions of vector modulators have been developed; a 500 kW device for the radiofrequency quadrupole (RFQ) and a 75 kW modulator for the RF cavities. High power tests showing the vector modulator phase and amplitude responses will be presented.

  8. High power microwave beam steering based on gyromagnetic nonlinear transmission lines

    NASA Astrophysics Data System (ADS)

    Romanchenko, I. V.; Rostov, V. V.; Gunin, A. V.; Konev, V. Yu.

    2015-06-01

    We demonstrate electronically controlled beam steering by high power RF pulses produced by two gyromagnetic nonlinear transmission lines (NLTLs) connected to a one high voltage driver. Each NLTL is capable of producing several ns RF pulses with peak power from 50 to 700 MW (6% standard deviation) at frequencies from 0.5 to 1.7 GHz (1% standard deviation) with 100 Hz repetition rate. Using a helix antenna allows irradiating of RF pulses with almost circular polarization and 350 MW maximum peak power, which corresponds to 350 kV effective potential of radiation. At the installation of two identical channels, we demonstrate the possibility of beam steering within ±15° in the horizontal plane by coherent RF pulses with circular polarization at 1.0 GHz center frequency. Fourfold increase in the power flux density for in-phase irradiation of RF pulses is confirmed by comparison with one-channel operation.

  9. Bidirectional amplifier

    DOEpatents

    Wright, James T.

    1986-01-01

    A bilateral circuit is operable for transmitting signals in two directions without generation of ringing due to feedback caused by the insertion of the circuit. The circuit may include gain for each of the signals to provide a bidirectional amplifier. The signals are passed through two separate paths, with a unidirectional amplifier in each path. A controlled sampling device is provided in each path for sampling the two signals. Any feedback loop between the two signals is disrupted by providing a phase displacement between the control signals for the two sampling devices.

  10. Bidirectional amplifier

    DOEpatents

    Wright, J.T.

    1984-02-02

    A bilateral circuit is operable for transmitting signals in two directions without generation of ringing due to feedback caused by the insertion of the circuit. The circuit may include gain for each of the signals to provide a bidirectional amplifier. The signals are passed through two separate paths, with a unidirectional amplifier in each path. A controlled sampling device is provided in each path for sampling the two signals. Any feedback loop between the two signals is disrupted by providing a phase displacement between the control signals for the two sampling devices.

  11. High power solid state switches

    NASA Astrophysics Data System (ADS)

    Gundersen, Martin

    1991-11-01

    We have successfully produced an optically triggered thyristor based in Gallium Arsenide, developed a model for breakdown, and are developing two related devices, including a Gallium Arsenide based static inductor thyristor. We are getting at the basic limitations of Gallium Arsenide for these applications, and are developing models for the physical processes that will determine device limitations. The previously supported gas phase work - resulting in the back-lighted thyratron (BLT) - has actually resulted in a very changed view of how switching can be accomplished, and this is impacting the design of important machines. The BLT is being studied internationally: in Japan for laser fusion and laser isotope separation. ITT has built a BLT that has switched 30 kA at 60 kV in testing at NSWC Dahlgren and the device is being commercialized by another American company. Versions of the switch are now being tested for excimer laser and other applications. Basically, the switch, which arose from pulse power physics studies at USC, can switch more current faster (higher di/dt), with less housekeeping, and with other advantageous properties. There are a large number of other new applications, include kinetic energy weapons, pulsed microwave sources and R.F. accelerators.

  12. High power ion thruster performance

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.; Patterson, Michael J.

    1987-01-01

    The ion thruster is one of several forms of space electric propulsion being considered for use on future SP-100-based missions. One possible major mission ground rule is the use of a single Space Shuttle launch. Thus, the mass in orbit at the reactor activation altitude would be limited by the Shuttle mass constraints. When the spacecraft subsystem masses are subtracted from this available mass limit, a maximum propellant mass may be calculated. Knowing the characteristics of each type of electric thruster allows maximum values of total impulse, mission velocity increment, and thrusting time to be calculated. Because ion thrusters easily operate at high values of efficiency (60 to 70%) and specific impulse (3000 to 5000 sec), they can impart large values of total impulse to a spacecraft. They also can be operated with separate control of the propellant flow rate and exhaust velocity. This paper presents values of demonstrated and projected performance of high power ion thrusters used in an analysis of electric propulsion for an SP-100 based mission.

  13. High power microwave source development

    NASA Astrophysics Data System (ADS)

    Benford, James N.; Miller, Gabriel; Potter, Seth; Ashby, Steve; Smith, Richard R.

    1995-05-01

    The requirements of this project have been to: (1) improve and expand the sources available in the facility for testing purposes and (2) perform specific tasks under direction of the Defense Nuclear Agency about the applications of high power microwaves (HPM). In this project the HPM application was power beaming. The requirements of this program were met in the following way: (1) We demonstrated that a compact linear induction accelerator can drive HPM sources at repetition rates in excess of 100 HZ at peak microwave powers of a GW. This was done for the relativistic magnetron. Since the conclusion of this contract such specifications have also been demonstrated for the relativistic klystron under Ballistic Missile Defense Organization funding. (2) We demonstrated an L band relativistic magnetron. This device has been used both on our single pulse machines, CAMEL and CAMEL X, and the repetitive system CLIA. (3) We demonstrated that phase locking of sources together in large numbers is a feasible technology and showed the generation of multigigawatt S-band radiation in an array of relativistic magnetrons.

  14. Amplified Policymaking

    ERIC Educational Resources Information Center

    Prince, Katherine; Woempner, Carolyn

    2010-01-01

    This brief examines the policy implications of two drivers of change presented in the "2020 Forecast: Creating the Future of Learning"-- Pattern Recognition and Amplified Organization. These drivers point toward a series of cultural shifts and illuminate how we are developing new ways of organizing, constructing, and managing knowledge.…

  15. Variable power combiner for RF mode shimming in 7-T MR imaging.

    PubMed

    Yazdanbakhsh, Pedram; Solbach, Klaus; Bitz, Andreas K

    2012-09-01

    This contribution discusses the utilization of RF power in an MRI system with RF mode shimming which enables the superposition of circularly polarized modes of a transmit RF coil array driven by a Butler matrix. Since the required power for the individual modes can vary widely, mode-shimming can result in a significant underutilization of the total available RF power. A variable power combiner (VPC) is proposed to improve the power utilization: it can be realized as a reconfiguration of the MRI transmit system by the inclusion of one additional matrix network which receives the power from all transmit amplifiers at its input ports and provides any desired (combined) power distribution at its output ports by controlling the phase and amplitude of the amplifiers' input signals. The power distribution at the output ports of the VPC is then fed into the "mode" ports of the coil array Butler matrix in order to superimpose the spatial modes at the highest achievable power utilization. The VPC configuration is compared to the standard configuration of the transmit chain of our MRI system with 8 transmit channels and 16 coils. In realistic scenarios, improved power utilization was achieved from 17% to 60% and from 14% to 55% for an elliptical phantom and a region of interest in the abdomen, respectively, and an increase of the power utilization of 1 dB for a region of interest in the upper leg. In general, it is found that the VPC allows significant improvement in power utilization when the shimming solution demands only a few modes to be energized, while the technique can yield loss in power utilization in cases with many modes required at high power level. PMID:22752102

  16. The design and fabrication of an X-Band RF gun

    SciTech Connect

    Ho, C.H.; Lau, W.K.; Yang, T.T.; Hwang, J.Y.; Hsu, S.Y.; Liu, Y.C.; Le Sage, G.P.; Hartemann, F.V.; Luhmann, N.C. Jr.

    1997-03-01

    A recently proposed 1 high brightness, high repetition rate, multibunch photoinjector project has reached the high power construction stage. The accelerator structure consists of a 1-1/2 cell, side wall coupled, X-Band (8.548 GHz) standing wave cavity, driven by a 20 MW SLAC Klystron, and a GHz repetition rate (burst mode) rf modelocked AlGaAs laser diode oscillator and Chirped Pulse Amplification (CPA) Ti:Al{sub 2}O{sub 3} multipass amplifier. The photocathode gun will be used to accelerate a train of one hundred, 0.1{endash}1 nC electron bunches to an energy in the range of 5 MeV. A joint collaboration between the UC Davis Department of Applied Science (DAS), and the Synchrotron Radiation Research Center (SRRC) has been established to expedite the construction and characterization of the accelerator structure. A prototype copper cavity has been fabricated and characterized. The results of the low power rf measurements are presented, as well as a description of the high power cavity design. The solenoid focusing system design and construction is also described. {copyright} {ital 1997 American Institute of Physics.}

  17. High-power, high-pressure pulsed CO{sub 2} lasers and their applications

    SciTech Connect

    Baranov, G A; Kuchinsky, A A

    2005-03-31

    The paper is devoted to problems associated with the construction of high-power pulsed CO{sub 2} lasers and high-pressure amplifiers and to an analysis of the possible ways of their solution. Prospects of the development of such lasers and their applications in technological processes are considered. Original designs of a laser complex for obtaining the carbon-13 isotope and a superatmospheric-pressure CO{sub 2} amplifier are presented. (lasers)

  18. High power free-electron laser concepts and problems

    SciTech Connect

    Goldstein, J.C.

    1995-03-01

    Free-electron lasers (FELs) have long been thought to offer the potential of high average power operation. That potential exists because of several unique properties of FELs, such as the removal of ``waste heat`` at the velocity of light, the ``laser medium`` (the electron beam) is impervious to damage by very high optical intensitites, and the technology of generating very high average power relativistic electron beams. In particular, if one can build a laser with a power extraction efficiency 11 which is driven by an electron beam of average Power P{sub EB}, one expects a laser output power of P{sub L} = {eta} P{sub EB}. One approach to FEL devices with large values of {eta} (in excess of 10 %) is to use a ``tapered`` (or nonuniform) wiggler. This approach was followed at several laboratories during the FEL development Program for the Strategic Defense Initiative (SDI) project. In this paper, we review some concepts and technical requirements for high-power tapered-wiggler FELs driven by radio-frequency linear accelerators (rf-linacs) which were developed during the SDI project. Contributions from three quite different technologies - rf-accelerators, optics, and magnets - are needed to construct and operate an FEL oscillator. The particular requirements on these technologies for a high-power FEL were far beyond the state of the art in those areas when the SDI project started, so significant advances had to be made before a working device could be constructed. Many of those requirements were not clearly understood when the project started, but were developed during the course of the experimental and theoretical research for the project. This information can be useful in planning future high-power FEL projects.

  19. K-band high power latching switch. [communication satellite system

    NASA Technical Reports Server (NTRS)

    Mlinar, M. J.; Piotrowski, W. S.; Raue, J. E.

    1980-01-01

    A 19 GHz waveguide latching switch with a bandwidth of 1400 MHz and an exceptionally low insertion loss of 0.25 dB was demonstrated. The RF and driver ferrites are separate structures and can be optimized individually. This analysis for each structure is separately detailed. Basically, the RF section features a dual turnstile junction. The circulator consists of a dielectric tube which contains two ferrite rods, and a dielectric spacer separating the ferrite parts along the center of symmetry of the waveguide to form two turnstiles. This subassembly is indexed and locked in the center of symmetry of a uniform junction of three waveguides by the metallic transformers installed in the top and bottom walls of the housing. The switching junction and its actuating circuitry met all RF performance objectives and all shock and vibration requirements with no physical damage or performance degradation. It exceeds thermal requirements by operating over a 100 C temperature range (-44 C to +56 C) and has a high power handling capability allowing up to 100 W of CW input power.

  20. RF transformer

    DOEpatents

    Smith, James L.; Helenberg, Harold W.; Kilsdonk, Dennis J.

    1979-01-01

    There is provided an improved RF transformer having a single-turn secondary of cylindrical shape and a coiled encapsulated primary contained within the secondary. The coil is tapered so that the narrowest separation between the primary and the secondary is at one end of the coil. The encapsulated primary is removable from the secondary so that a variety of different capacity primaries can be utilized with one secondary.

  1. Matching network for RF plasma source

    DOEpatents

    Pickard, Daniel S.; Leung, Ka-Ngo

    2007-11-20

    A compact matching network couples an RF power supply to an RF antenna in a plasma generator. The simple and compact impedance matching network matches the plasma load to the impedance of a coaxial transmission line and the output impedance of an RF amplifier at radio frequencies. The matching network is formed of a resonantly tuned circuit formed of a variable capacitor and an inductor in a series resonance configuration, and a ferrite core transformer coupled to the resonantly tuned circuit. This matching network is compact enough to fit in existing compact focused ion beam systems.

  2. Unstable-Resonator Oscillator/Amplifier Diode Laser

    NASA Technical Reports Server (NTRS)

    Lang, Robert J.; Mittelstein, Michael; Tiberio, Richard C.; Forouhar, Siamak; Crawford, Deborah

    1994-01-01

    Fabricated as single-chip integrated circuit. Device based partly on concept proved in commercial solid-state lasers: using unstable-resonator oscillator to define electromagnetic mode and, following oscillator, traveling-wave amplifier to generate high power. Mode-definition and power-amplification functions optimized separately. Hyperbolic-grating, unstable-resonator oscillator/amplifier diode laser produces single-longitudinal-mode, broad, laterally coherent, diffraction-limited, high-power beam.

  3. Status of high power electric propulsion technology

    NASA Technical Reports Server (NTRS)

    Byers, David C.; Stone, James R.

    1988-01-01

    The growing emphasis on very challenging missions and the anticipated availability of high power levels in space have led to renewed interest in high power electric propulsion. The status of high power electric propulsion technology and its applicability to various missions are reviewed. The major thruster and system technology issues are identified which must be addressed in a focussed program in order to assure technology readiness for these missions.

  4. High-Power Electromagnetic Thruster Being Developed

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Mikellides, Pavlos G.

    2001-01-01

    High-power electromagnetic thrusters have been proposed as primary in-space propulsion options for several bold new interplanetary and deep-space missions. As the lead center for electric propulsion, the NASA Glenn Research Center designs, develops, and tests high-power electromagnetic technologies to meet these demanding mission requirements. Two high-power thruster concepts currently under investigation by Glenn are the magnetoplasmadynamic (MPD) thruster and the Pulsed Inductive Thruster (PIT).

  5. RF power generation for future linear colliders

    SciTech Connect

    Fowkes, W.R.; Allen, M.A.; Callin, R.S.; Caryotakis, G.; Eppley, K.R.; Fant, K.S.; Farkas, Z.D.; Feinstein, J.; Ko, K.; Koontz, R.F.; Kroll, N.; Lavine, T.L.; Lee, T.G.; Miller, R.H.; Pearson, C.; Spalek, G.; Vlieks, A.E.; Wilson, P.B.

    1990-06-01

    The next linear collider will require 200 MW of rf power per meter of linac structure at relatively high frequency to produce an accelerating gradient of about 100 MV/m. The higher frequencies result in a higher breakdown threshold in the accelerating structure hence permit higher accelerating gradients per meter of linac. The lower frequencies have the advantage that high peak power rf sources can be realized. 11.42 GHz appears to be a good compromise and the effort at the Stanford Linear Accelerator Center (SLAC) is being concentrated on rf sources operating at this frequency. The filling time of the accelerating structure for each rf feed is expected to be about 80 ns. Under serious consideration at SLAC is a conventional klystron followed by a multistage rf pulse compression system, and the Crossed-Field Amplifier. These are discussed in this paper.

  6. Amplifier-free slab-coupled optical waveguide optoelectronic oscillator systems.

    PubMed

    Loh, William; Yegnanarayanan, Siva; Klamkin, Jonathan; Duff, Shannon M; Plant, Jason J; O'Donnell, Frederick J; Juodawlkis, Paul W

    2012-08-13

    We demonstrate a free-running 3-GHz slab-coupled optical waveguide (SCOW) optoelectronic oscillator (OEO) with low phase-noise (<-120 dBc/Hz at 1-kHz offset) and ultra-low sidemode spurs. These sidemodes are indistinguishable from noise on a spectrum analyzer measurement (>88 dB down from carrier). The SCOW-OEO uses high-power low-noise SCOW components in a single-loop cavity employing 1.5-km delay. The noise properties of our SCOW external-cavity laser (SCOWECL) and SCOW photodiode (SCOWPD) are characterized and shown to be suitable for generation of high spectral purity microwave tones. Through comparisons made with SCOW-OEO topologies employing amplification, we observe the sidemode levels to be degraded by any amplifiers (optical or RF) introduced within the OEO cavity. PMID:23038600

  7. High power compatible internally sensed optical phased array.

    PubMed

    Roberts, Lyle E; Ward, Robert L; Francis, Samuel P; Sibley, Paul G; Fleddermann, Roland; Sutton, Andrew J; Smith, Craig; McClelland, David E; Shaddock, Daniel A

    2016-06-13

    The technical embodiment of the Huygens-Fresnel principle, an optical phased array (OPA) is an arrangement of optical emitters with relative phases controlled to create a desired beam profile after propagation. One important application of an OPA is coherent beam combining (CBC), which can be used to create beams of higher power than is possible with a single laser source, especially for narrow linewidth sources. Here we present an all-fiber architecture that stabilizes the relative output phase by inferring the relative path length differences between lasers using the small fraction of light that is back-reflected into the fiber at the OPA's glass-air interface, without the need for any external sampling optics. This architecture is compatible with high power continuous wave laser sources (e.g., fiber amplifiers) up to 100 W per channel. The high-power compatible internally sensed OPA was implemented experimentally using commercial 15 W fiber amplifiers, demonstrating an output RMS phase stability of λ/194, and the ability to steer the beam at up to 10 kHz. PMID:27410363

  8. Overview and status of RF systems for the SSC Linac

    SciTech Connect

    Mynk, J.; Grippe, J.; Cutler, R.I.; Rodriguez, R.

    1993-05-01

    The Superconducting Super Collider (SSC) Linear Accelerator (Linac) produces a 600-MeV, 35-{mu}s, H-beam at a 10-Hz repetition rate. The beam is accelerated by a series of RF cavities. These consist of a Radio Frequency Quadrupole (RFQ), two bunchers, and four Drift Tube Linac (DTL) tanks at 427.617 MHz, and two bunchers, nine side-coupled Linac modules, and an energy compressor at 1282.851 MHz. The RFQ amplifier and the low-frequency buncher cavity amplifiers use gridded tubes, while the other cavities use klystron amplifier systems. The RF control system consists of a reference line and cavity feedback and feedforward loops for each amplifier. The RF amplifier system for each of these accelerator cavities is described, and the current status of each system is presented.

  9. LEDA RF distribution system design and component test results

    SciTech Connect

    Roybal, W.T.; Rees, D.E.; Borchert, H.L.; McCarthy, M.; Toole, L.

    1998-12-31

    The 350 MHz and 700 MHz RF distribution systems for the Low Energy Demonstration Accelerator (LEDA) have been designed and are currently being installed at Los Alamos National Laboratory. Since 350 MHz is a familiar frequency used at other accelerator facilities, most of the major high-power components were available. The 700 MHz, 1.0 MW, CW RF delivery system designed for LEDA is a new development. Therefore, high-power circulators, waterloads, phase shifters, switches, and harmonic filters had to be designed and built for this applications. The final Accelerator Production of Tritium (APT) RF distribution systems design will be based on much of the same technology as the LEDA systems and will have many of the RF components tested for LEDA incorporated into the design. Low power and high-power tests performed on various components of these LEDA systems and their results are presented here.

  10. High-power output of ytterbium-doped oxyorthosilicate lasers at 1018 nm

    NASA Astrophysics Data System (ADS)

    Lin, Niannian; Li, Wenxue; Zhou, Yuan; Shi, Yi; Yan, Ming; Yang, Kangwen; Zhao, Jian; Yang, Xianghui; Zeng, Heping

    2013-01-01

    A high-power laser system at 1018 nm was realized with an ytterbium-doped oxyorthosilicate solid-state master oscillator and ytterbium-doped double-clad fiber amplifier. In the Yb:LSO (Yb:Lu2SiO5) and Yb:LYSO (Yb:LuYSiO5) master laser oscillator, we attained the broadest tunable wavelength range from 994.50 to 1094.22 nm. In the power amplifier, we achieved an output power up to 4.14 W at 1018 nm by amplifying the Yb:LSO laser under a pump power of 15.8 W.

  11. Diode amplifier of modulated optical beam power

    SciTech Connect

    D'yachkov, N V; Bogatov, A P; Gushchik, T I; Drakin, A E

    2014-11-30

    Analytical relations are obtained between characteristics of modulated light at the output and input of an optical diode power amplifier operating in the highly saturated gain regime. It is shown that a diode amplifier may act as an amplitude-to-phase modulation converter with a rather large bandwidth (∼10 GHz). The low sensitivity of the output power of the amplifier to the input beam power and its high energy efficiency allow it to be used as a building block of a high-power multielement laser system with coherent summation of a large number of optical beams. (lasers)

  12. BOOK REVIEW: Generation and Application of High Power Microwaves

    NASA Astrophysics Data System (ADS)

    Hirshfield, J. L.

    1998-08-01

    A question often posed upon publication of a summer school proceedings is whether the contents are of lasting value, or are only an archive or diary of the gathering. This issue is exacerbated by the year's delay (or more) that is all too customary between the school itself and publication; and of course the attendees have had the contents in note form all along. Only occasionally, in this reviewer's experience, are the contents worth the purchase price of the book; and even less often is the book a useful reference for course work in a teaching context. It is thus gratifying to report that the present volume should be of lasting value, and should be a useful reference for students in high power microwave physics and related fields to have and to hold during their formative years. The editors, Professor Alan Cairns of the University of St Andrews, and Professor Alan Phelps of the University of Strathclyde, have assembled some 14 essays in the book on a range of topics on microwave source physics and the uses of high power microwaves for fusion plasma heating. Amongst the essays are several tutorials, including Alan Phelps' own 8 page introduction; Michael Petelin's elegant overview of a range of classical spontaneous and stimulated radiation processes for free electrons; Rodolfo Bonifacio's exposition on free electron waveguide lasers; James Eastwood's overview of computer modelling methods; Georges Faillon's review of klystrons; Alan Cairns's and Nat Fisch's lucid descriptions of the physical basis of plasma heating with intense microwaves; and Manfred Thumm's two thorough contributions on microwave mode converters and on applications. The other essays are less tutorial, but more topical, with expositions on new results on gyro-amplifiers by Monica Blank; on vacuum microelectronics issues for microwave power amplifiers by Morag Garven and Robert Parker; John Vomvoridis's theory of cyclotron resonance interactions for generation of high power microwaves using a

  13. Designing a high-power array for a target in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Myers, John M.; Wu, Tai T.

    1993-07-01

    High-power microwave pulses can destroy electronics of targets at altitudes of 100 km or higher, and preliminary designs of microwave antennas driven by Relativistic Klystron Amplifiers have been sketched. This paper discusses: (1) the susceptibility of the atmosphere to microwave breakdown, and (2) the constraint on the design of a microwave weapon imposed by the need to avoid breakdown.

  14. High power laser perforating tools and systems

    DOEpatents

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  15. Photoconductive switching for high power microwave generation

    SciTech Connect

    Pocha, M.D.; Hofer, W.W.

    1990-10-01

    Photoconductive switching is a technology that is being increasingly applied to generation of high power microwaves. Two primary semiconductors used for these devices are silicon and gallium arsenide. Diamond is a promising future candidate material. This paper discusses the important material parameters and switching modes, critical issues for microwave generation, and future directions for this high power, photoconductive switching technology.

  16. Simulations of the LANL regenerative amplifier FEL

    SciTech Connect

    Kesselring, M.; Colson, W.B.; Wong, R.K.; Sheffield, R.L.

    1997-08-01

    The LANL regenerative amplifier FEL is designed to produce an average output power of 1 kW. Simulations study the transverse effects due to guiding by the intense electron beam and feedback. These simulations coupled with experimental measurements can be used to improve future high-power FEL designs.

  17. Reflex ring laser amplifier system

    DOEpatents

    Summers, M.A.

    1983-08-31

    The invention is a method and apparatus for providing a reflex ring laser system for amplifying an input laser pulse. The invention is particularly useful in laser fusion experiments where efficient production of high-energy and high power laser pulses is required. The invention comprises a large aperture laser amplifier in an unstable ring resonator which includes a combination spatial filter and beam expander having a magnification greater than unity. An input pulse is injected into the resonator, e.g., through an aperture in an input mirror. The injected pulse passes through the amplifier and spatial filter/expander components on each pass around the ring. The unstable resonator is designed to permit only a predetermined number of passes before the amplified pulse exits the resonator. On the first pass through the amplifier, the beam fills only a small central region of the gain medium. On each successive pass, the beam has been expanded to fill the next concentric non-overlapping region of the gain medium.

  18. Controlling satellite communication system unwanted emissions in congested RF spectrum

    NASA Astrophysics Data System (ADS)

    Olsen, Donald; Heymann, Roger

    2007-09-01

    , developed by the European Telecommunications Standards Institute (ETSI). In the USA, the Advanced Television Systems Committee (ATSC) has adopted Europe's DVB-S and DVB-S2 standards for satellite digital transmission. With today's digital modulations, RF spectral side lobes can extend out many times the modulating frequency on either side of the carrier at excessive power levels unless filtered. Higher-order digital modulations include quadrature phase shift keying (QPSK), 8 PSK (8-ary phase shift keying), 16 APSK (also called 12-4 APSK (amplitude phase shift keying)), and 16 QAM (quadrature amplitude modulation); they are key for higher spectrum efficiency to enable higher data rate transmissions in limited available bandwidths. Nonlinear high-power amplifiers (HPAs) can regenerate frequency spectral side lobes on input-filtered digital modulations. The paper discusses technologies and techniques for controlling these spectral side lobes, such as the use of square root raised cosine (SRRC) filtering before or during the modulation process, HPA output power back-off (OPBO), and RF filters after the HPA. Spectral mask specifications are a common method of the NTIA and ITU to define spectral occupancy power limits. They are intended to reduce interference among RF spectrum users by limiting excessive radiation at frequencies beyond the regulatory allocated bandwidth.The focus here is on the communication systems of U.S. government satellites used for space research, space operations, Earth exploration satellite services (EESS), meteorological satellite services (METSATS), and other government services. The 8025 to 8400 megahertz (MHz) X band can be used to illustrate the "unwanted emissions" issue. 8025 to 8400 MHz abuts the 8400 to 8450 MHz band allocated by the NTIA and ITU to space research for space-to-Earth transmissions such as receiving very weak Deep Space Network signals. The views and ideas expressed in this paper are those of the authors and do not necessarily

  19. Twin traveling-wave tube amplifiers driven by a relativistic backward-wave oscillator

    SciTech Connect

    Butler, J.M.; Wharton, C.B.

    1996-06-01

    Experiments demonstrate stable frequency and relative-phase angle output from twin traveling-wave tube (TWT) amplifiers driven with the redirected signal from a high-power backward-wave oscillator (BWO). The experimental X-band apparatus employs a single generator to produce three independent electron beams which simultaneously drive the BWO and TWT sources. The BWO spontaneously generates up to 14.1 MW peak, 25 to 15-ns long pulses over a current-tunable bandwidth of 9.6%. The BWO power extracted upstream is split and redirected into twin TWT`s for amplification. The TWT`s produce up to 9.0 MW pulses over an 800 MHz instantaneous bandwidth. Across the amplifier`s full-width half-maximum pulse duration of 10 to 20 ns, a relative-phase angle of better than 15{degree} is maintained between TWT`s for an 11.0 to 11.7 GHz range. Experiments characterize the gain, relative-phase angle, and efficiency of twin-TWT output as a function of RF-drive frequency and beam current. These experiments are the first to demonstrate the feasibility of relativistic TWT`s for phased-array applications, and increase the limited data base documenting relativistic-TWT operation.

  20. 17 GHz low noise GaAs FET amplifier

    NASA Astrophysics Data System (ADS)

    Bharj, J. S.

    1984-10-01

    The considered amplifier is suitable for use as the first stage in a direct broadcast TV satellite receiver, and it was specifically designed for the Unisat spacecraft. Attention is given to RF device characterization, the design of the low-noise FET amplifier, the very significant dispersion effects at 17 GHz, the noise figure, and questions of DC bias. Balanced stages are used for low-noise and high-gain amplifiers to enhance the reliability. The noise figure of the amplifier is approximately 3.75 dB in the frequency band of interest. A low-noise microstrip GaAs FET amplifier circuit is shown.

  1. High power industrial picosecond laser from IR to UV

    NASA Astrophysics Data System (ADS)

    Saby, Julien; Sangla, Damien; Pierrot, Simonette; Deslandes, Pierre; Salin, François

    2013-02-01

    Many industrial applications such as glass cutting, ceramic micro-machining or photovoltaic processes require high average and high peak power Picosecond pulses. The main limitation for the expansion of the picosecond market is the cost of high power picosecond laser sources, which is due to the complexity of the architecture used for picosecond pulse amplification, and the difficulty to keep an excellent beam quality at high average power. Amplification with fibers is a good technology to achieve high power in picosecond regime but, because of its tight confinement over long distances, light undergoes dramatic non linearities while propagating in fibers. One way to avoid strong non linearities is to increase fiber's mode area. Nineteen missing holes fibers offering core diameter larger than 80μm have been used over the past few years [1-3] but it has been shown that mode instabilities occur at approximately 100W average output power in these fibers [4]. Recently a new fiber design has been introduced, in which HOMs are delocalized from the core to the clad, preventing from HOMs amplification [5]. In these so-called Large Pitch Fibers, threshold for mode instabilities is increased to 294W offering robust single-mode operation below this power level [6]. We have demonstrated a high power-high efficiency industrial picosecond source using single-mode Large Pitch rod-type fibers doped with Ytterbium. Large Pitch Rod type fibers can offer a unique combination of single-mode output with a very large mode area from 40 μm up to 100μm and very high gain. This enables to directly amplify a low power-low energy Mode Locked Fiber laser with a simple amplification architecture, achieving very high power together with singlemode output independent of power level or repetition rate.

  2. A high power TWT power processing system. [for communication satellites

    NASA Technical Reports Server (NTRS)

    Farber, B. F.; Goldin, D. S.; Siegert, C.; Gourash, F.

    1974-01-01

    A power processing system (PPS) is designed for a space-type high power (200W RF) multi-collector traveling-wave tube (TWT). The basic power circuit is presented along with the simplified block diagram and the input, output, and general requirements for the PPS design are tabulated. The paper covers the PPS design as to critical TWT/PPS interface requirements, high voltage cathode/collector supply, high voltage components material, packaging, grounding and isolation, and electrical performance. The use of a single two loop control system for the regulation of cathode and collector voltages is shown to give high efficiency, excellent steady-state and transient performance characteristics, and complete protection for TWT and PPS components under transient conditions.

  3. 2250-MHz High Efficiency Microwave Power Amplifier (HEMPA)

    NASA Technical Reports Server (NTRS)

    Sims, W. Herbert; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    Tnis paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  4. Vehicle-mounted high-power microwave systems and health risk communication in a deployed environment.

    PubMed

    Westhoff, John L; Roberts, Brad J; Erickson, Kristin

    2013-01-01

    Vehicle-mounted high-power microwave systems have been developed to counter the improvised explosive device threat in southwest Asia. Many service members only vaguely comprehend the nature of these devices and the nonionizing radio frequency (RF) radiation they emit. Misconceptions about the health effects of RF radiation have the potential to produce unnecessary anxiety. We report an incident in which concern for exposure to radiation from a high-power microwave device thought to be malfunctioning led to an extensive field investigation, multiple evaluations by clinicians in theater, and subsequent referrals to an Occupational Health clinic upon return from deployment. When acute exposure to RF does occur, the effects are thermally mediated and immediately perceptible--limiting the possibility of injury. Unlike ionizing radiation, RF radiation is not known to cause cancer and the adverse health effects are not cumulative. Medical officers counseling service members concerned about potential RF radiation exposure should apply established principles of risk communication, attend to real and perceived risks, and enlist the assistance of technical experts to properly characterize an exposure when appropriate. PMID:23356116

  5. Measurements of the rf surface resistance of high- Tc superconductors

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Roche, C.T.

    1990-01-01

    An experimental program is being conducted to assess the applicability of high-{Tc} superconductors for use in high power rf and microwave devices. The program involves the measurement of the rf surface resistance of high-{Tc} samples at frequencies between 0.15 and 40 GHz and rf surface magnetic fields as high as 640 gauss. Polycrystalline samples were found to have surface resistances which increase monotonically with rf-field amplitude, saturating at high field at a few percent of the normal-state surface resistance just above {Tc}. 13 refs., 2 figs., 1 tab.

  6. NASA GRC High Power Electromagnetic Thruster Program

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Pensil, Eric J.

    2004-01-01

    High-power electromagnetic thrusters have been proposed as primary in-space propulsion options for several bold new interplanetary and deep-space missions. As the lead center for electric propulsion, the NASA Glenn Research Center designs, develops, and tests high-power electromagnetic technologies to meet these demanding mission requirements. Two high-power thruster concepts currently under investigation by Glenn are the magnetoplasmadynamic (MPD) thruster and the Pulsed Inductive Thruster (PIT). This paper describes the MPD thruster and the test facility.

  7. Rheumatoid factor (RF)

    MedlinePlus

    Rheumatoid factor (RF) is a blood test that measures the amount of the RF antibody in the blood. ... these conditions still have a "normal" or low RF. Normal value ranges may vary slightly among different ...

  8. Status of High Power Tests of Normal Conducting Single-Cell Structures

    SciTech Connect

    Dolgashev, V.A.; Tantawi, S.G.; Higashi, Y.; Higo, T.; /KEK, Tsukuba

    2011-11-04

    We report the results of ongoing high power tests of single-cell standing wave structures. These tests are part of an experimental and theoretical study of rf breakdown in normal conducting structures at 11.4 GHz. The goal of this study is to determine the maximum gradient possibilities for normal-conducting rf powered particle beam accelerators. The test setup consists of reusable mode launchers and short test structures powered by SLACs XL-4 klystron. The mode launchers and structures were manufactured at SLAC and KEK and tested at the SLAC klystron test laboratory.

  9. Baseband pulse shaping techniques for nonlinearly amplified pi/4-QPSK and QAM systems

    NASA Astrophysics Data System (ADS)

    Feher, Kamilo

    1991-11-01

    A new generation of multi-stage pi/4-shifted QPSK and of superposed quadrature-amplitude-modulated (SQAM) modulators-coherent demodulators (modems) and of continuous phase modulated (CPM)-gaussian premodulation filtered minimum-shift-keying (MGMSK) systems is proposed and studied. These modems will lead to bandwidth and power efficient satellite communications systems designs. As an illustrative application, a baseband processing technique pi/4-controlled transition PSK (pi/4-CTPSK) is described. To develop a cost and power efficient design strategy, we assume that nonlinear, fully saturated high power amplifiers (HPA) are utilized in the satellite earth station transmitter and in the satellite transponder. Modem structures which could lead to application specific integrated circuit (ASIC) satellite on-board processing universal modem applications are also considered. Multistate GMSK (i.e., MGMSK) signal generation methods by means of two or more RF combined nonlinearly amplified SQAM modems and by one multistate (in-phase and quadrature-baseband premodulation filtered-superposed) SQAM architecture and one RF nonlinear amplifier are studied. During the SQAM modem development phase we investigate the potential system advantages of the pi/4-shifted logic. The bandwidth efficiency of the proposed multistate GMSK and baseband filtered PAM-FM modulator (a new class in the CPM family) will be significantly higher than that of conventional G-MSK systems. To optimize the practical P(sub e) = f((E sub b)/(N sub o)) performance we consider improved coherent demodulation MGMSK structures such as deviated-frequency locking coherent demodulators. For relative low bit rate SATCOM applications, e.g., bit rates less than 300 kb/s, phase noise tracking cancellation (for fixed site earth station) and phase noise cancellation as well as Doppler compensation (for satellite to mobile earth station) applications may be required. We study digital channel sounding methods which could

  10. Baseband pulse shaping techniques for nonlinearly amplified pi/4-QPSK and QAM systems

    NASA Technical Reports Server (NTRS)

    Feher, Kamilo

    1991-01-01

    A new generation of multi-stage pi/4-shifted QPSK and of superposed quadrature-amplitude-modulated (SQAM) modulators-coherent demodulators (modems) and of continuous phase modulated (CPM)-gaussian premodulation filtered minimum-shift-keying (MGMSK) systems is proposed and studied. These modems will lead to bandwidth and power efficient satellite communications systems designs. As an illustrative application, a baseband processing technique pi/4-controlled transition PSK (pi/4-CTPSK) is described. To develop a cost and power efficient design strategy, we assume that nonlinear, fully saturated high power amplifiers (HPA) are utilized in the satellite earth station transmitter and in the satellite transponder. Modem structures which could lead to application specific integrated circuit (ASIC) satellite on-board processing universal modem applications are also considered. Multistate GMSK (i.e., MGMSK) signal generation methods by means of two or more RF combined nonlinearly amplified SQAM modems and by one multistate (in-phase and quadrature-baseband premodulation filtered-superposed) SQAM architecture and one RF nonlinear amplifier are studied. During the SQAM modem development phase we investigate the potential system advantages of the pi/4-shifted logic. The bandwidth efficiency of the proposed multistate GMSK and baseband filtered PAM-FM modulator (a new class in the CPM family) will be significantly higher than that of conventional G-MSK systems. To optimize the practical P(sub e) = f((E sub b)/(N sub o)) performance we consider improved coherent demodulation MGMSK structures such as deviated-frequency locking coherent demodulators. For relative low bit rate SATCOM applications, e.g., bit rates less than 300 kb/s, phase noise tracking cancellation (for fixed site earth station) and phase noise cancellation as well as Doppler compensation (for satellite to mobile earth station) applications may be required. We study digital channel sounding methods which could

  11. Matched wideband low-noise amplifiers for radio astronomy.

    PubMed

    Weinreb, S; Bardin, J; Mani, H; Jones, G

    2009-04-01

    Two packaged low noise amplifiers for the 0.3-4 GHz frequency range are described. The amplifiers can be operated at temperatures of 300-4 K and achieve noise temperatures in the 5 K range (<0.1 dB noise figure) at 15 K physical temperature. One amplifier utilizes commercially available, plastic-packaged SiGe transistors for first and second stages; the second amplifier is identical except it utilizes an experimental chip transistor as the first stage. Both amplifiers use resistive feedback to provide input reflection coefficient S11<-10 dB over a decade bandwidth with gain over 30 dB. The amplifiers can be used as rf amplifiers in very low noise radio astronomy systems or as i.f. amplifiers following superconducting mixers operating in the millimeter and submillimeter frequency range. PMID:19405681

  12. New rf power system for SuperHILAC

    SciTech Connect

    Fugitt, J.; Lancaster, H.; Sorensen, R.

    1985-05-01

    The upgraded rf system for the SuperHILAC is now operational using 9 new tetrode amplifiers. Each amplifier can produce in excess of 1MW of 70 Mhz pulsed rf power. Ferrite is used to decouple the screen grid circuit and to absorb parasitic oscillations. This results in a very stable amplifier with reasonable gain. This system uses a common 8 MW anode power supply and crowbar system. Overall system efficiency has been increased significantly. We project a 3 year payback on the equipment cost, realized from the power savings alone. 2 refs., 5 figs.

  13. Experimental research of a chain of diode pumped rubidium amplifiers.

    PubMed

    Li, Yunfei; Hua, Weihong; Li, Lei; Wang, Hongyan; Yang, Zining; Xu, Xiaojun

    2015-10-01

    In this paper, we have set up a diode pumped rubidium MOPA system with a chain of two amplifiers. The experimental results show an amplified laser power of 26W with amplification factor of 16.3 and power extraction efficiency of 53% for a single amplifier, and an amplified laser power of 11W with amplification factor of 7.9 and power extraction efficiency of 26% for a chain of two amplifiers. The reason for lower performance of cascade amplification is mainly due to the limited total pump power, which will be not sufficient for efficient pumping when assigned from a single amplifier into two amplifiers. The situation could be well improved by increasing the seed laser power as well as the pump power for each amplifier to realize high efficient saturated amplification. Such MOPA configuration has the potential for scaling high beam quality alkali laser into high powers. PMID:26480105

  14. Coupling output of multichannel high power microwaves

    SciTech Connect

    Li Guolin; Shu Ting; Yuan Chengwei; Zhang Jun; Yang Jianhua; Jin Zhenxing; Yin Yi; Wu Dapeng; Zhu Jun; Ren Heming; Yang Jie

    2010-12-15

    The coupling output of multichannel high power microwaves is a promising technique for the development of high power microwave technologies, as it can enhance the output capacities of presently studied devices. According to the investigations on the spatial filtering method and waveguide filtering method, the hybrid filtering method is proposed for the coupling output of multichannel high power microwaves. As an example, a specific structure is designed for the coupling output of S/X/X band three-channel high power microwaves and investigated with the hybrid filtering method. In the experiments, a pulse of 4 GW X band beat waves and a pulse of 1.8 GW S band microwave are obtained.

  15. High power millimeter wave source development program

    NASA Technical Reports Server (NTRS)

    George, T. V.

    1989-01-01

    High power millimeter wave sources for fusion program; ECH source development program strategy; and 1 MW, 140 GHz gyrotron experiment design philosophy are briefly outlined. This presentation is represented by viewgraphs only.

  16. Very high power THz radiation sources

    SciTech Connect

    Carr, G.L.; Martin, Michael C.; McKinney, Wayne R.; Jordan, K.; Neil, George R.; Williams, G.P.

    2002-10-31

    We report the production of high power (20 watts average, {approx} 1 Megawatt peak) broadband THz light based on coherent emission from relativistic electrons. Such sources are ideal for imaging, for high power damage studies and for studies of non-linear phenomena in this spectral range. We describe the source, presenting theoretical calculations and their experimental verification. For clarity we compare this source to one based on ultrafast laser techniques.

  17. Test facilities for high power electric propulsion

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Vetrone, Robert H.; Grisnik, Stanley P.; Myers, Roger M.; Parkes, James E.

    1991-01-01

    Electric propulsion has applications for orbit raising, maneuvering of large space systems, and interplanetary missions. These missions involve propulsion power levels from tenths to tens of megawatts, depending upon the application. General facility requirements for testing high power electric propulsion at the component and thrust systems level are defined. The characteristics and pumping capabilities of many large vacuum chambers in the United States are reviewed and compared with the requirements for high power electric propulsion testing.

  18. High power laser apparatus and system

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1975-01-01

    A high-power, continuous-wave laser was designed for use in power transmission and energy-collecting systems, and for producing incoherent light for pumping a laser material. The laser has a high repetitive pulsing rate per unit time, resulting in a high-power density beam. The laser is composed of xenon flash tubes powered by fast-charging capacitors flashed in succession by a high-speed motor connected to an automobile-type distributor.

  19. V-band IMPATT power amplifier

    NASA Technical Reports Server (NTRS)

    Schell, S. W.

    1985-01-01

    This program is the result of the continuing demand and future requirement for a high data rate 60-GHz communications link. A reliable solid-state transmitter which delivers the necessary power over a wide bandwidth using the present IMPATT diode technology required the development of combining techniques. The development of a 60-GHz IMPATT power combiner amplifier is detailed. The results form a basis from which future wideband, high-power IMPATT amplifiers may be developed. As a result, several state-of-the-art advancements in millimeter-wave components technology were achieved. Specific achievements for the amplifier integration were: development of a nonresonant divider/combiner circuit; reproducible multiple junction circulator assemblies; and reliable high power 60-GHz IMPATT diodes. The various design approaches and tradeoffs which lead to the final amplifier configuration are discussed. A detailed circuit design is presented for the various amplifier components, and the conical line combiner, radial line combiner, and circulator development are discussed. The performance of the amplifier, the overall achievement of the program, the implications of the results, and an assessment of future development needs and recommendations are examined.

  20. V-band IMPATT power amplifier

    NASA Astrophysics Data System (ADS)

    Schell, S. W.

    1985-09-01

    This program is the result of the continuing demand and future requirement for a high data rate 60-GHz communications link. A reliable solid-state transmitter which delivers the necessary power over a wide bandwidth using the present IMPATT diode technology required the development of combining techniques. The development of a 60-GHz IMPATT power combiner amplifier is detailed. The results form a basis from which future wideband, high-power IMPATT amplifiers may be developed. As a result, several state-of-the-art advancements in millimeter-wave components technology were achieved. Specific achievements for the amplifier integration were: development of a nonresonant divider/combiner circuit; reproducible multiple junction circulator assemblies; and reliable high power 60-GHz IMPATT diodes. The various design approaches and tradeoffs which lead to the final amplifier configuration are discussed. A detailed circuit design is presented for the various amplifier components, and the conical line combiner, radial line combiner, and circulator development are discussed. The performance of the amplifier, the overall achievement of the program, the implications of the results, and an assessment of future development needs and recommendations are examined.

  1. Simulations of dielectric Cerenkov masers at moderate to high power

    SciTech Connect

    Mardahl, P.; Verboncoeur, J.P.; Birdsall, C.K.

    1996-12-31

    A dielectric Cerenkov maser amplifier is simulated with XOOPIC and results are compared to experiment and theory. The device examined is azimuthally symmetric with a circular crossection. The dispersion has been obtained and agrees well with the experiment. The efficiency, power and gain will be compared for the parameters of the Dartmouth experiment. Other configurations of interest include devices of higher beam energy and current such as the experiment of Main. This device generated a peak microwave power of 280 MW for 3ns before experiencing RF quenching, possibly due to the formation of a plasma at the wall, which they intend to investigate further. The authors also examine various techniques of reducing the field stresses which may cause breakdown in this class of device. Also, increasing microwave power and efficiency via grading the dielectric constant to match the beam velocity will be examined.

  2. High-Power Plasma Switch for 11.4 GHz Microwave Pulse Compressor

    SciTech Connect

    Jay L. Hirshfield

    2010-03-04

    Results obtained in several experiments on active RF pulse compression at X-band using a magnicon as the high-power RF source are presented. In these experiments, microwave energy was stored in high-Q TE01 and TE02 modes of two parallel-fed resonators, and then discharged using switches activated with rapidly fired plasma discharge tubes. Designs and high-power tests of several versions of the compressor are described. In these experiments, coherent pulse superposition was demonstrated at a 5–9 MW level of incident power. The compressed pulses observed had powers of 50–70 MW and durations of 40–70 ns. Peak power gains were measured to be in the range of 7:1–11:1 with efficiency in the range of 50–63%.

  3. Characteristics of high gradient insulators for accelerator and high power flow applications

    SciTech Connect

    Elizondo, J.M.; Krogh, M.L.; Smith, D.

    1997-07-01

    The high gradient insulator has been demonstrated to operate at levels comparable or better than special geometry or coated insulators. Some patented insulator configurations allow for sophisticated accelerator structures, high power flow interfaces, and microwave applications not previously possible. Sophisticated manufacturing techniques available at AlliedSignal FM and T made this development possible. Bipolar and high power flow applications are specially suited for present insulator designs. The insulator shows a beneficial effect when used under RF fields or RF structures. These insulators can be designed, to a first approximation, from simple electron flight path equations. With a recently developed model of surface flashover physics the authors completed a set of design calculations that include effects such as layer density and dielectric/metal thickness. Experimental data, obtained in the last few years of development, is presented and reviewed. Several insulator fabrication characteristics, indicating critical design parameters, are also presented.

  4. High power narrowband 589 nm frequency doubled fibre laser source.

    PubMed

    Taylor, Luke; Feng, Yan; Calia, Domenico Bonaccini

    2009-08-17

    We demonstrate high-power high-efficiency cavity-enhanced second harmonic generation of an in-house built ultra-high spectral density (SBS-suppressed) 1178 nm narrowband Raman fibre amplifier. Up to 14.5 W 589 nm CW emission is achieved with linewidth Delta nu(589) < 7 MHz in a diffraction-limited beam, with peak external conversion efficiency of 86%. The inherently high spectral and spatial qualities of the 589 nm source are particularly suited to both spectroscopic and Laser Guide Star applications, given the seed laser can be easily frequency-locked to the Na D(2a) emission line. Further, we expect the technology to be extendable, at similar or higher powers, to wavelengths limited only by the seed-pump-pair availability. PMID:19687946

  5. Design considerations on a high-power VUV FEL

    SciTech Connect

    Ciocci, F.; Dattoli, G.; Angelis, A. De; Garosi, F.; Giannessi, L.; Torre, A.; Faatz, B.; Ottaviani, P.L.

    1995-07-01

    The authors explore the feasibility conditions of a high-power FEL operating in the VUV region (below 100 nm) and exploiting a coupled oscillator triplicator configuration. A high quality beam from a linac is passed through a FEL oscillator and produces laser radiation at 240 nm. The same beam is extracted and then injected into a second undulator tuned at the third harmonic of the first. The bunching produced in the oscillator allows the start up of the laser signal in the second section which operates as an amplifier. The authors discuss the dynamical behavior of the system and the dependence of the output power on the characteristics of the e-beam and of the oscillator. The possibility of enhancing the output power, adding a tapered section to the second undulator, is finally analyzed.

  6. Conceptual design of high power Ka-band radar transmitter

    NASA Technical Reports Server (NTRS)

    Bhanji, Alaudin; Hoppe, Daniel; Gillis, Peter

    1986-01-01

    A proposed conceptual design of a 400-kW CW Ka-band transmitter and associated microwave components to be used for planetary radar and serve as a prototype for future spacecraft uplinks is discussed. System requirements for such a transmitter are presented. Performance of the proposed high-power millimeter-wave tube, the gyroklystron, is discussed. Parameters of the proposed power amplifier, beam supply, and monitor and control devices are also presented. Microwave transmission-line components consisting of signal-monitoring devices, mode converter, and an overmoded corrugated feed are discussed. Finally, an assessment of the state-of-the-art technology to meet the system requirements is given, and possible areas of difficulty are summarized.

  7. 47 CFR 95.411 - (CB Rule 11) May I use power amplifiers?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false (CB Rule 11) May I use power amplifiers? 95.411... Rule 11) May I use power amplifiers? (a) You may not attach the following items (power amplifiers) to your certificated CB transmitter in any way: (1) External radio frequency (RF) power...

  8. 47 CFR 95.411 - (CB Rule 11) May I use power amplifiers?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false (CB Rule 11) May I use power amplifiers? 95.411... Rule 11) May I use power amplifiers? (a) You may not attach the following items (power amplifiers) to your certificated CB transmitter in any way: (1) External radio frequency (RF) power...

  9. 47 CFR 95.411 - (CB Rule 11) May I use power amplifiers?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false (CB Rule 11) May I use power amplifiers? 95.411... Rule 11) May I use power amplifiers? (a) You may not attach the following items (power amplifiers) to your certificated CB transmitter in any way: (1) External radio frequency (RF) power...

  10. 47 CFR 95.411 - (CB Rule 11) May I use power amplifiers?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false (CB Rule 11) May I use power amplifiers? 95.411... Rule 11) May I use power amplifiers? (a) You may not attach the following items (power amplifiers) to your certificated CB transmitter in any way: (1) External radio frequency (RF) power...

  11. 47 CFR 95.411 - (CB Rule 11) May I use power amplifiers?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false (CB Rule 11) May I use power amplifiers? 95.411... Rule 11) May I use power amplifiers? (a) You may not attach the following items (power amplifiers) to your certificated CB transmitter in any way: (1) External radio frequency (RF) power...

  12. The ALS Storage Ring RF System

    SciTech Connect

    Taylor, B.; Lo, C.C.; Baptiste, K.; Guigli, J.; Julian, J.

    1993-05-01

    The ALS Storage Ring RF System is characterized by the use of the following features: (1) High power loading of two single cell cavities. (2) The use of a tubular ceramic input window employing aperture coupling. (3) The use of waveguide filters and matchers designed for HOM absorption. (4) A comprehensive HOM monitoring system. (5) The use of waveguide water-wedge loads for the magic tee and circulator loads. The results of cavity measurements and high power tests are reported together with the performance of the system during the commissioning and operation phases of the ALS project. Plans for future window development are discussed.

  13. Test results for 20-GHz GaAs FET spacecraft power amplifier

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.

    1985-01-01

    Test were conducted to measure the performance of the 20-GHz solid state, proof-of-concept amplifier. The amplifier operates over the 17.7 to 20.2-GHz frequency range and uses high power gallium arsenide field effect transistors. The amplifier design and test methods are briefly described. NASA and contractor performance data are compared.

  14. Low cost instrumentation amplifier

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1974-01-01

    Amplifier can be used for many applications requiring high input impedance and common mode rejection, low drift, and gain accuracy on order of one percent. Performance of inexpensive amplifier approaches that of some commercial instrumentation amplifiers in many specifications.

  15. High-power red VCSEL arrays

    NASA Astrophysics Data System (ADS)

    Seurin, Jean-Francois; Khalfin, Viktor; Xu, Guoyang; Miglo, Alexander; Li, Daizong; Zhou, Delai; Sundaresh, Mukta; Zou, Wei-Xiong; Lu, Chien-Yao; Wynn, James D.; Ghosh, Chuni

    2013-03-01

    High-power red laser sources are used in many applications such as cosmetics, cancer photodynamic therapy, and DNA sequencing in the medical field, laser-based RGB projection display, and bar-code scanning to name a few. Verticalcavity surface-emitting lasers (VCSELs) can be used as high-power laser sources, as efficient single devices can be configured into high-power two-dimensional arrays and scaled into modules of arrays. VCSELs emit in a circular, uniform beam which can greatly reduce the complexity and cost of optics. Other advantages include a narrow and stable emission spectrum, low speckle of the far-field emission, and good reliability. However, developing efficient red VCSEL sources presents some challenges because of the reduced quantum-well carrier confinement and the increased Aluminum content (to avoid absorption) which increases thermal impedance, and also decreases the DBR index contrast resulting in increased penetration length and cavity losses. We have recently developed VCSEL devices lasing in the visible 6xx nm wavelength band, and reaching 30% power conversion efficiency. We fabricated high-power 2D arrays by removing the GaAs substrate entirely and soldered the chips on high thermal conductivity submounts. Such arrays have demonstrated several Watts of output power at room temperature, in continuous-wave (CW) operation. Several tens of Watts are obtained in QCW operation. Results and challenges of these high-power visible VCSEL arrays will be discussed.

  16. A temperature-jump NMR probe setup using rf heating optimized for the analysis of temperature-induced biomacromolecular kinetic processes.

    PubMed

    Rinnenthal, Jörg; Wagner, Dominic; Marquardsen, Thorsten; Krahn, Alexander; Engelke, Frank; Schwalbe, Harald

    2015-02-01

    A novel temperature jump (T-jump) probe operational at B(0) fields of 600 MHz (14.1 Tesla) with an integrated cage radio-frequency (rf) coil for rapid (<1 s) heating in high-resolution (HR) liquid-state NMR-spectroscopy is presented and its performance investigated. The probe consists of an inner 2.5 mm "heating coil" designed for generating rf-electric fields of 190-220 MHz across a lossy dielectric sample and an outer two coil assembly for (1)H-, (2)H- and (15)N-nuclei. High B(0) field homogeneities (0.7 Hz at 600 MHz) are combined with high heating rates (20-25 K/s) and only small temperature gradients (<±1.5 K, 3s after 20 K T-jump). The heating coil is under control of a high power rf-amplifier within the NMR console and can therefore easily be accessed by the pulse programmer. Furthermore, implementation of a real-time setup including synchronization of the NMR spectrometer's air flow heater with the rf-heater used to maintain the temperature of the sample is described. Finally, the applicability of the real-time T-jump setup for the investigation of biomolecular kinetic processes in the second-to-minute timescale is demonstrated for samples of a model 14mer DNA hairpin and a (15)N-selectively labeled 40nt hsp17-RNA thermometer. PMID:25616187

  17. A temperature-jump NMR probe setup using rf heating optimized for the analysis of temperature-induced biomacromolecular kinetic processes

    NASA Astrophysics Data System (ADS)

    Rinnenthal, Jörg; Wagner, Dominic; Marquardsen, Thorsten; Krahn, Alexander; Engelke, Frank; Schwalbe, Harald

    2015-02-01

    A novel temperature jump (T-jump) probe operational at B0 fields of 600 MHz (14.1 Tesla) with an integrated cage radio-frequency (rf) coil for rapid (<1 s) heating in high-resolution (HR) liquid-state NMR-spectroscopy is presented and its performance investigated. The probe consists of an inner 2.5 mm "heating coil" designed for generating rf-electric fields of 190-220 MHz across a lossy dielectric sample and an outer two coil assembly for 1H-, 2H- and 15N-nuclei. High B0 field homogeneities (0.7 Hz at 600 MHz) are combined with high heating rates (20-25 K/s) and only small temperature gradients (<±1.5 K, 3 s after 20 K T-jump). The heating coil is under control of a high power rf-amplifier within the NMR console and can therefore easily be accessed by the pulse programmer. Furthermore, implementation of a real-time setup including synchronization of the NMR spectrometer's air flow heater with the rf-heater used to maintain the temperature of the sample is described. Finally, the applicability of the real-time T-jump setup for the investigation of biomolecular kinetic processes in the second-to-minute timescale is demonstrated for samples of a model 14mer DNA hairpin and a 15N-selectively labeled 40nt hsp17-RNA thermometer.

  18. Development of traveling wave resonator based test bed for high power transmission line component testing

    NASA Astrophysics Data System (ADS)

    Jha, Akhil; Harikrishna, JVS; Ajesh, P.; Anand, Rohit; Trivedi, Rajesh; Mukherjee, Aparajita

    2015-12-01

    India is responsible for delivery of 8+1(prototype) RF sources to ITER Organization. Each RF source will provide 2.5MW of RF power at 2 VSWR in the frequency range of 35 to 65MHz. Eight such RF sources will generate total 20MW of RF power. A large number of high power transmission line components are required for connecting various stages of RF source. To test these passive transmission line components at high power, prior to connecting with RF source system, a test facility is required. India is developing a 3MW test facility based on the concept of Traveling Wave Resonator (TWR) for testing of transmission line components. TWR is basically a ring resonator which will build high power under certain operation condition at resonant frequency (˜55MHz in this case). In TWR, power is fed to the ring via a directional coupler continuously which leads to development of high circulating power in the ring. The voltage and current magnitude inside the ring increases with the increasing circulating power. Detailed RF simulation and design of the TWR test bed has been done using high frequency simulator Microwave Studio (MWS). Calculations done for the ring gain, transmission loss, resonance frequency etc. and are verified with the simulation results. Concept validated using 3-1/8 inch prototype TWR test bed, where experiments were carried out with a ˜10dB (λ/4 coupled) coupler to feed the ring. Ring gain of ˜13.24dB (˜21times) was achieved with ˜0.17 dB of ring loss. Around 9.2 kW ring power is achieved with an input power of 440W. At present, the 3-1/8inch TWR test bed is being upgraded with a ˜15dB coupler to achieve ring gain ˜19-20dB (˜80-100 times). This concept will be finally adopted for 12inch TWR test bed to achieve 3MW ring power with ˜30-40kW of input power. In this paper, detailed design, simulation, test results out of prototype activity and future plan for establishing MW level transmission line test bed is described.

  19. An Inexpensive and Programmable RF Transmitter Setup for Two-coil CASL

    PubMed Central

    Xu, Qin; Glielmi, Christopher; Zhou, Lei; Choi, Kisueng; Hu, Xiaoping

    2009-01-01

    An inexpensive and programmable RF transmitter for two-coil continuous arterial spin labeling (CASL) system is presented in this paper. While previous implementations of two-coil CASL require the expensive MR RF instruments, the present design utilizes a low-cost system on chip direct digital synthesizer and a mini-size communication RF power amplifier to generate the labeling RF waveform without sacrificing RF performance. Compared with a single RF channel two-coil CASL approach, this design requires minimal scanner hardware modifications. Moreover, this design offers a programmable interface for easy sequence setup and debugging. Performance and ease of use are validated experimentally. PMID:19830266

  20. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.

  1. Waveform agile high-power fiber laser illuminators for directed-energy weapon systems

    NASA Astrophysics Data System (ADS)

    Engin, Doruk; Lu, Wei; Kimpel, Frank; Gupta, Shantanu

    2012-06-01

    A kW-class fiber-amplifier based laser illuminator system at 1030nm is demonstrated. At 125 kHz pulse repetition rate, 1.9mJ energy per pulse (235W average power) is achieved for 100nsec pulses with >72% optical conversion efficiency, and at 250kHz repetition, >350W average power is demonstrated, limited by the available pumps. Excellent agreement is established between the experimental results and dynamic fiber amplifier simulation, for predicting the pulse shape, spectrum and ASE accumulation throughout the fiber-amplifier chain. High pulse-energy, high power fiber-amplifier operation requires careful engineering - minimize ASE content throughout the pre-amplifier stages, use of large mode area gain fiber in the final power stage for effective pulse energy extraction, and pulse pre-shaping to compensate for the laser gain-saturation induced intra-pulse and pulse-pattern dependent distortion. Such optimization using commercially available (VLMA) fibers with core size in the 30-40μm range is estimated to lead to >4mJ pulse energy for 100nsec pulse at 50kHz repetition rate. Such waveform agile high-power, high-energy pulsed fiber laser illuminators at λ=1030nm satisfies requirements for active-tracking/ranging in high-energy laser (HEL) weapon systems, and in uplink laser beacon for deep space communication.

  2. TOPICAL REVIEW: Radio-frequency amplifiers based on dc SQUIDs

    NASA Astrophysics Data System (ADS)

    Mück, Michael; McDermott, Robert

    2010-09-01

    SQUIDs are an attractive candidate for the amplification of low-level rf and microwave signals. Compared to semiconductor amplifiers, they offer lower noise and much lower power dissipation. Especially at frequencies below 1 GHz, the improvement in noise temperature compared to the best cold semiconductor amplifiers can be as high as 50; noise temperatures only slightly above the quantum limit have been achieved in this frequency range. This article will review the current status of radio-frequency amplifiers based on dc SQUIDs and provide detailed discussions of amplifier noise temperature, input and output impedance, and nonlinearities.

  3. Ultrafast laser and amplifier sources

    NASA Astrophysics Data System (ADS)

    Rundquist, A.; Durfee, C.; Chang, Z.; Taft, G.; Zeek, E.; Backus, S.; Murnane, M. M.; Kapteyn, H. C.; Christov, I.; Stoev, V.

    1997-08-01

    There has been remarkable progress in the development of high peak-power ultrafast lasers in recent years. Lasers capable of generating terawatt peak powers with unprecedented short pulse durations can now be built on a single optical table in a small laboratory. The rapid technological progress has made possible a host of new scientific advances in high-field science, such as the generation of coherent femtosecond X-ray pulses, and the generation of MeV-energy electron beams and high-energy ions. In this paper, we review progress in the development and design of ultrafast high-power lasers based on Ti:sapphire, including the ultrafast laser oscillators that are a very important enabling technology for high-power ultrafast systems, and ultrafast amplified laser systems that generate 20 fs duration pulses with several watts average power at kilohertz repetition-rates. Ultrafast waveform measurements of these pulses demonstrate that such short pulses can be generated with high fidelity. Finally, we discuss applications of ultrafast high-power pulses, including the generation of femtosecond to attosecond X-ray pulses.

  4. SRS in the strong-focusing regime for Raman amplifiers.

    PubMed

    McKay, Aaron; Mildren, Richard P; Coutts, David W; Spence, David J

    2015-06-01

    The theoretical analysis of stimulated Raman scattering (SRS) in crystalline amplifiers with a tightly-focused pump geometry is presented. We predict the minimum Stokes seed power required for an efficient Raman power amplifier and verify this result experimentally. Conversion of a pump to a Stokes beam in a single-pass diamond amplifier is demonstrated using nanosecond pulses with gains of 5.8 from a 1.2-kW peak-power Stokes seed beam. The results demonstrate the possibility of amplifying and combining high-power continuous-wave lasers using current diamond Raman laser technology. PMID:26072857

  5. Master-Oscillator/Power-Amplifier Laser System

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Unger, Glenn L.

    1994-01-01

    Master-oscillator/power-amplifier (MOPA) laser system operates in continuous-wave mode or in amplitude-modulation (e.g., pulse) mode by modulation of oscillator current. Power amplifier is laser-diode-pumped neodymium:yttrium lithium fluoride (Nd:YLF) laser; oscillator is laser diode. Offers relatively high efficiency and power. Because drive current to oscillator modulated, external electro-optical modulator not needed. Potential uses include free-space optical communications, coded laser ranging, and generation of high-power, mode-locked pulses.

  6. High-energy regenerative thin disk amplifier

    NASA Astrophysics Data System (ADS)

    Chyla, Michal; Smrz, Martin; Mocek, Tomas

    2012-07-01

    Design of a compact regenerative laser amplifier based on two Yb:YAG thin-disks is presented. Energy up to 100 mJ in picoseconds pulses will be delivered with a repetition rate of 1 kHz. System is designed for seeding a kW-class multipass amplifier for industrial and scientific applications. Laser heads are pumped at zero-phonon line (968.825 nm [1]) by stabilized high-power pump diodes operated in pulsed regime. Seed pulses are produced in a fiber oscillator at 1030 nm and CPA technique utilizing transmission gratings for pulse stretching and compression is applied.

  7. Progress on diamond amplified photo-cathode

    SciTech Connect

    Wang, E.; Ben-Zvi, I.; Burrill, A.; Kewisch, J.; Chang, X.; Rao, T.; Smedley, J.; Wu, Q.; Muller, E.; Xin, T.

    2011-03-28

    Two years ago, we obtained an emission gain of 40 from the Diamond Amplifier Cathode (DAC) in our test system. In our current systematic study of hydrogenation, the highest gain we registered in emission scanning was 178. We proved that our treatments for improving the diamond amplifiers are reproducible. Upcoming tests planned include testing DAC in a RF cavity. Already, we have designed a system for these tests using our 112 MHz superconducting cavity, wherein we will measure DAC parameters, such as the limit, if any, on emission current density, the bunch charge, and the bunch length. The diamond-amplified photocathode, that promises to support a high average current, low emittance, and a highly stable electron beam with a long lifetime, is under development for an electron source. The diamond, functioning as a secondary emitter amplifies the primary current, with a few KeV energy, that comes from the traditional cathode. Earlier, our group recorded a maximum gain of 40 in the secondary electron emission from a diamond amplifier. In this article, we detail our optimization of the hydrogenation process for a diamond amplifier that resulted in a stable emission gain of 140. We proved that these characteristics are reproducible. We now are designing a system to test the diamond amplifier cathode using an 112MHz SRF gun to measure the limits of the emission current's density, and on the bunch charge and bunch length.

  8. Targets for high power neutral beams

    SciTech Connect

    Kim, J.

    1980-01-01

    Stopping high-power, long-pulse beams is fast becoming an engineering challenge, particularly in neutral beam injectors for heating magnetically confined plasmas. A brief review of neutral beam target technology is presented along with heat transfer calculations for some selected target designs.

  9. NASA GRC High Power Electromagnetic Thruster Program

    NASA Astrophysics Data System (ADS)

    Lapointe, Michael R.; Pencil, Eric J.

    2004-02-01

    Interest in high power electromagnetic propulsion has been revived to support a variety of future space missions, such as platform maneuvering in low earth orbit, cost-effective cargo transport to lunar and Mars bases, asteroid and outer planet sample return, deep space robotic exploration, and piloted missions to Mars and the outer planets. Magnetoplasmadynamic (MPD) thrusters have demonstrated, at the laboratory level, the capacity to process megawatts of electrical power while providing higher thrust densities than current electric propulsion systems. The ability to generate higher thrust densities permits a reduction in the number of thrusters required to perform a given mission and alleviates the system complexity associated with multiple thruster arrays. The specific impulse of an MPD thruster can be optimized to meet given mission requirements, from a few thousand seconds with heavier gas propellants up to 10,000 seconds with hydrogen propellant. In support of NASA space science and human exploration strategic initiatives, Glenn Research Center is developing and testing pulsed, MW-class MPD thrusters as a prelude to long-duration high power thruster tests. The research effort includes numerical modeling of self-field and applied-field MPD thrusters and experimental testing of quasi-steady MW-class MPD thrusters in a high power pulsed thruster facility. This paper provides an overview of the GRC high power electromagnetic thruster program and the pulsed thruster test facility.

  10. High-power VCSEL systems and applications

    NASA Astrophysics Data System (ADS)

    Moench, Holger; Conrads, Ralf; Deppe, Carsten; Derra, Guenther; Gronenborn, Stephan; Gu, Xi; Heusler, Gero; Kolb, Johanna; Miller, Michael; Pekarski, Pavel; Pollmann-Retsch, Jens; Pruijmboom, Armand; Weichmann, Ulrich

    2015-03-01

    Easy system design, compactness and a uniform power distribution define the basic advantages of high power VCSEL systems. Full addressability in space and time add new dimensions for optimization and enable "digital photonic production". Many thermal processes benefit from the improved control i.e. heat is applied exactly where and when it is needed. The compact VCSEL systems can be integrated into most manufacturing equipment, replacing batch processes using large furnaces and reducing energy consumption. This paper will present how recent technological development of high power VCSEL systems will extend efficiency and flexibility of thermal processes and replace not only laser systems, lamps and furnaces but enable new ways of production. High power VCSEL systems are made from many VCSEL chips, each comprising thousands of low power VCSELs. Systems scalable in power from watts to multiple ten kilowatts and with various form factors utilize a common modular building block concept. Designs for reliable high power VCSEL arrays and systems can be developed and tested on each building block level and benefit from the low power density and excellent reliability of the VCSELs. Furthermore advanced assembly concepts aim to reduce the number of individual processes and components and make the whole system even more simple and reliable.

  11. CHALLENGES FACING HIGH POWER PROTON ACCELERATORS

    SciTech Connect

    Plum, Michael A

    2013-01-01

    This presentation will provide an overview of the challenges of high power proton accelerators such as SNS, J-PARC, etc., and what we have learned from recent experiences. Beam loss mechanisms and methods to mitigate beam loss will also be discussed.

  12. Automated System Tests High-Power MOSFET's

    NASA Technical Reports Server (NTRS)

    Huston, Steven W.; Wendt, Isabel O.

    1994-01-01

    Computer-controlled system tests metal-oxide/semiconductor field-effect transistors (MOSFET's) at high voltages and currents. Measures seven parameters characterizing performance of MOSFET, with view toward obtaining early indication MOSFET defective. Use of test system prior to installation of power MOSFET in high-power circuit saves time and money.

  13. Driver Circuit For High-Power MOSFET's

    NASA Technical Reports Server (NTRS)

    Letzer, Kevin A.

    1991-01-01

    Driver circuit generates rapid-voltage-transition pulses needed to switch high-power metal oxide/semiconductor field-effect transistor (MOSFET) modules rapidly between full "on" and full "off". Rapid switching reduces time of overlap between appreciable current through and appreciable voltage across such modules, thereby increasing power efficiency.

  14. Higher Order Mode Excitations in Gyro-amplifiers

    NASA Astrophysics Data System (ADS)

    Nguyen, Khanh

    2000-10-01

    A key element in the design of gyro-amplifier RF structures is the minimization of unwanted modes. For example, a nonlinear output taper is often employed in the transition from the near cutoff radius of the interacting circuit to a much larger output waveguide, which also serves as the collector. The taper designs are usually done without considering the effect of a bunched beam. However, recent simulations [1] with the self-consistent MAGY code [2] reveal that higher order mode interactions with the bunched electron beam can substantially compromise the mode purity of the RF output. The interaction in the taper region is that of a travelling-wave type and is strongly dependent on the beam bunching characteristics resulting from previous interaction with the operating mode in the interacting circuit. Subsequent to this prediction, an experiment was performed to measure the RF output mode content from a Ka-band gyro-klystron at the Naval Research Laboratory. The agreement between salient theoretical and measured RF output characteristics confirms the existence higher order mode excitation in output tapers as predicted by theory. Another example of the need to employ self-consistent theoretical model in the design of gyro-amplifier RF structures is the phenomenon of beam-induced RF excitation in drift sections, which are cutoff to the operating mode and are used to separate cavities in gyroklystron amplifiers. This non-resonant RF excitation is at the drive frequency and the RF field structure is that of the operating mode. The RF amplitude is found to scale linearly with the bunched beam current. The presence of RF in the drift section has important thermal implications in the design and use of lossy dielectrics in drift-sections, especially for high-average power devices. [1] K. Nguyen, et al., IEEE Trans. Plasma Science, in press 2000. [2] M. Botton, et al., IEEE Trans. Plasma Science, V.26, p.882, June 1998.

  15. High power pumped MID-IR wavelength devices using nonlinear frequency mixing (NFM)

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)

    2001-01-01

    Laser diode pumped mid-IR wavelength sources include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.

  16. High power pumped mid-IR wavelength systems using nonlinear frequency mixing (NFM) devices

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)

    1999-01-01

    Laser diode pumped mid-IR wavelength systems include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.

  17. High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump.

    PubMed

    Xiao, Hu; Leng, Jinyong; Zhang, Hanwei; Huang, Liangjin; Xu, Jiangming; Zhou, Pu

    2015-09-20

    In this paper, we present our experimental results of a high-power 1018 nm fiber laser and its usage in tandem pump. A record output power of 476 W 1018 nm fiber laser is obtained with an efficiency of 78.2%. Utilizing a specially designed gain fiber, a one-stage high-power monolithic fiber amplifier tandem pumped by six 1018 nm fiber lasers is assembled. A 110 W 1090 nm seed is amplified to 2140 W, and the efficiency is as high as 86.9%. The beam quality factor M2 is measured to be 1.9. Limitations and possible solutions for purchasing higher output power are discussed. PMID:26406520

  18. Recent developments in superconducting cavity RF control

    NASA Astrophysics Data System (ADS)

    Simrock, Stefan

    2005-02-01

    Presently a large number of superconducting accelerators under construction or proposed impose stringent requirements on the rf control of the accelerating fields, operability, and reliability. The accelerator application range from linear colliders, UV-FELs and X-FELs, ERL based light sources, high power proton accelerators to heavy ion accelerators. Examples are TESLA and NLC, the European XFEL and Lux, the Cornell ERL based light source, the high power ERL based IR-FEL at JLAB, the neutron spallation source SNS, the heavy ion accelerator RIA, and the energy upgrade of the CEBAF accelerator at JLAB. The requirements on the rf systems range from low to high current, medium to high gradient, and relativistic to non-relativistics beam. With the technology in analog and digital electronics developing rapidly, the technology for rf feedback system is changing more and more from analog or hybrid systems towards fully digital systems. Todays DSPs and FPGAs can process sophisticated feedback algorithms on a time scale of some 100 ns to a few us with ADCs and DACs with about 100 MHz bandwidth at 14 bit and latencies less than 100 ns available to inter-face to the field detectors and field control actuators. Also fast analog multiplier technology allows for field detection and actuators for rf control with high linearity, measurement and control bandwidth while maintaining low noise levels.

  19. Upgrade of the SLAC SLED II Pulse Compression System Based on Recent High Power Tests

    SciTech Connect

    Vlieks, A.E.; Fowkes, W.R.; Loewen, R.J.; Tantawi, S.G.; /SLAC

    2011-09-06

    In the Next Linear Collider (NLC) it is expected that the high power rf components be able to handle peak power levels in excess of 400 MW. We present recent results of high power tests designed to investigate the RF breakdown limits of the X-band pulse compression system used at SLAC. (SLED-II). Results of these tests show that both the TE{sub 01}-TE{sub 10} mode converter and the 4-port hybrid have a maximum useful power limit of 220-250 MW. Based on these tests, modifications of these components have been undertaken to improve their peak field handling capability. Results of these modifications will be presented. As part of an international effort to develop a new 0.5-1.5 TeV electron-positron linear collider for the 21st century, SLAC has been working towards a design, referred to as 'The Next Linear Collider' (NLC), which will operate at 11.424 GHz and utilize 50-75 MW klystrons as rf power sources. One of the major challenges in this design, or any other design, is how to generate and efficiently transport extremely high rf power from a source to an accelerator structure. SLAC has been investigating various methods of 'pulse compressing' a relatively wide rf pulse ({ge} 1 {mu}s) from a klystron into a narrower, but more intense, pulse. Currently a SLED-II pulse compression scheme is being used at SLAC in the NLC Test Accelerator (NLCTA) and in the Accelerator Structures Test Area (ASTA) to provide high rf power for accelerator and component testing. In ASTA, a 1.05 {mu}s pulse from a 50 MW klystron was successfully pulse compressed to 205 MW with a pulse width of 150 ns. Since operation in NLC will require generating and transporting rf power in excess of 400 MW it was decided to test the breakdown limits of the SLED-II rf components in ASTA with rf power up to the maximum available of 400 MW. This required the combining of power from two 50 MW klystrons and feeding the summed power into the SLED-II pulse compressor. Results from this experiment demonstrated

  20. IMPATT power building blocks for 20 GHz spaceborne transmit amplifier

    NASA Technical Reports Server (NTRS)

    Asmus, J.; Cho, Y.; Degruyl, J.; Ng, E.; Giannakopoulos, A.; Okean, H. C.

    1982-01-01

    Single-stage circulator coupled IMPATT building block constituents of a 20-GHz solid state power amplifier (SSPA) currently under development for spaceborne downlink transmitter usage have been demonstrated as providing 1.5 to 2.0W RF power output at 4 to 5 dB operating gain over a 1 GHz bandwidth. Using either commercially available or recently developed in-house GaAs Schottky Read-profile IMPATT diodes, DC/RF power added efficiencies of 14 to 15% were achieved in these amplifier stages. A two stage IMPATT driver amplifier with similar RF output power capability exhibited 13 + or - 0.5 dB operating gain over a 1 GHz bandwidth.

  1. Internal feedback and its effect on phase linearity in a forward wave crossed-field amplifier

    SciTech Connect

    Chernin, D.

    1995-12-31

    Two sources of internal feedback couple the input and output of crossed-field amplifiers (CFA`s). Direct rf feedback occurs because the ends of the slow wave circuit radiate energy into the drift space connecting the output and input; the magnitude of this type of feedback may be measured at cold test. Electronic feedback, on the other hand, occurs only when the tube is operating, and is much harder to measure. It is due to the residual coherency retained by the beam after its passage through the drift space. As the input signal frequency of the amplifier is varied, the difference in electrical path length around the tube leads to a periodic variation of the total feedback signal relative to that of the input signal, resulting in a variation in phase of the effective drive signal, which in turn produces a periodic variation in phase of the output signal. This variation can have significant consequences for the system in which the CFA is used. The magnitude of this variation is very difficult to estimate other than by the use of a simulation code. The authors have applied their CFA simulation code, MASK, to this problem and have produced very good agreement with measurements of output phase versus frequency for a high power, forward wave S-band tube.

  2. Development of a 20-W solid-state S-band power amplifier

    NASA Technical Reports Server (NTRS)

    Vandercapellen, A. G.

    1972-01-01

    As an alternative to the use of traveling wave tube amplifiers in spacecraft with long life mission requirements, a solid state S band amplifier was developed. A solid state amplifier with an output of 20 W at 2295 MHz, a dc/RF efficiency of 38%, and a gain of 27 dB was developed. The physical and electrical performance of the solid state amplifier are described.

  3. SQUARE WAVE AMPLIFIER

    DOEpatents

    Leavitt, M.A.; Lutz, I.C.

    1958-08-01

    An amplifier circuit is described for amplifying sigmals having an alternating current component superimposed upon a direct current component, without loss of any segnnent of the alternating current component. The general circuit arrangement includes a vibrator, two square wave amplifiers, and recombination means. The amplifier input is connected to the vibrating element of the vibrator and is thereby alternately applied to the input of each square wave amplifier. The detailed circuitry of the recombination means constitutes the novelty of the annplifier and consists of a separate, dual triode amplifier coupled to the output of each square wave amplifier with a recombination connection from the plate of one amplifier section to a grid of one section of the other amplifier. The recombination circuit has provisions for correcting distortion caused by overlapping of the two square wave voltages from the square wave amplifiers.

  4. Recycler barrier RF buckets

    SciTech Connect

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  5. Control of the shape of laser pulses amplified in the strong saturation regime

    SciTech Connect

    Shaykin, A A

    2014-05-30

    A new criterion for estimating the distortions of quasirectangular pulses in high-power amplifiers is proposed together with a method that allows generation of quasi-rectangular pulses at the output of a high-efficiency amplifier, i. e., in the regime of strong saturation. The efficiency of the method is demonstrated by the example of calculating the neodymium glass amplifier, used for pumping the petawatt parametric amplifier. (lasers)

  6. Development of a dual-pulse RF driver for an S-band (= 2856 MHz) RF electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Lee, Byung Cheol; Cha, Hyungki; Ha, Jang Ho; Park, Hyung Dal; Lee, Seung Hyun; Kim, Hui Su; Buaphad, Pikad

    2016-04-01

    The radiation equipment research division of Korea Atomic Energy Research Institute has developed a Container Inspection System (CIS) using a Radio Frequency (RF) electron linear accelerator for port security. The primary purpose of the CIS is to detect nuclear materials and explosives, as well country-specific prohibited substances, e.g., smuggled. The CIS consists of a 9/6 MeV dualenergy electron linear accelerator for distinguishing between organic and inorganic materials. The accelerator consists of an electron gun, an RF accelerating structure, an RF driver, a modulator, electromagnets, a cooling system, a X-ray generating target, X-ray collimator, a detector, and a container moving system. The RF driver is an important part of the configuration because it is the RF power source: it supplies the RF power to the accelerating structure. A unique aspect of the RF driver is that it generates dual RF power to generate dual energy (9/6 MeV). The advantage of this RF driver is that it can allow the pulse width to vary and can be used to obtain a wide range of energy output, and pulse repetition rates up to 300 Hz. For this reason, 140 W (5 MW - 9 MeV) and 37 W (3.4 MW - 6 MeV) power outputs are available independently. A high power test for 20 minutes demonstrate that stable dual output powers can be generated. Moreover, the dual power can be applied to the accelerator which has stable accelerator operation. In this paper, the design, fabrication and high power test of the RF driver for the RF electron linear accelerator (linac) are presented.

  7. High power tests of an electroforming cavity operating at 11.424 GHz

    NASA Astrophysics Data System (ADS)

    Dolgashev, V. A.; Gatti, G.; Higashi, Y.; Leonardi, O.; Lewandowski, J. R.; Marcelli, A.; Rosenzweig, J.; Spataro, B.; Tantawi, S. G.; Yeremian, D. A.

    2016-03-01

    The achievement of ultra high accelerating gradients is mandatory in order to fabricate compact accelerators at 11.424 GHz for scientific and industrial applications. An extensive experimental and theoretical program to determine a reliable ultra high gradient operation of the future linear accelerators is under way in many laboratories. In particular, systematic studies on the 11.424 GHz frequency accelerator structures, R&D on new materials and the associated microwave technology are in progress to achieve accelerating gradients well above 120 MeV/m. Among the many, the electroforming procedure is a promising approach to manufacture high performance RF devices in order to avoid the high temperature brazing and to produce precise RF structures. We report here the characterization of a hard high gradient RF accelerating structure at 11.424 GHz fabricated using the electroforming technique. Low-level RF measurements and high power RF tests carried out at the SLAC National Accelerator Laboratory on this prototype are presented and discussed. In addition, we present also a possible layout where the water-cooling of irises based on the electroforming process has been considered for the first time.

  8. High power microwave beam steering based on gyromagnetic nonlinear transmission lines

    SciTech Connect

    Romanchenko, I. V. Rostov, V. V.; Gunin, A. V.; Konev, V. Yu.

    2015-06-07

    We demonstrate electronically controlled beam steering by high power RF pulses produced by two gyromagnetic nonlinear transmission lines (NLTLs) connected to a one high voltage driver. Each NLTL is capable of producing several ns RF pulses with peak power from 50 to 700 MW (6% standard deviation) at frequencies from 0.5 to 1.7 GHz (1% standard deviation) with 100 Hz repetition rate. Using a helix antenna allows irradiating of RF pulses with almost circular polarization and 350 MW maximum peak power, which corresponds to 350 kV effective potential of radiation. At the installation of two identical channels, we demonstrate the possibility of beam steering within ±15° in the horizontal plane by coherent RF pulses with circular polarization at 1.0 GHz center frequency. Fourfold increase in the power flux density for in-phase irradiation of RF pulses is confirmed by comparison with one-channel operation.

  9. Industrial Applications of High Power Ultrasonics

    NASA Astrophysics Data System (ADS)

    Patist, Alex; Bates, Darren

    Since the change of the millennium, high-power ultrasound has become an alternative food processing technology applicable to large-scale commercial applications such as emulsification, homogenization, extraction, crystallization, dewatering, low-temperature pasteurization, degassing, defoaming, activation and inactivation of enzymes, particle size reduction, extrusion, and viscosity alteration. This new focus can be attributed to significant improvements in equipment design and efficiency during the late 1990 s. Like most innovative food processing technologies, high-power ultrasonics is not an off-the-shelf technology, and thus requires careful development and scale-up for each and every application. The objective of this chapter is to present examples of ultrasonic applications that have been successful at the commercialization stage, advantages, and limitations, as well as key learnings from scaling up an innovative food technology in general.

  10. The high-power iodine laser

    NASA Astrophysics Data System (ADS)

    Brederlow, G.; Fill, E.; Witte, K. J.

    The book provides a description of the present state of the art concerning the iodine laser, giving particular attention to the design and operation of pulsed high-power iodine lasers. The basic features of the laser are examined, taking into account aspects of spontaneous emission lifetime, hyperfine structure, line broadening and line shifts, stimulated emission cross sections, the influence of magnetic fields, sublevel relaxation, the photodissociation of alkyl iodides, flashlamp technology, excitation in a direct discharge, chemical excitation, and questions regarding the chemical kinetics of the photodissociation iodine laser. The principles of high-power operation are considered along with aspects of beam quality and losses, the design and layout of an iodine laser system, the scalability and prospects of the iodine laser, and the design of the single-beam Asterix III laser.

  11. New high power linacs and beam physics

    SciTech Connect

    Wangler, T.P.; Gray, E.R.; Nath, S.; Crandall, K.R.; Hasegawa, K.

    1997-08-01

    New high-power proton linacs must be designed to control beam loss, which can lead to radioactivation of the accelerator. The threat of beam loss is increased significantly by the formation of beam halo. Numerical simulation studies have identified the space-charge interactions, especially those that occur in rms mismatched beams, as a major concern for halo growth. The maximum-amplitude predictions of the simulation codes must be subjected to independent tests to confirm the validity of the results. Consequently, the authors compare predictions from the particle-core halo models with computer simulations to test their understanding of the halo mechanisms that are incorporated in the computer codes. They present and discuss scaling laws that provide guidance for high-power linac design.

  12. High Power Disk Loaded Guide Load

    SciTech Connect

    Farkas, Z.D.; /SLAC

    2006-02-22

    A method to design a matching section from a smooth guide to a disk-loaded guide, using a variation of broadband matching, [1, 2] is described. Using this method, we show how to design high power loads. The load consists of a disk-loaded coaxial guide operating in the TE{sub 01}-mode. We use this mode because it has no electric field terminating on a conductor, has no axial currents, and has no current at the cylinder-disk interface. A high power load design that has -35 dB reflection and a 200 MHz, -20 dB bandwidth, is presented. It is expected that it will carry the 600 MW output peak power of the pulse compression network. We use coaxial geometry and stainless steel material to increase the attenuation per cell.

  13. High-Power Linac for the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Rej, D. J.

    2002-04-01

    The Spallation Neutron Source (SNS) will be the world’s most intense source of neutrons for fundamental science and industrial applications. Design and construction of this facility, located at Oak Ridge, is a joint venture between six DOE laboratories. Construction began in 1999 and is currently ahead of the scheduled 2006 completion date. Injecting a high-power, pulsed proton beam into a mercury target produces neutrons. In this talk, we review the physics requirements, design, and status of the construction of the 1-GeV, 1.4-MW average power RF linac for SNS. The accelerator consists of a drift tube linac (DTL), a coupled-cavity linac (CCL), and a superconducting rf (SRF) linac. The phase and quadrupole settings are set to avoid structure and parametric resonances, with coherent resonances posing minimal risk for emittance growth. The DTL is 37 m long and accelerates the ions to 87 MeV. The CCL is 55 m long and accelerates the ions to 186 MeV. The rf structure design and stability for both the DTL and CCL have been validated with scale models. The SRF linac has a modular design to accelerate ions to 1000 MeV, with a straightforward upgrade to 1.3 GeV at a later date. 3D particle-in-cell simulations of beam dynamics are performed to validate performance. The accelerator utilizes 93 MW of pulsed power operating continuously at 60-Hz with an 8factor. Approximately one hundred 402.5 or 805-MHz klystrons, with outputs between 0.55 and 5 MW, are used. The klystrons are powered by a novel converter-modulator that takes advantage of recent advances in IGBT switch plate assemblies and low-loss material cores for boost transformer. Beam diagnostics include position, phase, profile, and current monitors. They are designed to enable accurate beam steering and matching, and to minimize beam loss that would lead to activation and prevent hands-on maintenance.

  14. High Power Picosecond Laser Pulse Recirculation

    SciTech Connect

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  15. RF system considerations for large high-duty-factor linacs

    SciTech Connect

    Lynch, M.T.; Ziomek, C.D.; Tallerico, P.J.; Regan, A.H.; Eaton, L.; Lawrence, G.

    1994-09-01

    RF systems are often a major cost item for linacs, but this is especially true for large high-duty-factor linacs (up to and including CW) such as the Accelerator for Production of Tritium (APT) or the Accelerator for Transmutation of nuclear Waste (ATW). In addition, the high energy and high average beam current of these machines (approximately 1 GeV, 100--200 mA) leads to a need for excellent control of the accelerating fields in order to minimize the possibility of beam loss in the accelerator and the resulting activation. This paper will address the key considerations and limitations in the design of the RF system. These considerations impact the design of both the high power RF components and the RF controls. As might be expected, the two concerns sometimes lead to conflicting design requirements. For example minimum RF operating costs lead to a desire for operation near saturation of the high power RF generators in order to maximize the operating efficiency. Optimal control of the RF fields leads to a desire for maximum overdrive capability in those same generators in order to respond quickly to disturbances of the accelerator fields.

  16. High Power UV LED Industrial Curing Systems

    SciTech Connect

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  17. High Temperature, High Power Piezoelectric Composite Transducers

    PubMed Central

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  18. High power impulse magnetron sputtering discharge

    SciTech Connect

    Gudmundsson, J. T.; Brenning, N.; Lundin, D.; Helmersson, U.

    2012-05-15

    The high power impulse magnetron sputtering (HiPIMS) discharge is a recent addition to plasma based sputtering technology. In HiPIMS, high power is applied to the magnetron target in unipolar pulses at low duty cycle and low repetition frequency while keeping the average power about 2 orders of magnitude lower than the peak power. This results in a high plasma density, and high ionization fraction of the sputtered vapor, which allows better control of the film growth by controlling the energy and direction of the deposition species. This is a significant advantage over conventional dc magnetron sputtering where the sputtered vapor consists mainly of neutral species. The HiPIMS discharge is now an established ionized physical vapor deposition technique, which is easily scalable and has been successfully introduced into various industrial applications. The authors give an overview of the development of the HiPIMS discharge, and the underlying mechanisms that dictate the discharge properties. First, an introduction to the magnetron sputtering discharge and its various configurations and modifications is given. Then the development and properties of the high power pulsed power supply are discussed, followed by an overview of the measured plasma parameters in the HiPIMS discharge, the electron energy and density, the ion energy, ion flux and plasma composition, and a discussion on the deposition rate. Finally, some of the models that have been developed to gain understanding of the discharge processes are reviewed, including the phenomenological material pathway model, and the ionization region model.

  19. High temperature, high power piezoelectric composite transducers.

    PubMed

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  20. High Power MPD Thruster Performance Measurements

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Strzempkowski, Eugene; Pencil, Eric

    2004-01-01

    High power magnetoplasmadynamic (MPD) thrusters are being developed as cost effective propulsion systems for cargo transport to lunar and Mars bases, crewed missions to Mars and the outer planets, and robotic deep space exploration missions. Electromagnetic MPD thrusters have demonstrated, at the laboratory level, the ability to process megawatts of electrical power while providing significantly higher thrust densities than electrostatic electric propulsion systems. The ability to generate higher thrust densities permits a reduction in the number of thrusters required to perform a given mission, and alleviates the system complexity associated with multiple thruster arrays. The specific impulse of an MPD thruster can be optimized to meet given mission requirements, from a few thousand seconds with heavier gas propellants up to 10,000 seconds with hydrogen propellant. In support of programs envisioned by the NASA Office of Exploration Systems, Glenn Research Center is developing and testing quasi-steady MW-class MPD thrusters as a prelude to steady state high power thruster tests. This paper provides an overview of the GRC high power pulsed thruster test facility, and presents preliminary performance data for a quasi-steady baseline MPD thruster geometry.