NASA Astrophysics Data System (ADS)
Pock, Christian; Mayer-Gürr, Torsten; Rieser, Daniel; Kühtreiber, Norbert
2015-04-01
High precision regional geoid determination is a challenging task. Besides the quality of the input data, the quality of the global gravity field data and the density information is essential for a consistent treatment of the gravity field quantities within the remove-compute-restore procedure. In this investigation a surface density model based on geological observations is introduced, replacing the constant standard crustal density. The long-wavelength component of the gravity field is represented by the GOCO05s global gravity field model. The geoid computation is based on a Gauss-Markov model with radial basis function parametrization. The achieved improvements are remarkable and lead to an unprecedented accuracy of the pure gravimetric geoid in Austria. As final outcomes a new geoid solution and a map for the xi and eta components of deflections of the vertical are computed. The achieved results are primarily validated with independent GPS/leveling observations. Secondly validation has been carried out through deflections of the vertical, obtained from precise zenith camera and astronomical measurements. Furthermore, differences between the current official Austrian geoid solution based on data from 2008 and the new estimated geoid are shown. An overview about the achieved improvements and the validation is given in the presentation.
NASA Astrophysics Data System (ADS)
Balmino, G.
2003-07-01
The very high accuracy of the Doppler and range measurements between the two low-flying and co-orbiting spacecraft of the GRACE mission, which will be at the μm/sec and ≈10 μm levels respectively, requires that special procedures be applied in the processing of these data. Parts of the existing orbit determination and gravity field parameters retrieval methods and software must be modified in order to fully benefit from the capabilities of this mission. This is being done in the following areas: (i) numerical integration of the equations of motion (summed form, accuracy of the predictor-corrector loop, Encke's formulation): (ii) special inter-satellite dynamical parameterization for very short arcs; (iii) accurate solution of large least-squares problems (normal equations vs. orthogonal decomposition of observation equations); (iv) handling the observation equations with high accuracy. Theoretical concepts and first tests of some of the newly implemented algorithms are presented.
High-precision measurements of global stellar magnetic fields
NASA Astrophysics Data System (ADS)
Plachinda, S. I.
2014-06-01
This paper presents a brief history of the development of devices and techniques for high-precision measurements of stellar magnetic fields. Two main approaches for the processing of spectral-polarimetric observations are described: the method of least-squares deconvolution (LSD), which is used to find a mean-weighted average of the normalized polarization profile using a set of spectral lines, and a method in which each individual spectral line is used to determine the magnetic field, viz., the single line method (SL). The advantages and disadvantages of the LSD and SL methods are discussed.
The first high-precision gravity survey in the North Pole region
NASA Astrophysics Data System (ADS)
Sokolov, A. V.; Krasnov, A. A.; Koneshov, V. N.; Glazko, V. V.
2016-03-01
The experience with conducting a marine gravity survey onboard a surface vessel under complicated ice conditions at high latitude is described. In 2014, a high-precision marine gravity survey with two modifications of the Chekan-AM gravimeter was carried out in the North Pole region. The measurements were conducted during two months from aboard the Akademik Fedorov research vessel on a given grid with a total length of 10000 km of the routes. As a result, 70000 gravity points at Arctic latitudes including the region of the geographical North Pole itself are acquired. In this paper, we discuss the methodical aspects of conducting the survey and present the accuracy estimates of the gravity measurements. The comparison of the obtained results with the Earth's gravity models demonstrates the absence of systematic errors and the higher spatial resolution of the measurements with the Chekan-AM gravimeters.
On the recovery of gravity anomalies from high precision altimeter data
NASA Technical Reports Server (NTRS)
Lelgemann, D.
1976-01-01
A model for the recovery of gravity anomalies from high precision altimeter data is derived which consists of small correction terms to the inverse Stokes' formula. The influence of unknown sea surface topography in the case of meandering currents such as the Gulf Stream is discussed. A formula was derived in order to estimate the accuracy of the gravity anomalies from the known accuracy of the altimeter data. It is shown that for the case of known harmonic coefficients of lower order the range of integration in Stokes inverse formula can be reduced very much.
Application of the spherical harmonic gravity model in high precision inertial navigation systems
NASA Astrophysics Data System (ADS)
Wang, Jing; Yang, Gongliu; Li, Xiangyun; Zhou, Xiao
2016-09-01
The spherical harmonic gravity model (SHM) may, in general, be considered as a suitable alternative to the normal gravity model (NGM), because it represents the Earth’s gravitational field more accurately. However, the high-resolution SHM has never been used in current inertial navigation systems (INSs) due to its extremely complex expression. In this paper, the feasibility and accuracy of a truncated SHM are discussed for application in a real-time free-INS with a precision demand better than 0.8 nm h‑1. In particular, the time and space complexity are analyzed mathematically to verify the feasibility of the SHM. Also, a test on a typical navigation computer shows a storable range of cut-off degrees. To further evaluate the appropriate degree and accuracy of the truncated SHM, analyses of covariance and truncation error are proposed. Finally, a SHM of degree 12 is demonstrated to be the appropriate model for routine INSs in the precision range of 0.4–0.75 nm h‑1. Flight simulations and road tests show its outstanding performance over the traditional NGM.
NASA Astrophysics Data System (ADS)
Wziontek, Hartmut; Wilmes, Herbert; Güntner, Andreas; Creutzfeldt, Benjamin
2010-05-01
Water mass changes are a major source of variations in residual gravimetric time series obtained from the combination of observations with superconducting and absolute gravimeters. Changes in the local water storage are the main influence, but global variations contribute to the signal significantly. For three European gravity stations, Bad Homburg, Wettzell and Medicina, different global hydrology models are compared. The influence of topographic effects is discussed and due to the long-term stability of the combined gravity time series, inter-annual signals in model data and gravimetric observations are compared. Two sources of influence are discriminated, i.e., the effect of a local zone with an extent of a few kilometers around the gravimetric station and the global contribution beyond 50km. Considering their coarse resolution and uncertainties, local effects calculated from global hydrological models are compared with the in-situ gravity observations and, for the station Wettzell, with local hydrological monitoring data.
A Direct Comparison of Two High Precision Relative Gravity Meters at Optimal Performance
NASA Astrophysics Data System (ADS)
van Westrum, D.
2015-12-01
NGS has maintained and operated GWR Superconducting Gravimeter #024 since 1995. It has been widely considered one of the most quiet instruments from that era. It was recently upgraded with state of the art electronics and its operating parameters reoptimzied. A Micro-g LaCoste gPhoneX, installed on a high precision tilt table, was collocated with the SG at the Table Mountain Geophysical Observatory near Boulder, CO and the two instruments operated side by side for approximately two months. Results in both the frequency domain and selected time series from large seismic signals (e.g. earthquakes) will be presented, allowing for a direct comparison between the instruments in identical, ideal conditions.
NASA Astrophysics Data System (ADS)
Ponce, D. A.; Simpson, R. W.; Graymer, R. W.; Jachens, R. C.
2004-07-01
Gravity, magnetic, and seismicity data profiled across the Hayward Fault Zone were generated as part of ongoing studies to help determine the geologic and tectonic setting of the San Francisco Bay region. These data, combined with previous geophysical studies that indicate that the Hayward Fault Zone dips 75°NE near San Leandro and follows a preexisting structure, reveal a possible direct connection between the seismogenic portion of the Hayward and Calaveras Faults at depth. Although the relocated seismicity data are regional in nature, they suggest that the dip of the Hayward Fault Zone may vary from near vertical in the northwestern part of the fault to about 75°NE at San Leandro in the central part of the fault to about 50°NE in the southeastern part of the fault. Gravity and magnetic data, profiled across the Hayward Fault Zone, were processed using standard geophysical techniques. Cross sections of high-precision relocated hypocenters were constructed along each profile from the northwestern to the southeastern end of the Hayward Fault Zone. Profiles and cross sections are referenced to Pinole Point, where the Hayward Fault enters San Pablo Bay, and are spaced 2.5 km apart. Topographic profiles shown on the seismicity cross sections were generated using U.S. Geological Survey (USGS) 7.5-min, 30-m digital elevation models. Relocation of seismicity data was accomplished using a regional double-difference method. The double-difference method incorporates ordinary travel time measurements and cross correlation of P and S wave differential travel time measurements. Relative locations between earthquakes have hypocentral errors of about 100 m horizontally and 250 m vertically. Absolute location uncertainties were not determined but are probably dramatically improved compared to the USGS's Northern California Seismic Network catalog data.
High-precision magnetic field measurements of Ap and Bp stars
NASA Astrophysics Data System (ADS)
Wade, G. A.; Donati, J.-F.; Landstreet, J. D.; Shorlin, S. L. S.
2000-04-01
In this paper we describe a new approach for measuring the mean longitudinal magnetic field and net linear polarization of Ap and Bp stars. As was demonstrated by Wade et al., least-squares deconvolution (LSD; Donati et al.) provides a powerful technique for detecting weak Stokes V, Q and U Zeeman signatures in stellar spectral lines. These signatures have the potential to apply strong new constraints to models of stellar magnetic field structure. Here we point out two important uses of LSD Stokes profiles. First, they can provide very precise determinations of the mean longitudinal magnetic field. In particular, this method allows one frequently to obtain 1σ error bars better than 50G, and smaller than 20G in some cases. This method is applicable to both broad- and sharp-lined stars, with both weak and strong magnetic fields, and effectively redefines the quality standard of longitudinal field determinations. Secondly, LSD profiles can in some cases provide a measure of the net linear polarization, a quantity analogous to the broad-band linear polarization recently used to derive detailed magnetic field models for a few stars (e.g. Leroy et al.). In this paper we report new high-precision measurements of the longitudinal fields of 14 magnetic Ap/Bp stars, as well as net linear polarization measurements for four of these stars, derived from LSD profiles.
NASA Astrophysics Data System (ADS)
Eppelbaum, Lev
2015-04-01
Microgravity investigations are comparatively rarely used for searching of hidden ancient targets (e.g., Eppelbaum, 2013). It is caused mainly by small geometric size of the desired archaeological objects and various types of noise complicating the observed useful signal. At the same time, development of modern generation of field gravimetric equipment allows to register microGal (10-8 m/s2) anomalies that offer a new challenge in this direction. Correspondingly, an accuracy of gravity variometers (gradientometers) is also sharply increased. How we can improve the interpretation effectiveness and reliability? Undoubtedly, it must be a multi-stage process. I believe that we must begin since nonconventional methodologies for reducing topographic effect and terrain correction computation. Topographic effect reducing The possibilities of reducing topographic effects by grouping the points of additional gravimetric observations around the central point located on the survey network were demonstrated in (Khesin et al., 1996). A group of 4 to 8 additional points is located above and below along the relief approximately symmetrically and equidistant from the central point. The topographic effect is reduced to the obtained difference between the gravity field in the center of the group and its mean value for the whole group. Application of this methodology in the gold-pyrite deposit Gyzyl-Bulakh (Lesser Caucasus, western Azerbaijan) indicated its effectiveness. Computation of terrain correction Some geophysicists compare the new ideas in the field of terrain correction (TC) in gravimetry with the 'perpetuum mobile' invention. However, when we speak about very detailed gravity observations, the problem of most optimal computation of surrounding relief influence is of a great importance. Let us will consider two approaches applied earlier in ore geophysics. First approach A first method was applied in the Gyzyl-Bulakh gold-pyrite deposit situated in the Mekhmana ore region of
NASA Astrophysics Data System (ADS)
Markley, Larry C.; Lindner, John F.
Using computer algebra to run Einstein's equations "backward", from field to source rather than from source to field, we design an artificial gravity field for a space station or spaceship. Everywhere inside astronauts experience normal Earth gravity, while outside they float freely. The stress-energy that generates the field contains exotic matter of negative energy density but also relies importantly on pressures and shears, which we describe. The same techniques can be readily used to design other interesting spacetimes and thereby elucidate the connection between the source and field in general relativity.
NASA Astrophysics Data System (ADS)
Burla, Santoshkumar; Mueller, Vitali; Flury, Jakob; Jovanovic, Nemanja
2016-04-01
CHAMP, GRACE and GOCE missions have been successful in the field of satellite geodesy (especially to improve Earth's gravity field models) and have established the necessity towards the next generation gravity field missions. Especially, GRACE has shown its capabilities beyond any other gravity field missions. GRACE Follow-On mission is going to continue GRACE's legacy which is almost identical to GRACE mission with addition of laser interferometry. But these missions are not only quite expensive but also takes quite an effort to plan and to execute. Still there are few drawbacks such as under-sampling and incapability of exploring new ideas within a single mission (ex: to perform different orbit configurations with multi satellite mission(s) at different altitudes). The budget is the major limiting factor to build multi satellite mission(s). Here, we offer a solution to overcome these drawbacks using cubesat/ nanosatellite mission. Cubesats are widely used in research because they are cheaper, smaller in size and building them is easy and faster than bigger satellites. Here, we design a 3D model of GRACE like mission with available sensors and explain how the Attitude and Orbit Control System (AOCS) works. The expected accuracies on final results of gravity field are also explained here.
NASA Astrophysics Data System (ADS)
Eppelbaum, Lev
2015-04-01
Microgravity investigations are comparatively rarely used for searching of hidden ancient targets (e.g., Eppelbaum, 2013). It is caused mainly by small geometric size of the desired archaeological objects and various types of noise complicating the observed useful signal. At the same time, development of modern generation of field gravimetric equipment allows to register microGal (10-8 m/s2) anomalies that offer a new challenge in this direction. Correspondingly, an accuracy of gravity variometers (gradientometers) is also sharply increased. How we can improve the interpretation effectiveness and reliability? Undoubtedly, it must be a multi-stage process. I believe that we must begin since nonconventional methodologies for reducing topographic effect and terrain correction computation. Topographic effect reducing The possibilities of reducing topographic effects by grouping the points of additional gravimetric observations around the central point located on the survey network were demonstrated in (Khesin et al., 1996). A group of 4 to 8 additional points is located above and below along the relief approximately symmetrically and equidistant from the central point. The topographic effect is reduced to the obtained difference between the gravity field in the center of the group and its mean value for the whole group. Application of this methodology in the gold-pyrite deposit Gyzyl-Bulakh (Lesser Caucasus, western Azerbaijan) indicated its effectiveness. Computation of terrain correction Some geophysicists compare the new ideas in the field of terrain correction (TC) in gravimetry with the 'perpetuum mobile' invention. However, when we speak about very detailed gravity observations, the problem of most optimal computation of surrounding relief influence is of a great importance. Let us will consider two approaches applied earlier in ore geophysics. First approach A first method was applied in the Gyzyl-Bulakh gold-pyrite deposit situated in the Mekhmana ore region of
NASA Astrophysics Data System (ADS)
Rundle, J. B.; Sachs, M. K.; Tiampo, K. F.; Fernandez, J.; Turcotte, D. L.; Donnellan, A.; Heien, E. M.; Kellogg, L. H.
2013-12-01
Monitoring deformation produced by slip on earthquake faults can be carried out via GPS or InSAR measurements. Both of these types of observations have their advantages and disadvantages, in terms of cost, availability, and technical difficulty. It has been suggested that another method to accomplish many of the same objectives would be via a dedicated gravity mission. The GRACE mission has shown that it is possible to make detailed gravity measurements from space for climate dynamics and other purposes. An important question is what level of accuracy will be needed for precise estimation of fault slip in earthquakes of interest to researchers. To answer this question, we turn to numerical simulations of earthquake fault systems and use these to estimate gravity changes. Rundle (1978) considered the question of gravity changes from dilation sources and thrust faults, and found that gravity changes in these cases were free air anomaly (dilation) and Bouguer anomaly (thrust fault). Walsh and Rice (1978) computed these by a different method and found the same result. Okada (1991) listed gravity and potential Green functions for all possible sources for the general case. Hayes et al (2006) then took the Okada Greens functions and applied them computed from an earlier version of Virtual California earthquake fault system simulations. Those simulations only involved vertical strike slip faults. The current far more advanced generation of Virtual California simulations involves faults of any orientation, dip, and rake. In this talk, we discuss these computations and the implications they have for accuracies needed for a dedicated gravity monitoring mission. Preliminary results are in agreement with previous results from Hayes et al (2006). Computed gravity changes are in the range of tens to hundreds of microgals over distances of few to many tens of kilometers. These values are presumably well within the range of measurement for a modern gravity mission flown either at
Feeling Gravity's Pull: Gravity Modeling. The Gravity Field of Mars
NASA Technical Reports Server (NTRS)
Lemoine, Frank; Smith, David; Rowlands, David; Zuber, Maria; Neumann, G.; Chinn, Douglas; Pavlis, D.
2000-01-01
Most people take the constant presence of gravitys pull for granted. However, the Earth's gravitational strength actually varies from location to location. This variation occurs because mass, which influences an object's gravitational pull, is not evenly distributed within the planet. Changes in topography, such as glacial movement, an earthquake, or a rise in the ocean level, can subtly affect the gravity field. An accurate measurement of the Earth's gravity field helps us understand the distribution of mass beneath the surface. This insight can assist us in locating petroleum, mineral deposits, ground water, and other valuable substances. Gravity mapping can also help notice or verify changes in sea surface height and other ocean characteristics. Such changes may indicate climate change from polar ice melting and other phenomena. In addition, gravity mapping can indicate how land moves under the surface after earthquakes and other plate tectonic processes. Finally, changes in the Earth's gravity field might indicate a shift in water distribution that could affect agriculture, water supplies for population centers, and long-term weather prediction. Scientists can map out the Earth's gravity field by watching satellite orbits. When a satellite shifts in vertical position, it might be passing over an area where gravity changes in strength. Gravity is only one factor that may shape a satellite's orbital path. To derive a gravity measurement from satellite movement, scientists must remove other factors that might affect a satellite's position: 1. Drag from atmospheric friction. 2. Pressure from solar radiation as it heads toward Earth and. as it is reflected off the surface of the Earth 3. Gravitational pull from the Sun, the Moon, and other planets in the Solar System. 4. The effect of tides. 5. Relativistic effects. Scientists must also correct for the satellite tracking process. For example, the tracking signal must be corrected for refraction through the
New powerful thermal modelling for high-precision gravity missions with application to Pioneer 10/11
NASA Astrophysics Data System (ADS)
Rievers, Benny; Lämmerzahl, Claus; List, Meike; Bremer, Stefanie; Dittus, Hansjörg
2009-11-01
The evaluation of about 25 years of Doppler data has shown an anomalous constant deceleration of the deep space probes Pioneer 10 and 11. This observation became known as the Pioneer anomaly (PA) and has been confirmed independently by several groups. Many disturbing effects that could cause a constant deceleration of the craft have been excluded as possible source of the PA. However, a potential asymmetric heat dissipation of the spacecraft surface leading to a resulting acceleration still remains to be analysed in detail. We developed a method to calculate this force with very high precision by means of finite element (FE) modelling and ray tracing algorithms. The elaborated method is divided into two separate parts. The first part consists of the modelling of the spacecraft geometry in FE and the generation of a steady state temperature surface map of the craft. In the second part, this thermal map is used to compute the force with a ray-tracing algorithm, which gives the total momentum generated by the radiation emitted from the spacecraft surface. The modelling steps and the force computation are presented for a simplified geometry of the Pioneer 10/11 spacecraft including radioisotope thermoelectric generators (RTG), equipment/experiment section and the high gain antenna. Analysis results how that the magnitude of the forces to be expected are non-negligible with respect to the PA and that more detailed investigations are necessary. The method worked out here for the first time is not restricted to the modelling of the Pioneer spacecraft but can be used for many future fundamental physics (in particular gravitational physics) and geodesy missions like LISA, LISA Pathfinder or MICROSCOPE for which an exact disturbance modelling is crucial.
High precision description and new properties of a spin-1 particle in a magnetic field
NASA Astrophysics Data System (ADS)
Silenko, Alexander J.
2014-06-01
The exact Foldy-Wouthuysen Hamiltonian is derived for a pointlike spin-1 particle with a normal magnetic moment in a nonuniform magnetic field. For a uniform magnetic field, it is exactly separated into terms linear and quadratic in spin. New unexpected properties of a particle with an anomalous magnetic moment are found. Spin projections of a particle moving in a uniform magnetic field are not integer, and the tensor polarization is asymmetric in the plane orthogonal to the field. Previously described spin-tensor effects caused by the tensor magnetic polarizability exist not only for nuclei but also for pointlike particles.
High precision lightning measurements using coherent averaging of long-distance magnetic fields
NASA Astrophysics Data System (ADS)
Weinert, J. L.; Cummer, S. A.
2014-12-01
Measurement of magnetic fields produced by lightning has many advantages over other methods of lightning characterization. Because low frequency magnetic fields produced by lightning decay slowly with distance, magnetic field measurements can be performed at large distances, often in the range of thousands of kilometers. As we have shown previously, coherent time-aligned averaging of similar lightning events can overcome many limiting factors associated with magnetic field measurements at large distances, such as sensitivity, as well as both environmental and sensor noise. Using such a method, it is possible to achieve as broadband noise level of tens of femtotesla, allowing for the detection of signals produced by current moments of a few hundred amp-kilometers. In this work, we present the results of investigation of lightning from four thunderstorms from summer 2013, each located several hundreds of kilometers from the measurement location. Cloud-to-ground (CG) events of both positive and negative polarities are compared between storms, allowing precise, quantitative measurement of flash processes with relatively small current moments, such as continuing currents and leader development. By comparing events from several storms, some conclusions about consistency of processes for both positive and negative CG flashes can be made.
Geodynamics and temporal variations in the gravity field
NASA Technical Reports Server (NTRS)
Mcadoo, D. C.; Wagner, C. A.
1989-01-01
Just as the Earth's surface deforms tectonically, so too does the gravity field evolve with time. Now that precise geodesy is yielding observations of these deformations it is important that concomitant, temporal changes in the gravity field be monitored. Although these temporal changes are minute they are observable: changes in the J2 component of the gravity field were inferred from satellite (LAGEOS) tracking data; changes in other components of the gravity field would likely be detected by Geopotential Research Mission (GRM), a proposed but unapproved NASA gravity field mission. Satellite gradiometers were also proposed for high-precision gravity field mapping. Using simple models of geodynamic processes such as viscous postglacial rebound of the solid Earth, great subduction zone earthquakes and seasonal glacial mass fluctuations, we predict temporal changes in gravity gradients at spacecraft altitudes. It was found that these proposed gravity gradient satellite missions should have sensitivities equal to or better than 10(exp -4) E in order to reliably detect these changes. It was also found that satellite altimetry yields little promise of useful detection of time variations in gravity.
May, Jody C; Dodds, James N; Kurulugama, Ruwan T; Stafford, George C; Fjeldsted, John C; McLean, John A
2015-10-21
An extensive study of two current ion mobility resolving power theories ("conditional" and "semi-empirical") was undertaken using a recently developed drift tube ion mobility-mass spectrometer. The current study investigates the quantitative agreement between experiment and theory at reduced pressure (4 Torr) for a wide range of initial ion gate widths (100 to 500 μs), and ion mobility values (K0 from 0.50 to 3.0 cm(2) V(-1) s(-1)) representing measurements obtained in helium, nitrogen, and carbon dioxide drift gas. Results suggest that the conditional resolving power theory deviates from experimental results for low mobility ions (e.g., high mass analytes) and for initial ion gate widths beyond 200 μs. A semi-empirical resolving power theory provided close-correlation of predicted resolving powers to experimental results across the full range of mobilities and gate widths investigated. Interpreting the results from the semi-empirical theory, the performance of the current instrumentation was found to be highly linear for a wide range of analytes, with optimal resolving powers being accessible for a narrow range of drift fields between 14 and 17 V cm(-1). While developed using singly-charged ion mobility data, preliminary results suggest that the semi-empirical theory has broader applicability to higher-charge state systems. PMID:26191544
Optical measurements of gravity fields
NASA Technical Reports Server (NTRS)
Maleki, L.; Yu, N.; Matsko, A.
2003-01-01
Optical measurements of a gravitational field with sensitivity close to the sensitivity of atomic devices are possible if one detects properties of light after its interaction with optically thick atomic cloud moving freely in the gravity field. A nondestructive detection of a number of ultracold atoms in a cloud as well as tracking of the ground state population distribution of the atoms is possible by optical means.
Progress in the Determination of the Earth's Gravity Field
NASA Technical Reports Server (NTRS)
Rapp, Richard H. (Editor)
1989-01-01
Topics addressed include: global gravity model development; methods for approximation of the gravity field; gravity field measuring techniques; global gravity field applications and requirements in geophysics and oceanography; and future gravity missions.
Gravity field information from Gravity Probe-B
NASA Technical Reports Server (NTRS)
Smith, D. E.; Lerch, F. J.; Colombo, O. L.; Everitt, C. W. F.
1989-01-01
The Gravity Probe-B Mission will carry the Stanford Gyroscope relativity experiment into orbit in the mid 1990's, as well as a Global Positioning System (GPS) receiver whose tracking data will be used to study the earth gravity field. Estimates of the likely quality of a gravity field model to be derived from the GPS data are presented, and the significance of this experiment to geodesy and geophysics are discussed.
CSR Gravity Field Data Products
NASA Astrophysics Data System (ADS)
Bettadpur, Srinivas
2014-05-01
The joint NASA/DLR GRACE mission has successfully operated for nearly 12 years, and has provided a remarkable record of global mass flux due to a large variety of geophysical and climate processes at various spatio-temporal scales. The University of Texas Center for Space Research (CSR) hosts the mission PI, and is responsible for delivery of operational (presently denoted as Release-05 or RL05) gravity field data products. In addition, CSR generates and distributes a variety of other gravity field data products, including products generated from the use of satellite laser ranging data. This poster will provide an overview of all these data products, their relative quality, potential applications, and future plans for their development and delivery.
Standard high-precision calibration system for magnetic fields of 20,000 to 100,000 nT
NASA Astrophysics Data System (ADS)
Averkiev, V. V.; Ginsburg, B. I.; Turchak, A. A.; Yarotsky, V. A.
1993-11-01
This report is devoted to the achievements of the consortium called Leninetz in terms of magnetometers and the development of these kinds of devices. The report is in two parts, the first one is devoted to the highly precise calibration system for magnetometers. The second part is devoted to a description of various types of magnetometers developed and manufactured by our company. The technical principles which are presented in this report are embedded in the development of this calibration system, which has been tested. There is technical documentation for this system and it is ready for mass production.
NASA Astrophysics Data System (ADS)
Soukup, Ian M.; Beno, Joseph H.; Hill, Gary J.; Good, John M.; Penney, Charles E.; Beets, Timothy A.; Esguerra, Jorge D.; Hayes, Richard J.; Heisler, James T.; Zierer, Joseph J.; Wedeking, Gregory A.; Worthington, Michael S.; Wardell, Douglas R.; Booth, John A.; Cornell, Mark E.; Rafal, Marc D.
2012-09-01
A multi-axis, high precision drive system has been designed and developed for the Wide Field Upgrade to the Hobby- Eberly Telescope at McDonald Observatory. Design, performance and controls details will be of interest to designers of large scale, high precision robotic motion devices. The drive system positions the 20-ton star tracker to a precision of less than 5 microns along each axis and is capable of 4 meters of X/Y travel, 0.3 meters of hexapod actuator travel, and 46 degrees of rho rotation. The positioning accuracy of the new drive system is achieved through the use of highprecision drive hardware in addition to a meticulously tuned high-precision controller. A comprehensive understanding of the drive structure, disturbances, and drive behavior was necessary to develop the high-precision controller. Thorough testing has characterized manufacture defects, structural deflections, sensor error, and other parametric uncertainty. Positioning control through predictive algorithms that analytically compensate for measured disturbances has been developed as a result of drive testing and characterization. The drive structure and drive dynamics are described as well as key results discovered from testing and modeling. Controller techniques and development of the predictive algorithms are discussed. Performance results are included, illustrating recent performance of several axes of the drive system. This paper describes testing that occurred at the Center for Electromechanics in Austin Texas.
Global marine gravity field map
NASA Astrophysics Data System (ADS)
Sloss, Peter W.
A color relief image of the marine gravity field from SEASAT altimeter measurements of the topography of the ocean surface is now available through the National Geophysical Data Center (NGDC) of the National Oceanic and Atmospheric Administration. This image, prepared by William F. Haxby (Lamont-Doherty Geological Observatory of Columbia University, Palisades, N.Y.), has been published by NGDC for the Office of Naval Research, which was the principal sponsor of the effort leading to the development of the image. The U.S. Geological Survey, National Mapping Division, printed the map.
NASA Astrophysics Data System (ADS)
Li, Jian; Fang, Weihua; Tan, Chenyan
2016-04-01
Forest dynamics are highly relevant to land hydrology, climate, carbon budget and biodiversity. Damage and loss assessment of forest caused by typhoon is essential to the understanding of ecosystem variations. Combination of high-precision remote sensing data and field investigation is critical to the assessment of forest damage loss. In this study, high-precision remote sensing data prior to and after typhoon from IKONOS, QuickBird, unmanned aerial vehicle (UAV) are used for identifying rubber tree disturbance. The ground truth data of rubber tree damage collected through field investigation are used to verify and compare the results. Taken the forest damage induced by typhoon Rammasun (201409) in Hainan as an example, 5 damage types (overthrown, trunk snapped below 2m, trunk snapped above 2m, half-overthrown, and sheared) of rubber trees are clearly interpreted compared with field investigation results. High-precision remote sensing data is then applied to other areas to evaluate the forest damage severity. At last, rubber tree damage severity is investigated with other typhoon hazard factors such as wind, topography, soil and precipitation.
NASA Technical Reports Server (NTRS)
Anderson, J. D.
1976-01-01
Preliminary analysis of two-way Doppler data from Pioneers 10 and 11 has provided the first detailed model of the Jovian gravity field. A review of the determination of the zonal harmonic coefficients through the sixth degree is presented, and the results are used to derive a number of geodetic parameters in the atmospheric region of the planet. On a level surface at a pressure of one bar, the net acceleration due to gravity is found to vary from a maximum of 2707 cm/sec squared at the poles to a minimum of 2322 cm/sec squared at the equator. The large dynamical flattening at the one-bar level produces a significant deviation of the local vertical from the Jovicentric radius vector. The angular difference is as much as 3.83 degrees of arc in the high temperature zones of the planet. These considerations are important for the accurate modeling of the atmosphere of Jupiter and for the interpretation of occultation data.
Altimeter measurements for the determination of the Earth's gravity field
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Schutz, B. E.; Shum, C. K.
1987-01-01
The ability of satellite-borne radar altimeter data to measure the global ocean surface with high precision and dense spatial coverage provides a unique tool for the mapping of the Earth's gravity field and its geoid. The altimeter crossover measurements, created by differencing direct altimeter measurements at the subsatellite points where the orbit ground tracks intersect, have the distinct advantage of eliminating geoid error and other nontemporal or long period oceanographic features. In the 1990's, the joint U.S./French TOPEX/POSEIDON mission and the European Space Agency's ERS-1 mission will carry radar altimeter instruments capable of global ocean mapping with high precision. This investigation aims at the development and application of dynamically consistent direct altimeter and altimeter crossover measurement models to the simultaneous mapping of the Earth's gravity field and its geoid, the ocean tides and the quasi-stationary component of the dynamic sea surface topography. Altimeter data collected by SEASAT, GEOS-3, and GEOSAT are used for the investigation.
Gravity Field Characterization around Small Bodies
NASA Astrophysics Data System (ADS)
Takahashi, Yu
A small body rendezvous mission requires accurate gravity field characterization for safe, accurate navigation purposes. However, the current techniques of gravity field modeling around small bodies are not achieved to the level of satisfaction. This thesis will address how the process of current gravity field characterization can be made more robust for future small body missions. First we perform the covariance analysis around small bodies via multiple slow flybys. Flyby characterization requires less laborious scheduling than its orbit counterpart, simultaneously reducing the risk of impact into the asteroid's surface. It will be shown that the level of initial characterization that can occur with this approach is no less than the orbit approach. Next, we apply the same technique of gravity field characterization to estimate the spin state of 4179 Touatis, which is a near-Earth asteroid in close to 4:1 resonance with the Earth. The data accumulated from 1992-2008 are processed in a least-squares filter to predict Toutatis' orientation during the 2012 apparition. The center-of-mass offset and the moments of inertia estimated thereof can be used to constrain the internal density distribution within the body. Then, the spin state estimation is developed to a generalized method to estimate the internal density distribution within a small body. The density distribution is estimated from the orbit determination solution of the gravitational coefficients. It will be shown that the surface gravity field reconstructed from the estimated density distribution yields higher accuracy than the conventional gravity field models. Finally, we will investigate two types of relatively unknown gravity fields, namely the interior gravity field and interior spherical Bessel gravity field, in order to investigate how accurately the surface gravity field can be mapped out for proximity operations purposes. It will be shown that these formulations compute the surface gravity field with
NASA Technical Reports Server (NTRS)
Kahn, W. D.
1984-01-01
The spaceborne gravity gradiometer is a potential sensor for mapping the fine structure of the Earth's gravity field. Error analyses were performed to investigate the accuracy of the determination of the Earth's gravity field from a gravity field satellite mission. The orbital height of the spacecraft is the dominating parameter as far as gravity field resolution and accuracies are concerned.
Gravity field of the Western Weddell Sea: Comparison of airborne gravity and Geosat derived gravity
NASA Technical Reports Server (NTRS)
Bell, R. E.; Brozena, J. M.; Haxby, W. F.; Labrecque, J. L.
1989-01-01
Marine gravity surveying in polar regions was typically difficult and costly, requiring expensive long range research vessels and ice-breakers. Satellite altimetry can recover the gravity field in these regions where it is feasible to survey with a surface vessel. Unfortunately, the data collected by the first global altimetry mission, Seasat, was collected only during the austral winter, producing a very poor quality gravitational filed for the southern oceans, particularly in the circum-Antarctic regions. The advent of high quality airborne gravity (Brozena, 1984; Brozena and Peters, 1988; Bell, 1988) and the availability of satellite altimetry data during the austral summer (Sandwell and McAdoo, 1988) has allowed the recovery of a free air gravity field for most of the Weddell Sea. The derivation of the gravity field from both aircraft and satellite measurements are briefly reviewed, before presenting along track comparisons and shaded relief maps of the Weddell Sea gravity field based on these two data sets.
High-resolution gravity field modeling using GRAIL mission data
NASA Astrophysics Data System (ADS)
Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Neumann, G. A.; Loomis, B.; Chinn, D. S.; Smith, D. E.; Zuber, M. T.
2015-12-01
The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were designed to map the structure of the Moon through high-precision global gravity mapping. The mission consisted of two spacecraft with Ka-band inter-satellite tracking complemented by tracking from Earth. The mission had two phases: a primary mapping mission from March 1 until May 29, 2012 at an average altitude of 50 km, and an extended mission from August 30 until December 14, 2012, with an average altitude of 23 km before November 18, and 20 and 11 km after. High-resolution gravity field models using both these data sets have been estimated, with the current resolution being degree and order 1080 in spherical harmonics. Here, we focus on aspects of the analysis of the GRAIL data: we investigate eclipse modeling, the influence of empirical accelerations on the results, and we discuss the inversion of large-scale systems. In addition to global models we also estimated local gravity adjustments in areas of particular interest such as Mare Orientale, the south pole area, and the farside. We investigate the use of Ka-band Range Rate (KBRR) data versus numerical derivatives of KBRR data, and show that the latter have the capability to locally improve correlations with topography.
Gravity field determination and error assessment techniques
NASA Technical Reports Server (NTRS)
Yuan, D. N.; Shum, C. K.; Tapley, B. D.
1989-01-01
Linear estimation theory, along with a new technique to compute relative data weights, was applied to the determination of the Earth's geopotential field and other geophysical model parameters using a combination of satellite ground-based tracking data, satellite altimetry data, and the surface gravimetry data. The relative data weights for the inhomogeneous data sets are estimated simultaneously with the gravity field and other geophysical and orbit parameters in a least squares approach to produce the University of Texas gravity field models. New techniques to perform calibration of the formal covariance matrix for the geopotential solution were developed to obtain a reliable gravity field error estimate. Different techniques, which include orbit residual analysis, surface gravity anomaly residual analysis, subset gravity solution comparisons and consider covariance analysis, were applied to investigate the reliability of the calibration.
NASA Astrophysics Data System (ADS)
Zschocke, Sven
2016-05-01
High-precision astrometry on sub-micro-arcsecond level in angular resolution requires accurate determination of the trajectory of a light-signal from the celestial light source through the gravitational field of the Solar System toward the observer. In this investigation the light trajectory in the gravitational field of N moving bodies is determined in the 1.5 post-Newtonian approximation. In the approach presented two specific issues of particular importance are accounted for: (1) According to the recommendations of International Astronomical Union, the metric of the Solar System is expressed in terms of intrinsic mass-multipoles and intrinsic spin-multipoles of the massive bodies, allowing for arbitrary shape, inner structure and rotational motion of the massive bodies of the Solar System. (2) The Solar System bodies move along arbitrary world lines which can later be specified by Solar System ephemeris. The presented analytical solution for light trajectory is a primary requirement for extremely high-precision astrometry on sub-micro-arcsecond level of accuracy and associated massive computations in astrometric data reduction. An estimation of the numerical magnitude for time delay and light deflection of the leading multipoles is given.
Fujii, Yuu; Hashimoto, Osamu; Miyoshi, Toshinobu; Nakamura, Satoshi N.; Ohtani, Atsushi; Okayasu, Yuichi; Oyamada, Masamichi; Yamamoto, Yosuke; Kato, Seigo; Matsui, Jumei; Sako, Katsuhisa; Brindza, Paul
2015-09-01
The High Resolution Kaon Spectrometer (HKS), which consists of two quadrupole magnets and one dipole magnet, was designed and constructed for high-resolution spectroscopy of hypernuclei using the (e,e'K+) reaction in Hall C, Jefferson Lab (JLab). It was used to analyze momenta of around 1.2 GeV/c K^+ s with a resolution of 2 ×10^-4 (FWHM). To achieve the target resolution, a full three-dimensional magnetic field measurement of each magnet was successfully performed, and a full three-dimensional magnetic field map of the HKS magnets was reconstructed. Using the measured field map, the initial reconstruction function was generated. The target resolution would be achieved via careful tuning of the reconstruction function of HKS with the p(e,e'K+)Lambda,Sigma^0 and C-12 (e,e'K+)12_Lambda B_g.s. reactions. After tuning of the initial reconstruction function generated from the measured map, the estimated HKS momentum resolution was 2.2×10^-4 (FWHM).
NASA Astrophysics Data System (ADS)
Van Erps, Jürgen; Ebraert, Evert; Gao, Fei; Vervaeke, Michael; Berghmans, Francis; Beri, Stefano; Watté, Jan; Thienpont, Hugo
2014-05-01
There is a steady increase in the demand for internet bandwidth, primarily driven by cloud services and high-definition video streaming. Europe's Digital Agenda states the ambitious objective that by 2020 all Europeans should have access to internet at speeds of 30Mb/s or above, with 50% or more of households subscribing to connections of 100Mb/s. Today however, internet access in Europe is mainly based on the first generation of broadband, meaning internet accessed over legacy telephone copper and TV cable networks. In recent years, Fiber-To-The-Home (FTTH) networks have been adopted as a replacement of traditional electrical connections for the `last mile' transmission of information at bandwidths over 1Gb/s. However, FTTH penetration is still very low (< 5%) in most major Western economies. The main reason for this is the high deployment cost of FTTH networks. Indeed, the success and adoption of optical access networks critically depend on the quality and reliability of connections between optical fibers. In particular a further reduction of insertion loss of field- installable connectors must be achieved without a significant increase in component cost. This requires precise alignment of fibers that can differ in terms of ellipticity, eccentricity or diameter and seems hardly achievable using today's widespread ferrule-based alignment systems. In this paper, we present a field-installable connector based on deflectable/compressible spring structures, providing a self-centering functionality for the fiber. This way, it can accommodate for possible fiber cladding diameter variations (the tolerance on the cladding diameter of G.652 fiber is typically +/-0.7μm). The mechanical properties of the cantilever are derived through an analytical approximation and a mathematical model of the spring constant, and finite element-based simulations are carried out to find the maximum first principal stress as well as the stress distribution distribution in the fiber alignment
On the role of differenced phase-delays in high-precision wide-field multi-source astrometry
NASA Astrophysics Data System (ADS)
Martí-Vidal, I.; Marcaide, J. M.; Guirado, J. C.
2007-07-01
Phase-delay is, by far, the most precise observable used in interferometry. In typical very-long-baseline-interferometry (VLBI) observations, the uncertainties of the phase-delays can be about 100 times smaller than those of the group delays. However, the phase-delays have an important handicap: they are ambiguous, since they are computed from the relative phases of the signals of the different antennas, and an indeterminate number of complete 2¶- cycles can be added to those phases leaving them unchanged. There are different approaches to solve the ambiguity problem of the phase delays (Shapiro et al., 1979; Beasley & Conway, 1995), but none of them has been ever used in observations involving more than 2.3 sources. In this contribution, we will report for the first-time wide-field multi-source astrometric analysis that has been performed on a complete set of radio sources using the phase-delay observable. The target of our analysis is the S5 polar cap sample, consisting on 13 bright ICRF sources near the North Celestial Pole. We have developed new algorithms and updated existing software to correct, in an automatic way, the ambiguities of the phase-delay and, therefore, perform a phasedelay astrometric analysis of all the sources in the sample. We will also discuss on the impact of the use of phase-delays in the astrometric precision.
E/N effects on K0 values revealed by high precision measurements under low field conditions
NASA Astrophysics Data System (ADS)
Hauck, Brian C.; Siems, William F.; Harden, Charles S.; McHugh, Vincent M.; Hill, Herbert H.
2016-07-01
Ion mobility spectrometry (IMS) is used to detect chemical warfare agents, explosives, and narcotics. While IMS has a low rate of false positives, their occurrence causes the loss of time and money as the alarm is verified. Because numerous variables affect the reduced mobility (K0) of an ion, wide detection windows are required in order to ensure a low false negative response rate. Wide detection windows, however, reduce response selectivity, and interferents with similar K0 values may be mistaken for targeted compounds and trigger a false positive alarm. Detection windows could be narrowed if reference K0 values were accurately known for specific instrumental conditions. Unfortunately, there is a lack of confidence in the literature values due to discrepancies in the reported K0 values and their lack of reported error. This creates the need for the accurate control and measurement of each variable affecting ion mobility, as well as for a central accurate IMS database for reference and calibration. A new ion mobility spectrometer has been built that reduces the error of measurements affecting K0 by an order of magnitude less than ±0.2%. Precise measurements of ±0.002 cm2 V-1 s-1 or better have been produced and, as a result, an unexpected relationship between K0 and the electric field to number density ratio (E/N) has been discovered in which the K0 values of ions decreased as a function of E/N along a second degree polynomial trend line towards an apparent asymptote at approximately 4 Td.
E/N effects on K0 values revealed by high precision measurements under low field conditions.
Hauck, Brian C; Siems, William F; Harden, Charles S; McHugh, Vincent M; Hill, Herbert H
2016-07-01
Ion mobility spectrometry (IMS) is used to detect chemical warfare agents, explosives, and narcotics. While IMS has a low rate of false positives, their occurrence causes the loss of time and money as the alarm is verified. Because numerous variables affect the reduced mobility (K0) of an ion, wide detection windows are required in order to ensure a low false negative response rate. Wide detection windows, however, reduce response selectivity, and interferents with similar K0 values may be mistaken for targeted compounds and trigger a false positive alarm. Detection windows could be narrowed if reference K0 values were accurately known for specific instrumental conditions. Unfortunately, there is a lack of confidence in the literature values due to discrepancies in the reported K0 values and their lack of reported error. This creates the need for the accurate control and measurement of each variable affecting ion mobility, as well as for a central accurate IMS database for reference and calibration. A new ion mobility spectrometer has been built that reduces the error of measurements affecting K0 by an order of magnitude less than ±0.2%. Precise measurements of ±0.002 cm(2) V(-1) s(-1) or better have been produced and, as a result, an unexpected relationship between K0 and the electric field to number density ratio (E/N) has been discovered in which the K0 values of ions decreased as a function of E/N along a second degree polynomial trend line towards an apparent asymptote at approximately 4 Td. PMID:27475592
NASA Technical Reports Server (NTRS)
Gottlieb, Robert G.
1993-01-01
Derivation of first and second partials of the gravitational potential is given in both normalized and unnormalized form. Two different recursion formulas are considered. Derivation of a general gravity gradient torque algorithm which uses the second partial of the gravitational potential is given. Derivation of the geomagnetic field vector is given in a form that closely mimics the gravitational algorithm. Ada code for all algorithms that precomputes all possible data is given. Test cases comparing the new algorithms with previous data are given, as well as speed comparisons showing the relative efficiencies of the new algorithms.
Toward a gauge field theory of gravity.
NASA Astrophysics Data System (ADS)
Yilmaz, H.
Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.
Using Clocks and Atomic Interferometry for Gravity Field Observations
NASA Astrophysics Data System (ADS)
Müller, Jürgen
2016-07-01
New technology developed in the frame of fundamental physics may lead to enhanced capabilities for geodetic applications such as refined observations of the Earth's gravity field. Here, we will present new sensor measurement concepts that apply atomic interferometry for gravimetry and clock measurements for observing potential values. In the first case, gravity anomalies can be determined by observing free-falling atoms (quantum gravimetry). In the second case, highly precise optical clocks can be used to measure differences of the gravity potential over long distances (relativistic geodesy). Principally, also inter-satellite ranging between test masses in space with nanometer accuracy belongs to these novel developments. We will show, how the new measurement concepts are connected to classical geodetic concepts, e.g. geopotential numbers and clock readings. We will illustrate the application of these new methods and their benefit for geodesy, where local and global mass variations can be observed with unforeseen accuracy and resolution, mass variations that reflect processes in the Earth system. We will present a few examples where geodesy will potentially benefit from these developments. Thus, the novel technologies might be applied for defining and realizing height systems in a new way, but also for fast local gravimetric surveys and exploration.
High Precision CCD Imaging Polarimetry
NASA Astrophysics Data System (ADS)
Magalhaes, A. M.; Rodrigues, C. V.; Margoniner, V. E.; Pereyra, A.; Heathcote, S.; Coyne, G. V.
1994-12-01
We describe a recent modification to the direct CCD Cameras at CTIO and LNA (Brazil) observatories in order to allow for high precision optical polarimetry. We make use of a rotating achromatic half-wave plate as a retarder and a Savart plate as analyser. Cancellation of sky polarization and independence of the CCD flat field correction are among the advantages of the arrangement. We show preliminary data that indicate the high polarimetric precision achievable with the method for non-extended sources. We give a brief description of the on-going observational programs employing the technique. Polarimetry of extended objects can be performed by using a Polaroid sheet in place of the Savart plate. Use of the Savart plate with such fields can also be valuable in the reduction, and analysis, of the extended source images as it provides polarization data on the non-extended objects in the field.
A SEA FLOOR GRAVITY SURVEY OF THE SLEIPNER FIELD TO MONITOR CO2 MIGATION
Mark Zumberge
2003-06-13
At the Sleipner gas field, excess CO{sub 2} is sequestered and injected underground into a porous saline aquifer 1000 m below the seafloor. A high precision micro-gravity survey was carried out on the seafloor to monitor the injected CO{sub 2}. A repeatability of 5 {micro}Gal in the station averages was observed. This is considerably better than pre-survey expectations. These data will serve as the baseline for time-lapse gravity monitoring of the Sleipner CO{sub 2} injection site. Simple modeling of the first year data give inconclusive results, thus a more detailed approach is needed. Work towards this is underway.
Gravity Field Recovery with Simulated GOCE Observations
NASA Astrophysics Data System (ADS)
Marty, J.; Bruinsma, S.; Balmino, G.; Abrikosov, O.; Foerste, C.; Rothacher, M.
2005-12-01
Numerical simulations of the gravity field parameter recovery using the direct method, with satellite positions as pseudo observations instead of simulated GPS Satellite-to-Satellite (SST) tracking data, and with gravity gradients (SGG data), were done and are ongoing in the framework of the European GOCE Gravity Consortium test and validation plan for GOCE mission data processing. This work shows the latest results from the CNES and GFZ software packages, GINS and EPOS, respectively. After the iterative least-squares orbit adjustment procedure has converged to the highest attainable precision level, the gravity field normal equations are computed in a subsequent step. These SST normal equations, representing the long wavelength gravity field signal, are then reduced for arc-dependent parameters (i.e. state vector at epoch, empirical parameters) and cumulated over the entire observation period. Secondly, the gravity gradient measurements (SGG) are processed, taking into account the coloured noise in these data, and yield (high resolution) normal equations. They are combined with the SST normal equations and the gravity field and gradiometer common mode calibration parameters are simultaneously estimated. The coloured noise in the SGG data is based on the latest and realistic gradiometer specifications. The precision in the measurement bandwidth is approximately 3-5 milliEotvos, but rapidly decreasing for lower frequencies. Due to this behaviour, the observation equations have to be filtered in order to obtain the most accurate recovery. The filter algorithm, design and results are presented to considerable detail since this particular step is the key element that will enable the achievement of the GOCE mission objectives from the ground segment point of view.
Global Lunar Gravity Field Recovery from SELENE
NASA Technical Reports Server (NTRS)
Matsumoto, Koji; Heki, Kosuke; Hanada, Hideo
2002-01-01
Results of numerical simulation are presented to examine the global gravity field recovery capability of the Japanese lunar exploration project SELENE (Selenological and Engineering Explorer) which will be launched in 2005. New characteristics of the SELENE lunar gravimetry include four-way satellite-to-satellite Doppler tracking of main orbiter and differential VLBI tracking of two small free-flier satellites. It is shown that planned satellites configuration will improve lunar gravity field in wide range of wavelength as well as far-side selenoid.
On the impact of airborne gravity data to fused gravity field models
NASA Astrophysics Data System (ADS)
Bolkas, Dimitrios; Fotopoulos, Georgia; Braun, Alexander
2016-03-01
In gravity field modeling, fused models that utilize satellite, airborne and terrestrial gravity observations are often employed to deal with erroneous terrestrially derived gravity datasets. These terrestrial datasets may suffer from long-wavelength systematic errors and inhomogeneous data coverage, which are not prevalent in airborne and satellite datasets. Airborne gravity acquisition plays an essential role in gravity field modeling, providing valuable information of the Earth's gravity field at medium and short wavelengths. Thus, assessing the impact of airborne gravity data to fused gravity field models is important for identifying problematic regions. Six study regions that represent different gravity field variability and terrestrial data point-density characteristics are investigated to quantify the impact of airborne gravity data to fused gravity field models. The numerical assessments of these representative regions resulted in predictions of airborne gravity impact for individual states and provinces in the USA and Canada, respectively. Prediction results indicate that, depending on the terrestrial data point-density and gravity field variability, the expected impact of airborne gravity can reach up to 3mGal (in terms of standard deviation) in Canada and Alaska (over areas of 1° × 1°). However, in the mainland US region, small changes are expected (0.2-0.4 mGal over areas of 1° × 1°) due to the availability of high spatial resolution terrestrial data. These results can serve as a guideline for setting airborne gravity data acquisition priorities and for improving future planning of airborne gravity surveys.
On the impact of airborne gravity data to fused gravity field models
NASA Astrophysics Data System (ADS)
Bolkas, Dimitrios; Fotopoulos, Georgia; Braun, Alexander
2016-06-01
In gravity field modeling, fused models that utilize satellite, airborne and terrestrial gravity observations are often employed to deal with erroneous terrestrially derived gravity datasets. These terrestrial datasets may suffer from long-wavelength systematic errors and inhomogeneous data coverage, which are not prevalent in airborne and satellite datasets. Airborne gravity acquisition plays an essential role in gravity field modeling, providing valuable information of the Earth's gravity field at medium and short wavelengths. Thus, assessing the impact of airborne gravity data to fused gravity field models is important for identifying problematic regions. Six study regions that represent different gravity field variability and terrestrial data point-density characteristics are investigated to quantify the impact of airborne gravity data to fused gravity field models. The numerical assessments of these representative regions resulted in predictions of airborne gravity impact for individual states and provinces in the USA and Canada, respectively. Prediction results indicate that, depending on the terrestrial data point-density and gravity field variability, the expected impact of airborne gravity can reach up to 3mGal (in terms of standard deviation) in Canada and Alaska (over areas of 1° × 1°). However, in the mainland US region, small changes are expected (0.2-0.4 mGal over areas of 1° × 1°) due to the availability of high spatial resolution terrestrial data. These results can serve as a guideline for setting airborne gravity data acquisition priorities and for improving future planning of airborne gravity surveys.
McIntosh, W.C.; Sutter, J.F.; Chapin, C.E.; Kedzie, L.L.
1990-01-01
40Ar/39Ar age spectra have been obtained from 85 sanidine separates from 36 ignimbrites and one rhyolitic lava in the latest Eocene-Oligocene Mogollon-Datil volcanic field of southwestern New Mexico. Of the 97 measured age spectra, 94 yield weighted-mean plateau ages each giving single-spectrum 1?? precision of??0.25%-0.4% (??0.07-0.14 Ma). Replicate plateau age determinations for eight different samples show within-sample 1?? precisions averaging ??0.25%. Plateau ages from multiple (n=3-8) samples of individual ignimbrites show 1?? within-unit precision of ??0.1%-0.4% (??0.04-0.13 Ma). This within-unit precision represents a several-fold improvement over published K-Ar data for the same ignimbrites, and is similar to the range of precisions reported from single-crystal laser fusion studies. A further indication of the high precision of unit-mean 40Ar/30Ar ages is their close agreement with independently established stratigraphic order. Two samples failed to meet plateau criteria, apparently due to geologic contamination by older feldspars. Effects of minor contamination are shown by six other samples, which yielded slightly anomalous plateau ages. 40Ar/39Ar plateau ages permit resolution of units differing in age by 0.5% (0.15 Ma) or less. This high resolution, combined with paleomagnetic studies, has helped to correlate ignimbrites among isolated ranges and has allowed development of an integrated timestratigraphic framework for the volcanic field. Mogollon-Datil ignimbrites range in age from 36.2 to 24.3 Ma. Ignimbrite activity was strongly episodic, being confined to four brief (<2.6 m.y.) eruptive episodes separated by 1-3 m.y. gaps. Ignimbrite activity generally tended to migrate from the southeast toward the north and west. ?? 1990 Springer-Verlag.
NASA Astrophysics Data System (ADS)
McIntosh, William C.; Sutter, John F.; Chapin, Charles E.; Kedzie, Laura L.
1990-11-01
40Ar/39Ar age spectra have been obtained from 85 sanidine separates from 36 ignimbrites and one rhyolitic lava in the latest Eocene-Oligocene Mogollon-Datil volcanic field of southwestern New Mexico. Of the 97 measured age spectra, 94 yield weighted-mean plateau ages each giving single-spectrum 1σ precision of±0.25% 0.4% (±0.07 0.14 Ma). Replicate plateau age determinations for eight different samples show within-sample 1σ precisions averaging ±0.25%. Plateau ages from multiple ( n=3 8) samples of individual ignimbrites show 1σ within-unit precision of ±0.1% 0.4% (±0.04 0.13 Ma). This within-unit precision represents a several-fold improvement over published K-Ar data for the same ignimbrites, and is similar to the range of precisions reported from single-crystal laser fusion studies. A further indication of the high precision of unit-mean 40Ar/30Ar ages is their close agreement with independently established stratigraphic order. Two samples failed to meet plateau criteria, apparently due to geologic contamination by older feldspars. Effects of minor contamination are shown by six other samples, which yielded slightly anomalous plateau ages. 40Ar/39Ar plateau ages permit resolution of units differing in age by 0.5% (0.15 Ma) or less. This high resolution, combined with paleomagnetic studies, has helped to correlate ignimbrites among isolated ranges and has allowed development of an integrated timestratigraphic framework for the volcanic field. Mogollon-Datil ignimbrites range in age from 36.2 to 24.3 Ma. Ignimbrite activity was strongly episodic, being confined to four brief (<2.6 m.y.) eruptive episodes separated by 1 3 m.y. gaps. Ignimbrite activity generally tended to migrate from the southeast toward the north and west.
Induced gravity I: real scalar field
NASA Astrophysics Data System (ADS)
Einhorn, Martin B.; Jones, D. R. Timothy
2016-01-01
We show that classically scale invariant gravity coupled to a single scalar field can undergo dimensional transmutation and generate an effective Einstein-Hilbert action for gravity, coupled to a massive dilaton. The same theory has an ultraviolet fixed point for coupling constant ratios such that all couplings are asymptotically free. However the catchment basin of this fixed point does not include regions of coupling constant parameter space compatible with locally stable dimensional transmutation. In a companion paper, we will explore whether this more desirable outcome does obtain in more complicated theories with non-Abelian gauge interactions.
Improvements in GRACE Gravity Fields Using Regularization
NASA Astrophysics Data System (ADS)
Save, H.; Bettadpur, S.; Tapley, B. D.
2008-12-01
The unconstrained global gravity field models derived from GRACE are susceptible to systematic errors that show up as broad "stripes" aligned in a North-South direction on the global maps of mass flux. These errors are believed to be a consequence of both systematic and random errors in the data that are amplified by the nature of the gravity field inverse problem. These errors impede scientific exploitation of the GRACE data products, and limit the realizable spatial resolution of the GRACE global gravity fields in certain regions. We use regularization techniques to reduce these "stripe" errors in the gravity field products. The regularization criteria are designed such that there is no attenuation of the signal and that the solutions fit the observations as well as an unconstrained solution. We have used a computationally inexpensive method, normally referred to as "L-ribbon", to find the regularization parameter. This paper discusses the characteristics and statistics of a 5-year time-series of regularized gravity field solutions. The solutions show markedly reduced stripes, are of uniformly good quality over time, and leave little or no systematic observation residuals, which is a frequent consequence of signal suppression from regularization. Up to degree 14, the signal in regularized solution shows correlation greater than 0.8 with the un-regularized CSR Release-04 solutions. Signals from large-amplitude and small-spatial extent events - such as the Great Sumatra Andaman Earthquake of 2004 - are visible in the global solutions without using special post-facto error reduction techniques employed previously in the literature. Hydrological signals as small as 5 cm water-layer equivalent in the small river basins, like Indus and Nile for example, are clearly evident, in contrast to noisy estimates from RL04. The residual variability over the oceans relative to a seasonal fit is small except at higher latitudes, and is evident without the need for de-striping or
NASA Astrophysics Data System (ADS)
Ruhl, C. J.; Smith, K. D.
2012-12-01
include the 1934 M 6.5 Excelsior Mountains event south of Mina, NV, and the 1932 M 7.1 Cedar Mountains earthquake east of the Pilot Mountains. Another persistent feature in the seismicity is an ~40 km long arcuate distribution of activity extending from approximately Queen Valley, north of the White Mountains, to Mono Lake that appears to reflect a southwestern boundary to northeast-striking structures in the MD. Here we develop high-precision relocations of instrumental seismicity in the MD from 1984 through 2012, including relocations of the 2004 sequence, and account for the historical seismic record. MT solutions from published reports and computed from recent M 3.5+ earthquakes as well as available and developed short-period focal mechanisms are compiled to evaluate the stress field to assess mechanisms of slip accommodation. Based on the complex distribution of fault orientations, the stress field varies locally northward from the SWL throughout the MD; however, in many cases, fault plane alignments can be isolated from high-precision locations, providing better constraints on stress and slip orientations.
Combined absolute and relative gravity measurement for microgravity monitoring in Aso volcanic field
NASA Astrophysics Data System (ADS)
Sofyan, Yayan; Nishijima, Jun; Yoshikawa, Shin; Fujimitsu, Yasuhiro; Kagiyama, Tsuneomi; Fukuda, Yoichi
2014-05-01
Absolute measurement with a portable A10-017 absolute gravimeter at some benchmarks in the Aso volcanic field are valuable for reducing uncertainties of regional gravity variations and will be useful for delineating the long term trends of gravity changes. A10 absolute gravimeter is a new generation of portable absolute instrument and has accuracy 10 microGal. To further the development of a high precision gravity data, we also conducted measurement using two relative gravimeter (Scintrex CG-5 [549] and LaCoste type G-1016) to be combined with an A10 absolute gravimeter. The using absolute gravimeter along with relative gravimeter can reduce drift correction factor and improve the result of gravity change data in microgravity monitoring. Microgravity monitoring is a valued tool for mapping the redistribution of subsurface mass and for assessing changes in the fluid as a dynamic process in volcanic field. Gravity changes enable the characterization of subsurface processes: i.e., the mass of the intrusion or hydrothermal flow. A key assumption behind gravity monitoring is that changes in earth's gravity reflect mass-transport processes at depth [1]. The absolute gravity network was installed at seven benchmarks using on May 2010, which re-occupied in October 2010, and June 2011. The relative gravity measurements were performed at 28 benchmarks in one month before the eruption on May 2011 and then followed by series of gravity monitoring after the eruption in every three to five months. Gravity measurements covered the area more than 60 km2 in the west side of Aso caldera. Some gravity benchmarks were measured using both absolute and relative gravimeter and is used as the reference benchmarks. In longer time period, the combined gravity method will improve the result of gravity change data for monitoring in the Aso volcanic field. As a result, the gravity changes detected the hydrothermal flow in the subsurface which has a correlation to water level fluctuation in the
Twinsat earth gravity field mapping
NASA Technical Reports Server (NTRS)
Lowrey, B. E.
1975-01-01
Results of a sensitivity study on the proposed Lo-Lo (Twinsat) satellite-to-satellite tracking mission are described. The relative range-rate signal due to a local gravitational anomaly is investigated as a function of height and satellite separation. It is shown that the signal strength is weak and that an optimal combination of signal strength and resolution is achieved when the satellites are separated by 3 deg along-track. The signal does not resolve point masses closer than 5 deg apart when the satellites are at 300 km altitude. The influence of other factors on the system is evaluated, including the low frequency gravitation field effect on the orbit and the dependence of the noise of the data type on (electronic) integration time.
High Precision Electon Beam Polarimetry
NASA Astrophysics Data System (ADS)
Dutta, D.
2016-02-01
Over the last three decades high precision electron beam polarimetry has been at the fore-front of progress made in leveraging the spin degrees of freedom in nuclear and particle physics experiments. We review the three main types of polarimeters, Compton, Møller and Mott, that are typically used in experiments. We discuss some of the recent results in high precision electron polarimetry and some of the new ideas that are being explored for future application at current and proposed accelerators.
Gravity Field Parameter Estimation Using QR Factorization
NASA Astrophysics Data System (ADS)
Klokocnik, J.; Wagner, C. A.; McAdoo, D.; Kostelecky, J.; Bezdek, A.; Novak, P.; Gruber, C.; Marty, J.; Bruinsma, S. L.; Gratton, S.; Balmino, G.; Baboulin, M.
2007-12-01
This study compares the accuracy of the estimated geopotential coefficients when QR factorization is used instead of the classical method applied at our institute, namely the generation of normal equations that are solved by means of Cholesky decomposition. The objective is to evaluate the gain in numerical precision, which is obtained at considerable extra cost in terms of computer resources. Therefore, a significant increase in precision must be realized in order to justify the additional cost. Numerical simulations were done in order to examine the performance of both solution methods. Reference gravity gradients were simulated, using the EIGEN-GL04C gravity field model to degree and order 300, every 3 seconds along a near-circular, polar orbit at 250 km altitude. The simulation spanned a total of 60 days. A polar orbit was selected in this simulation in order to avoid the 'polar gap' problem, which causes inaccurate estimation of the low-order spherical harmonic coefficients. Regularization is required in that case (e.g., the GOCE mission), which is not the subject of the present study. The simulated gravity gradients, to which white noise was added, were then processed with the GINS software package, applying EIGEN-CG03 as the background gravity field model, followed either by the usual normal equation computation or using the QR approach for incremental linear least squares. The accuracy assessment of the gravity field recovery consists in computing the median error degree-variance spectra, accumulated geoid errors, geoid errors due to individual coefficients, and geoid errors calculated on a global grid. The performance, in terms of memory usage, required disk space, and CPU time, of the QR versus the normal equation approach is also evaluated.
Gravity field determination using boundary element methods
NASA Astrophysics Data System (ADS)
Klees, Roland
1993-09-01
The Boundary Element Method (BEM), a numerical technique for solving boundary integral equations, is introduced to determine the earth's gravity field. After a short survey on its main principles, we apply this method to the fixed gravimetric boundary value problem (BVP), i.e. the determination of the earth's gravitational potential from measurements of the intensity of the gravity field in points on the earth's surface. We show how to linearize this nonlinear BVP using an implicit function theorem and how to transform the linearized BVP into a boundary integral equation using the single layer representation. A Galerkin method is used to transform the boundary integral equation using the single layer representation. A Galerkin method is used to transform the boundary integral equation into a linear system of equations. We discuss the major problems of this approach for setting up and solving the linear system. The BVP is numerically solved for a bounded part of the earth's surface using a high resolution reference gravity model, measured gravity values of high density, and a 50 ṡ 50 m2 digital terrain model to describe the earth's surface. We obtain a gravity field resolution of 1 ṡ 1 km2 with an accuracy of the order 10-3 to 10-4 in about 1 CPU-hour on a Siemens/Fujitsu SIMD vector pipeline machine using highly sophisticated numerical integration techniques and fast equation solvers. We conclude that BEM is a powerful numerical tool for solving boundary value problems and may be an alternative to classical geodetic techniques.
NASA Astrophysics Data System (ADS)
Provencal, R. A.; Baer, D. S.; Owano, T. G.; Fellers, R.
2010-12-01
Nitrous oxide (N2O) is a greenhouse gas with an atmospheric lifetime of approximately 120 years. Nitrous oxide is about 310 times more effective in trapping heat in the atmosphere than CO2 over a 100-year period. Carbon monoxide (CO), a weak direct greenhouse gas contributor, plays an important indirect role in atmospheric chemistry because of its fast reactions with hydroxyl radical. This results in increased lifetime of stronger greenhouse gases such as methane. In addition, elevated CO levels result in higher production of tropospheric ozone. As such, accurate and precise measurements of both nitrous oxide and carbon monoxide concentrations are important in understanding global atmospheric chemistry. Because atmospheric mixing ratios of these species are small (< 0.5 ppmv), an analyzer designed to probe these species must have high sensitivity and high precision to make meaningful measurements. We report here the continued development of an analyzer based on our patented off-axis integrated cavity output spectroscopy (Off-Axis ICOS) which measures both CO and N2O concentrations simultaneously with a 1-sigma precision of less than 0.3 ppbv in a one-second measurement time. We also report on the added capability of simultaneous water vapor concentration measurements. By extending the scan range of our mid infrared tunable Quantum Cascade laser, the analyzer now reports water vapor concentration with a 1-sigma precision of better than 50 ppmv in a one-second measurement time. Without calibration, the instrument is accurate to better than 1% over the temperature range of 15-35C over the entire measurement range of each gas. With calibration, the total measurement uncertainty may be limited by the accuracy of the reference calibration gases. Data rates of up to 10 Hz are achieved to allow for eddy flux correlation measurements. The instrument requires low-power (~150 watts) and requires no liquid nitrogen, allowing for easy measurements in the field. The addition of
High Degree and Order Gravity Fields of the Moon Derived from GRAIL Data
NASA Astrophysics Data System (ADS)
Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Loomis, B. D.; Chinn, D. S.; Caprette, D.; McCarthy, J. J.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.
2012-12-01
The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft conducted the mapping of the gravity field of the Moon from March 1, 2012 to May 29, 2012. The twin spacecraft acquired highly precise K Band range-rate (KBRR) intersatellite ranging data and Deep Space Network (DSN) data during this prime mission phase from altitudes of 15 to 75 km above the lunar surface over three lunar months. We have processed these data using the NASA GSFC GEODYN orbit determination and geodetic parameter estimation program, and we have determined gravity fields up to degree and order 420 in spherical harmonics. The new gravity solutions show improved correlations with LOLA-derived topography to high degree and order and resolve many lunar features in the geopotential with a resolution of less than 30 km, including for example the central peak of the crater Tycho. We discuss the methodology used for the processing of the GRAIL data, the quality of the orbit determination on the GRAIL satellites and the derivation of the solutions, and their evaluation with independent data, including Lunar Prospector. We show that with these new GRAIL gravity solutions, we can now fit the low altitude, extended mission Lunar Prospector tracking data better than with any previous gravity model that included the LP data.
High Degree and Order Gravity Fields of the Moon Derived from GRAIL Data
NASA Technical Reports Server (NTRS)
Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Loomis, B. D.; Chinn, D. S.; Caprette, D. S.; McCarthy, J. J.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.
2012-01-01
The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft conducted the mapping of the gravity field of the Moon from March 1, 2012 to May 29, 2012. The twin spacecraft acquired highly precise K Band range-rate (KBRR) intersatellite ranging data and Deep Space Network (DSN) data during this prime mission phase from altitudes of 15 to 75 km above the lunar surface over three lunar months. We have processed these data using the NASA GSFC GEODYN orbit determination and geodetic parameter estimation program, and we have determined gravity fields up to degree and order 420 in spherical harmonics. The new gravity solutions show improved correlations with LOLA-derived topography to high degree and order and resolve many lunar features in the geopotential with a resolution of less than 30 km, including for example the central peak of the crater Tycho. We discuss the methodology used for the processing of the GRAIL data, the quality of the orbit determination on the GRAIL satellites and the derivation of the solutions, and their evaluation with independent data, including Lunar Prospector. We show that with these new GRAIL gravity solutions, we can now fit the low altitude, extended mission Lunar Prospector tracking data better than with any previous gravity model that included the LP data.
Electric field replaces gravity in laboratory
NASA Astrophysics Data System (ADS)
Gorgolewski, S.
For several years experiments in physical laboratories and in the fitotron have shown that one can replace gravitational field with electrical fields for plants. First obvious experiments in strong electrical fields in the MV/m regi on show that any materials and living plants respond immediately to Coulomb forces. Such fields are found in nature during thunderstorms. One has to be very careful in handling such strong fields for safety reasons. The fair weather global electrical field is about 20,000 times weaker. The coulomb forces are proportional to the square of the field strength and are thus 400 milion times weaker for a field of the order of 100 V/m.Yet it was found that some plants respond to such "weak" fields. We must remember that the electrical field is a factor of 10 38 times stronger than gravitational interaction. In plants we have dissociated in water mineral salts and the ions are subject to such ernormous forces. It was shown and published that the positive charges in the air in fields of the order of 3kV/m enhance lettuce growth by a factor of four relative to fields about 30 times weaker (100V/m). Reversal of the field polarity reverses the direction of plant growth and retards the plant's growth. Such fields overpower the gravitropism in the laboratory. More so horizontal electrical field is othogonal to gravity, now the fields do not see each other. Lettuce now growth horizontally ignoring the gravitational field. We can thus select the plants whose electrotropism even in the laboratory overwhelms gravity. This is important for the long space flights that we must grow vegetarian food for the crew. The successful harvesting of wheat in orbit does not contradict our experimental findings because wheat is not electrotropic like all plants from the grass family. The results of fitotron experiments with kV/m electrical fields are richly illustrated with colour digital photographs. We also subjected the candle flame to very strong horizontal
GRAIL gravity field determination using the Celestial Mechanics Approach
NASA Astrophysics Data System (ADS)
Arnold, Daniel; Bertone, Stefano; Jäggi, Adrian; Beutler, Gerhard; Mervart, Leos
2015-11-01
The NASA mission GRAIL (Gravity Recovery and Interior Laboratory) inherited its concept from the GRACE (Gravity Recovery and Climate Experiment) mission to determine the gravity field of the Moon. We present lunar gravity fields based on the data of GRAIL's primary mission phase. Gravity field recovery is realized in the framework of the Celestial Mechanics Approach, using a development version of the Bernese GNSS Software along with Ka-band range-rate data series as observations and the GNI1B positions provided by NASA JPL as pseudo-observations. By comparing our results with the official level-2 GRAIL gravity field models we show that the lunar gravity field can be recovered with a high quality by adapting the Celestial Mechanics Approach, even when using pre-GRAIL gravity field models as a priori fields and when replacing sophisticated models of non-gravitational accelerations by appropriately spaced pseudo-stochastic pulses (i.e., instantaneous velocity changes). We present and evaluate two lunar gravity field solutions up to degree and order 200 - AIUB-GRL200A and AIUB-GRL200B. While the first solution uses no gravity field information beyond degree 200, the second is obtained by using the official GRAIL field GRGM900C up to degree and order 660 as a priori information. This reduces the omission errors and demonstrates the potential quality of our solution if we resolved the gravity field to higher degree.
A framework for modelling kinematic measurements in gravity field applications
NASA Technical Reports Server (NTRS)
Schwarz, K. P.; Wei, M.
1989-01-01
To assess the resolution of the local gravity field from kinematic measurements, a state model for motion in the gravity field of the earth is formulated. The resulting set of equations can accommodate gravity gradients, specific force, acceleration, velocity and position as input data and can take into account approximation errors as well as sensor errors.
NASA Technical Reports Server (NTRS)
Noever, David A.; Koczor, Ronald J.; Roberson, Rick
1998-01-01
We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. Podkietnov, et al (Podkietnov, E. and Nieminen, R. (1992) A Possibility of Gravitational Force Shielding by Bulk YBa2 Cu3 O7-x Superconductor, Physica C, C203:441-444.) have indicated that rotating AC fields play an essential role in their observed distortion of combined gravity and barometric pressure readings. We report experiments on large (15 cm diameter) bulk YBCO ceramic superconductors placed in the core of a three-phase, AC motor stator. The applied rotating field produces up to a 12,000 revolutions per minute magnetic field. The field intensity decays rapidly from the maximum at the outer diameter of the superconducting disk (less than 60 Gauss) to the center (less than 10 Gauss). This configuration was applied with and without a permanent DC magnetic field levitating the superconducting disk, with corresponding gravity readings indicating an apparent increase in observed gravity of less than 1 x 10(exp -6)/sq cm, measured above the superconductor. No effect of the rotating magnetic field or thermal environment on the gravimeter readings or on rotating the superconducting disk was noted within the high precision of the observation. Implications for propulsion initiatives and power storage flywheel technologies for high temperature superconductors will be discussed for various spacecraft and satellite applications.
Measurement of the gravity-field curvature by atom interferometry.
Rosi, G; Cacciapuoti, L; Sorrentino, F; Menchetti, M; Prevedelli, M; Tino, G M
2015-01-01
We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed. PMID:25615464
Study of the Earth's short-scale gravity field using the ERTM2160 gravity model
NASA Astrophysics Data System (ADS)
Hirt, Christian; Kuhn, Michael; Claessens, Sten; Pail, Roland; Seitz, Kurt; Gruber, Thomas
2014-12-01
This paper describes the computation and analysis of the Earth's short-scale gravity field through high-resolution gravity forward modelling using the Shuttle Radar Topography Mission (SRTM) global topography model. We use the established residual terrain modelling technique along with advanced computational resources and massive parallelisation to convert the high-pass filtered SRTM topography - complemented with bathymetric information in coastal zones - to implied short-scale gravity effects. The result is the ERTM2160 model (Earth Residual Terrain Modelled-gravity field with the spatial scales equivalent to spherical-harmonic coefficients up to degree 2160 removed). ERTM2160, used successfully for the construction of the GGMplus gravity maps, approximates the short-scale (i.e., ~10 km down to ~250 m) gravity field in terms of gravity disturbances, quasi/geoid heights and vertical deflections at ~3 billion gridded points within ±60° latitude. ERTM2160 reaches maximum values for the quasi/geoid height of ~30 cm, gravity disturbance in excess of 100 mGal, and vertical deflections of ~30″ over the Himalaya mountains. Analysis of the ERTM2160 field as a function of terrain roughness shows in good approximation a linear relationship between terrain roughness and gravity effects, with values of ~1.7 cm (quasi/geoid heights), ~11 mGal (gravity disturbances) and 1.5″ (vertical deflections) signal strength per 100 m standard deviation of the terrain. These statistics can be used to assess the magnitude of omitted gravity signals over various types of terrain when using degree-2160 gravity models such as EGM2008. Applications for ERTM2160 are outlined including its use in gravity smoothing procedures, augmentation of EGM2008, fill-in for future ultra-high resolution gravity models in spherical harmonics, or calculation of localised or global power spectra of Earth's short-scale gravity field. ERTM2160 is freely available via
Gravity fields of the solar system
NASA Technical Reports Server (NTRS)
Zendell, A.; Brown, R. D.; Vincent, S.
1975-01-01
The most frequently used formulations of the gravitational field are discussed and a standard set of models for the gravity fields of the earth, moon, sun, and other massive bodies in the solar system are defined. The formulas are presented in standard forms, some with instructions for conversion. A point-source or inverse-square model, which represents the external potential of a spherically symmetrical mass distribution by a mathematical point mass without physical dimensions, is considered. An oblate spheroid model is presented, accompanied by an introduction to zonal harmonics. This spheroid model is generalized and forms the basis for a number of the spherical harmonic models which were developed for the earth and moon. The triaxial ellipsoid model is also presented. These models and their application to space missions are discussed.
Gravity Field Mapping of Mars with MGS
NASA Technical Reports Server (NTRS)
Smith, David E.; Zuber, Maria T.; Lemoine, Frank G.
1998-01-01
Tracking of the MGS spacecraft in orbit at Mars by the Deep Space Network since last September has provided doppler and range measurements that are being used to improve the model of the Mars gravity field. During most of October 1997, April 1998, and June thru August 1998 high quality tracking data were obtained while the periapse was in the northern hemisphere at altitudes in the 170 to 190 km range. The eccentric orbit had a period of about 11.5 hrs and an inclination of about 96.2 degrees so that low altitude tracking was obtained over most of the northern hemisphere, including the north polar icecap. Data from the earlier Mariner 9 and Viking missions have been added to the MGS data and a series of experimental gravity models developed from the combined datasets. These models have generally been of degree and order 70 and are a significant improvement over earlier models that did not include the MGS data. Gravity anomalies over the north polar cap region of Mars are generally less than 50 to 100 mgals and show no obvious correlation with the topography. Successive MGS orbits derived using these new models are showing agreement at the 100 meter level, and this has been confirmed with the laser altimeter (MOLA) on MGS These comparisons are expected to improve significantly as more tracking data get included in the solution and the MGS orbit becomes more circular giving a more balanced geographical distribution of data at low altitude. This will happen early in 1999 as the orbit approaches the mapping configuration of a circular orbit at about 400 Km.
Goce and Its Role in Combined Global High Resolution Gravity Field Determination
NASA Astrophysics Data System (ADS)
Fecher, T.; Pail, R.; Gruber, T.
2013-12-01
Combined high-resolution gravity field models serve as a mandatory basis to describe static and dynamic processes in system Earth. Ocean dynamics can be modeled referring to a high-accurate geoid as reference surface, solid earth processes are initiated by the gravity field. Also geodetic disciplines such as height system determination depend on high-precise gravity field information. To fulfill the various requirements concerning resolution and accuracy, any kind of gravity field information, that means satellite as well as terrestrial and altimetric gravity field observations have to be included in one combination process. A key role is here reserved for GOCE observations, which contribute with its optimal signal content in the long to medium wavelength part and enable a more accurate gravity field determination than ever before especially in areas, where no high-accurate terrestrial gravity field observations are available, such as South America, Asia or Africa. For our contribution we prepare a combined high-resolution gravity field model up to d/o 720 based on full normal equation including recent GOCE, GRACE and terrestrial / altimetric data. For all data sets, normal equations are set up separately, relative weighted to each other in the combination step and solved. This procedure is computationally challenging and can only be performed using super computers. We put special emphasis on the combination process, for which we modified especially our procedure to include GOCE data optimally in the combination. Furthermore we modified our terrestrial/altimetric data sets, what should result in an improved outcome. With our model, in which we included the newest GOCE TIM4 gradiometry results, we can show how GOCE contributes to a combined gravity field solution especially in areas of poor terrestrial data coverage. The model is validated by independent GPS leveling data in selected regions as well as computation of the mean dynamic topography over the oceans
A Sea Floor Gravity Survey of the Sleipner Field to Monitor CO2 Migration
Mark Zumberge; Scott Nooner
2005-12-13
Since 1996, excess CO{sub 2} from the Sleipner natural gas field has been sequestered and injected underground into a porous saline aquifer 1000 m below the seafloor. In 2002, we carried out a high precision micro-gravity survey on the seafloor in order to monitor the injected CO{sub 2}. A repeatability of 4.3 {micro}Gal in the station averages was observed. This is considerably better than pre-survey expectations. These data will serve as the baseline for time-lapse gravity monitoring of the Sleipner CO{sub 2} injection site. This report covers 3/19/05 to 9/18/05. During this time, gravity and pressure modeling were completed and graduate student Scott Nooner finished his Ph.D. dissertation, of which this work is a major part. Three new ROVDOG (Remotely Operated Vehicle deployable Deep Ocean Gravimeter) instruments were also completed with funding from Statoil. The primary changes are increased instrument precision and increased data sampling rate. A second gravity survey was carried out from August to September of 2005, allowing us to begin examining the time-lapse gravity changes caused by the injection of CO{sub 2} into the underground aquifer, known as the Utsira formation. Preliminary processing indicates a repeatability of 3.6 {micro}Gal, comparable to the baseline survey.
Towards combined global monthly gravity field solutions
NASA Astrophysics Data System (ADS)
Jaeggi, Adrian; Meyer, Ulrich; Beutler, Gerhard; Weigelt, Matthias; van Dam, Tonie; Mayer-Gürr, Torsten; Flury, Jakob; Flechtner, Frank; Dahle, Christoph; Lemoine, Jean-Michel; Bruinsma, Sean
2014-05-01
Currently, official GRACE Science Data System (SDS) monthly gravity field solutions are generated independently by the Centre for Space Research (CSR) and the German Research Centre for Geosciences (GFZ). Additional GRACE SDS monthly fields are provided by the Jet Propulsion Laboratory (JPL) for validation and outside the SDS by a number of other institutions worldwide. Although the adopted background models and processing standards have been harmonized more and more by the various processing centers during the past years, notable differences still exist and the users are more or less left alone with a decision which model to choose for their individual applications. This procedure seriously limits the accessibility of these valuable data. Combinations are well established in the area of other space geodetic techniques, such as the Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), and Very Long Baseline Interferometry (VLBI). Regularly comparing and combining space-geodetic products has tremendously increased the usefulness of the products in a wide range of disciplines and scientific applications. Therefore, we propose in a first step to mutually compare the large variety of available monthly GRACE gravity field solutions, e.g., by assessing the signal content over selected regions, by estimating the noise over the oceans, and by performing significance tests. We make the attempt to assign different solution characteristics to different processing strategies in order to identify subsets of solutions, which are based on similar processing strategies. Using these subsets we will in a second step explore ways to generate combined solutions, e.g., based on a weighted average of the individual solutions using empirical weights derived from pair-wise comparisons. We will also assess the quality of such a combined solution and discuss the potential benefits for the GRACE and GRACE-FO user community, but also address minimum processing
High-Precision Computation and Mathematical Physics
Bailey, David H.; Borwein, Jonathan M.
2008-11-03
At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion effort. This paper presents a survey of recent applications of these techniques and provides some analysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, scattering amplitudes of quarks, gluons and bosons, nonlinear oscillator theory, Ising theory, quantum field theory and experimental mathematics. We conclude that high-precision arithmetic facilities are now an indispensable component of a modern large-scale scientific computing environment.
Global gravity field models and their use for geophysical modelling
NASA Astrophysics Data System (ADS)
Pail, R.
2015-12-01
During the last decade, the successful operation of the dedicated satellite missions GOCE and GRACE have revolutionized our picture of the Earth's gravity field. They delivered static global gravity field maps with high and homogeneous accuracy for spatial length-scales down to 70-80 km. The current satellite-only models of the fifth generation including GOCE data have reached accuracies of about 2 cm in geoid height and less than 0.7 mGal in gravity anomalies at 100 km spatial half-wavelength. However, the spatial resolution of gravity models derived from satellite data is limited. Since precise knowledge of the Earth's gravity field structure with very high resolution is essential in solid Earth applications such as lithospheric modelling, geological interpretation and exploration geophysics, satellite-only models are complemented by combined gravity field models, which contain very high-resolution gravity field information obtained by terrestrial gravity measurements over continents, and satellite altimetry over the oceans. To further increase the spatial resolution beyond 10-20 km, measured terrestrial and satellite data can also be augmented by high-resolution gravity field signals synthesized from topographic models. In this contribution an overview of the construction of satellite-only and combined global gravity field models is given. The specific characteristics of the individual input data and the resulting models will be assessed, and their impact for geophysical modelling will be discussed. On the basis of selected case studies, commission and omission errors and thus the contribution and impact of satellite gravity data on gravity field applications will be quantified, and the benefit of current satellite gravity data shall be investigated and demonstrated. Future gravity field missions beyond GRACE Follow-On will provide global gravity field information with further increased accuracy, spatial and temporal resolution. In an international initiative
A SEA FLOOR GRAVITY SURVEY OF THE SLEIPNER FIELD TO MONITOR CO2 MIGRATION
Mark Zumberge; Scott Nooner; Glenn Sasagawa
2004-05-19
Since 1996, excess CO{sub 2} from the Sleipner natural gas field has been sequestered and injected underground into a porous saline aquifer 1000 m below the seafloor. In 2002, we carried out a high precision micro-gravity survey on the seafloor in order to monitor the injected CO{sub 2}. A repeatability of 5 {micro}Gal in the station averages was observed. This is considerably better than pre-survey expectations. These data will serve as the baseline for time-lapse gravity monitoring of the Sleipner CO{sub 2} injection site. A repeat survey has been scheduled for the summer of 2005. This report covers 9/19/03 to 3/18/04. During this time, significant advancement in the 3-D gravity forward modeling code was made. Testing of the numerical accuracy of the code was undertaken using both a sheet of mass and a frustum of a cone for test cases. These were chosen because of our ability to do an analytic calculation of gravity for comparison. Tests were also done to determine the feasibility of using point mass approximations rather than cuboids for the forward modeling code. After determining that the point mass approximation is sufficient (and over six times faster computationally), several CO{sub 2} models were constructed and the time-lapse gravity signal was calculated from each. From these models, we expect to see a gravity change ranging from 3-16 {micro}Gal/year, depending on reservoir conditions and CO{sub 2} geometry. While more detailed modeling needs to be completed, these initial results show that we may be able to learn a great deal about the state of the CO{sub 2} from the time-lapse gravity results. Also, in December of 2003, we presented at the annual AGU meeting in San Francisco.
NASA Astrophysics Data System (ADS)
Zhao, Qile; Guo, Jing; Hu, Zhigang; Shi, Chuang; Liu, Jingnan; Cai, Hua; Liu, Xianglin
2011-05-01
The GRACE (Gravity Recovery And Climate Experiment) monthly gravity models have been independently produced and published by several research institutions, such as Center for Space Research (CSR), GeoForschungsZentrum (GFZ), Jet Propulsion Laboratory (JPL), Centre National d’Etudes Spatiales (CNES) and Delft Institute of Earth Observation and Space Systems (DEOS). According to their processing standards, above institutions use the traditional variational approach except that the DEOS exploits the acceleration approach. The background force models employed are rather similar. The produced gravity field models generally agree with one another in the spatial pattern. However, there are some discrepancies in the gravity signal amplitude between solutions produced by different institutions. In particular, 10%-30% signal amplitude differences in some river basins can be observed. In this paper, we implemented a variant of the traditional variational approach and computed two sets of monthly gravity field solutions using the data from January 2005 to December 2006. The input data are K-band range-rates (KBRR) and kinematic orbits of GRACE satellites. The main difference in the production of our two types of models is how to deal with nuisance parameters. This type of parameters is necessary to absorb low-frequency errors in the data, which are mainly the aliasing and instrument errors. One way is to remove the nuisance parameters before estimating the geopotential coefficients, called NPARB approach in the paper. The other way is to estimate the nuisance parameters and geopotential coefficients simultaneously, called NPESS approach. These two types of solutions mainly differ in geopotential coefficients from degree 2 to 5. This can be explained by the fact that the nuisance parameters and the gravity field coefficients are highly correlated, particularly at low degrees. We compare these solutions with the official and published ones by means of spectral analysis. It is
On a spectral method for forward gravity field modelling
NASA Astrophysics Data System (ADS)
Root, B. C.; Novák, P.; Dirkx, D.; Kaban, M.; van der Wal, W.; Vermeersen, L. L. A.
2016-07-01
This article reviews a spectral forward gravity field modelling method that was initially designed for topographic/isostatic mass reduction of gravity data. The method transforms 3D spherical density models into gravitational potential fields using a spherical harmonic representation. The binomial series approximation in the approach, which is crucial for its computational efficiency, is examined and an error analysis is performed. It is shown that, this method cannot be used for density layers in crustal and upper mantle regions, because it results in large errors in the modelled potential field. Here, a correction is proposed to mitigate this erroneous behaviour. The improved method is benchmarked with a tesseroid gravity field modelling method and is shown to be accurate within ±4 mGal for a layer representing the Moho density interface, which is below other errors in gravity field studies. After the proposed adjustment the method can be used for the global gravity modelling of the complete Earth's density structure.
GOCE gravity field models following the time-wise approach
NASA Astrophysics Data System (ADS)
Brockmann, Jan Martin; Höck, Eduard; Loth, Ina; Mayer-Gürr, Torsten; Pail, Roland; Schuh, Wolf-Dieter; Zehentner, Norbert
2015-04-01
Since the launch of the European Space Agency's (ESA) Gravity field and Ocean Circulation Explorer (GOCE) satellite in 2009 and its end in 2013, a sequence of official GOCE gravity field models was released. One of the series of models follows the so called time-wise approach (EGM_TIM). They are purely based on GOCE observations such that they are independent of any other gravity field information available and describe the Earth's gravity field as seen by GOCE. Recently, the fifth release, EGM_TIM_RL05, was computed and made available to users. The models of the time-wise series were computed within the ESA funded High-level Processing Facility (HPF) and are part of the official ESA GOCE products. Calibrated gravity gradients in the gradiometer reference frame and the satellites position as derived by GPS measurements entered the solutions as observations. Together with the spherical harmonic coefficients, a realistic the full covariance matrix is provided reflecting the model quality. This contribution summarizes the gravity field models derived with the time-wise approach. The method is summarized and the progress along the five releases is highlighted. Special focus is put on the final release 5, the gravity field model which includes all data collected during the entire GOCE mission. This model, parametrized as 78,957 spherical harmonic coefficients (spatial resolution of 71 km), was determined from 4*109,799,264 gravity gradient measurements and 108,754,709 three dimensional positions within a joint least squares adjustment procedure. As this gravity field models only depend on GOCE observations, the gain of GOCE compared to other missions and other gravity field products can be clearly demonstrated. With release 5 of the time-wise model, a pure GOCE based model with a mean global accuracy of 2.4 cm at a spatial resolution of 100 km for the geoid is available (0.7 mGal for gravity anomalies).
The combined satellite gravity field model GOCO05s
NASA Astrophysics Data System (ADS)
Mayer-Guerr, Torsten
2015-04-01
The main objective of the GOCO ("Gravity Observation Combination") project is to compute high-accuracy and high-resolution static global gravity field models based on data of the dedicated satellite gravity missions CHAMP, GRACE, and GOCE, SLR data and kinematic orbits from different Low Earth Orbiters. For the computation of the new model GOCO05s more than 800,000,000 observations from 15 satellites are used to estimate about 122,000 gravity field parameters. GOCO05s consists not only of a static field up to degree and order 200, but the temporal variations of the gravity field are modeled as well. These are represented as regularized trend and annual signal. The main focus in the GOCO combination process is on the proper handling of the stochastic behavior of the data. Therefore, the resulting accuracy information in terms of a full variance covariance matrix is quite realistic and also published with the solution.
High precision redundant robotic manipulator
Young, K.K.D.
1998-09-22
A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space is disclosed. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degrees of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns. 3 figs.
High precision redundant robotic manipulator
Young, Kar-Keung David
1998-01-01
A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degreed of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns.
NASA Astrophysics Data System (ADS)
Galanti, Eli; Kaspi, Yohai
2014-11-01
In approximately two years Juno and Cassini will both perform close flybys of Jupiter and Saturn respectively, obtaining a high precision gravity spectrum for these planets. This data can be used to estimate the depth of the observed flows on these planets. Here we use a hierarchy of dynamical models in order to relate the three dimensional flow to perturbations of the density field, and therefore to the gravity field. The models are set up to allow either zonal flow only, or a full horizontal flow in both zonal and meridional directions based on the observed cloud-level winds. In addition, dynamical perturbations resulting from the non-spherical shape of the planets are accounted for. In order to invert the gravity field to be measured by Juno and Cassini into the 3D circulation, an adjoint inverse model is constructed for the dynamical model, thus allowing backward integration of the dynamical model. This tool can be used for examination of various scenarios, including cases in which the depth of the winds depends on latitudinal position.We show that given the expected sensitivities of Juno and Cassini, it is possible to use the gravity measurements to derive the depth of the winds, both on Jupiter and Saturn. This holds for a large range of zonal wind possible penetration depths, from ~100km to ~10000km, and for winds depth that vary with latitude. This method proves to be useful also when incorporating the full horizontal flow, and thus taking into account gravity perturbations that vary with longitude. We show that our adjoint based inversion method allows not only to estimate the depth of the circulation, but allows via iterations with the spacecraft trajectory estimation model to improve the inferred gravity field.
High-resolution global and local lunar gravity field models using GRAIL mission data
NASA Astrophysics Data System (ADS)
Goossens, S. J.; Lemoine, F. G.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Neumann, G. A.; Loomis, B.; Chinn, D. S.; Smith, D. E.; Zuber, M. T.
2014-12-01
The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were designed to map the structure of the Moon through high-precision global gravity mapping. The mission consisted of two spacecraft with Ka-band inter-satellite tracking complemented by tracking from Earth. The mission had two phases: (1) a primary mapping mission from March 1 until May 29, 2012 at an average altitude of 50 km; (2) an extended mission from August 30 until December 14, 2012, with an average altitude of 23 km before November 18, and between 11-20 km through December 14. Both the primary and the extended mission data have been processed into global models of the lunar gravity field at NASA/GSFC using the GEODYN software. Here we present our latest global model, an expansion in spherical harmonics of degree and order 1080. We discuss this new solution in terms of its power spectrum, its free-air and Bouguer anomalies, its associated error spectrum, and its correlations with topography-induced gravity. In addition to global models we also estimated local gravity adjustments in areas of particular interest such as Mare Orientale and the south pole area. We express gravity in terms of anomalies, and estimate them with respect to a global background model. We apply neighbor-smoothing in our estimation procedure. We present a local solution over the south pole area in a resolution of 1/6 by 1/6 of a degree, equivalent to degree and order 1080, and we compare this local solution to our global model.
Time variable Earth's gravity field from SLR satellites
NASA Astrophysics Data System (ADS)
Sośnica, Krzysztof; Jäggi, Adrian; Meyer, Ulrich; Thaller, Daniela; Beutler, Gerhard; Arnold, Daniel; Dach, Rolf
2015-10-01
The time variable Earth's gravity field contains information about the mass transport within the system Earth, i.e., the relationship between mass variations in the atmosphere, oceans, land hydrology, and ice sheets. For many years, satellite laser ranging (SLR) observations to geodetic satellites have provided valuable information of the low-degree coefficients of the Earth's gravity field. Today, the Gravity Recovery and Climate Experiment (GRACE) mission is the major source of information for the time variable field of a high spatial resolution. We recover the low-degree coefficients of the time variable Earth's gravity field using SLR observations up to nine geodetic satellites: LAGEOS-1, LAGEOS-2, Starlette, Stella, AJISAI, LARES, Larets, BLITS, and Beacon-C. We estimate monthly gravity field coefficients up to degree and order 10/10 for the time span 2003-2013 and we compare the results with the GRACE-derived gravity field coefficients. We show that not only degree-2 gravity field coefficients can be well determined from SLR, but also other coefficients up to degree 10 using the combination of short 1-day arcs for low orbiting satellites and 10-day arcs for LAGEOS-1/2. In this way, LAGEOS-1/2 allow recovering zonal terms, which are associated with long-term satellite orbit perturbations, whereas the tesseral and sectorial terms benefit most from low orbiting satellites, whose orbit modeling deficiencies are minimized due to short 1-day arcs. The amplitudes of the annual signal in the low-degree gravity field coefficients derived from SLR agree with GRACE K-band results at a level of 77 %. This implies that SLR has a great potential to fill the gap between the current GRACE and the future GRACE Follow-On mission for recovering of the seasonal variations and secular trends of the longest wavelengths in gravity field, which are associated with the large-scale mass transport in the system Earth.
Experiments to investigate particulate materials in reduced gravity fields
NASA Technical Reports Server (NTRS)
Bowden, M.; Eden, H. F.; Felsenthal, P.; Glaser, P. E.; Wechsler, A. E.
1967-01-01
Study investigates agglomeration and macroscopic behavior in reduced gravity fields of particles of known properties by measuring and correlating thermal and acoustical properties of particulate materials. Experiment evaluations provide a basis for a particle behavior theory and measure bulk properties of particulate materials in reduced gravity.
Validation of GOCE global gravity field models using terrestrial gravity data in Norway
NASA Astrophysics Data System (ADS)
Šprlák, M.; Gerlach, C.; Pettersen, B.
2012-01-01
The GOCE (Gravity field and steady-state Ocean Circulation Explorer) satellite gravity gradiometry mission maps the Earth's gravity field. Harmonic analysis of GOCE observations provides a global gravity field model (GGFM). Three theoretical strategies, namely the direct, the space-wise and the time-wise approach, have been proposed for GOCE harmonic analysis. Based on these three methods, several GGFMs have been provided to the user community by ESA. Thereby different releases are derived from different periods of GOCE observations and some of the models are based on combinations with other sources of gravity field information. Due to the multitude of GOCE GGFMs, validation against independent data is a crucial task for the quality description of the different models. In this study, GOCE GGFMs from three releases are validated with respect to terrestrial free-air gravity anomalies in Norway. The spectral enhancement method is applied to avoid spectral inconsistency between the terrestrial and the GOCE free-air gravity anomalies. The results indicate that the time-wise approach is a reliable harmonic analysis procedure in all three releases of GOCE models. The space-wise approach, available in two releases, provides similar results as the time-wise approach. The direct approach seems to be highly affected by a-priori information.
Repetitive precision gravity studies at the Cerro Prieto and Heber geothermal fields
Grannell, R.B.
1982-09-01
To study subsidence and mass removal, a precise gravity network was established on 60 permanent monuments in the Cerro Prieto geothermal field in early 1978, and repeated annually through early 1981; the survey was tied to two bedrock sites outside the limits of the current production zone. The looping technique of station occupation was utilized, in which occupation of the base was followed by occupation of several stations, followed by a return to the base. Use of two LaCoste and Romberg gravity meters, and replication of values within loops as well as entire loops, enhanced precision such that the median standard deviations of the base-to-station differences, reduced to observed gravity values, ranged from 7 to 15 microgals for individual surveys. The smaller values were obtained as field and data reduction techniques were improved and experience was gained. A similar survey was initiated in the Heber area just north of the Mexican border in early 1980. It too was established on permanent monuments, was tied to bedrock stations outside the geothermal area, and used multiple repetitions of values with two meters to achieve high precision.
GRAIL Gravity Field Determination Using the Celestial Mechanics Approach
NASA Astrophysics Data System (ADS)
Arnold, Daniel; Jäggi, Adrian; Bertone, Stefano; Beutler, Gerhard; Meyer, Ulrich; Mervart, Leos; Bock, Heike
2014-05-01
To determine the gravity field of the Moon, the NASA mission GRAIL (Gravity Recovery and Interior Laboratory) inherits its concept from the GRACE (Gravity Recovery and Climate Experiment) mission. The use of inter-satellite Ka-band range-rate (KBRR) observations enables data acquisition even when the spacecraft are not tracked from the Earth. The data allows for a highly accurate estimation of the lunar gravity field on both sides of the Moon, which is crucial to improve the understanding of its internal structure and thermal evolution. In this presentation we discuss GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach. KBRR observations and position data (GNI1B products) are used to solve for the lunar gravity field parameters in a generalized orbit determination problem. Apart from normalized spherical harmonic coefficients up to degrees n ≤ 200, also arc- and satellite-specific parameters, like initial state vectors and pseudo-stochastic pulses, are set up as common parameters for all measurement types. The latter shall compensate for imperfect models of non-gravitational accelerations, e.g., caused by solar radiation pressure. In addition, especially for the data of the primary mission phase, it is essential to estimate time bias parameters for the KBRR observations. We compare our results from the nominal and from the extended mission phase with the official Level 2 gravity field models first released in October 2013. Our results demonstrate that the lunar gravity field can be recovered with a high quality by adapting the Celestial Mechanics Approach, even when using pre-GRAIL or pre-SELENE gravity field models as a priori fields and when replacing sophisticated models of non-gravitational accelerations by appropriately spaced and constrained pseudo-stochastic pulses.
NASA Astrophysics Data System (ADS)
Kumar, Anil; Prakash, Om; Ramakrishanan, S.
2014-04-01
A special sample measurement chamber has been developed to perform experiments at ultralow temperatures and ultralow magnetic field. A high permeability material known as cryoperm 10 and Pb is used to shield the measurement space consisting of the signal detecting set-up and the sample. The detecting setup consists of a very sensitive susceptibility coil wound on OFHC Cu bobbin.
NASA Technical Reports Server (NTRS)
Sharp, G. R.; Zakrajsek, R. J.; Kunath, R. R.; Raquet, C. A.; Alexovich, R. E.
1984-01-01
A very precise 6.7- by 6.7-m planar near-field scanner has recently become operational at the NASA Lewis Research Center. The scanner acquires amplitude and phase data at discrete points over a vertical rectangular grid. During the design phase for this scanner, special emphasis was given to the dimensional stability of the structures and the ease of adjustment of the rails that determine the accuracy of the scan plane. A laser measurement system is used for rail alignment and probe positioning. This has resulted in very repeatable horizontal and vertical motion of the probe cart and hence precise positioning in the plane described by the probe tip. The resulting accuracy will support near-field measurements at 60 GHz without corrections. Subsystem design including laser, electronic and mechanical and their performance is described. Summary data are presented on the scan plane flatness and environmental temperature stability. Representative near-field data and calculated far-field test results are presented. Prospective scanner improvements to increase test capability are also discussed.
NASA Astrophysics Data System (ADS)
Noréus, J. P.; Nyborg, M. R.; Hayling, K. L.
1997-06-01
The gravity anomaly field in the Gulf of Bothnia has been investigated using (1) in situ high-precision measurements conducted on the sea ice during cold winters, and (2) gravity anomaly profiles computed from collinear satellite radar altimeter data from the Geosat ERM and the Topex/Poseidon missions. The in situ measurements were obtained from a collaboration between the Finnish Geodetic Institute, the Geological Survey of Sweden (SGU) and the National Survey of Sweden (LMV), and were processed with the geostatistical method called kriging. These data were used to calibrate the altimetric gravity. Altimetry generally resolves features of 20 km wavelength or longer, and in some cases detects shorter features when a sampling interval of 10 Hz is used. The precision of the along-track one-dimensional altimetric profiles corresponds to a gravity uncertainty of 2-3 mGal, and comparison with in situ measured gravity show 4 mGal discrepancy. The precision of the in situ measurements is better. However, depending on the sampling distance, the estimation uncertainty interior the in situ data areas may be up to 5 mGal between neighbouring data points. In regions with in situ data gaps, the estimation uncertainty of the in situ gravity measurements is rapidly increasing to a maximum of 9 mGal. An improved estimation uncertainty of 4-9 mGal was obtained in the same data gap regions with the support of satellite altimetry. Altimetric gravity is therefore used to estimate the gravity field in such regions, and to spatially characterize the gravity field in the Gulf of Bothnia.
NASA Astrophysics Data System (ADS)
Donovan, E.
2008-12-01
There are now dozens of sensitive All-Sky Imagers (ASIs) deployed in networks spanning latitudes from the subauroral zone into the polar cap and many hours of magnetic local time. These new networks are collecting data with unprecedented spatial coverage and temporal resolution and in numerous scientifically interesting wavelength ranges. As well, direct satellite overflights of ground-based images that were once rare occurrences are becoming increasingly commonplace. This talk will focus on the scientific opportunities afforded by the integrated use of ground-based auroral images and magnetic and electric field data from existing and planned LEO missions including CHAMP, Oersted, and Swarm. These opportunities include exploring the relationship between field-aligned current and Poynting flux and different types of aurora, as well as reducing spatio-temporal ambiguity in the in situ measurements.
Gravity field models derived from Swarm GPS data
NASA Astrophysics Data System (ADS)
Teixeira da Encarnação, João; Arnold, Daniel; Bezděk, Aleš; Dahle, Christoph; Doornbos, Eelco; van den IJssel, Jose; Jäggi, Adrian; Mayer-Gürr, Torsten; Sebera, Josef; Visser, Pieter; Zehentner, Norbert
2016-07-01
It is of great interest to numerous geophysical studies that the time series of global gravity field models derived from Gravity Recovery and Climate Experiment (GRACE) data remains uninterrupted after the end of this mission. With this in mind, some institutes have been spending efforts to estimate gravity field models from alternative sources of gravimetric data. This study focuses on the gravity field solutions estimated from Swarm global positioning system (GPS) data, produced by the Astronomical Institute of the University of Bern, the Astronomical Institute (ASU, Czech Academy of Sciences) and Institute of Geodesy (IfG, Graz University of Technology). The three sets of solutions are based on different approaches, namely the celestial mechanics approach, the acceleration approach and the short-arc approach, respectively. We derive the maximum spatial resolution of the time-varying gravity signal in the Swarm gravity field models to be degree 12, in comparison with the more accurate models obtained from K-band ranging data of GRACE. We demonstrate that the combination of the GPS-driven models produced with the three different approaches improves the accuracy in all analysed monthly solutions, with respect to any of them. In other words, the combined gravity field model consistently benefits from the individual strengths of each separate solution. The improved accuracy of the combined model is expected to bring benefits to the geophysical studies during the period when no dedicated gravimetric mission is operational.
The combined gravity field model GOCO05c
NASA Astrophysics Data System (ADS)
Fecher, Thomas; Pail, Roland; Gruber, Thomas; GOCO Project Team
2016-04-01
Knowledge of the static gravity field is of importance for various scientific disciplines, such as geodesy, geophysics and oceanography. While for geophysics the gravity field provides insight into the Earth's interior, the geoid serves as an important reference surface for oceanographic applications. Moreover this reference surface is a key parameter on the way to a globally unified height system. In order to exploit the full potential of gravity measurements and to achieve the best gravity field solution, all kinds of complementary gravity field information have to be combined. By combining GRACE and GOCE information, a state of the art satellite-only gravity field is available, which is highly accurate at the very long to medium wavelengths (80-100 km). By adding information from terrestrial/airborne gravimetry and satellite altimetry, which both are measurement techniques providing short wavelength gravity information beyond the resolution of GOCE, the full gravity field spectrum can be obtained. This paper focuses on the presentation of the combined gravity field model GOCO05c, a global gravity field model up to degree and order 720 based on full normal equation systems (more than 500,000 parameters). During the calculation of GOCO05c we put emphasis on the question how the complementary data types can be combined in a global gravity field model in the way that all data types keep their specific strengths and are not degraded by the combination with other information in certain wavelengths. Realistic stochastic modelling and a tailored weighting scheme among all available data results in different regional relative weighting of satellite and terrestrial data in the combined solution, mainly depending on the quality of the available terrestrial gravity information. From this procedure, as complementary product realistic error estimates are available in terms of a full-covariance matrix, which can be mapped in a spatial error grid reflecting regionally specific
Multi-scale gravity field modeling in space and time
NASA Astrophysics Data System (ADS)
Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric
2016-04-01
The Earth constantly deforms as it undergoes dynamic phenomena, such as earthquakes, post-glacial rebound and water displacement in its fluid envelopes. These processes have different spatial and temporal scales and are accompanied by mass displacements, which create temporal variations of the gravity field. Since 2002, the GRACE satellite missions provide an unprecedented view of the gravity field spatial and temporal variations. Gravity models built from these satellite data are essential to study the Earth's dynamic processes (Tapley et al., 2004). Up to present, time variations of the gravity field are often modelled using spatial spherical harmonics functions averaged over a fixed period, as 10 days or 1 month. This approach is well suited for modeling global phenomena. To better estimate gravity related to local and/or transient processes, such as earthquakes or floods, and adapt the temporal resolution of the model to its spatial resolution, we propose to model the gravity field using localized functions in space and time. For that, we build a model of the gravity field in space and time with a four-dimensional wavelet basis, well localized in space and time. First we design the 4D basis, then, we study the inverse problem to model the gravity field from the potential differences between the twin GRACE satellites, and its regularization using prior knowledge on the water cycle. Our demonstration of surface water mass signals decomposition in time and space is based on the use of synthetic along-track gravitational potential data. We test the developed approach on one year of 4D gravity modeling and compare the reconstructed water heights to those of the input hydrological model. Perspectives of this work is to apply the approach on real GRACE data, addressing the challenge of a realistic noise, to better describe and understand physical processus with high temporal resolution/low spatial resolution or the contrary.
NASA Astrophysics Data System (ADS)
Galanti, Eli; Kaspi, Yohai
2016-04-01
During 2016-17, the Juno and Cassini spacecraft will both perform close eccentric orbits of Jupiter and Saturn, respectively, obtaining high-precision gravity measurements for these planets. These data will be used to estimate the depth of the observed surface flows on these planets. All models to date, relating the winds to the gravity field, have been in the forward direction, thus only allowing the calculation of the gravity field from given wind models. However, there is a need to do the inverse problem since the new observations will be of the gravity field. Here, an inverse dynamical model is developed to relate the expected measurable gravity field, to perturbations of the density and wind fields, and therefore to the observed cloud-level winds. In order to invert the gravity field into the 3D circulation, an adjoint model is constructed for the dynamical model, thus allowing backward integration. This tool is used for the examination of various scenarios, simulating cases in which the depth of the wind depends on latitude. We show that it is possible to use the gravity measurements to derive the depth of the winds, both on Jupiter and Saturn, also taking into account measurement errors. Calculating the solution uncertainties, we show that the wind depth can be determined more precisely in the low-to-mid-latitudes. In addition, the gravitational moments are found to be particularly sensitive to flows at the equatorial intermediate depths. Therefore, we expect that if deep winds exist on these planets they will have a measurable signature by Juno and Cassini.
Evaluation of recent Earth's global gravity field models with terrestrial gravity data
NASA Astrophysics Data System (ADS)
Karpik, Alexander P.; Kanushin, Vadim F.; Ganagina, Irina G.; Goldobin, Denis N.; Kosarev, Nikolay S.; Kosareva, Alexandra M.
2016-03-01
In the context of the rapid development of environmental research technologies and techniques to solve scientific and practical problems in different fields of knowledge including geosciences, the study of Earth's gravity field models is still important today. The results of gravity anomaly modelling calculated by the current geopotential models data were compared with the independent terrestrial gravity data for the two territories located in West Siberia and Kazakhstan. Statistical characteristics of comparison results for the models under study were obtained. The results of investigations show that about 70% of the differences between the gravity anomaly values calculated by recent global geopotential models and those observed at the points in flat areas are within ±10 mGal, in mountainous areas are within ±20 mGal.
A SEA FLOOR GRAVITY SURVEY OF THE SLEIPNER FIELD TO MONITOR CO2 MIGRATION
Mark Zumberge; Scott Nooner
2005-07-11
Since 1996, excess CO{sub 2} from the Sleipner natural gas field has been sequestered and injected underground into a porous saline aquifer 1000 m below the seafloor. In 2002, we carried out a high precision micro-gravity survey on the seafloor in order to monitor the injected CO{sub 2}. A repeatability of 5 {micro}Gal in the station averages was observed. This is considerably better than pre-survey expectations. These data will serve as the baseline for time-lapse gravity monitoring of the Sleipner CO{sub 2} injection site. A repeat survey has been scheduled for the summer of 2005. This report covers 9/19/04 to 3/18/05. During this time, gravity and pressure modeling were completed and work graduate student Scott Nooner began writing his Ph.D. dissertation, of which this work is a the major part. Improvements to the gravimeters are also underway that will hopefully increase the measurement precision.
A SEA FLOOR GRAVITY SURVEY OF THE SLEIPNER FIELD TO MONITOR CO2 MIGRATION
Mark Zuberge; Scott Nooner; Glenn Sasagawa
2003-11-17
Since 1996, excess CO{sub 2} from the Sleipner natural gas field has been sequestered and injected underground into a porous saline aquifer 1000 m below the seafloor. In 2002, we carried out a high precision micro-gravity survey on the seafloor in order to monitor the injected CO{sub 2}. A repeatability of 5 {micro}Gal in the station averages was observed. This is considerably better than pre-survey expectations. These data will serve as the baseline for time-lapse gravity monitoring of the Sleipner CO{sub 2} injection site. A three-week trip to Statoil Research Centre in Trondheim, Norway, was made in the summer of 2003. This visit consisted of gathering data and collaborating with scientists working on the Sleipner project. The trip ended with a presentation of the seafloor gravity results to date at a SACS2 (Saline Aquifer CO{sub 2} Storage 2) meeting. This meeting provided the perfect opportunity to meet and gather information from the world's experts on the Sleipner project.
A SEA FLOOR GRAVITY SURVEY OF THE SLEIPNER FIELD TO MONITOR CO2 MIGRATION
Mark Zumberge; Scott Nooner; Ola Eiken
2004-11-29
Since 1996, excess CO{sub 2} from the Sleipner natural gas field has been sequestered and injected underground into a porous saline aquifer 1000 m below the seafloor. In 2002, we carried out a high precision micro-gravity survey on the seafloor in order to monitor the injected CO{sub 2}. A repeatability of 5 {micro}Gal in the station averages was observed. This is considerably better than pre-survey expectations. These data will serve as the baseline for time-lapse gravity monitoring of the Sleipner CO{sub 2} injection site. A repeat survey has been scheduled for the summer of 2005. This report covers 3/18/04 to 9/19/04. During this time, we participated in several CO{sub 2} sequestration-related meetings and conferences. On March 29, 2004, we participated in the 2004 Carbon Sequestration Project Review Meeting for the Department of Energy in Pittsburgh, PA. During the week of May 2, 2004, we attended and presented at the Third Annual Conference on Carbon Capture and Sequestration in Alexandria, VA. Finally, during the week of August 8, 2004, we took part in the U.S.-Norway, CO{sub 2} Summer School in Santa Fe, NM. Additional modeling was also completed, examining the seismic velocity pushdown estimates from the gravity models and the expected deformation of the seafloor due to the injected CO{sub 2}.
Finite field-dependent symmetries in perturbative quantum gravity
NASA Astrophysics Data System (ADS)
Upadhyay, Sudhaker
2014-01-01
In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci-Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin-Vilkovisky (BV) formulation.
Particlelike distributions of the Higgs field nonminimally coupled to gravity.
Füzfa, André; Rinaldi, Massimiliano; Schlögel, Sandrine
2013-09-20
When the Higgs field is nonminimally coupled to gravity, there exists a family of spherically symmetric particlelike solutions to the field equations. These monopoles are the only globally regular and asymptotically flat distributions with finite energy of the Higgs field around compact objects. Moreover, spontaneous scalarization is strongly amplified for specific values of their mass and compactness. PMID:24093242
NASA Astrophysics Data System (ADS)
Lo, W.-C.; Lin, B.-S.; Ho, H.-C.; Keck, J.; Yin, H.-Y.; Shan, H.-Y.
2012-11-01
The occurrence of typhoon Herb in 1996 caused massive landslides in the Shenmu area of Taiwan. Many people died and stream and river beds were covered by meters of debris. Debris flows almost always take place in the Shenmu area during the flood season, especially in the catchment areas around Tsushui river and Aiyuzih river. Anthropogenic and natural factors that cause debris flow occurrences are complex and numerous. The precise conditions of initiation are difficult to be identified, but three factors are generally considered to be the most important ones, i.e. rainfall characteristics, geologic conditions and topography. This study proposes a simple and feasible process that combines remote sensing technology and multi-stage high-precision DTMs from aerial orthoimages and airborne LiDAR with field surveys to establish a connection between three major occurrence factors that trigger debris flows in the Shenmu area.
A comparison of satellite systems for gravity field measurements
NASA Technical Reports Server (NTRS)
Argentiero, P. D.; Lowrey, B. E.
1977-01-01
A detailed and accurate earth gravity field model is important to the understanding of the structure and composition of the earth's crust and upper mantle. Various satellite-based techniques for providing more accurate models of the gravity field are analyzed and compared. A high-low configuration satellite-to-satellite tracking mission is recommended for the determination of both the long wavelength and short wavelength portions of the field. Satellite altimetry and satellite gradiometry missions are recommended for determination of the short wavelength portion of the field.
GOCE Gravity fields established by the Celestial Mechanics Approach
NASA Astrophysics Data System (ADS)
Meyer, U.; Jaeggi, A.; Bock, H.; Beutler, G.
2011-12-01
The Celestial Mechanics Approach (CMA) was generalized to accept not only GPS- and K-Band-observations, but also the gradiometer Level 2 observables of the GOCE mission. The gradiometer observable is modeled as a linear function of the gravity field parameters and the parameters of a piece-wise linear function, which absorbs the deficiencies of the band-limited gradiometer observable including its once-, twice-, etc. per rev biases. The spacing of successive piecewise linear (and continuous) functions is typically of the order of one to few minutes. The piecewise linear functions have to be defined in a way not to absorb the gravity signal in the measurement bandwidth of the GOCE gradiometer observable. The resulting gravity fields are by construction independent of the underlying a priori gravity field. We analyze about six months of GOCE level 2 data and generate (a) GPS-only solutions, (b) gradiometer-only solutions based on the three diagonal elements of the gravity tensor, (c) combinations of solutions (a) and (b), and (d) combinations of the solutions of type (c) with static GRACE solutions, which were generated with the CMA, as well. Currently, for proof of concept purposes, the gravity fields are limited to degree n=160. Our analysis clearly reveals the spectrally resolved contributions of the individual solution types mentioned on the combined solutions.
Gauss-Bonnet Brane World Gravity with a Scalar Field
Davis, Stephen C.
2004-11-17
The effective four-dimensional, linearised gravity of a brane world model with one extra dimension and a single brane is analysed. The model includes higher order curvature terms (such as the Gauss-Bonnet term) and a conformally coupled scalar field. Large and small distance gravitational laws are derived. In contrast to the corresponding Einstein gravity models, it is possible to obtain solutions with localised gravity which are compatible with observations. Solutions with non-standard large distance Newtonian potentials are also described.
Local Earth's gravity field in view of fractal dimension
NASA Astrophysics Data System (ADS)
Mészárosová, Katarína; Minarechová, Zuzana; Janák, Juraj
2013-04-01
The poster presents the relative roughness of chosen characteristics of the Earth's gravity field in several small regions in area of Slovakia (e.g. free-air anomaly, Bouguer anomaly, gravity disturbance...) using the values of fractal dimension. In this approach, a three dimensional box counting method and the Hurst analysis method are applied to estimate the values of fractal dimensions. Then the computed fractal dimension values are used to compare all 3D models of all chosen characteristics.
Time lapse gravity monitoring at Coso geothermal field
NASA Astrophysics Data System (ADS)
Woolf, Rachel Vest
An extensive time lapse gravity data set was acquired over the Coso geothermal field near Ridgecrest, California starting in 1987, with the latest data set acquired in 2013. In this thesis I use these gravity data to obtain a better understanding of mass changes occurring within the geothermal field. Geothermal energy is produced by flashing naturally heated ground water into steam which is used to turn turbines. Brine and re-condensed steam are then re-injected into the reservoir. A percentage of the water removed from the system is lost to the process. The time lapse gravity method consists of gravity measurements taken at the same locations over time, capturing snap shots of the changing field. After careful processing, the final data are differenced to extract the change in gravity over time. This change in gravity can then be inverted to recover the change in density and therefore mass over time. The inversion process also produces information on the three dimensional locations of these mass changes. Thirty five gravity data sets were processed and a subsection were inverted with two different starting times, a sixteen point data set collected continuously between 1991 and 2005, and a thirty-eight point data set collected between 1996 and 2005. The maximum change in gravity in the 1991 data group was -350 microGal observed near station CSE2. For the 1996 data group the maximum gravity change observed over the nine year period was -248 microGal. The gravity data were then inverted using the surface inversion method. Three values of density contrast were used, -0.05 g/cm3, -0.10 g/cm3, and -0.20 g/cm3. The starting surface in 1991 was set to 2,500 ft above sea level. The changes in surfaces were then converted to mass changes. The largest total mass change recovered was -1.39x1011 kg. This mass value is of the same order of magnitude as published well production data for the field. Additionally, the gravity data produces a better understanding of the spatial
Precise orbit determination of the Lunar Reconnaissance Orbiter and first gravity field results
NASA Astrophysics Data System (ADS)
Maier, Andrea; Baur, Oliver
2014-05-01
The Lunar Reconnaissance Orbiter (LRO) was launched in 2009 and is expected to orbit the Moon until the end of 2014. Among other instruments, LRO has a highly precise altimeter on board demanding an orbit accuracy of one meter in the radial component. Precise orbit determination (POD) is achieved with radiometric observations (Doppler range rates, ranges) on the one hand, and optical laser ranges on the other hand. LRO is the first satellite at a distance of approximately 360 000 to 400 000 km from the Earth that is routinely tracked with optical laser ranges. This measurement type was introduced to achieve orbits of higher precision than it would be possible with radiometric observations only. In this contribution we investigate the strength of each measurement type (radiometric range rates, radiometric ranges, optical laser ranges) based on single-technique orbit estimation. In a next step all measurement types are combined in a joined analysis. In addition to POD results, preliminary gravity field coefficients are presented being a subsequent product of the orbit determination process. POD and gravity field estimation was accomplished with the NASA/GSFC software packages GEODYN and SOLVE.
High-Precision Pulse Generator
NASA Technical Reports Server (NTRS)
Katz, Richard; Kleyner, Igor
2011-01-01
A document discusses a pulse generator with subnanosecond resolution implemented with a low-cost field-programmable gate array (FPGA) at low power levels. The method used exploits the fast carry chains of certain FPGAs. Prototypes have been built and tested in both Actel AX and Xilinx Virtex 4 technologies. In-flight calibration or control can be performed by using a similar and related technique as a time interval measurement circuit by measuring a period of the stable oscillator, as the delays through the fast carry chains will vary as a result of manufacturing variances as well as the result of environmental conditions (voltage, aging, temperature, and radiation).
Interior Models and Gravity Field of Jupiter's Moon Amalthea
NASA Astrophysics Data System (ADS)
Weinwurm, G.; Weber, R.
2003-12-01
Before its final plunge into Jupiter in September 2003, GALILEO made a last visit to Jupiters moon Amalthea. This final flyby of the spacecrafts successful mission occurred on November 5, 2002. In order to analyse the spacecraft data with respect to Amaltheas gravity field, interior models of the moon had to be provided. The method used for this approach is based on the numerical integration of infinitesimal volume elements, which are calculated by the scale factors of a three-axial ellipsoid (elliptic coordinates). To derive the gravity field coefficients of the body, the second method of Neumann was applied. Based on the spacecraft trajectory data provided by the Jet Propulsion Laboratory, GALILEOs velocity perturbations at closest approach could be calculated. We have derived the harmonic coefficients of Amaltheas gravity field up to degree and order six, for both homogeneous and reasonable heterogeneous cases. Based on these numbers we calculated the impact on the trajectory of GALILEO and compared it to existing Doppler data. Although no two-way Doppler-data was available during the flyby and the harmonic coefficients of the gravity field are buried in the one-way Doppler-noise, the calculated gravity field models of Amalthea can be a basis for further exploration of the Jupiter system. Furthermore, the model approach can be used for any planetary body.
Gravity field models derived from Swarm GPS data
NASA Astrophysics Data System (ADS)
de Teixeira da Encarnação, João; Arnold, Daniel; Bezděk, Aleš; Dahle, Christoph; Doornbos, Eelco; van den IJssel, Jose; Jäggi, Adrian; Mayer-Gürr, Torsten; Sebera, Josef; Visser, Pieter; Zehentner, Norbert
2016-04-01
The GPS instruments on-board the three Earth's Magnetic Field and Environment Explorer (Swarm) satellites provide the opportunity to measure the gravity field model at basin-wide spatial scales. In spite of being a geo-magnetic satellite mission, Swarm's GPS receiver collects highly accurate hl-SST data (van den IJssel et al., 2015), which has been exploited to produce gravity field models at a number of institutes, namely at the Astronomical Institute (ASU) of the Czech Academy of Sciences (Bezděk et al., 2014), the Astronomical Institute of the University of Bern (AIUB, Jäggi et al., 2015) and the Institute of Geodesy (IfG) of the Graz University of Technology (Zehentner et al., 2015). With the help of GRACE gravity field models, which are derived from much more accurate ll-SST data, we investigate the best combination strategy for producing a superior model on the basis of the solutions produced by the three institutes, similarly to the approach taken by the European Gravity Service for Improved Emergency Management project (http://egsiem.eu). We demonstrate that the Swarm-derived gravity field models are able to resolve monthly solutions with 1666km spatial resolutions (roughly up to degree 12). We illustrate how these monthly solutions correlate with GRACE-derived monthly solutions, for the period of 2014 - 2015, as well as indicate which geographical areas are measured more or less accurately.
Effect of Numerical Error on Gravity Field Estimation for GRACE and Future Gravity Missions
NASA Astrophysics Data System (ADS)
McCullough, Christopher; Bettadpur, Srinivas
2015-04-01
In recent decades, gravity field determination from low Earth orbiting satellites, such as the Gravity Recovery and Climate Experiment (GRACE), has become increasingly more effective due to the incorporation of high accuracy measurement devices. Since instrumentation quality will only increase in the near future and the gravity field determination process is computationally and numerically intensive, numerical error from the use of double precision arithmetic will eventually become a prominent error source. While using double-extended or quadruple precision arithmetic will reduce these errors, the numerical limitations of current orbit determination algorithms and processes must be accurately identified and quantified in order to adequately inform the science data processing techniques of future gravity missions. The most obvious numerical limitation in the orbit determination process is evident in the comparison of measured observables with computed values, derived from mathematical models relating the satellites' numerically integrated state to the observable. Significant error in the computed trajectory will corrupt this comparison and induce error in the least squares solution of the gravitational field. In addition, errors in the numerically computed trajectory propagate into the evaluation of the mathematical measurement model's partial derivatives. These errors amalgamate in turn with numerical error from the computation of the state transition matrix, computed using the variational equations of motion, in the least squares mapping matrix. Finally, the solution of the linearized least squares system, computed using a QR factorization, is also susceptible to numerical error. Certain interesting combinations of each of these numerical errors are examined in the framework of GRACE gravity field determination to analyze and quantify their effects on gravity field recovery.
Cartan gravity, matter fields, and the gauge principle
Westman, Hans F.; Zlosnik, Tom G.
2013-07-15
Gravity is commonly thought of as one of the four force fields in nature. However, in standard formulations its mathematical structure is rather different from the Yang–Mills fields of particle physics that govern the electromagnetic, weak, and strong interactions. This paper explores this dissonance with particular focus on how gravity couples to matter from the perspective of the Cartan-geometric formulation of gravity. There the gravitational field is represented by a pair of variables: (1) a ‘contact vector’ V{sup A} which is geometrically visualized as the contact point between the spacetime manifold and a model spacetime being ‘rolled’ on top of it, and (2) a gauge connection A{sub μ}{sup AB}, here taken to be valued in the Lie algebra of SO(2,3) or SO(1,4), which mathematically determines how much the model spacetime is rotated when rolled. By insisting on two principles, the gauge principle and polynomial simplicity, we shall show how one can reformulate matter field actions in a way that is harmonious with Cartan’s geometric construction. This yields a formulation of all matter fields in terms of first order partial differential equations. We show in detail how the standard second order formulation can be recovered. In particular, the Hodge dual, which characterizes the structure of bosonic field equations, pops up automatically. Furthermore, the energy–momentum and spin-density three-forms are naturally combined into a single object here denoted the spin-energy–momentum three-form. Finally, we highlight a peculiarity in the mathematical structure of our first-order formulation of Yang–Mills fields. This suggests a way to unify a U(1) gauge field with gravity into a SO(1,5)-valued gauge field using a natural generalization of Cartan geometry in which the larger symmetry group is spontaneously broken down to SO(1,3)×U(1). The coupling of this unified theory to matter fields and possible extensions to non-Abelian gauge fields are left as
Finite field-dependent symmetries in perturbative quantum gravity
Upadhyay, Sudhaker
2014-01-15
In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci–Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin–Vilkovisky (BV) formulation. -- Highlights: •The perturbative quantum gravity is treated as gauge theory. •BRST and anti-BRST transformations are developed in linear and non-linear gauges. •BRST transformation is generalized by making it finite and field dependent. •Connection between linear and non-linear gauges is established. •Using BV formulation the results are established at quantum level also.
Shear waves in inhomogeneous, compressible fluids in a gravity field.
Godin, Oleg A
2014-03-01
While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere. PMID:24606251
modern global models of the earth's gravity field: analysis of their accuracy and resolution
NASA Astrophysics Data System (ADS)
Ganagina, Irina; Karpik, Alexander; Kanushin, Vadim; Goldobin, Denis; Kosareva, Alexandra; Kosarev, Nikolay; Mazurova, Elena
2015-04-01
Introduction: Accurate knowledge of the fine structure of the Earth's gravity field extends opportunities in geodynamic problem-solving and high-precision navigation. In the course of our investigations have been analyzed the resolution and accuracy of 33 modern global models of the Earth's gravity field and among them 23 combined models and 10 satellite models obtained by the results of GOCE, GRACE, and CHAMP satellite gravity mission. The Earth's geopotential model data in terms of normalized spherical harmonic coefficients were taken from the web-site of the International Centre for Global Earth Models (ICGEM) in Potsdam. Theory: Accuracy and resolution estimation of global Earth's gravity field models is based on the analysis of degree variances of geopotential coefficients and their errors. During investigations for analyzing models were obtained dependences of approximation errors for gravity anomalies on the spherical harmonic expansion of the geopotential, relative errors of geopotential's spherical harmonic coefficients, degree variances for geopotential coefficients, and error variances of potential coefficients obtained from gravity anomalies. Delphi 7-based software developed by authors was used for the analysis of global Earth's gravity field models. Experience: The results of investigations show that spherical harmonic coefficients of all matched. Diagrams of degree variances for spherical harmonic coefficients and their errors bring us to the conclusion that the degree variances of most models equal to their error variances for a degree less than that declared by developers. The accuracy of normalized spherical harmonic coefficients of geopotential models is estimated as 10-9. This value characterizes both inherent errors of models, and the difference of coefficients in various models, as well as a scale poor predicted instability of the geopotential, and resolution. Furthermore, we compared the gravity anomalies computed by models with those
An improved model for the Earth's gravity field
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Shum, C. K.; Yuan, D. N.; Ries, J. C.; Schutz, B. E.
1989-01-01
An improved model for the Earth's gravity field, TEG-1, was determined using data sets from fourteen satellites, spanning the inclination ranges from 15 to 115 deg, and global surface gravity anomaly data. The satellite measurements include laser ranging data, Doppler range-rate data, and satellite-to-ocean radar altimeter data measurements, which include the direct height measurement and the differenced measurements at ground track crossings (crossover measurements). Also determined was another gravity field model, TEG-1S, which included all the data sets in TEG-1 with the exception of direct altimeter data. The effort has included an intense scrutiny of the gravity field solution methodology. The estimated parameters included geopotential coefficients complete to degree and order 50 with selected higher order coefficients, ocean and solid Earth tide parameters, Doppler tracking station coordinates and the quasi-stationary sea surface topography. Extensive error analysis and calibration of the formal covariance matrix indicate that the gravity field model is a significant improvement over previous models and can be used for general applications in geodesy.
Terrestrial Gravity Fluctuations
NASA Astrophysics Data System (ADS)
Harms, Jan
2015-12-01
terrestrial gravity fluctuations will have great impact on the future development of GW detectors and high-precision gravimetry in general, and many open questions need to be answered still as emphasized in this article.
Validation of the EGSIEM combined monthly GRACE gravity fields
NASA Astrophysics Data System (ADS)
Li, Zhao; van Dam, Tonie; Chen, Qiang; Weigelt, Matthias; Güntner, Andreas; Jäggi, Adrian; Meyer, Ulrich; Jean, Yoomin; Altamimi, Zuheir; Rebischung, Paul
2016-04-01
Observations indicate that global warming is affecting the water cycle. Here in Europe predictions are for more frequent high precipitation events, wetter winters, and longer and dryer summers. The consequences of these changes include the decreasing availability of fresh water resources in some regions as well as flooding and erosion of coastal and low-lying areas in other regions. These weather related effects impose heavy costs on society and the economy. We cannot stop the immediate effects global warming on the water cycle. But there may be measures that we can take to mitigate the costs to society. The Horizon2020 supported project, European Gravity Service for Improved Emergency Management (EGSIEM), will add value to EO observations of variations in the Earth's gravity field. In particular, the EGSIEM project will interpret the observations of gravity field changes in terms of changes in continental water storage. The project team will develop tools to alert the public water storage conditions could indicate the onset of regional flooding or drought. As part of the EGSIEM project, a combined GRACE gravity product is generated, using various monthly GRACE solutions from associated processing centers (ACs). Since each AC follows a set of common processing standards but applies its own independent analysis method, the quality, robustness, and reliability of the monthly combined gravity fields should be significantly improved as compared to any individual solution. In this study, we present detailed and updated comparisons of the combined EGSIEM GRACE gravity product with GPS position time series, hydrological models, and existing GRACE gravity fields. The GPS residuals are latest REPRO2 station position residuals, obtained by rigorously stacking the IGS Repro 2 , daily solutions, estimating, and then restoring the annual and semi-annual signals.
High-Resolution Gravity and Time-Varying Gravity Field Recovery using GRACE and CHAMP
NASA Technical Reports Server (NTRS)
Shum, C. K.
2002-01-01
This progress report summarizes the research work conducted under NASA's Solid Earth and Natural Hazards Program 1998 (SENH98) entitled High Resolution Gravity and Time Varying Gravity Field Recovery Using GRACE (Gravity Recovery and Climate Experiment) and CHAMP (Challenging Mini-satellite Package for Geophysical Research and Applications), which included a no-cost extension time period. The investigation has conducted pilot studies to use the simulated GRACE and CHAMP data and other in situ and space geodetic observable, satellite altimeter data, and ocean mass variation data to study the dynamic processes of the Earth which affect climate change. Results from this investigation include: (1) a new method to use the energy approach for expressing gravity mission data as in situ measurements with the possibility to enhance the spatial resolution of the gravity signal; (2) the method was tested using CHAMP and validated with the development of a mean gravity field model using CHAMP data, (3) elaborate simulation to quantify errors of tides and atmosphere and to recover hydrological and oceanic signals using GRACE, results show that there are significant aliasing effect and errors being amplified in the GRACE resonant geopotential and it is not trivial to remove these errors, and (4) quantification of oceanic and ice sheet mass changes in a geophysical constraint study to assess their contributions to global sea level change, while the results improved significant over the use of previous studies using only the SLR (Satellite Laser Ranging)-determined zonal gravity change data, the constraint could be further improved with additional information on mantle rheology, PGR (Post-Glacial Rebound) and ice loading history. A list of relevant presentations and publications is attached, along with a summary of the SENH investigation generated in 2000.
Phobos interior structure from its gravity field
NASA Astrophysics Data System (ADS)
Le Maistre, S.; Rosenblatt, P.; Rivoldini, A.
2015-10-01
Phobos origin remains mysterious. It could be a captured asteroid, or an in-situ object co-accreted with Mars or formed by accretion from a disk of impact ejecta.Although it is not straightforward to relate its interior properties to its origin, it is easy to agree that the interior properties of any body has to be accounted for to explain its life's history. What event could explain such an internal structure? Where should this object formed to present such interior characteristics and composition? We perform here numerical simulations to assess the ability of a gravity experiment to constrain the interior structure of the martian moon Phobos, which could in turn allow distinguishing among the competing scenarios for the moon's origin.
New Views of Earth's Gravity Field from GRACE
NASA Technical Reports Server (NTRS)
2003-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] Map 1Map 2
Gravity and the Earth's Shape Gravity is the force that is responsible for the weight of an object and is determined by how the material that makes up the Earth is distributed throughout the Earth. Because gravity changes over the surface of the Earth, the weight of an object changes along with it. One can define standard gravity as the value of gravity for an perfectly smooth 'idealized' Earth, and the gravity 'anomaly' is a measure of how actual gravity deviates from this standard. Gravity reflects the Earth's surface topography to a high degree and is associated with features that most people are familiar with such as large mountains and deep ocean trenches.
Progress in Measuring the Earth's Gravity Field Through GRACE Prior to GRACE, the Earth's gravity field was determined using measurements of varying quality from different satellites and of incomplete coverage. Consequently the accuracy and resolution of the gravity field were limited. As is shown in Figure 1, the long wavelength components of the gravity field determined from satellite tracking were limited to a resolution of approximately 700 km. At shorter wavelengths, the errors were too large to be useful. Only broad geophysical features of the Earth's structure could be detected (see map 1).
In contrast, GRACE, by itself, has provided accurate gravity information with a resolution of 200 km. Now, much more detail is clearly evident in the Earth's geophysical features (see map 2). High resolution features detected by GRACE that are representative of geophysical phenomena include the Tonga/Kermadec region (a zone where one tectonic plate slides under another), the Himalayan/Tibetan Plateau region (an area of uplift due to colliding plates), and the mid-Atlantic ridge (an active spreading center in the middle of the Atlantic ocean where new crust is being created). Future GRACE gravity
TR-GRAV: National Center for Turkish Gravity Field
NASA Astrophysics Data System (ADS)
Simav, Mehmet; Akpınar, İlyas; Sezen, Erdinc; Cingöz, Ayhan; Yıldız, Hasan
2016-04-01
TR-GRAV, the National Center for Turkish Gravity Field (TR-GRAV) that has recently become operational,is a national center that collects, processes and distributes Absolute Gravimetry,Relative Gravimetry, Airborne Gravimetry,Shipborne Gravimetry,Satellite Gravimetry, GNSS/Levelling, Astrogeodetic Vertical Deflection data to model and improve regional gravity field for the Turkish territory and its surrounding regions and to provide accurate, consistent and value-added data & products to the scientific and engineering communities. In this presentation, we will introduce the center web portal and give some details about the database.
Gupta, Priya; Noone, David; Galewsky, Joseph; Sweeney, Colm; Vaughn, Bruce H
2009-08-30
This study demonstrates the application of Wavelength-Scanned Cavity Ring-Down Spectroscopy (WS-CRDS) technology which is used to measure the stable isotopic composition of water. This isotopic water analyzer incorporates an evaporator system that allows liquid water as well as water vapor to be measured with high precision. The analyzer can measure H2(18)O, H2(16)O and HD(16)O content of the water sample simultaneously. The results of a laboratory test and two field trials with this analyzer are described. The results of these trials show that the isotopic water analyzer gives precise, accurate measurements with little or no instrument drift for the two most common isotopologues of water. In the laboratory the analyzer has a precision of 0.5 per mil for deltaD and 0.1 per mil for delta(18)O which is similar to the precision obtained by laboratory-based isotope ratio mass spectrometers. In the field, when measuring vapor samples, the analyzer has a precision of 1.0 per mil for deltaD and 0.2 per mil for delta(18)O. These results demonstrate that the isotopic water analyzer is a powerful tool that is appropriate for use in a wide range of applications and environments. PMID:19603459
Earth's gravity field mapping requirements and concept. [using a supercooled gravity gradiometer
NASA Technical Reports Server (NTRS)
Vonbun, F. O.; Kahn, W. D.
1981-01-01
A future sensor is considered for mapping the Earth's gravity field to meet future scientific and practical requirements for earth and oceanic dynamics. These are approximately + or - 0.1 to 10 mgal over a block size of about 50 km and over land and an ocean geoid to 1 to 2 cm over a distance of about 50 km. To achieve these values requires a gravity gradiometer with a sensitivity of approximately 10 to the -4 power EU in a circular polar orbiting spacecraft with an orbital altitude ranging 160 km to 180 km.
Electric field in 3D gravity with torsion
Blagojevic, M.; Cvetkovic, B.
2008-08-15
It is shown that in static and spherically symmetric configurations of the system of Maxwell field coupled to 3D gravity with torsion, at least one of the Maxwell field components has to vanish. Restricting our attention to the electric sector of the theory, we find an interesting exact solution, corresponding to the azimuthal electric field. Its geometric structure is to a large extent influenced by the values of two different central charges, associated to the asymptotic AdS structure of spacetime.
Static scalar field solutions in symmetric gravity
NASA Astrophysics Data System (ADS)
Hossenfelder, S.
2016-09-01
We study an extension of general relativity with a second metric and an exchange symmetry between the two metrics. Such an extension might help to address some of the outstanding problems with general relativity, for example the smallness of the cosmological constant. We here derive a family of exact solutions for this theory. In this two-parameter family of solutions the gravitational field is sourced by a time-independent massless scalar field. We find that the only limit in which the scalar field entirely vanishes is flat space. The regular Schwarzschild-solution is left with a scalar field hidden in the second metric’s sector.
A dynamic model of Venus's gravity field
NASA Technical Reports Server (NTRS)
Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.
1984-01-01
Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.
A dynamic model of Venus's gravity field
NASA Technical Reports Server (NTRS)
Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.
1986-01-01
Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.
Alternative methods to smooth the Earth's gravity field
NASA Technical Reports Server (NTRS)
Jekeli, C.
1981-01-01
Convolutions on the sphere with corresponding convolution theorems are developed for one and two dimensional functions. Some of these results are used in a study of isotropic smoothing operators or filters. Well known filters in Fourier spectral analysis, such as the rectangular, Gaussian, and Hanning filters, are adapted for data on a sphere. The low-pass filter most often used on gravity data is the rectangular (or Pellinen) filter. However, its spectrum has relatively large sidelobes; and therefore, this filter passes a considerable part of the upper end of the gravity spectrum. The spherical adaptations of the Gaussian and Hanning filters are more efficient in suppressing the high-frequency components of the gravity field since their frequency response functions are strongly field since their frequency response functions are strongly tapered at the high frequencies with no, or small, sidelobes. Formulas are given for practical implementation of these new filters.
Higher derivative gravity: Field equation as the equation of state
NASA Astrophysics Data System (ADS)
Dey, Ramit; Liberati, Stefano; Mohd, Arif
2016-08-01
One of the striking features of general relativity is that the Einstein equation is implied by the Clausius relation imposed on a small patch of locally constructed causal horizon. The extension of this thermodynamic derivation of the field equation to more general theories of gravity has been attempted many times in the last two decades. In particular, equations of motion for minimally coupled higher-curvature theories of gravity, but without the derivatives of curvature, have previously been derived using a thermodynamic reasoning. In that derivation the horizon slices were endowed with an entropy density whose form resembles that of the Noether charge for diffeomorphisms, and was dubbed the Noetheresque entropy. In this paper, we propose a new entropy density, closely related to the Noetheresque form, such that the field equation of any diffeomorphism-invariant metric theory of gravity can be derived by imposing the Clausius relation on a small patch of local causal horizon.
Edge detection of gravity field using eigenvalue analysis of gravity gradient tensor
NASA Astrophysics Data System (ADS)
Zuo, Boxin; Hu, Xiangyun
2015-03-01
In this paper, eigenvalues of the full gravity gradient tensor (GGT) are used to detect edges of geological structure. First, the solving of GGT eigenvalues is discussed; then a new edge detection method is proposed by using the eigenvalues of GGT. Comparing with the pervious edge detection method based on curvature gravity gradient tensor (CGGT), the full gravity gradient tensor contains more independent gradient components that are helpful to detect more subtle structures of the sources. The proposed method is applied to the synthetic data with and without noise to determine the locations of the edges of the mixed positive/negative contract density bodies. It has also been tested on real field data. All of the experimental results have shown that the newly proposed method is effective for edge detection.
An Analysis of Gravity-Field Estimation Based on Intersatellite Dual-1-Way Biased Ranging
NASA Technical Reports Server (NTRS)
Thomas, J. B.
1999-01-01
The GRACE (Gravity Recovery And Climate Experiment) mission is designed to make global, highly accurate measurements of the Earth's gravity field with high spatial resolution. Ancillary GPS occultation measurements are also to be carried out for atmospheric monitoring. In the dual-1-way biased ranging of this mission, the range between two satellites separated by 100 to 200 km in nearly polar, coplanar, circular orbits, is measured to very high precision, to within an additive constant, through the exchange of K- and Ka-band sinusoidal signals. Such biased ranging data, along with GPS L-band range and phase data, can be processed and fit over successive multiday intervals to obtain accurate estimates of the Earth's gravity field. This report approximately models and analyzes this process, from the generation of the RF signals at the two satellites through the extraction of the geopotential. The steps include generation of the transmitted signals, processing the received signals to extract high-rate baseband phase, carrying out a dual-1-way combination of baseband phase to extract high-rate biased range for each band, combining K- and Ka-band ranges to correct for the ionosphere effect, and processing the resulting high-rate biased range values to extract three types of reduced-rate observables: biased range, range rate and range acceleration. The version of dual-1-way biased ranging developed by this report improves upon previous versions in a number of ways: highly accurate satellite-timetag corrections derived from concurrent GPS data, better baseband phase extraction using highly digital processing, highly accurate USO-rate calibration derived from concurrent GPS data, an improved method for extracting high-rate biased range from baseband phase, improved filtering for extracting reduced- rate observables from high-rate biased range, and parallel extraction of three observable types.
High precision beam alignment of electromagnetic wigglers
Ben-Zvi, I.; Qiu, X.Z.
1993-01-01
The performance of Free-Electron Lasers depends critically on the quality of the alignment of the electron beam to the wiggler's magnetic axis and the deviation of this axis from a straight fine. The measurement of the electron beam position requires numerous beam position monitors in the wiggler, where space is at premium. The beam position measurement is used to set beam steerers for an orbit correction in the wiggler. The authors propose an alternative high precision alignment method in which one or two external Beam Position Monitors (BPM) are used. In this technique, the field in the electro-wiggler is modulated section by section and the beam position movement at the external BPM is detected in synchronism with the modulation. A beam offset at the modulated beam section will produce a modulation of the beam position at the detector that is a function of the of the beam offset and the absolute value of the modulation current. The wiggler errors produce a modulation that is a function of the modulation current. It will be shown that this method allows the detection and correction of the beam position at each section in the presence of wiggler errors with a good resolution. Furthermore, it allows one to measure the first and second integrals of the wiggler error over each wiggler section. Lastly, provided that wiggler sections can be degaussed effectively, one can test the deviation of the wiggler's magnetic axis from a straight line.
Collapse of charged scalar field in dilaton gravity
Borkowska, Anna; Rogatko, Marek; Moderski, Rafal
2011-04-15
We elaborated the gravitational collapse of a self-gravitating complex charged scalar field in the context of the low-energy limit of the string theory, the so-called dilaton gravity. We begin with the regular spacetime and follow the evolution through the formation of an apparent horizon and the final central singularity.
Arctic Ocean Gravity Field Derived From ERS-1 Satellite Altimetry.
Laxon, S; McAdoo, D
1994-07-29
The derivation of a marine gravity field from satellite altimetry over permanently ice-covered regions of the Arctic Ocean provides much new geophysical information about the structure and development of the Arctic sea floor. The Arctic Ocean, because of its remote location and perpetual ice cover, remains from a tectonic point of view the most poorly understood ocean basin on Earth. A gravity field has been derived with data from the ERS-1 radar altimeter, including permanently ice-covered regions. The gravity field described here clearly delineates sections of the Arctic Basin margin along with the tips of the Lomonosov and Arctic mid-ocean ridges. Several important tectonic features of the Amerasia Basin are clearly expressed in this gravity field. These include the Mendeleev Ridge; the Northwind Ridge; details of the Chukchi Borderland; and a north-south trending, linear feature in the middle of the Canada Basin that apparently represents an extinct spreading center that "died" in the Mesozoic. Some tectonic models of the Canada Basin have proposed such a failed spreading center, but its actual existence and location were heretofore unknown. PMID:17752757
High precision spectroscopy and imaging in THz frequency range
NASA Astrophysics Data System (ADS)
Vaks, Vladimir L.
2014-03-01
Application of microwave methods for development of the THz frequency range has resulted in elaboration of high precision THz spectrometers based on nonstationary effects. The spectrometers characteristics (spectral resolution and sensitivity) meet the requirements for high precision analysis. The gas analyzers, based on the high precision spectrometers, have been successfully applied for analytical investigations of gas impurities in high pure substances. These investigations can be carried out both in absorption cell and in reactor. The devices can be used for ecological monitoring, detecting the components of chemical weapons and explosive in the atmosphere. The great field of THz investigations is the medicine application. Using the THz spectrometers developed one can detect markers for some diseases in exhaled air.
On a more rigorous gravity field processing for future LL-SST type gravity satellite missions
NASA Astrophysics Data System (ADS)
Daras, I.; Pail, R.; Murböck, M.
2013-12-01
In order to meet the augmenting demands of the user community concerning accuracies of temporal gravity field models, future gravity missions of low-low satellite-to-satellite tracking (LL-SST) type are planned to carry more precise sensors than their precedents. A breakthrough is planned with the improved LL-SST measurement link, where the traditional K-band microwave instrument of 1μm accuracy will be complemented by an inter-satellite ranging instrument of several nm accuracy. This study focuses on investigations concerning the potential performance of the new sensors and their impact in gravity field solutions. The processing methods for gravity field recovery have to meet the new sensor standards and be able to take full advantage of the new accuracies that they provide. We use full-scale simulations in a realistic environment to investigate whether the standard processing techniques suffice to fully exploit the new sensors standards. We achieve that by performing full numerical closed-loop simulations based on the Integral Equation approach. In our simulation scheme, we simulate dynamic orbits in a conventional tracking analysis to compute pseudo inter-satellite ranges or range-rates that serve as observables. Each part of the processing is validated separately with special emphasis on numerical errors and their impact in gravity field solutions. We demonstrate that processing with standard precision may be a limiting factor for taking full advantage of new generation sensors that future satellite missions will carry. Therefore we have created versions of our simulator with enhanced processing precision with primarily aim to minimize round-off system errors. Results using the enhanced precision show a big reduction of system errors that were present at the standard precision processing even for the error-free scenario, and reveal the improvements the new sensors will bring into the gravity field solutions. As a next step, we analyze the contribution of
Rhea gravity field and interior modeling from Cassini data analysis
NASA Astrophysics Data System (ADS)
Tortora, Paolo; Zannoni, Marco; Hemingway, Doug; Nimmo, Francis; Jacobson, Robert A.; Iess, Luciano; Parisi, Marzia
2016-01-01
During its tour of the Saturn system, Cassini performed two close flybys of Rhea dedicated to gravity investigations, the first in November 2005 and the second in March 2013. This paper presents an estimation of Rhea's fully unconstrained quadrupole gravity field obtained from a joint multi-arc analysis of the two Cassini flybys. Our best estimates of the main gravity quadrupole unnormalized coefficients are J2 × 106 = 946.0 ± 13.9, C22 × 106 = 242.1 ± 4.0 (uncertainties are 1-σ). Their resulting ratio is J2/C22 = 3.91 ± 0.10, statistically not compatible (at a 5-σ level) with the theoretical value of 10/3, predicted for a hydrostatic satellite in slow, synchronous rotation around a planet. Therefore, it is not possible to infer the moment of inertia factor directly using the Radau-Darwin approximation. The observed excess J2 (gravity oblateness) was investigated using a combined analysis of gravity and topography, under different plausible geophysical assumptions. The observed gravity is consistent with that generated by the observed shape for an undifferentiated (uniform density) body. However, because the surface is more likely to be water ice, a two-layer model may be a better approximation. In this case, and assuming a mantle density of 920 kg/m3, some 1-3 km of excess core oblateness is consistent with the observed gravity. A wide range of moments of inertia is allowed, but models with low moments of inertia (i.e., more differentiation) require greater magnitudes of excess core topography to satisfy the observations.
Perturbative quantum gravity in double field theory
NASA Astrophysics Data System (ADS)
Boels, Rutger H.; Horst, Christoph
2016-04-01
We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.
On the gravity field processing of next generation satellite gravity missions
NASA Astrophysics Data System (ADS)
Daras, Ilias; Pail, Roland
2016-04-01
Dedicated gravity field missions delivering observations for a period longer than 16 years have drastically contributed in improving our knowledge of mass transport processes in the Earth system. At the same time, they have left a precious heritage for the design of next generation satellite gravity missions to be launched in the mid-term future. Main subject of this study is the gravity field processing of future Low-Low Satellite-to-Satellite Tracking (LL-SST) missions. We perform assessment of the contribution of all error sources and develop methods for reducing their effect at the level of gravity field processing. Advances in metrology of sensors such as the inter-satellite ranging instrument, may raise the demands for processing accuracy. We show that gravity field processing with double precision may be a limiting factor for exploiting the nm-level accuracy of a laser interferometer that future missions are expected to carry. An enhanced numerical precision processing scheme is proposed instead, where double and quadruple precision is used in different parts of the processing chain. It is demonstrated that processing with enhanced precision can efficiently handle laser measurements and take full advantage of their accuracy, while keeping the computational times within reasonable levels (Daras, 2015). However, error sources of considerably larger impact are expected to affect future missions, with the accelerometer instrument noise and temporal aliasing effects being the most significant ones. The effect of time-correlated noise such as the one present in accelerometer measurements can be efficiently handled by frequency dependent data weighting. Residual time series that contain the effect of system errors and propagated accelerometer and laser noise, is considered as a noise realization with stationary stochastic properties. The weight matrix is constructed from the auto-correlation functions of these residuals. Applying the weight matrix to a noise case
Dirac fields in loop quantum gravity and big bang nucleosynthesis
Bojowald, Martin; Das, Rupam; Scherrer, Robert J.
2008-04-15
Big bang nucleosynthesis requires a fine balance between equations of state for photons and relativistic fermions. Several corrections to equation of state parameters arise from classical and quantum physics, which are derived here from a canonical perspective. In particular, loop quantum gravity allows one to compute quantum gravity corrections for Maxwell and Dirac fields. Although the classical actions are very different, quantum corrections to the equation of state are remarkably similar. To lowest order, these corrections take the form of an overall expansion-dependent multiplicative factor in the total density. We use these results, along with the predictions of big bang nucleosynthesis, to place bounds on these corrections and especially the patch size of discrete quantum gravity states.
Effective field theory from modified gravity with massive modes
NASA Astrophysics Data System (ADS)
Capozziello, Salvatore; de Laurentis, Mariafelicia; Paolella, Mariacristina; Ricciardi, Giulia
2015-10-01
Massive gravitational modes in effective field theories can be recovered by extending General Relativity and taking into account generic functions of the curvature invariants, not necessarily linear in the Ricci scalar R. In particular, adopting the minimal extension of f(R) gravity, an effective field theory with massive modes is straightforwardly recovered. This approach allows to evade shortcomings like ghosts and discontinuities if a suitable choice of expansion parameters is performed.
Inflation with a massive vector field nonminimally coupled to gravity
NASA Astrophysics Data System (ADS)
Bertolami, O.; Bessa, V.; Páramos, J.
2016-03-01
We study the possibility that inflation is driven by a massive vector field with S O (3 ) global symmetry nonminimally coupled to gravity. From an E3-invariant Robertson-Walker metric we propose an Ansatz for the vector field, allowing us to study the evolution of the system. We study the behavior of the equations of motion using the methods of the theory of dynamical systems and find exponential inflationary regimes.
Torsion-gravity for Dirac fields and their effective phenomenology
NASA Astrophysics Data System (ADS)
Fabbri, Luca
2014-08-01
We will consider the torsional completion of gravity for a background filled with Dirac matter fields, studying the weak-gravitational non-relativistic approximation, in view of an assessment about their effective phenomenology: we discuss how the torsionally-induced nonlinear interactions among fermion fields in this limit are compatible with all experiments and remarks on the role of torsion to suggest new physics are given.
Relativistic gravity and parity-violating nonrelativistic effective field theories
NASA Astrophysics Data System (ADS)
Wu, Chaolun; Wu, Shao-Feng
2015-06-01
We show that the relativistic gravity theory can offer a framework to formulate the nonrelativistic effective field theory in a general coordinate invariant way. We focus on the parity violating case in 2 +1 dimensions which is particularly appropriate for the study on quantum Hall effects and chiral superfluids. We discuss how the nonrelativistic spacetime structure emerges from relativistic gravity. We present covariant maps and constraints that relate the field contents in the two theories, which also serve as the holographic dictionary in the context of gauge/gravity duality. A low energy effective action for fractional quantum Hall states is constructed, which captures universal geometric properties and generates nonuniversal corrections systematically. We give another holographic example with dyonic black brane background to calculate thermodynamic and transport properties of strongly coupled nonrelativistic fluids in magnetic field. In particular, by identifying the shift function in the gravity as a minus of guiding center velocity, we obtain the Hall viscosity with its relation to Landau orbital angular momentum density proportional to Wen-Zee shift. Our formalism has a good projection to lowest Landau level.
Classifying linearly shielded modified gravity models in effective field theory.
Lombriser, Lucas; Taylor, Andy
2015-01-23
We study the model space generated by the time-dependent operator coefficients in the effective field theory of the cosmological background evolution and perturbations of modified gravity and dark energy models. We identify three classes of modified gravity models that reduce to Newtonian gravity on the small scales of linear theory. These general classes contain enough freedom to simultaneously admit a matching of the concordance model background expansion history. In particular, there exists a large model space that mimics the concordance model on all linear quasistatic subhorizon scales as well as in the background evolution. Such models also exist when restricting the theory space to operators introduced in Horndeski scalar-tensor gravity. We emphasize that whereas the partially shielded scenarios might be of interest to study in connection with tensions between large and small scale data, with conventional cosmological probes, the ability to distinguish the fully shielded scenarios from the concordance model on near-horizon scales will remain limited by cosmic variance. Novel tests of the large-scale structure remedying this deficiency and accounting for the full covariant nature of the alternative gravitational theories, however, might yield further insights on gravity in this regime. PMID:25658988
Properties of the gravity fields of terrestrial planets
NASA Technical Reports Server (NTRS)
Kaula, William M.
1992-01-01
The properties of the gravity fields of the earth, Mars, and Venus, as expressed by spherical harmonic coefficients, are examined, using the harmonic expansions of the respective planetary topographies reported by Balmino et al. (1973), Bills and Ferrari (1978), and Bills and Kobrick (1985). The items examined include the spectral magnitudes and slopes of the gravity coefficients; the correlations between gravity and topography; and the correlations among different gravity harmonics, expressed by axiality and angularity. It was found that Venus differs from the other two planets in its great apparent depths of compensation, indicating a tectonics dominated by a stiff upper mantle. In addition, Venus has less activity deep in the mantle than do earth or Mars. Mars is marked by large gravity irregularities, as well as by their axial symmetry on a global scale. Although earth is probably the most peculiar planet, spherical harmonics do not bring out its varied characteristics. It is clearly a more active planet than Venus, with activity deep in the mantle. The lower magnitude of its higher harmonics is considered to be due to water recycled to the upper mantle.
Gravity Fields of the Moon Derived from GRAIL Primary and Extended Mission Data (Invited)
NASA Astrophysics Data System (ADS)
Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Loomis, B.; Chinn, D. S.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.
2013-12-01
The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft conducted the mapping of the gravity field of the Moon from March 1, 2012 to May 29, 2012, for the primary mission and from August 30, 2012 to December 14, 2012 for the extended mission and endgame. During both mission phases, the twin spacecraft acquired highly precise Ka-band range-rate (KBRR) intersatellite ranging data and Deep Space Network (DSN) data from altitudes of 2.3 to 98.2 km above the lunar surface. We have processed the GRAIL data using the NASA GSFC GEODYN orbit determination and geodetic parameter estimation program and used the supercomputers of the NASA Center for Climate Simulation (NCCS) at NASA GSFC to accumulate the SRIF arrays and derive the geopotential solutions. During the extended mission, the spacecraft orbits were maintained at a mean altitude of ~23 km, compared to ~50 km during the primary mission. In addition, from December 7 to December 14, 2012, data were acquired from a mean altitude of 11.5 km. With these data, we have derived solutions in spherical harmonics to degree 900. The new gravity solutions show improved correlations with LOLA-derived topography to very high degree and order and resolve many lunar features in the geopotential with a resolution of less than 15 km. We discuss the methods we used for the processing of the GRAIL data, and evaluate these solutions with respect to the derived power spectra, Bouguer anomalies, and fits with independent data (such as from the low-altitude phase of the Lunar Prospector mission).
NASA Astrophysics Data System (ADS)
Galanti, E.; Kaspi, Y.
2014-12-01
In approximately two years Juno will perform close flybys of Jupiter, obtaining a high precision gravity spectrum for the planet. This data can potentially be used to estimate the depth of the observed flows on the Jupiter. Here, we propose a new methodology for the inversion of the gravity data into into the full three-dimensional flow on Jupiter. Using the adjoint method we construct an inverse model for a dynamical model in which the gravity field is calculated from the observed surface wind, thus allowing its backward integration, from the gravity field to the wind. Given a gravity field, the adjoint based model finds the atmospheric dynamics that can explain best the gravity field (minimum difference). The dynamical model is set up to allow either zonal flow only, or a full horizontal flow in both zonal and meridional directions based on the observed cloud-level wind. In addition, dynamical perturbations resulting from the the non-spherical shape of the planet are accounted for. The dynamical model, together with its adjoint counterpart, are used for examination of various scenarios, including cases in which the depth of the wind depend on latitudinal position.We show that given the expected sensitivities of Juno, it is possible to use the gravity measurements to derive the depth of the wind on Jupiter. This holds for a large range of zonal wind possible penetration depths, from 100km to 10,000km, and for winds depth that vary with latitude. This method proves to be useful also when incorporating the full horizontal flow, and thus taking into account gravity perturbations that vary with longitude. We show that our adjoint based inversion method allows not only to estimate the depth of the circulation, but allows via iterations with the spacecraft trajectory estimation model to improve the inferred gravity field.
Diffraction patterns in ferrofluids: Effect of magnetic field and gravity
NASA Astrophysics Data System (ADS)
Radha, S.; Mohan, Shalini; Pai, Chintamani
2014-09-01
In this paper, we report the experimental observation of diffraction patterns in a ferrofluid comprising of Fe3O4 nanoparticles in hexane by a 10 mW He-Ne laser beam. An external dc magnetic field (0-2 kG) was applied perpendicular to the beam. The diffraction pattern showed a variation at different depths of the sample in both zero and applied magnetic field. The patterns also exhibit a change in shape and size as the external field is varied. This effect arises due to thermally induced self-diffraction under the influence of gravity and external magnetic field.
Rapid 3-D forward modeling of gravity and gravity gradient tensor fields
NASA Astrophysics Data System (ADS)
Longwei, C.; Dai, S.; Zhang, Q.
2014-12-01
Three-dimensional inversion are the key process in gravity exploration. In the commonly used scheme of inversion, the subsurface of the earth is usually divided into many small prism blocks (or grids) with variable density values. A key task in gravity inversion is to calculate the composite fields (gravity and gravity gradient tensor) generated by all these grids, this is known as forward modeling. In general forward modeling is memory-demanding and time-consuming. One scheme to rapidly calculate the fields is to implement it in Fourier domain and use fast Fourier transform algorithm. The advantage of the Fourier domain method is, obviously, much faster. However, the intrinsic edge effect of the Fourier domain method degrades the precision of the calculated fields. We have developed an innovative scheme to directly calculate the fields in spatial domain. There are two key points in this scheme. One key point is spatial discretization. Spatial convolution formula is discretized using an approach similar to normal difference method. A key idea during discretization is to use the analytical formula of a cubic prism, and this makes the resultant discrete formula have clear physical meaning: it embodies the superposition principle of the fields and is the exact formula to calculate the fields generated by all grids. The discretization only requires the grids have the same dimension in horizontal directions, and grids in different layers may have different dimension in vertical direction, and this offers more flexibility for inversion. Another key point is discrete convolution calculation. We invoke a high efficient two-dimensional discrete convolution algorithm, and it guarantees both time-saving and memory-saving. Its memory cost has the same order as the number of grids. Numerical test result shows that for a model with a dimension of 1000x1000x201 grids, it takes about 300s to calculate the fields on 1000x1000 field points in a personal computer with 3.4-GHz CPU
NASA Technical Reports Server (NTRS)
Griggs, C. E.; Paik, H. J.; Moody, M. V.; Han, S.-C.; Rowlands, D. D.; Lemoine, F. G.; Shirron, P. J.
2015-01-01
We are developing a compact tensor superconducting gravity gradiometer (SGG) for obtaining gravimetric measurements from planetary orbits. A new and innovative design gives a potential sensitivity of approximately 10(sup -4) E Hz(sup - 1/2)( 1 E = 10(sup -9 S(sup -2) in the measurement band up to 0.1 Hz (suitale for short wavelength static gravity) and of approximately 10(sup -4) E Hz(sup - 1/2) in the frequency band less than 1 mHz (for long wavelength time-variable gravity) from the same device with a baseline just over 10 cm. The measurement band and sensitiy can be optimally tuned in-flight during the mission by changing resonance frequencies, which allows meaurements of both static and time-variable gravity fields from the same mission. Significant advances in the technologies needed for space-based cryogenic instruments have been made in the last decade. In particular, the use of cryocoolers will alleviate the previously severe constraint on mission lifetime imposed by the use of liquid helium, enabling mission durations in the 5 - 10 year range.
Satellite laser ranging and gravity field modeling accuracy
NASA Technical Reports Server (NTRS)
Rosborough, George W.
1990-01-01
Gravitational field mismodeling procedures errors in the estimated orbital motion of near Earth satellites. This effect is studied using a linear perturbation approach following the analysis of Kaula. The perturbations in the orbital position as defined by either orbital elements or Cartesian components are determined. From these perturbations it is possible to ascertain the expected signal due to gravitational mismodeling that would be present in station-to-satellite laser ranging measurements. This expected signal has been estimated for the case of the Lageos satellite and using the predicted uncertainties of the GEM-T1 and GEM-T2 gravity field models. The results indicate that observable signal still exists in the laser range residuals given the current accuracy of the range measurements and the accuracy of the gravity field models.
Gravity- and strain-induced electric fields outside metal surfaces
NASA Astrophysics Data System (ADS)
Rossi, F.; Opat, G. I.
1992-05-01
The gravity-induced electric field outside a metal object supported against gravity is predominantly due to its differential compression which arises in supporting its own weight. This Dessler-Michel-Rorschach-Trammell (DMRT) field, as it has come to be known, is expected to be proportional to the strain derivative of the work function of the surface. We report the results of an experiment designed to produce this effect with mechanically applied strain rather than with gravity. In essence, we have measured the strain-induced contact-potential variation between a metal surface of known strain gradient and an unstrained capacitive probe. We describe useful solutions to the problems faced in such an experiment, which were not adequately addressed by earlier workers. A knowledge of the DMRT field is of considerable importance to experiments designed to compare the gravitational acceleration of charged particles and antiparticles inside a metallic shield. Past experiments with electrons yielded results contrary to the then-expected DMRT field. We review and partially extend the theoretical background by drawing on later results based on the jellium model of metal surfaces. Our results for Cu and Au surfaces are consistent with jellium-based calculations which imply a DMRT field that is about an order of magnitude smaller and of opposite sign to the early estimates.
Time-variable gravity fields from satellite tracking
NASA Astrophysics Data System (ADS)
Bettadpur, Srinivas; Cheng, Minkang; Ries, John
2014-05-01
At the University of Texas Center for Space Research (CSR), we routinely deliver time-series of Earth's gravity field variations, some of it spanning more than two decades. These time-series are derived - in a consistent manner - from satellite laser ranging (SLR) data, from low-Earth orbiters tracked using GPS, and from low-low satellite to satellite tracking data from GRACE. In this paper, we review the information content in the gravity field time-series derived from each of these methods. We provide a comparison of the time-series at the decadal and annual time-scales, and identify the spatial modes of variability that are well or poorly estimated by each of the observing systems. The results have important bearing on the prospects of extending GRACE time-variable gravity time-series in the event of gaps between dedicated gravity missions, and for extending the time-series into the past. Support for this research from joint NASA/DLR GRACE mission, the NASA MEASURs program, and the NASA ROSES/GRACE Science Team is gratefully acknowledged.
The Gravity Field of Enceladus from the three Cassini Flybys
NASA Astrophysics Data System (ADS)
Iess, L.; Parisi, M.; Ducci, M.; Jacobson, R. A.; Armstrong, J. W.; Asmar, S. W.; Lunine, J. I.; Stevenson, D. J.; Tortora, P.
2013-12-01
The Cassini spacecraft carried out gravity measurements of the small Saturnian moon Enceladus during three close flybys on April 28, 2010, November 30, 2010 and May 2, 2012 (designated E9, E12 and E19), at the low altitudes of 100, 48 and 70 km to maximize the accelerations exerted by the moon on the spacecraft. The goals of these observations were the determination of the gravitational quadrupole and the search for a North-South asymmetry in the gravity field, controlled primarily by the spherical harmonic coefficient C30. The estimation of Enceladus' gravity field is especially complex because of the small surface gravity (0.11 m/s2), the short duration of the gravitational interaction and the small number of available flybys. In addition to the gravitational accelerations, the spacecraft was also subject to small but non-negligible drag when it flew through the plume emitted from the south pole of the satellite. This effect occurred during the two south polar flybys E9 and E19. The inclusion of these non-gravitational accelerations proved to be crucial to attain a stable solution for the gravity field. Our estimation relied entirely on precise range rate measurements enabled by a coherent, two-way, microwave link at X-band (7.2-8.4 GHz). Measurement accuracies of 10 micron/s at 60 s integration times were attained under favorable conditions, thanks also to an advanced tropospheric calibration system. The data were fitted using the MONTE orbit determination code, recently developed by JPL for deep space navigation. In addition to the satellite degree 2 gravity field and C30, the solution included the state vector of the spacecraft (one for each flyby) and corrections to the mass and the initial orbital elements of Enceladus. The effect of the drag in E9 and E19 was modeled either as an unknown, impulsive, vectorial delta-V at closest approach, or by using density profiles from models of the plume and solving for the aerodynamic coefficient of the spacecraft. Both
NASA Astrophysics Data System (ADS)
Colombo, Oscar L.
This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.
NASA Technical Reports Server (NTRS)
Colombo, Oscar L. (Editor)
1992-01-01
This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.
Investigating High Field Gravity using Astrophysical Techniques
Bloom, Elliott D.; /SLAC
2008-02-01
The purpose of these lectures is to introduce particle physicists to astrophysical techniques. These techniques can help us understand certain phenomena important to particle physics that are currently impossible to address using standard particle physics experimental techniques. As the subject matter is vast, compromises are necessary in order to convey the central ideas to the reader. Many general references are included for those who want to learn more. The paragraphs below elaborate on the structure of these lectures. I hope this discussion will clarify my motivation and make the lectures easier to follow. The lectures begin with a brief review of more theoretical ideas. First, elements of general relativity are reviewed, concentrating on those aspects that are needed to understand compact stellar objects (white dwarf stars, neutron stars, and black holes). I then review the equations of state of these objects, concentrating on the simplest standard models from astrophysics. After these mathematical preliminaries, Sec. 2(c) discusses 'The End State of Stars'. Most of this section also uses the simplest standard models. However, as these lectures are for particle physicists, I also discuss some of the more recent approaches to the equation of state of very dense compact objects. These particle-physics-motivated equations of state can dramatically change how we view the formation of black holes. Section 3 focuses on the properties of the objects that we want to characterize and measure. X-ray binary systems and Active Galactic Nuclei (AGN) are stressed because the lectures center on understanding very dense stellar objects, black hole candidates (BHCs), and their accompanying high gravitational fields. The use of x-ray timing and gamma-ray experiments is also introduced in this section. Sections 4 and 5 review information from x-ray and gamma-ray experiments. These sections also discuss the current state of the art in x-ray and gamma-ray satellite experiments and
Electric Field Effect on Bubble Detachment in Variable Gravity Environment
NASA Technical Reports Server (NTRS)
Iacona, Estelle; Herman, Cila; Chang, Shinan
2003-01-01
The subject of the present study, the process of bubble detachment from an orifice in a plane surface, shows some resemblance to bubble departure in boiling. Because of the high heat transfer coefficients associated with phase change processes, boiling is utilized in many industrial operations and is an attractive solution to cooling problems in aerospace engineering. In terrestrial conditions, buoyancy is responsible for bubble removal from the surface. In space, the gravity level being orders of magnitude smaller than on earth, bubbles formed during boiling remain attached at the surface. As a result, the amount of heat removed from the heated surface can decrease considerably. The use of electric fields is proposed to control bubble behavior and help bubble removal from the surface on which they form. The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Bubble cycle life were visualized in terrestrial conditions and for several reduced gravity levels. Bubble volume, dimensions and contact angle at detachment were measured and analyzed for different parameters as gravity level and electric field magnitude. Situations were considered with uniform or non-uni form electric field. Results show that these parameters significantly affect bubble behavior, shape, volume and dimensions.
Application of covariant analytic mechanics to gravity with Dirac field
NASA Astrophysics Data System (ADS)
Nakajima, Satoshi
2016-03-01
We applied the covariant analytic mechanics with the differential forms to the Dirac field and the gravity with the Dirac field. The covariant analytic mechanics treats space and time on an equal footing regarding the differential forms as the basis variables. A significant feature of the covariant analytic mechanics is that the canonical equations, in addition to the Euler-Lagrange equation, are not only manifestly general coordinate covariant but also gauge covariant. Combining our study and the previous works (the scalar field, the abelian and non-abelian gauge fields and the gravity without the Dirac field), the applicability of the covariant analytic mechanics was checked for all fundamental fields. We studied both the first and second order formalism of the gravitational field coupled with matters including the Dirac field. It was suggested that gravitation theories including higher order curvatures cannot be treated by the second order formalism in the covariant analytic mechanics. In addition, we showed that the covariant analytic mechanics is equivalent to corrected De Donder-Weyl theory.
High precision measurements in crustal dynamic studies
NASA Technical Reports Server (NTRS)
Wyatt, F.; Berger, J.
1984-01-01
The development of high-precision instrumentation for monitoring benchmark stability and evaluating coseismic strain and tilt signals is reviewed. Laser strainmeter and tilt observations are presented. Examples of coseismic deformation in several geographic locations are given. Evidence suggests that the Earth undergoes elastic response to abrupt faulting.
High precision, rapid laser hole drilling
Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.
2005-03-08
A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.
High precision, rapid laser hole drilling
Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.
2013-04-02
A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.
High precision, rapid laser hole drilling
Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.
2007-03-20
A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.
High Precision Pressure Measurement with a Funnel
ERIC Educational Resources Information Center
Lopez-Arias, T.; Gratton, L. M.; Oss, S.
2008-01-01
A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is…
Computation of the gravity field and its gradient: Some applications
NASA Astrophysics Data System (ADS)
Dubey, C. P.; Tiwari, V. M.
2016-03-01
New measuring instruments of Earth's gravity gradient tensors (GGT) have offered a fresh impetus to gravimetry and its application in subsurface exploration. Several efforts have been made to provide a thorough understanding of the complex properties of the gravity gradient tensor and its mathematical formulations to compute GGT. However, there is not much open source software available. Understanding of the tensor properties leads to important guidelines in the development of real three dimensional geological models. We present a MATLAB computational algorithm to calculate the gravity field and full gravity gradient tensor for an undulated surface followed by regular geometries like an infinite horizontal slab, a vertical sheet, a solid sphere, a vertical cylinder, a normal fault model and a rectangular lamina or conglomerations of such bodies and the results are compared with responses using professional software based on different computational schemes. Real subsurface geometries of complex geological structures of interest are approximated through arrangements of vertical rectangular laminas. The geological application of this algorithm is demonstrated over a horst-type structure of Oklahoma Aulacogen, USA and Vredefort Dome, South Africa, where measured GGT data are available.
Noncommutative Gravity and Quantum Field Theory on Noncommutative Curved Spacetimes
NASA Astrophysics Data System (ADS)
Schenkel, Alexander
2012-10-01
The focus of this PhD thesis is on applications, new developments and extensions of the noncommutative gravity theory proposed by Julius Wess and his group. In part one we propose an extension of the usual symmetry reduction procedure to noncommutative gravity. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models. In part two we develop a new formalism for quantum field theory on noncommutative curved spacetimes by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. We also study explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories. The convergent deformation of simple toy models is investigated and it is found that these theories have an improved behaviour at short distances, i.e. in the ultraviolet. In part three we study homomorphisms between and connections on noncommutative vector bundles. We prove that all homomorphisms and connections of the deformed theory can be obtained by applying a quantization isomorphism to undeformed homomorphisms and connections. The extension of homomorphisms and connections to tensor products of bimodules is clarified. As a nontrivial application of the new mathematical formalism we extend our studies of exact noncommutative gravity solutions to more general deformations.
Planetary Gravity Fields and Their Impact on a Spacecraft Trajectory
NASA Technical Reports Server (NTRS)
Weinwurm, G.; Weber, R.
2005-01-01
The present work touches an interdisciplinary aspect of space exploration: the improvement of spacecraft navigation by means of enhanced planetary interior model derivation. The better the bodies in our solar system are known and modelled, the more accurately (and safely) a spacecraft can be navigated. In addition, the information about the internal structure of a planet, moon or any other planetary body can be used in arguments for different theories of solar system evolution. The focus of the work lies in a new approach for modelling the gravity field of small planetary bodies: the implementation of complex ellipsoidal coordinates (figure 1, [4]) for irregularly shaped bodies that cannot be represented well by a straightforward spheroidal approach. In order to carry out the required calculations the computer programme GRASP (Gravity Field of a Planetary Body and its Influence on a Spacecraft Trajectory) has been developed [5]. The programme furthermore allows deriving the impact of the body s gravity field on a spacecraft trajectory and thus permits predictions for future space mission flybys.
An alternative computation of a gravity field model from GOCE
NASA Astrophysics Data System (ADS)
Yi, Weiyong
2012-08-01
GOCE is the first satellite with a gravitational gradiometer (SGG). This allows to determine a gravity field model with high spatial resolution and high accuracy. Four of the six independent components of the gravitational gradient tensors (GGT) are measured with high accuracy in the so-called measurement band (MB) from 5 to 100 mHz by the GOCE gradiometer. Based on more than 1 year of GOCE measurements, two gravity field models have been derived. Here, we introduce a strategy for spherical harmonic analysis (SHA) from GOCE measurements, with a bandpass filter applied to the SGG data, combined with orbit analysis based on the integral equation approach, and additional constraints (or stabilization) in the polar areas where no observation is available due to the orbit geometry. In addition, we combined the GOCE SGG part with a set of GRACE normal equations. This improves the accuracy of the gravity field in the long-wavelength parts, due to the complementarity of GOCE and GRACE. Comparison with other models and with external data shows that our results are rather close to the GPS-levelling data in well-selected test regions, with an uncertainty of 4-7 cm, for truncation at degree 200.
Lunar gravity field recovery: sensitivity studies from simulated tracking data
NASA Astrophysics Data System (ADS)
Maier, A.; Baur, O.
2012-04-01
The lunar gravity field is essential for understanding the structure and the thermal evolution of the Moon. Typically, the gravity field is inferred from tracking data to satellites orbiting the Moon. Due to the fact that the Moon is in the state of synchronous rotation with the Earth, direct tracking to the farside is impossible. NASA's Lunar Reconnaissance Orbiter (LRO), launched in 2009, is equipped with various instruments whose purpose is to prepare for save robotic returns to the Moon. To geolocate LRO, the spacecraft is tracked by means of radiometric techniques (ranges, range rates, angles) and optical laser (laser ranges). We analyzed tracking data to LRO with respect to various aspects, such as the number of observations, their spatial distribution on the lunar surface, and the present noise level. We used these real-data characteristics to simulate tracking data to LRO. We generated three different simulation scenarios: observations were simulated (1) during the exact time spans when LRO was tracked from a specific ground station, (2) whenever the spacecraft was in view from a station, and (3) for the nearside as well as for the farside of the Moon. Based on the resulting trajectories, we estimated three sets of spherical harmonic coefficients representing the lunar gravity field. Moreover, we varied the maximum degree of estimated coefficients and investigated the effect of noise on the estimated parameters. Observation simulation and parameter estimation was accomplished with the software packages GEODYN and SOLVE.
Resolution of the Scripps/NOAA Marine Gravity Field from satellite altimetry
NASA Astrophysics Data System (ADS)
Marks, Karen M.
The July 1995 declassification of the entire Geosat GM satellite altimeter data set enabled a joint Scripps/NOAA effort to compute a new (version 7.2) marine gravity field on a 2-minute grid. This gravity field covers the world's oceans between 72°N and 72°S, and is derived from a combination of ERS-1 and Geosat GM and ERM data. An earlier NOAA Geosat-only gravity field solution was confined to the southern latitudes because the 1992 declassification was limited to GM data south of 30°S. A simple coherence analysis between accurately-navigated ship gravity profiles and comparable gravity profiles obtained from the gravity grids reveals that the Scripps/NOAA gravity field is coherent with ship gravity down to ˜≥ 23-30 km. This slight increase in resolution over the previous NOAA Geosat-only gravity field (short-wavelength resolution of ˜26-30 km) implies that the increased spatial coverage provided by the ERS-I altimeter, when combined with Geosat, improves the solution. Coherence analyses between satellite gravity and ship topography, and ship gravity and ship topography, show that even shorter wavelength gravity anomalies (˜13 km) are present in sea-surface measurements made by ship. Even so, the Scripps/NOAA marine gravity field does an excellent job of resolving most of the short-wavelength gravity anomalies covering the world’s oceans.
The gravity field of the Saturnian satellites Enceladus and Dione
NASA Astrophysics Data System (ADS)
Iess, L.; Jacobson, R.; Ducci, M.; Stevenson, D. J.; Lunine, J. I.; Armstrong, J. W.; Asmar, S.; Racioppa, P.; Rappaport, N. J.; Tortora, P.
2012-12-01
Enceladus and Dione are the innermost moons of the Saturnian system visited by the spacecraft Cassini for gravity investigations. The small surface gravity (0.11 and 0.23 m/s2 respectively for Enceladus and Dione), the short duration of the gravitational interaction and the small number of available flybys (three for Enceladus and just one for Dione) make the determination of their gravity field particularly challenging. In spite of these limitations, we have measured the low degree gravity field of both satellites with sufficient accuracy to draw preliminary geophysical conclusions. The estimation relied primarily on precise range rate data, whose accuracy reached 10 micron/s at 60 s integration times under favorable conditions. In order to disentangle the effects of the spacecraft orbit, the satellite orbit and the satellite gravity, tracking coverage is required not only across closest approach, but also days before and after the flyby. The dynamical model used for the fits includes all relevant gravitational perturbations and the main non-gravitational accelerations (Cassini RTG's anisotropic thermal emission, solar radiation pressure). In addition to the gravity field coefficients a correction to the orbit of the spacecraft and the satellites was also estimated. The first and so far only Dione's flyby with tracking at closest approach occurred on December 12, 2011, at an altitude of 99 km. (A second gravity flyby is scheduled in 2015.) Although the low solar elongation angle caused a significant increase of the plasma noise in Doppler data, the low spacecraft altitude at closest approach and the otherwise favorable geometry allowed an estimation of the harmonic coefficients J2 and C22 to a relative accuracy below 2%. We have produced, in addition to an unconstrained estimate, a second solution where the quadrupole field is constrained by the requirement of hydrostaticity. Doppler residuals are unbiased and consistent with the expected noise in both cases. When
High-precision gravimetric survey in support of lunar laser ranging at Haleakala, Maui, 1976 - 1978
NASA Technical Reports Server (NTRS)
Schenck, B. E.; Laurila, S. H.
1978-01-01
The planning, observations and adjustment of high-precision gravity survey networks established on the islands of Maui and Oahu as part of the geodetic-geophysical program in support of lunar laser ranging at Haleakala, Maui, Hawaii are described. The gravity survey networks include 43 independently measured gravity differences along the gravity calibration line from Kahului Airport to the summit of Mt. Haleakala, together with some key points close to tidal gauges on Maui, and 40 gravity differences within metropolitan Honolulu. The results of the 1976-1978 survey are compared with surveys made in 1961 and in 1964-1965. All final gravity values are given in the system of the international gravity standardization net 1971 (IGSN 71); values are obtained by subtracting 14.57 mgal from the Potsdam value at the gravity base station at the Hickam Air Force Base, Honolulu.
Combination of monthly gravity field solutions from different processing centers
NASA Astrophysics Data System (ADS)
Jean, Yoomin; Meyer, Ulrich; Jäggi, Adrian
2015-04-01
Currently, the official GRACE Science Data System (SDS) monthly gravity field solutions are generated independently by the Centre for Space Research (CSR) and the German Research Centre for Geosciences (GFZ). Additional GRACE SDS monthly fields are provided by the Jet Propulsion Laboratory (JPL) for validation and outside the SDS by a number of other institutions worldwide. Although the adopted background models and processing standards have been harmonized more and more by the various processing centers during the past years, notable differences still exist and the users are more or less left alone with a decision which model to choose for their individual applications. Combinations are well-established in the area of other space geodetic techniques, such as the Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), and Very Long Baseline Interferometry (VLBI), where regular comparisons and combinations of space-geodetic products have tremendously increased the usefulness of the products in a wide range of disciplines and scientific applications. In the frame of the recently started Horizon 2020 project European Gravity Service for Improved Emergency Management (EGSIEM), a scientific combination service shall therefore be established to deliver the best gravity products for applications in Earth and environmental science research based on the unified knowledge of the European GRACE community. In a first step the large variety of available monthly GRACE gravity field solutions shall be mutually compared spatially and spectrally. We assess the noise of the raw as well as filtered solutions and compare the secular and seasonal periodic variations fitted to the monthly solutions. In a second step we will explore ways to generate combined solutions, e.g., based on a weighted average of the individual solutions using empirical weights derived from pair-wise comparisons. We will also assess the quality of such a combined solution and discuss the
Combined GRACE-SLR monthly gravity field solutions
NASA Astrophysics Data System (ADS)
Meyer, Ulrich; Sosnica, Krzysytof; Maier, Andrea; Jäggi, Adrian
2015-04-01
Monthly gravity field solutions from GRACE GPS and GRACE K-Band data provide remarkable information about the mass transport in the system Earth by capturing the temporal variability of the gravity field at long to medium wavelengths. The GRACE solutions suffer, however, from the poor determination of the C20 coefficient from GRACE K-Band data, which describes the Earth's oblateness. C20 and its temporal variability can, on the other hand, be very well determined using satellite laser ranges (SLR) to spherical geodetic satellites such as LAGEOS and LARES. It is common practice to replace the C20 coefficient in GRACE solutions by SLR-derived values. We perform a meaningful combination of GRACE and SLR solutions at the level of normal equations using the SLR-only monthly gravity fields from the combined analysis of up to nine geodetic satellites that capture the temporal variability to degree 10 of the global spherical harmonic expansion. We present combined monthly GRACE-SLR solutions and compare them to GRACE GPS/K-Band, GRACE GPS-only, and SLR-only solutions. We discuss the relative weighting scheme of the normal equations and evaluate the secular and seasonal periodic time variations of the combined solutions at long wavelengths. We observe a positive influence of the SLR data not only on C20 but also on the formal errors of the other degree-2 spherical harmonic coefficients, which correspond to the excitation of the polar motion. A possible reduction of the influence of aliasing with the S2 tide on some GRACE-derived coefficients using a combination with SLR data will also be addressed. The analysis of SLR-only solutions indicates sensitivity to time variable signal for selected coefficients at even higher degree but special care has to be taken not to corrupt coefficients with the inferior quality in SLR solutions in the combined solutions with GRACE data. In recent years, K-Band tracking between GRACE satellites was deactivated several times resulting in
The Gravity Field of Titan From Four Cassini Flybys
NASA Astrophysics Data System (ADS)
Rappaport, N. J.; Jacobson, R. A.; Iess, L.; Racioppa, P.; Armstrong, J. W.; Asmar, S. W.; Stevenson, D. J.; Tortora, P.; di Benedetto, M.; Graziani, A.; Meriggiola, R.
2008-12-01
Doppler tracking of the Cassini spacecraft across four flybys has been used for a preliminary determination of Titan's gravity field. The flybys occurred on February 27, 2006, December 28, 2006, June 29, 2007 and July 31, 2008, with closest approach altitudes between 1300 and 2100 km. X- and Ka-band Doppler data from each flyby have been combined in a multi-arc solution for the Stokes coefficients up to degree-3. The dynamical models employed in the data fit were limited to the static component of the gravity field and did not include eccentricity tides. Tidal variations of the quadrupole coefficients are expected at a level of a few percents if the surface hides an internal ocean, and are therefore accessible to Cassini measurements. As the flybys were evenly distributed about pericenter and apocenter of Titan's orbit, the current analysis provides a good representation of the static component of the quadrupole field. In one setup, Titan's ephemerides were also updated, leading to improved determination of the satellite's orbit and gravitational parameter (GM). The measured gravity field is dominated by a large, nearly hydrostatic, quadrupole component, consistent with an equilibrium response to the perturbations due to rotation and Saturn gravity gradient. The magnitude of the degree-3 coefficients accounts for about 1-3% of the overall field, with significant gravity disturbances (at a level of 2-5 mgal) over broad regions of the surface. The corresponding peak-to-peak geoid height variations amount to a few tens of meters. The ellipsoidal reference surface shows variations among the axes of a few hundred meters. The near hydrostaticity of Titan justifies the application of Radau-Darwin equilibrium theory, which provides the fluid Love number and the average moment of inertia. The latter is consistent with a partial, but not full, differentiation of the interior. This work was partly conducted at the Jet Propulsion Laboratory, California Institute of Technology
Weak gravity strongly constrains large-field axion inflation
NASA Astrophysics Data System (ADS)
Heidenreich, Ben; Reece, Matthew; Rudelius, Tom
2015-12-01
Models of large-field inflation based on axion-like fields with shift symmetries can be simple and natural, and make a promising prediction of detectable primordial gravitational waves. The Weak Gravity Conjecture is known to constrain the simplest case in which a single compact axion descends from a gauge field in an extra dimension. We argue that the Weak Gravity Conjecture also constrains a variety of theories of multiple compact axions including N-flation and some alignment models. We show that other alignment models entail surprising consequences for how the mass spectrum of the theory varies across the axion moduli space, and hence can be excluded if further conjectures hold. In every case that we consider, plausible assumptions lead to field ranges that cannot be parametrically larger than M Pl. Our results are strongly suggestive of a general inconsistency in models of large-field inflation based on compact axions, and possibly of a more general principle forbidding super-Planckian field ranges.
Noncommutative scalar field minimally coupled to nonsymmetric gravity
Kouadik, S.; Sefai, D.
2012-06-27
We construct a non-commutative non symmetric gravity minimally coupled model (the star product only couples matter). We introduce the action for the system considered namely a non-commutative scalar field propagating in a nontrivial gravitational background. We expand the action in powers of the anti-symmetric field and the graviton to second order adopting the assumption that the scalar is weekly coupled to the graviton. We compute the one loop radiative corrections to the self-energy of a scalar particle.
Gravity field determination and characteristics: Retrospective and prospective
NASA Astrophysics Data System (ADS)
Nerem, R. S.; Jekeli, C.; Kaula, W. M.
Gravimetry has had a long history, using pendulums, torsion balances, and static spring gravimeters. Relative accuracy adequate for many geophysical problems was already attained by 1900, but it took another half century to build readily portable gravimeters. Calibration and datum definition remained problems until the 1970s when free-fall absolute gravimeters were developed that now have a precision of 10-3 mGal. The problems of geographic inaccessibility and field party costs (notably in areas of greatest tectonic interest) and now being overcome by airborne gravimetry that has already achieved accuracies of 1-3 mGal with resolutions of 10 to 20 km. Satellite techniques are the best way to determine the long-wavelength variations of the gravity field. The resolution of the models has steadily improved with the number of satellites and the precision of the observations. The best current model includes tracking data from more than 30 satellites, satellite altimetry, and surface gravimetry and has a resolution of about 290 km (harmonic degree 70) with the most recent improvements coming from Doppler orbitography and radiopositioning integrated by satellite (DORIS) tracking of the SPOT 2 satellite and satellite laser ranging (SLR), DORIS, and Global Positioning System (GPS) tracking of the TOPEX/POSEIDON satellite. Meanwhile, radar altimetry has become the dominant technique to infer the marine geoid with a resolution of tens of kilometers or shorter. Similarly, the gravity fields of the Moon, Venus, and Mars have been determined to harmonic degrees 70, 75, and 50, respectively, although tracking limitations result in variations of spatial resolution. Modeling Earth's gravity field from the abundance of precise data has become an increasingly complex task, with which the development of computer capacity has kept pace. Contemporary solutions now entail about 10,000 parameters, half of them for effects other than the fixed gravity field of Earth. Temporal variations
Gravity Field and Internal Structure of Mercury from MESSENGER
NASA Technical Reports Server (NTRS)
Smith, David E.; Zuber, Maria T.; Phillips, Roger J.; Solomon, Sean C.; Hauck, Steven A., II; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Peale, Stanton J.; Margot, Jean-Luc; Johnson, Catherine L.; Torrence, Mark H.; Perry, Mark E.; Rowlands, David D.; Goossens, Sander; Head, James W.; Taylor, Anthony H.
2012-01-01
Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/M(R(exp 2) = 0.353 +/- 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(sub m)/C = 0.452 +/- 0.035. A model for Mercury s radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.
Gravity field and internal structure of Mercury from MESSENGER.
Smith, David E; Zuber, Maria T; Phillips, Roger J; Solomon, Sean C; Hauck, Steven A; Lemoine, Frank G; Mazarico, Erwan; Neumann, Gregory A; Peale, Stanton J; Margot, Jean-Luc; Johnson, Catherine L; Torrence, Mark H; Perry, Mark E; Rowlands, David D; Goossens, Sander; Head, James W; Taylor, Anthony H
2012-04-13
Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR(2) = 0.353 ± 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(m)/C = 0.452 ± 0.035. A model for Mercury's radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core. PMID:22438509
Ultralow Magnetic Fields and Gravity Probe B Gyroscope Readout
NASA Astrophysics Data System (ADS)
Mester, J. C.; Lockhart, J. M.; Muhlfelder, B.; Murray, D. O.; Taber, M. A.
We describe the generation of an ultralow magnetic field of < 10-11Tesla in the flight dewar of the Gravity Probe B Relativity Mission. The field was achieved using expanded-superconducting-shield techniques and is maintained with the aid of a magnetic materials control program. A high performance magnetic shield system is required for the proper function of gyroscope readout. The readout system employs a dc SQUID to measure the London moment generated by the superconducting gyro rotor in order to resolve sub-milliarcsecond changes in the gyro spin direction. In addition to a low residual dc magnetic field, attenuation of external field variation is required to be 1012 at the gyro positions. We discuss the measurement of the dc magnetic field and ac attenuation factor and the performance of the readout system
Inversion of Gravity and Magnetic Field Data for Tyrrhena Patera
NASA Technical Reports Server (NTRS)
Milbury, C.; Schubert, G.; Raymond, C. A.; Smrekar, S. E.
2011-01-01
Tyrrhena Patera is located to the southeast/northeast of the Isidis/Hellas impact basin. It was geologically active into the Late Amazonian, although the main edifice was formed in the Noachian(approximately 3.7-4.0 Ga). Tyrrhena Patera and the surrounding area contain gravity and magnetic anomalies that appear to be correlated. The results presented here are for the anomalies 1a and 1b (closest to Tyrrhena Patera), however other anomalies in this region have been modeled and will be presented at the conference.The Mars Global Surveyor (MGS) free-air gravity signature of Tyrrhena Patera has been studied by Kiefer, who inferred the existence of an extinct magma chamber below it. The magnetic signature has been mapped by Lillis R. J. et al., who compared electron reflectometer data, analogous to the total magnetic field, for Syrtis Major and Tyrrhena Patera and argued for demagnetization of both volcanoes.
Action and entanglement in gravity and field theory.
Neiman, Yasha
2013-12-27
In nongravitational quantum field theory, the entanglement entropy across a surface depends on the short-distance regularization. Quantum gravity should not require such regularization, and it has been conjectured that the entanglement entropy there is always given by the black hole entropy formula evaluated on the entangling surface. We show that these statements have precise classical counterparts at the level of the action. Specifically, we point out that the action can have a nonadditive imaginary part. In gravity, the latter is fixed by the black hole entropy formula, while in nongravitating theories it is arbitrary. From these classical facts, the entanglement entropy conjecture follows by heuristically applying the relation between actions and wave functions. PMID:24483789
Wormholes, emergent gauge fields, and the weak gravity conjecture
NASA Astrophysics Data System (ADS)
Harlow, Daniel
2016-01-01
This paper revisits the question of reconstructing bulk gauge fields as boundary operators in AdS/CFT. In the presence of the wormhole dual to the thermofield double state of two CFTs, the existence of bulk gauge fields is in some tension with the microscopic tensor factorization of the Hilbert space. I explain how this tension can be resolved by splitting the gauge field into charged constituents, and I argue that this leads to a new argument for the "principle of completeness", which states that the charge lattice of a gauge theory coupled to gravity must be fully populated. I also claim that it leads to a new motivation for (and a clarification of) the "weak gravity conjecture", which I interpret as a strengthening of this principle. This setup gives a simple example of a situation where describing low-energy bulk physics in CFT language requires knowledge of high-energy bulk physics. This contradicts to some extent the notion of "effective conformal field theory", but in fact is an expected feature of the resolution of the black hole information problem. An analogous factorization issue exists also for the gravitational field, and I comment on several of its implications for reconstructing black hole interiors and the emergence of spacetime more generally.
Portable high precision pressure transducer system
Piper, Thomas C.; Morgan, John P.; Marchant, Norman J.; Bolton, Steven M.
1994-01-01
A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.
Portable high precision pressure transducer system
Piper, T.C.; Morgan, J.P.; Marchant, N.J.; Bolton, S.M.
1994-04-26
A high precision pressure transducer system is described for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display. 2 figures.
High-precision hydraulic Stewart platform
NASA Astrophysics Data System (ADS)
van Silfhout, Roelof G.
1999-08-01
We present a novel design for a Stewart platform (or hexapod), an apparatus which performs positioning tasks with high accuracy. The platform, which is supported by six hydraulic telescopic struts, provides six degrees of freedom with 1 μm resolution. Rotations about user defined pivot points can be specified for any axis of rotation with microradian accuracy. Motion of the platform is performed by changing the strut lengths. Servo systems set and maintain the length of the struts to high precision using proportional hydraulic valves and incremental encoders. The combination of hydraulic actuators and a design which is optimized in terms of mechanical stiffness enables the platform to manipulate loads of up to 20 kN. Sophisticated software allows direct six-axis positioning including true path control. Our platform is an ideal support structure for a large variety of scientific instruments that require a stable alignment base with high-precision motion.
High-precision arithmetic in mathematical physics
Bailey, David H.; Borwein, Jonathan M.
2015-05-12
For many scientific calculations, particularly those involving empirical data, IEEE 32-bit floating-point arithmetic produces results of sufficient accuracy, while for other applications IEEE 64-bit floating-point is more appropriate. But for some very demanding applications, even higher levels of precision are often required. Furthermore, this article discusses the challenge of high-precision computation, in the context of mathematical physics, and highlights what facilities are required to support future computation, in light of emerging developments in computer architecture.
Report of the panel on geopotential fields: Gravity field, section 8
NASA Technical Reports Server (NTRS)
Anderson, Allen Joel; Kaula, William M.; Lazarewics, Andrew R.; Lefebvre, Michel; Phillips, Roger J.; Rapp, Richard H.; Rummel, Reinhard F.; Smith, David E.; Tapley, Byron D.; Zlotnick, Victor
1991-01-01
The objective of the Geopotential Panel was to develop a program of data acquisition and model development for the Earth's gravity and magnetic fields that meet the basic science requirements of the solid Earth and ocean studies. Presented here are the requirements for gravity information and models through the end of the century, the present status of our knowledge, data acquisition techniques, and an outline of a program to meet the requirements.
Gravity, Topography, and Magnetic Field of Mercury from Messenger
NASA Technical Reports Server (NTRS)
Neumann, Gregory A.; Solomon, Sean C.; Zuber, Maria T.; Phillips, Roger J.; Barnouin, Olivier; Ernst, Carolyn; Goosens, Sander; Hauck, Steven A., II; Head, James W., III; Johnson, Catherine L.; Lemoine, Frank G.; Margot, Jean-Luc; McNutt, Ralph; Mazarico, Erwan M.; Oberst, Jurgen; Peale, Stanley J.; Perry, Mark; Purucker, Michael E.; Rowlands, David D.; Torrence, Mark H.
2012-01-01
On 18 March 2011, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft was inserted into a 12-hour, near-polar orbit around Mercury, with an initial periapsis altitude of 200 km, initial periapse latitude of 60 deg N, and apoapsis at approximately 15,200 km altitude in the southern hemisphere. This orbit has permitted the mapping of regional gravitational structure in the northern hemisphere, and laser altimetry from the MESSENGER spacecraft has yielded a geodetically controlled elevation model for the same hemisphere. The shape of a planet combined with gravity provides fundamental information regarding its internal structure and geologic and thermal evolution. Elevations in the northern hemisphere exhibit a unimodal distribution with a dynamic range of 9.63 km, less than that of the Moon (19.9 km), but consistent with Mercury's higher surface gravitational acceleration. After one Earth-year in orbit, refined models of gravity and topography have revealed several large positive gravity anomalies that coincide with major impact basins. These candidate mascons have anomalies that exceed 100 mGal and indicate substantial crustal thinning and superisostatic uplift of underlying mantle. An additional uncompensated 1000-km-diameter gravity and topographic high at 68 deg N, 33 deg E lies within Mercury's northern volcanic plains. Mercury's northern hemisphere crust is generally thicker at low latitudes than in the polar region. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR2 = 0.353 +/- 0.017, where M=3.30 x 10(exp 23) kg and R=2440 km are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of Cm/C = 0.452 +/- 0.035. One proposed model for Mercury's radial density distribution consistent with these results includes silicate crust and mantle layers overlying a dense solid (possibly Fe-S) layer, a liquid Fe
The role of topography in geodetic gravity field modelling
NASA Technical Reports Server (NTRS)
Forsberg, R.; Sideris, M. G.
1989-01-01
Masses associated with the topography, bathymetry, and its isostatic compensation are a dominant source of gravity field variations, especially at shorter wavelengths. On global scales the topographic/isostatic effects are also significant, except for the lowest harmonics. In practice, though, global effects need not be taken into account as such effects are included in the coefficients of the geopotential reference fields. On local scales, the short-wavelength gravity variations due to the topography may, in rugged terrain, be an order of magnitude larger than other effects. In such cases, explicit or implicit terrain reduction procedures are mandatory in order to obtain good prediction results. Such effects may be computed by space-domain integration or by fast Fourier transformation (FFT) methods. Numerical examples are given for areas of the Canadian Rockies. In principle, good knowledge of the topographic densities is required to produce the smoothest residual field. Densities may be determined from sample measurements or by gravimetric means, but both are somewhat troublesome methods in practice. The use of a standard density, e.g., 2.67 g/cu cm, may often yield satisfactory results and may be put within a consistent theoretical framework. The independence of density assumptions is the key point of the classical Molodensky approach to the geodetic boundary value problem. The Molodensky solutions take into account that land gravity field observations are done on a non-level surface. Molodensky's problem may be solved by integral expansions or more effective FFT methods, but the solution should not be intermixed with the use of terrain reductions. The methods are actually complimentary and may both be required in order to obtain the smoothest possible signal, least prone to aliasing and other effects coming from sparse data coverage, typical of rugged topography.
Gravity Field, Topography, and Interior Structure of Amalthea
NASA Astrophysics Data System (ADS)
Anderson, J. D.; Anabtawi, A.; Jacobson, R. A.; Johnson, T. V.; Lau, E. L.; Moore, W. B.; Schubert, G.; Taylor, A. H.; Thomas, P. C.; Weinwurm, G.
2002-12-01
A close Galileo flyby of Jupiter's inner moon Amalthea (JV) occurred on 5 November 2002. The final aimpoint was selected by the Galileo Radio Science Team on 5 July 2002. The closest approach distance for the selected aimpoint was 221 km from the center of mass, the latitude was - 45.23 Deg and the west longitude was 266.41 Deg (IAU/IAG/COSPAR cartographic coordinate system). In order to achieve an acceptable impact probability (0.15%), and yet fly close to Amalthea, the trajectory was selected from a class of trajectories running parallel to Amalthea's long axis. The Deep Space Network (DSN) had the capability to generate continuous coherent radio Doppler data during the flyby. Such data can be inverted to obtain information on Amalthea's gravity field. Amalthea is irregular and neither a triaxial ellipsoid nor an equilibrium body. It has a volume of about 2.4 x 106 km3, and its best-fit ellipsoid has dimensions 131x73x67 km. Its mass can be determined from the 2002 flyby, and in combination with the volume, a density can be obtained accurate to about 5%, where the error is dominated by the volume uncertainty. Similarly, gravity coefficients (Cnm Snm) can be detected up to fourth degree and order, and the second degree field (quadrupole) can be measured. Topography data are available from Voyager imaging and from images taken with Galileo's solid state imaging system at various times between February and June 1997. By combining the gravity and topography data, new information can be obtained on Amalthea's interior. For example if the gravity coefficients agree with those calculated from the topography, assuming constant density, we can conclude that Amalthea is homogeneous. On the other hand, if the gravity coefficients are smaller than predicted from topography, we can conclude that there is a concentration of mass toward Amalthea's center. We are presenting preliminary pre-publication results at the Fall meeting. This work was sponsored by the Galileo Project
The determination of Dione's gravity field after four Cassini flybys
NASA Astrophysics Data System (ADS)
Zannoni, Marco; Tortora, Paolo; Iess, Luciano; Jacobson, Robert A.; Armstrong, John W.; Asmar, Sami W.
2015-04-01
We present the expected accuracy in the determination of Dione's gravity field obtained through numerical simulations of all radio science flybys currently planned in the entire Cassini mission. During its tour of the Saturn system, Cassini already performed two flybys of Dione dedicated to the determination of its mass and gravity field, in October 2005 and December 2011, respectively. Two additional radio science flybys are planned in June 2015 and August 2015. The analysis of the Doppler data acquired during the closest approach of the second flyby allowed the first estimation of Dione's J2 and C22 but, given the limited amount of data, their estimation has a large correlation and cannot be considered fully reliable. Here we infer the expected final accuracy in the determination of Dione's J2 and C22 by combining the available results from the already performed experiments with numerical simulations of future flybys. The main observables considered in the analysis are two-way and three-way Doppler data obtained from the frequency shift of a highly stable microwave carrier between the spacecraft and the stations of NASA's Deep Space Network. White Gaussian noise was added to the simulated data, with a constant standard deviation for each tracking pass, obtained from an accurate noise budget of the Cassini mission. For the two flybys to be carried out in 2015, we consider a continuous coverage during +/-18 hours around the closest approach, plus one tracking pass 36 hours before and after it. The data analysis is carried out using a global, multi-arc fit, and comparing the independent solutions obtained from each flyby and different multi-arc solutions. The analysis of all four flybys is expected to provide the best, unconstrained, reliable estimation of the full quadrupole gravity field of Dione.
Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission.
Zuber, Maria T; Smith, David E; Watkins, Michael M; Asmar, Sami W; Konopliv, Alexander S; Lemoine, Frank G; Melosh, H Jay; Neumann, Gregory A; Phillips, Roger J; Solomon, Sean C; Wieczorek, Mark A; Williams, James G; Goossens, Sander J; Kruizinga, Gerhard; Mazarico, Erwan; Park, Ryan S; Yuan, Dah-Ning
2013-02-01
Spacecraft-to-spacecraft tracking observations from the Gravity Recovery and Interior Laboratory (GRAIL) have been used to construct a gravitational field of the Moon to spherical harmonic degree and order 420. The GRAIL field reveals features not previously resolved, including tectonic structures, volcanic landforms, basin rings, crater central peaks, and numerous simple craters. From degrees 80 through 300, over 98% of the gravitational signature is associated with topography, a result that reflects the preservation of crater relief in highly fractured crust. The remaining 2% represents fine details of subsurface structure not previously resolved. GRAIL elucidates the role of impact bombardment in homogenizing the distribution of shallow density anomalies on terrestrial planetary bodies. PMID:23223395
Paramagnetic Liquid Bridge in a Gravity-Compensating Magnetic Field
NASA Technical Reports Server (NTRS)
Mahajan, Milind P.; Tsige, Mesfin; Taylor, P. L.; Rosenblatt, Charles
1999-01-01
Magnetic levitation was used to stabilize cylindrical columns of a paramagnetic liquid in air between two solid supports. The maximum achievable length to diameter ratio R(sub max) was approx. (3.10 +/- 0.07), very close to the Rayleigh-Plateau limit of pi. For smaller R, the stability of the column was measured as a function of the Bond number, which could be continuously varied by adjusting the strength of the magnetic field. Liquid bridges supported by two solid surfaces have been attracting scientific attention since the time of Rayleigh and Plateau. For a cylindrical bridge of length L and diameter d, it was shown theoretically that in zero gravity the maximum slenderness ratio R (identically = L/d) is pi. The stability and ultimate collapse of such bridges is of interest because of their importance in a number of industrial processes and their potential for low gravity applications. In the presence of gravity, however, the cylindrical shape of an axisymmetric bridge tends to deform, limiting its stability and decreasing the maximum achievable value of R. Theoretical studies have discussed the stability and possible shapes of axisymmetric bridges. Experiments typically are performed in either a Plateau tank, in which the bridge is surrounded by a density-matched immiscible fluid, or in a space-borne microgravity environment. It has been shown, for example, that the stability limit R can be pushed beyond pi by using flow stabilization, by acoustic radiation pressure, or by forming columns in the presence of an axial electric field. In this work, magnetic levitation was used to simulate a low gravity environment and create quasi-cylindrical liquid columns in air. Use of a magnetic field permits us to continuously vary the Bond number B identically equal to (g)(rho)d(exp 2)/4(sigma), where g is the gravitational acceleration, rho is the density of the liquid, and sigma is the surface tension of the liquid in air. The dimensionless Bond number represents the
Warped conformal field theory as lower spin gravity
NASA Astrophysics Data System (ADS)
Hofman, Diego M.; Rollier, Blaise
2015-08-01
Two dimensional Warped Conformal Field Theories (WCFTs) may represent the simplest examples of field theories without Lorentz invariance that can be described holographically. As such they constitute a natural window into holography in non-AdS space-times, including the near horizon geometry of generic extremal black holes. It is shown in this paper that WCFTs posses a type of boost symmetry. Using this insight, we discuss how to couple these theories to background geometry. This geometry is not Riemannian. We call it Warped Geometry and it turns out to be a variant of a Newton-Cartan structure with additional scaling symmetries. With this formalism the equivalent of Weyl invariance in these theories is presented and we write two explicit examples of WCFTs. These are free fermionic theories. Lastly we present a systematic description of the holographic duals of WCFTs. It is argued that the minimal setup is not Einstein gravity but an SL (2, R) × U (1) Chern-Simons Theory, which we call Lower Spin Gravity. This point of view makes manifest the definition of boundary for these non-AdS geometries. This case represents the first step towards understanding a fully invariant formalism for WN field theories and their holographic duals.
Perturbations of single-field inflation in modified gravity theory
NASA Astrophysics Data System (ADS)
Qiu, Taotao; Xia, Jun-Qing
2015-05-01
In this paper, we study the case of single field inflation within the framework of modified gravity theory where the gravity part has an arbitrary form f (R). Via a conformal transformation, this case can be transformed into its Einstein frame where it looks like a two-field inflation model. However, due to the existence of the isocurvature modes in such a multi-degree-of-freedom (m.d.o.f.) system, the (curvature) perturbations are not equivalent in two frames, so despite of its convenience, it is illegal to treat the perturbations in its Einstein frame as the "real" ones as we always do for pure f (R) theory or single field with nonminimal coupling. Here by pulling the results of curvature perturbations back into its original Jordan frame, we show explicitly the power spectrum and spectral index of the perturbations in the Jordan frame, as well as how it differs from the Einstein frame. We also fit our results with the newest Planck data. Since there is large parameter space in these models, we show that it is easy to fit the data very well.
Electromagnetic field and cylindrical compact objects in modified gravity
NASA Astrophysics Data System (ADS)
Yousaf, Z.; Bhatti, M. Zaeem ul Haq
2016-05-01
In this paper, we have investigated the role of different fluid parameters particularly electromagnetic field and f(R) corrections on the evolution of cylindrical compact object. We have explored the modified field equations, kinematical quantities and dynamical equations. An expression for the mass function has been found in comparison with the Misner-Sharp formalism in modified gravity, after which different mass-radius diagrams are drawn. The coupled dynamical transport equation have been formulated to discuss the role of thermoinertial effects on the inertial mass density of the cylindrical relativistic interior. Finally, we have presented a framework, according to which all possible solutions of the metric f(R)-Maxwell field equations coupled with static fluid can be written through set of scalar functions. It is found that modified gravity induced by Lagrangians f(R) = αR2, f(R) = αR2 - βR and f(R)=α R^2-β R/1+γ R are likely to host more massive cylindrical compact objects with smaller radii as compared to general relativity.
Strategy for Realizing High-Precision VUV Spectro-Polarimeter
NASA Astrophysics Data System (ADS)
Ishikawa, R.; Narukage, N.; Kubo, M.; Ishikawa, S.; Kano, R.; Tsuneta, S.
2014-12-01
Spectro-polarimetric observations in the vacuum ultraviolet (VUV) range are currently the only means to measure magnetic fields in the upper chromosphere and transition region of the solar atmosphere. The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) aims to measure linear polarization at the hydrogen Lyman- α line (121.6 nm). This measurement requires a polarization sensitivity better than 0.1 %, which is unprecedented in the VUV range. We here present a strategy with which to realize such high-precision spectro-polarimetry. This involves the optimization of instrument design, testing of optical components, extensive analyses of polarization errors, polarization calibration of the instrument, and calibration with onboard data. We expect that this strategy will aid the development of other advanced high-precision polarimeters in the UV as well as in other wavelength ranges.
Fugacity and concentration gradients in a gravity field
NASA Technical Reports Server (NTRS)
May, C. E.
1986-01-01
Equations are reviewed which show that at equilibrium fugacity and concentration gradients can exist in gravitational fields. At equilibrium, the logarithm of the ratio of the fugacities of a species at two different locations in a gravitational field is proportional to the difference in the heights of the two locations and the molecular weight of the species. An analogous relation holds for the concentration ratios in a multicomponent system. The ratio is calculated for a variety of examples. The kinetics for the general process are derived, and the time required to approach equilibrium is calculated for several systems. The following special topics are discussed: ionic solutions, polymers, multiphase systems, hydrostatic pressure, osmotic pressure, and solubility gradients in a gravity field.
Recent high precision surveys at PEP
Sah, R.C.
1980-12-01
The task of surveying and aligning the components of PEP has provided an opportunity to develop new instruments and techniques for the purpose of high precision surveys. The new instruments are quick and easy to use, and they automatically encode survey data and read them into the memory of an on-line computer. When measurements of several beam elements have been taken, the on-line computer analyzes the measured data, compares them with desired parameters, and calculates the required adjustments to beam element support stands.
Determination of Enceladus' gravity field from Cassini radio science data
NASA Astrophysics Data System (ADS)
Parisi, Marzia; Iess, Luciano; Ducci, Marco
2014-05-01
In May 2012 the Cassini spacecraft completed its last gravity flyby of Saturn's moon Enceladus (identified as E19 in the sequence), following E9 in April 2010 and E12 in November 2010. The multiarc analysis of the gravity data collected during these low-altitude encounters has produced a stable solution for the gravity field of Enceladus, leading to compelling inferences and implications on the interior structure, but also raising new questions on the evolution of this small but yet fascinating icy body. The gravitational signature of the satellite was detected by means of precise Doppler tracking of the Cassini spacecraft around closest approach (±3h) of the three flybys. Cassini tracking system exploits both X/X and X/Ka links, with accuracies that range between 0.02 - 0.09 mm/s at 60 s integration time. Range-rate measurements were processed into a multi-arc least square filter so as to attain a solution for the quadrupole field of Enceladus and its degree-3 zonal harmonic J3, the most important indication of hemispherical asymmetries. In addition to these crucial parameters, corrections to the estimated orbits of Cassini and Enceladus were applied. The inclusion in the dynamical model of the neutral particle drag exerted by Enceladus south polar plumes (1) is essential for a satisfactory orbital fit. The results of the analysis show that Enceladus is indeed characterized by a predominant quadrupole term, with its J2/C22 ratio being that of a body not in hydrostatic equilibrium. The estimate of tesseral degree-2 coefficients (C21, S21 and C22), being statistically close to 0 (at a 3-σ level), imply that the adopted rotational model for the satellite is consistent with the observed gravity field. Furthermore, the estimated value for J3 turned out to be statistically significant (although only about 1/50 of J2) and pointing at a significant hemispherical asymmetry that is consistent with the presence of a regional sea at depth. References (1) C.C. Porco et al
KMS2002 Global Marine Gravity Field, Bathymetry And Mean Sea Surface
NASA Astrophysics Data System (ADS)
Andersen, O. B.
2003-12-01
During the last three years the KMS global marine gravity field has been improved in corporation with National Imaginary and Mapping Agency (NIMA). These improvements have resulted in a release of KMS99 and KMS2001 gravity fields. Especially, the KMS99 gravity field presented a significant improvement in comparisons with marine observations, as well as global coverage within the 82 degree parallels by adding the ERS-ERM data. The subsequent, KMS2001 only resulted in minor improved gravity field modelling. A new revised global high resolution marine gravity field KMS2002 is presented in this Combining this fine- tuning with careful edition of data are expected to improve the KMS2002 gravity field, in particularly coastal regions. Improved resolution and data coverage in particularly ice-covered regions are other improvements, which is currently under investigation. The KMS gravity field modelling approach uses the observed sea surface height anomalies relative to EGM96 and converts these into gravity using FFT techniques. For the KMS2002 focus has been on improved mapping of the intermediate wavelength (100-250 km) of the gravity field using the exact repeat mission data from the TOPEX/POSEIDON and ERS-2 satellite missions. The KMS2002 gravity field is accompanied with a high-resolution bathymetry model and a high resolution mean sea surface.
A Revolution in Mars Topography and Gravity and Magnetic Fields
NASA Technical Reports Server (NTRS)
Smith, David E.
2002-01-01
Since the arrival of the Mars Global Surveyor (MGS) at Mars in September 1997 and the subsequent beginning of observations of the planet there has been a constant stream of surprises and puzzling observations that have kept scientists looking at new 'out of the box' explanations. Observations of the shape and topography have shown a planet with one hemisphere, the southern, several kilometers higher than the north and a northern hemisphere that is so flat and smooth in places that it's difficult to imagine it was not once the bottom of an ocean. And yet the ocean idea presents some enormous difficulties. The measurements of gravity derived from the tracking of MGS have shown that several Mars volcanoes are enormous positive gravity anomalies much larger than we see on Earth and revealed small errors in the orbit of Mars and or Earth. And the magnetic field is found to be composed of a number of extremely large crustal anomalies; but as far as can be ascertained there is no main dipole field such as we have on Earth. Understanding these diverse observations and placing them in the sequence of the evolution of the planet will be a long, challenging but rewarding task.
Entropy of Egypt's virtual water trade gravity field
NASA Astrophysics Data System (ADS)
Karakatsanis, Georgios; Bierbach, Sandra
2016-04-01
's 20 trading partner countries, for a time frame from 1995 to 2013. The calculations -implemented for each country and each crop- display a network that illustrates the gravity of virtual water trade. It is then possible for us to model the entropy of Egypt's virtual water trade gravity field, via the statistical examination of its spatial fragmentation or continuity for each traded crop and for each water footprint type. Hence, with the distribution's entropy we may conduct a targeted analysis on the comparative advantages of the Egyptian agriculture. Keywords: entropy, virtual water trade, gravity model, agricultural trade, water footprint, water subsidies, comparative advantage References 1. Antonelli, Marta and Martina Sartori (2014), Unfolding the potential of the Virtual Water concept. What is still under debate?, MPRA Paper No. 60501, http://mpra.ub.uni-muenchen.de/60501/ 2. Fracasso, Andrea (2014), A gravity model of virtual water trade, Ecological Economics, Vol. 108, p. 215-228 3. Fracasso, Andrea; Martina Sartori and Stefano Schiavo (2014), Determinants of virtual water flows in the Mediterranean, MPRA Paper No. 60500, https://mpra.ub.uni-muenchen.de/60500/ 4. Yang, H. et al. (2006), Virtual water trade: An assessment of water use efficiency in the international food trade, Hydrology and Earth System Sciences 10, p. 443-454
Effective field theory of quantum gravity coupled to scalar electrodynamics
NASA Astrophysics Data System (ADS)
Ibiapina Bevilaqua, L.; Lehum, A. C.; da Silva, A. J.
2016-05-01
In this work, we use the framework of effective field theory to couple Einstein’s gravity to scalar electrodynamics and determine the renormalization of the model through the study of physical processes below Planck scale, a realm where quantum mechanics and general relativity are perfectly compatible. We consider the effective field theory up to dimension six operators, corresponding to processes involving one-graviton exchange. Studying the renormalization group functions, we see that the beta function of the electric charge is positive and possesses no contribution coming from gravitational interaction. Our result indicates that gravitational corrections do not alter the running behavior of the gauge coupling constants, even if massive particles are present.
Vector field models of modified gravity and the dark sector
NASA Astrophysics Data System (ADS)
Zuntz, J.; Zlosnik, T. G.; Bourliot, F.; Ferreira, P. G.; Starkman, G. D.
2010-05-01
We present a comprehensive investigation of cosmological constraints on the class of vector field formulations of modified gravity called generalized Einstein-aether models. Using linear perturbation theory we generate cosmic microwave background and large-scale structure spectra for general parameters of the theory, and then constrain them in various ways. We investigate two parameter regimes: a dark matter candidate where the vector field sources structure formation, and a dark energy candidate where it causes late-time acceleration. We find that the dark matter candidate does not fit the data, and identify five physical problems that can restrict this and other theories of dark matter. The dark energy candidate does fit the data, and we constrain its fundamental parameters; most notably we find that the theory’s kinetic index parameter nae can differ significantly from its ΛCDM value.
Vector field models of modified gravity and the dark sector
Zuntz, J.; Ferreira, P. G.; Zlosnik, T. G; Bourliot, F.; Starkman, G. D.
2010-05-15
We present a comprehensive investigation of cosmological constraints on the class of vector field formulations of modified gravity called generalized Einstein-aether models. Using linear perturbation theory we generate cosmic microwave background and large-scale structure spectra for general parameters of the theory, and then constrain them in various ways. We investigate two parameter regimes: a dark matter candidate where the vector field sources structure formation, and a dark energy candidate where it causes late-time acceleration. We find that the dark matter candidate does not fit the data, and identify five physical problems that can restrict this and other theories of dark matter. The dark energy candidate does fit the data, and we constrain its fundamental parameters; most notably we find that the theory's kinetic index parameter n{sub ae} can differ significantly from its {Lambda}CDM value.
Cardiopulmonary Resuscitation in Lunar and Martian Gravity Fields
NASA Technical Reports Server (NTRS)
Sarkar, Subhajit
2004-01-01
Cardiopulmonary resuscitation is required training for all astronauts. No studies thus far have investigated how chest compressions may be affected in lunar and Martian gravities. Therefore a theoretical quantitative study was performed. The maximum downward force an unrestrained person can apply is mg N (g(sub Earth) = 9.78 ms(sup -2), g(sub moon) = 1.63 ms(sup -2), g(sub Mars) = 3.69 ms(sup -2). Tsitlik et a1 (Critical Care Medicine, 1983) described the human sternal elastic force-displacement relationship (compliance) by: F = betaD(sub s) + gammaD(sub s)(sup 2) (beta = 54.9 plus or minus 29.4 Ncm(sup -1) and gamma = 10.8 plus or minus 4.1 Ncm(sup -2)). Maximum forces in the 3 gravitational fields produced by 76 kg (US population mean), 41 kg and 93 kg (masses derived from the limits for astronaut height), produced solutions for compression depth using Tsitlik equations for chests of: mean compliance (beta = 54.9, gamma = 10.8), low compliance (beta = 84.3, gamma = 14.9) and high compliance (beta = 25.5, gamma = 6.7). The mass for minimum adequate adult compression, 3.8 cm (AHA guidelines), was also calculated. 76 kg compresses the mean compliance chest by: Earth, 6.1 cm, Mars, 3.2 cm, Moon, 1.7 cm. In lunar gravity, the high compliance chest is compressed only 3.2 cm by 93 kg, 120 kg being required for 3.8 cm. In Martian gravity, on the mean chest, 93 kg compresses 3.6 cm; 99 kg is required for 3.8 cm. On Mars, the high compliance chest is compressed 4.8 cm with 76 kg, 5.5 cm with 93 kg, with 52 kg required for 3.8 cm.
Singular boundary method for global gravity field modelling
NASA Astrophysics Data System (ADS)
Cunderlik, Robert
2014-05-01
The singular boundary method (SBM) and method of fundamental solutions (MFS) are meshless boundary collocation techniques that use the fundamental solution of a governing partial differential equation (e.g. the Laplace equation) as their basis functions. They have been developed to avoid singular numerical integration as well as mesh generation in the traditional boundary element method (BEM). SBM have been proposed to overcome a main drawback of MFS - its controversial fictitious boundary outside the domain. The key idea of SBM is to introduce a concept of the origin intensity factors that isolate singularities of the fundamental solution and its derivatives using some appropriate regularization techniques. Consequently, the source points can be placed directly on the real boundary and coincide with the collocation nodes. In this study we deal with SBM applied for high-resolution global gravity field modelling. The first numerical experiment presents a numerical solution to the fixed gravimetric boundary value problem. The achieved results are compared with the numerical solutions obtained by MFS or the direct BEM indicating efficiency of all methods. In the second numerical experiments, SBM is used to derive the geopotential and its first derivatives from the Tzz components of the gravity disturbing tensor observed by the GOCE satellite mission. A determination of the origin intensity factors allows to evaluate the disturbing potential and gravity disturbances directly on the Earth's surface where the source points are located. To achieve high-resolution numerical solutions, the large-scale parallel computations are performed on the cluster with 1TB of the distributed memory and an iterative elimination of far zones' contributions is applied.
GRAIL - A Microwave Ranging Instrument to Map Out the Lunar Gravity Field
NASA Technical Reports Server (NTRS)
Enzer, Daphna G.; Wang, Rabi T.; Klipstein, William M.
2010-01-01
Gravity Recovery and Interior Laboratory, or GRAIL, is a NASA mission to map out the gravity field of the moon to an unprecedented level of detail. The instrument for this mission is based on GRACE (Gravity Recovery and Climate Experiment), an earth-orbiting mission currently mapping out the gravity field of the earth. This paper will describe the similarities and differences between these two instruments with a focus on the microwave ranging measurements used to determine the gravity parameters and the testbed built at Jet Propulsion Laboratory to demonstrate micron level ranging capability. The onboard ultrastable oscillator and RF instruments will be described and noise contributions discussed.
Measurements of the Lunar Gravity Field using a Relay Subsatellite
NASA Astrophysics Data System (ADS)
Namiki, Noriyuki; Hanada, H.; Kawano, N.; Heki, K.; Iwata, T.; Ogawa, M.; Takano, T.
1998-01-01
Estimating spherical harmonic coefficients of the lunar gravity field has been a focus in selenodesy since the late 1960s when Doppler tracking data from lunar orbiters were first analyzed. Early analyses were limited by the low degree and order of the spherical harmonic solutions, mostly due to the slow speed and low memory of the then-available computers. However, rapid development of the computational ability has increased the resolution of the lunar gravity models significantly. Doppler tracking data from lunar orbiters 1-5 and Apollo subsatellites up to degree and order 60 (Lun60d) have been analyzed. Further, the tracking data from the Clementine spacecraft launched in 1994 has been incorporated, and a model complete to degree and order 70 (GLGM-2) has been developed. These high-resolution gravity models have been used for studies of internal structure and tectonics of the Moon. Interestingly, Lun60d and GLGM-2 show significant differences in the spherical harmonic coefficients for degree greater than 20. Because the semimajor axis of Clementine's orbit is nearly twice as large as the radius of the Moon, the contribution of the new tracking data is prevailed in the low-degree field. Methodologically, the differences in the high-degree field arise from the different weighting of the tracking data and gravity model, but, in principle, these are caused by a lack of tracking data over the farside. While the current Lunar Prospector mission is expected to improve the spatial resolution over the mid- to high-latitude regions of the nearside significantly, the absence of Doppler tracking data over the farside remains unresolved. To complete the coverage of tracking over the farside, we are developing a satellite-to-satellite (four-way) Doppler tracking experiment in SELENE (the SELenological and ENgineering Explorer) project of Japan. Outline of the Mission: The SELENE is a joint project by the National Space Development Agency of Japan (NASDA) and the Institute of
The Effect of Gravity Fields on Cellular Gene Expression
NASA Technical Reports Server (NTRS)
Hughes-Fulford, Millie
1999-01-01
Early theoretical analysis predicted that microgravity effects on the isolated cell would be minuscule at the subcellular level; however, these speculations have not proven true in the real world. Astronauts experience a significant bone and muscle loss in as little as 2 weeks of spaceflight and changes are seen at the cellular level soon after exposure to microgravity. Changes in biological systems may be primarily due to the lack of gravity and the resulting loss of mechanical stress on tissues and cells. Recent ground and flight studies examining the effects of gravity or mechanical stress on cells demonstrate marked changes in gene expression when relatively small changes in mechanical forces or gravity fields were made. Several immediate early genes (IEG) like c-fos and c-myc are induced by mechanical stimulation within minutes. In contrast, several investigators report that the absence of mechanical forces during space flight result in decreased sera response element (SRE) activity and attenuation of expression of IEGs such as c-fos, c-jun and cox-2 mRNAs. Clearly, these early changes in gene expression may have long term consequences on mechanically sensitive cells. In our early studies on STS-56, we reported four major changes in the osteoblast; 1) prostaglandin synthesis in flight, 2) changes in cellular morphology, 3) altered actin cytoskeleton and 4) reduced osteoblast growth after four days exposure to microgravity. Initially, it was believed that changes in fibronectin (FN) RNA, FN protein synthesis or subsequent FN matrix formation might account for the changes in cytoskeleton and/ or reduction of growth. However our recent studies on Biorack (STS-76, STS-81 and STS-84), using ground and in-flight 1-G controls, demonstrated that fibronectin synthesis and matrix formation were normal in microgravity. In addition, in our most recent Biorack paper, our laboratory has documented that relative protein synthesis and mRNA synthesis are not changed after 24
Dark energy or modified gravity? An effective field theory approach
Bloomfield, Jolyon; Flanagan, Éanna É.; Park, Minjoon; Watson, Scott E-mail: eef3@cornell.edu E-mail: gswatson@syr.edu
2013-08-01
We take an Effective Field Theory (EFT) approach to unifying existing proposals for the origin of cosmic acceleration and its connection to cosmological observations. Building on earlier work where EFT methods were used with observations to constrain the background evolution, we extend this program to the level of the EFT of the cosmological perturbations — following the example from the EFT of Inflation. Within this framework, we construct the general theory around an assumed background which will typically be chosen to mimic ΛCDM, and identify the parameters of interest for constraining dark energy and modified gravity models with observations. We discuss the similarities to the EFT of Inflation, but we also identify a number of subtleties including the relationship between the scalar perturbations and the Goldstone boson of the spontaneously broken time translations. We present formulae that relate the parameters of the fundamental Lagrangian to the speed of sound, anisotropic shear stress, effective Newtonian constant, and Caldwell's varpi parameter, emphasizing the connection to observations. It is anticipated that this framework will be of use in constraining individual models, as well as for placing model-independent constraints on dark energy and modified gravity model building.
Performance of FFT methods in local gravity field modelling
NASA Technical Reports Server (NTRS)
Forsberg, Rene; Solheim, Dag
1989-01-01
Fast Fourier transform (FFT) methods provide a fast and efficient means of processing large amounts of gravity or geoid data in local gravity field modelling. The FFT methods, however, has a number of theoretical and practical limitations, especially the use of flat-earth approximation, and the requirements for gridded data. In spite of this the method often yields excellent results in practice when compared to other more rigorous (and computationally expensive) methods, such as least-squares collocation. The good performance of the FFT methods illustrate that the theoretical approximations are offset by the capability of taking into account more data in larger areas, especially important for geoid predictions. For best results good data gridding algorithms are essential. In practice truncated collocation approaches may be used. For large areas at high latitudes the gridding must be done using suitable map projections such as UTM, to avoid trivial errors caused by the meridian convergence. The FFT methods are compared to ground truth data in New Mexico (xi, eta from delta g), Scandinavia (N from delta g, the geoid fits to 15 cm over 2000 km), and areas of the Atlantic (delta g from satellite altimetry using Wiener filtering). In all cases the FFT methods yields results comparable or superior to other methods.
High precision radial velocities with GIANO spectra
NASA Astrophysics Data System (ADS)
Carleo, I.; Sanna, N.; Gratton, R.; Benatti, S.; Bonavita, M.; Oliva, E.; Origlia, L.; Desidera, S.; Claudi, R.; Sissa, E.
2016-06-01
Radial velocities (RV) measured from near-infrared (NIR) spectra are a potentially excellent tool to search for extrasolar planets around cool or active stars. High resolution infrared (IR) spectrographs now available are reaching the high precision of visible instruments, with a constant improvement over time. GIANO is an infrared echelle spectrograph at the Telescopio Nazionale Galileo (TNG) and it is a powerful tool to provide high resolution spectra for accurate RV measurements of exoplanets and for chemical and dynamical studies of stellar or extragalactic objects. No other high spectral resolution IR instrument has GIANO's capability to cover the entire NIR wavelength range (0.95-2.45 μm) in a single exposure. In this paper we describe the ensemble of procedures that we have developed to measure high precision RVs on GIANO spectra acquired during the Science Verification (SV) run, using the telluric lines as wavelength reference. We used the Cross Correlation Function (CCF) method to determine the velocity for both the star and the telluric lines. For this purpose, we constructed two suitable digital masks that include about 2000 stellar lines, and a similar number of telluric lines. The method is applied to various targets with different spectral type, from K2V to M8 stars. We reached different precisions mainly depending on the H-magnitudes: for H ˜ 5 we obtain an rms scatter of ˜ 10 m s-1, while for H ˜ 9 the standard deviation increases to ˜ 50 ÷ 80 m s-1. The corresponding theoretical error expectations are ˜ 4 m s-1 and 30 m s-1, respectively. Finally we provide the RVs measured with our procedure for the targets observed during GIANO Science Verification.
High precision radial velocities with GIANO spectra
NASA Astrophysics Data System (ADS)
Carleo, I.; Sanna, N.; Gratton, R.; Benatti, S.; Bonavita, M.; Oliva, E.; Origlia, L.; Desidera, S.; Claudi, R.; Sissa, E.
2016-03-01
Radial velocities (RV) measured from near-infrared (NIR) spectra are a potentially excellent tool to search for extrasolar planets around cool or active stars. High resolution infrared (IR) spectrographs now available are reaching the high precision of visible instruments, with a constant improvement over time. GIANO is an infrared echelle spectrograph at the Telescopio Nazionale Galileo (TNG) and it is a powerful tool to provide high resolution spectra for accurate RV measurements of exoplanets and for chemical and dynamical studies of stellar or extragalactic objects. No other high spectral resolution IR instrument has GIANO's capability to cover the entire NIR wavelength range (0.95-2.45 μm) in a single exposure. In this paper we describe the ensemble of procedures that we have developed to measure high precision RVs on GIANO spectra acquired during the Science Verification (SV) run, using the telluric lines as wavelength reference. We used the Cross Correlation Function (CCF) method to determine the velocity for both the star and the telluric lines. For this purpose, we constructed two suitable digital masks that include about 2000 stellar lines, and a similar number of telluric lines. The method is applied to various targets with different spectral type, from K2V to M8 stars. We reached different precisions mainly depending on the H-magnitudes: for H ˜ 5 we obtain an rms scatter of ˜ 10 m s-1, while for H ˜ 9 the standard deviation increases to ˜ 50 ÷ 80 m s-1. The corresponding theoretical error expectations are ˜ 4 m s-1 and 30 m s-1, respectively. Finally we provide the RVs measured with our procedure for the targets observed during GIANO Science Verification.
New space missions for mapping the Earth's gravity field
NASA Astrophysics Data System (ADS)
Balmino, Georges
The knowledge of the gravity field of the Earth and of an associated reference surface of altitudes (the geoid) is necessary for geodesy, for improving theories of the physics of the planet interior and for modeling the ocean circulation in absolute. This knowledge comes from several observing techniques but, although it benefited from the artificial satellite approach, it remains incomplete and erroneous in places. Within a reasonable future, a substantial improvement can only come from new space techniques. Thanks to the intense lobbying by the concerned geoscientists, the coming decade will see the advent of three techniques already proposed in the seventies and to be implemented by different space agencies; these are the CHAMP, GRACE and GOCE missions.
Cosmology from group field theory formalism for quantum gravity.
Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo
2013-07-19
We identify a class of condensate states in the group field theory (GFT) formulation of quantum gravity that can be interpreted as macroscopic homogeneous spatial geometries. We then extract the dynamics of such condensate states directly from the fundamental quantum GFT dynamics, following the procedure used in ordinary quantum fluids. The effective dynamics is a nonlinear and nonlocal extension of quantum cosmology. We also show that any GFT model with a kinetic term of Laplacian type gives rise, in a semiclassical (WKB) approximation and in the isotropic case, to a modified Friedmann equation. This is the first concrete, general procedure for extracting an effective cosmological dynamics directly from a fundamental theory of quantum geometry. PMID:23909305
NASA Astrophysics Data System (ADS)
Galanti, E.; Finocchiaro, S.; Kaspi, Y.; Iess, L.
2013-12-01
The upcoming high precision measurements of the Juno flybys around Jupiter, have the potential of improving the estimation of Jupiter's gravity field. The analysis of the Juno Doppler data will provide a very accurate reconstruction of spacial gravity variations, but these measurements will be over a limited latitudinal and longitudinal range. In order to deduce the full gravity field of Jupiter, additional information needs to be incorporated into the analysis, especially with regards to the Jovian wind structure and its depth at high latitudes. In this work we propose a new iterative method for the estimation of the Jupiter gravity field, using the Juno expected measurements, a trajectory estimation model, and an adjoint based inverse thermal wind model. Beginning with an artificial gravitational field, the trajectory estimation model together with an optimization procedure is used to obtain an initial solution of the gravitational moments. As upper limit constraints, the model applies the gravity harmonics obtained from a thermal wind model in which the winds are assumed to penetrate barotropicaly along the direction of the spin axis. The solution from the trajectory model is then used as an initial guess for the thermal wind model, and together with an adjoint optimization method, the optimal penetration depth of the winds is computed. As a final step, the gravity harmonics solution from the thermal wind model is given back to the trajectory model, along with an uncertainties estimate, to be used as constraints for a new calculation of the gravity field. We test this method for several cases, some with zonal harmonics only, and some with the full gravity field including longitudinal variations that include the tesseral harmonics as well. The results show that using this method some of the gravitational moments are fitted better to the 'observed' ones, mainly due to the fact that the thermal wind model is taking into consideration the wind structure and depth
NASA Astrophysics Data System (ADS)
Poisson, Eric; Will, Clifford M.
2014-05-01
Preface; 1. Foundations of Newtonian gravity; 2. Structure of self-gravitating bodies; 3. Newtonian orbital dynamics; 4. Minkowski spacetime; 5. Curved spacetime; 6. Post-Minkowskian theory: formulation; 7. Post-Minkowskian theory: implementation; 8. Post-Newtonian theory: fundamentals; 9. Post-Newtonian theory: system of isolated bodies; 10. Post-Newtonian celestial mechanics, astrometry and navigation; 11. Gravitational waves; 12. Radiative losses and radiation reaction; 13. Alternative theories of gravity; References; Index.
High contrast gratings for high-precision metrology
NASA Astrophysics Data System (ADS)
Kroker, Stefanie; Steiner, Stefan; Käsebier, Thomas; Kley, Ernst-Bernhard; Tünnermann, Andreas
2013-03-01
Experiments in the field of high-precision optical metrology are crucially limited by thermal noise of the optical components such as mirrors or beam splitters. Amorphous coatings stacks are found to be a main source for these thermal fluctuations. In this contribution we present approaches to realize coating free optical components based on resonant high contrast gratings (HCGs) made of crystalline silicon. It is shown that beside classical cavity mirrors the concept of HCGs can also be used for reflective cavity couplers. We compare the advantages and challenges of these HCG reflectors with distributed Bragg reflectors made of crystalline coatings for applications in optical metrology.
Strategies for high-precision Global Positioning System orbit determination
NASA Technical Reports Server (NTRS)
Lichten, Stephen M.; Border, James S.
1987-01-01
Various strategies for the high-precision orbit determination of the GPS satellites are explored using data from the 1985 GPS field test. Several refinements to the orbit determination strategies were found to be crucial for achieving high levels of repeatability and accuracy. These include the fine tuning of the GPS solar radiation coefficients and the ground station zenith tropospheric delays. Multiday arcs of 3-6 days provided better orbits and baselines than the 8-hr arcs from single-day passes. Highest-quality orbits and baselines were obtained with combined carrier phase and pseudorange solutions.
Receiver Clock Modelling for GPS-only Gravity Field Recovery from GRACE
NASA Astrophysics Data System (ADS)
Orliac, E.; Jaeggi, A.; Dach, R.; Weinbach, U.; Schoen, S.
2012-04-01
Previous results from the authors [1, 2] show that for stations connected to highly stable clocks (H-Maser), kinematic Precise Point Positioning (PPP) solutions for the height component can be highly improved. A reduction of up to 70% of the standard deviation of the kinematic position could be observed if the receiver clock is modelled with a second order polynomial instead of estimating independent epoch-wise clock corrections. Although those initial results are very promising, the applicability of such an approach is rather limited since very stable clocks are hardly portable. The only "truly" kinematic objects carrying a GPS receiver connected to a stable clock are the two GRACE satellites. In this paper we investigate the impact of the deterministic modelling of the receiver clocks in the determination of kinematic positions for the two GRACE satellites. Solutions from both contributing institutions, namely the Astronomical Institute of University of Bern and the Institut für Erdmessung of Leibniz Universität Hannover are considered. Comparisons with standard kinematic and reduced-dynamic orbit solutions will be provided and technical aspects discussed. Finally, based on one month of data, gravity fields from all kinematic solutions are derived and compared. [1] Orliac, E., R. Dach, D. Voithenleitner, U. Hugentobler, K. Wang, M. Rothacher, and D. Svehla (2011). Clock Modeling for GNSS Applications, AGU Fall Meeting 2011, San Francisco, USA, December 5-9, 2011. [2] Weinbach, U., and S. Schön (2011). GNSS receiver clock modeling when using high-precision oscillators and its impact on PPP, J. Adv. Space Res., 47(2):229-238 DOI: 10.1016/j.asr.2010.06.031.
Propagation of acoustic pulses in random gravity wave fields
NASA Astrophysics Data System (ADS)
Millet, Christophe; de La Camara, Alvaro; Lott, François
2015-11-01
A linear solution modeling the interaction between an incoming acoustic wave and a randomly perturbed atmosphere is developed, using the normal mode method. The wave mode structure is determined by a sound speed profile that is confining. The environmental uncertainty is described by a stochastic field obtained with a multiwave stochastic parameterization of gravity waves (GW). Using the propagating modes of the unperturbed atmosphere, the wave propagation problem is reduced to solving a system of ordinary differential equations. We focus on the asymptotic behavior of the transmitted waves in the weakly heterogeneous regime. In this regime, the coupling between the acoustic pulse and the randomly perturbed waveguides is weak and the propagation distance must be large enough for the wave to experience significant scattering. A general expression for the pressure far-field is derived in terms of saddle-point contributions. The saddle-points are obtained from a WKB approximation of the vertical eigenvalue problem. We present preliminary results that show how statistics of the transmitted signal are related to some eigenvalues and how an ``optimal'' GW field can trigger large deviations in the acoustic signals. The present model is used to explain the variability of infrasound signals.
High Precision Spectroscopy of Neutral Beryllium-9
NASA Astrophysics Data System (ADS)
Lau, Chui Yu; Williams, Will
2015-05-01
We report on the progress of high precision spectroscopy of the 2s2p singlet and triplet states in beryllium-9. Our goal is to improve the experimental precision on the energy levels of the 2s2p triplet J = 0, 1, and 2 states by a factor of 500, 100, and 500 respectively in order to delineate various theoretical predictions. The goal for the 2s2p singlet (J = 1) state is to improve the experimental precision on the energy level by a factor of 600 as a test of quantum electrodynamics. Our experimental setup consists of an oven capable of 1400 C that produces a collimated beam of neutral beryllium-9. The triplet states are probed with a 455 nm ECDL stabilized to a tellurium-210 line. The singlet state is probed with 235nm light from a frequency quadrupled titanium sapphire laser, where the frequency doubled light at 470 nm is stabilized to another tellurium-210 line. We also present our progress on improving the absolute accuracy of our frequency reference by using an ultrastable/low drift fiber coupled cavity.
Pitch evaluation of high-precision gratings
NASA Astrophysics Data System (ADS)
Lu, Yancong; Zhou, Changhe; Wei, Chunlong; Jia, Wei; Xiang, Xiansong; Li, Yanyang; Yu, Junjie; Li, Shubin; Wang, Jin; Liu, Kun; Wei, Shengbin
2014-11-01
Optical encoders and laser interferometers are two primary solutions in nanometer metrology. As the precision of encoders depends on the uniformity of grating pitches, it is essential to evaluate pitches accurately. We use a CCD image sensor to acquire grating image for evaluating the pitches with high precision. Digital image correlation technique is applied to filter out the noises. We propose three methods for determining the pitches of grating with peak positions of correlation coefficients. Numerical simulation indicated the average of pitch deviations from the true pitch and the pitch variations are less than 0.02 pixel and 0.1 pixel for these three methods when the ideal grating image is added with salt and pepper noise, speckle noise, and Gaussian noise. Experimental results demonstrated that our method can measure the pitch of the grating accurately, for example, our home-made grating with 20μm period has 475nm peak-to-valley uniformity with 40nm standard deviation during 35mm range. Another measurement illustrated that our home-made grating has 40nm peak-to-valley uniformity with 10nm standard deviation. This work verified that our lab can fabricate high-accuracy gratings which should be interesting for practical application in optical encoders.
High precision innovative micropump for artificial pancreas
NASA Astrophysics Data System (ADS)
Chappel, E.; Mefti, S.; Lettieri, G.-L.; Proennecke, S.; Conan, C.
2014-03-01
The concept of artificial pancreas, which comprises an insulin pump, a continuous glucose meter and a control algorithm, is a major step forward in managing patient with type 1 diabetes mellitus. The stability of the control algorithm is based on short-term precision micropump to deliver rapid-acting insulin and to specific integrated sensors able to monitor any failure leading to a loss of accuracy. Debiotech's MEMS micropump, based on the membrane pump principle, is made of a stack of 3 silicon wafers. The pumping chamber comprises a pillar check-valve at the inlet, a pumping membrane which is actuated against stop limiters by a piezo cantilever, an anti-free-flow outlet valve and a pressure sensor. The micropump inlet is tightly connected to the insulin reservoir while the outlet is in direct communication with the patient skin via a cannula. To meet the requirement of a pump dedicated to closed-loop application for diabetes care, in addition to the well-controlled displacement of the pumping membrane, the high precision of the micropump is based on specific actuation profiles that balance effect of pump elasticity in low-consumption push-pull mode.
Highly precise clocks to test fundamental physics
NASA Astrophysics Data System (ADS)
Bize, S.; Wolf, P.
2012-12-01
Highly precise atomic clocks and precision oscillators are excellent tools to test founding principles, such as the Equivalence Principle, which are the basis of modern physics. A large variety of tests are possible, including tests of Local Lorentz Invariance, of Local Position Invariance like, for example, tests of the variability of natural constants with time and with gravitation potential, tests of isotropy of space, etc. Over several decades, SYRTE has developed an ensemble of highly accurate atomic clocks and oscillators using a large diversity of atomic species and methods. The SYRTE clock ensemble comprises hydrogen masers, Cs and Rb atomic fountain clocks, Sr and Hg optical lattice clocks, as well as ultra stable oscillators both in the microwave domain (cryogenic sapphire oscillator) and in the optical domain (Fabry-Perot cavity stabilized ultra stable lasers) and means to compare these clocks locally or remotely (fiber links in the RF and the optical domain, femtosecond optical frequency combs, satellite time and frequency transfer methods). In this paper, we list the fundamental physics tests that have been performed over the years with the SYRTE clock ensemble. Several of these tests are done thanks to the collaboration with partner institutes including the University of Western Australia, the Max Planck Institut für Quantenoptik in Germany, and others.
Highly Parallel, High-Precision Numerical Integration
Bailey, David H.; Borwein, Jonathan M.
2005-04-22
This paper describes a scheme for rapidly computing numerical values of definite integrals to very high accuracy, ranging from ordinary machine precision to hundreds or thousands of digits, even for functions with singularities or infinite derivatives at endpoints. Such a scheme is of interest not only in computational physics and computational chemistry, but also in experimental mathematics, where high-precision numerical values of definite integrals can be used to numerically discover new identities. This paper discusses techniques for a parallel implementation of this scheme, then presents performance results for 1-D and 2-D test suites. Results are also given for a certain problem from mathematical physics, which features a difficult singularity, confirming a conjecture to 20,000 digit accuracy. The performance rate for this latter calculation on 1024 CPUs is 690 Gflop/s. We believe that this and one other 20,000-digit integral evaluation that we report are the highest-precision non-trivial numerical integrations performed to date.
An Exact Solution of Einstein-Maxwell Gravity Coupled to a Scalar Field
NASA Technical Reports Server (NTRS)
Turyshev, S. G.
1995-01-01
The general solution to low-energy string theory representing static spherically symmetric solution of the Einstein-Maxwell gravity with a massless scalar field has been found. Some of the partial cases appear to coincide with known solutions to black holes, naked singularities, and gravity and electromagnetic fields.
Estimation of the Earth's gravity field by combining normal equation matrices from GRACE and SLR
NASA Astrophysics Data System (ADS)
Haberkorn, Christoph; Bloßfeld, Mathis; Bouman, Johannes
2014-05-01
Since 2002, GRACE observes the Earth's gravity field with a spatial resolution up to 150 km. The main goal of this mission is the determination of temporal variations in the Earth's gravity field to detect mass displacements. The GRACE mission consists of two identical satellites, which observe the range along the line of sight of both satellites. GRACE observations can be linked with the Earth's gravitational potential, which is expressed in terms of spherical harmonics for global solutions. However, the estimation of low degree coefficients is difficult with GRACE. In contrast to gravity field missions, which observe the gravity field with high spectral resolution, SLR data allow to estimate the lower degree coefficients. Therefore, the coefficient C20 is often replaced by a value derived from Satellite Laser Ranging (SLR). Instead of replacing C20, it can be determined consistently by a combined estimation using GRACE and SLR data. We compute monthly normal equation (NEQ) matrices for GRACE and SLR. Coefficients from monthly GRACE gravity field models of different institutions (Center for Space Research (CSR), USA, Geoforschungszentrum Potsdam (GFZ), Germany and Jet Propulsion Laboratory (JPL), USA) and coefficients from monthly gravity field models of our SLR processing are then combined using the NEQ matrices from both techniques. We will evaluate several test scenarios with gravity field models from different institutions and with different set ups for the SLR NEQ matrices. The effect of the combination on the estimated gravity field will be analysed and presented.
Future missions for observing Earth's changing gravity field: a closed-loop simulation tool
NASA Astrophysics Data System (ADS)
Visser, P. N.
2008-12-01
The GRACE mission has successfully demonstrated the observation from space of the changing Earth's gravity field at length and time scales of typically 1000 km and 10-30 days, respectively. Many scientific communities strongly advertise the need for continuity of observing Earth's gravity field from space. Moreover, a strong interest is being expressed to have gravity missions that allow a more detailed sampling of the Earth's gravity field both in time and in space. Designing a gravity field mission for the future is a complicated process that involves making many trade-offs, such as trade-offs between spatial, temporal resolution and financial budget. Moreover, it involves the optimization of many parameters, such as orbital parameters (height, inclination), distinction between which gravity sources to observe or correct for (for example are gravity changes due to ocean currents a nuisance or a signal to be retrieved?), observation techniques (low-low satellite-to-satellite tracking, satellite gravity gradiometry, accelerometers), and satellite control systems (drag-free?). A comprehensive tool has been developed and implemented that allows the closed-loop simulation of gravity field retrievals for different satellite mission scenarios. This paper provides a description of this tool. Moreover, its capabilities are demonstrated by a few case studies. Acknowledgments. The research that is being done with the closed-loop simulation tool is partially funded by the European Space Agency (ESA). An important component of the tool is the GEODYN software, kindly provided by NASA Goddard Space Flight Center in Greenbelt, Maryland.
Correcting for Glacial Isostatic Adjustment in the static gravity field in northwestern Europe
NASA Astrophysics Data System (ADS)
Root, Bart; van der Wal, Wouter; Ebbing, Jörg; Novák, Pavel; Vermeersen, Bert
2014-05-01
Around 20,000 years ago, large ice sheets covered the surface of the Earth. In the late-Pleistocene large parts of these ice sheets melted, causing the crustal surface of Earth to relax. This process is called Glacial Isostatic Adjustment (GIA) and can be observed by sea level indicators, GPS uplift rates, and gravity changes. Several studies have tried to observe GIA in the static gravity field; however, they used simplistic models for the lithosphere. This study has two aims: i) to find out if it is possible to retrieve the GIA gravity signal with current knowledge of the density distribution of the lithosphere and ii) to see what the effect is on geophysical models that are constrained by gravity after correcting for the GIA gravity signal. To remove lithospheric density anomalies from the static gravity field, a spherical harmonic forward gravity field model is used, which calculates the gravity signal of a layered Earth. We found that is not possible to separate the GIA gravity effect from the uncertain density anomalies and boundary geometries in the crust and upper mantle. Therefore, we propose to correct the static gravity field with results from a numerical GIA model. Unknown upper mantle and lower mantle viscosities in such a model are estimated using local GIA observations, and using the global ice loading model history, ICE-5G. The best fitting models produce a free-air gravity anomaly of -28.4 +/-1.5 mGal (peak) and a remaining uplift of 240 m. When gravity observations and topography are corrected for GIA in geophysical modeling, this results in significant changes in the geometry or density of lithospheric structures, up to 30 km for a lithospheric model in Fennoscandia. The correction will also have an impact on the understanding of density anomalies of the lithosphere in other areas where GIA gravity anomalies are significant, such as North America, Greenland, and Antarctica.
Gravity capillary waves in fluid layers under normal electric fields.
Papageorgiou, Demetrios T; Petropoulos, Peter G; Vanden-Broeck, Jean-Marc
2005-11-01
We study the formation and dynamics of interfacial waves on a perfect dielectric ideal fluid layer of finite depth, wetting a solid wall, when the region above the fluid is hydrodynamically passive but has constant permittivity, for example, air. The wall is held at a constant electric potential and a second electrode having a different potential is placed parallel to the wall and infinitely far from it. In the unperturbed state the interface is flat and the normal horizontally uniform electric field is piecewise constant in the liquid and air. We derive a system of long wave nonlinear evolution equations valid for interfacial amplitudes as large as the unperturbed layer depth and which retain gravity, surface tension and electric field effects. It is shown that for given physical parameters there exists a critical value of the voltage potential difference between electrodes, below which the system is dispersive and above which a band of unstable waves is possible centered around a finite wavenumber. In the former case nonlinear traveling waves are calculated and their stability is studied, while in the latter case the instability leads to thinning of the layer with the interface touching down in finite time. A similarity solution of the second kind is found to be dominant near the singularity, and the scaling exponents are determined using analysis and computations. PMID:16383611
Time-dependent scalar fields in modified gravities in a stationary spacetime
NASA Astrophysics Data System (ADS)
Zhong, Yi; Gu, Bao-Ming; Wei, Shao-Wen; Liu, Yu-Xiao
2016-07-01
Most no-hair theorems involve the assumption that the scalar field is independent of time. Recently in Graham and Jha (Phys. Rev. D90: 041501, 2014) the existence of time-dependent scalar hair outside a stationary black hole in general relativity was ruled out. We generalize this work to modified gravities and non-minimally coupled scalar field with the additional assumption that the spacetime is axisymmetric. It is shown that in higher-order gravity such as metric f( R) gravity the time-dependent scalar hair does not exist. In Palatini f( R) gravity and the non-minimally coupled case the time-dependent scalar hair may exist.
The GEM (Gravity-Electro-Magnetism) Theory of Field Unification: Experimental Progress
NASA Astrophysics Data System (ADS)
Brandenburg, J. E.
2006-01-01
Experimental progress on the GEM (Gravity-Electro-Magnetism) unification theory is summarized as applied to human flight and dynamically modified gravity fields and waves. A VBE (``Vacuum Bernoulli Equation'') is derived. This shows Gravitational energy density to be equated to an EM dynamic pressure that is quadratic in the local Poynting Flux: g2/(2π G) + S2/(c2 L)= Constant, where g and S are the local gravity and Poynting vector magnitudes, respectively, and where L is the Lagrangian density of the vacuum EM field. The VBE can be used to understand anomalous weight loss reported in gyroscope experiments and to understand possible gravity modification for human flight. The GEM gravity modification theory is extended to predict a VHE (Vacuum Hall Effect). Methods for creating dynamic gravity fields via VHE for production and detection of high frequency gravity fields involve electric quadrapole fields normal to static magnetic fields. Earlier experiments at 400Hz had seen lifting effects, however, only when a certain field threshold was crossed. An experiment was performed using 60Hz three phase rotating fields but no effects were seen in low frequency fields thus it appears threshold effects in field intensity and frequency may have been seen.
New High Precision Linelist of H_3^+
NASA Astrophysics Data System (ADS)
Hodges, James N.; Perry, Adam J.; Markus, Charles; Jenkins, Paul A., II; Kocheril, G. Stephen; McCall, Benjamin J.
2014-06-01
As the simplest polyatomic molecule, H_3^+ serves as an ideal benchmark for theoretical predictions of rovibrational energy levels. By strictly ab initio methods, the current accuracy of theoretical predictions is limited to an impressive one hundredth of a wavenumber, which has been accomplished by consideration of relativistic, adiabatic, and non-adiabatic corrections to the Born-Oppenheimer PES. More accurate predictions rely on a treatment of quantum electrodynamic effects, which have improved the accuracies of vibrational transitions in molecular hydrogen to a few MHz. High precision spectroscopy is of the utmost importance for extending the frontiers of ab initio calculations, as improved precision and accuracy enable more rigorous testing of calculations. Additionally, measuring rovibrational transitions of H_3^+ can be used to predict its forbidden rotational spectrum. Though the existing data can be used to determine rotational transition frequencies, the uncertainties are prohibitively large. Acquisition of rovibrational spectra with smaller experimental uncertainty would enable a spectroscopic search for the rotational transitions. The technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy, or NICE-OHVMS has been previously used to precisely and accurately measure transitions of H_3^+, CH_5^+, and HCO^+ to sub-MHz uncertainty. A second module for our optical parametric oscillator has extended our instrument's frequency coverage from 3.2-3.9 μm to 2.5-3.9 μm. With extended coverage, we have improved our previous linelist by measuring additional transitions. O. L. Polyansky, et al. Phil. Trans. R. Soc. A (2012), 370, 5014--5027. J. Komasa, et al. J. Chem. Theor. Comp. (2011), 7, 3105--3115. C. M. Lindsay, B. J. McCall, J. Mol. Spectrosc. (2001), 210, 66--83. J. N. Hodges, et al. J. Chem. Phys. (2013), 139, 164201.
Fiber Scrambling for High Precision Spectrographs
NASA Astrophysics Data System (ADS)
Kaplan, Zachary; Spronck, J. F. P.; Fischer, D.
2011-05-01
The detection of Earth-like exoplanets with the radial velocity method requires extreme Doppler precision and long-term stability in order to measure tiny reflex velocities in the host star. Recent planet searches have led to the detection of so called "super-Earths” (up to a few Earth masses) that induce radial velocity changes of about 1 m/s. However, the detection of true Earth analogs requires a precision of 10 cm/s. One of the largest factors limiting Doppler precision is variation in the Point Spread Function (PSF) from observation to observation due to changes in the illumination of the slit and spectrograph optics. Thus, this stability has become a focus of current instrumentation work. Fiber optics have been used since the 1980's to couple telescopes to high-precision spectrographs, initially for simpler mechanical design and control. However, fiber optics are also naturally efficient scramblers. Scrambling refers to a fiber's ability to produce an output beam independent of input. Our research is focused on characterizing the scrambling properties of several types of fibers, including circular, square and octagonal fibers. By measuring the intensity distribution after the fiber as a function of input beam position, we can simulate guiding errors that occur at an observatory. Through this, we can determine which fibers produce the most uniform outputs for the severest guiding errors, improving the PSF and allowing sub-m/s precision. However, extensive testing of fibers of supposedly identical core diameter, length and shape from the same manufacturer has revealed the "personality” of individual fibers. Personality describes differing intensity patterns for supposedly duplicate fibers illuminated identically. Here, we present our results on scrambling characterization as a function of fiber type, while studying individual fiber personality.
High precision kinematic surveying with laser scanners
NASA Astrophysics Data System (ADS)
Gräfe, Gunnar
2007-12-01
The kinematic survey of roads and railways is becoming a much more common data acquisition method. The development of the Mobile Road Mapping System (MoSES) has reached a level that allows the use of kinematic survey technology for high precision applications. The system is equipped with cameras and laser scanners. For high accuracy requirements, the scanners become the main sensor group because of their geometric precision and reliability. To guarantee reliable survey results, specific calibration procedures have to be applied, which can be divided into the scanner sensor calibration as step 1, and the geometric transformation parameter estimation with respect to the vehicle coordinate system as step 2. Both calibration steps include new methods for sensor behavior modeling and multisensor system integration. To verify laser scanner quality of the MoSES system, the results are regularly checked along different test routes. It can be proved that a standard deviation of 0.004 m for height of the scanner points will be obtained, if the specific calibrations and data processing methods are applied. This level of accuracy opens new possibilities to serve engineering survey applications using kinematic measurement techniques. The key feature of scanner technology is the full digital coverage of the road area. Three application examples illustrate the capabilities. Digital road surface models generated from MoSES data are used, especially for road surface reconstruction tasks along highways. Compared to static surveys, the method offers comparable accuracy at higher speed, lower costs, much higher grid resolution and with greater safety. The system's capability of gaining 360 profiles leads to other complex applications like kinematic tunnel surveys or the precise analysis of bridge clearances.
High precision optical surface metrology using deflectometry
NASA Astrophysics Data System (ADS)
Huang, Run
Software Configurable Optical Test System (SCOTS) developed at University of Arizona is a highly efficient optical metrology technique based on the principle of deflectometry, which can achieve comparable accuracy with interferometry but with low-cost hardware. In a SCOTS test, an LCD display is used to generate structured light pattern to illuminate the test optics and the reflected light is captured by a digital camera. The surface slope of test optics is determined by triangulation of the display pixels, test optics, and the camera. The surface shape is obtained by the integration of the slopes. Comparing to interferometry, which has long served as an accurate non-contact optical metrology technology, SCOTS overcomes the limitation of dynamic range and sensitivity to environment. It is able to achieve high dynamic range slope measurement without requiring null optics. In this dissertation, the sensitivity and performance of the test system have been analyzed comprehensively. Sophisticated calibrations of system components have been investigated and implemented in different metrology projects to push this technology to a higher accuracy including low-order terms. A compact on-axis SCOTS system lowered the testing geometry sensitivity in the metrology of 1-meter highly aspheric secondary mirror of Large Binocular Telescope. Sub-nm accuracy was achieved in testing a high precision elliptical X-ray mirror by using reference calibration. A well-calibrated SCOTS was successfully constructed and is, at the time of writing this dissertation, being used to provide surface metrology feedback for the fabrication of the primary mirror of Daniel K. Inouye Solar Telescope which is a 4-meter off-axis parabola with more than 8 mm aspherical departure.
Time-variable gravity fields derived from GPS tracking of Swarm
NASA Astrophysics Data System (ADS)
Bezděk, Aleš; Sebera, Josef; Teixeira da Encarnação, João; Klokočník, Jaroslav
2016-06-01
Since 2002 Gravity Recovery and Climate Experiment (GRACE) provides monthly gravity fields from K-band ranging (KBR) between two GRACE satellites. These KBR gravity monthlies have enabled the global observation of time-varying Earth mass signal at a regional scale (about 400 km resolution). Apart from KBR, monthly gravity solutions can be computed from onboard GPS data. The newly reprocessed GPS monthlies from 13 yr of GRACE data are shown to yield correct time-variable gravity signal (seasonality, trends, interannual variations) at a spatial resolution of 1300 km (harmonic degree 15). We show that GPS fields from new Swarm mission are of similar quality as GRACE GPS monthlies. Thus, Swarm GPS monthlies represent new and independent source of information on time-variable gravity, and, although with lower resolution and accuracy, they can be used for its monitoring, particularly if GRACE KBR/GPS data become unavailable before GRACE Follow-On is launched (2017 August).
Time-variable gravity fields derived from GPS tracking of Swarm
NASA Astrophysics Data System (ADS)
Bezděk, Aleš; Sebera, Josef; da Encarnação, João Teixeira; Klokočník, Jaroslav
2016-03-01
Since 2002 Gravity Recovery and Climate Experiment (GRACE) provides monthly gravity fields from K-band ranging (KBR) between two GRACE satellites. These KBR gravity monthlies have enabled the global observation of time-varying Earth mass signal at a regional scale (about 400 km resolution). Apart from KBR, monthly gravity solutions can be computed from onboard GPS data. The newly reprocessed GPS monthlies from 13 years of GRACE data are shown to yield correct time-variable gravity signal (seasonality, trends, interannual variations) at a spatial resolution of 1300 km (harmonic degree 15). We show that GPS fields from new Swarm mission are of similar quality as GRACE GPS monthlies. Thus Swarm GPS monthlies represent new and independent source of information on time-variable gravity, and, although with lower resolution and accuracy, they can be used for its monitoring, particularly if GRACE KBR/GPS data becomes unavailable before GRACE Follow-On is launched (August 2017).
The National Geodetic Survey absolute gravity program
NASA Astrophysics Data System (ADS)
Peter, George; Moose, Robert E.; Wessells, Claude W.
1989-03-01
The National Geodetic Survey absolute gravity program will utilize the high precision afforded by the JILAG-4 instrument to support geodetic and geophysical research, which involves studies of vertical motions, identification and modeling of other temporal variations, and establishment of reference values. The scientific rationale of these objectives is given, the procedures used to collect gravity and environmental data in the field are defined, and the steps necessary to correct and remove unwanted environmental effects are stated. In addition, site selection criteria, methods of concomitant environmental data collection and relative gravity observations, and schedule and logistics are discussed.
Injection molded high precision freeform optics for high volume applications
NASA Astrophysics Data System (ADS)
Dick, Lars; Risse, Stefan; Tünnermann, Andreas
2012-03-01
Injection molding offers a cost-efficient method for manufacturing high precision plastic optics for high-volume applications. Optical surfaces such as flats, spheres and also aspheres are meanwhile state-of-the-art in the field of plastic optics. The demand for surfaces without symmetric properties, commonly referred to as freeform surfaces, continues to rise. Currently, new mathematical approaches are under consideration which allow for new complex optical designs. Such novel optical designs strongly encourage development of new manufacturing methods. Specifically, new surface descriptions without an axis of symmetry, new ultra precision machining methods and non-symmetrical shrinkage compensation strategies have to be developed to produce freeform optical surfaces with high precision for high-volume applications. This paper will illustrate a deterministic and efficient way for the manufacturing of ultra precision injection molding tool inserts with submicron precision and show the manufacturing of replicated freeform surfaces with micrometer range shape accuracy at diameters up to 40 mm with a surface roughness of approximately 2 nm.
Thermal design and flight validation for high precision camera
NASA Astrophysics Data System (ADS)
Meng, Henghui; Sun, Lixia; Zhang, Chuanqiang; Geng, Liyin
2015-10-01
High precision camera, designed for advanced optical system, with a wide field of vision, high resolution and fast response, has a wild range of applications. As the main payload for spacecraft, the optical remote sensor is mounted exposed to the space, which means it should have a reliable optical performance in harsh space environment during lifetime. Because of the special optical characteristic, imaging path should be accurate, and less thermal deformation for the optical parts is required in the working process, so the high precision camera has a high level requirement for temperature. High resolution space camera is generally required to own the capability of adapting to space thermal environments. The flexible satellite's change of rolling attitude affects the temperature distribution of the camera and makes a difference to optical performance. The thermal control design of space camera is presented, and analysis the temperature data in orbit to prove the thermal design correct. It is proved that the rolling attitude has more influence on outer parts and less influence on inner parts, and active thermal control can weaken the influence of rolling attitude.
Recent results on modelling the spatial and temporal structure of the Earth's gravity field.
Moore, P; Zhang, Q; Alothman, A
2006-04-15
The Earth's gravity field plays a central role in sea-level change. In the simplest application a precise gravity field will enable oceanographers to capitalize fully on the altimetric datasets collected over the past decade or more by providing a geoid from which absolute sea-level topography can be recovered. However, the concept of a static gravity field is now redundant as we can observe temporal variability in the geoid due to mass redistribution in or on the total Earth system. Temporal variability, associated with interactions between the land, oceans and atmosphere, can be investigated through mass redistributions with, for example, flow of water from the land being balanced by an increase in ocean mass. Furthermore, as ocean transport is an important contributor to the mass redistribution the time varying gravity field can also be used to validate Global Ocean Circulation models. This paper will review the recent history of static and temporal gravity field recovery, from the 1980s to the present day. In particular, mention will be made of the role of satellite laser ranging and other space tracking techniques, satellite altimetry and in situ gravity which formed the basis of gravity field determination until the last few years. With the launch of Challenging Microsatellite Payload and Gravity and Circulation Experiment (GRACE) our knowledge of the spatial distribution of the Earth's gravity field is taking a leap forward. Furthermore, GRACE is now providing insight into temporal variability through 'monthly' gravity field solutions. Prior to this data we relied on satellite tracking, Global Positioning System and geophysical models to give us insight into the temporal variability. We will consider results from these methodologies and compare them to preliminary results from the GRACE mission. PMID:16537153
The gravity field and interior structure of Enceladus.
Iess, L; Stevenson, D J; Parisi, M; Hemingway, D; Jacobson, R A; Lunine, J I; Nimmo, F; Armstrong, J W; Asmar, S W; Ducci, M; Tortora, P
2014-04-01
The small and active Saturnian moon Enceladus is one of the primary targets of the Cassini mission. We determined the quadrupole gravity field of Enceladus and its hemispherical asymmetry using Doppler data from three spacecraft flybys. Our results indicate the presence of a negative mass anomaly in the south-polar region, largely compensated by a positive subsurface anomaly compatible with the presence of a regional subsurface sea at depths of 30 to 40 kilometers and extending up to south latitudes of about 50°. The estimated values for the largest quadrupole harmonic coefficients (10(6)J2 = 5435.2 ± 34.9, 10(6)C22 = 1549.8 ± 15.6, 1σ) and their ratio (J2/C22 = 3.51 ± 0.05) indicate that the body deviates mildly from hydrostatic equilibrium. The moment of inertia is around 0.335MR(2), where M is the mass and R is the radius, suggesting a differentiated body with a low-density core. PMID:24700854
Aerodynamic window for high precision laser drilling
NASA Astrophysics Data System (ADS)
Sommer, Steffen; Dausinger, Friedrich; Berger, Peter; Hügel, Helmuth
2007-05-01
High precision laser drilling is getting more and more interesting for industry. Main applications for such holes are vaporising and injection nozzles. To enhance quality, the energy deposition has to be accurately defined by reducing the pulse duration and thereby reducing the amount of disturbing melting layer. In addition, an appropriate processing technology, for example the helical drilling, yields holes in steel at 1 mm thickness and diameters about 100 μm with correct roundness and thin recast layers. However, the processing times are still not short enough for industrial use. Experiments have shown that the reduction of the atmospheric pressure down to 100 hPa enhances the achievable quality and efficiency, but the use of vacuum chambers in industrial processes is normally quite slow and thus expensive. The possibility of a very fast evacuation is given by the use of an aerodynamic window, which produces the pressure reduction by virtue of its fluid dynamic features. This element, based on a potential vortex, was developed and patented as out-coupling window for high power CO II lasers by IFSW 1, 2, 3. It has excellent tightness and transmission properties, and a beam deflection is not detectable. The working medium is compressed air, only. For the use as vacuum element for laser drilling, several geometrical modifications had to be realized. The prototype is small enough to be integrated in a micromachining station and has a low gas flow. During the laser pulse, which is focussed through the potential flow, a very high fluence is reached, but the measurements have not shown any beam deflection or focal shifting. The evacuation time is below 300 ms so that material treatment with changing ambient pressure is possible, too. Experimental results have proven the positive effect of the reduced ambient pressure on the drilling process for the regime of nano- and picosecond laser pulses. Plasma effects are reduced and, because of the less absorption, the
The mass, gravity field, and ephemeris of Mercury
NASA Technical Reports Server (NTRS)
Anderson, John D.; Esposito, Pasquale B.; Lau, Eunice L.; Trager, Gayle B.; Colombo, Giuseppe
1987-01-01
In the present gravity analysis of Mariner 10/Deep Space Network radio Doppler and range data for Mercury encounters in March 1974 and March 1975, a combined least-squares fit to the Doppler data has determined two second-degree gravity harmonics that are referred to a 2439-km equatorial radius. It is noted that the 1-sigma error limits on the gravity results encompass the possibility that harmonics other than J2 and C22 significantly differ from zero. The Deep Space Network radio range data obtained with Mariner 10 are primarily applicable to such improvements of Mercury's ephemeris as the more precise determination of perihelion precession.
The delineation and interpretation of the earth's gravity field
NASA Technical Reports Server (NTRS)
Marsh, Bruce D.
1989-01-01
In an attempt to understand the mechanical interaction of a growing lithosphere containing fracture zones with small and large scale mantle convection, which gives rise to geoid anomalies in oceanic regions, a series of fluid dynamical experiments is in progress to investigate: (1) the influence of lithosphere structure, fluid depth and viscosity field on the onset, scale, and evolution of sublithospheric convection; (2) the role of this convection in determining the rate of growth of lithosphere, especially in light of the flattening of the lithosphere bathymetry and heat flow at late times; and (3) combining the results of both numerical and laboratory experiments to decide the dominate factors in producing geoid anomalies in oceanic regions through the thermo-mechanical interaction of the lithosphere and subjacent mantle. The clear existence of small scale convection associated with a downward propagating solidification front (i.e., the lithosphere) and a larger scale flow associated with a discontinuous upward heat flux (i.e., a fracture zone) has been shown. The flows exist simultaneously and each may have a significant role in deciding the thermal evolution of the lithosphere and in understanding the relation of shallow mantle convection to deep mantle convection. This overall process is reflected in the geoid, gravity, and topographic anomalies in the north-central Pacific. These highly correlated fields of intermediate wavelength (approx. 200 to 2000 km) show isostatic compensation by a thin lithosphere for shorter (less than or equal to approx. 500 km), but not the longer, wavelengths. The ultimate, dynamic origin of this class of anomalies is being investigated.
Gravity Field Recovery from the Cartwheel Formation by the Semi-analytical Approach
NASA Astrophysics Data System (ADS)
Li, Huishu; Reubelt, Tilo; Antoni, Markus; Sneeuw, Nico; Zhong, Min; Zhou, Zebing
2016-04-01
Past and current gravimetric satellite missions have contributed drastically to our knowledge of the Earth's gravity field. Nevertheless, several geoscience disciplines push for even higher requirements on accuracy, homogeneity and time- and space-resolution of the Earth's gravity field. Apart from better instruments or new observables, alternative satellite formations could improve the signal and error structure. With respect to other methods, one significant advantage of the semi-analytical approach is its effective pre-mission error assessment for gravity field missions. The semi-analytical approach builds a linear analytical relationship between the Fourier spectrum of the observables and the spherical harmonic spectrum of the gravity field. The spectral link between observables and gravity field parameters is given by the transfer coefficients, which constitutes the observation model. In connection with a stochastic model, it can be used for pre-mission error assessment of gravity field mission. The cartwheel formation is formed by two satellites on elliptic orbits in the same plane. The time dependent ranging will be considered in the transfer coefficients via convolution including the series expansion of the eccentricity functions. The transfer coefficients are applied to assess the error patterns, which are caused by different orientation of the cartwheel for range-rate and range acceleration. This work will present the isotropy and magnitude of the formal errors of the gravity field coefficients, for different orientations of the cartwheel.
GRAIL gravity field determination using the Celestial Mechanics Approach - status report
NASA Astrophysics Data System (ADS)
Bertone, S.; Arnold, D.; Jäggi, A.; Beutler, G.; Mervart, L.
2015-10-01
The NASA mission GRAIL (Gravity Recovery And Interior Laboratory [1]) inherits its concept from the GRACE (Gravity Recovery And Climate Experiment)mission to determine the gravity field of the Moon. The use of inter-satellite Ka-band range-rate (KBRR) observations enables data aquisition even when the spacecraft are not tracked from the Earth [2]. The data allows for a highly accurate estimation of the lunar gravity field on both sides of the Moon, which is crucial to improve the understanding of its internal structure and thermal evolution. In this presentation we dis- cuss our latest GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach using the Bernese Software.
High-precision ground-based photometry of exoplanets
NASA Astrophysics Data System (ADS)
de Mooij, Ernst J. W.; Jayawardhana, Ray
2013-04-01
High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana). The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice:
A 10 km-resolution synthetic Venus gravity field model based on topography
NASA Astrophysics Data System (ADS)
Li, Fei; Yan, Jianguo; Xu, Luyuan; Jin, Shuanggen; Rodriguez, J. Alexis P.; Dohm, James H.
2015-02-01
A high resolution gravity field model is extremely important in the exploration of Venus. In this paper, we present a 3-dimensional Venus gravity field VGM2014 constructed by using the latest gravity and topography models, residual terrain model (RTM) and the Airy-Heiskanen isostatic compensation model. The VGM2014 is the first 10 km scale Venus gravity field model; the final results are representations of the 3-dimensional surface gravity accelerations and gravity disturbances for Venus. We found that the optimal global compensation depth of Venus is about 60 km, and the crustal density is potentially less than the commonly accepted value of 2700-2900 kg m-3. This model will be potentially beneficial for the precise orbit determination and landing navigation of spacecraft around Venus, and may be utilized as a priori model for Venus gravity field simulation and inversion studies. The VGM2014 does not incorporate direct gravity information beyond degree 70 and it is not recommended for small-scale geophysical interpretation.
Bubble Detachment in Variable Gravity Under the Influence of Electric Fields
NASA Technical Reports Server (NTRS)
Herman, Cila; Chang, Shinan; Iacona, Estelle
2002-01-01
The objective of the research is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Situations were considered with both uniform and nonuniform electric fields. Bubble formation and detachment were visualized in terrestrial gravity as well as for several levels of reduced gravity (lunar, martian and microgravity) using a high-speed video camera. Bubble volume, dimensions and contact angles at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment in an initially uniform electric field was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. The results of the study indicate that the level of gravity and the electric field magnitude significantly affect bubble behavior as well as shape, volume and dimensions.
In-depth Analysis and Evaluation of GSFC GRAIL Gravity Field Models
NASA Astrophysics Data System (ADS)
Goossens, S. J.; Lemoine, F. G.; Mazarico, E.; Rowlands, D. D.; Sabaka, T. J.; Nicholas, J. B.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.
2012-12-01
The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were launched on September 10, 2011, and conducted their primary mapping mission from March 1 until May 29, 2012. Primary mission data have been processed at NASA/GSFC using the GEODYN software, resulting in high-resolution (degree and order 420 in spherical harmonics) gravity field models of high accuracy. Here, we present an in-depth analysis of the GRAIL gravity field determination at GSFC. We especially focus on the Ka-band range-rate (KBRR) data, and on the use of GRAIL gravity models on tracking data of other spacecraft. We also investigate to what extent the addition of other tracking data (especially Lunar Prospector data) can help to further enhance the lunar gravity field models. Since the orbit of the GRAIL spacecraft was not constant during the primary mission and sensibly elliptical at the beginning and end of the science phase (20 by 80 kilometers, in altitude above lunar surface), there are areas on the Moon where the spacecraft altitude was relatively low compared to the global average. This results in remaining signal in especially the KBRR data that is not necessarily captured by the global models expressed in spherical harmonics. We explore the performance of the GRAIL gravity field models over certain regions with low-altitude KBRR data, and we also investigate analysis methods to estimate local adjustments to the gravity field models.
NASA Astrophysics Data System (ADS)
Krauss, S.; Klinger, B.; Baur, O.; Mayr-Guerr, T.
2015-10-01
We present an updated version of the lunar gravity field model GrazLGM300a,b [1,2] based on intersatellite Ka-band ranging (KBR) observations collected by the GRAIL mission. We propose to exploit the ranging measurements by an integral equation approach using short orbital arcs [4].Compared to the predecessor model we increase the spectral resolution to degree and order 450 and refined the parameterization. Validation shows that the applied technique is well suited to recover the lunar gravity field.
Improved gravity field of the moon from lunar prospector
Konopliv; Binder; Hood; Kucinskas; Sjogren; Williams
1998-09-01
An improved gravity model from Doppler tracking of the Lunar Prospector (LP) spacecraft reveals three new large mass concentrations (mascons) on the nearside of the moon beneath the impact basins Mare Humboltianum, Mendel-Ryberg, and Schiller-Zucchius, where the latter basin has no visible mare fill. Although there is no direct measurement of the lunar farside gravity, LP partially resolves four mascons in the large farside basins of Hertzsprung, Coulomb-Sarton, Freundlich-Sharonov, and Mare Moscoviense. The center of each of these basins contains a gravity maximum relative to the surrounding basin. The improved normalized polar moment of inertia (0.3932 +/- 0.0002) is consistent with an iron core with a radius of 220 to 450 kilometers. PMID:9727968
An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data
NASA Astrophysics Data System (ADS)
Konopliv, Alex S.; Park, Ryan S.; Folkner, William M.
2016-08-01
The Mars gravity field resolution is mostly determined by the lower altitude Mars Reconnaissance Orbiter (MRO) tracking data. With nearly four years of additional MRO and Mars Odyssey tracking data since the last JPL released gravity field MRO110C and lander tracking from the MER Opportunity Rover, the gravity field and orientation of Mars have been improved. The new field, MRO120D, extends the maximum spherical harmonic degree slightly to 120, improves the determination of the higher degree coefficients as demonstrated by improved correlation with topography and reduces the uncertainty in the corresponding Mars orientation parameters by up to a factor of two versus previously combined gravity and orientation solutions. The new precession solution is ψ˙ = - 7608.3 ± 2.1 mas / yr and is consistent with previous results but with a reduced uncertainty by 40%. The Love number solution, k2 = 0.169 ± 0.006, also shows a similar result to previous studies.
Bubble Formation and Detachment in Reduced Gravity Under the Influence of Electric Fields
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Chang, Shinan
2002-01-01
The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Both uniform and nonuniform electric field configurations were considered. Bubble formation and detachment were recorded and visualized in reduced gravity (corresponding to gravity levels on Mars, on the Moon as well as microgravity) using a high-speed video camera. Bubble volume, dimensions and contact angle at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. Measured data and model predictions show good agreement and indicate that the level of gravity and the electric field magnitude significantly affect bubble shape, volume and dimensions.
Thierry-Mieg, J.
1985-05-14
The reinterpretation of the BRS equations of Quantum Field Theory as the Maurer Cartan equation of a classical principal fiber bundle leads to a simple gauge invariant classification of the anomalies in Yang Mills theory and gravity.
NASA Astrophysics Data System (ADS)
Halicioglu, K.; Ozener, H.; Deniz, R.
2008-12-01
During the last few years, the development of CCD image sensors at a reasonable price made the instruments of astrogeodetic observation possible to use for local high-precision astrogeodetic geoid and gravity field determination. Generally, the geoids of most European countries are in centimeter level accuracy except in mountainous regions. Turkish geoid also has accuracy problems in mountainous regions especially in the eastern parts of Anatolia and around boundaries of Marmara Sea. Studies performed in Europe in last decade indicate that, to reach the centimeter level accuracy in mountainous areas, astrogeodetic vertical deflections are more effective than gravimetric and other geoid determination methods. Turkey had started the geoid determination studies in 1976 with 13 absolute gravity points. Turkish National Fundamental Gravity Network (TNFGRN), densificated with 1st and 2nd order 66245 gravity points in Potsdam Gravity datum. TG03 has a final internal precision of 1 cm at the observation points and the external accuracy is within decimeter level. High precision in astrogeodetic geoid determination techniques are scarcely published by some universities around Europe using CCD/Zenith cameras. There are various zenith camera systems developed as state-of- art instrumentations using both CCD sensors for imaging stellar objects and GPS receivers for ellipsoidal coordinates, in order to determine the direction of the plumb line. These systems are designed and tested where conventional techniques are not sufficient. In this study, increasing accuracy of Turkish geoid is subjected to using CCD/Zenith cameras in the province of Istanbul. The planning test area is going to use the data available on the GPS/Leveling geoid of Istanbul and produce astrogeodetic data on a profile starting from the north shore of Marmara region, passing through the Marmara Sea to the south. The astrogeodetic instruments will be designed for engineering studies that are needed to determine
On axionic field ranges, loopholes and the weak gravity conjecture
NASA Astrophysics Data System (ADS)
Brown, Jon; Cottrell, William; Shiu, Gary; Soler, Pablo
2016-04-01
In this short note we clarify some aspects of the impact that the Weak Gravity Conjecture has on models of (generalized) natural inflation. We address in particular certain technical and conceptual concerns recently raised regarding the stringent constraints and conclusions found in our previous work [1]. We also point out the difficulties faced by attempts to evade these constraints. These new considerations improve the understanding of the quantum gravity constraints we found and further support the conclusion that it remains challenging for axions to drive natural inflation.
ESA's Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) Mission
NASA Astrophysics Data System (ADS)
Drinkwater, M. R.; Haagmans, R.
2004-12-01
The Earth's gravity field is the fundamental physical force for every dynamic process on its surface. With the Gravity Field and steady-state Ocean Circulation Explorer (GOCE) Mission as its first Earth Explorer core mission, the European Space Agency (ESA) is playing an important role in this `geopotential decade' by preparing for acquisition of a high quality, high spatial resolution gravity field and geoid for future scientific applications. GOCE combines an innovative new three-axis gravity gradiometer (EGG) instrument (comprising three x, y, z pairs of accelerometers with a baseline separation of 0.5 m) with a drag-compensating ion-propulsion system to measure for the first time the full gravity gradient tensor along its orbit at 250 km altitude. GOCE will carry a GPS satellite-to-satellite tracking navigation system for 3-dimensional positioning, star trackers for precise pointing knowledge, and a laser retroreflector for ground laser tracking. GOCE is specifically designed to make accurate and precise measurements of the stationary gravity field and gravity anomalies (to 1 mGal) at high spatial resolution (100 km). The data will facilitate the computation of a high spatial resolution (100 km) global geoid model to 1-2 cm accuracy. Applications of these products will be illustrated using examples in oceanography, solid-earth physics and geodesy. After a successful completion of the design consolidation phase, the construction phase for the GOCE satellite is presently underway, with an anticipated a launch in late 2006.
The 4th Release of GOCE Gravity Field Models - Overview and Performance Analysis
NASA Astrophysics Data System (ADS)
Gruber, Thomas; Rummel, Reiner
2013-04-01
New GOCE gravity field models based on about 2 years of completely reprocessed gradiometer data have been recently released to the user community. They were obtained based on different processing strategies and reflect the state-of-the-art of GOCE gravity field models. With the improved gravity gradients resulting from a number of updates implemented in the level 1B processor and with the additional data set the performance of the resulting GOCE based models could be significantly improved as compared to the previous solutions. The paper provides an overview of the available GOCE models and presents the results of their validation by different means.
NASA Astrophysics Data System (ADS)
Maier, A.; Baur, O.; Krauss, S.
2014-04-01
This contribution deals with Precise Orbit Determination of the Lunar Reconnaissance Orbiter, which is tracked with optical laser ranges in addition to radiometric Doppler range-rates and range observations. The optimum parameterization is assessed by overlap analysis tests that indicate the inner precision of the computed orbits. Information about the very long wavelengths of the lunar gravity field is inferred from the spacecraft positions. The NASA software packages GEODYN II and SOLVE were used for orbit determination and gravity field recovery [1].
Status of GRAIL Gravity Field Determination Using the Celestial Mechanics Approach
NASA Astrophysics Data System (ADS)
Arnold, Daniel; Beutler, Gerhard; Jäggi, Adrian; Bock, Heike; Mervart, Leos; Meyer, Ulrich; Bertone, Stefano
To determine the gravity field of the Moon, the NASA mission GRAIL (Gravity Recovery And Interior Laboratory) inherits its concept from the Earth orbiting GRACE (Gravity Recovery and Climate Experiment) mission. The use of ultra-precise inter-satellite Ka-band ranging observations enables data acquisition even when the spacecraft are not tracked from the Earth. The data allows for a highly accurate estimation of the lunar gravity field with unprecedented resolution on both sides of the Moon, which is crucial to improve the understanding of its internal structure and thermal evolution. In this presentation we discuss GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach. Ka-band range-rate (KBRR) observations and position data (GNI1B products) are used to solve for the lunar gravity field parameters in a generalized orbit determination problem. Apart from normalized spherical harmonic coefficients up to degrees n≤ 200, also arc- and satellite-specific parameters, like initial state vectors and pseudo-stochastic pulses, are set up as common parameters for all measurement types. The latter shall compensate for imperfect models of non-gravitational accelerations, e.g., caused by solar radiation pressure. In addition, especially for the data of the primary mission phase, it is essential to estimate time bias parameters for the KBRR observations. We compare our results from the nominal mission phase with the official Level 2 gravity field models first released in October 2013. Our results demonstrate that the lunar gravity field can be recovered with a high quality by adapting the Celestial Mechanics Approach, even when using pre-GRAIL or pre-SELENE gravity field models as a priori fields and when replacing sophisticated models of non-gravitational accelerations by appropriately spaced and constrained pseudo-stochastic pulses. Yet, the usage of preprocessed position data as pseudo observations is not fully satisfying and is potentially
Triyanta; Zen, F. P.; Supardi; Wardaya, A. Y.
2010-12-23
Gauge theory, under the framework of quantum field theory, has successfully described three fundamental interactions: electromagnetic, weak, and strong interactions. Problems of describing the gravitational interaction in a similar manner has not been satisfied yet until now. Teleparallel gravity (TG) is one proposal describing gravitational field as a gauge field. This theory is quite new and it is equivalent to Einstein's general relativity. But as gravitational field in TG is expressed by torsion, rather than curvature, it gives an alternative framework for solving problems on gravity. This paper will present solution of the dynamical equation of abelian vector fields under the framework of TG in the Bianchi type I spacetime.
Bubble Detachment in Variable Gravity Under the Influence of a Non-Uniform Electric Field
NASA Technical Reports Server (NTRS)
Chang, Shinan; Herman, Cila; Iacona, Estelle
2002-01-01
The objective of the study reported in this paper is to investigate the effects of variable, reduced gravity on the formation and detachment behavior of individual air bubbles under the influence of a non-uniform electric field. For this purpose, variable gravity experiments were carried out in parabolic nights. The non-uniform electric field was generated by a spherical electrode and a plate electrode. The effect of the magnitude of the non-uniform electric field and gravity level on bubble formation, development and detachment at an orifice was investigated. An image processing code was developed that allows the measurement of bubble volume, dimensions and contact angle at detachment. The results of this research can be used to explore the possibility of enhancing boiling heat transfer in the variable and low gravity environments by substituting the buoyancy force with a force induced by the electric field. The results of experiments and measurements indicate that the level of gravity significantly affects bubble shape, size and frequency. The electric field magnitude also influences bubble detachment, however, its impact is not as profound as that of variable gravity for the range of electric field magnitudes investigated in the present study.
High-precision photometry for K2 Campaign 1
NASA Astrophysics Data System (ADS)
Huang, C. X.; Penev, K.; Hartman, J. D.; Bakos, G. Á.; Bhatti, W.; Domsa, I.; de Val-Borro, M.
2015-12-01
The two reaction wheel K2 mission promises and has delivered new discoveries in the stellar and exoplanet fields. However, due to the loss of accurate pointing, it also brings new challenges for the data reduction processes. In this paper, we describe a new reduction pipeline for extracting high-precision photometry from the K2 data set, and present public light curves for the K2 Campaign 1 target pixel data set. Key to our reduction is the derivation of global astrometric solutions from the target stamps, from which accurate centroids are passed on for high-precision photometry extraction. We extract target light curves for sources from a combined UCAC4 and EPIC catalogue - this includes not only primary targets of the K2 campaign 1, but also any other stars that happen to fall on the pixel stamps. We provide the raw light curves, and the products of various detrending processes aimed at removing different types of systematics. Our astrometric solutions achieve a median residual of ˜0.127 arcsec. For bright stars, our best 6.5 h precision for raw light curves is ˜20 parts per million (ppm). For our detrended light curves, the best 6.5 h precision achieved is ˜15 ppm. We show that our detrended light curves have fewer systematic effects (or trends, or red-noise) than light curves produced by other groups from the same observations. Example light curves of transiting planets and a Cepheid variable candidate, are also presented. We make all light curves public, including the raw and detrended photometry, at http://k2.hatsurveys.org.
The geoid: Definition and determination. [gravity field of the earth
NASA Technical Reports Server (NTRS)
Rapp, R. H.
1975-01-01
The principles and problems relative to the determination of the geoid are outlined. Factors discussed include: gravity data requirements for a precise geoid; mean sea level; and satellite altimetry. It is indicated that geoid undulations can be determined on a global basis to plus or minus 3 m. Application of geoid information to oceanography and the determination of sea surface topography considered.
Latest Moon gravity field solutions from GRAIL data using the Celestial Mechanics Approach
NASA Astrophysics Data System (ADS)
Bertone, Stefano; Arnold, Daniel; Jäggi, Adrian; Beutler, Gerhard; Mervart, Leos; Meyer, Ulrich
2016-04-01
The NASA mission GRAIL inherits its concept from the GRACE mission to determine the gravity field of the Moon. The use of inter-satellite Ka-band range-rate (KBRR) observations enables data acquisition even when the spacecraft are not tracked from the Earth. The data allows for a highly accurate estimation of the lunar gravity field on both sides of the Moon, which is leading to huge improvements in our understanding of its internal structure and thermal evolution. In this presentation we discuss the latest GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach using the Bernese GNSS Software. We recently presented our solutions up to d/o 200, where KBRR observations and position data (GNI1B products) were used to solve for the lunar gravity field parameters in a generalized orbit determination problem. As a further extension of our processing, the GNI1B positions are now replaced by the original Doppler observations of the Deep Space Network (DSN) to allow for a completely independent determination of the lunar gravity field. Based on Doppler data, we perform orbit determination by solving six initial orbital elements, dynamical parameters, and stochastic parameters in daily arcs using least-squares adjustment. The pseudo-stochastic parameters are estimated to absorb deficiencies in our dynamical modeling (e.g. due to non-gravitational forces). Doppler and KBRR data are then used together with an appropriate weighting for a combined orbit determination process. We present our latest results in the orbit determination of GRAIL over the primary mission phase (PM, March-May 2012) and our first lunar gravity fields based on Doppler and KBRR observations. We compare all of our results from the PM with the most recent lunar gravity field models released by other groups, as well as their consistency with topography-induced gravity.
GRAIL gravity field determination using the Celestial Mechanics Approach - status report
NASA Astrophysics Data System (ADS)
Arnold, Daniel; Bertone, Stefano; Jäggi, Adrian; Beutler, Gerhard; Mervart, Leos
2015-04-01
The NASA mission GRAIL (Gravity Recovery And Interior Laboratory) inherits its concept from the GRACE (Gravity Recovery And Climate Experiment) mission to determine the gravity field of the Moon. The use of inter-satellite Ka-band range-rate (KBRR) observations enables data aquisition even when the spacecraft are not tracked from the Earth. The data allows for a highly accurate estimation of the lunar gravity field on both sides of the Moon, which is crucial to improve the understanding of its internal structure and thermal evolution. In this presentation we discuss GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach using the Bernese Software. Currently, KBRR observations and position data (GNI1B products) are used to solve for the lunar gravity field parameters in a generalized orbit determination problem. Apart from normalized spherical harmonic coefficients up to degree n = 200, also arc-specific parameters like initial state vectors and appropriately spaced empirical parameters (pseudo-stochastic pulses and empirical accelerations) are set up as common parameters for all measurement types. The latter shall compensate for imperfect models of non-gravitational forces. In this respect, we present our advances towards a more realistic model of solar radiation pressure using empirical accelerations in appropriate directions. We compare our results from the nominal and from the extended mission phase with the most recent lunar gravity field models released by other groups, as well as their consistency with topography-induced gravity. We show that the lunar gravity field can be recovered with a high quality by adapting the Celestial Mechanics Approach, even when using pre-GRAIL or pre-SELENE gravity field models as a priori fields. As a further extension of our processing, the GNI1B positions are replaced by the original Doppler observations of the Deep Space Network (DSN) to allow for a completely independent determination of the lunar
The JPL Mars gravity field, Mars50c, based upon Viking and Mariner 9 Doppler tracking data
NASA Technical Reports Server (NTRS)
Konopliv, Alexander S.; Sjogren, William L.
1995-01-01
This report summarizes the current JPL efforts of generating a Mars gravity field from Viking 1 and 2 and Mariner 9 Doppler tracking data. The Mars 50c solution is a complete gravity field to degree and order 50 with solutions as well for the gravitational mass of Mars, Phobos, and Deimos. The constants and models used to obtain the solution are given and the method for determining the gravity field is presented. The gravity field is compared to the best current gravity GMM1 of Goddard Space Flight Center.
ARISTOTELES: A European approach for an Earth gravity field recovery mission
NASA Technical Reports Server (NTRS)
Benz, R.; Faulks, H.; Langemann, M.
1989-01-01
Under contract of the European Space Agency a system study for a spaceborne gravity field recovery mission was performed, covering as a secondary mission objective geodetic point positioning in the cm range as well. It was demonstrated that under the given programmatic constraints including dual launch and a very tight development schedule, a six months gravity field mission in a 200 km near polar, dawn-dusk orbit is adequate to determine gravity anomalies to better than 5 mgal with a spatial resolution of 100 x 100 km half wavelength. This will enable scientists to determine improved spherical harmonic coefficients of the Earth gravity field equation to the order and degree of 180 or better.
Initial Results of Global Lunar Gravity Field Recovery from SELENE tracking data
NASA Astrophysics Data System (ADS)
Matsumoto, Koji; Goossens, Sander; Ishihara, Yoshiaki; Liu, Qinghui; Iwata, Takahiro; Namiki, Noriyuki; Noda, Hirotomo; Hanada, Hideo; Kikuchi, Fuyuhiko; Kawano, Nobuyuki; Tsuruta, Seiitsu; Asari, Kazuyoshi; Ishikawa, Toshiaki; Sasaki, Sho
Two small spin-stabilized sub-satellites, Rstar (OKINA) and Vstar (OUNA), have successfully been separated from Main satellite of SELENE (KAGUYA) and inserted into planned elliptical orbits on October 9 and 12, 2007, respectively. These spacecraft are dedicated to improving our knowledge of the global lunar gravity field with the mission instruments on-board, i.e., RSAT (a satellite-to-satellite Doppler tracking sub-system) and VRAD (artificial radio sources for VLBI). We have started collecting new types of tracking data for the lunar-orbiting satellites, i.e., 4-way Doppler tracking between the Main satellite and Rstar (i.e., a direct far-side gravity observation), and multi-frequency differential VLBI tracking between Rstar and Vstar. A global lunar gravity field with unprecedented accuracy is expected to be estimated through precision orbit determination by using these tracking data. A preliminary global lunar gravity field model (degree and order up to 60) was developed from about 3-month of SELENE tracking data which include 2-way Doppler, 2-way range, and 4-way Doppler data. Although the current far-side data coverage is incomplete and a Kaula-type a priori constraint is necessary for meaningful inversion, some of ring-shaped gravity anomalies are more clearly resolved in the far-side compared with existing lunar gravity models. We will present concept of tracking data acquisition scheduling, current status of tracking data acquisition, and preliminary results of global lunar gravity filed recovery.
An Experimental Study of Boiling in Reduced and Zero Gravity Fields
NASA Technical Reports Server (NTRS)
Usiskin, C. M.; Siegel, R.
1961-01-01
A pool boiling apparatus was mounted on a counterweighted platform which could be dropped a distance of nine feet. By varying the size of the counterweight, the effective gravity field on the equipment was adjusted between zero and unity. A study of boiling burnout in water indicated that a variation in the critical heat flux according to the one quarter power of gravity was reasonable. A consideration of the transient burnout process was necessary in order to properly interpret the data. A photographic study of nucleate boiling showed how the velocity of freely rising vapor bubbles decreased as gravity was reduced. The bubble diameters at the time of breakoff from the heated surface were found to vary inversely as gravity to the 1/3.5 power. Motion pictures were taken to illustrate both nucleate and film boiling in the low gravity range.
High precision defocused observations of planetary transits
NASA Astrophysics Data System (ADS)
Baştürk, Ö.; Hinse, T. C.; Özavcı, İ.; Tezcan, C. T.; Şenavcı, H. V.; Burdanov, A.; Y&örükoǧlu, O.; Orhan, R.; Selam, S. O.
2014-03-01
It is only possible to measure physical properties of extrasolar planets, if they transit their host stars. One can determine the masses and the radii of this kind of objects, and hence, have constraints on their chemical composition, internal structure, formation and evolution. The availability of high quality light curves of planetary transits is essential in determining these properties within a few percent. In order to obtain high-quality transit light curves, we apply the well-established defocus technique on meter and sub-meter class telescopes in our project. This technique allows longer integration times, and hence collecting more photons to build up a higher S/N ratio. In this study, we present our first photometric results with the 1m Turkish telescope (T100) located at TÜBİTAK National Observatory (TUG) of Turkey, which proved to be a well suited instrument to these observations with its large field of view. %
A high-resolution spherical harmonic degree 1500 lunar gravity field from the GRAIL mission
NASA Astrophysics Data System (ADS)
Park, R. S.; Konopliv, A. S.; Yuan, D. N.; Asmar, S.; Watkins, M. M.; Williams, J.; Smith, D. E.; Zuber, M. T.
2015-12-01
The highest resolution lunar gravity field to date has been generated by analyzing Gravity Recovery And Interior Laboratory (GRAIL) data from the Primary and Extended Missions. The Extended Mission Ka-band inter-spacecraft range-rate data have a precision near 0.05 micron/second with spacecraft altitudes as low as a few kilometers above the lunar surface. This new spherical harmonic degree 1500 field involves solving for nearly 2.3 million parameters in a least-square estimation procedure with 5 million observations. This results in an upper triangular 20 TB covariance matrix, computed using the NASA Pleiades Supercomputer. The first figure compares RMS unconstrained gravity field coefficients with uncertainties. The constrained global gravity spectrum (magenta) is determined to about n=900, whereas the Bouguer spectrum is accurate to about n=600. The correlation with gravity derived from constant density topography in the second figure shows that the high-order coefficients (n>700) are improved significantly over the previous degree 1200 field. Moreover, the Ka-band residual RMS is significantly improved for the low-altitude orbit solutions of the last month of the extended mission. The maximum local resolution of this new gravity field corresponds to a surface resolution of 3.6 km.
Near real-time GRACE gravity field solutions for hydrological monitoring applications
NASA Astrophysics Data System (ADS)
Kvas, Andreas; Gouweleeuw, Ben; Mayer-Gürr, Torsten; Güntner, Andreas
2016-04-01
Within the EGSIEM (European Gravity Service for Improved Emergency Management) project, a demonstrator for a near real-time (NRT) gravity field service which provides daily GRACE gravity field solutions will be established. Compared to the official GRACE gravity products, these NRT solutions will increase the temporal resolution from one month to one day and reduce the latency from currently two months to five days. This fast availability allows the monitoring of total water storage variations and of hydrological extreme events as they occur, in contrast to a 'confirmation after occurrence' as is the situation today. The service will be jointly run by GFZ (German Research Centre for Geosciences) and Graz University of Technology, with each analysis center providing an independent solution. A Kalman filter framework, in which GRACE data is combined with prior information, serves as basis for the gravity field recovery in order to increase the redundancy of the gravity field estimates. The on-line nature of the NRT service necessitates a tailored smoothing algorithm as opposed to post-processing applications, where forward-backward smoothing can be applied. This contribution gives an overview on the near real-time processing chain and highlights differences between the computed NRT solutions and the standard GRACE products. We discuss the special characteristics of the Kalman filtered gravity field models as well as derived products and give an estimate of the expected error levels. Additionally, we show the added value of the NRT solutions through comparison of the first results of the pre-operational phase with in-situ data and monthly GRACE gravity field models.
GRAIL Gravity Field Determination Using the Celestial Mechanics Approach - Status Report
NASA Astrophysics Data System (ADS)
Bertone, S.; Arnold, D.; Jaeggi, A.; Beutler, G.; Bock, H.; Meyer, U.; Mervart, L.
2014-12-01
The NASA mission GRAIL (Gravity Recovery And Interior Laboratory) inherits its concept from the GRACE (Gravity Recovery And Climate Experiment) mission to determine the gravity field of the Moon. The use of inter-satellite Ka-band range-rate (KBRR) observations enables data aquisition even when the spacecraft are not tracked from the Earth. The data allows for a highly accurate estimation of the lunar gravity field on both sides of the Moon, which is crucial to improve the understanding of its internal structure and thermal evolution. In this presentation we discuss GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach using the Bernese Software. Currently KBRR observations and position data (GNI1B products) are used to solve for the lunar gravity field parameters in a generalized orbit determination problem. Apart from normalized spherical harmonic coefficients up to degree n = 200, also arc-specific parameters like initial state vectors and empirical parameters (pseudo-stochastic pulses or piecewise constant accelerations) are set up as common parameters for all measurement types. The latter shall compensate for imperfect models of non-gravitational accelerations, e.g., caused by solar radiation pressure. We compare our results from the nominal and from the extended mission phase with the official level 4 gravity field models released in April 2014. As a further extension of our processing the GNI1B positions are replaced by the original Doppler observations of the Deep Space Network (DSN) to allow for a completely independent determination of the lunar gravity field using the Celestial Mechanics Approach and we present the currently achieved status of the DSN data modeling in the Bernese Software.
Disk relations for tree amplitudes in minimal coupling theory of gauge field and gravity
NASA Astrophysics Data System (ADS)
Chen, Yi-Xin; Du, Yi-Jian; Ma, Qian
2010-07-01
KLT relations on S factorize closed string amplitudes into product of open string tree amplitudes. The field theory limits of KLT factorization relations hold in minimal coupling theory of gauge field and gravity. In this paper, we consider the field theory limits of relations on D. Though the relations on D and KLT factorization relations hold on worldsheets with different topologies, we find the field theory limits of D relations also hold in minimal coupling theory of gauge field and gravity. We use the D relations to give three- and four-point tree amplitudes where gluons are minimally coupled to gravitons. We also give a further discussion on general tree amplitudes in minimal coupling theory of gauge field and gravity. In general, any tree amplitude with M gravitons in addition to N gluons can be given by pure-gluon tree amplitudes with N+2M legs.
Temporal gravity field modeling based on least square collocation with short-arc approach
NASA Astrophysics Data System (ADS)
ran, jiangjun; Zhong, Min; Xu, Houze; Liu, Chengshu; Tangdamrongsub, Natthachet
2014-05-01
After the launch of the Gravity Recovery And Climate Experiment (GRACE) in 2002, several research centers have attempted to produce the finest gravity model based on different approaches. In this study, we present an alternative approach to derive the Earth's gravity field, and two main objectives are discussed. Firstly, we seek the optimal method to estimate the accelerometer parameters, and secondly, we intend to recover the monthly gravity model based on least square collocation method. The method has been paid less attention compared to the least square adjustment method because of the massive computational resource's requirement. The positions of twin satellites are treated as pseudo-observations and unknown parameters at the same time. The variance covariance matrices of the pseudo-observations and the unknown parameters are valuable information to improve the accuracy of the estimated gravity solutions. Our analyses showed that introducing a drift parameter as an additional accelerometer parameter, compared to using only a bias parameter, leads to a significant improvement of our estimated monthly gravity field. The gravity errors outside the continents are significantly reduced based on the selected set of the accelerometer parameters. We introduced the improved gravity model namely the second version of Institute of Geodesy and Geophysics, Chinese Academy of Sciences (IGG-CAS 02). The accuracy of IGG-CAS 02 model is comparable to the gravity solutions computed from the Geoforschungszentrum (GFZ), the Center for Space Research (CSR) and the NASA Jet Propulsion Laboratory (JPL). In term of the equivalent water height, the correlation coefficients over the study regions (the Yangtze River valley, the Sahara desert, and the Amazon) among four gravity models are greater than 0.80.
NASA Astrophysics Data System (ADS)
Braitenberg, C. F.; Pivetta, T.; Mariani, P.
2011-12-01
The gravity satellite missions GRACE and GOCE have boosted the resolution of the global Earth gravity models (EGM), opening new possibilities of investigation. The EGMs must be distinguished in models based on pure satellite or mixed satellite-terrestrial observations. Satellite-only models are truly global, whereas satellite-terrestrial models have inhomogeneous quality, depending on availability and accuracy of the terrestrial data set. The advantage of the mixed models (e.g. EGM2008 by Pavlis et al. 2008) is their greater spatial resolution, reaching nominally 9 km, against the 80 km of the pure satellite models of satellite GOCE. The disadvantage is the geographically varying reliability due to problems in the terrestrial data, compiled from different measuring campaigns, using various acquisition methods, and different national geodetic reference systems. We present a method for quality assessment of the higher-resolution fields through the lower-resolution GOCE-field and apply it to northern Africa. We find that the errors locally are as great as 40 mGal, but can be flagged as "bad areas" by our method, leaving the "good areas" for reliable geophysical modeling and investigation. We analyze gravity and gravity gradients and their invariants over North-Central Africa derived from the EGM2008 and GOCE (e.g. Migliaccio et al., 2010) and quantify the resolution in terms of density variations associated to crustal thickness variations, rifts and magmatic underplating. We focus on the Benue rift and the Chad lineament, a 1300 km arcuate feature which links the Benue to the Tibesti Volcanic province. The existing seismological investigations are integrated to constrain the lithosphere structure in terms of seismic velocities, crustal thickness and top asthenosphere boundary, together with physical constraints based on thermal and isostatic considerations (McKenzie stretching model). Our modeling shows that the gravity signal can only be explained if the Benue rift
NASA Astrophysics Data System (ADS)
Erkan, K.; Jekeli, C.
2009-12-01
Today gravity and magnetic field measurements are acquired in grids with high resolution and accuracy. Magnetic field measurements have already been proven for superior accuracy and practicality. Modern gravity gradiometry instruments have boosted the practicality of gravity field measurements for many subsurface problems. As a result of this, advanced algorithms are needed for quantitative integration of the two fields for a specific subsurface problem. These fields are correlated by Poisson relation as a first order approximation. However, subsurface sources generally show large deviations from the ideal conditions; in this case a generalized Poisson relation may be proposed as a perturbation of the ideal conditions. In this study, we take advantage of the abstraction of the deformation theory between two metric fields, and implement it between the two geophysical fields. In this generalized approach, the different geophysical fields are loosely correlated by Poisson relation; so the calculated deformation reflects the deviations from ideal density/susceptibility relationships for the subsurface structure. The resulting deformation field can then be used for detection of a known target with an expected deformation field. The present method introduces a novel algorithm for integration of the gravity gradiometry and magnetic field data. In this method, the results can be directly interpreted without making individual density and magnetic susceptibility assumptions. The method also intrinsically overcomes the scale problem between the two potential fields.
Time-variable and static gravity field of Mars from MGS, Mars Odyssey, and MRO
NASA Astrophysics Data System (ADS)
Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.
2016-04-01
The Mars Global Surveyor (MGS), Mars Odyssey (ODY), and Mars Reconnaissance Orbiter (MRO) missions have significantly contributed to the determination of global high-resolution global gravity fields of Mars for the last 16 years. All three spacecraft were located in sun-synchronous, near-circular polar mapping orbits for their primary mission phases at different altitudes and Local Solar Time (LST). X-Band tracking data have been acquired from the NASA Deep Space Network (DSN) providing information on the time-variable and static gravity field of Mars. MGS operated between 1999 and 2006 at 390 km altitude. ODY and MRO are still orbiting Mars with periapsis altitudes of 400 km and 255 km, respectively. Before entering these mapping phases, all three spacecraft collected radio tracking data at lower altitudes (˜170-200 km) that help improve the resolution of the gravity field of Mars in specific regions. We analyzed the entire MGS radio tracking data set, and ODY and MRO radio data until 2015. These observations were processed using a batch least-squares filter through the NASA GSFC GEODYN II software. We combined all 2- and 3-way range rate data to estimate the global gravity field of Mars to degree and order 120, the seasonal variations of gravity harmonic coefficients C20, C30, C40 and C50 and the Love number k2. The gravity contribution of Mars atmospheric pressures on the surface of the planet has been discerned from the time-varying and static gravity harmonic coefficients. Surface pressure grids computed using the Mars-GRAM 2010 atmospheric model, with 2.5° x2.5° spatial and 2-h resolution, are converted into gravity spherical harmonic coefficients. Consequently, the estimated gravity and tides provide direct information on the solid planet. We will present the new Goddard Mars Model (GMM-3) of Mars gravity field in spherical harmonics to degree and order 120. The solution includes the Love number k2 and the 3-frequencies (annual, semi-annual, and tri
Cellular signalling effects in high precision radiotherapy
NASA Astrophysics Data System (ADS)
McMahon, Stephen J.; McGarry, Conor K.; Butterworth, Karl T.; Jain, Suneil; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.
2015-06-01
Radiotherapy is commonly planned on the basis of physical dose received by the tumour and surrounding normal tissue, with margins added to address the possibility of geometric miss. However, recent experimental evidence suggests that intercellular signalling results in a given cell’s survival also depending on the dose received by neighbouring cells. A model of radiation-induced cell killing and signalling was used to analyse how this effect depends on dose and margin choices. Effective Uniform Doses were calculated for model tumours in both idealised cases with no delivery uncertainty and more realistic cases incorporating geometric uncertainty. In highly conformal irradiation, a lack of signalling from outside the target leads to reduced target cell killing, equivalent to under-dosing by up to 10% compared to large uniform fields. This effect is significantly reduced when higher doses per fraction are considered, both increasing the level of cell killing and reducing margin sensitivity. These effects may limit the achievable biological precision of techniques such as stereotactic radiotherapy even in the absence of geometric uncertainties, although it is predicted that larger fraction sizes reduce the relative contribution of cell signalling driven effects. These observations may contribute to understanding the efficacy of hypo-fractionated radiotherapy.
High-precision positioning of radar scatterers
NASA Astrophysics Data System (ADS)
Dheenathayalan, Prabu; Small, David; Schubert, Adrian; Hanssen, Ramon F.
2016-05-01
Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy of synthetic aperture radar (SAR) scatterers in a 2D radar coordinate system, after compensating for atmosphere and tidal effects, is in the order of centimeters for TerraSAR-X (TSX) spotlight images. However, the absolute positioning in 3D and its quality description are not well known. Here, we exploit time-series interferometric SAR to enhance the positioning capability in three dimensions. The 3D positioning precision is parameterized by a variance-covariance matrix and visualized as an error ellipsoid centered at the estimated position. The intersection of the error ellipsoid with objects in the field is exploited to link radar scatterers to real-world objects. We demonstrate the estimation of scatterer position and its quality using 20 months of TSX stripmap acquisitions over Delft, the Netherlands. Using trihedral corner reflectors (CR) for validation, the accuracy of absolute positioning in 2D is about 7 cm. In 3D, an absolute accuracy of up to ˜ 66 cm is realized, with a cigar-shaped error ellipsoid having centimeter precision in azimuth and range dimensions, and elongated in cross-range dimension with a precision in the order of meters (the ratio of the ellipsoid axis lengths is 1/3/213, respectively). The CR absolute 3D position, along with the associated error ellipsoid, is found to be accurate and agree with the ground truth position at a 99 % confidence level. For other non-CR coherent scatterers, the error ellipsoid concept is validated using 3D building models. In both cases, the error ellipsoid not only serves as a quality descriptor, but can also help to associate radar scatterers to real-world objects.
Modeling of the Earth's gravity field using the New Global Earth Model (NEWGEM)
NASA Technical Reports Server (NTRS)
Kim, Yeong E.; Braswell, W. Danny
1989-01-01
Traditionally, the global gravity field was described by representations based on the spherical harmonics (SH) expansion of the geopotential. The SH expansion coefficients were determined by fitting the Earth's gravity data as measured by many different methods including the use of artificial satellites. As gravity data have accumulated with increasingly better accuracies, more of the higher order SH expansion coefficients were determined. The SH representation is useful for describing the gravity field exterior to the Earth but is theoretically invalid on the Earth's surface and in the Earth's interior. A new global Earth model (NEWGEM) (KIM, 1987 and 1988a) was recently proposed to provide a unified description of the Earth's gravity field inside, on, and outside the Earth's surface using the Earth's mass density profile as deduced from seismic studies, elevation and bathymetric information, and local and global gravity data. Using NEWGEM, it is possible to determine the constraints on the mass distribution of the Earth imposed by gravity, topography, and seismic data. NEWGEM is useful in investigating a variety of geophysical phenomena. It is currently being utilized to develop a geophysical interpretation of Kaula's rule. The zeroth order NEWGEM is being used to numerically integrate spherical harmonic expansion coefficients and simultaneously determine the contribution of each layer in the model to a given coefficient. The numerically determined SH expansion coefficients are also being used to test the validity of SH expansions at the surface of the Earth by comparing the resulting SH expansion gravity model with exact calculations of the gravity at the Earth's surface.
Gravity field processing with enhanced numerical precision for LL-SST missions
NASA Astrophysics Data System (ADS)
Daras, Ilias; Pail, Roland; Murböck, Michael; Yi, Weiyong
2015-02-01
On their way to meet the augmenting demands of the Earth system user community concerning accuracies of temporal gravity field models, future gravity missions of low-low satellite-to-satellite tracking (LL-SST) type are expected to fly at optimized formations and make use of the latest technological achievements regarding the on-board sensor accuracies. Concerning the main measuring unit of an LL-SST type gravity mission, the inter-satellite measuring instrument, a much more precise interferometric laser ranging system is planned to succeed the K-band ranging system used by the Gravity Recovery and Climate Experiment (GRACE) mission. This study focuses on investigations concerning the potential performance of new generation sensors such as the laser interferometer within the gravity field processing chain. The sufficiency of current gravity field processing accuracies is tested against the new sensor requirements, via full-scale closed-loop numerical simulations of a GRACE Follow-On configuration scenario. Each part of the processing is validated separately with special emphasis on numerical errors and their impact on gravity field solutions. It is demonstrated that gravity field processing with double precision may be a limiting factor for taking full advantage of the laser interferometer's accuracy. Instead, a hybrid processing scheme of enhanced precision is introduced, which uses double and quadruple precision in different parts of the processing chain, leading to system accuracies of only 17 nm in terms of geoid height reconstruction errors. Simulation results demonstrate the ability of enhanced precision processing to minimize the processing errors and thus exploit the full precision of a laser interferometer, when at the same time the computational times are kept within reasonable levels.
On the regularization of regional gravity field solutions in spherical radial base functions
NASA Astrophysics Data System (ADS)
Naeimi, Majid; Flury, Jakob; Brieden, Phillip
2015-08-01
Regional refinement of the gravity field models from satellite data using spherical radial base functions (SRBF) is an ill-posed problem. This is mainly due to the regional confinement of the data and the base functions, which leads to severe instabilities in the solutions. Here, this ill-posedness as well as the related regularization process are investigated. We compare three methods for the choice of the regularization parameter, which have been frequently used in gravity modelling. These methods are (1) the variance component estimation (VCE), (2) the generalized cross validation (GCV) and (3) the L-curve criterion. A particular emphasis is put on the impact of the SRBF type on the regularization parameter. To do this, we include two types of SRBF which are often used for regional gravity field modelling. These are the Shannon SRBF or the reproducing kernel and the Spline SRBF. The investigations are performed on two months of the real GOCE ultrasensitive gravity gradients over Central Africa and Amazon. The solutions are validated against a state-of-the-art global gravity solution. We conclude that if a proper regularization method is applied, both SRBF deliver more or less the same accuracy. We show that when the Shannon wavelet is used, the L-curve method gives the best results, while with the Spline kernel, the GCV outperforms the other two methods. Moreover, we observe that the estimated coefficients for the Spline kernel cannot be spatially interpreted. In contrast, the coefficients obtained for the Shannon wavelet reflect the energy of the recovered gravity field with a correlation factor of above 95 per cent. Therefore, when combined with the L-curve method, the Shannon SRBF is advantageous for regional gravity field estimation, since it is one of the simplest band-limited SRBF. In addition, it delivers promising solutions and the estimated coefficients represent the characteristics of the gravity field within the target region.
Neutron stars in a perturbative f(R) gravity model with strong magnetic fields
Cheoun, Myung-Ki; Deliduman, Cemsinan; Güngör, Can; Keleş, Vildan; Ryu, C.Y.; Kajino, Toshitaka; Mathews, Grant J. E-mail: cemsinan@msgsu.edu.tr E-mail: kelesvi@itu.edu.tr E-mail: kajino@nao.ac.jp
2013-10-01
In Kaluza-Klein electromagnetism it is natural to associate modified gravity with strong electromagnetic fields. Hence, in this paper we investigate the combined effects of a strong magnetic field and perturbative f(R) gravity on the structure of neutron stars. The effect of an interior strong magnetic field of about 10{sup 17−18} G on the equation of state is derived in the context of a quantum hadrodynamics (QHD) equation of state (EoS) including effects of the magnetic pressure and energy along with occupied Landau levels. Adopting a random orientation of interior field domains, we solve the modified spherically symmetric hydrostatic equilibrium equations derived for a gravity model with f(R) = R+αR{sup 2}. Effects of both the finite magnetic field and the modified gravity are detailed for various values of the magnetic field and the perturbation parameter α along with a discussion of their physical implications. We show that there exists a parameter space of the modified gravity and the magnetic field strength, in which even a soft equation of state can accommodate a large ( > 2 M{sub s}un) maximum neutron star mass.
Latest developments in lunar gravity field recovery within the project GRAZIL
NASA Astrophysics Data System (ADS)
Krauss, Sandro; Wirnsberger, Harald; Klinger, Beate; Mayer-Gürr, Torsten; Baur, Oliver
2016-04-01
The project GRAZIL addresses the highly accurate recovery of the lunar gravity field using intersatellite Ka-band ranging (KBR) measurements collected by the Lunar Gravity Ranging System (LGRS) of the Gravity Recovery And Interior Laboratory (GRAIL) mission. Dynamic precise orbit determination is an indispensable task in order to recover the lunar gravity field based on LGRS measurements. The concept of variational equations is adopted to determine the orbit of the two GRAIL satellites based on radio science data. In this contribution we focus on the S-band two-way Doppler data collected by the Deep Space Network. As far as lunar gravity field recovery is concerned, we apply an integral equation approach using short orbital arcs in the order of one hour. In this contribution special attention is given to the refinement of our processing strategy in conjunction with an increase of the spectral resolution. Based on these considerations we present the latest version of a lunar gravity field model developed in Graz which is based on KBR observations during the primary mission phase (March 1 to May 29, 2012). Our results are validated against GRAIL models computed at NASA-GSFC and NASA-JPL.
Experimental concept for examination of biological effects of magnetic field concealed by gravity.
Yamashita, M; Tomita-Yokotani, K; Hashimoto, H; Takai, M; Tsushima, M; Nakamura, T
2004-01-01
Space is not only a place to study biological effects of gravity, but also provides unique opportunities to examine other environmental factors, where the biological actions are masked by gravity on the ground. Even the earth's magnetic field is steadily acting on living systems, and is known to influence many biological processes. A systematic survey and assessment of its action are difficult to conduct in the presence of dominant factors, such as gravity. Investigation of responses of biological systems against the combined environment of zero-gravity and zero-magnetic field might establish the baseline for the analysis of biological effects of magnetic factors. We propose, in this paper, an experimental concept in this context, together with a practical approach of the experiments, both in orbit and on the ground, with a thin magnetic shielding film. Plant epicotyl growth was taken as an exemplar index to evaluate technical and scientific feasibility of the proposed system concept. PMID:15880894
The metric on field space, functional renormalization, and metric-torsion quantum gravity
NASA Astrophysics Data System (ADS)
Reuter, Martin; Schollmeyer, Gregor M.
2016-04-01
Searching for new non-perturbatively renormalizable quantum gravity theories, functional renormalization group (RG) flows are studied on a theory space of action functionals depending on the metric and the torsion tensor, the latter parameterized by three irreducible component fields. A detailed comparison with Quantum Einstein-Cartan Gravity (QECG), Quantum Einstein Gravity (QEG), and "tetrad-only" gravity, all based on different theory spaces, is performed. It is demonstrated that, over a generic theory space, the construction of a functional RG equation (FRGE) for the effective average action requires the specification of a metric on the infinite-dimensional field manifold as an additional input. A modified FRGE is obtained if this metric is scale-dependent, as it happens in the metric-torsion system considered.
New Method For Static and Temporal Gravity Field Recovery Using Grace
NASA Astrophysics Data System (ADS)
Han, S.-C.; Jekeli, C.; Shum, C. K.
The gravity field dedicated satellite missions like CHAMP, GRACE, and GOCE are supposed to map the Earth's global gravity field with the unprecedented accuracy and resolution. New models of Earth's static and time-variable gravity field will be avail- able every month as one of the science products from GRACE. Here we present an alternative method [Jekeli, 1999] to estimate the gravity field efficiently using the in situ satellite-to-satellite observations at satellite altitude. Considering the energy re- lation between the kinetic energy of the satellite and the gravitational potential, the disturbing potential observations can be computed from the specific force observa- tions and the state vector in the inertial frame, using the high-low GPS-LEO GPS tracking data, the low-low satellite-to-satellite GRACE measurement, and data from 3-axis accelerometers. The disturbing potential observations is the sum of a linear combination of other potentials due to tides, atmosphere, other modeled signals (e.g., N-body) and signals (hydrological and oceanic mass variations). The advantage of the method is its potential ability to efficiently replace corrections (e.g., atmosphere and tides) from different models. The inverse solution method is based on conjugate gra- dient [Han et al., 2001] and has been demonstrated to be able to efficiently recover gravity field solutions up to degree and order 120. The appropriate pre-conditioner like the block-diagonal part of the full normal matrix is used to accelerate the conver- gence rate. The method is applicable to CHAMP and GOCE. The CHAMP RSO orbit products and STAR accelerometer data are used to compute the in situ potentials and the corresponding gravity field is recovered. The synthetic potential difference obser- vations are computed with the expected error of GRACE range-rage measurements and the monthly gravity field is recovered in the presence of systematic errors such as atmosphere and tides.
The Dawn Gravity Investigation at Vesta and Ceres
NASA Technical Reports Server (NTRS)
Konopliv, A. S.; Asmar, S.W.; Bills, B. G.; Mastrodemos, N.; Park, R. S.; Raymond, C. A.; Smith, D. E.; Zuber, M. T.
2011-01-01
The objective of the Dawn gravity investigation is to use high precision X-band Doppler tracking and landmark tracking from optical images to measure the gravity fields of Vesta and Ceres to a half-wavelength surface resolution better than 90-km and 300-km, respectively. Depending on the Doppler tracking assumptions, the gravity field will be determined to somewhere between harmonic degrees 15 and 25 for Vesta and about degree 10 for Ceres. The gravity fields together with shape models determined from Dawn's framing camera constrain models of the interior from the core to the crust. The gravity field is determined jointly with the spin pole location. The second degree harmonics together with assumptions on obliquity or hydrostatic equilibrium may determine the moments of inertia.
Strong-field tests of f(R)-gravity in binary pulsars
NASA Astrophysics Data System (ADS)
Dyadina, Polina I.; Alexeyev, Stanislav O.; Capozziello, Salvatore; de Laurentis, Mariafelicia; Rannu, Kristina A.
2016-03-01
We develop the parameterized post-Keplerian approach for class of analytic f(R)-gravity models. Using the double binary pulsar system PSR J0737-3039 data we obtain restrictions on the parameters of this class of f(R)-models and show that f(R)-gravity is not ruled out by the observations in strong field regime. The additional and more strong corresponding restriction is extracted from solar system data.
GRAIL Gravity Field Determination Using the Celestial Mechanics Approach - First Results
NASA Astrophysics Data System (ADS)
Jaeggi, A.; Arnold, D.; Beutler, G.; Bock, H.; Meyer, U.; Mervart, L.
2013-12-01
We present first GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach. Inter-satellite K-band range-rate observations and position data (GNI1B products) are used to solve for the lunar gravity field parameters in a generalized orbit determination problem. Apart from normalized spherical harmonic coefficients up to degrees n ≤ 200, arc-specific parameters, like initial state vectors and pseudo-stochastic pulses, are set up as common parameters for all measurement types. The latter parameters shall compensate for imperfect models of non-gravitational accelerations, e.g., caused by solar radiation pressure. We compare our results from the nominal and from the extended mission phase with the official Level 2 gravity field models to be released in October 2013 and demonstrate that the lunar gravity field can be recovered with a good quality by adopting the Celestial Mechanics Approach, even when using pre-GRAIL or pre-SELENE gravity field models as a priori fields and when replacing sophisticated models of non-gravitational accelerations by appropriately spaced pseudo-stochastic pulses.
Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science
NASA Astrophysics Data System (ADS)
Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.
2016-07-01
We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k2 Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k2 solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k2 of 0.1697 ± 0.0027 (3-σ). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C30 and, for the first time, C50. Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C30 for ∼1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics (l = 60-80) than previous solutions.
Friedmann inflation in Horava-Lifshitz gravity with a scalar field
NASA Astrophysics Data System (ADS)
Tawfik, Abdel Nasser; Diab, Abdel Magied; El Dahab, Eiman Abou
2016-03-01
We study Friedmann inflation in general Horava-Lifshitz (HL) gravity with detailed and nondetailed and also without the projectability conditions. Accordingly, we derive the modifications in the Friedmann equations due to single scalar field potentials describing power-law and minimal-supersymmetrically extended inflation. By implementing four types of the equations-of-state characterizing the cosmic background geometry, the dependence of the tensorial and spectral density fluctuations and their ratio on the inflation field is determined. The latter characterizes the time evolution of the inflation field relative to the Hubble parameter. Furthermore, the ratio of tensorial-to-spectral density fluctuations is calculated in dependence on the spectral index. The resulting slow-roll parameters apparently differ from the ones deduced from the standard General Relativity (Friedmann gravity). We also observe that the tensorial-to-spectral density fluctuations continuously decrease when moving from nondetailed HL gravity, to Friedmann gravity, to HL gravity without the projectability, and to detailed HL gravity. This regular pattern is valid for three types of cosmic equations-of-state and different inflation potential models. The results fit well with the recent Planck observations.
Advances in GRAIL Gravity Field Determination Using the Celestial Mechanics Approach
NASA Astrophysics Data System (ADS)
Bertone, S.; Arnold, D.; Jaeggi, A.; Beutler, G.; Mervart, L.
2015-12-01
The NASA mission GRAIL inherits its concept from the GRACE mission to determine the gravity field of the Moon. The use of inter-satellite Ka-band range-rate (KBRR) observations enables data acquisition even when the spacecraft are not tracked from the Earth. The data allows for a highly accurate estimation of the lunar gravity field on both sides of the Moon, which is leading to huge improvements in our understanding of its internal structure and thermal evolution. In this presentation we discuss the latest GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach using the Bernese GNSS Software. We present our recent solutions up to d/o 200, where KBRR observations and position data (GNI1B products) were used to solve for the lunar gravity field parameters in a generalized orbit determination problem. We detail our parametrization in terms of pseudo-stochastic pulses and empirical accelerations, which allows for high quality results even while using a simple model of non-gravitational forces and pre-GRAIL a priori fields. Moreover, we present our latest advances towards the computation of a lunar gravity field with improved spatial resolution.As a further extension of our processing, the GNI1B positions are replaced by the original Doppler observations of the Deep Space Network (DSN) to allow for a completely independent determination of the lunar gravity field. Based on Doppler data, we perform orbit determination by solving six initial orbital elements, dynamical parameters, and stochastic parameters in daily arcs using least squares-adjustment. The pseudo-stochastic parameters are estimated to absorb deficiencies in our dynamical modeling (e.g. due to non-gravitational forces). DSN Doppler and KBRR data are then used together with an appropriate weighting for a combined orbit determination process. We present our latest results in the orbit determination of GRAIL over the primary mission phase (PM, March-May 2012) and eventually present
Gravity field of Jupiter’s moon Amalthea and the implication on a spacecraft trajectory
NASA Astrophysics Data System (ADS)
Weinwurm, Gudrun
2006-01-01
Before its final plunge into Jupiter in September 2003, GALILEO made a last 'visit' to one of Jupiter's moons - Amalthea. This final flyby of the spacecraft's successful mission occurred on November 5, 2002. In order to analyse the spacecraft data with respect to Amalthea's gravity field, interior models of the moon had to be provided. The method used for this approach is based on the numerical integration of infinitesimal volume elements of a three-axial ellipsoid in elliptic coordinates. To derive the gravity field coefficients of the body, the second method of Neumann was applied. Based on the spacecraft trajectory data provided by the Jet Propulsion Laboratory, GALILEO's velocity perturbations at closest approach could be calculated. The harmonic coefficients of Amalthea's gravity field have been derived up to degree and order six, for both homogeneous and reasonable heterogeneous cases. Founded on these numbers the impact on the trajectory of GALILEO was calculated and compared to existing Doppler data. Furthermore, predictions for future spacecraft flybys were derived. No two-way Doppler-data was available during the flyby and the harmonic coefficients of the gravity field are buried in the one-way Doppler-noise. Nevertheless, the generated gravity field models reflect the most likely interior structure of the moon and can be a basis for further exploration of the Jovian system.
Extending the GRACE Data Record with Gravity Field Solutions Based on a Single GRACE Satellite
NASA Astrophysics Data System (ADS)
McCullough, C.; Bettadpur, S. V.; Cheng, M.; Ries, J. C.
2015-12-01
Since 2002, the Gravity Recovery and Climate Experiment (GRACE) has enabled unprecedented scientific discovery in a variety of physical Earth sciences. However, with the launch of GRACE Follow-On not taking place until 2017 and the declining health of the current GRACE satellites, it is necessary to cultivate the ability to estimate the Earth's gravity field without the full suite of GRACE measurements. Using a single GRACE satellite, equipped with an accelerometer and a GPS receiver, as well as a compliment of SLR satellites, large-scale features of the Earth's gravity field can be determined. While the accuracy of such solutions are noticeably degraded relative to the nominal GRACE product and smaller-scale features of the Earth's gravity field are impossible to discern without the use of GRACE's satellite-to-satellite (SST) tracking measurements, single satellite solutions do capture continental scale variations in the Earth's gravitational field. These large-scale variations can be used to track global trends such as polar ice loss and water storage, in the event of a gap between GRACE and GRACE Follow-On. In addition, the lessons learned from gravity field solutions computed using only GRACE GPS data provide valuable insight into the optimal combination of GPS data with SST for GRACE Follow-On and other future missions.
Swarm kinematic orbits and gravity fields from 18 months of GPS data
NASA Astrophysics Data System (ADS)
Jäggi, A.; Dahle, C.; Arnold, D.; Bock, H.; Meyer, U.; Beutler, G.; van den IJssel, J.
2016-01-01
The Swarm mission consists of three satellites orbiting the Earth at low orbital altitudes. The onboard GPS receivers, star cameras, and laser retro-reflectors make the Swarm mission an interesting candidate to explore the contribution of Swarm GPS data to the recovery of both the static and time-variable gravity fields. We use 1.5 years of Swarm GPS and attitude data to generate kinematic positions of high quality to perform gravity field determination using the Celestial Mechanics Approach. The generated gravity fields reveal severe systematic errors along the geomagnetic equator. Their size is correlated with the ionospheric density and thus strongly varying over the analyzed time period. Similar to the findings of the GOCE mission, the systematic errors are related to the Swarm GPS carrier phase data and may be reduced by rejecting GPS data affected by large ionospheric changes. Such a measure yields a strong reduction of the systematic errors along the geomagnetic equator in the gravity field recovery. Long wavelength signatures of the gravity field may then be recovered with a similar quality as achieved with GRACE GPS data, which makes the Swarm mission well suited to bridge a potential gap between the current GRACE and the future GRACE Follow-On mission.
On the Inversion for Mass (Re)Distribution from Global (Time-Variable) Gravity Field
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.
2004-01-01
The well-known non-uniqueness of the gravitational inverse problem states the following: The external gravity field, even if completely and exactly known, cannot Uniquely determine the density distribution of the body that produces the gravity field. This is an intrinsic property of a field that obeys the Laplace equation, as already treated in mathematical as well as geophysical literature. In this paper we provide conceptual insight by examining the problem in terms of spherical harmonic expansion of the global gravity field. By comparing the multipoles and the moments of the density function, we show that in 3-S the degree of knowledge deficiency in trying to inversely recover the density distribution from external gravity field is (n+l)(n+2)/2 - (2n+l) = n(n-1)/2 for each harmonic degree n. On the other hand, on a 2-D spherical shell we show via a simple relationship that the inverse solution of the surface density distribution is unique. The latter applies quite readily in the inversion of time-variable gravity signals (such as those observed by the GRACE space mission) where the sources over a wide range of the scales largely come from the Earth's Surface.
NASA Technical Reports Server (NTRS)
Bertiger, Willy I.; Wu, J. T.; Wu, Sien C.
1992-01-01
The TOPEX/Poseidon satellite data can be used to improve the knowledge of the earth's gravitational field. The GPS data are especially useful for improving the gravity field over the world's oceans, where the current tracking data are sparse. Using realistic scenario for processing 10 days of GPS data, a covariance analysis is performed to obtain the expected improvement to the GEM-T2 gravity field. The large amount of GPS data and the large number of parameters (1979 parameters for the gravity field, plus carrier-phase biases, etc.) required special filtering techniques for efficient solution. The gravity-bin technique is used to compute the covariance matrix associated with the spherical harmonic gravity field. The covariance analysis shows that the GPS data from one 10-day arc of TOPEX/Poseidon with no a priori constraints can resolve medium degree and order (3-26) parameters with sigmas (standard deviations) that are an order of magnitude smaller than the corresponding sigmas of GEM-T2. When the information from GEM-T2 is combined with the TOPEX/Poseidon GPS measurements, an order-of-magnitude improvement is observed in low- and medium-degree terms with significant improvements spread over a wide range of degree and order.
Clear and measurable signature of modified gravity in the galaxy velocity field.
Hellwing, Wojciech A; Barreira, Alexandre; Frenk, Carlos S; Li, Baojiu; Cole, Shaun
2014-06-01
The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v_{12} are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ_{12}(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity. PMID:24949751
Effect of gravity field on the nonequilibrium/nonlinear chemical oscillation reactions
NASA Astrophysics Data System (ADS)
Fujieda, S.; Mori, Y.; Nakazawa, A.; Mogami, Y.
2001-01-01
Biological systems have evolved for a long time under the normal gravity. The Belousov-Zhabotinsky (BZ) reaction is a nonlinear chemical system far from the equilibrium that may be considered as a simplified chemical model of the biological systems so as to study the effect of gravity. The reaction solution is comprised of bromate in sulfuric acid as an oxidizing agent, 1,4-cyclohexanedione as an organic substrate, and ferroin as a metal catalyst. Chemical waves in the BZ reaction-diffusion system are visualized as blue and red patterns of ferriin and ferroin, respectively. After an improvement to the tubular reaction vessels in the experimental setup, the traveling velocity of chemical waves in aqueous solutions was measured in time series under normal gravity, microgravity, hyper-gravity, and normal gravity using the free-fall facility of JAMIC (Japan Microgravity Center), Hokkaido, Japan. Chemical patterns were collected as image data via CCD camera and analyzed by the software of NIH image after digitization. The estimated traveling velocity increased with increasing gravity as expected. It was clear experimentally that the traveling velocity of target patterns in reaction diffusion system was influenced by the effect of convection and correlated closely with the gravity field.
Aeromagnetic and Gravity Maps of the Central Marysvale Volcanic Field, Southwestern Utah
Campbell, David L.; Steven, Thomas A.; Cunningham, Charles G.; Rowley, Peter D.
1999-01-01
Gravity and aeromagnetic features in the Marysvale volcanic field result from the composite effects of many factors, including rock composition, style of magmatic emplacement, type and intensity of rock alteration, and effects of structural evolution. Densities and magnetic properties measured on a suite of rock samples from the Marysvale volcanic field differ in systematic ways. Generally, the measured densities, magnetic susceptibilities, and natural remanent magnetizations all increase with mafic index, but decrease with degree of alteration, and for tuffs, with degree of welding. Koenigsberger Q indices show no such systematic trends. The study area is divided into three geophysical domains. The northern domain is dominated by aeromagnetic lows that probably reflect reversed-polarity volcanic flows. There are no intermediate-sized magnetic highs in the northern domain that might reflect plutons. The northern domain has a decreasing-to-the-south gravity gradient that reflects the Pavant Range homocline. The central domain has gravity lows that reflect altered rocks in calderas and low-density plutons of the Marysvale volcanic field. Its aeromagnetic signatures consist of rounded highs that reflect plutons and birdseye patterns that reflect volcanic flows. In many places the birdseyes are attenuated, indicating that the flows there have been hydrothermally altered. We interpret the central domain to reflect an east-trending locus of plutons in the Marysvale volcanic field. The southern domain has intermediate gravity fields, indicating somewhat denser rocks there than in the central domain, and high-amplitude aeromagnetic birdseyes that reflect unaltered volcanic units. The southern domain contains no magnetic signatures that we interpret to reflect plutons. Basin-and-range tectonism has overprinted additional gravity features on the three domains. A deep gravity low follows the Sevier and Marysvale Valleys, reflecting grabens there. The gravity gradient in the
High-precision Velocimetry Reveals δ Cephei's Secret Companion
NASA Astrophysics Data System (ADS)
Anderson, Richard I.; Sahlmann, Johannes; Holl, Berry; Eyer, Laurent
2015-08-01
The search for extra-solar planets has driven tremendous improvements in the precision of radial velocities measured with high-resolution echelle spectrographs. However, relatively few studies have as of yet exploited the present-day extreme (m/s) instrumental precision to study Cepheid variable stars.We have been observing the prototype of classical Cepheids, δ Cephei, since September 2011 using the HERMES spectrograph mounted to the Mercator telescope located at the Roque de los Muchachos Observatory on the island of La Palma. Being one of the most-studied variable stars, we originally chose δ Cephei as a maximum-precision reference for other Cepheids in our sample. To our great surprise however, we discovered a clear orbital signature in the homogeneous HERMES data. Adding in radial velocity data from the literature, we then determined δ Cephei's orbit (cf. Anderson et al. 2015, arXiv:1503.04116). The high orbital eccentricity (e=0.647) leads to close pericenter passages (rmin ~ 9.5 RδCep) which suggest an intriguing past that requires further study, since Cepheids are well-known magnifying glasses for stellar evolution (Kippenhahn & Weigert 1994). We furthermore determined a new parallax to δ Cephei (using Hipparcos data) that is in tension with previous estimates and shows that the orbit will have to be accounted for when measuring δ Cephei's parallax with Gaia.While some of our HERMES data are as precise as 9 m/s, we found correlated excess residuals when removing the reference pulsation model and orbital motion from the HERMES radial velocity data, leaving an RMS of 47 m/s. These higher-than-expected residuals are reminiscent of the "period-jitter" or "flickering" observed in high-precision photometry of Cepheids obtained with the Kepler and MOST satellites. This reveals a fortuitous synergy between variable stars studies and the field of exoplanet research and opens the window for a better understanding of Cepheid pulsations via high-precision
Laser interferometric high-precision angle monitor for JASMINE
NASA Astrophysics Data System (ADS)
Niwa, Yoshito; Arai, Koji; Sakagami, Masaaki; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Yano, Taihei
2006-06-01
The JASMINE instrument uses a beam combiner to observe two different fields of view separated by 99.5 degrees simultaneously. This angle is so-called basic angle. The basic angle of JASMINE should be stabilized and fluctuations of the basic angle should be monitored with the accuracy of 10 microarcsec in root-mean-square over the satellite revolution period of 5 hours. For this purpose, a high-precision interferometric laser metrogy system is employed. One of the available techniques for measuring the fluctuations of the basic angle is a method known as the wave front sensing using a Fabry-Perot type laser interferometer. This technique is to detect fluctuations of the basic angle as displacement of optical axis in the Fabry-Perot cavity. One of the advantages of the technique is that the sensor is made to be sensitive only to the relative fluctuations of the basic angle which the JASMINE wants to know and to be insensitive to the common one; in order to make the optical axis displacement caused by relative motion enhanced the Fabry-Perot cavity is formed by two mirrors which have long radius of curvature. To verify the principle of this idea, the experiment was performed using a 0.1m-length Fabry-Perot cavity with the mirror curvature of 20m. The mirrors of the cavity were artificially actuated in either relative way or common way and the resultant outputs from the sensor were compared.
A new high-precision current supply for magnets
Wisnivesky, D. |; Lira, A.C.
1995-08-01
A new, high-precision, low-ripple current power supply (CPS) for magnets, based on a combination of an SCR converter and a single transistor switched mode power supply (SMPS) is described. The load power is primarily supplied by the SCR converter. The SMPS handles only a small fraction of the load power, and also, what is more significant, a very small part of the load current. In this paper, the topology and operating principle of the new power supply is discussed. A CPS, rated at 200 A at 45 V, was constructed and tested. The power supply energizes a family of quadrupole magnets at the Brazilian Synchrotron Light Source--LNLS. Making use of the current limit modulation (CLM) control method, magnetic field variations at full current are 5 ppm, with only 8 A passing through the switching transistor. The design and performance of the power supply under different operating conditions ar described. Variations of the proposed topology, suitable for high-current and high-voltage loads, are also discussed.
Smart sensors and calibration standards for high precision metrology
NASA Astrophysics Data System (ADS)
Brand, Uwe; Gao, Sai; Doering, Lutz; Li, Zhi; Xu, Min; Buetefisch, Sebastian; Peiner, Erwin; Fruehauf, Joachim; Hiller, Karla
2015-05-01
The paper summarize the PTB activities in the field of silicon sensors for dimensional metrology especially roughness measurements and silicon calibration standards developed during the past ten years. A focus lies in the development of 2D silicon microprobes which enable roughness measurements in nozzles as small as 100 μm in diameter. Moreover these microprobes offer the potential for very fast tactile measurements up to 15 mm/s due to their tiny mass and therefore small dynamic forces. When developing high precision tactile sensors care has to be taken, not to scratch the often soft surfaces. Small probing forces and well defined tip radii have to be used to avoid surface destruction. Thus probing force metrology and methods to determine the radius and form of probing tips have been developed. Silicon is the preferred material for the calibration of topography measuring instruments due to its excellent mechanical and thermal stability and due to the fabrication and structuring possibilities of silicon microtechnology. Depth setting standards, probing force setting standards, tip radius and tip form standards, reference springs and soft material testing artefacts will be presented.
Arctic Ocean gravity field derived from ICESat and ERS-2 altimetry: Tectonic implications
NASA Astrophysics Data System (ADS)
McAdoo, David C.; Farrell, Sinead Louise; Laxon, Seymour W.; Zwally, H. Jay; Yi, Donghui; Ridout, Andy L.
2008-05-01
A new, detailed marine gravity field for the persistently ice-covered Arctic Ocean, derived entirely from satellite data, reveals important new tectonic features in both the Amerasian and Eurasian basins. Reprocessed Geoscience Laser Altimeter System (GLAS) data collected by NASA's Ice Cloud and land Elevation Satellite (ICESat) between 2003 and 2005 have been combined with 8 years worth of retracked radar altimeter data from ESA's ERS-2 satellite to produce the highest available resolution gravity mapping of the entire Arctic Ocean complete to 86°N. This ARCtic Satellite-only (ARCS) marine gravity field uniformly and confidently resolves marine gravity to wavelengths as short as 35 km. ARCS relies on a Gravity Recovery and Climate Experiment (GRACE)-only satellite gravity model at long (>580 km) wavelengths and plainly shows tectonic fabric and numerous details imprinted in the Arctic seafloor, in particular, in the enigmatic Amerasian Basin (AB). For example, in the Makarov Basin portion of the AB, two north-south trending lineations are likely clues to the highly uncertain seafloor spreading history which formed the AB.
Validity of the "Laplace Swindle" in Calculation of Giant-Planet Gravity Fields
NASA Astrophysics Data System (ADS)
Hubbard, William B.
2014-11-01
Jupiter and Saturn have large rotation-induced distortions, providing an opportunity to constrain interior structure via precise measurement of external gravity. Anticipated high-precision gravity measurements close to the surfaces of Jupiter (Juno spacecraft) and Saturn (Cassini spacecraft), possibly detecting zonal harmonics to J10 and beyond, will place unprecedented requirements on gravitational modeling via the theory of figures (TOF). It is not widely appreciated that the traditional TOF employs a formally nonconvergent expansion attributed to Laplace. This suspect expansion is intimately related to the standard zonal harmonic (J-coefficient) expansion of the external gravity potential. It can be shown (Hubbard, Schubert, Kong, and Zhang: Icarus, in press) that both Jupiter and Saturn are in the domain where Laplace's "swindle" works exactly, or at least as well as necessary. More highly-distorted objects such as rapidly spinning asteroids may not be in this domain, however. I present a numerical test for the validity and precision of TOF via polar "audit points". I extend the audit-point test to objects rotating differentially on cylinders, obtaining zonal harmonics to J20 and beyond. Models with only low-order differential rotation do not exhibit dramatic effects in the shape of the zonal harmonic spectrum. However, a model with Jupiter-like zonal winds exhibits a break in the zonal harmonic spectrum above about J10, and generally follows the more shallow Kaula power rule at higher orders. This confirms an earlier result obtained by a different method (Hubbard: Icarus 137, 357-359, 1999).
Satellite-to-satellite tracking experiment for global gravity field mapping
NASA Technical Reports Server (NTRS)
Upadhyay, Triveni N.; Jekeli, Christopher
1989-01-01
The satellite-to-satellite (STS) tracking concept for estimating gravitational parameters offers an attractive means to improve on regional and global gravity models in areas where data availability is limited. The extent to which the STS tracking measurements can be effectively utilized in global field models depends primarily on the satellite's altitude, number of satellites, and their orbit constellation. The estimation accuracy of the gravity field recovery also depends on the measurement accuracy of the sensors employed in the STS tracking concept. A comparison of the obtainable accuracies in the gravity field recovery using various STS tracking concepts was presented by Jekeli. The results of a feasibility study for a specific realization of the STS high-low tracking concept are summarized. In this realization, the high altitude satellites are the GPS satellites, and the low orbit satellite is the space shuttle. The GPS satellite constellation consists of 18 satellites in 6 orbital planes inclined at 55 deg. The shuttle orbit is at approximately 300 km, with an inclination of 30 deg. This specific configuration of high-low satellites for measuring perturbation in the gravity field is named the Air Foce STAGE (Shuttle GPS Tracking for Anomalous Gravitation Estimation) mission. The STAGE mission objective is to estimate the perturbations in gravity vector at the shuttle altitude to an accuracy of 1 mgal or better. Recent simulation studies have confirmed that the 1 mgal accuracy objective is near optimum for the STAGE mission.
NASA Astrophysics Data System (ADS)
Mohammadi Mozaffar, M. R.; Mollabashi, A.; Sheikh-Jabbari, M. M.; Vahidinia, M. H.
2016-08-01
It is established that physical observables in local quantum field theories should be invariant under invertible field redefinitions. It is then expected that this statement should be true for the entanglement entropy and moreover that, via the gauge/gravity correspondence, the recipe for computing entanglement entropy holographically should also be invariant under local field redefinitions in the gravity side. We use this fact to fix the recipe for computing holographic entanglement entropy (HEE) for f (R ,Rμ ν) theories that could be mapped to Einstein gravity. An outcome of our prescription is that the surfaces that minimize the corresponding HEE functional for f (R ,Rμ ν) theories always have a vanishing trace of extrinsic curvature and that the HEE may be evaluated using the Wald entropy functional. We show that similar results follow from the FPS and Dong HEE functionals, for Einstein manifold backgrounds in f (R ,Rμ ν) theories.
Time Lapse Gravity and Seismic Monitoring of CO2 Injection at the West Hastings Field, Texas
NASA Astrophysics Data System (ADS)
Ferguson, J. F.; Richards, T.; Klopping, F.; MacQueen, J.; Hosseini, S. A.
2015-12-01
Time lapse or 4D gravity and seismic reflection surveys are being conducted at the West Hastings Field near Houston, Texas to monitor the progress of CO2 injection. This Department of Energy supported CO2 sequestration experiment is conducted in conjunction with a Denbury Onshore, LLC tertiary recovery project. The reservoir is at a depth of 1.8 km in the Oligocene Frio sands and has been produced since the 1930s. Goals are an accounting and mapping of the injected CO2 and to determine if migration occurs along intra-reservoir faults. An integrated interpretation of the geophysical surveys will be made together with well logs and engineering data. Gravity monitoring of water versus gas replacement has been very successful, but liquid phase CO2 monitoring is problematic due to the smaller density contrast with respect to oil and water. This reservoir has a small volume to depth ratio and hence only a small gravity difference signal is expected on the surface. New borehole gravity technology introduced by Micro-g-Lacoste can make gravity measurements at near reservoir depths with a much higher signal to noise ratio. This method has been successfully evaluated on a simulation of the Hastings project. Field operations have been conducted for repeated surface and borehole gravity surveys beginning in 2013. The surface survey of 95 stations covers an area of 3 by 5 km and 22 borehole gravity logs are run in the interval above the Frio formation. 4D seismic reflection surveys are being made at 6 month intervals on the surface and in 3 VSP wells. CO2 injection into the targeted portion of the reservoir only began in early 2015 and monitoring will continue into 2017. To date only the baseline reservoir conditions have been assessed. The overall success of the gravity monitoring will not be determined until 2017.
NASA Astrophysics Data System (ADS)
Di Marco, P.; Raj, R.; Kim, J.
2011-12-01
Results from the variable gravity pool boiling experiments performed during the 52nd ESA parabolic flight campaign are reported in this paper. During a typical parabola, the gravity acceleration changes from 1.8gE (high gravity) to ~0gE (low gravity) and finally back to 1.8gE. The two high gravity periods and the microgravity period are each roughly maintained for 20 seconds while the transition from high gravity to low gravity and vice versa occurs over a period of 3-5 seconds. Use of the high feedback frequency microheater array allowed quasi-steady boiling data over the continuous range of gravity levels (0gE-1.8gE). The experimental apparatus consisted of a boiling chamber with a 7×7 mm2 microheater array in a 10×10 configuration. Each heater in the array was individually controlled to maintain a constant temperature. The array could be operated in a full configuration or a selectively powered reduced set of 3×3 heaters. Experiments were performed with FC-72 as the test fluid, the pressure was maintained at a constant value between 1 and 1.13 atm and the subcooling ranged from 27 to 11 K. An external electric field was imposed over the boiling surface by means of a grid consisting of 4 rods, laid parallel to the surface; voltages up to 10 kV were applied. The electric field was effective in reducing the size of the detaching bubbles, and increasing the heat transfer compared to the values in low-g, although its effectiveness decayed as the heat flux/superheat increased. The current results compared well with previous results obtained in the ARIEL apparatus that was operated in orbital flight.
Research on high-precision hole measurement based on robot vision method
NASA Astrophysics Data System (ADS)
Song, Li-mei; Li, Da-peng; Qin, Ming-cui; Li, Zong-yan; Chang, Yu-lan; Xi, Jiang-tao
2014-09-01
A high-precision vision detection and measurement system using mobile robot is established for the industry field detection of motorcycle frame hole and its diameter measurement. The robot path planning method is researched, and the non-contact measurement method with high precision based on visual digital image edge extraction and hole spatial circle fitting is presented. The Canny operator is used to extract the edge of captured image, the Lagrange interpolation algorithm is utilized to determine the missing image edge points and calculate the centroid, and the least squares fitting method is adopted to fit the image edge points. Experimental results show that the system can be used for the high-precision real-time measurement of hole on motorcycle frame. The absolute standard deviation of the proposed method is 0.026 7 mm. The proposed method can not only improve the measurement speed and precision, but also reduce the measurement error.
Taking advantage of the MEMO orbiter to improve the determination of Mars' gravity field.
NASA Astrophysics Data System (ADS)
Rosenblatt, P.; Le Maitre, S.; Marty, J. C.; Duron, J.; Dehant, V.
2007-08-01
In the context of future ESA's mission to Mars, it is proposed an orbiter named MEMO (Mars Escape and Magnetic Orbiter) to especially improve the measurement of the atmospheric escape and the magnetic field of the planet. Its orbit is planned to have an inclination of 77 degrees and periapsis and apoapsis altitude of 130 km and 1000 km, respectively. In addition, such an orbit is scheduled to be maintained during one Martian year. This differs from the usual near-polar, near-circular orbit with a periapsis altitude of at least 200 km, such as for Mars Reconnaissance Orbiter (MRO). Even if the MEMO orbiter is not dedicated to Mars' gravity field investigation, we propose to take this opportunity to improve our knowledge of Mars' gravity field. Indeed, the sensitivity of an orbiter to the gravity field strongly depends on the semi-major axis, inclination and eccentricity of its orbit. In this study, we quantitatively estimate the improvement on the determination of local gravity anomalies, of seasonal variations of the first zonal harmonics and of the k2 Love number of Mars. We base our work on both analytical and numerical approaches in order to simulate the Mars' gravity field determination from spacecraft tracking data from the Earth.We also add in our simulations the possibility to have an accelerometer onboard the MEMO spacecraft. Indeed, if it is placed at the center of mass of the spacecraft, it could provide measurements of the non-gravitational forces acting on it, especially the atmospheric drag. A good determination of the contribution of this force to the spacecraft motion would bring information about the atmospheric density at altitude between 100 and 200 km, and would improve the gravity field determination from tracking data of the spacecraft.
Gravity field of Jupiter's moon Amalthea and the implication on a spacecraft trajectory
NASA Astrophysics Data System (ADS)
Weinwurm, G.; Weber, R.
Before its final plunge into Jupiter in September 2003, GALILEO made a last 'visit' to one of Jupiter's moons - Amalthea. This final flyby of the spacecraft's successful mission occurred on November 5, 2002. In order to analyse the spacecraft data with respect to Amalthea's gravity field, interior models of the moon had to be provided. The method used for this approach is based on the numerical integration of infinitesimal volume elements, which are calculated by the scale factors of a three-axial ellipsoid (elliptic coordinates). Within this routine the shape information of Amalthea can be included as well. To derive the gravity field coefficients of the body, the second method of Neumann was applied. Based on the spacecraft trajectory data provided by the Jet Propulsion Laboratory, GALILEO's velocity perturbations at closest approach could be calculated. We have derived the harmonic coefficients of Amalthea's gravity field up to degree and order six, for both homogeneous and reasonable heterogeneous cases. Founded on these numbers we calculated the impact on the trajectory of GALILEO, compared it to existing Doppler data and made predictions for future spacecraft flybys. Although no two-way Doppler-data was available during the flyby and the harmonic coefficients of the gravity field are buried in the one-way Doppler-noise, the gravity field models of Amalthea show the possible interior structure of the moon and can be a basis for further exploration of the Jovian system. In order to get valuable information about the gravity field of this tiny rocky moon, a much closer flyby than that of GALILEO should be anticipated. The above stated model approach can be used for any planetary body.
Gauge gravitation theory: Gravity as a Higgs field
NASA Astrophysics Data System (ADS)
Sardanashvily, Gennadi
2016-05-01
Gravitation theory is formulated as gauge theory on natural bundles with spontaneous symmetry breaking, where gauge symmetries are general covariant transformations, gauge fields are general linear connections, and Higgs fields are pseudo-Riemannian metrics.
The effective field theory treatment of quantum gravity
Donoghue, John F.
2012-09-24
This is a pedagogical introduction to the treatment of quantum general relativity as an effective field theory. It starts with an overview of the methods of effective field theory and includes an explicit example. Quantum general relativity matches this framework and I discuss gravitational examples as well as the limits of the effective field theory. I also discuss the insights from effective field theory on the gravitational effects on running couplings in the perturbative regime.
Mariner 9 celestial mechanics experiment - Gravity field and pole direction of Mars.
NASA Technical Reports Server (NTRS)
Lorell, J.; Born, G. H.; Christensen, E. J.; Jordan, J. F.; Laing, P. A.; Martin, W. L.; Sjogren, W. L.; Shapiro, I. I.; Reasenberg, R. D.; Slater, G. L.
1972-01-01
Analysis of the Mariner 9 radio-tracking data shows that the Martian gravity field is rougher than that of earth or the moon, and that the accepted direction of the Mars rotation axis is in error by about 0.5 deg. Contours of equivalent surface heights deduced from a sixth-degree solution for the Martian gravity field are presented. These contours represent the deviations from sphericity of a uniformly dense body with an external potential which is given by the first sixth-degree solution. In addition to Doppler observations, ranging or group-delay measurements have been made regularly since orbit insertion.
Improvements of the gravity field from satellite techniques as proposed to the European Space Agency
NASA Technical Reports Server (NTRS)
Reigber, C.
1978-01-01
A summary of the European Earth Sciences Space Programme and the requirements for each gravity field mapping resulting from this programme are given. Three satellite experiments for gravity field improvement proposed to the European Space Agency in the last years are shortly characterized. One of these experiments, the low-low-SST-SLALOM experiment, based on laser interferometry for a "two target-one Spacelab telescope" configuration, is discussed in more detail. Reasons for the low-low concept selection are given and some mission aspects and a possible system concept for a compact ranging, acquisition and tracking system are presented.
Inference of variations in the gravity field from satellite-to-satellite range rate
NASA Technical Reports Server (NTRS)
Kaula, W. M.
1983-01-01
An analytic scheme for inferring variations of the gravity field from satellite-to-satellite range rate (low-low) is developed. As a test, it is applied to a pair of satellites in polar orbit, at altitude 160 km and spacing 100 km, with 72 data points per revolution. An assumed gravity field of tesseral spherical harmonics up to the eighth degree is completely recovered in three iterations over 64 revolutions. It is apparent that data points at regular intervals enable the use of data analysis techniques that avoid massive matrix inversions.
Too Fast to Measure: Network Adjustment of Rapidly Changing Gravity Fields
NASA Astrophysics Data System (ADS)
Kennedy, J.; Ferre, T. P. A.
2014-12-01
Measurements of spatially-variable gravity at the field scale are difficult; measurements of the time-varying field even more so. Every previous gravity survey using relative gravimeters—still the workhorse of gravity studies, despite their nearly 80 year history—has assumed a static gravity field during the course of a survey, which may last days to weeks. With recently-improved instrumentation, however, measurements of fields changing on the order of tens of nm/sec2 per day are now possible. In particular, the A-10 portable absolute gravimeter provides not only absolute control, but also the change in that control during the course of a survey. Using digitally-recording spring-based relative gravimeters (namely, the ZLS Burris meter and the Scintrex CG-5), with their more efficient data collection and lower drift than previous generations, many more data are collected in a day. We demonstrate a method for incorporating in the least-squares network adjustment of relative gravity data a relation between the rate of change of gravity, dg, and distance from an infiltration source, x. This relation accounts for the fact that gravity at stations adjacent to the infiltration source changes more rapidly than stations further away; if all measurements collected over several days are to be included in a single network-adjustment, consideration of this change is required. Two methods are used to simulate the dg(x) relation: a simple model where dg is a linear function of x, and a coupled-hydrogeophysical method where a groundwater flow model predicts the nonlinear spatial variation of dg. Then, the change in gravity between different, independently adjusted surveys is used to parameterize the groundwater model. Data from two recent field examples, an artificial recharge facility near Tucson, Arizona, USA, and from the 2014 Lower Colorado River pulse flow experiment, clearly show the need to account for gravity change during a survey; maximum rates of change for the two
GOCE Precise Science Orbits for the Entire Mission and their Use for Gravity Field Recovery
NASA Astrophysics Data System (ADS)
Jäggi, Adrian; Bock, Heike; Meyer, Ulrich; Weigelt, Matthias
The Gravity field and steady-state Ocean Circulation Explorer (GOCE), ESA's first Earth Explorer Core Mission, was launched on March 17, 2009 into a sun-synchronous dusk-dawn orbit and re-entered into the Earth's atmosphere on November 11, 2013. It was equipped with a three-axis gravity gradiometer for high-resolution recovery of the Earth's gravity field, as well as with a 12-channel, dual-frequency Global Positioning System (GPS) receiver for precise orbit determination (POD), instrument time-tagging, and the determination of the long wavelength part of the Earth’s gravity field. A precise science orbit (PSO) product was provided during the entire mission by the GOCE High-level Processing Facility (HPF) from the GPS high-low Satellite-to-Satellite Tracking (hl-SST) data. We present the reduced-dynamic and kinematic PSO results for the entire mission period. Orbit comparisons and validations with independent Satellite Laser Ranging (SLR) measurements demonstrate the high quality of both orbit products being close to 2 cm 1-D RMS, but also reveal a correlation between solar activity, GPS data availability, and the quality of the orbits. We use the 1-sec kinematic positions of the GOCE PSO product for gravity field determination and present GPS-only solutions covering the entire mission period. The generated gravity field solutions reveal severe systematic errors centered along the geomagnetic equator, which may be traced back to the GPS carrier phase observations used for the kinematic orbit determination. The nature of the systematic errors is further investigated and reprocessed orbits free of systematic errors along the geomagnetic equator are derived. Eventually, the potential of recovering time variable signals from GOCE kinematic positions is assessed.
Gravity field of Kuwait and its relevance to major geological structures
Warsi, W.E.K. )
1990-10-01
Regional gravity surveys were done in the state of Kuwait during 1986-1988. The new gravity maps show a good correlation with geomorphological features as well as with deeper geological structures. The free-air anomaly map clearly reflects the topography of the Jal Az Zor and Ahmadi ridges, and Wadi Al-Batin. The Bouguer anomaly map is dominated by two prominent gravity highs correlatable with subsurface structural arches. The north-trending gravity high in eastern Kuwait represents the effect of a major structure, the Kuwait arch, along which many important oil fields are located. A smaller northwest-trending high mapped in western Kuwait indicates the presence of a second subsurface arch, which in this paper is named the Dibdibba arch. The two gravity highs are separated by a wedge-shaped gravity low presumably caused by thicker sediments of the Dibdibba basin. Magnetic measurements along selected profiles show the two arches to be associated with 100-200-nT (nannotesla) anomalies apparently reflecting the positive subsurface relief of the crystalline basement. Along the length of the Kuwait arch, magnetic data also indicate lateral susceptibility variations possibly related to lithological variations within the basement.
The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL Primary Mission
NASA Astrophysics Data System (ADS)
Konopliv, Alex S.; Park, Ryan S.; Yuan, Dah-Ning; Asmar, Sami W.; Watkins, Michael M.; Williams, James G.; Fahnestock, Eugene; Kruizinga, Gerhard; Paik, Meegyeong; Strekalov, Dmitry; Harvey, Nate; Smith, David E.; Zuber, Maria T.
2013-07-01
The lunar gravity field and topography provide a way to probe the interior structure of the Moon. Prior to the Gravity Recovery and Interior Laboratory (GRAIL) mission, knowledge of the lunar gravity was limited mostly to the nearside of the Moon, since the farside was not directly observable from missions such as Lunar Prospector. The farside gravity was directly observed for the first time with the SELENE mission, but was limited to spherical harmonic degree n ≤ 70. The GRAIL Primary Mission, for which results are presented here, dramatically improves the gravity spectrum by up to ~4 orders of magnitude for the entire Moon and for more than 5 orders-of-magnitude over some spectral ranges by using interspacecraft measurements with near 0.03 μm/s accuracy. The resulting GL0660B (n = 660) solution has 98% global coherence with topography to n = 330, and has variable regional surface resolution between n = 371 (14.6 km) and n = 583 (9.3 km) because the gravity data were collected at different spacecraft altitudes. The GRAIL data also improve low-degree harmonics, and the uncertainty in the lunar Love number has been reduced by ~5× to k2 = 0.02405 ± 0.00018. The reprocessing of the Lunar Prospector data indicates ~3× improved orbit uncertainty for the lower altitudes to ~10 m, whereas the GRAIL orbits are determined to an accuracy of 20 cm.
On the model structure of the gravity field of Mars
NASA Astrophysics Data System (ADS)
Zharkov, V. N.; Gudkova, T. V.
2016-07-01
A discussion is presented about the constraints used in constructing a model for the internal structure of Mars. The most important fact is that the Martian chemical model proposed by Wänke and Dreibus (WD) has stood the test of time. This means that the chondritic ratio Fe/Si = 1.71 can be used as a constraint in constructing an interior structure model of the planet. Consideration is given to the constructing of the reference surface of Mars. It is concluded that the effectively hydrostatic-equilibrium model of Mars is well suited for this purpose. The areoid heights and gravity anomalies in the model of Mars are calculated. The results are shown in the figures (maps) and comments made. The results are compared with the similar data for the Earth. Mars deviates much more strongly from the hydrostatic equilibrium than the Earth. It is suggested that the average thickness of the Martian elastic lithosphere should exceed that of the Earth's continental lithosphere.
Antarctic Tectonics: Constraints From an ERS-1 Satellite Marine Gravity Field
McAdoo; Laxon
1997-04-25
A high-resolution gravity field of poorly charted and ice-covered ocean near West Antarctica, from the Ross Sea east to the Weddell Sea, has been derived with the use of satellite altimetry, including ERS-1 geodetic phase, wave-form data. This gravity field reveals regional tectonic fabric, such as gravity lineations, which are the expression of fracture zones left by early (65 to 83 million years ago) Pacific-Antarctic sea-floor spreading that separated the Campbell Plateau and New Zealand continent from West Antarctica. These lineations constrain plate motion history and confirm the hypothesis that Antarctica behaved as two distinct plates, separated from each other by an extensional Bellingshausen plate boundary active in the Amundsen Sea before about 61 million years ago. PMID:9110969
Farside gravity field of the moon from four-way Doppler measurements of SELENE (Kaguya).
Namiki, Noriyuki; Iwata, Takahiro; Matsumoto, Koji; Hanada, Hideo; Noda, Hirotomo; Goossens, Sander; Ogawa, Mina; Kawano, Nobuyuki; Asari, Kazuyoshi; Tsuruta, Sei-Itsu; Ishihara, Yoshiaki; Liu, Qinghui; Kikuchi, Fuyuhiko; Ishikawa, Toshiaki; Sasaki, Sho; Aoshima, Chiaki; Kurosawa, Kosuke; Sugita, Seiji; Takano, Tadashi
2009-02-13
The farside gravity field of the Moon is improved from the tracking data of the Selenological and Engineering Explorer (SELENE) via a relay subsatellite. The new gravity field model reveals that the farside has negative anomaly rings unlike positive anomalies on the nearside. Several basins have large central gravity highs, likely due to super-isostatic, dynamic uplift of the mantle. Other basins with highs are associated with mare fill, implying basalt eruption facilitated by developed faults. Basin topography and mantle uplift on the farside are supported by a rigid lithosphere, whereas basins on the nearside deformed substantially with eruption. Variable styles of compensation on the near- and farsides suggest that reheating and weakening of the lithosphere on the nearside was more extensive than previously considered. PMID:19213911
Jain, Bhuvnesh; Khoury, Justin
2010-07-15
Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the universe. We review recent developments in modified gravity theories, focusing on higher-dimensional approaches and chameleon/f(R) theories. We classify these models in terms of the screening mechanisms that enable such theories to approach general relativity on small scales (and thus satisfy solar system constraints). We describe general features of the modified Friedman equation in such theories. The second half of this review describes experimental tests of gravity in light of the new theoretical approaches. We summarize the high precision tests of gravity on laboratory and solar system scales. We describe in some detail tests on astrophysical scales ranging from {approx} kpc (galaxy scales) to {approx} Gpc (large-scale structure). These tests rely on the growth and inter-relationship of perturbations in the metric potentials, density and velocity fields which can be measured using gravitational lensing, galaxy cluster abundances, galaxy clustering and the integrated Sachs-Wolfe effect. A robust way to interpret observations is by constraining effective parameters, such as the ratio of the two metric potentials. Currently tests of gravity on astrophysical scales are in the early stages - we summarize these tests and discuss the interesting prospects for new tests in the coming decade.
Liquid Droplet Dynamics in Gravity Compensating High Magnetic Field
NASA Technical Reports Server (NTRS)
Bojarevics, V.; Easter, S.; Pericleous, K.
2012-01-01
Numerical models are used to investigate behavior of liquid droplets suspended in high DC magnetic fields of various configurations providing microgravity-like conditions. Using a DC field it is possible to create conditions with laminar viscosity and heat transfer to measure viscosity, surface tension, electrical and thermal conductivities, and heat capacity of a liquid sample. The oscillations in a high DC magnetic field are quite different for an electrically conducting droplet, like liquid silicon or metal. The droplet behavior in a high magnetic field is the subject of investigation in this paper. At the high values of magnetic field some oscillation modes are damped quickly, while others are modified with a considerable shift of the oscillating droplet frequencies and the damping constants from the non-magnetic case.
A Sea Floor Gravity Survey of the Sleipner Field to Monitor CO2 Migration
Mark Zumberge
2011-09-30
Carbon dioxide gas (CO{sub 2}) is a byproduct of many wells that produce natural gas. Frequently the CO{sub 2} separated from the valuable fossil fuel gas is released into the atmosphere. This adds to the growing problem of the climatic consequences of greenhouse gas contamination. In the Sleipner North Sea natural gas production facility, the separated CO{sub 2} is injected into an underground saline aquifer to be forever sequestered. Monitoring the fate of such sequestered material is important - and difficult. Local change in Earth's gravity field over the injected gas is one way to detect the CO{sub 2} and track its migration within the reservoir over time. The density of the injected gas is less than that of the brine that becomes displaced from the pore space of the formation, leading to slight but detectable decrease in gravity observed on the seafloor above the reservoir. Using equipment developed at Scripps Institution of Oceanography, we have been monitoring gravity over the Sleipner CO{sub 2} sequestration reservoir since 2002. We surveyed the field in 2009 in a project jointly funded by a consortium of European oil and gas companies and the US Department of Energy. The value of gravity at some 30 benchmarks on the seafloor, emplaced at the beginning of the monitoring project, was observed in a week-long survey with a remotely operated vehicle. Three gravity meters were deployed on the benchmarks multiple times in a campaign-style survey, and the measured gravity values compared to those collected in earlier surveys. A clear signature in the map of gravity differences is well correlated with repeated seismic surveys.
Combination of various observation techniques for regional modeling of the gravity field
NASA Astrophysics Data System (ADS)
Lieb, Verena; Schmidt, Michael; Dettmering, Denise; Börger, Klaus
2016-05-01
Modeling a very broad spectrum of the Earth's gravity field needs observations from various measurement techniques with different spectral sensitivities. Typically, high-resolution regional gravity data are combined with low-resolution global observations. To exploit the gravitational information as optimally as possible, we set up a regional modeling approach using radial spherical basis functions, emphasizing the strengths of various data sets by the flexible combination of high- and middle-resolution terrestrial, airborne, shipborne, and altimetry measurements. The basis functions are defined and located in the region of interest in such a manner, which the highest measure of information of the input data is captured. Any functional of the Earth's gravity field can be derived, as, e.g., quasi-geoid heights or gravity anomalies. Here we present results of a study area in Northern Germany. A comprehensive cross validation to external observation data delivers standard deviations less than 5 cm. Differences to an existing regional quasi-geoid model count on average ±6 cm and proof the plausibility of our solution. The comparison with existing global models reaches higher standard deviations for the more sensitive gravity anomalies as for quasi-geoid heights, showing the additional value of our solution in the high frequency domain. Covering a broad frequency spectrum, our regional models can be used as basis for various applications, such as refinement of global models, national geoid determination, and detection of mass anomalies in the Earth's interior.
Kennedy, Jeffrey R.; Ferre, Ty P.A.
2015-01-01
The relative gravimeter is the primary terrestrial instrument for measuring spatially and temporally varying gravitational fields. The background noise of the instrument—that is, non-linear drift and random tares—typically requires some form of least-squares network adjustment to integrate data collected during a campaign that may take several days to weeks. Here, we present an approach to remove the change in the observed relative-gravity differences caused by hydrologic or other transient processes during a single campaign, so that the adjusted gravity values can be referenced to a single epoch. The conceptual approach is an example of coupled hydrogeophysical inversion, by which a hydrologic model is used to inform and constrain the geophysical forward model. The hydrologic model simulates the spatial variation of the rate of change of gravity as either a linear function of distance from an infiltration source, or using a 3-D numerical groundwater model. The linear function can be included in and solved for as part of the network adjustment. Alternatively, the groundwater model is used to predict the change of gravity at each station through time, from which the accumulated gravity change is calculated and removed from the data prior to the network adjustment. Data from a field experiment conducted at an artificial-recharge facility are used to verify our approach. Maximum gravity change due to hydrology (observed using a superconducting gravimeter) during the relative-gravity field campaigns was up to 2.6 μGal d−1, each campaign was between 4 and 6 d and one month elapsed between campaigns. The maximum absolute difference in the estimated gravity change between two campaigns, two months apart, using the standard network adjustment method and the new approach, was 5.5 μGal. The maximum gravity change between the same two campaigns was 148 μGal, and spatial variation in gravity change revealed zones of preferential infiltration and areas of relatively
NASA Astrophysics Data System (ADS)
Kennedy, Jeffrey R.; Ferré, Ty P. A.
2016-02-01
The relative gravimeter is the primary terrestrial instrument for measuring spatially and temporally varying gravitational fields. The background noise of the instrument-that is, non-linear drift and random tares-typically requires some form of least-squares network adjustment to integrate data collected during a campaign that may take several days to weeks. Here, we present an approach to remove the change in the observed relative-gravity differences caused by hydrologic or other transient processes during a single campaign, so that the adjusted gravity values can be referenced to a single epoch. The conceptual approach is an example of coupled hydrogeophysical inversion, by which a hydrologic model is used to inform and constrain the geophysical forward model. The hydrologic model simulates the spatial variation of the rate of change of gravity as either a linear function of distance from an infiltration source, or using a 3-D numerical groundwater model. The linear function can be included in and solved for as part of the network adjustment. Alternatively, the groundwater model is used to predict the change of gravity at each station through time, from which the accumulated gravity change is calculated and removed from the data prior to the network adjustment. Data from a field experiment conducted at an artificial-recharge facility are used to verify our approach. Maximum gravity change due to hydrology (observed using a superconducting gravimeter) during the relative-gravity field campaigns was up to 2.6 μGal d-1, each campaign was between 4 and 6 d and one month elapsed between campaigns. The maximum absolute difference in the estimated gravity change between two campaigns, two months apart, using the standard network adjustment method and the new approach, was 5.5 μGal. The maximum gravity change between the same two campaigns was 148 μGal, and spatial variation in gravity change revealed zones of preferential infiltration and areas of relatively high
Chameleon fields, wave function collapse and quantum gravity
NASA Astrophysics Data System (ADS)
Zanzi, A.
2015-07-01
Chameleon fields are quantum (usually scalar) fields, with a density-dependent mass. In a high-density environment, the mass of the chameleon is large. On the contrary, in a small-density environment (e.g. on cosmological distances), the chameleon is very light. A model where the collapse of the wave function is induced by chameleon fields is presented. During this analysis, a Chameleonic Equivalence Principle (CEP) will be formulated: in this model, quantum gravitation is equivalent to a conformal anomaly. Further research efforts are necessary to verify whether this proposal is compatible with phenomeno logical constraints.
New technique of machining high precision mirror surface press roller
NASA Astrophysics Data System (ADS)
Hongsen, Deng
1991-03-01
High precision mirror surface press roller machining technique of corrosion and grinding proof is one of the key techniques that the production enterprises as well as the machining and manufacturing of the following industries sought to resolve for a long time: plastics, papermaking, rubber, film, and chip production. In Oct. 1984, a new comprehensive machining technique of metal brush coating, grinding with abrasive belt, as well as buffing was used to conduct nearly 20 experiments. In Jan. 1985, a pair of middle convex high precision mirror surface press rollers was successfully machined. The technical process is described.
Computer-controlled high-precision Michelson wavemeter
NASA Astrophysics Data System (ADS)
Pedregosa-Gutierrez, J.; Guyomarc'h, D.; Vedel, M.; Champenois, C.; Knoop, M.
2014-09-01
The Michelson wavemeter is a popular instrument in many experiments where the high-precision measurement of a cw laser wavelength is required. In this paper, we describe a simple and inexpensive way to obtain high-precision measurements with this classical physicist's tool. We exploit the time stamp provided by the high-frequency clock present in modern data acquisition cards to measure the fractional uncertainty of the interference signal. The resulting relative uncertainty value for our current set-up is of the order of 10-8 and can be potentially improved by a factor of 100.
Shape, Mean Radius, Gravity Field and Interior Structure of Callisto
NASA Technical Reports Server (NTRS)
Anderson, J.; Jacobson, R.; McElrath, T.; Schubert, G.; Moore, W.; Thomas, P.
2000-01-01
Radio Doppler data generated by the Deep Space Network (DSN) from five encounters of the Galileo spacecraft with Callisto, Jupiter's outermost Galilean satellite, have been used to determine the quadrupole moments of the satellite's external gravitational field.
Improved LRO orbit determination and LOLA science using the GRAIL gravity field
NASA Astrophysics Data System (ADS)
Mazarico, E.; Lemoine, F. G.; Goossens, S. J.; Neumann, G. A.; Torrence, M. H.; Zuber, M. T.; Smith, D. E.
2012-12-01
The Gravity Recovery And Interior Laboratory (GRAIL) spacecraft mission has enabled the recovery of the global lunar gravity field to better accuracy and better spatial resolution (degree and order 420) than previous missions (150, and with poorer farside coverage). A solution produced at GSFC with the GEODYN software was evaluated with the tracking data from the Lunar Reconnaissance Orbiter (LRO) and the altimetric data from the onboard Lunar Orbiter Laser Altimeter (LOLA). We show that the overlaps between adjacent reconstructed trajectory arcs, indicative of the accuracy of the orbit reconstruction, are significantly improved, from the 10-20m level with the LLGM-1 field to the 5-10m level. This is especially notable because the GRAIL field is completely independent of LRO data. Radially, the overlap study indicates accuracies better than 50cm, compared to 1-1.5m previously using LRO-based gravity fields. The gravity field can also be tuned to LRO orbits by including the LRO tracking data in the gravity inversion. This will allow lower-degree fields to perform well, but it will not improve the absolute accuracy is not improved. With more than three years of continuous data collected by LOLA, there exist tens of millions of altimetric crossovers. While most of the crossovers occur near the poles, the expected tidal deformation is larger outside of the polar regions. In addition, we focus on crossovers occurring between two five-beam (dayside) tracks because they provide strong constraints on their relative positions, which combine remaining orbital errors and tidal signal. We discuss the implications of having very accurate trajectories thanks to GRAIL for the analysis of the LOLA topographic data.
Stabilization of Satellite derived Gravity Field Coefficients by Earth Rotation Parameters
NASA Astrophysics Data System (ADS)
Heiker, A.; Kutterer, H.; Müller, J.
2009-04-01
Recent gravity field missions (e.g. GRACE) provide monthly solutions for the time-variable Earth gravity field. However, the low-degree harmonic coefficients are poorly resolved, especially those of degree 2. The Earth rotation parameters (ERP), consisting of polar motion and lod, and the gravity field coefficients (GFC) of degree 2 are linked by the Euler-Liouville Equation. Thus the consideration of ERP time series helps to improve the estimates of GFC2. Due to the covariances between the GFC of degree 2 and further low-degree gravity field coefficients (up to degree 10) the residuals of the first group of coefficients has to be propagated to the second group in order to guarantee an overall consistency. Previous work has shown a significant influence of ERP on GFC up to degree 4 with the results depending on the covariances assumed a priori. This presentation shows the result of a consistent joint analysis of GRACE derived GFC and ERP in an extended Gauss-Helmert model which includes a sophisticated variance-covariance component estimation (VCCE). As the covariances of the GRACE derived GFC are largely not known, some different variance-covariance structures are assumed and estimated with the VCCE. The results are compared and discussed.
Kinematic space-baselines and their use for gravity field recovery
NASA Astrophysics Data System (ADS)
Jäggi, Adrian; Bock, Heike; Meyer, Ulrich; Arnold, Daniel; Dahle, Christoph
Kinematic positions of individual low Earth orbiting satellites equipped with spaceborne GPS receivers have been widely used to determine the long wavelength part of the Earth's gravity field. GPS-derived relative kinematic positions (space-baselines) of formation flying satellites may be used as additional pseudo-observations to support long wavelength gravity field recovery. In preparation for the Swarm data analysis we review the principles of gravity field determination from kinematic baseline data (Jäggi et al. 2009, doi:10.1007/978-3-540-85426-5_14) and extend them towards a more flexible combination with the contribution from the absolute kinematic positions. Kinematic baselines will be treated in close analogy to GRACE inter-satellite K-Band measurements, but instead of the inter-satellite biased range observations the (unbiased) components of the inter-satellite distance vector will be used as additional pseudo-observations. Covariance information from the kinematic baseline determination will be used to properly weight the baseline contribution in the combination with the normal equations stemming from the absolute kinematic positions. GPS data from the GRACE mission will be used to study different baseline processing options and to assess the benefit for long wavelength gravity field determination.
Progress in the development of the GMM-2 gravity field model for Mars
NASA Technical Reports Server (NTRS)
Lemoine, F. G.; Smith, D. E.; Lerch, F. J.; Zuber, M. T.; Patel, G. B.
1994-01-01
Last year we published the GMM-1 (Goddard Mars Model-1) gravity model for Mars. We have completely re-analyzed the Viking and Mariner 9 tracking data in the development of the new field, designated GMM-2. The model is complete to degree and order 70. Various aspects of the model are discussed.
Quantum Gravity from the Point of View of Locally Covariant Quantum Field Theory
NASA Astrophysics Data System (ADS)
Brunetti, Romeo; Fredenhagen, Klaus; Rejzner, Katarzyna
2016-08-01
We construct perturbative quantum gravity in a generally covariant way. In particular our construction is background independent. It is based on the locally covariant approach to quantum field theory and the renormalized Batalin-Vilkovisky formalism. We do not touch the problem of nonrenormalizability and interpret the theory as an effective theory at large length scales.
On the weak field approximation of the de Sitter gauge theory of gravity
NASA Astrophysics Data System (ADS)
Ma, Meng-Sen; Huang, Chao-Guang
2013-01-01
The weak field approximation of a model of de Sitter gauge theory of gravity is studied in two cases. Without torsion and spin current, the model cannot give the right non-relativistic approximation unless the density is a constant. With small torsion, a satisfactory Newtonian approximation can be obtained.
NASA Astrophysics Data System (ADS)
Brandenburg, J. E.
2005-02-01
Theoretical progress on the GEM (Gravity-Electro-Magnetism) unification theory is summarized as applied to human flight and dynamically modified gravity fields and waves, as well as progress towards a GEMS (GEMStrong) theory. The GEM theory in the static Newtonian limit is the portion of the Kaluza-Klein action that is quadratic in first derivatives of the metric and in Poynting Flux that appears in the form of a VBE ("Vacuum Bernoulli Equation"). This shows Gravitational energy density to be equated to an EM dynamic pressure that is quadratic in the local Poynting Flux: g2/(2π G) + S2/(c2 L)= Constant, where g and S are the local gravity and Poynting vector magnitudes, respectively, and where L is the Lagrangian density of the vacuum EM field. The VBE can be used to understand anomalous weight loss reported in gyroscope experiments and to understand possible gravity modification for human flight. The GEM gravity modification theory is extended to predict a VHE (Vacuum Hall Effect). Methods for creating dynamic gravity fields via VHE for production and detection of high frequency gravity fields involve electric quadrapole fields normal to static magnetic fields. In terms of fundamental GEM theory, the important value of the proton to electron mass ratio Rm =1836 in the theory is linked, via the MIT Bag Model, to the value of the reciprocal fine structure constant: Rm=αs/α where αs =13.34 is the asymptotic Strong Force coupling constant. An experiment was performed using this theory that validated the anomalous gyroscope effects predicted by Kosyrev and others, that rotating EM fields appear to create lifting forces. The theory appears to offer insights into enhanced forms of propellant-less propulsion.
On the source of cross-grain lineations in the central Pacific gravity field
NASA Technical Reports Server (NTRS)
Mcadoo, David C.; Sandwell, David T.
1989-01-01
The source of cross-grain lineations in marine gravity field observed in central Pacific was investigated by comparing multiple collinear gravity profiles from Geosat data with coincident bathymetry profiles, in the Fourier transform domain. Bathymetric data were collected by multibeam sonar systems operating from two research vessels, one in June-August 1985, the other in February and March 1987. The results of this analysis indicate that the lineations are superficial features that appear to result from a combination of subsurface and surface loads supported by a thin (2 km to 5 km) lithosphere.
Group field theory as the second quantization of loop quantum gravity
NASA Astrophysics Data System (ADS)
Oriti, Daniele
2016-04-01
We construct a second quantized reformulation of canonical loop quantum gravity (LQG) at both kinematical and dynamical level, in terms of a Fock space of spin networks, and show in full generality that it leads directly to the group field theory (GFT) formalism. In particular, we show the correspondence between canonical LQG dynamics and GFT dynamics leading to a specific GFT model from any definition of quantum canonical dynamics of spin networks. We exemplify the correspondence of dynamics in the specific example of 3d quantum gravity. The correspondence between canonical LQG and covariant spin foam models is obtained via the GFT definition of the latter.
Screening modifications of gravity through disformally coupled fields.
Koivisto, Tomi S; Mota, David F; Zumalacárregui, Miguel
2012-12-14
It is shown that extensions to general relativity, which introduce a strongly coupled scalar field, can be viable if the interaction has a nonconformal form. Such disformal coupling depends upon the gradients of the scalar field. Thus, if the field is locally static and smooth, the coupling becomes invisible in the Solar System: this is the disformal screening mechanism. A cosmological model is considered where the disformal coupling triggers the onset of accelerated expansion after a scaling matter era, giving a good fit to a wide range of background observational data. Moreover, the interaction leaves signatures in the formation of large-scale structure that can be used to probe such couplings. PMID:23368299
Complete gravity field of an ellipsoidal prism by Gauss-Legendre quadrature
NASA Astrophysics Data System (ADS)
Roussel, C.; Verdun, J.; Cali, J.; Masson, F.
2015-12-01
The increasing availability of geophysical models of the Earth's lithosphere and mantle has generated renewed interest in computation of theoretical gravity effects at global and regional scales. At the same time, the increasing availability of gravity gradient anomalies derived from satellite measurements, such as those provided by GOCE satellite, requires mathematical methods that directly model the gravity gradient anomalies in the same reference frame as GOCE gravity gradients. Our main purpose is to interpret these anomalies in terms of source and density distribution. Numerical integration methods for calculating gravity gradient values are generally based on a mass discretization obtained by decomposing the Earth's layers into a finite number of elementary solid bodies. In order to take into account the curvature of the Earth, spherical prisms or `tesseroids' have been established unequivocally as accurate computation tools for determining the gravitational effects of large-scale structures. The question which then arises from, is whether gravity calculation methods using spherical prisms remain valid when factoring in the ellipticity of the Earth. In the paper, we outline a comprehensive method to numerically compute the complete gravity field with the help of the Gauss-Legendre quadrature involving ellipsoidal shaped prisms. The assessment of this new method is conducted by comparison between the gravity gradient values of simple sources obtained by means of numerical and analytical calculations, respectively. A comparison of the gravity gradients obtained from PREM and LITHO1.0 models using spherical- and ellipsoidal-prism-based methods is also presented. Numerical results indicate that the error on gravity gradients, caused by the use of the spherical prism instead of its ellipsoidal counterpart to describe an ellipsoidally shaped Earth, is useful for a joint analysis with those deduced from GOCE satellite measurements. Provided that a suitable scaling
Comparison of GOCE-GPS gravity fields derived by different approaches
NASA Astrophysics Data System (ADS)
Baur, O.; Bock, H.; Höck, E.; Jäggi, A.; Krauss, S.; Mayer-Gürr, T.; Reubelt, T.; Siemes, C.; Zehentner, N.
2014-10-01
Several techniques have been proposed to exploit GNSS-derived kinematic orbit information for the determination of long-wavelength gravity field features. These methods include the (i) celestial mechanics approach, (ii) short-arc approach, (iii) point-wise acceleration approach, (iv) averaged acceleration approach, and (v) energy balance approach. Although there is a general consensus that—except for energy balance—these methods theoretically provide equivalent results, real data gravity field solutions from kinematic orbit analysis have never been evaluated against each other within a consistent data processing environment. This contribution strives to close this gap. Target consistency criteria for our study are the input data sets, period of investigation, spherical harmonic resolution, a priori gravity field information, etc. We compare GOCE gravity field estimates based on the aforementioned approaches as computed at the Graz University of Technology, the University of Bern, the University of Stuttgart/Austrian Academy of Sciences, and by RHEA Systems for the European Space Agency. The involved research groups complied with most of the consistency criterions. Deviations only occur where technical unfeasibility exists. Performance measures include formal errors, differences with respect to a state-of-the-art GRACE gravity field, (cumulative) geoid height differences, and SLR residuals from precise orbit determination of geodetic satellites. We found that for the approaches (i) to (iv), the cumulative geoid height differences at spherical harmonic degree 100 differ by only ; in the absence of the polar data gap, SLR residuals agree by . From our investigations, we conclude that real data analysis results are in agreement with the theoretical considerations concerning the (relative) performance of the different approaches.
Requirements analysis of airborne gravity gradiometry on moving-based platform
NASA Astrophysics Data System (ADS)
Tu, L.; Li, Z.; Wu, W.
2014-12-01
Airborne gravity and gravity gradient measurement are the most effective ways for the earth gravitational field measurement. Gravity gradient is a derivative of gravity acceleration, due to the high order feature of gravity gradient, it is more sensitive to short wave component, and can reflect the details of the source so that the gravity gradient measurement has wide applications in geophysical science, resource exploration, and inertial navigation. Airborne gravity gradient measurement uses the plane or ship as the platform, and it is efficient and high precision. In this paper, We compared the gravity and gravity gradient measurement, and analyzed the advantages of the gravity gradient measurement compared with gravity measurement. The airborne gravity gradient measurement system and the inertial stabilization platform were discussed. By setting a goal sensitivity of the gravity gradient measurement being 1 E/√Hz, the key factors of the stabilized platform, namely the pointing accuracy, pointing stability, and gyroscope random drift, are 0.5°, 0.01°/hr/√Hz, and 0.01°/hr respectively. Compared with the airborne gravity measurement whose goal sensitivity is 1mGal/√Hz, the requirements of moving-based gravity gradient measurement on the inertial stabilization platform is significantly lower and hence easy to realize, and the major reason is the differential measurement mode being used.
Wavelet modelling of the gravity field by domain decomposition methods: an example over Japan
NASA Astrophysics Data System (ADS)
Panet, Isabelle; Kuroishi, Yuki; Holschneider, Matthias
2011-01-01
With the advent of satellite gravity, large gravity data sets of unprecedented quality at low and medium resolution become available. For local, high resolution field modelling, they need to be combined with the surface gravity data. Such models are then used for various applications, from the study of the Earth interior to the determination of oceanic currents. Here we show how to realize such a combination in a flexible way using spherical wavelets and applying a domain decomposition approach. This iterative method, based on the Schwarz algorithms, allows to split a large problem into smaller ones, and avoids the calculation of the entire normal system, which may be huge if high resolution is sought over wide areas. A subdomain is defined as the harmonic space spanned by a subset of the wavelet family. Based on the localization properties of the wavelets in space and frequency, we define hierarchical subdomains of wavelets at different scales. On each scale, blocks of subdomains are defined by using a tailored spatial splitting of the area. The data weighting and regularization are iteratively adjusted for the subdomains, which allows to handle heterogeneity in the data quality or the gravity variations. Different levels of approximations of the subdomains normals are also introduced, corresponding to building local averages of the data at different resolution levels. We first provide the theoretical background on domain decomposition methods. Then, we validate the method with synthetic data, considering two kinds of noise: white noise and coloured noise. We then apply the method to data over Japan, where we combine a satellite-based geopotential model, EIGEN-GL04S, and a local gravity model from a combination of land and marine gravity data and an altimetry-derived marine gravity model. A hybrid spherical harmonics/wavelet model of the geoid is obtained at about 15 km resolution and a corrector grid for the surface model is derived.
VIEW OF MICROMACHINING, HIGH PRECISION EQUIPMENT USED TO CUSTOM MAKE ...
VIEW OF MICRO-MACHINING, HIGH PRECISION EQUIPMENT USED TO CUSTOM MAKE SMALL PARTS. LUMPS OF CLAY; SHOWN IN THE PHOTOGRAPH, WERE USED TO STABILIZE PARTS BEING MACHINED. (11/1/87) - Rocky Flats Plant, Stainless Steel & Non-Nuclear Components Manufacturing, Southeast corner of intersection of Cottonwood & Third Avenues, Golden, Jefferson County, CO
Tunneling in quantum field theory and semiclassical gravity
NASA Astrophysics Data System (ADS)
Wohns, Dan Funch
In this dissertation we discuss aspects of the transitions between metastable vacua in scalar field theories. These transitions are caused by nucleation of bubbles of one vacuum in a background of another vacuum, and may have relevance in cosmology. Such processes are typically exponentially suppressed in the height and width of the barriers between the vacua. We demonstrate several scenarios where this intuition fails. We use a functional Schrodinger approach to show that tunneling of a scalar field through two barriers can be exponentially faster than tunneling through a single barrier. We determine the conditions that the effective potential must satisfy for a large enhancement in the tunneling rate to be possible. Both the tunneling rate to nearby vacua and to distant vacua in field space can be enhanced by this process. It may be possible to test this phenomenon using superfluid Helium-3. Nucleation of the B phase in samples of the supercooled A phase of superfluid Helium-3 is observed in seconds or minutes, while the characteristic decay time is calculated to be longer than the age of the universe. We propose a resolution to this discrepancy using resonant tunneling. This explanation makes the distinctive prediction that there exist multiple peaks in the nucleation probability as a function of temperature, pressure, and magnetic field. Next we investigate in detail Coleman-de Luccia tunneling. We show that there are four types of tunneling, depending on the importance of thermal and horizon effects. We estimate corrections to the Hawking-Moss tunneling rate, which can be large. Finally, the tunneling rate for a scalar field described by the Dirac-Born-Infeld action is calculated in the Hawking-Moss limit using a stochastic approach.
The gravity field in the central Pacific from satellite-to-satellite tracking
NASA Technical Reports Server (NTRS)
Marsh, J. G.; Marsh, B. D.; Williamson, R. G.; Wells, W. T.
1981-01-01
Satellite-to-satellite Doppler tracking between the ATS 6 and the GEOS 3 spacecraft was used to measure the high-degree and high-order gravity field over an 80-deg region in the central Pacific Ocean. Forty passes of GEOS 3/ATS 6 Doppler data have been analyzed. The precision of these range rate data is about 0.3 mm/s, and the line-of-sight gravity anomalies recovered from these data have a precision of about 0.2 mGal at the GEOS 3 altitude of about 840 km. In general, the agreement between the SST-derived map and the conventional GEM method and an altimeter-derived geoid is good. Eight significant positive gravity anomalies were exposed in the central Pacific. Generally speaking, the anomalies form a roughly east-west pattern of alternating sign in the central region, and near the East Pacific they strike about north and south.
Gravity as an internal Yang-Mills gauge field theory of the Poincaré group.
NASA Astrophysics Data System (ADS)
Hennig, Jörg; Nitsch, Jürgen
1981-10-01
In the framework of affine bundles we present gravity as an “internal” gauge field theory of the Poincaré group. The resulting geometry is a Riemann-Cartan space-time carrying torsion and curvature. In order to admit a nontrivial action of the translation group we formally extend the matter Lagrangian to affine field variables. Finally, we establish the relation of our approach with the formalism of Hehl et al.
Towards consolidated science requirements for a next generation gravity field mission
NASA Astrophysics Data System (ADS)
Pail, R.; Braitenberg, C. F.; Eicker, A.; Floberghagen, R.; Forsberg, R.; Haagmans, R.; Horwath, M.; Kusche, J.; Labrecque, J. L.; Panet, I.; Rolstad Denby, C.; Schröter, J.; Wouters, B.
2013-12-01
As a joint initiative of the IAG (International Association of Geodesy) Sub-Commissions 2.3 and 2.6, the GGOS (Global Geodetic Observing System) Working Group on Satellite Missions, and the IUGG (International Union of Geodesy and Geophysics), we target on the consolidation of science requirements for a next generation gravity field mission (beyond GRACE-FO). Several future gravity field studies have resulted in quite different performance numbers as a target for a future gravity mission (2025+), and a consolidation within the different user groups is required, under the boundary condition of the technical feasibility of the mission concepts and before the background of double- and multi-pair formations. Therefore, this initiative shall concentrate on the consolidation of the science requirements, and should result in a document that can be used as a solid basis for further programmatic and technological developments. Based on limited number of realistic mission scenarios, a consolidated view on the science requirements within the international user communities shall be derived, research fields that could not be tackled by current gravity missions shall be identified, and the added value (qualitatively and quantitatively) of these scenarios with respect to science return shall be evaluated. The final science requirements shall be agreed upon during a workshop which is planned for the second half of 2014. In this contribution, the mission scenarios will be discussed and first results of the consolidation process will be presented.
Separating Behavior of Nonmetallic Inclusions in Molten Aluminum Under Super-Gravity Field
NASA Astrophysics Data System (ADS)
Song, Gaoyang; Song, Bo; Yang, Yuhou; Yang, Zhanbing; Xin, Wenbin
2015-10-01
A new approach to separating nonmetallic inclusions from aluminum melt by super gravity was investigated. To figure out the separating characteristics of inclusions under super-gravity field, the aluminum melt containing MgAl2O4 spinel particles was treated with different separating times at 1023 K (750 °C). The significant region with inclusion accumulated appears in the bottom area of the sample obtained by centrifugal separation, and thickness of the region decreases with the increase of the separating time; especially, at the gravity coefficient G = 20, time t = 5 minutes, all inclusions nearly migrate to the bottom of the sample. In addition, the volume fraction, number density, and average size of inclusions gradually increase in the samples along the direction of super gravity, and the distributed gradients of inclusions become sharper with the increase of the separating time. Moreover, the moving velocities of inclusions were theoretical studied for the first time. The moving velocities obtained experimentally agree well with the theoretical ones calculated by Stokes' law at G ≤ 20, t ≤ 2 minutes. However, there are obvious differences between the experimental and theoretical moving velocities under the conditions of G ≥ 100, t = 2 minutes. It is indicated that Stokes' law is applicable to the melt with low gravity coefficient in this system.
Gravity waves observation of wind field in stratosphere based on a Rayleigh Doppler lidar.
Zhao, Ruocan; Dou, Xiankang; Sun, Dongsong; Xue, Xianghui; Zheng, Jun; Han, Yuli; Chen, Tingdi; Wang, Guocheng; Zhou, Yingjie
2016-03-21
Simultaneous wind and temperature measurements in stratosphere with high time-spatial resolution for gravity waves study are scarce. In this paper we perform wind field gravity waves cases in the stratosphere observed by a mobile Rayleigh Doppler lidar. This lidar system with both wind and temperature measurements were implemented for atmosphere gravity waves research in the altitude region 15-60 km. Observations were carried out for two periods of time: 3 months started from November 4, 2014 in Xinzhou, China (38.425°N,112.729°E) and 2 months started from October 7, 2015 in Jiuquan, China (39.741°N, 98.495°E) . The mesoscale fluctuations of the horizontal wind velocity and the two dimensional spectra analysis of these fluctuations show the presence of dominant oscillatory modes with wavelength of 4-14 km and period of around 10 hours in several cases. The simultaneous temperature observations make it possible to identify gravity wave cases from the relationships between different variables: temperature and horizontal wind. The observed cases demonstrate the Rayleigh Doppler Lidar's capacity to study gravity waves. PMID:27136878
AIUB-RL02: an improved time-series of monthly gravity fields from GRACE data
NASA Astrophysics Data System (ADS)
Meyer, U.; Jäggi, A.; Jean, Y.; Beutler, G.
2016-05-01
The new release AIUB-RL02 of monthly gravity models from GRACE GPS and K-Band range-rate data is based on reprocessed satellite orbits referring to the reference frame IGb08. The release is consistent with the IERS2010 conventions. Improvements with respect to its predecessor AIUB-RL01 include the use of reprocessed (RL02) GRACE observations, new atmosphere and ocean dealiasing products (RL05), an upgraded ocean tide model (EOT11A), and the interpolation of shallow ocean tides (admittances). The stochastic parametrization of AIUB-RL02 was adapted to include daily accelerometer scale factors, which drastically reduces spurious signal at the 161 d period in C20 and at other low degree and order gravity field coefficients. Moreover, the correlation between the noise in the monthly gravity models and solar activity is considerably reduced in the new release. The signal and the noise content of the new AIUB-RL02 monthly gravity fields are studied and calibrated errors are derived from their non-secular and non-seasonal variability. The short-period time-variable signal over the oceans, mostly representing noise, is reduced by 50 per cent with respect to AIUB-RL01. Compared to the official GFZ-RL05a and CSR-RL05 monthly models, the AIUB-RL02 stands out by its low noise at high degrees, a fact emerging from the estimation of seasonal variations for selected river basins and of mass trends in polar regions. Two versions of the monthly AIUB-RL02 gravity models, with spherical harmonics resolution of degree and order 60 and 90, respectively, are available for the time period from March 2003 to March 2014 at the International Center for Global Earth Models or from ftp://ftp.unibe.ch/aiub/GRAVITY/GRACE (last accessed 22 March 2016).
AIUB-RL02: an improved time series of monthly gravity fields from GRACE data
NASA Astrophysics Data System (ADS)
Meyer, U.; Jäggi, A.; Jean, Y.; Beutler, G.
2016-03-01
The new release AIUB-RL02 of monthly gravity models from GRACE GPS and K-Band range-rate data is based on reprocessed satellite orbits referring to the reference frame IGb08. The release is consistent with the IERS2010 conventions. Improvements with respect to its predecessor AIUB-RL01 include the use of reprocessed (RL02) GRACE observations, new atmosphere and ocean dealiasing products (RL05), an upgraded ocean tide model (EOT11A), and the interpolation of shallow ocean tides (admittances). The stochastic parametrization of AIUB-RL02 was adapted to include daily accelerometer scale factors, which drastically reduces spurious signal at the 161 day period in C20 and at other low degree and order gravity field coefficients. Moreover, the correlation between the noise in the monthly gravity models and solar activity is considerably reduced in the new release. The signal and the noise content of the new AIUB-RL02 monthly gravity fields are studied and calibrated errors are derived from their non-secular and non-seasonal variability. The short-period time-variable signal over the oceans, mostly representing noise, is reduced by 50% with respect to AIUB-RL01. Compared to the official GFZ-RL05a and CSR-RL05 monthly models, the AIUB-RL02 stands out by its low noise at high degrees, a fact emerging from the estimation of seasonal variations for selected river basins and of mass trends in polar regions. Two versions of the monthly AIUB-RL02 gravity models, with spherical harmonics resolution of degree and order 60 and 90, respectively, are available for the time period from March 2003 to March 2014 at the International Center for Global Earth Models (ICGEM) or from ftp://ftp.unibe.ch/aiub/GRAVITY/GRACE
Gravity and duality between coordinates and matter fields
NASA Astrophysics Data System (ADS)
Vancea, I. V.
2000-05-01
We use the duality between the local Cartezian coordinates and the solutions of the Klein-Gordon equation to parametrize locally the spacetime in terms of wave functions and prepotentials. The components of metric, metric connection, curvature as well as the Einstein equation are given in this parametrization. We also discuss the local duality between coordinates and quantum fields and the metric in this later reparametrization.
Dirac Field, Gravity, Inertial Effects, and Computer Algebra
NASA Astrophysics Data System (ADS)
Vulcanov, Dumitru N.; Cotăescu, Ion I.
The article presents some new results obtained for the non-relativistic approximation of the Dirac equation in a non-inertial reference frame — rotated and accelerated — and in Schwarzschild gravitational field. These results are obtained with new routines of algebraic programming in REDUCE + EXCALC language for the Dirac equation in a non-inertial reference frame and after three successive Foldy-Wouthuysen transformations.
Perturbations of the Richardson number field by gravity waves
NASA Technical Reports Server (NTRS)
Wurtele, M. G.; Sharman, R. D.
1985-01-01
An analytic solution is presented for a stratified fluid of arbitrary constant Richardson number. By computer aided analysis the perturbation fields, including that of the Richardson number can be calculated. The results of the linear analytic model were compared with nonlinear simulations, leading to the following conclusions: (1) the perturbations in the Richardson number field, when small, are produced primarily by the perturbations of the shear; (2) perturbations of in the Richardson number field, even when small, are not symmetric, the increase being significantly larger than the decrease (the linear analytic solution and the nonlinear simulations both confirm this result); (3) as the perturbations grow, this asymmetry increases, but more so in the nonlinear simulations than in the linear analysis; (4) for large perturbations of the shear flow, the static stability, as represented by N2, is the dominating mechanism, becoming zero or negative, and producing convective overturning; and (5) the convectional measure of linearity in lee wave theory, NH/U, is no longer the critical parameter (it is suggested that (H/u sub 0) (du sub 0/dz) takes on this role in a shearing flow).
Mandea, Mioara; Panet, Isabelle; Lesur, Vincent; de Viron, Olivier; Diament, Michel; Le Mouël, Jean-Louis
2012-11-20
To understand the dynamics of the Earth's fluid, iron-rich outer core, only indirect observations are available. The Earth's magnetic field, originating mainly within the core, and its temporal variations can be used to infer the fluid motion at the top of the core, on a decadal and subdecadal time-scale. Gravity variations resulting from changes in the mass distribution within the Earth may also occur on the same time-scales. Such variations include the signature of the flow inside the core, though they are largely dominated by the water cycle contributions. Our study is based on 8 y of high-resolution, high-accuracy magnetic and gravity satellite data, provided by the CHAMP and GRACE missions. From the newly derived geomagnetic models we have computed the core magnetic field, its temporal variations, and the core flow evolution. From the GRACE CNES/GRGS series of time variable geoid models, we have obtained interannual gravity models by using specifically designed postprocessing techniques. A correlation analysis between the magnetic and gravity series has demonstrated that the interannual changes in the second time derivative of the core magnetic field under a region from the Atlantic to Indian Ocean coincide in phase with changes in the gravity field. The order of magnitude of these changes and proposed correlation are plausible, compatible with a core origin; however, a complete theoretical model remains to be built. Our new results and their broad geophysical significance could be considered when planning new Earth observation space missions and devising more sophisticated Earth's interior models. PMID:23064635
NASA Astrophysics Data System (ADS)
Santiago, L.; Guzman, A.
2007-05-01
We present a summary and comments on the laboratory and field course in potential field methods in Geophysical Engineering at UNAM. The one-semester course and laboratory and field exercises are an integral part of the curricula, and we comment on the education-learning processes from the viewpoint of the students. The field exercises are designed to assist students to gain empirical knowledge about field methodologies. The experience also allows conduct work as a team, permitting a greater understanding of the professional activities in exploration of natural resources. Access to other educational experiences and resources in universities and industry, including international opportunities are thought highly beneficial. The field training area is located in central Mexico in the Altiplano. The study area is characterized by Upper Cretaceous sedimentary formations, mainly limestones and lutites within the unconformity of El Doctor and Soyatal Formations. Area is located north of Cadereyta, State of Queretaro For data acquisition, profiles oriented E-W and N-S were used. In the neighborhood of Agua Salada bridge, Bouguer gravity values increase showing local maxima. Magnetics were used to locate discordant lithological contact. Gravity and magnetic measurements were taken throughout presumed contact so that through data processing a 3-D model could be obtained. Main purpose of exercise is practical, students compare gravity and magnetic responses with geologic situation characterizing this area. On the basis of field-collected data and mapping, processing was made in the laboratory, including interpretation, through standard algorithms of 2-D modeling. Our interpretations correlate well with surface geology, photographs of outcrops, and stratigraphy. Gravity and magnetics give us a 3-D image of the subsurface and stratigraphy of study area, including structural conditions. We could observe the presence of associated magnetic dipoles at unconformity plane
Representation of the Gravity Field of Irregularly Shaped Bodies
NASA Astrophysics Data System (ADS)
Reimond, Stefan; Baur, Oliver
2015-04-01
Exploratory space missions to small bodies in our solar system have gained importance over the last few decades. The well-renowned mission Rosetta set a milestone in space science history when it successfully lowered its mini-lab Philae onto the surface of Comet 67P/Churyumov-Gerasimenko in November 2014. Knowledge of the gravitational field of a small body, e.g. a comet or asteroid, is crucial in order to study a spacecraft's motion in its environment and to infer geophysical properties. Traditionally, the gravitational field of a body is modeled by means of spherical harmonics. For bodies of near-spherical shape (such as the Earth), this is an adequate method, because the reference figure, i.e. a sphere, snugly fits the body. For irregularly shaped bodies, however, the adoption of spherical harmonics might be a sub-optimal choice. As an alternative, oblate or prolate spheroidal harmonics (OH or PH, reference figure is an ellipsoid of revolution) or ellipsoidal harmonics (EH, reference figure is a tri-axial ellipsoid) should be considered. The latter will in general be the best choice in terms of aptness of the reference figure. The downside of EH, however, lies in the considerably increased (numerical) complexity of the computation of the base functions, i.e., the Lamé functions of the first and second kind. OH or PH represent a promising path down the middle. Elongated bodies (such as Asteroid 433 Eros) are often similarly well approximated by a prolate spheroid as by the corresponding tri-axial ellipsoid. Contracted bodies, on the other hand, can be described accordingly well by means of an oblate spheroid. We compare the SH, OH, PH and EH gravitational field parameterizations for different celestial bodies, including Rosetta's target comet 67P. The tasks are as follows: Based on the polyhedral representation of a body's shape model, the gravitational potential and acceleration vector is computed for evenly or irregularly distributed points inside or outside
Micro-gravity: current distributions creating a uniform force field
NASA Astrophysics Data System (ADS)
Vincent-Viry, O.; Mailfert, A.; Colteu, A.; Dael, A.; Gourdin, C.; Quettier, L.
2001-02-01
This paper presents two structures of superconducting coils able to give satisfactory solutions to the problem of generation of uniform field of high magnetic forces. The first structure is modeled by the use of purely surface current densities, whereas the second one can be described with volume current densities. Both of these structures proceed from the study of a particular expression of the complex magnetic potential introduced for structures with two-dimensional geometry. This work is carried out in a research collaboration between the GREEN and the DSM-DAPNIA department of the CEA Saclay.
Self-dual Maxwell field in 3D gravity with torsion
Blagojevic, M.; Cvetkovic, B.
2008-08-15
We study the system of a self-dual Maxwell field coupled to 3D gravity with torsion, with the Maxwell field modified by a topological mass term. General structure of the field equations reveals a new, dynamical role of the classical central charges, and gives a simple correspondence between self-dual solutions with torsion and their Riemannian counterparts. We construct two exact self-dual solutions, corresponding to the sectors with a massless and massive Maxwell field, and calculate their conserved charges.
The delineation and interpretation of the Earth's gravity field
NASA Technical Reports Server (NTRS)
Marsh, B. D.
1983-01-01
The observed changes in velocity with time are reduced relative to the well-determined low degree and order GEM field model and accelerations are found by analytical differentiation of the range rates. This new map is essentially identical to the first map and we have produced a composite map by combining all 90 passes of SST data. The resolution of the map is at worst about 5 deg and much better in most places. A comparison of this map with conventional GEM models shows very good agreement. A reduction of the SEASAT altimeter data has also been carried out for an additional comparison. Although the SEASAT geoid contains much more high frequency information, it agrees very well with both the SST and GEM fields. The maps are dominated (especially in the east) by a pattern of roughly east-west anomalies with a transverse wavelength of about 2000 km. A further comparison with regional bathymetric data shows a remarkably close correlation with plate age.
Electric Field Effects on an Injected Air Bubble at Detachment in a Low Gravity Environment
NASA Technical Reports Server (NTRS)
Iacona, Estelle; Herman, Cila; Chang, Shinan
2002-01-01
The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static and uniform electric field. Bubble formation and detachment were visualized and recorded in microgravity using a high-speed video camera. Bubble volume, dimensions and contact angle at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. Measured data and model predictions show good agreement, and indicate that the level of gravity and the electric field magnitude significantly affect bubble shape, volume and dimensions.
Aspects of nonlocality in quantum field theory, quantum gravity and cosmology
NASA Astrophysics Data System (ADS)
Barvinsky, A. O.
2015-01-01
This paper contains a collection of essays on nonlocal phenomena in quantum field theory, gravity and cosmology. Mechanisms of nonlocal contributions to the quantum effective action are discussed within the covariant perturbation expansion in field strengths and spacetime curvatures. Euclidean version of the Schwinger-Keldysh technique for quantum expectation values is presented as a special rule of obtaining the nonlocal effective equations of motion for the mean quantum field from the Euclidean effective action. This rule is applied to a new model of ghost free nonlocal cosmology which can generate the de Sitter (dS) cosmological evolution at an arbitrary value of Λ — a model of dark energy with the dynamical scale selected by a kind of a scaling symmetry breaking mechanism. This model is shown to interpolate between the superhorizon phase of a scalar mediated gravity and the short distance general relativistic limit in a special metric frame related by a nonlocal conformal transformation to the original metric.
Horizon thermodynamics and gravitational field equations in Horava-Lifshitz gravity
Cai Ronggen; Ohta, Nobuyoshi
2010-04-15
We explore the relationship between the first law of thermodynamics and gravitational field equation at a static, spherically symmetric black hole horizon in Horava-Lifshitz theory with/without detailed balance. It turns out that as in the cases of Einstein gravity and Lovelock gravity, the gravitational field equation can be cast to a form of the first law of thermodynamics at the black hole horizon. This way we obtain the expressions for entropy and mass in terms of black hole horizon, consistent with those from other approaches. We also define a generalized Misner-Sharp energy for static, spherically symmetric spacetimes in Horava-Lifshitz theory. The generalized Misner-Sharp energy is conserved in the case without matter field, and its variation gives the first law of black hole thermodynamics at the black hole horizon.
Matter in loop quantum gravity without time gauge: A nonminimally coupled scalar field
Cianfrani, Francesco; Montani, Giovanni
2009-10-15
We analyze the phase space of gravity nonminimally coupled to a scalar field in a generic local Lorentz frame. We reduce the set of constraints to a first class one by fixing a specific hypersurfaces in the phase space. The main issue of our analysis is to extend the features of the vacuum case to the presence of scalar matter by recovering the emergence of an SU(2) gauge structure and the nondynamical role of boost variables. Within this scheme, the supermomentum and the super-Hamiltonian are those ones associated with a scalar field minimally coupled to the metric in the Einstein frame. Hence, the kinematical Hilbert space is defined as in canonical loop quantum gravity with a scalar field, but the differences in the area spectrum are outlined to be the same as in the time-gauge approach.
GRACE Time-Variable Gravity Field Recovery Using an Improved Energy Balance Formalism
NASA Astrophysics Data System (ADS)
Shang, Kun
Earth's gravity is continuously varying with respect to time due primarily to mass transports within the Earth system and external gravitational forcing. A new formalism based on energy conservation principle for time-variable gravity field recovery using satellite gravimetry has been developed and yields more accurate estimation of in-situ geopotential difference observables using K-Band Ranging (KBR) measurements from the Gravity Recovery and Climate Experiment (GRACE) twin-satellite mission. The new approach can preserve more time-variable gravity information sensed by KBR range-rate measurements and reduce orbit error as compared to previous energy balance studies. Results based on analysis of more than 10 years of GRACE data indicate that the estimated geopotential differences agree well with the predicted values from official Level 2 solutions: with much higher correlation of 0.9, as compared to 0.5-0.8 reported by previous energy balance studies. This study demonstrates that the new approach is more flexible for both global and regional temporal gravity recovery, leading to the first independent GRACE monthly solution series based on energy conservation principle, which is comparable to the results from different approach. The developed formalism is applicable to the general case of low-low satellite-to-satellite radiometric or laser interferometric tracking measurements, such as GRACE Follow-on or other Next Generation Gravity Field missions, for efficient retrieval and studies of Earth's mass transport evolutions. The regional gravity analysis over Greenland reveals that a substantially higher temporal resolution is achievable at 10 or 11-day interval from GRACE data, as compared to the official monthly solutions, but without the compromise of spatial resolution, nor the need to use regularization or post-processing. Studies of the terrestrial and ground water storage change over North China Plain show high correlation in sub-monthly scale, among the 11
ESA's satellite-only gravity field model via the direct approach based on all GOCE data
NASA Astrophysics Data System (ADS)
Bruinsma, Sean L.; Förste, Christoph; Abrikosov, Oleg; Lemoine, Jean-Michel; Marty, Jean-Charles; Mulet, Sandrine; Rio, Marie-Helene; Bonvalot, Sylvain
2014-11-01
Gravity field and steady state Ocean Circulation Explorer (GOCE) gravity gradient data of the entire science mission and data from LAGEOS 1/2 and Gravity Recovery and Climate Experiment (GRACE) were combined in the construction of a satellite-only gravity field model to maximum degree 300. When compared to Earth Gravitational Model 2008, it is more accurate at low to medium resolution, thanks to GOCE and GRACE data. When compared to earlier releases of European Space Agency GOCE models, it is more accurate at high degrees owing to the larger amount of data ingested, which was moreover taken at lower altitude. The impact of orbiting at lower altitude in the last year of the mission is large: a model based on data of the last 14 months is significantly more accurate than the release 4 model constructed with the first 28 months. The (calibrated) cumulated geoid error estimate at 100 km resolution is 1.7 cm. The optimal resolution of the GOCE model for oceanographic application is between 100 and 125 km.
NASA Astrophysics Data System (ADS)
Goossens, S.; Matsumoto, K.; Ishihara, Y.; Liu, Q.; Kikuchi, F.; Noda, H.; Iwata, T.; Namiki, N.; Hanada, H.
2008-12-01
On September 14, 2007, the KAGUYA (SELENE) spacecraft were launched from Tanegashima Space Center in Japan. KAGUYA consists of three satellites: a main orbiter in a 100 km by 100 km circular, polar orbit, and two small subsatellites in 100 km by 2400 km (Rstar) and 100 km by 800 km (Vstar) elliptical, polar orbits. By employing 4-way Doppler tracking between the main orbiter and Rstar, the first direct tracking data of a satellite over the far side have been obtained, resulting in a newly determined global lunar gravity field. The existing 2-way tracking data set is furthermore complemented by precise differential VLBI tracking between Rstar and Vstar, providing a sensitivity perpendicular to the line-of-sight from station to satellite. This work focuses on various aspects of processing and analysing the tracking data from the Kaguya satellites for the main purpose of lunar gravity field estimation. This includes particulars of the data processing strategies, multi-satellite analysis and data weighting. Gravity models from Kaguya data are evaluated in terms of data fit and performance in orbit determination. The performance of the differential VLBI data in the orbit determination of the small subsatellites is also discussed, as well as their contribution to the gravity solutions. Results for the polar moment of inertia C/MR2 from the degree 2 coefficients, and for the lunar k2 Love number are also included.
Effect of Gravity on the Near Field Flow Structure of Helium Jet in Air
NASA Technical Reports Server (NTRS)
Agrawal, Ajay K.; Parthasarathy, Ramkumar; Griffin, DeVon
2002-01-01
Experiments have shown that a low-density jet injected into a high-density surrounding medium undergoes periodic oscillations in the near field. Although the flow oscillations in these jets at Richardson numbers about unity are attributed to the buoyancy, the direct physical evidence has not been acquired in the experiments. If the instability were indeed caused by buoyancy, the near-field flow structure would undergo drastic changes upon removal of gravity in the microgravity environment. The present study was conducted to investigate this effect by simulating microgravity environment in the 2.2-second drop tower at the NASA Glenn Research Center. The non-intrusive, rainbow schlieren deflectometry technique was used for quantitative measurements of helium concentrations in buoyant and non-buoyant jets. Results in a steady jet show that the radial growth of the jet shear layer in Earth gravity is hindered by the buoyant acceleration. The jet in microgravity was 30 to 70 percent wider than that in Earth gravity. The microgravity jet showed typical growth of a constant density jet shear layer. In case of a self-excited helium jet in Earth gravity, the flow oscillations continued as the jet flow adjusted to microgravity conditions in the drop tower. The flow oscillations were however not present at the end of the drop when steady microgravity conditions were reached.
NASA Astrophysics Data System (ADS)
Lüdicke, F.; Hussmann, H.; Oberst, J.
2008-09-01
Introduction We developed an orbit simulation tool for BepiColombo scheduled for arrival at Mercury in 2019. The mission will consist of two spacecraft, the MPO (Mercury Planetary Orbiter, ESA) and the MMO (Mercury Magnetospheric Orbiter, JAXA). We simulate the orbit evolutions of the two considering perturbing forces for a time of 2 years from arrival. This study was undertaken for mission planning purposes and estimates of surface coverage for the onboard mapping instruments. Orbit Perturbations Perturbing forces acting on the Keplerian MPO and MMO orbits include Mercury's non-spherical mass distribution parameters, the gravitational force of the sun, and solar radiation pressure (faintest). Because of the perturbing accelerations, semi-major axis, eccentricity, inclination, ascending node, argument of pericenter, show complex variations. The program simulates the evolution of all these elements over a period of 2 years. The software was programmed in FORTRAN, using SPICE subroutines. Numerical Integration Several of the Runge-Kutta methods are implemented in the software for a numerical integration of the equations of motion. Starting from initial values for the state vector (i.e., position and velocity) at time t0 given in [2], we obtain the spacecraft trajectory with an accuracy of the order of 1 m by choosing a stepsize of 50 s [1]. The results of the numerical calculation were checked with the results of a similar Bepi Colombo orbit simulation by ESOC [2] and showed very good agreement. Gravity Field Coefficients The MARINER 10 spacecraft executed 3 flybys of Mercury (1974/75). From spacecraft tracking, a first estimate of the gravity parameter GM and crude limits for J2 could be obtained. Higher-order gravitational coefficients, e.g., C30 and C22 are practically unknown. Results (Examples) Fig. 1 shows the evolution of the pericenter height for the MPO during the 2 mission years using the typical error bounds (6.0 ± 2.0)E-5 [4] for J2 = -C20. In addition
NASA Astrophysics Data System (ADS)
Fukuda, Yoichi; Nogi, Yoshifumi; Matsuzaki, Kazuya
2016-03-01
By combining a Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) Earth Gravity Model (EGM) and in situ gravity data obtained from the Japanese Antarctic Research Expedition (JARE) surveys, we estimated the regional gravity field in the area of Syowa Station, a Japanese research station located in Lützow-Holm Bay, East Antarctica. In situ data sets that were used consisted of land gravity data collected since 1967, shipborne data collected since 1985 and airborne gravity data collected in 2006. The GOCE direct (DIR) solution release 5 (R5) model was used as the long-wavelength reference of the gravity field. Using these data sets, we calculated gravity anomalies and geoid heights at 1-by-1‧ grid by means of least-squares collocation. The resulting geoid height at Syowa Station was compared with a local height based on GPS, spirit leveling and tide gauge data. The result suggests that the sea surface height at Syowa Station is -1.57 m, which is consistent with a dynamic ocean topography model. During this investigation, we also evaluated GOCE EGMs and other recent EGMs by comparing them with the airborne gravity data. The results indicate that the GOCE DIR R5 produced the smallest RMS (Root Mean Square) differences and that the newer models performed nearly as well. These comparisons demonstrate the importance of using reliable in situ data when evaluating satellite-only EGMs.
Zonal harmonics of the gravity field in DEF-variables.
NASA Astrophysics Data System (ADS)
Aparicio, I.; Floría, L.
In order to be in a position to take advantage of the linear and regular formulation and treatment of Celestial Mechanics problems, in a recent paper Sharaf & Saad (1997) have given an analytical expansion of the Earth's zonal potential in terms of Kustaanheimo-Stiefel (KS) regular elements (Kustaanheimo & Stiefel 1965; Stiefel & Scheifele 1971), putting special emphasis on the consideration of elliptic-type two-body orbits. In the present paper we carry out an application of the so-called focal method (Burdet 1969) to derive the expression, in terms of the linearizing DEF-variables (Deprit, Elipe & Ferrer 1994, S S 4.1), of any zonal harmonic of the gravitational field created by a central body, and obtain the corresponding equations of motion for any value of the eccentricity. To this end, we will follow a variant of the focal method canonical approach based on the (weakly) canonical extension of the projective-decomposition point-transformation proposed by these authors.
The delineation and interpretation of the Earth's gravity field
NASA Technical Reports Server (NTRS)
Marsh, Bruce D.
1987-01-01
The geoid and topographic fields of the central Pacific were delineated and shown to correlate closely at intermediate wavelengths (500 to 2500 km). The associated admittance shows that anomalies having wavelengths less than about 1000 km are probably supported by the elastic strength of the lithosphere. Larger wavelength anomalies are due to dynamic effects in the sublithosphere. Direct modeling of small scale convection in the asthenosphere shows that the amplitudes of observed geoid and topographic anomalies can be independently matched, but that the observed admittance cannot. Only by imposing an initial regional variation in the thermal regime is it possible to match the admittance. It is proposed that this variation may be due to differences in the onset time of convection beneath the lithosphere of different ages. That is, convection beneath thickening lithosphere is strongly dependent on the rate of thickening (V) relative to the rise time for convection. The critical Rayleigh number contains the length scale K/V, where K is thermal diffusivity. Young, fast growing lithosphere stabilizes the underlying asthenosphere unless it has an unusually low viscosity. Lithosphere of different age, separated by fracture zones, will go unstable at different times, producing regional horizontal temperature gradient that may strongly influence convection. Laboratory and numerical experiments are proposed to study this form of convection and its influence on the geoid.
Jiang, Weiping; Wang, Li; Niu, Xiaoji; Zhang, Quan; Zhang, Hui; Tang, Min; Hu, Xiangyun
2014-01-01
A high-precision image-aided inertial navigation system (INS) is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs) when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF). Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three) are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level) and attitude (half-degree-level)-integrated solutions can be achieved in a global reference. PMID:25330046
Jiang, Weiping; Wang, Li; Niu, Xiaoji; Zhang, Quan; Zhang, Hui; Tang, Min; Hu, Xiangyun
2014-01-01
A high-precision image-aided inertial navigation system (INS) is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs) when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF). Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three) are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level) and attitude (half-degree-level)-integrated solutions can be achieved in a global reference. PMID:25330046
Ultrasonic detector for high precision measurements of carbon dioxide.
Andersen, Peter C; Williford, Craig J; David, Donald E; Birks, John W
2010-10-01
A new instrument for monitoring atmospheric CO(2) has been developed based on the measurement of the speed of sound in air. The instrument uses a selective scrubber to yield highly precise and accurate measurements of CO(2) mixing ratios at ambient concentrations. The instrument has a precision of 0.3 ppmv (1σ) with a signal that is independent of pressure and requires a flow rate of only 30 mL/min. Laboratory measurements of atmospheric CO(2) showed excellent agreement with values obtained by nondispersive infrared absorption. The instrument has the advantage of collecting continuous, high-precision data every 25 s and can be modified for vertical profiling studies using kites, balloons, or light aircraft for the purpose of measuring landscape-scale fluxes. PMID:20822160
High-precision spectroscopy of hydrogen molecular ions
NASA Astrophysics Data System (ADS)
Zhong, Zhen-Xiang; Tong, Xin; Yan, Zong-Chao; Shi, Ting-Yun
2015-05-01
In this paper, we overview recent advances in high-precision structure calculations of the hydrogen molecular ions ( and HD+), including nonrelativistic energy eigenvalues and relativistic and quantum electrodynamic corrections. In combination with high-precision measurements, it is feasible to precisely determine a molecular-based value of the proton-to-electron mass ratio. An experimental scheme is presented for measuring the rovibrational transition frequency (v,L) : (0,0) → (6,1) in HD+, which is currently underway at the Wuhan Institute of Physics and Mathematics. Project supported by the National Natural Science Foundation of China (Grants Nos. 11474316, 11004221, 10974224, and 11274348), the “Hundred Talent Program” of Chinese Academy of Sciences. Yan Zong-Chao was supported by NSERC, SHARCnet, ACEnet of Canada, and the CAS/SAFEA International Partnership Program for Creative Research Teams.
High-precision Photogrammetric Surface Figure Measurements under Cryogenic Environment
NASA Astrophysics Data System (ADS)
Lou, Z.; Qian, Y.; Fan, S. H.; Liu, C. R.; Wang, H. R.; Zuo, Y. X.; Cheng, J. Q.; Yang, J.
2016-01-01
Limited by the working temperature of the measurement equipments, most of the high-precision surface figure measurement techniques cannot be applied under a cryogenic environment. This paper reports the first attempt to measure the surface figure of a high-precision terahertz reflector panel under low temperatures based on photogrammetry. The measurement employs a high resolution industrial camera sitting on an automatic experimental platform which enables photos been taken in an automatic fashion inside a climate chamber. A repeatable accuracy of 2.1 μm rms is achieved under the cryogenic environment. Furthermore, surface figure measured by a three-coordinate measuring machine under room temperature is used to calibrate the thickness variation of the paper targets. By this technique, the surface figure of an aluminum prototype panel of the 5 meter Dome A Terahertz Telescope (DATE5) is measured from room temperature down to -55°C.
Note: High precision measurements using high frequency gigahertz signals
NASA Astrophysics Data System (ADS)
Jin, Aohan; Fu, Siyuan; Sakurai, Atsunori; Liu, Liang; Edman, Fredrik; Pullerits, Tõnu; Öwall, Viktor; Karki, Khadga Jung
2014-12-01
Generalized lock-in amplifiers use digital cavities with Q-factors as high as 5 × 108 to measure signals with very high precision. In this Note, we show that generalized lock-in amplifiers can be used to analyze microwave (giga-hertz) signals with a precision of few tens of hertz. We propose that the physical changes in the medium of propagation can be measured precisely by the ultra-high precision measurement of the signal. We provide evidence to our proposition by verifying the Newton's law of cooling by measuring the effect of change in temperature on the phase and amplitude of the signals propagating through two calibrated cables. The technique could be used to precisely measure different physical properties of the propagation medium, for example, the change in length, resistance, etc. Real time implementation of the technique can open up new methodologies of in situ virtual metrology in material design.
Mars Gravity Field and Upper Atmosphere from MGS, Mars Odyssey, and MRO
NASA Astrophysics Data System (ADS)
Genova, A.; Goossens, S. J.; Lemoine, F. G.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.
2015-12-01
The NASA orbital missions Mars Global Surveyor (MGS), Mars Odyssey (ODY), and Mars Reconnaissance Orbiter (MRO) have been exploring and monitoring the planet Mars since 1997. MGS executed its mapping mission between 1999 and 2006 in a frozen sun-synchronous, near-circular, polar orbit with the periapsis altitude at ~370 km and the dayside equatorial crossing at 2 pm Local Solar Time (LST). The spacecraft was equipped with onboard instrumentation to acquire radio science data and to measure spacecraft ranges to the Martian surface (Mars Orbiter Laser Altimeter). These measurements resulted in static and time-varying gravity field and high-resolution global topography of the planet. ODY and MRO are still orbiting about Mars in two different sun-synchronous orbits, providing radio tracking data that indirectly measure both the static and time-varying gravity field and the atmospheric density. The orbit of ODY has its periapsis at ~390 km altitude and descending node at 4-5 pm LST. However, the spacecraft also collected measurements at lower altitudes (~220 km) in 2002 prior to the mapping phase. Since November 2006, MRO is in a low-altitude orbit with a periapsis altitude of 255 km and descending node at 3 pm LST. Radio data from MRO help improve the resolution of the static gravity field and measure the mass distribution of the polar caps, but the atmospheric drag at those altitudes may limit the benefits of these radio tracking observations. We present a combined solution of the Martian gravity field to degree and order 110 and atmospheric density profiles with radio tracking data from MGS, ODY and MRO. The gravity field solution is combined with the MOLA topography yielding an updated map of Mars crustal thickness. We also show our solution of the Love number k2 and time-variable gravity zonal harmonics (C20 and C30, in particular). The recovered atmospheric density profiles may be used in atmospheric models to constrain the long-term variability of the
High-Precision Twist-Controlled Bilayer and Trilayer Graphene.
Chen, Xu-Dong; Xin, Wei; Jiang, Wen-Shuai; Liu, Zhi-Bo; Chen, Yongsheng; Tian, Jian-Guo
2016-04-01
Twist-controlled bilayer graphene (tBLG) and double-twisted trilayer graphene (DTTG) with high precision are fabricated and their controllable optoelectronic properties are investigated for the first time. The successful fabrication of tBLG and DTTG with designated θ provides an attractive starting point for systematic studies of interlayer coupling in misoriented few-layer graphene systems with well-defined geometry. PMID:26822255
System and method for high precision isotope ratio destructive analysis
Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R
2013-07-02
A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).
Some comments on high precision study of neutrino oscillations
NASA Astrophysics Data System (ADS)
Bilenky, S. M.
2015-07-01
I discuss here some problems connected with the high precision study of neutrino oscillations. In the general case of n-neutrino mixing I derive a convenient expression for transition probability in which only independent terms (and mass-squared differences) enter. For three-neutrino mixing I discuss a problem of a definition of a large (atmospheric) neutrino mass-squared difference. I comment also possibilities to reveal the character of neutrino mass spectrum in future reactor neutrino experiments.
High precision framework for chaos many-body engine
NASA Astrophysics Data System (ADS)
Grossu, I. V.; Besliu, C.; Felea, D.; Jipa, Al.
2014-04-01
In this paper we present a C# 4.0 high precision framework for simulation of relativistic many-body systems. In order to benefit from the, previously developed, chaos analysis instruments, all new modules were integrated with Chaos Many-Body Engine (Grossu et al. 2010, 2013). As a direct application, we used 46 digits precision for analyzing the "Butterfly Effect" of the gravitational force in a specific relativistic nuclear collision toy-model.
New scheme of high-precision visual collimator
NASA Astrophysics Data System (ADS)
Ge, Zhaoxiang; Ying, Han; Chen, Lei
1998-08-01
Machine manufacture and installation, special constructional engineering and precision engineering surveying need a very high precision collimator. In the text, we discus a plane focusing visual collimator, which had been specially made for the synchrotron accelerator. Using an electronic spirit level as the reference element, CCD automatic aiming system, photoelectric readout device and computer processing technology, the new visual collimator has a much higher precision and can be used more quickly, more conveniently and more reliably.
Scalar-tensor gravity with a non-minimally coupled Higgs field and accelerating universe
NASA Astrophysics Data System (ADS)
Sim, Jonghyun; Lee, Tae Hoon
2016-03-01
We consider general couplings, including non-minimal derivative coupling, of a Higgs boson field to scalar-tensor gravity and calculate their contributions to the energy density and pressure in Friedmann-Robertson-Walker spacetime. In a special case where the kinetic term of the Higgs field is non-minimally coupled to the Einstein tensor, we seek de Sitter solutions for the cosmic scale factor and discuss the possibility that the late-time acceleration and the inflationary era of our universe can be described by means of scalar fields with self-interactions and the Yukawa potential.
NASA Astrophysics Data System (ADS)
Kao, Ricky; Kabirzadeh, Hojjat; Kim, Jeong Woo; Neumeyer, Juergen; Sideris, Michael G.
2014-08-01
In order to detect small gravity changes in field measurements, such as with CO2 storage, we designed simulations and experiments to validate the capabilities of the iGrav superconducting gravimeter. Qualified data processing was important to obtain the residual gravity from the iGrav's raw gravity signals, without the tidal components, atmosphere, polar motion and hydrological effects. Two simulations and four designed experiments are presented in this study. The first simulation detected the gravity change during CO2 injection. The residual gravity of CO2 leakage was targeted with the second simulation from the main storage reservoir to secondary space underground. The designed experiments monitored the situation of gravity anomalies in the iGrav's records. These tests focused on short-term gravity anomalies, such as gravity changes, step functions, repeat observations and gradient measurements from the iGrav, rather than on long-term tidal effects. The four laboratory experiments detected a decrease in gravity of -0.56 ± 0.15 µGal (10-8 m s-2) with a 92.8 kg weight on the top of the iGrav. A step function occurred in the gravity signals, when the tilt control was out of balance. We also used a professional camera dolly with a track to observe repeated horizontal movements and an electric lift table for controlled vertical movements to measure the average gradient of -2.67 ± 0.01 µGal cm-1.
NASA Astrophysics Data System (ADS)
Crossley, D. J.; de Linage, C.; Hinderer, J.; Boy, J.
2007-12-01
As the number of different solutions from the GRACE satellite gravity project evolves, we can make more meaningful comparisons between the satellite-derived field and the surface field as recorded by superconducting gravimeters. On the GRACE side, we use CSR Level 2 products RL01 and the recent RL04 solutions, GFZ RL04 solutions, and the CNES/GRGS 10-day solutions, all for the time periods these are available. On the GGP side, we take advantage of the 10 years of SG data since July 1997 from 6-8 ground stations in Europe, allowing for the change in the network configuration as stations begin and end recording. Only data since 2002 can be compared directly to GRACE. Our primary measure of variability is the first principal component of the EOF analysis of all the fields. Unsurprisingly, the seasonal components for all the comparisons are similar in phase, but different in amplitude, to the predictions from a global hydrology model (GLDAS), provided allowance is made for the location of the SG stations above or below the soil moisture horizon that controls the gravity signature. We use detailed modeling at the Strasbourg station, as well as published results for Moxa and Membach, to confirm the gravity effect of hydrology. Good agreement is found between the GGP and the CNES/GRGS 10-day solutions, indicating the higher temporal resolution of this satellite solution is valid for our limited geographical area. We also synthesize the gravity field over the sub-group of GGP stations in N.E. Asia to see how the GRACE variability compares to that for the European array and to assess future ground validation using new GGP stations in that part of the world.
Towards field and laboratory experiments with ocean acoustic-gravity waves
NASA Astrophysics Data System (ADS)
Oliveira, Tiago; Kadri, Usama; Lin, Ying-Tsong; Morozov, Andrey
2016-04-01
Acoustic-gravity waves (AGWs) can be generated in the ocean by mechanical energy transfer from the Earth's crust (e.g. earthquakes or volcanoes) and by energy transfer occurring at the water surface (e.g. interaction of opposing gravity waves, ice-quakes or localized pressure changes). Recent theoretical studies shed light on the underlying physics of the generation and propagation of AGWs in the ocean. However, these theories are yet to be verified further with very challenging field experiments due to the associated low frequency signals required, and ambient disturbances involved. Here, we present a unique setup of field experiments and large scale laboratory tests to verify the main physical properties of AGWs in ocean generated by different types of sources. We also present a novel methodology to generate and measure AGWs in the ocean.
The Study of Effects of Time Variations in the Earth's Gravity Field on Geodetic Satellites
NASA Technical Reports Server (NTRS)
Shum, C. K.
1998-01-01
The temporal variations in the Earth's gravity field are the consequences of complex interactions between atmosphere, ocean, solid Earth, hydrosphere and cryosphere. The signal ranges from several hours to 18.6 years to geological time scale. The direct and indirect consequences of these variations are manifested in such phenomena as changes in the global sea level and in the global climate pattern. These signals produce observable geodetic satellites. The primary objectives of the proposed effects on near-Earth orbiting investigation include (1) the improved determination of the time-varying gravity field parameters (scale from a few hour to 18.6 year and secular) using long-term satellite laser rs ranging (SLR) observations to multiple geodetic satellites, and (2) the enhanced understanding of these variations with their associated meteorological and geophysical consequences.
Analysis of gravity anomaly over coral-reef oil field: Wilfred Pool, Sullivan County, Indiana
Dana, S.W.
1980-03-01
To compare the measured and theoretical gravity anomaly of a typical coral-reef oil field, data were collected from the wilfred Pool, Sullivan County, Indiana. Densities of available core samples from the field were determined and the anomaly was calculated, taking into account the lateral and vertical variation of density and the geologic structure known from core studies and drilling-log records of lithologic types penetrated by the wells. Comparison of the theoretical and actual anomalies indicated a rough correspondence except for several sharp negative anomalies on the flanks of the measured gravity anomaly. Further studies indicated that the negative anomalies are possibly due to fluvial erosion that produced, on the surface of the youngest Pennsylvanian sediments, channels which were later filled with glacial till of lower density than the sediments. 13 figures.
Modeling gravity and magnetic fields for crustal and upper mantle structures
NASA Technical Reports Server (NTRS)
Denoyer, J. M.
1985-01-01
Research was conducted to: (1) make a direct comparison between the gravity and magnetic fields near the ellipsoid and at the height expected for the Geopotential Research Mission (GRM) for the same geologic model, (2) obtain realistic estimates of the gradients that can be expected at the orbit height of the GRM, and (3) demonstrate the value of data that the GRM could provide for investigating upper mantle and deep crustal anomalies.
NASA Technical Reports Server (NTRS)
Schrama, E.
1990-01-01
The concept of a Global Positioning System (GPS) receiver as a tracking facility and a gradiometer as a separate instrument on a low orbiting platform offers a unique tool to map the Earth's gravitational field with unprecedented accuracies. The former technique allows determination of the spacecraft's ephemeris at any epoch to within 3 to 10 cm, the latter permits the measurement of the tensor of second order derivatives of the gravity field to within 0.01 to 0.0001 Eotvos units depending on the type of gradiometer. First, a variety of error sources in gradiometry where emphasis is placed on the rotational problem pursuing as well a static as a dynamic approach is described. Next, an analytical technique is described and applied for an error analysis of gravity field parameters from gradiometer and GPS observation types. Results are discussed for various configurations proposed on Topex/Poseidon, Gravity Probe-B, and Aristoteles, indicating that GPS only solutions may be computed up to degree and order 35, 55, and 85 respectively, whereas a combined GPS/gradiometer experiment on Aristoteles may result in an acceptable solution up to degree and order 240.
NASA Astrophysics Data System (ADS)
Tregoning, P.; McClusky, S.; Purcell, A. P.; McQueen, H.
2015-12-01
Non-gravitational accelerations acting on each of the GRACE satellites are measured in the along-track, cross-track and radial directions by the accelerometers onboard each satellite. The calibration of the observed non-gravitational accelerations requires determining a scaling factor and (at least) an offset for the observations in each of the three directions. We demonstrate in this presentation how small errors in the scale factors used to calibrate the accelerometer observations affect the noise level in the estimated temporal gravity field. We performed a parameter space search to find the optimal scale factors that generated the smallest prefit range-rate residuals and found that we can model the satellite orbits without the use of any empirical parameters, whilst still being able to identify the temporal gravity field signal in the prefit KBRR residuals. We will describe some physical conditions when the satellites are in the shadow of the Earth that we use to constrain the estimates of calibration biases and scales and show how the noise level of the estimated temporal gravity field varies with and without the use of the optimal calibration values for the accelerometer observations. A similar approach will be both required and effective to calibrate the accelerometers onboard the GRACE Follow-On mission.
NASA Astrophysics Data System (ADS)
Poropat, Lea; Bergmann-Wolf, Inga; Flechtner, Frank; Dobslaw, Henryk
2016-04-01
Time variable global gravity field models that are processed by different research institutions all across Europe are currently compared and subsequently combined within the "European Gravity Field Service for Improved Emergency Management (EGSIEM)" project funded by the European Union. To objectively assess differences between the results from different groups, and also to evaluate the impact of changes in the data processing at an individual institution in preparation of a new data release, a validation of the final GRACE gravity fields against independent observations is required. For such a validation, we apply data from a set of globally distributed ocean bottom pressure sensors. The in situ observations have been thoroughly revised for outliers, instrumental drift and jumps, and were additionally reduced for tides. GRACE monthly mean solutions are then validated with the monthly resampled in situ observations. The validation typically concentrates on seasonal to interannual signals, but in case of GRACE-based series with daily sampling available from, e.g., Kalman Smoother Solutions, also sub-monthly signal variability can be assessed.
Earth Gravity Field Solutions from Several Months of CHAMP Satellite Data
NASA Astrophysics Data System (ADS)
Reigber, C.; Schwintzer, P.; Koenig, R.; Neumayer, K.; Bode, A. K.; Barthelmes, F.; Foerste, C.; Balmino, G.; Biancale, R.; Lemoine, J.; Loyer, S.; Perosanz, F.
2001-12-01
The German CHAMP satellite, launched in July 2000 on a low altitude ( ~450 km), quasi-circular, near-polar (inclination ~87° ) orbit was designed for mapping the Earth's gravity field (among other geophysical applications) with unprecedented precision and over an expected five years lifetime. For doing so, it is equipped on board with a GPS receiver, providing continuous satellite-to-satellite tracking, a micro-accelerometer which measures the surfaces forces, star sensors for attitude information and a laser retroreflector for precise orbit verification. Several months of data have been analyzed which allow on the one hand a better understanding of the accelerometer performance thanks to a refined parameterization and on the other hand the determination of new gravity field solutions. One of them, complete to degree and order 91 with zonal and resonance terms up to degree 119 was computed from CHAMP data only and is the first of a new series of Earth gravitational models, generated by European teams. Comparisons against existing models and validation through precise orbit determination demonstrate the capabilities - even with a relatively short data set - of such a single satellite with new equipment for mapping the gravity field at its long and medium wavelength part. This gives great hopes for determining time variations even prior to the dedicated GRACE mission. Another solution which includes information from other past and current geodetic satellites was computed up to degree and order 120 and is also evaluated here.
NASA Technical Reports Server (NTRS)
Schrama, Ernst J. O.
1991-01-01
The concept of a Global Positioning System (GPS) receiver as a tracking facility and a gradiometer as a separate instrument on a low-orbiting platform offers a unique tool to map the earth's gravitational field with unprecedented accuracies. The former technique allows determination of the spacecraft's ephemeris at any epoch to within 3-10 cm, the latter permits the measurement of the tensor of second order derivatives of the gravity field to within 0.01 to 0.0001 Eotvos units depending on the type of gradiometer. First, a variety of error sources in gradiometry where emphasis is placed on the rotational problem pursuing as well a static as a dynamic approach is described. Next, an analytical technique is described and applied for an error analysis of gravity field parameters from gradiometer and GPS observation types. Results are discussed for various configurations proposed on Topex/Poseidon, Gravity Probe-B, and Aristoteles, indicating that GPS only solutions may be computed up to degree and order 35, 55, and 85, respectively, whereas a combined GPS/gradiometer experiment on Aristoteles may result in an acceptable solution up to degree and order 240.
Titan’s internal structure inferred from its gravity field, shape, and rotation state
NASA Astrophysics Data System (ADS)
Baland, Rose-Marie; Tobie, Gabriel; Lefèvre, Axel; Van Hoolst, Tim
2014-07-01
Several quantities measured by the Cassini-Huygens mission provide insight into the interior of Titan: the second-degree gravity field coefficients, the shape, the tidal Love number, the electric field, and the orientation of its rotation axis. The measured obliquity and tides, as well as the electric field, are evidence for the presence of an internal global ocean beneath the icy shell of Titan. Here we use these different observations together to constrain the density profile assuming a four-layer interior model (ice I shell, liquid water ocean, high pressure ice mantle, and rock core). Even though the observed second degree gravity field is consistent with the hydrostatic relation J2=10C22/3, which is a necessary but not sufficient condition for a synchronous satellite to be in hydrostatic equilibrium, the observed shape of the surface as well as the non-zero degree-three gravity signal indicate some departure from hydrostaticity. Therefore, we do not restrain our range of assumed density profiles to those corresponding to the hydrostatic value of the moment of inertia (0.34). From a range of density profiles consistent with the radius and mass of the satellite, we compute the obliquity of the Cassini state and the tidal Love number k2. The obliquity is computed from a Cassini state model for a satellite with an internal liquid layer, each layer having an ellipsoidal shape consistent with the measured surface shape and gravity field. The observed (nearly hydrostatic) gravity field is obtained by an additional deflection of the ocean-ice I shell interface, assuming that the layers have uniform densities. We show that the measured obliquity can be reproduced only for internal models with a dense ocean (between 1275 and 1350 kg m-3) above a differentiated interior with a full separation of rock and ice. We obtain normalized moments of inertia between 0.31 and 0.33, significantly lower than the expected hydrostatic value (0.34). Evolutionary mechanisms leading to a
NASA Astrophysics Data System (ADS)
Espindola, Juan Manuel; Lopez-Loera, Hector; Mena, Manuel; Zamora-Camacho, Araceli
2016-09-01
The Tuxtla Volcanic Field (TVF) is a basaltic volcanic field emerging from the plains of the western margin of the Gulf of Mexico in the Mexican State of Veracruz. Separated by hundreds of kilometers from the Trans-Mexican Volcanic Belt to the NW and the Chiapanecan Volcanic Arc to the SE, it stands detached not only in location but also in the composition of its rocks, which are predominantly alkaline. These characteristics make its origin somewhat puzzling. Furthermore, one of the large volcanoes of the field, San Martin Tuxtla, underwent an eruptive period in historical times (CE 1793). Such volcanic activity conveys particular importance to the study of the TVF from the perspective of volcanology and hazard assessment. Despite the above circumstances, few investigations about its internal structure have been reported. In this work, we present analyses of gravity and aeromagnetic data obtained from different sources. We present the complete Bouguer anomaly of the area and its separation into regional and residual components. The aeromagnetic data were processed to yield the reduction to the pole, the analytic signal, and the upward continuation to complete the interpretation of the gravity analyses. Three-dimensional density models of the regional and residual anomalies were obtained by inversion of the gravity signal adding the response of rectangular prisms at the nodes of a regular grid. We obtained a body with a somewhat flattened top at 16 km below sea level from the inversion of the regional. Three separate slender bodies with tops 6 km deep were obtained from the inversion of the residual. The gravity and magnetic anomalies, as well as the inferred source bodies that produce those geophysical anomalies, lie between the Sontecomapan and Catemaco faults, which are proposed as flower structures associated with an inferred deep-seated fault termed the Veracruz Fault. These fault systems along with magma intrusion at the lower crust are necessary features to
NASA Astrophysics Data System (ADS)
Garmier, Romain; Barriot, Jean-Pierre; Konopliv, Alexander S.; Yeomans, Donald K.
2002-04-01
The gravity field for asteroid 433 Eros has been determined in terms of ellipsoidal harmonic functions by processing the Doppler tracking data of the NEAR spacecraft while it was in orbit about the asteroid. Using the same set of NEAR spacecraft Doppler tracking data, comparative descriptions of the Eros gravity field are provided for both the ellipsoidal and the traditional spherical harmonic models. It is shown that for elongated bodies, like the asteroid Eros, the ellipsoidal harmonics model permits a better representation of the gravity signature than does the spherical harmonics model. Eros has a nearly uniform density but there are negative gravity anomalies near the ends of Eros and positive gravity anomalies near the Psyche crater and the Himeros depression.
Local Gravity Field Determination On The Moon Using GRAIL Extended Mission Data
NASA Astrophysics Data System (ADS)
Goossens, S. J.; Lemoine, F. G.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.
2013-12-01
The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were launched on September 10, 2011, and conducted their primary mapping mission from March 1 until May 29, 2012 at an average altitude of 50 km. GRAIL's extended mission commenced on August 30 and was completed on December 14, 2012. The average altitude during the extended mission was 23 km above lunar surface. Both primary and extended mission data have been processed at NASA/GSFC using the GEODYN software, resulting in high-resolution (degree and order 900 in spherical harmonics) gravity field models of high accuracy. However, especially during low-altitude passes, Ka-band range-rate (KBRR) data residuals are still well above noise level. Here, we focus on methods to determine local gravity adjustments from KBRR data. We represent gravity in the area of interest as gravity anomaly adjustments with respect to the background spherical harmonics model. We use KBRR data only over the area of interest, and we then perform short-arc orbit determination. Our areas of focus are mainly the Mare Orientale area, where GRAIL achieved its lowest altitude above the lunar surface towards the end of the mission, and the south pole area, where naturally there is a confluence of orbit tracks. We investigate different grids and different smoothing constraints used in the estimation of the anomalies, numerical differentiation with respect to time of the KBRR data to localize its sensitivity further, and we evaluate the solutions in terms of Bouguer anomaly signatures, KBRR data fit, and correlations with local topography.
Topological black holes for Einstein-Gauss-Bonnet gravity with a nonminimal scalar field
NASA Astrophysics Data System (ADS)
Gaete, Moisés Bravo; Hassaïne, Mokhtar
2013-11-01
We consider the Einstein-Gauss-Bonnet gravity with a negative cosmological constant together with a source given by a scalar field nonminimally coupled in arbitrary dimension D. For a certain election of the cosmological and Gauss-Bonnet coupling constants, we derive two classes of AdS black hole solutions whose horizon is planar. The first family of black holes obtained for a particular value of the nonminimal coupling parameter only depends on a constant M, and the scalar field vanishes as M=0. The second class of solutions corresponds to a two-parametric (with constants M and A) black hole stealth configuration, which is a nontrivial scalar field with a black hole metric such that both sides (gravity and matter parts) of the Einstein equations vanish. In this case, in the vanishing M, the solution reduces to a stealth scalar field on the pure AdS metric. We note that the existence of these two classes of solutions is indicative of the particular choice of the coupling constants, and they cannot be promoted to spherical or hyperboloid black hole solutions in a standard fashion. In the last part, we add to the original action some exact (D-1) forms coupled to the scalar field. The direct benefit of introducing such extra fields is to obtain black hole solutions with a planar horizon for an arbitrary value of the nonminimal coupling parameter.
Determining the Ocean's Role on the Variable Gravity Field on Earth Rotation
NASA Technical Reports Server (NTRS)
Ponte, Rui M.
1999-01-01
A number of ocean models of different complexity have been used to study changes in the oceanic mass field and angular momentum and their relation to the variable Earth rotation and gravity field. Time scales examined range from seasonal to a few days. Results point to the importance of oceanic signals in driving polar motion, in particular the Chandler and annual wobbles. Results also show that oceanic signals have a measurable impact on length-of-day variations. Various circulation features and associated mass signals, including the North Pacific subtropical gyre, the equatorial currents, and the Antarctic Circumpolar Current play a significant role in oceanic angular momentum variability.
Dynamics of N = 4 supersymmetric field theories in 2 + 1 dimensions and their gravity dual
NASA Astrophysics Data System (ADS)
Cottrell, William; Hanson, James; Hashimoto, Akikazu
2016-07-01
In this note we consider N = 4 SYM theories in 2 + 1 dimensions with gauge group U( N ) × U( M ) and k hypermultiplets charged under the U( N ). When k > 2( N - M ), the theory flows to a superconformal fixed point in the IR. Theories with k < 2( N - M ), on the other hand, flows to strong coupling. We explore these theories from the perspective of gravity dual. We find that the gravity duals of theories with k < ( N - M ) contain enhancons even in situations where repulson singularities are absent. We argue that supergravity description is unreliable in the region near these enhancon points. Instead, we show how to construct reliable sugra duals to particular points on the Coulomb branch where the enhancon is screened. We explore how these singularities reappear as one moves around in Coulomb branch and comment on possible field theory interpretation of this phenomenon. In analyzing gauge/gravity duality for these models, we encountered one unexpected surprise, that the condition for the supergravity solution to be reliable and supersymmetric is somewhat weaker than the expectation from field theory. We also discuss similar issues for theories with k = 0.
Large-field inflation with multiple axions and the weak gravity conjecture
NASA Astrophysics Data System (ADS)
Junghans, Daniel
2016-02-01
In this note, we discuss the implications of the weak gravity conjecture (WGC) for general models of large-field inflation with a large number of axions N. We first show that, from the bottom-up perspective, such models admit a variety of different regimes for the enhancement of the effective axion decay constant, depending on the amount of alignment and the number of instanton terms that contribute to the scalar potential. This includes regimes of no enhancement, power-law enhancement and exponential enhancement with respect to N. As special cases, we recover the Pythagorean enhancement of N-flation, the N and N 3/2 enhancements derived by Bachlechner, Long and McAllister and the exponential enhancement by Choi, Kim and Yun. We then analyze which top-down constraints are put on such models from the requirement of consistency with quantum gravity. In particular, the WGC appears to imply that the enhancement of the effective axion decay constant must not grow parametrically with N for N ≫ 1. On the other hand, recent works proposed that axions might be able to violate this bound under certain circumstances. Our general expression for the enhancement allows us to translate this possibility into a condition on the number of instantons that couple to the axions. We argue that, at large N , models consistent with quantum gravity must either allow super-Planckian field excursions or have an enormous, possibly even exponentially large, number of dominant instanton terms in the scalar potential.
NASA Astrophysics Data System (ADS)
Hehl, Friedrich W.; Obukhov, Yuri N.
The coupling of the electromagnetic field to gravity is an age-old problem. Presently, there is a resurgence of interest in it, mainly for two reasons: (i) Experimental investigations are under way with ever increasing precision, be it in the laboratory or by observing outer space. (ii) One desires to test out alternatives to Einstein’s gravitational theory, in particular those of a gauge-theoretical nature, like Einstein-Cartan theory or metric-afine gravity.— A clean discussion requires a reflection on the foundations of electrodynamics. If one bases electrodynamics on the conservation laws of electric charge and magnetic flux, one finds Maxwell’s equations expressed in terms of the excitation H = (D,H) and the field strength F = (E,B) without any intervention of the metric or the linear connection of spacetime. In other words, there is still no coupling to gravity. Only the constitutive law H = functional(F) mediates such a coupling. We discuss the different ways of how metric, nonmetricity, torsion, and curvature can come into play here. Along the way, we touch on non-local laws (Mashhoon), non-linear ones (Born-Infeld, Heisenberg-Euler, Plebaśki), linear ones, including the Abelian axion (Ni), and fid a method for deriving the metric from linear electrodynamics (Toupin, Schönberg). Finally, we discuss possible non-minimal coupling schemes.
High precision photon flux determination for photon tagging experiments
Teymurazyan, A; Ahmidouch, A; Ambrozewicz, P; Asratyan, A; Baker, K; Benton, L; Burkert, V; Clinton, E; Cole, P; Collins, P; Dale, D; Danagoulian, S; Davidenko, G; Demirchyan, R; Deur, A; Dolgolenko, A; Dzyubenko, G; Ent, R; Evdokimov, A; Feng, J; Gabrielyan, M; Gan, L; Gasparian, A; Glamazdin, A; Goryachev, V; Hardy, K; He, J; Ito, M; Jiang, L; Kashy, D; Khandaker, M; Kolarkar, A; Konchatnyi, M; Korchin, A; Korsch, W; Kosinov, O; Kowalski, S; Kubantsev, M; Kubarovsky, V; Larin, I; Lawrence, D; Li, X; Martel, P; Matveev, V; McNulty, D; Mecking, B; Milbrath, B; Minehart, R; Miskimen, R; Mochalov, V; Nakagawa, I; Overby, S; Pasyuk, E; Payen, M; Pedroni, R; Prok, Y; Ritchie, B; Salgado, C; Shahinyan, A; Sitnikov, A; Sober, D; Stepanyan, S; Stevens, W; Underwood, J; Vasiliev, A; Vishnyakov, V; Wood, M; Zhou, S
2014-07-01
The Jefferson Laboratory PrimEx Collaboration has developed and implemented a method to control the tagged photon flux in photoproduction experiments at the 1% level over the photon energy range from 4.9 to 5.5 GeV. This method has been successfully implemented in a high precision measurement of the neutral pion lifetime. Here, we outline the experimental equipment and the analysis techniques used to accomplish this. These include the use of a total absorption counter for absolute flux calibration, a pair spectrometer for online relative flux monitoring, and a new method for post-bremsstrahlung electron counting.
High precision photon flux determination for photon tagging experiments
NASA Astrophysics Data System (ADS)
Teymurazyan, A.; Ahmidouch, A.; Ambrozewicz, P.; Asratyan, A.; Baker, K.; Benton, L.; Burkert, V.; Clinton, E.; Cole, P.; Collins, P.; Dale, D.; Danagoulian, S.; Davidenko, G.; Demirchyan, R.; Deur, A.; Dolgolenko, A.; Dzyubenko, G.; Ent, R.; Evdokimov, A.; Feng, J.; Gabrielyan, M.; Gan, L.; Gasparian, A.; Glamazdin, A.; Goryachev, V.; Hardy, K.; He, J.; Ito, M.; Jiang, L.; Kashy, D.; Khandaker, M.; Kolarkar, A.; Konchatnyi, M.; Korchin, A.; Korsch, W.; Kosinov, O.; Kowalski, S.; Kubantsev, M.; Kubarovsky, V.; Larin, I.; Lawrence, D.; Li, X.; Martel, P.; Matveev, V.; McNulty, D.; Mecking, B.; Milbrath, B.; Minehart, R.; Miskimen, R.; Mochalov, V.; Nakagawa, I.; Overby, S.; Pasyuk, E.; Payen, M.; Pedroni, R.; Prok, Y.; Ritchie, B.; Salgado, C.; Shahinyan, A.; Sitnikov, A.; Sober, D.; Stepanyan, S.; Stevens, W.; Underwood, J.; Vasiliev, A.; Vishnyakov, V.; Wood, M.; Zhou, S.
2014-12-01
The Jefferson Laboratory PrimEx Collaboration has developed and implemented a method to control the tagged photon flux in photoproduction experiments at the 1% level over the photon energy range from 4.9 to 5.5 GeV. This method has been successfully implemented in a high precision measurement of the neutral pion lifetime. Here, we outline the experimental equipment and the analysis techniques used to accomplish this. These include the use of a total absorption counter for absolute flux calibration, a pair spectrometer for online relative flux monitoring, and a new method for post-bremsstrahlung electron counting.
Globular Cluster Streams as Galactic High-Precision Scales
NASA Astrophysics Data System (ADS)
Küpper, Andreas H. W.; Balbinot, Eduardo; Bonaca, Ana; Johnston, Kathryn V.; Hogg, David W.; Kroupa, Pavel; Santiago, Basilio X.
2016-08-01
Tidal streams of globular clusters are ideal tracers of the Galactic gravitational potential. Compared to the few known, complex and diffuse dwarf-galaxy streams, they are kinematically cold, have thin morphologies and are abundant in the halo of the Milky Way. Their coldness and thinness in combination with potential epicyclic substructure in the vicinity of the stream progenitor turns them into high-precision scales. With the example of Palomar 5, we demonstrate how modeling of a globular cluster stream allows us to simultaneously measure the properties of the disrupting globular cluster, its orbital motion, and the gravitational potential of the Milky Way.
GENERATION AND CONTROL OF HIGH PRECISION BEAMS AT LEPTON ACCELERATORS
Yu-Chiu Chao
2007-06-25
Parity violation experiments require precision manipulation of helicity-correlated beam coordinates on target at the nm/nrad-level. Achieving this unprecedented level of control requires a detailed understanding of the particle optics and careful tuning of the beam transport to keep anomalies from compromising the design adiabatic damping. Such efforts are often hindered by machine configuration and instrumentation limitations at the low energy end. A technique has been developed at CEBAF including high precision measurements, Mathematica-based analysis for obtaining corrective solutions, and control hardware/software developments for realizing such level of control at energies up to 5 GeV.
Distributed high-precision time transfer through passive optical networks
NASA Astrophysics Data System (ADS)
Wu, Guiling; Hu, Liang; Zhang, Hao; Chen, Jianping
2014-09-01
We propose a one-point to multipoint distributed time transfer through passive optical networks using a time division multiple access (TDMA) based two-way time transfer. The clock at each clock user node is, in turn, compared with the high-precision reference clock at a master node by a two-way time transfer during assigned subperiods. The corresponding TDMA control protocol and time transfer units for the proposed scheme are designed and implemented. A 1×8 experimental system with a 20 km single-mode fiber in each subpath is demonstrated. The results show that a standard deviation of <60 ps can be reached in each comparison subperiod.
Future high precision experiments and new physics beyond Standard Model
Luo, Mingxing.
1993-01-01
High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.
Future high precision experiments and new physics beyond Standard Model
Luo, Mingxing
1993-04-01
High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.
Design of a high-precision tunable double crystal monochromator
Shleifer, M.; Sharma, S.; Rotela, E.; Brite, C.
1992-02-01
The design of high-precision tunable double crystal monochromator is described. Each crystal of the monochromator can be aligned independently by a double-axis gimbal mechanism providing rotations about two perpendicular axes. Two orthogonal linear actuators operate the gimbal mechanism via a connecting bar. The exit beam height is controlled by separate linear actuators that change the distance between the crystals along the beam axis. Vertical separation between the crystals may also be adjusted. Thermal deformations are minimized in this compact UHV compatible design by water cooling of the first crystal. 7 refs.
High-precision micro/nano-scale machining system
Kapoor, Shiv G.; Bourne, Keith Allen; DeVor, Richard E.
2014-08-19
A high precision micro/nanoscale machining system. A multi-axis movement machine provides relative movement along multiple axes between a workpiece and a tool holder. A cutting tool is disposed on a flexible cantilever held by the tool holder, the tool holder being movable to provide at least two of the axes to set the angle and distance of the cutting tool relative to the workpiece. A feedback control system uses measurement of deflection of the cantilever during cutting to maintain a desired cantilever deflection and hence a desired load on the cutting tool.
High precision applications of the global positioning system
NASA Technical Reports Server (NTRS)
Lichten, Stephen M.
1991-01-01
The Global Positioning System (GPS) is a constellation of U.S. defense navigation satellites which can be used for military and civilian positioning applications. A wide variety of GPS scientific applications were identified and precise positioning capabilities with GPS were already demonstrated with data available from the present partial satellite constellation. Expected applications include: measurements of Earth crustal motion, particularly in seismically active regions; measurements of the Earth's rotation rate and pole orientation; high-precision Earth orbiter tracking; surveying; measurements of media propagation delays for calibration of deep space radiometric data in support of NASA planetary missions; determination of precise ground station coordinates; and precise time transfer worldwide.
Spacecraft Thermal and Optical Modeling Impacts on Estimation of the GRAIL Lunar Gravity Field
NASA Technical Reports Server (NTRS)
Fahnestock, Eugene G.; Park, Ryan S.; Yuan, Dah-Ning; Konopliv, Alex S.
2012-01-01
We summarize work performed involving thermo-optical modeling of the two Gravity Recovery And Interior Laboratory (GRAIL) spacecraft. We derived several reconciled spacecraft thermo-optical models having varying detail. We used the simplest in calculating SRP acceleration, and used the most detailed to calculate acceleration due to thermal re-radiation. For the latter, we used both the output of pre-launch finite-element-based thermal simulations and downlinked temperature sensor telemetry. The estimation process to recover the lunar gravity field utilizes both a nominal thermal re-radiation accleration history and an apriori error model derived from that plus an off-nominal history, which bounds parameter uncertainties as informed by sensitivity studies.
An Empirical Method for Determining the Lunar Gravity Field. Ph.D. Thesis - George Washington Univ.
NASA Technical Reports Server (NTRS)
Ferrari, A. J.
1971-01-01
A method has been devised to determine the spherical harmonic coefficients of the lunar gravity field. This method consists of a two-step data reduction and estimation process. In the first step, a weighted least-squares empirical orbit determination scheme is applied to Doppler tracking data from lunar orbits to estimate long-period Kepler elements and rates. Each of the Kepler elements is represented by an independent function of time. The long-period perturbing effects of the earth, sun, and solar radiation are explicitly modeled in this scheme. Kepler element variations estimated by this empirical processor are ascribed to the non-central lunar gravitation features. Doppler data are reduced in this manner for as many orbits as are available. In the second step, the Kepler element rates are used as input to a second least-squares processor that estimates lunar gravity coefficients using the long-period Lagrange perturbation equations.
The IfE Global Gravity Field Model Recovered from GOCE Orbit and Gradiometer Data
NASA Astrophysics Data System (ADS)
Wu, Hu; Muiller, Jurgen; Brieden, Phillip
2015-03-01
An independent global gravity field model is computed from the GOCE orbit and gradiometer data using our own IfE software. We analysed the same data period that were considered for the first released GOCE models. The Acceleration Approach is applied to process the orbit data. The gravity gradients are processed in the framework of the remove-restore technique by which the low-frequency noise of the original gradients are removed. For the combined solution, the normal equations are summed by the Variance Component Estimation Approach. The result in terms of accumulated geoid height error calculated from the coefficient difference w.r.t. EGM2008 is about 11 cm at D/O 200, which corresponds to the accuracy level of the first released TIM and DIR solutions. This indicates that our IfE model has a comparable performance as the other official GOCE models.
Spatial and temporal variation of gravity field in the capital region
NASA Astrophysics Data System (ADS)
Hua, Chang-Cai; Guo, Yong; Liu, Duan-Fa; Xiao, Gang; Kuo, J. T.; Brown, Walter
1995-08-01
The high accurate gravity measurement have been carried out many years in the capital region. The main characteristics of the change of gravity field during the latest eight years (1981 1988) in the region are presented in this paper. The more gravitational variation appeared in the southern and south-eastern part, the maximum variation come to 10-6 ms-2. In the northern part, for instance: Chengde City, and Wanxian County—west Taihang mountain area which are in the westside of the network, were relative stable. The noticeable areas of gravitational variation were in Tianjin-Baxian-Renqiu which correspond with the crustal vertical deformation. The main cause of that is related to pump ground water and petroleum.
NASA Astrophysics Data System (ADS)
Klinger, B.; Baur, O.; Mayer-Gürr, T.
2014-02-01
The NASA mission GRAIL (Gravity Recovery And Interior Laboratory) makes use of low-low satellite-to-satellite tracking between the spacecraft GRAIL-A (Ebb) and GRAIL-B (Flow) to determine high-resolution lunar gravity field features. The inter-satellite measurements are independent of the visibility of the spacecraft from Earth, and hence provide data for both the nearside and the farside of the Moon. We propose to exploit this ranging data by an integral equation approach using short orbital arcs; it is based on the reformulation of Newton's equation of motion as a boundary value problem. This technique has been successfully applied for the recovery of the gravity field of the Earth from the Gravity Recovery And Climate Experiment (GRACE) project-the terrestrial sibling of GRAIL. By means of a series of simulation studies we demonstrate the potential of the approach. We pay particular attention on a priori gravity field information, orbital arc length, observation noise and the impact of spectral aliasing (omission error). Finally, we compute a first lunar gravity model (GrazLGM200a) from real data of the primary mission phase (March 1, 2012 to May 29, 2012). The unconstrained model is expanded up to spherical harmonic degree and order 200. From our simulations and real data results we conclude that the integral equation approach is well suited for GRAIL gravity field recovery.
Liu, Xiaolin; Zhao, Kun; Jiang, Chao; Wang, Yue; Shao, Lei; Zhang, Yajun; Shi, Feng
2015-07-28
Loading functional small molecules into nano-thin films is fundamental to various research fields such as membrane separation, molecular imprinting, interfacial reaction, drug delivery etc. Currently, a general demand for enhancing the loading rate without affecting the film structures exists in most infiltration phenomena. To handle this issue, we have introduced a process intensification method of a high gravity technique, which is a versatile energy form of mechanical field well-established in industry, into the investigations on diffusion/infiltration at the molecular level. By taking a polyelectrolyte multilayer as a model thin film and a photo-reactive molecule, 4,4'-diazostilbene-2,2'-disulfonic acid disodium salt (DAS), as a model small functional molecule, we have demonstrated remarkably accelerated adsorption/infiltration of DAS into a poly(allylamine hydrochloride) (PAH)/poly(acrylic acid) (PAA) multilayer by as high as 20-fold; meanwhile, both the film property of the multilayer and photoresponsive-crosslinking function of DAS were not disturbed. Furthermore, the infiltration of DAS and the surface morphology of the multilayer could be tuned based on their high dependence on the intensity of the high gravity field regarding different rotating speeds. The mechanism of the accelerated adsorption/infiltration under the high gravity field was interpreted by the increased turbulence of the diffusing layer with the thinned laminar boundary layer and the stepwise delivery of the local concentration gradient from the solution to the interior of the multilayer. The introduction of mechanical field provides a simple and versatile strategy to address the paradox of the contradictory loading amount and loading rate, and thus to promote applications of various membrane processes. PMID:26086776
Evaluation of the Effect of Gravity Force on Transient Mass Diffusion Fields
NASA Astrophysics Data System (ADS)
Komiya, Atsuki; Maruyama, Shigenao
In this study, the relationship between gravitational force and diffusion phenomena in aque-ous solutions is discussed. The microgravity environment gives a high quality crystal growth condition which produces high quality medicines or foods. In this condition, a natural con-vection can be neglected and diffusion phenomenon without convection is observed. The mass diffusion coefficient is one of the most important thermophysical properties to investigate that mass transport system. However, the available experimental data of mass diffusion coefficients in microgravity conditions is not enough. Because it is quite a few opportunity that exper-iments can be conducted using facilities which produce microgravity environment for a long time. Then we have developed an observation system of small transient diffusion fields within 20 seconds. The experimental apparatus is composed of phase shifting interferometer, special designed signal processing unit and recorder. The mechanism of test cell used in this study has a unique performance that the transient diffusion fields can be produced continuously with no change of solutions and cell. Therefore this system can be applied to short-time microgravity experiment which is generated by the parabolic flight of an airplane. By using this system, the transient diffusion field of Sodium Chloride (NaCl) solution in microgravity conditions could be clearly observed and the mass diffusion coefficient was estimated from the obtained data. In microgravity condition, the transient diffusion fields have different appearances from the normal gravity condition. A slight acceleration governs the transient diffusion fields because of no density difference, so vibrations applied the apparatus disturb the transient diffusion fields. The measured mass diffusion coefficient has been estimated as a smaller value compared with ones under normal gravity condition. Using the airplane as a facility, not only microgravity condition but also 0.8G, 1
Langenheim, V.E.; Roberts, C.W.; McCabe, C.A.; McPhee, D.K.; Tilden, J.E.; Jachens, R.C.
2006-01-01
This isostatic residual gravity map is part of a three-dimensional mapping effort focused on the subsurface distribution of rocks of the Sonoma volcanic field in Napa and Sonoma counties, northern California. This map will serve as a basis for modeling the shapes of basins beneath the Santa Rosa Plain and Napa and Sonoma Valleys, and for determining the location and geometry of faults within the area. Local spatial variations in the Earth's gravity field (after accounting for variations caused by elevation, terrain, and deep crustal structure explained below) reflect the distribution of densities in the mid to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithologic boundaries. High-density basement rocks exposed within the northern San Francisco Bay area include those of the Mesozoic Franciscan Complex and Great Valley Sequence present in the mountainous areas of the quadrangle. Alluvial sediment and Tertiary sedimentary rocks are characterized by low densities. However, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of basement rocks. Tertiary volcanic rocks are characterized by a wide range in densities, but, on average, are less dense than the Mesozoic basement rocks. Isostatic residual gravity values within the map area range from about -41 mGal over San Pablo Bay to about 11 mGal near Greeg Mountain 10 km east of St. Helena. Steep linear gravity gradients are coincident with the traces of several Quaternary strike-slip faults, most notably along the West Napa fault bounding the west side of Napa Valley, the projection of the Hayward fault in San Pablo Bay, the Maacama Fault, and the Rodgers Creek fault in the vicinity of Santa Rosa. These gradients result from juxtaposing dense basement rocks against thick Tertiary volcanic and sedimentary rocks.
Towards a new generation of the Earth's gravity field models based on satellite gravimetry data
NASA Astrophysics Data System (ADS)
Hashemi Farahani, H.; Ditmar, P.
2011-12-01
We present preliminary results of a study focused on producing the Earth's static and time-varying gravity field models of a new generation from satellite gravimetry data. One of the primary sources of information is the K-Band Ranging (KBR) measurements acquired by the Gravity Recovery and Climate Experiment (GRACE) satellite mission and supplemented by kinematic orbits of the GRACE satellites. The kinematic orbits and the inter-satellite ranges are processed according to a variant of the acceleration approach, in which the functional models are respectively based on the average acceleration vectors and the average inter-satellite acceleration scalars derived with a three-point numerical double differentiation scheme. These data sets are reduced to the residual ones by evaluating and subtracting the contribution of background models. The residual data sets are subject to a newly defined geometrical correction to compensate for inadequacies in the background models and auxiliary information. Another novel element is an accurate estimation of the noise power spectral densities of the residual data sets, for which purpose a parameterization in terms of an Auto-Regressive Moving-Average (ARMA) process is used. This allows the dependency of noise on frequency to be taken into account, so that an optimal data combination is secured. In addition, an attempt is made to combine the aforementioned data sets with the measurements delivered by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission: Satellite Gravity Gradiometry (SGG) data and kinematic orbit. The improvements resulting from the applied innovations are quantified in the spatial and spectral domains.
NASA Astrophysics Data System (ADS)
Vadas, Sharon L.; Makela, Jonathan J.; Nicolls, Michael J.; Milliff, Ralph F.
2015-11-01
In this paper, we derive the atmospheric gravity waves (GWs) and acoustic waves excited by an ocean surface wave packet with frequency ωF and duration χ in an f plane, isothermal, windless, and inviscid atmosphere. This packet is modeled as a localized vertical body force with Gaussian depth σz. The excited GW spectrum has discrete intrinsic frequencies (ωIr) at ωF and ωF±2π/χ ("sum" and "difference") and has a "continuum" of frequencies for ωIr<ωF+2π/χ. The momentum flux spectrum peaks at ωIr˜ωF and decreases rapidly as ωIr decreases. To simulate the effect these GWs have on the thermosphere, we present a new scheme whereby we sprinkle N GW spectra in the ocean wave packet region, ray trace the GWs, and reconstruct the GW field. We model the GWs excited by ocean wave packets with horizontal wavelengths of λH = 190 km, periods of τF = 2π/ωF = 14 - 20 min and χ = 30 - 50 min. The excited GWs begin to arrive at z = 250 km at t ˜ 75 - 80 min. Those with the largest temperature perturbations T' have large ωIr and arrive at t ˜ 90 - 130 min. If |α|=ωF+2π/χ is a solution of the GW dispersion relation and |α| is less than the buoyancy frequency at z = 250 km, the sum and highest-frequency continuum GWs have much larger phase speeds and arrive 50-60 min earlier with larger T' than the GWs with frequency ωF. For a packet with λH = 190 km, τF = 14 min, χ = 30 min, and height h0=1.3 m, the maximum T' at z = 250 km is ˜9, 22, and 40 K for σz = 1, 2, and 4 m, respectively.
Automated high precision secondary pH measurements
NASA Astrophysics Data System (ADS)
Bastkowski, F.; Jakobsen, P. T.; Stefan, F.; Kristensen, H. B.; Jensen, H. D.; Kawiecki, R.; Wied, C. E.; Kauert, A.; Seidl, B.; Spitzer, P.; Eberhardt, R.; Adel, B.
2013-04-01
A new setup for high precision, automated secondary pH measurements together with a reference measurement procedure has been developed and tested in interlaboratory comparisons using buffers pH 4.005, pH 7.000, and pH 10.012 at 25 °C and 37 °C. Using primary buffers as standards, a standard uncertainty in pH better than 0.005 can be reached. The central measuring device is a one piece, thermostatted cell of PFA (perfluoroalkoxy) with a built-in Hamilton® Single Pore™ Glass electrode. Due to its flow-through principle this device allows pH measurements with low consumption of measurement solutions. The very hydrophobic and smooth PFA as construction material facilitates complete emptying of the cell. Furthermore, the tempering unit affords very precise temperature control and hence contributes to the low target uncertainty of the produced secondary buffer solutions. Use of a symmetric measurement sequence and the two point calibration was sufficient to reach high precision and accuracy.
High precision measurement system based on coplanar XY-stage
NASA Astrophysics Data System (ADS)
Fan, Kuang-Chao; Miao, Jin-Wei; Gong, Wei; Zhang, You-Liang; Cheng, Fang
2011-12-01
A coplanar XY-stage, together with a high precise measurement system, is presented in this paper. The proposed coplanar XY-stage fully conforms to the Abbe principle. The symmetric structural design is considered to eliminate the structure deformation due to force and temperature changes. For consisting of a high precise measurement system, a linear diffraction grating interferometer(LDGI) is employed as the position feedback sensor with the resolution to 1 nm after the waveform interpolation, an ultrasonic motor HR4 is used to generate both the long stroke motion and the nano positioning on the same stage. Three modes of HR4 are used for positioning control: the AC mode in continuous motion control for the long stroke; the gate mode to drive the motor in low velocity for the short stroke; and the DC mode in which the motor works as a piezo actuator, enabling accurate positioning of a few nanometers. The stage calibration is carried out by comparing the readings of LDGI with a Renishaw laser interferometer and repeated 5 times. Experimental results show the XY-stage has achieved positioning accuracy in less than 20nm after the compensation of systematic errors, and standard deviation is within 20 nm for travels up to 20 mm.
High Precision Photometry for the K2 Mission
NASA Astrophysics Data System (ADS)
Huang, Xu; Soares-Furtado, Melinda; Penev, Kaloyan; Hartman, Joel; Bakos, Gaspar; Bhatti, Waqas; Domsa, Istvan; de Val-Borro, Miguel
2015-12-01
The two reaction wheel K2 mission brings new challenges for the data reduction processes. We developed a reduction pipeline for extracting high precision photometry from the K2 dataset and we use this pipeline to generate light curves for the K2 Campaign 0 super-stamps and K2 Campaign 1 target pixel dataset. Key to our reduction technique is the derivation of global astrometric solutions from the target stamps from which accurate centroids are passed on for high precision photometry extraction. We also implemented the image subtraction method to reduce the K2 Campaign 0 super-stamps containing open clusters M35 and NGC2158. We extract target light curvesfor sources from a combined UCAC4 and EPIC catalogue -- this includes not only primary targets of the K2 Mission, but also other stars that happen to fall on the pixel stamps. Our astrometric solutions achieve a median residual of ~0.127". For bright stars, our best 6.5 hour precision for raw light curves is ~20 parts per million (ppm). For our detrended light curves, the best 6.5 hour precision achieved is ~15 ppm. We show that our detrended light curves have fewer systematic effects (or trends, or red-noise) than light curves produced by other groups from the same observations. We highlight the measurements of rotation curves using the K2 light curves of stars within open cluster M35 and NGC2158.
High-Precision Computation: Mathematical Physics and Dynamics
Bailey, D. H.; Barrio, R.; Borwein, J. M.
2010-04-01
At the present time, IEEE 64-bit oating-point arithmetic is suficiently accurate for most scientic applications. However, for a rapidly growing body of important scientic computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion e ort. This pa- per presents a survey of recent applications of these techniques and provides someanalysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, studies of the one structure constant, scattering amplitudes of quarks, glu- ons and bosons, nonlinear oscillator theory, experimental mathematics, evaluation of orthogonal polynomials, numerical integration of ODEs, computation of periodic orbits, studies of the splitting of separatrices, detection of strange nonchaotic at- tractors, Ising theory, quantum held theory, and discrete dynamical systems. We conclude that high-precision arithmetic facilities are now an indispensable compo- nent of a modern large-scale scientic computing environment.
High-precision camera distortion measurements with a ``calibration harp''
NASA Astrophysics Data System (ADS)
Tang, Zhongwei; Grompone von Gioi, Rafael; Monasse, Pascal; Morel, Jean-Michel
2012-10-01
This paper addresses the high precision measurement of the distortion of a digital camera from photographs. Traditionally, this distortion is measured from photographs of a flat pattern which contains aligned elements. Nevertheless, it is nearly impossible to fabricate a very flat pattern and to validate its flatness. This fact limits the attainable measurable precisions. In contrast, it is much easier to obtain physically very precise straight lines by tightly stretching good quality strings on a frame. Taking literally "plumb-line methods", we built a "calibration harp" instead of the classic flat patterns to obtain a high precision measurement tool, demonstrably reaching 2/100 pixel precisions. The harp is complemented with the algorithms computing automatically from harp photographs two different and complementary lens distortion measurements. The precision of the method is evaluated on images corrected by state-of-the-art distortion correction algorithms, and by popular software. Three applications are shown: first an objective and reliable measurement of the result of any distortion correction. Second, the harp permits to control state-of-the art global camera calibration algorithms: It permits to select the right distortion model, thus avoiding internal compensation errors inherent to these methods. Third, the method replaces manual procedures in other distortion correction methods, makes them fully automatic, and increases their reliability and precision.
A High Precision Terahertz Wave Image Reconstruction Algorithm
Guo, Qijia; Chang, Tianying; Geng, Guoshuai; Jia, Chengyan; Cui, Hong-Liang
2016-01-01
With the development of terahertz (THz) technology, the applications of this spectrum have become increasingly wide-ranging, in areas such as non-destructive testing, security applications and medical scanning, in which one of the most important methods is imaging. Unlike remote sensing applications, THz imaging features sources of array elements that are almost always supposed to be spherical wave radiators, including single antennae. As such, well-developed methodologies such as Range-Doppler Algorithm (RDA) are not directly applicable in such near-range situations. The Back Projection Algorithm (BPA) can provide products of high precision at the the cost of a high computational burden, while the Range Migration Algorithm (RMA) sacrifices the quality of images for efficiency. The Phase-shift Migration Algorithm (PMA) is a good alternative, the features of which combine both of the classical algorithms mentioned above. In this research, it is used for mechanical scanning, and is extended to array imaging for the first time. In addition, the performances of PMA are studied in detail in contrast to BPA and RMA. It is demonstrated in our simulations and experiments described herein that the algorithm can reconstruct images with high precision. PMID:27455269
Laser processing system development of large area and high precision
NASA Astrophysics Data System (ADS)
Park, Hyeongchan; Ryu, Kwanghyun; Hwang, Taesang
2013-03-01
As industry of PCB (Printed Circuit Board) and display growing, this industry requires an increasingly high-precision quality so current cutting process in industry is preferred laser machining than mechanical machining. Now, laser machining is used almost "step and repeat" method in large area, but this method has a problem such as cutting quality in the continuity of edge parts, cutting speed and low productivity. To solve these problems in large area, on-the-fly (stagescanner synchronized system) is gradually increasing. On-the-fly technology is able to process large area with high speed because of stage-scanner synchronized moving. We designed laser-based high precision system with on-the-fly. In this system, we used UV nano-second pulse laser, power controller and scanner with telecentric f-theta lens. The power controller is consisted of HWP(Half Wave Plate), thin film plate polarizer, photo diode, micro step motor and control board. Laser power is possible to monitor real-time and adjust precision power by using power controller. Using this machine, we tested cutting of large area coverlay and sheet type large area PCB by applying on-the-fly. As a result, our developed machine is possible to process large area without the problem of the continuity of edge parts and by high cutting speed than competitor about coverlay.
High-precision position-specific isotope analysis
Corso, Thomas N.; Brenna, J. Thomas
1997-01-01
Intramolecular carbon isotope distributions reflect details of the origin of organic compounds and may record the status of complex systems, such as environmental or physiological states. A strategy is reported here for high-precision determination of 13C/12C ratios at specific positions in organic compounds separated from complex mixtures. Free radical fragmentation of methyl palmitate, a test compound, is induced by an open tube furnace. Two series of peaks corresponding to bond breaking from each end of the molecule are analyzed by isotope ratio mass spectrometry and yield precisions of SD(δ-13C) < 0.4‰. Isotope labeling in the carboxyl, terminal, and methyl positions demonstrates the absence of rearrangement during activation and fragmentation. Negligible isotopic fractionation was observed as degree of fragmentation was adjusted by changing pyrolysis temperature. [1-13C]methyl palmitate with overall δ-13C = 4.06‰, yielded values of +457‰ for the carboxyl position, in agreement with expectations from the dilution, and an average of −27.95‰ for the rest of the molecule, corresponding to −27.46‰ for the olefin series. These data demonstrate the feasibility of automated high-precision position-specific analysis of carbon for molecules contained in complex mixtures. PMID:11038597
All-order approach to high-precision atomic calculation
NASA Astrophysics Data System (ADS)
Iskrenova-Tchoukova, Eugeniya
High-precision atomic calculations combined with experiments of matching accuracy provide an excellent opportunity to test our understanding of atomic structure and properties as well as the many-body atomic theories. The relativistic all-order method, which is a linearized version of the coupled-cluster singles-doubles method, has proven to yield high precision results for a variety of atomic properties. In this thesis, we study the atomic properties of neutral atoms and ions by means of the relativistic all-order method. The lifetimes and ground state static polarizabilities of a singly ionized barium atom are studied in comparison with the isoelectronic neutral cesium atom and with a singly ionized calcium atom. The lifetimes of a number of excited states in atomic potassium, rubidium, and francium are theoretically calculated and compared with the available experimental data. The magnetic dipole hyperfine constant of the 9S1/2 state in 210Fr is calculated and the result is combined with the experimental one to extract the value of the 210Fr nuclear magnetic moment. Another part of the thesis work focuses on the development and implementation of an extension of the currently used all-order singles-doubles (SD) method to include all valence triple excitations in an iterative way, all-order SD+vT approximation. Some of the ideas and results presented in Chapters 4, 5, and 6 have been published and are subject to copyright laws. These publications are cited accordingly.
A High Precision Terahertz Wave Image Reconstruction Algorithm.
Guo, Qijia; Chang, Tianying; Geng, Guoshuai; Jia, Chengyan; Cui, Hong-Liang
2016-01-01
With the development of terahertz (THz) technology, the applications of this spectrum have become increasingly wide-ranging, in areas such as non-destructive testing, security applications and medical scanning, in which one of the most important methods is imaging. Unlike remote sensing applications, THz imaging features sources of array elements that are almost always supposed to be spherical wave radiators, including single antennae. As such, well-developed methodologies such as Range-Doppler Algorithm (RDA) are not directly applicable in such near-range situations. The Back Projection Algorithm (BPA) can provide products of high precision at the the cost of a high computational burden, while the Range Migration Algorithm (RMA) sacrifices the quality of images for efficiency. The Phase-shift Migration Algorithm (PMA) is a good alternative, the features of which combine both of the classical algorithms mentioned above. In this research, it is used for mechanical scanning, and is extended to array imaging for the first time. In addition, the performances of PMA are studied in detail in contrast to BPA and RMA. It is demonstrated in our simulations and experiments described herein that the algorithm can reconstruct images with high precision. PMID:27455269
Planar AdS black holes in Lovelock gravity with a nonminimal scalar field
NASA Astrophysics Data System (ADS)
Gaete, Moisés Bravo; Hassaïne, Mokhtar
2013-11-01
In arbitrary dimension D, we consider a self-interacting scalar field nonminimally coupled with a gravity theory given by a particular Lovelock action indexed by an integer k. To be more precise, the coefficients appearing in the Lovelock expansion are fixed by requiring the theory to have a unique AdS vacuum with a fixed value of the cosmological constant. This yields to k = 1, 2,⋯, inequivalent possible gravity theories; here the case k = 1 corresponds to the standard Einstein-Hilbert Lagrangian. For each par ( D, k), we derive two classes of AdS black hole solutions with planar event horizon topology for particular values of the nonminimal coupling parameter. The first family of solutions depends on a unique constant and is valid only for k ≥ 2. In fact, its GR counterpart k = 1 reduces to the pure AdS metric with a vanishing scalar field. The second family of solutions involves two independent constants and corresponds to a stealth black hole configuration; that is a nontrivial scalar field together with a black hole metric such that both side of the Einstein equations (gravity and matter parts) vanishes identically. In this case, the standard GR case k = 1 reduces to the Schwarzschild-AdS-Tangherlini black hole metric with a trivial scalar field. We show that the two-parametric stealth solution defined in D dimension can be promoted to the uniparametric black hole solution in ( D + 1) dimension by fixing one of the two constants in term of the other and by adding a transversal coordinate. In both cases, the existence of these solutions is strongly inherent of the presence of the higher order curvature terms k ≥ 2 of the Lovelock gravity. We also establish that these solutions emerge from a stealth configuration defined on the pure AdS metric through a Kerr-Schild transformation. Finally, in the last part, we include multiple exact ( D - 1) - forms homogenously distributed and coupled to the scalar field. For a specific coupling, we obtain black hole
NASA Technical Reports Server (NTRS)
Iz, Huseyin B.
1993-01-01
A low cost lunar Satellite-to-Satellite radio tracking mission in a low-low configuration could considerably improve the existing knowledge about the lunar gravity field. The impact of various mission parameters that may contribute to the recovery of the gravity field, such as satellite altitude, satellite separation mission duration, measurement precision and sampling interval were quantified using the Jekeli-Rapp algorithm. Preliminary results indicate that the gravity field resolution up to harmonic degree 40 to 80 is feasible depending on various mission configurations. Radio tracking data from a six-month mission with a precision of 1 mm/s every 10 s and 300 km satellite separation at 150 km altitude will permit the determination of 5 deg x 5 deg mean gravity anomalies with an error of approximately 15 mgals. Consideration of other unaccounted error sources of instrumental, operational, and environmental nature may lower this resolution.
Restoration of the covariant gauge α in the initial field of gravity in de Sitter spacetime
Cheong, Lee Yen; Yan, Chew Xiao
2014-03-05
The gravitational field generated by a mass term and the initial surface through covariant retarded Green's function for linearized gravity in de Sitter spacetime was studied recently [4, 5] with the covariant gauges set to β = 2/3 and α = 5/3. In this paper we extend the work to restore the gauge parameter α in the field coming from the initial data using the method of shifting the parameter. The α terms in the initial field cancels exactly with the one coming from the source term. Consequently, the correct field configuration, with two equal mass points moving in its geodesic, one located at the North pole and another one located at the South pole, is reproduced in the whole manifold of de Sitter spacetime.
Higher-derivative gravity with non-minimally coupled Maxwell field
NASA Astrophysics Data System (ADS)
Feng, Xing-Hui; Lü, H.
2016-04-01
We construct higher-derivative gravities with a non-minimally coupled Maxwell field. The Lagrangian consists of polynomial invariants built from the Riemann tensor and the Maxwell field strength in such a way that the equations of motion are second order for both the metric and the Maxwell potential. We also generalize the construction to involve a generic non-minimally coupled p-form field strength. We then focus on one low-lying example in four dimensions and construct the exact magnetically charged black holes. We also construct exact electrically charged z=2 Lifshitz black holes. We obtain approximate dyonic black holes for the small coupling constant or small charges. We find that the thermodynamics based on the Wald formalism disagrees with that derived from the Euclidean action procedure, suggesting this may be a general situation in higher-derivative gravities with non-minimally coupled form fields. As an application in the AdS/CFT correspondence, we study the entropy/viscosity ratio for the AdS or Lifshitz planar black holes, and find that the exact ratio can be obtained without having to know the details of the solutions, even for this higher-derivative theory.
NASA Technical Reports Server (NTRS)
Mazarico, Erwan M.; Genova, Antonio; Goossens, Sander; Lemoine, Gregory; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.; Solomon, Sean C.
2014-01-01
We have analyzed three years of radio tracking data from the MESSENGER spacecraft in orbit around Mercury and determined the gravity field, planetary orientation, and ephemeris of the innermost planet. With improvements in spatial coverage, force modeling, and data weighting, we refined an earlier global gravity field both in quality and resolution, and we present here a spherical harmonic solution to degree and order 50. In this field, termed HgM005, uncertainties in low-degree coefficients are reduced by an order of magnitude relative to the earlier global field, and we obtained a preliminary value of the tidal Love number k(sub 2) of 0.451+/-0.014. We also estimated Mercury's pole position, and we obtained an obliquity value of 2.06 +/- 0.16 arcmin, in good agreement with analysis of Earth-based radar observations. From our updated rotation period (58.646146 +/- 0.000011 days) and Mercury ephemeris, we verified experimentally the planet's 3: 2 spin-orbit resonance to greater accuracy than previously possible. We present a detailed analysis of the HgM005 covariance matrix, and we describe some near-circular frozen orbits around Mercury that could be advantageous for future exploration.
NASA Astrophysics Data System (ADS)
Mazarico, Erwan; Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.; Solomon, Sean C.
2014-12-01
We have analyzed 3 years of radio tracking data from the MESSENGER spacecraft in orbit around Mercury and determined the gravity field, planetary orientation, and ephemeris of the innermost planet. With improvements in spatial coverage, force modeling, and data weighting, we refined an earlier global gravity field both in quality and resolution, and we present here a spherical harmonic solution to degree and order 50. In this field, termed HgM005, uncertainties in low-degree coefficients are reduced by an order of magnitude relative to earlier global fields, and we obtained a preliminary value of the tidal Love number k2 of 0.451 ± 0.014. We also estimated Mercury's pole position, and we obtained an obliquity value of 2.06 ± 0.16 arcmin, in good agreement with analysis of Earth-based radar observations. From our updated rotation period (58.646146 ± 0.000011 days) and Mercury ephemeris, we verified experimentally the planet's 3:2 spin-orbit resonance to greater accuracy than previously possible. We present a detailed analysis of the HgM005 covariance matrix, and we describe some near-circular frozen orbits around Mercury that could be advantageous for future exploration.
Local magnetic fields, uplift, gravity, and dilational strain changes in Southern California ( USA).
Johnston, M.J.S.
1986-01-01
Measurements of regional magnetic field near the San Andreas fault at Cajon, Palmdale and Tejon are strongly correlated with changes in gravity, areal strain, and uplift in these regions during the period 1977-1984. Because the inferred relationships between these parameters are in approximate agreement with those obtained from simple deformation models, the preferred explanation appeals to short-term strain episodes independently detected in each data set. Transfer functions from magnetic to strain, gravity, and uplift perturbations, obtained by least-square linear fits to the data, are -0.98 nT/ppm, -0.03 nT/mu Gal, and 9.1 nT/m respectively. Tectonomagnetic model calculations underestimate the observed changes and those reported previously for dam loading and volcano-magnetic observations. A less likely alternative explanation of the observed data appeals to a common source of meteorologically generated crustal or instrumental noise in the strain, gravity, magnetic, and uplift data.-from Author
Gravity waves generated by a tropical cyclone during the STEP tropical field program - A case study
NASA Technical Reports Server (NTRS)
Pfister, L.; Chan, K. R.; Bui, T. P.; Bowen, S.; Legg, M.; Gary, B.; Kelly, K.; Proffitt, M.; Starr, W.
1993-01-01
Overflights of a tropical cyclone during the Australian winter monsoon field experiment of the Stratosphere-Troposphere Exchange Project (STEP) show the presence of two mesoscale phenomena: a vertically propagating gravity wave with a horizontal wavelength of about 110 km and a feature with a horizontal scale comparable to that of the cyclone's entire cloud shield. The larger feature is fairly steady, though its physical interpretation is ambiguous. The 110-km gravity wave is transient, having maximum amplitude early in the flight and decreasing in amplitude thereafter. Its scale is comparable to that of 100-to 150-km-diameter cells of low satellite brightness temperatures within the overall cyclone cloud shield; these cells have lifetimes of 4.5 to 6 hrs. These cells correspond to regions of enhanced convection, higher cloud altitude, and upwardly displaced potential temperature surfaces. The temporal and spatial distribution of meteorological variables associated with the 110-km gravity wave can be simulated by a slowly moving transient forcing at the anvil top having an amplitude of 400-600 m, a lifetime of 4.5-6 hrs, and a size comparable to the cells of low brightness temperature.
Was Newton right? A search for non-Newtonian behavior of weak-field gravity
NASA Astrophysics Data System (ADS)
Boynton, Paul; Moore, Michael; Newman, Riley; Berg, Eric; Bonicalzi, Ricco; McKenney, Keven
2014-06-01
Empirical tests of Einstein's metric theory of gravitation, even in the non-relativistic, weak-field limit, could play an important role in judging theory-driven extensions of the current Standard Model of fundamental interactions. Guided by Galileo's work and his own experiments, Newton formulated a theory of gravity in which the force of attraction between two bodies is independent of composition and proportional to the inertia of each, thereby transparently satisfying Galileo's empirically informed conjecture regarding the Universality of Free Fall. Similarly, Einstein honored the manifest success of Newton's theory by assuring that the linearized equations of GTR matched the Newtonian formalism under "classical" conditions. Each of these steps, however, was explicitly an approximation raised to the status of principle. Perhaps, at some level, Newtonian gravity does not accurately describe the physical interaction between uncharged, unmagnetized, macroscopic bits of ordinary matter. What if Newton were wrong? Detecting any significant deviation from Newtonian behavior, no matter how small, could provide new insights and possibly reveal new physics. In the context of physics as an empirical science, for us this yet unanswered question constitutes sufficient motivation to attempt precision measurements of the kind described here. In this paper we report the current status of a project to search for violation of the Newtonian inverse square law of gravity.
NASA Astrophysics Data System (ADS)
Erol, Serdar; Serkan Isık, Mustafa; Erol, Bihter
2016-04-01
The recent Earth gravity field satellite missions data lead significant improvement in Global Geopotential Models in terms of both accuracy and resolution. However the improvement in accuracy is not the same everywhere in the Earth and therefore quantifying the level of improvement locally is necessary using the independent data. The validations of the level-3 products from the gravity field satellite missions, independently from the estimation procedures of these products, are possible using various arbitrary data sets, as such the terrestrial gravity observations, astrogeodetic vertical deflections, GPS/leveling data, the stationary sea surface topography. Quantifying the quality of the gravity field functionals via recent products has significant importance for determination of the regional geoid modeling, base on the satellite and terrestrial data fusion with an optimal algorithm, beside the statistical reporting the improvement rates depending on spatial location. In the validations, the errors and the systematic differences between the data and varying spectral content of the compared signals should be considered in order to have comparable results. In this manner this study compares the performance of Wavelet decomposition and spectral enhancement techniques in validation of the GOCE/GRACE based Earth gravity field models using GPS/leveling and terrestrial gravity data in Turkey. The terrestrial validation data are filtered using Wavelet decomposition technique and the numerical results from varying levels of decomposition are compared with the results which are derived using the spectral enhancement approach with contribution of an ultra-high resolution Earth gravity field model. The tests include the GO-DIR-R5, GO-TIM-R5, GOCO05S, EIGEN-6C4 and EGM2008 global models. The conclusion discuss the superiority and drawbacks of both concepts as well as reporting the performance of tested gravity field models with an estimate of their contribution to modeling the
Mercury's gravity field and ephemeris after 3 years of MESSENGER orbital observations
NASA Astrophysics Data System (ADS)
Genova, Antonio; Mazarico, Erwan; Goossens, Sander J.; Lemoine, Frank G.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.
2014-05-01
18 March 2014 will be the third anniversary of MESSENGER's insertion into orbit about Mercury. The initial orbit was highly eccentric and nearly polar, with a 12-h period and a periapsis at 200 km altitude and ~60°N latitude. The third-body perturbation of the Sun combined with the high eccentricity of the orbit led to a substantial evolution of the periapsis, which drifted slowly northward and reached an altitude of 500 km several times before orbit-corrections maneuvers returned the periapsis altitude to ~200 km. In March 2012, the mission orbital phase was extended for a second year, and the spacecraft transitioned to an 8-h orbit period one month later. A second extended mission started in March 2013, will last for another two years, and will eventually allow observations at very low altitudes (<100 km), starting in September 2014. One of the main mission goals is the determination of the interior structure of Mercury, enabled by a suite of instruments that includes the radio system and a laser altimeter. The X-band tracking system and NASA's Deep Space Network (DSN) were used to determine the gravity field of Mercury. The effective spatial resolution of the gravity field is strongly dependent on latitude, however, because of MESSENGER's eccentric orbit and its high apoapsis over the southern hemisphere (~15,000 km in the first year, ~10,000 km subsequently). The gravity field of the southern hemisphere remains largely unconstrained at short wavelengths, although the global long-wavelength field has been determined robustly. Furthermore, MESSENGER radio tracking data represent an excellent opportunity to improve Mercury's ephemeris. The current knowledge of the orbit of Mercury around the Sun has been mainly defined by direct ranging. Range measurements from the three Mercury flybys and orbital phase of MESSENGER provide a strong data set to measure the motion of Mercury's center of mass. The 1-m range accuracy potentially allows the recovery of the
Hořava Gravity in the Effective Field Theory formalism: From cosmology to observational constraints
NASA Astrophysics Data System (ADS)
Frusciante, Noemi; Raveri, Marco; Vernieri, Daniele; Hu, Bin; Silvestri, Alessandra
2016-09-01
We consider Hořava gravity within the framework of the effective field theory (EFT) of dark energy and modified gravity. We work out a complete mapping of the theory into the EFT language for an action including all the operators which are relevant for linear perturbations with up to sixth order spatial derivatives. We then employ an updated version of the EFTCAMB/EFTCosmoMC package to study the cosmology of the low-energy limit of Hořava gravity and place constraints on its parameters using several cosmological data sets. In particular we use cosmic microwave background (CMB) temperature-temperature and lensing power spectra by Planck 2013, WMAP low- ℓ polarization spectra, WiggleZ galaxy power spectrum, local Hubble measurements, Supernovae data from SNLS, SDSS and HST and the baryon acoustic oscillations measurements from BOSS, SDSS and 6dFGS. We get improved upper bounds, with respect to those from Big Bang Nucleosynthesis, on the deviation of the cosmological gravitational constant from the local Newtonian one. At the level of the background phenomenology, we find a relevant rescaling of the Hubble rate at all epoch, which has a strong impact on the cosmological observables; at the level of perturbations, we discuss in details all the relevant effects on the observables and find that in general the quasi-static approximation is not safe to describe the evolution of perturbations. Overall we find that the effects of the modifications induced by the low-energy Hořava gravity action are quite dramatic and current data place tight bounds on the theory parameters.
Incompressible wave motion of inhomogeneous, compressible fluids in a gravity field
NASA Astrophysics Data System (ADS)
Godin, O. A.
2012-04-01
We consider a particular class of linear and non-linear wave motions in fluids, in which pressure remains constant in each moving fluid parcel. The fluid is assumed to be inviscid, and wave motion is considered as an adiabatic thermodynamic process. An exact, analytic solution of linearized hydrodynamics equations is obtained that describes the wave motion in inhomogeneous, compressible, rotating fluids with piece-wise continuous parameters in a uniform gravity field. The solution is valid under surprisingly general assumptions about the environment and reduces to some classical wave types in appropriate limiting cases. Free waves in bounded and unbounded domains as well as excitation of wave fields by a point source are considered. Edge waves propagating along vertical and inclined rigid boundaries are found in rotating and non-rotating fluids. Allowance for three-dimensional variation of the sound speed and for arbitrary density stratification, including density discontinuities, makes the exact solution an attractive model of acoustic-gravity waves in a coupled ocean-atmosphere system. The new wave type complements classical exact solutions of linearized equations of fluid mechanics known as the Rossby, Lamb, Kelvin, and Poincaré waves, which provide much of the conceptual foundation of geophysical fluid dynamics. In addition to a wide class of exact solutions for linear waves, an exact solution of full non-linear hydrodynamics equations is found that describes a propagating wave in inhomogeneous, compressible fluids with piece-wise continuous parameters in a uniform gravity field. The fluid may have a free surface and a rigid boundary. Depending on the geometry of the problem, the solution has the meaning of either surface or edge wave. The exact solution describes a finite-amplitude wave in an otherwise quiescent fluid. Extensions to finite-amplitude waves in fluids with background currents are considered. Relation of the new exact solution for the non
High-resolution Gravity Field Models of the Moon Using GRAIL mission Data
NASA Astrophysics Data System (ADS)
Lemoine, Frank G.; Goossens, Sander; Sabaka, Terrence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Loomis, Bryant D.; Chinn, Douglas S.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.
2015-04-01
The Gravity Recovery and Interior Laboratory (GRAIL) mission was designed to map the structure of the lunar interior from crust to core and to advance the understanding of the Moon's thermal evolution by producing a high-quality, high-resolution map of the gravitational field of the Moon. GRAIL consisted of two spacecraft, with Ka-band tracking between the two satellites as the single science instrument, with the addition of Earth-based tracking using the Deep Space Network. The science mission was divided into two phases: a primary mission from March 1, 2012 to May 29, 2012, and an extended mission from August 30, 2012 to December 14, 2012. The altitude varied from 3 km to 94 km above the lunar surface during both mission phases. Both the primary and the extended mission data have been processed into global models of the lunar gravity field at NASA/GSFC using the GEODYN software up to 1080 x 1080 in spherical harmonics. In addition to the high-resolution global models, local models have also been developed. Due to varying spacecraft altitude and ground track spacing, the actual resolution of the global models varies geographically. Information beyond the current resolution is still present in the data, as indicated by relatively higher fits in the last part of the extended mission, where the satellites achieved their lowest altitude above lunar surface. Local models of the lunar gravitational field at high resolution were thus estimated to accommodate this signal. Here, we present the current status of GRAIL gravity modeling at NASA/GSFC, for both global and local models. We discuss the methods we used for the processing of the GRAIL data, and evaluate these solutions with respect to the derived power spectra, Bouguer anomalies, and fits with independent data (such as from the low-altitude phase of the Lunar Prospector mission). We also evaluate the prospects for extending the resolution of our current models
Barbero-Immirzi parameter as a scalar field: K-inflation from loop quantum gravity?
Taveras, Victor; Yunes, Nicolas
2008-09-15
We consider a loop-quantum gravity inspired modification of general relativity, where the Holst action is generalized by making the Barbero-Immirzi (BI) parameter a scalar field, whose value could be dynamically determined. The modified theory leads to a nonzero torsion tensor that corrects the field equations through quadratic first derivatives of the BI field. Such a correction is equivalent to general relativity in the presence of a scalar field with nontrivial kinetic energy. This stress energy of this field is automatically covariantly conserved by its own dynamical equations of motion, thus satisfying the strong equivalence principle. Every general relativistic solution remains a solution to the modified theory for any constant value of the BI field. For arbitrary time-varying BI fields, a study of cosmological solutions reduces the scalar-field stress energy to that of a pressureless perfect fluid in a comoving reference frame, forcing the scale-factor dynamics to be equivalent to those of a stiff equation of state. Upon ultraviolet completion, this model could provide a natural mechanism for k inflation, where the role of the inflaton is played by the BI field and inflation is driven by its nontrivial kinetic energy instead of a potential.
Barbero-Immirzi parameter as a scalar field: K-inflation from loop quantum gravity?
NASA Astrophysics Data System (ADS)
Taveras, Victor; Yunes, Nicolás
2008-09-01
We consider a loop-quantum gravity inspired modification of general relativity, where the Holst action is generalized by making the Barbero-Immirzi (BI) parameter a scalar field, whose value could be dynamically determined. The modified theory leads to a nonzero torsion tensor that corrects the field equations through quadratic first derivatives of the BI field. Such a correction is equivalent to general relativity in the presence of a scalar field with nontrivial kinetic energy. This stress energy of this field is automatically covariantly conserved by its own dynamical equations of motion, thus satisfying the strong equivalence principle. Every general relativistic solution remains a solution to the modified theory for any constant value of the BI field. For arbitrary time-varying BI fields, a study of cosmological solutions reduces the scalar-field stress energy to that of a pressureless perfect fluid in a comoving reference frame, forcing the scale-factor dynamics to be equivalent to those of a stiff equation of state. Upon ultraviolet completion, this model could provide a natural mechanism for k inflation, where the role of the inflaton is played by the BI field and inflation is driven by its nontrivial kinetic energy instead of a potential.
Gravity field of the Saturnian system from Pioneer and Voyager tracking data
Campbell, J.K.; Anderson, J.D.
1989-05-01
Doppler-tracking data and star-satellite imaging from the Voyager 1 and 2 spacecraft are used along with Pioneer 11 Doppler tracking data to study the gravity field of the Saturnian system. The present analysis has yielded improved values for the masses of Rhea, Titan, and Iapetus, and Saturn. The results are consistent with the findings of Null et al. (1981) and Nicholson and Porco (1988) for the Saturn zonal harmonic coefficients J2, J4, and J6. The ratio of the mass of the sun to the mass of the Saturnian system is found to be 3497.898 + or - 0.018 30 refs.
NASA Astrophysics Data System (ADS)
Elsaka, Basem; Raimondo, Jean-Claude; Brieden, Phillip; Reubelt, Tilo; Kusche, Jürgen; Flechtner, Frank; Iran Pour, Siavash; Sneeuw, Nico; Müller, Jürgen
2014-01-01
The goal of this contribution is to focus on improving the quality of gravity field models in the form of spherical harmonic representation via alternative configuration scenarios applied in future gravimetric satellite missions. We performed full-scale simulations of various mission scenarios within the frame work of the German joint research project "Concepts for future gravity field satellite missions" as part of the Geotechnologies Program, funded by the German Federal Ministry of Education and Research and the German Research Foundation. In contrast to most previous simulation studies including our own previous work, we extended the simulated time span from one to three consecutive months to improve the robustness of the assessed performance. New is that we performed simulations for seven dedicated satellite configurations in addition to the GRACE scenario, serving as a reference baseline. These scenarios include a "GRACE Follow-on" mission (with some modifications to the currently implemented GRACE-FO mission), and an in-line "Bender" mission, in addition to five mission scenarios that include additional cross-track and radial information. Our results clearly confirm the benefit of radial and cross-track measurement information compared to the GRACE along-track observable: the gravity fields recovered from the related alternative mission scenarios are superior in terms of error level and error isotropy. In fact, one of our main findings is that although the noise levels achievable with the particular configurations do vary between the simulated months, their order of performance remains the same. Our findings show also that the advanced pendulums provide the best performance of the investigated single formations, however an accuracy reduced by about 2-4 times in the important long-wavelength part of the spectrum (for spherical harmonic degrees ), compared to the Bender mission, can be observed. Concerning state-of-the-art mission constraints, in particular
Global and Local Gravity Field Models of the Moon Using GRAIL Primary and Extended Mission Data
NASA Technical Reports Server (NTRS)
Goossens, Sander; Lemoine, Frank G.; Sabaka, Terence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Loomis, Bryant D.; Chinn, Douglas S.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.
2015-01-01
The Gravity Recovery and Interior Laboratory (GRAIL) mission was designed to map the structure of the lunar interior from crust to core and to advance the understanding of the Moon's thermal evolution by producing a high-quality, high-resolution map of the gravitational field of the Moon. The mission consisted of two spacecraft, which were launched in September 2011 on a Discovery-class NASA mission. Ka-band tracking between the two satellites was the single science instrument, augmented by tracking from Earth using the Deep Space Network (DSN).
Refining Parameters of the XO-5 Planetary System with High-Precision Transit Photometry
NASA Astrophysics Data System (ADS)
Maciejewski, G.; Seeliger, M.; Adam, Ch.; Raetz, St.; Neuhäuser, R.
2011-03-01
Studies of transiting extrasolar planets provide unique opportunity to get to know the internal structure of those worlds. The transiting exoplanet XO-5 b was found to have an anomalously high Safronov number and surface gravity. Our aim was to refine parameters of this intriguing system and search for signs of transit timing variations. We gathered high-precision light curves for two transits of XO-5 b. Assuming three different limb darkening laws, we found the best-fitting model and redetermined parameters of the system, including planet-to-star radius ratio, impact parameter and central time of transits. Error estimates were derived by the prayer bead method and Monte Carlo simulations. Although system's parameters obtained by us were found to agree with previous studies within one sigma, the planet was found to be notable smaller with the radius of 1.03+0.06-0.05 Jupiter radii. Our results confirm the high Safronov number and surface gravity of the planet. With two new mid-transit times, the ephemeris was refined to BJDTDB=(2454485.66842±0.00028)+(4.1877537±0.000017)E. No significant transit timing variation was detected.
Determining the Ocean's Role on the Variable Gravity Field and Earth Rotation
NASA Technical Reports Server (NTRS)
Ponte, Rui M.
2000-01-01
Our three year investigation, carried out over the period 18-19 Nov 2000, focused on the study of the variability in ocean angular momentum and mass signals and their relation to the Earth's variable rotation and gravity field. This final report includes a summary description of our work and a list of related publications and presentations. One thrust of the investigation was to determine and interpret the changes in the ocean mass field, as they impact on the variable gravity field and Earth rotation. In this regard, the seasonal cycle in local vertically-integrated ocean mass was analyzed using two ocean models of different complexity: (1) the simple constant-density, coarse resolution model of Ponte; and (2) the fully stratified, eddy-resolving model of Semtner and Chervin. The dynamics and thermodynamics of the seasonal variability in ocean mass were examined in detail, as well as the methodologies to calculate those changes under different model formulations. Another thrust of the investigation was to examine signals in ocean angular momentum (OAM) in relation to Earth rotation changes. A number of efforts were undertaken in this regard. Sensitivity of the oceanic excitation to different assumptions about how the ocean is forced and how it dissipates its energy was explored.
Flight Test Performance of a High Precision Navigation Doppler Lidar
NASA Technical Reports Server (NTRS)
Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George
2009-01-01
A navigation Doppler Lidar (DL) was developed at NASA Langley Research Center (LaRC) for high precision velocity measurements from a lunar or planetary landing vehicle in support of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. A unique feature of this DL is that it has the capability to provide a precision velocity vector which can be easily separated into horizontal and vertical velocity components and high accuracy line of sight (LOS) range measurements. This dual mode of operation can provide useful information, such as vehicle orientation relative to the direction of travel, and vehicle attitude relative to the sensor footprint on the ground. System performance was evaluated in a series of helicopter flight tests over the California desert. This paper provides a description of the DL system and presents results obtained from these flight tests.
Electronics design for a high precision image stabilization system
NASA Astrophysics Data System (ADS)
Casas, A.; Roma, D.; Carmona, M.; Gómez, J. M.; Bosch, J.; López, M.; Sabater, J.; Herms, A.; Maue, T.; Nakai, E.; Volkmer, R.; Schmidt, W.
2014-07-01
A very high precision Image Stabilization System has been designed for the Solar Orbiter mission. The different components that have been designed are the Correlation Tracking Camera (CTC), Tip-Tilt controller (TTC) and the system control in order to achieve the specified requirements. For the CTC, in order to achieve the required resolution of 12 bits and reduced power consumption, we used an external ADC. For the TTC, a special focus has been dedicated to a 55 V linear regulator in a QUASI-LDO configuration and a Tip-Tilt driver in a transconductance amplifier architecture. Results show that the full system reaches an attenuation of 1/10th of a pixel at 10Hz. The TTC provides a high voltage span, enough slew-rate and the needed stability levels.
High-precision thermal and electrical characterization of thermoelectric modules
Kolodner, Paul
2014-05-15
This paper describes an apparatus for performing high-precision electrical and thermal characterization of thermoelectric modules (TEMs). The apparatus is calibrated for operation between 20 °C and 80 °C and is normally used for measurements of heat currents in the range 0–10 W. Precision thermometry based on miniature thermistor probes enables an absolute temperature accuracy of better than 0.010 °C. The use of vacuum isolation, thermal guarding, and radiation shielding, augmented by a careful accounting of stray heat leaks and uncertainties, allows the heat current through the TEM under test to be determined with a precision of a few mW. The fractional precision of all measured parameters is approximately 0.1%.
High-precision digital charge-coupled device TV system
NASA Astrophysics Data System (ADS)
Vishnevsky, Grigory I.; Ioffe, S. A.; Berezin, V. Y.; Rybakov, M. I.; Mikhaylov, A. V.; Belyaev, L. V.
1991-06-01
In certain test, measurement, and research applications of CCD TV systems, the greater accuracy than usual 8-bit frame-grabbers can provide is demanded without the system being too expensive. The paper presents the concept and features of the high-precision low-cost digital CCD TV system intended for obtaining 12-bit monochrome images of immobile or relatively slow moving objects. The increase in accuracy is achieved by the specific digitization procedure -- one column per frame, which combines the benefits of a slow A/D converter with real-time TV imaging compatibility. To reduce speed restrictions on sample- and-hold circuits, a zoomed pixel read out cycle, corresponding to the pixel to be digitized, is proposed. The system provides great flexibility in choice of integration times and readout rates by means of a programmable readout sequencer, and is easily adaptable to various user demands and CCDs types.
High-precision silicon nitride balls for bearings
NASA Astrophysics Data System (ADS)
Cundill, Robin T.
1992-04-01
Hybrid ceramic bearings are now commercially available for use in high performance applications where the properties of the ceramic balls give advantages in terms of higher operating speeds, increased stiffness, lower fraction and less heat generation. Most hybrid bearings are high precision angular contact ball bearings fitted with silicon nitride balls, which have to be finished to ISO dimensional grades 3 and 5. Ball diameter variation and deviation from the spherical form has to be less than 0.125 micrometers for Grade 5 balls and less than 0.08 micrometers for Grade 3 balls. Surface finish of silicon nitride balls is typically 0.003 - 0.010 micrometers Rq (0.002 - 0.008 micrometers Ra). At this level, the basic material microstructures is discernible which facilitates inspection for material and other faults.
Modeling of High Precision Neutron Nonelastic Cross Sections
Dietrich, F S; Anderson, J D; Bauer, R W; Grimes, S M; McNabb, D P
2007-02-05
A new method has been applied to the determination of neutron nonelastic cross sections for iron {sup 56}Fe and lead {sup 208}Pb for energies between 5 and 26 MeV. These data have estimated errors of only a few percent and do not suffer from the ambiguities encountered in earlier nonelastic data. We attempt to fit these high precision data using both a semiclassical single phase shift model (nuclear Ramsauer model) as well as a recent global optical model that well reproduces a wide body of neutron scattering observables. At the 5% uncertainty level, both models produce satisfactory fits. However, neither model gives satisfactory fits to these new precise data. We conclude that fitting precise data, i.e., data with errors of approximately 2% or less, may require a nuclear mass dependence of radii that reflects structure effects such as shell closures.
High-precision buffer circuit for suppression of regenerative oscillation
NASA Technical Reports Server (NTRS)
Tripp, John S.; Hare, David A.; Tcheng, Ping
1995-01-01
Precision analog signal conditioning electronics have been developed for wind tunnel model attitude inertial sensors. This application requires low-noise, stable, microvolt-level DC performance and a high-precision buffered output. Capacitive loading of the operational amplifier output stages due to the wind tunnel analog signal distribution facilities caused regenerative oscillation and consequent rectification bias errors. Oscillation suppression techniques commonly used in audio applications were inadequate to maintain the performance requirements for the measurement of attitude for wind tunnel models. Feedback control theory is applied to develop a suppression technique based on a known compensation (snubber) circuit, which provides superior oscillation suppression with high output isolation and preserves the low-noise low-offset performance of the signal conditioning electronics. A practical design technique is developed to select the parameters for the compensation circuit to suppress regenerative oscillation occurring when typical shielded cable loads are driven.
High Precision Assembly Line Synthesis for Molecules with Tailored Shapes
Burns, Matthew; Essafi, Stephanie; Bame, Jessica R.; Bull, Stephanie P.; Webster, Matthew P.; Balieu, Sebastien; Dale, James W.; Butts, Craig P.; Harvey, Jeremy N.; Aggarwal, Varinder K.
2014-01-01
Molecular assembly lines, where molecules undergo iterative processes involving chain elongation and functional group manipulation are hallmarks of many processes found in Nature. We have sought to emulate Nature in the development of our own molecular assembly line through iterative homologations of boronic esters. Here we report a reagent (α-lithioethyl triispopropylbenzoate) which inserts into carbon-boron bonds with exceptionally high fidelity and stereocontrol. Through repeated iteration we have converted a simple boronic ester into a complex molecule (a carbon chain with ten contiguous methyl groups) with remarkably high precision over its length, its stereochemistry and therefore its shape. Different stereoisomers were targeted and it was found that they adopted different shapes (helical/linear) according to their stereochemistry. This work should now enable scientists to rationally design and create molecules with predictable shape, which could have an impact in all areas of molecular sciences where bespoke molecules are required. PMID:25209797
High Precision Spectroscopy of CH_5^+ Using Nice-Ohvms
NASA Astrophysics Data System (ADS)
Hodges, James N.; Perry, Adam J.; McCall, Benjamin J.
2013-06-01
The elusive methonium ion, CH_5^+, is of great interest due to its highly fluxional nature. The only published high-resolution infrared spectrum remains completely unassigned to this date. The primary challenge in understanding the CH_5^+ spectrum is that traditional spectroscopic approaches rely on a molecule having only small (or even large) amplitude motions about a well-defined reference geometry, and this is not the case with CH_5^+. We are in the process of re-scanning Oka's spectrum, in the original Black Widow discharge cell, using the new technique of Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy (NICE-OHVMS). The high precision afforded by optical saturation in conjunction with a frequency comb allows transition line centers to be determined with sub-MHz accuracy and precision -- a substantial improvement over the 90 MHz precision of Oka's work. With a high-precision linelist in hand, we plan to search for four line combination differences to directly determine the spacings between rotational energy levels. Such a search is currently infeasible due to the large number of false positives resulting from the relatively low precision and high spectral density of Oka's spectrum. The resulting combination differences, in conjunction with state-of-the-art theoretical calculations from Tucker Carrington, may provide the first insight into the rotational structure of this unique molecular system. E. T. White, J. Tang, T. Oka, Science (1999) 284, 135--137. B. M. Siller, et al. Opt. Express (2011), 19, 24822--24827. K. N. Crabtree, et al. Chem. Phys. Lett. (2012), 551, 1--6. X. Wang, T. Carrington, J. Chem. Phys., (2008), 129, 234102.
High-Precision Timing of Several Millisecond Pulsars
NASA Astrophysics Data System (ADS)
Ferdman, R. D.; Stairs, I. H.; Backer, D. C.; Ramachandran, R.; Demorest, P.; Nice, D. J.; Lyne, A. G.; Kramer, M.; Lorimer, D.; McLaughlin, M.; Manchester, D.; Camilo, F.; D'Amico, N.; Possenti, A.; Burgay, M.; Joshi, B. C.; Freire, P. C.
2004-12-01
The highest precision pulsar timing is achieved by reproducing as accurately as possible the pulse profile as emitted by the pulsar, in high signal-to-noise observations. The best profile reconstruction can be accomplished with several-bit voltage sampling and coherent removal of the dispersion suffered by pulsar signals as they traverse the interstellar medium. The Arecibo Signal Processor (ASP) and its counterpart the Green Bank Astronomical Signal Processor (GASP) are flexible, state-of-the-art wide-bandwidth observing systems, built primarily for high-precision long-term timing of millisecond and binary pulsars. ASP and GASP are in use at the 300-m Arecibo telescope in Puerto Rico and the 100-m Green Bank Telescope in Green Bank, West Virginia, respectively, taking advantage of the enormous sensitivities of these telescopes. These instruments result in high-precision science through 4 and 8-bit sampling and perform coherent dedispersion on the incoming data stream in real or near-real time. This is done using a network of personal computers, over an observing bandwidth of 64 to 128 MHz, in each of two polarizations. We present preliminary results of timing and polarimetric observations with ASP/GASP for several pulsars, including the recently-discovered relativistic double-pulsar binary J0737-3039. These data are compared to simultaneous observations with other pulsar instruments, such as the new "spigot card" spectrometer on the GBT and the Princeton Mark IV instrument at Arecibo, the precursor timing system to ASP. We also briefly discuss several upcoming observations with ASP/GASP.
Shang, Peng; Zhou, Xianlong; Ashforth, Elizabeth; Zhuo, Ying; Chen, Difei; Ren, Biao; Liu, Zhiheng; Zhang, Lixin
2011-01-01
Background Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to simulate an altered gravity environment, as in space. In this study, using Streptomyces avermitilis as the test organism, we investigate whether changes in magnetic field and altered gravity induce changes in morphology and secondary metabolism. We find that a strong magnetic field (12T) inhibit the morphological development of S. avermitilis in solid culture, and increase the production of secondary metabolites. Methodology/Principal Findings S. avermitilis on solid medium was levitated at 0 g*, 1 g* and 2 g* in an altered gravity environment simulated by diamagnetic levitation and under a strong magnetic field, denoted by the asterix. The morphology was obtained by electromicroscopy. The production of the secondary metabolite, avermectin, was determined by OD245 nm. The results showed that diamagnetic levitation could induce a physiological response in S. avermitilis. The difference between 1 g* and the control group grown without the strong magnetic field (1 g), showed that the magnetic field was a more dominant factor influencing changes in morphology and secondary metabolite production, than altered gravity. Conclusion/Significance We have discovered that magnetic field, rather than altered gravity, is the dominant factor in altered gravity simulated by diamagnetic levitation, therefore care should to be taken in the interpretation of results when using diamagnetic levitation as a technique to simulate altered gravity. Hence, these results are significant, and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena. PMID:22039402
Gravity field models from kinematic orbits of CHAMP, GRACE and GOCE satellites
NASA Astrophysics Data System (ADS)
Bezděk, Aleš; Sebera, Josef; Klokočník, Jaroslav; Kostelecký, Jan
2014-02-01
The aim of our work is to generate Earth's gravity field models from GPS positions of low Earth orbiters. Our inversion method is based on Newton's second law, which relates the observed acceleration of the satellite with forces acting on it. The observed acceleration is obtained as numerical second derivative of kinematic positions. Observation equations are formulated using the gradient of the spherical harmonic expansion of the geopotential. Other forces are either modelled (lunisolar perturbations, tides) or provided by onboard measurements (nongravitational perturbations). From this linear regression model the geopotential harmonic coefficients are obtained. To this basic scheme of the acceleration approach we added some original elements, which may be useful in other inversion techniques as well. We tried to develop simple, straightforward and still statistically correct model of observations. (i) The model is linear in the harmonic coefficients, no a priori gravity field model is needed, no regularization is applied. (ii) We use the generalized least squares to successfully mitigate the strong amplification of noise due to numerical second derivative. (iii) The number of other fitted parameters is very small, in fact we use only daily biases, thus we can monitor their behaviour. (iv) GPS positions have correlated errors. The sample autocorrelation function and especially the partial autocorrelation function indicate suitability of an autoregressive model to represent the correlation structure. The decorrelation of residuals improved the accuracy of harmonic coefficients by a factor of 2-3. (v) We found it better to compute separate solutions in the three local reference frame directions than to compute them together at the same time; having obtained separate solutions for along-track, cross-track and radial components, we combine them using the normal matrices. Relative contribution of the along-track component to the combined solution is 50 percent on
Global gravity field models from the GPS positions of CHAMP, GRACE and GOCE satellites
NASA Astrophysics Data System (ADS)
Bezděk, A.; Sebera, J.; Klokočník, J.; Kostelecký, J.
2012-04-01
The aim of our work is to generate Earth's gravity field models from the GPS positions of low Earth orbiters. We will present our inversion method and numerical results based on the real-world data of CHAMP, GRACE and GOCE satellites. The presented inversion method is based on Newton's second law of motion, which relates the observed acceleration of the satellite with the forces acting on it. The vector of the observed acceleration is obtained through a numerical second-derivative filter applied to the time series of the kinematic positions. Forces other than those due to the geopotential are either modelled (lunisolar perturbations, tides) or provided by the onboard measurements (nongravitational perturbations). Then the observation equations are formulated using the gradient of the spherical harmonic expansion of the geopotential. From this linear system the harmonic coefficients are directly obtained. We do not use any a priori gravity field model. Although the basic scheme of the acceleration approach is straightforward, the implementation details play a crucial role in obtaining reasonable results. The numerical derivative of noisy data (here the GPS positions) strongly amplifies the high frequency noise and creates autocorrelation in the observation errors. We successfully solve both of these problems by using the generalized least squares method, which defines a linear transformation of the observation equations. In the transformed variables the errors become uncorrelated, so the ordinary least squares estimation may be used to find the regression parameters with correct estimates of their uncertainties. The digital filter of the second derivative is an approximation to the analytical operation. We will show how different the results might be depending on the particular choice of the parameters defining the filter. Another problem is the correlation of the errors in the GPS positions. Here we use the tools from time series analysis. The systematic behaviour
Impact of geophysical model error for recovering temporal gravity field model
NASA Astrophysics Data System (ADS)
Zhou, Hao; Luo, Zhicai; Wu, Yihao; Li, Qiong; Xu, Chuang
2016-07-01
The impact of geophysical model error on recovered temporal gravity field models with both real and simulated GRACE observations is assessed in this paper. With real GRACE observations, we build four temporal gravity field models, i.e., HUST08a, HUST11a, HUST04 and HUST05. HUST08a and HUST11a are derived from different ocean tide models (EOT08a and EOT11a), while HUST04 and HUST05 are derived from different non-tidal models (AOD RL04 and AOD RL05). The statistical result shows that the discrepancies of the annual mass variability amplitudes in six river basins between HUST08a and HUST11a models, HUST04 and HUST05 models are all smaller than 1 cm, which demonstrates that geophysical model error slightly affects the current GRACE solutions. The impact of geophysical model error for future missions with more accurate satellite ranging is also assessed by simulation. The simulation results indicate that for current mission with range rate accuracy of 2.5 × 10- 7 m/s, observation error is the main reason for stripe error. However, when the range rate accuracy improves to 5.0 × 10- 8 m/s in the future mission, geophysical model error will be the main source for stripe error, which will limit the accuracy and spatial resolution of temporal gravity model. Therefore, observation error should be the primary error source taken into account at current range rate accuracy level, while more attention should be paid to improving the accuracy of background geophysical models for the future mission.
NASA Astrophysics Data System (ADS)
Fašková, Z.; Macák, M.; Čunderlík, R.; Mikula, K.
2012-04-01
The paper discusses a numerical solution of the geodetic boundary value problem (GBVP) by the finite volume method (FVM). The FVM is a numerical method where numerical flux is conserved from one discretization cell to its neighbour, so it's very appropriate for solving GBVP with the Neumann and the Dirichlet BCs. Our numerical scheme is developed for 3D computational domain above an ellipsoid. It is shown that a refinement of the discretization in height's direction leads to more precise numerical results. In order to achieve high-resolution numerical results, parallel implementations of algorithms using the MPI procedures were developed and computations on parallel computers were successfully performed. This basis includes the splitting of all arrays in meridian's direction, usage of an implementation of the Bi-CGSTAB non-stationary iterative solver instead of the standard SOR and an optimization of communications on parallel computers with the NUMA architecture. This gives us higher speed up in comparison to standard approaches and enables us to develop an efficient tool for high-resolution global or regional gravity field modelling in huge areas. Numerical experiments present global modelling with the resolution comparable with EGM2008 and detailed regional modelling in the Pacific Ocean with the resolution 2x2 arc min. Input gravity disturbances are generated from the DTU10-GRAV gravity field model and the disturbing potential is computed from the GOCE_DIR2 satellite geopotential model up to degree 240. Finally, the obtained disturbing potential is used to evaluate the geopotential on the DTU10 mean sea surface and the achieved mean dynamic topography is compared with the ECCO oceanographic model.
The Determination of Titan Gravity Field from Doppler Tracking of the Cassini Spacecraft
NASA Technical Reports Server (NTRS)
Iess, L.; Armstrong, J. W.; Aamar, S. W.; DiBenedetto, M.; Graziani, A.; Mackenzie, R.; Racioppa, P.; Rappaport, N.; Tortora, P.
2007-01-01
In its tour of the Saturnian system, the spacecraft Cassini is carrying out measurements of the gravity field of Titan, whose knowledge is crucial for constraining the internal structure of the satellite. In the five flybys devoted to gravity science, the spacecraft is tracked in X (8.4 GHz) and Ka band (32.5 GHz) from the antennas of NASA's Deep Space Network. The use of a dual frequency downlink is used to mitigate the effects of interplanetary plasma, the largest noise source affecting Doppler measurements. Variations in the wet path delay are effectively compensated by means of advanced water vapor radiometers placed close to the ground antennas. The first three flybys occurred on February 27, 2006, December 28, 2006, and June 29, 2007. Two additional flybys are planned in July 2008 and May 2010. This paper presents the estimation of the mass and quadrupole field of Titan from the first two flybys, carried out by the Cassini Radio Science Team using a short arc orbit determination. The data from the two flybys are first independently fit using a dynamical model of the spacecraft and the bodies of the Saturnian system, and then combined in a multi-arc solution. Under the assumption that the higher degree harmonics are negligible, the estimated values of the gravity parameters from the combined, multi-arc solution are GM = 8978.1337 +/- 0.0025 km(exp 3) / s(exp 2), J (sub 2) = (2.7221 +/- 0.0185) 10 (exp -5) and C (sub 22) = (1.1159 +/- 0.0040) 10 (exp -5) The excellent agreement (within 1.7 sigma) of the results from the two flybys further increases the confidence in the solution and provides an a posteriori validation of the dynamical model.