Science.gov

Sample records for high-pressure polarized 3he

  1. A high-pressure polarized 3He gas target for nuclear-physics experiments using a polarized photon beam

    NASA Astrophysics Data System (ADS)

    Ye, Q.; Laskaris, G.; Chen, W.; Gao, H.; Zheng, W.; Zong, X.; Averett, T.; Cates, G. D.; Tobias, W. A.

    2010-04-01

    Following the first experiment on three-body photodisintegration of polarized 3He utilizing circularly polarized photons from High-Intensity Gamma Source (HI γ S) at Duke Free Electron Laser Laboratory (DFELL), a new high-pressure polarized 3He target cell made of pyrex glass coated with a thin layer of sol-gel doped with aluminum nitrate nonahydrate has been built in order to reduce the photon beam-induced background. The target is based on the technique of spin exchange optical pumping of hybrid rubidium and potassium and the highest polarization achieved is ˜ 62% determined from both NMR-AFP and EPR polarimetries. The phenomenological parameter that reflects the additional unknown spin relaxation processes, X , is estimated to be ˜ 0.10 and the performance of the target is in good agreement with theoretical predictions. We also present beam test results from this new target cell and the comparison with the GE180 3He target cell used previously at HI γ S. This is the first time that the sol-gel coating technique has been used in a polarized 3He target for nuclear-physics experiments.

  2. Neutron polarizers based on polarized ^3He

    NASA Astrophysics Data System (ADS)

    Gentile, T. R.; Jones, G. L.; Thompson, A. K.; Fei, X.; Keith, C. D.; Rich, D.; Snow, W. M.; Penttila, S.

    1997-10-01

    Research is underway at NIST, Indiana Univ., and LANL to develop neutron polarizers and analyzers based on polarized ^3He. Such devices, which rely on the strong spin dependence of the neutron capture cross section by polarized ^3He, have applications in weak interaction physics and materials science. In addition, the technology for polarized ^3He production is directly applicable to polarized gas MRI of lungs, and polarized targets. Our program, which includes both the spin-exchange and metastability-exchange optical pumping methods, will be reviewed. Spin-exchange has been used to analyze a polarized cold neutron beam at NIST, and also for lung imaging in collaboration with the Univ. of Pennsylvania. In the metastable method, the ^3He is polarized at low pressure, and must be substantially compressed. A piston compressor has been designed for this goal at Indiana Univ. and is under construction. At NIST we have compressed polarized gas using an apparatus that is based on a modified commercial diaphragm pump.

  3. High-pressure /sup 3/He gas scintillation neutron spectrometer

    SciTech Connect

    Derzon, M.S.; Slaughter, D.R.; Prussin, S.G.

    1985-10-01

    A high-pressure, /sup 3/He-Xe gas scintillation spectrometer has been developed for neutron spectroscopy on D-D fusion plasmas. The spectrometer exhibits an energy resolution of (121 +- 20 keV) keV (FWHM) at 2.5 MeV and an efficiency of (1.9 +- 0.4) x 10/sup -3/ (n/cm/sup 2/)/sup -1/. The contribution to the resolution (FWHM) from counting statistics is only (22 +- 3 keV) and the remainder is due predominantly to the variation of light collection efficiency with location of neutron events within the active volume of the detector.

  4. Neutron Polarizers Based on Polarized 3He

    SciTech Connect

    William M. Snow

    2005-05-01

    The goal of this work, which is a collaborative effort between Indiana University, NIST, and Hamilton College, is to extend the technique of polarized neutron scattering into new domains by the development and application of polarized 3He-based neutron spin filters. After the IPNS experiment which measured Zeeman sp[litting in surface scattered neutrons using a polarized 3He cell as a polarization analyzer transporterd by car from Bloomington to Chicago, the Indiana work focused on technical developments to improve the 3He polarization of the Indiana compression system. The compression system was rebuilt with a new valve system which allows gas trapped in the dead volume of the compressors at the end of the piston stroke to be exhausted and conducted back to the optical pumping cell where it can be repolarized. We also incorporated a new intermediate storage volume made at NIST from 1720 glass which will reduce polarization losses between the compressors. Furthermore, we improved the stability of the 1083 nm laser by cooling the LMA rod. We achieved 60% 3he polarization in the optical pumping cell and 87% preservation of the polarization during compression. In parallel we built a magnetically-shielded transport solenoid for use on neutron scattering instruments such as POSY which achieves a fractional field uniformity of better than 10-3 per cm. The field was mapped using an automated 3D field mapping system for in-situ measurement of magnetic field gradients Diluted magnetic semiconductors offer many exciting opportunities for investigation of spintronic effects in solids and are certain to be one of the most active areas of condensed matter physics over then next several years. These materials can act as efficient spin injectors for devices that make use of spin-dependent transport phenomena. We just (late July 2002) finished a neutron reflectivity experiment at NIST on a GaMnAs trilayer film. This material is a ferromagnetic semiconductor which is of interest

  5. DNP for polarizing liquid {sup 3}He

    SciTech Connect

    Uemtasu, H.; Iwata, T.; Kato, S.; Michigami, T.; Ohizumi, S.; Shishido, T.; Tanaka, A.; Toyama, K.; Tajima, Y.; Yoshida, H. Y.; Kuriyama, N.

    2008-02-06

    Using DNP with zeolite powders and TEMPO, we have developed a method to enhance polarization of liquid {sup 3}He. At magnetic field of 2.5 T and a temperature of around 1.5 K, we have obatined polarization enhancement of liquid {sup 3}He, 2.34 and -1.59 for positive and negative enhancements, respectively.

  6. Development of polarized 3He ion source

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Takahashi, Y.; Shimoda, T.; Yasui, S.; Yosoi, M.; Takahisa, K.; Shimakura, N.

    2007-02-01

    A long history on the polarized 3He ion source developed at RCNP is presented. We started with an "OPPIS" (Optical Pumping Polarized Ion Source) and later found the fundamental difficulties in the OPPIS. To overcome them an "EPPIS" (Electron Pumping Polarized Ion Source) was proposed and its validity was experimentally proven. However, a serious technical disadvantage was also found in the EPPIS. To avoid this disadvantage we proposed a new concept, "SEPIS" (Spin Exchange Polarized Ion Source), which uses an enhanced spin-exchange cross section theoretically expected at low 3He+ incident energies for the 3He+ + Rb system. Next, we describe the present status of the SEPIS development; construction of a bench test device allowing the measurements of not only the spin-exchange cross sections σse but also the electron capture cross sections σec for the 3He+ + Rb system. The latest experimental data on σec are presented and compared with other previous experimental data and the theoretical calculations. A design study of the SEPIS for practical use in nuclear (cyclotron) and particle physics (synchrotron) is shortly mentioned. Finally, we mention possibility to polarize ions heavier than 3He as an application of SEPIS. The theoretical calculation showed that σse comparable to that for the 3He+ + Rb is expected for the Li2+ + Rb system, which suggests that the SEPIS will hopefully be a general tool to polarize any heavy ions.

  7. Polarization of3He and3He-4He mixtures with the castaing-nozieres method

    NASA Astrophysics Data System (ADS)

    van Woerkens, C. M. C. M.; Remeijer, P.; Steel, S. C.; Jochemsen, R.; Frossati, G.

    1996-01-01

    We describe experiments employing a strongly improved technique to prepare highly polarized3He and3He-4He mixtures. The polarization is obtained with the rapid melting method. A novel design cell using Vespel SP-1 (a sintered form of polyimide) can reach relative volume changes of 17%, which is required to decompress a completely solid3He-4He mixture to a completely liquid state at 23 bar.

  8. Safety analysis of high pressure 3He-filled micro-channels for thermal neutron detection.

    SciTech Connect

    Ferko, Scott M.; Galambos, Paul C.; Derzon, Mark Steven; Renzi, Ronald F.

    2008-11-01

    This document is a safety analysis of a novel neutron detection technology developed by Sandia National Laboratories. This technology is comprised of devices with tiny channels containing high pressure {sup 3}He. These devices are further integrated into large scale neutron sensors. Modeling and preliminary device testing indicates that the time required to detect the presence of special nuclear materials may be reduced under optimal conditions by several orders of magnitude using this approach. Also, these devices make efficient use of our {sup 3}He supply by making individual devices more efficient and/or extending the our limited {sup 3}He supply. The safety of these high pressure devices has been a primary concern. We address these safety concerns for a flat panel configuration intended for thermal neutron detection. Ballistic impact tests using 3 g projectiles were performed on devices made from FR4, Silicon, and Parmax materials. In addition to impact testing, operational limits were determined by pressurizing the devices either to failure or until they unacceptably leaked. We found that (1) sympathetic or parasitic failure does not occur in pressurized FR4 devices (2) the Si devices exhibited benign brittle failure (sympathetic failure under pressure was not tested) and (3) the Parmax devices failed unacceptably. FR4 devices were filled to pressures up to 4000 + 100 psig, and the impacts were captured using a high speed camera. The brittle Si devices shattered, but were completely contained when wrapped in thin tape, while the ductile FR4 devices deformed only. Even at 4000 psi the energy density of the compressed gas appears to be insignificant compared to the impact caused by the incoming projectile. In conclusion, the current FR4 device design pressurized up to 4000 psi does not show evidence of sympathetic failure, and these devices are intrinsically safe.

  9. Development of a Polarized 3He Ion Source for RHIC

    SciTech Connect

    Milner, Richard G.

    2013-01-15

    The goal of the project was to design and construct a source of polarized 3He atoms for injection into EBIS. This is the initial step in producing polarized 3He beams in RHIC in collaboration with physicists from Columbia University and Brookhaven National Laboratory. These beams can be used to probe the spin structure of the neutron in the existing RHIC complex as well as to measure precisely the Bjorken Sum Rule at a future eRHIC electron-ion collider.

  10. Dressed spin of polarized 3He in a cell

    NASA Astrophysics Data System (ADS)

    Chu, P.-H.; Esler, A. M.; Peng, J. C.; Beck, D. H.; Chandler, D. E.; Clayton, S.; Hu, B.-Z.; Ngan, S. Y.; Sham, C. H.; So, L. H.; Williamson, S.; Yoder, J.

    2011-08-01

    We report a measurement of the modification of the effective precession frequency of polarized 3He atoms in response to a dressing field in a room-temperature cell. The 3He atoms were polarized using the metastability spin-exchange method. An oscillating dressing field was then applied perpendicular to the constant magnetic field. Modification of the 3He effective precession frequency was observed over a broad range of the amplitude and frequency of the dressing field. The observed effects are compared with calculations based on quantum optics formalism.

  11. Dressed spin of polarized {sup 3}He in a cell

    SciTech Connect

    Chu, P.-H.; Esler, A. M.; Peng, J. C.; Beck, D. H.; Chandler, D. E.; Clayton, S.; Williamson, S.; Yoder, J.; Hu, B.-Z.; Ngan, S. Y.; Sham, C. H.; So, L. H.

    2011-08-15

    We report a measurement of the modification of the effective precession frequency of polarized {sup 3}He atoms in response to a dressing field in a room-temperature cell. The {sup 3}He atoms were polarized using the metastability spin-exchange method. An oscillating dressing field was then applied perpendicular to the constant magnetic field. Modification of the {sup 3}He effective precession frequency was observed over a broad range of the amplitude and frequency of the dressing field. The observed effects are compared with calculations based on quantum optics formalism.

  12. Recent Advances of Polarized 3He Target at Jefferson Lab

    SciTech Connect

    Yi Qiang

    2011-10-01

    Polarized {sup 3}He target has been widely used in nuclear and particle experiments to study the neutron structure in the spin degree of freedom, as most of the {sup 3}He spin is carried by the unpaired neutron. Spin-Exchange Optical Pumping (SEOP) process is used in Jefferson Lab Hall A to polarize its {sup 3}He target. Through developments in recent years, both the performance and corresponding polarimetry of such a target were greatly improved. Several experiments recently carried out in Hall A benefited remarkably from this target for the record highest figure of merit.

  13. Polarized 3He Spin Filters for Slow Neutron Physics

    PubMed Central

    Gentile, T. R.; Chen, W. C.; Jones, G. L.; Babcock, E.; Walker, T. G.

    2005-01-01

    Polarized 3He spin filters are needed for a variety of experiments with slow neutrons. Their demonstrated utility for highly accurate determination of neutron polarization are critical to the next generation of betadecay correlation coefficient measurements. In addition, they are broadband devices that can polarize large area and high divergence neutron beams with little gamma-ray background, and allow for an additional spin-flip for systematic tests. These attributes are relevant to all neutron sources, but are particularly well-matched to time of flight analysis at spallation sources. There are several issues in the practical use of 3He spin filters for slow neutron physics. Besides the essential goal of maximizing the 3He polarization, we also seek to decrease the constraints on cell lifetimes and magnetic field homogeneity. In addition, cells with highly uniform gas thickness are required to produce the spatially uniform neutron polarization needed for beta-decay correlation coefficient experiments. We are currently employing spin-exchange (SE) and metastability-exchange (ME) optical pumping to polarize 3He, but will focus on SE. We will discuss the recent demonstration of 75 % 3He polarization, temperature-dependent relaxation mechanism of unknown origin, cell development, spectrally narrowed lasers, and hybrid spin-exchange optical pumping. PMID:27308140

  14. Polar Phase of Superfluid (3)He in Anisotropic Aerogel.

    PubMed

    Dmitriev, V V; Senin, A A; Soldatov, A A; Yudin, A N

    2015-10-16

    We report the first observation of the polar phase of superfluid (3)He. This phase appears in (3)He confined in a new type of aerogel with a nearly parallel arrangement of strands which play the role of ordered impurities. Our experiments qualitatively agree with theoretical predictions and suggest that in other systems with unconventional Cooper pairing (e.g., in unconventional superconductors) similar phenomena may be found in the presence of anisotropic impurities. PMID:26550884

  15. Progress in Polarized 3He Ion Source at RCNP

    SciTech Connect

    Tanaka, M.; Takahashi, Y.; Shimoda, T.; Yasui, S.; Yosoi, M.; Takahisa, K.; Shimakura, N.; Plis, Yu. A.; Donets, E. D.

    2007-06-13

    A long history on the polarized 3He ion source developed at RCNP is presented. We started with an 'OPPIS' (Optical Pumping Polarized Ion Source) and later found the fundamental difficulties in the OPPIS. To overcome them an 'EPPIS' (Electron Pumping Polarized Ion Source) was proposed and its validity was experimentally proven. However, a serious technical disadvantage was also found in the EPPIS. To avoid this disadvantage we proposed a new concept, 'SEPIS' (Spin Exchange Polarized Ion Source), which uses an enhanced spin-exchange cross section theoretically expected at low 3He+ incident energies in the 3He+ + Rb system. Next, we describe the present status of the SEPIS development: construction of a bench test device allowing the measurements of not only the spin-exchange cross sections {sigma}se but also the electron capture cross sections {sigma}ec for the 3He+ + Rb system. The latest experimental data on {sigma}ec are presented and compared with other previous experimental data and the theoretical calculations.Finally, a design study of the SEPIS for practical use in nuclear (cyclotron) and particle physics (synchrotron) is shortly mentioned.

  16. Thermal Conductivity of Spin-Polarized Liquid {sup 3}He

    SciTech Connect

    Sawkey, D.; Puech, L.; Wolf, P.E.

    2006-06-02

    We present the first measurements of the thermal conductivity of spin-polarized normal liquid {sup 3}He. Using the rapid melting technique to produce nuclear polarizations up to 0.7, and a vibrating wire both as a heater and a thermometer, we show that, unlike the viscosity, the conductivity increases much less than predicted for s-wave scattering. We suggest that this might be due to a small probability for head-on collisions between quasiparticles.

  17. Noise Studies of Polarimetry Systems for Polarized 3 He Targets

    NASA Astrophysics Data System (ADS)

    Katugampola, Sumudu K.; Matyas, Daniel J.; Nelyubin, Vladimir; Wang, Yunxiao; Cates, Gordon D.

    2015-04-01

    The NMR technique of adiabatic fast passage (AFP) plays an important role in 3 He targets polarized using spin-exchange optical pumping. Since AFP signals before amplification are generally small, identifying these signals amidst noise caused by external electromagnetic interference and micro-phonics can be challenging. When using thermally polarized water samples for absolute calibration of AFP signals, electromagnetic and micro-phonic noise can easily dominate. Although both types of interference have often been cited as the predominant sources of noise during AFP, few studies of these effects have been done under the conditions that are typical for a polarized 3 He target. This talk will describe studies of electromagnetic and micro-phonic noise using a small-scale prototype NMR system similar to those we use to study polarized 3 He targets. We will describe the effect of using aluminum metal shielding and other methods to minimize noise. We are using these studies to inform the design of a full-scale set up that will be used to test next-generation targets for use at Jefferson Lab, and measure atomic parameters relevant to polarimetry.

  18. Studies of 3He polarization losses during NMR and EPR measurment and Polarized 3He target cell lifetime

    NASA Astrophysics Data System (ADS)

    An, Peibo

    2014-09-01

    The 3He target cell polarized by spin-exchange optical pumping(SEOP) is used as a neutron substitute to study the inner structure of the neutron. In our lab, nuclear-magnetic-resonance(NMR) is used to measure the relative polarization and electron-paramagnetic-resonance(EPR) is used to measure the spin exchange EPR frequency shift parameter of potassium and rubidium in our target cell presented in magnetic fields. The alkali in the cell is used to facilitate the polarization of 3He. The first part of my work presents the study of the polarization losses of the cell during both NMR and EPR. With the help of improved RF coils, we keep the background noise received by pickup coils reasonably low, but three other kinds of losses are inevitable: losses during Adiabatic Fast Passage (AFP) sweep, losses due to flux change caused by different cell orientation with respect to RF fields and physical losses. Fortunately there is only flux change in NMR measurements. The second part of my work presents the study of cell lifetime improvement. The polarization decreases in a process called relaxation exponentially. The lifetime of a cell is how long it can keep its polarization. The typical lifetime of cells produced in our lab is about 22 hours. With a newly designed vacuum system. The 3He target cell polarized by spin-exchange optical pumping(SEOP) is used as a neutron substitute to study the inner structure of the neutron. In our lab, nuclear-magnetic-resonance(NMR) is used to measure the relative polarization and electron-paramagnetic-resonance(EPR) is used to measure the spin exchange EPR frequency shift parameter of potassium and rubidium in our target cell presented in magnetic fields. The alkali in the cell is used to facilitate the polarization of 3He. The first part of my work presents the study of the polarization losses of the cell during both NMR and EPR. With the help of improved RF coils, we keep the background noise received by pickup coils reasonably low, but

  19. Polarimetries for the Polarized 3 He Target at JLab

    NASA Astrophysics Data System (ADS)

    Ton, Nguyen; Jefferson Lab Polarized 3 He Target Collaboration

    2015-04-01

    At Jefferson Lab, a Polarized 3 He Target has been used as an effective polarized neutron target for studying nucleon spin structure. For the 12 GeV program at JLab, the first stage upgrade of the target aim to increase luminosity by a factor of 2 (to luminosity ~ 2 ×1036 cm-2s-1) while keep maximum in-beam polarization at 60 % with 30 μA beam current and reach a systematic uncertainty of polarimetry below 3 %. During the 6 GeV era, the target polarization was measured by two polarimetries: adiabatic fast passage-nuclear magnetic resonance (AFP-NMR) and electron paramagnetic resonance (EPR). With the upgrade, a new polarimetry, Pulse-NMR, is being studied in the lab for the up-coming metal coated target. In this talk, we will discuss the detail study of AFP-NMR, EPR, Pulsed-NMR measurements and their corresponding uncertainties.

  20. Polarized {sup 3}He gas compression system using metastability-exchange optical pumping

    SciTech Connect

    Hussey, D.S.; Rich, D.R.; Belov, A.S.; Tong, X.; Yang, H.; Bailey, C.; Keith, C.D.; Hartfield, J.; Hall, G.D.R.; Black, T.C.; Snow, W.M.; Gentile, T.R.; Chen, W.C.; Jones, G.L.; Wildman, E.

    2005-05-15

    Dense samples (10-100 bar cm) of nuclear spin polarized {sup 3}He are utilized in high energy physics, neutron scattering, atomic physics, and magnetic resonance imaging. Metastability exchange optical pumping can rapidly produce high {sup 3}He polarizations ({approx_equal}80%) at low pressures (few mbar). We describe a polarized {sup 3}He gas compressor system which accepts 0.26 bar l h{sup -1} of {sup 3}He gas polarized to 70% by a 4 W neodymium doped lanthanum magnesium hexaluminate (Nd:LMA) laser and compresses it into a 5 bar cm target with final polarization of 55%. The spin relaxation rates of the system's components have been measured using nuclear magnetic resonance and a model of the {sup 3}He polarization loss based on the measured relaxation rates and the gas flow is in agreement with a {sup 3}He polarization measurement using neutron transmission.

  1. Results on Double-polarization Asymmetries in Quasielastic Scattering from Polarized 3He

    NASA Astrophysics Data System (ADS)

    Sulkosky, Vincent A.

    2016-03-01

    The 3He nucleus has become extremely important in the investigation of the neutron's spin structure. When polarized, 3He acts as an effective polarized neutron target and hence facilitates our understanding of the neutron's internal structure. However, to be used in this manner, our understanding of the internal structure of 3He is of extreme importance. As the precision of experiments has improved, the extraction of polarized neutron information from 3He leads to an ever larger share of the systematic uncertainty for these experiments. In these proceedings, I present a precise measurement of beam-target asymmetries in the {}^3overrightarrow {He} (e,e'd) and {}^3overrightarrow {He} (e,e'p) reactions. The former process is a uniquely sensitive probe of hadron dynamics in 3He and the structure of the underlying electromagnetic currents. The measurements have been performed around the quasi-elastic peak at Q2 = 0.25 (GeV/c)2 and 0.35 (GeV/c)2 for recoil momenta up to 270 MeV/c. The experimental apparatus, analysis and results were presented together with a comparison to state-of-the art Faddeev calculations.

  2. Polarization of 3He by Spin Exchange with Optically Pumped Rb and K Vapors

    NASA Astrophysics Data System (ADS)

    Ben-Amar Baranga, A.; Appelt, S.; Romalis, M. V.; Erickson, C. J.; Young, A. R.; Cates, G. D.; Happer, W.

    1998-03-01

    We report on extensive experimental measurements of the key rates that determine the efficiency for polarizing the nuclei of 3He by spin exchange with optically pumped Rb vapor. In agreement with recent theoretical predictions, we find a strong temperature dependence of the electron-spin loss rates due to 3HeRb collisions. We also find that the maximum possible efficiency for spin-exchange polarization of 3He by K is 10 times greater than for Rb.

  3. Recent advances in polarized 3 He based neutron spin filter development

    NASA Astrophysics Data System (ADS)

    Chen, Wangchun; Gentile, Thomas; Erwin, Ross; Watson, Shannon; Krycka, Kathryn; Ye, Qiang; NCNR NIST Team; University of Maryland Team

    2015-04-01

    Polarized 3 He neutron spin filters (NSFs) are based on the strong spin-dependence of the neutron absorption cross section by 3 He. NSFs can polarize large area, widely divergent, and broadband neutron beams effectively and allow for combining a neutron polarizer and a spin flipper into a single polarizing device. The last capability utilizes 3 He spin inversion based on the adiabatic fast passage (AFP) nuclear magnetic resonance technique. Polarized 3 He NSFs are significantly expanding the polarized neutron measurement capabilities at the NIST Center for Neutron Research (NCNR). Here we present an overview of 3 He NSF applications to small-angle neutron scattering, thermal triple axis spectrometry, and wide-angle polarization analysis. We discuss a recent upgrade of our spin-exchange optical pumping (SEOP) systems that utilize chirped volume holographic gratings for spectral narrowing. The new capability allows us to polarize rubidium/potassium hybrid SEOP cells over a liter in volume within a day, with 3 He polarizations up to 88%, Finally we discuss how we can achieve nearly lossless 3 He polarization inversion with AFP.

  4. Polarized 3He Gas Circulating Technologies for Neutron Analyzers

    SciTech Connect

    Watt, David; Hersman, Bill

    2014-12-10

    We describe the development of an integrated system for quasi-continuous operation of a large volume neutron analyzer. The system consists of a non-magnetic diaphragm compressor, a prototype large volume helium polarizer, a surrogate neutron analyzer, a non-depolarizing gas storage reservoir, a non-ferrous valve manifold for handling gas distribution, a custom rubidium-vapor gas return purifier, and wire-wound transfer lines, all of which are immersed in a two-meter external magnetic field. Over the Phase II period we focused on three major tasks required for the successful deployment of these types of systems: 1) design and implementation of gas handling hardware, 2) automation for long-term operation, and 3) improvements in polarizer performance, specifically fabrication of aluminosilicate optical pumping cells. In this report we describe the design, implementation, and testing of the gas handling hardware. We describe improved polarizer performance resulting from improved cell materials and fabrication methods. These improvements yielded valved 8.5 liter cells with relaxation times greater than 12 hours. Pumping this cell with 1500W laser power with 1.25nm linewidth yielded peak polarizations of 60%, measured both inside and outside the polarizer. Fully narrowing this laser to 0.25nm, demonstrated separately on one stack of the four, would have allowed 70% polarization with this cell. We demonstrated the removal of 5 liters of polarized helium from the polarizer with no measured loss of polarization. We circulated the gas through a titanium-clad compressor with polarization loss below 3% per pass. We also prepared for the next phase of development by refining the design of the polarizer so that it can be engineer-certified for pressurized operation. The performance of our system far exceeds comparable efforts elsewhere.

  5. PREFACE: JCNS Workshop on Modern Trends in Production and Applications of Polarized 3He

    NASA Astrophysics Data System (ADS)

    Ioffe, Alexander; Babcock, Earl; Gutberlet, Thomas

    2011-03-01

    Polarized neutron scattering techniques are an indispensable and highly requested tool for studying magnetic phenomena in condensed matter. The different coherent and incoherent scattering of isotopes such as protons and deuterons also allows applications of polarized neutrons in soft matter and biological studies of molecular and macromolecular dynamics. One method to polarize neutrons is to use polarized 3He gas which absorbs, or filters, one spin state of the neutron beam as it passes through it. Only about ten years ago, early polarized neutron scattering experiments using such 3He neutron spin filters (3He NSF) were being conducted using starting 3He polarizations of 55%. Currently there are two different commonly used methods to polarize high quantities of 3He. These methods both collisionally transfer spin polarization to ground state 3He nucleuses; one method uses optical pumping of an excited metastable state of 3He atoms, and the other uses optical pumping of the ground state of an alkali-metal vapour. Within the last decade immense progress in both methods has resulted in 3He polarizations of up to 80% being reported in atmosphere-pressure 3He cells by the world's leading labs. This progress in optical pumped 3He promises to give rise to much more efficient and novel polarized neutron scattering experiments as and also impacts other areas of science. Polarized 3He is additionally applied in research fields such as particle physics, fundamental studies and medicine. Thus not only the techniques and methods of polarization, but the research groups themselves exploring polarized 3He, have a large breadth and diversity spanning different fields of science and locations in the world. Given this diversity, it is rare for this community to meet as a group at any one meeting or conference. Because it is crucial to discuss new developments in 3He polarization in a multi-disciplinary international setting, an international workshop on "Modern Trends in Production

  6. A polarized internal sup 3 He target using optical pumping of metastable atoms

    SciTech Connect

    McKeown, R.D.; Milner, R.G.; Woodward, C.E. )

    1989-05-05

    The design of a polarized internal {sup 3}He target for use in storage rings based on optical pumping of metastables is discussed. The target employs an infrared laser to polarize {sup 3}He atoms in a pyrex cell which is connected by a capillary to a windowless cell through which the stored beam passes. Using this technique it should be possible construct targets of 50% polarized {sup 3}He targets of thickness 10{sup 16} cm{sup {minus}2}. Small holding fields ({similar to}10 gauss) and resistance to beam-induced depolarization are desirable features of this target in a storage ring environment.

  7. {sup 3}He polarization via optical pumping in a birefringent cell

    SciTech Connect

    Masuda, Y.; Ino, T.; Skoy, V.R.; Jones, G.L.

    2005-08-01

    A sapphire cell was used to obtain a high {sup 3}He nuclear polarization by means of spin-exchange optical pumping. The phase-shift difference between ordinary and extraordinary rays is well controlled using the thickness of the birefringent sapphire window so that a high circular polarization is obtained in the cell. Neutron transmission through the polarized {sup 3}He gas was measured as a function of neutron energy. A large {sup 3}He polarization of 63{+-}1% was obtained at a {sup 3}He pressure of 3.1 atm. Neutron polarizations of 97 and 90 % were obtained with transmission rates of 15 and 22 % at 10 and 20 meV, respectively.

  8. Polarized {sup 3}He{sup −} ion source with hyperfine state selection

    SciTech Connect

    Dudnikov, V.; Morozov, V.; Dudnikov, A.

    2015-04-08

    High beam polarization is essential to the scientific productivity of a collider. Polarized {sup 3}He ions are an essential part of the nuclear physics programs at existing and future ion-ion and electron-ion colliders such as BNL's RHIC and eRHIC and JLab's ELIC. Ion sources with performance exceeding that achieved today are a key requirement for the development of these next generation high-luminosity high-polarization colliders. The development of high-intensity high-brightness arc-discharge ion sources at the Budker Institute of Nuclear Physics (BINP) has opened up an opportunity for realization of a new type of a polarized {sup 3}He{sup −} ion source. This report discusses a polarized {sup 3}He{sup −} ion source based on the large difference of extra-electron auto-detachment lifetimes of the different {sup 3}He{sup −} ion hyperfine states. The highest momentum state of 5/2 has the largest lifetime of τ ∼ 350 µs while the lower momentum states have lifetimes of τ ~ 10 µs. By producing {sup 3}He{sup −} ion beam composed of only the |5/2, ±5/2> hyperfine states and then quenching one of the states by an RF resonant field, {sup 3}He{sup −} beam polarization of 90% can be achieved. Such a method of polarized {sup 3}He{sup −} production has been considered before; however, due to low intensities of the He{sup +} ion sources existing at that time, it was not possible to produce any interesting intensity of polarized {sup 3}He{sup −} ions. The high-brightness arc-discharge ion source developed at BINP can produce a high-brightness {sup 3}He{sup +} beam with an intensity of up to 2 A allowing for selection of up to ∼1-4 mA of {sup 3}He{sup −} ions with ∼90% polarization. The high gas efficiency of an arc-discharge source is important due to the high cost of {sup 3}He gas. Some features of such a PIS as well as prototype designs are considered. An integrated {sup 3}He{sup −} ion source design providing high beam polarization could be

  9. Compressing Spin-Polarized 3He With a Modified Diaphragm Pump

    PubMed Central

    Gentile, T. R.; Rich, D. R.; Thompson, A. K.; Snow, W. M.; Jones, G. L.

    2001-01-01

    Nuclear spin-polarized 3He gas at pressures on the order of 100 kPa (1 bar) are required for several applications, such as neutron spin filters and magnetic resonance imaging. The metastability-exchange optical pumping (MEOP) method for polarizing 3He gas can rapidly produce highly polarized gas, but the best results are obtained at much lower pressure (~0.1 kPa). We describe a compact compression apparatus for polarized gas that is based on a modified commercial diaphragm pump. The gas is polarized by MEOP at a typical pressure of 0.25 kPa (2.5 mbar), and compressed into a storage cell at a typical pressure of 100 kPa. In the storage cell, we have obtained 20 % to 35 % 3He polarization using pure 3He gas and 35 % to 50 % 3He polarization using 3He-4He mixtures. By maintaining the storage cell at liquid nitrogen temperature during compression, the density has been increased by a factor of four. PMID:27500044

  10. Diffusive transfer of polarized 3He gas through depolarizing magnetic gradients

    NASA Astrophysics Data System (ADS)

    Maxwell, J. D.; Epstein, C. S.; Milner, R. G.

    2015-03-01

    Transfer of polarized 3He gas across spatially varying magnetic fields will facilitate a new source of polarized 3He ions for particle accelerators. In this context, depolarization of atoms as they pass through regions of significant transverse field gradients is a major concern. To understand these depolarization effects, we have built a system consisting of a Helmholtz coil pair and a solenoid, both with central magnetic fields of order 30 gauss. The atoms are polarized via metastability exchange optical pumping in the Helmholtz coil and are in diffusive contact via a glass tube with a second test cell in the solenoid. We have carried out measurements of the spin relaxation during transfer of polarization in 3He at 1 torr by diffusion. We explore the use of measurements of the loss of polarization taken in one cell to infer the polarization in the other cell.

  11. Progress Towards the Detection of Faraday Rotation on Spin Polarized 3He

    NASA Astrophysics Data System (ADS)

    Abney, Josh; Broering, Mark; Korsch, Wolfgang

    2016-03-01

    Off-resonance Faraday rotation can offer a new method to monitor the nuclear spin polarization of a dense 3He target and gain access to new information about the magnetic polarizability of the 3He nucleus. The interaction of the polarization state of light with the nuclear spin of the helium atom is very weak and has never been detected. A sensitive triple modulation technique has been developed which can detect the expected rotation angle on the order of 100 nrad. Once a Faraday rotation signal is observed, the next step is to separate the magnetic and electric contributions to the rotation by utilizing their different frequency dependencies. Recent studies involved optimizing several parameters which impact 3He target polarization. Progress towards detecting nuclear spin optical rotation on 3He will be reported. This research is supported by DOE Grant DE-FG02-99ER41101.

  12. In situ polarized 3He system for the Magnetism Reflectometer at the Spallation Neutron Source.

    PubMed

    Tong, X; Jiang, C Y; Lauter, V; Ambaye, H; Brown, D; Crow, L; Gentile, T R; Goyette, R; Lee, W T; Parizzi, A; Robertson, J L

    2012-07-01

    We report on the in situ polarized (3)He neutron polarization analyzer developed for the time-of-flight Magnetism Reflectometer at the Spallation Neutron Source at Oak Ridge National Laboratory. Using the spin exchange optical pumping method, we achieved a (3)He polarization of 76% ± 1% and maintained it for the entire three-day duration of the test experiment. Based on transmission measurements with unpolarized neutrons, we show that the average analyzing efficiency of the (3)He system is 98% for the neutron wavelength band of 2-5 Å. Using a highly polarized incident neutron beam produced by a supermirror bender polarizer, we obtained a flipping ratio of >100 with a transmission of 25% for polarized neutrons, averaged over the wavelength band of 2-5 Å. After the cell was depolarized for transmission measurements, it was reproducibly polarized and this performance was maintained for three weeks. A high quality polarization analysis experiment was performed on a reference sample of Fe/Cr multilayer with strong spin-flip off-specular scattering. Using a combination of the position sensitive detector, time-of-flight method, and the excellent parameters of the (3)He cell, the polarization analysis of the two-dimensional maps of reflected, refracted, and off-specular scattered intensity above and below the horizon were obtained, simultaneously. PMID:22852718

  13. Polarization Induced Spin Wave Damping in Spin Polarized Liquid 3He 4He

    NASA Astrophysics Data System (ADS)

    Perisanu, Sorin; Vermeulen, Gerard

    2007-08-01

    We have measured the temperature and polarization dependence of Silin spin wave spectra in a saturated 3He 4He mixture with a concentration of 9.4% at a pressure of 8 bars. The mixture has been cooled and polarized by a Leiden dilution refrigerator to temperatures in the range 10 15 mK and polarizations as high as 9.2% corresponding to 3.4 times the equilibrium polarization of 2.7% in the external magnetic field of 11.36 T. The analysis takes into account the dipolar interactions and results in the relaxation time τ ⊥ and spin diffusion constant D ⊥ . We find that τ ⊥ and D ⊥ are proportional to 1/(T2+mathcal{A}2T_{a0}2) where T is the temperature, mathcal{A} is the polarization enhancement factor and T a0 is the anisotropy temperature for the mixture at equilibrium in the external field. Our result T a0=3.66±0.14 mK is 30% higher than the theoretical prediction for very dilute mixtures and is evidence for the existence of polarization induced relaxation of transverse spin currents.

  14. Comparative study of nuclear effects in polarized electron scattering from 3 He

    DOE PAGESBeta

    Ethier, J. J.; Melnitchouk, W.

    2013-11-01

    We present a detailed analysis of nuclear effects in inclusive electron scattering from polarized 3He nuclei for polarization asymmetries, structure functions and their moments, both in the nucleon resonance and deep-inelastic regions. We compare the results of calculations within the weak binding approximation at finite Q2 with the effective polarization ansatz often used in experimental data analyses, and explore the impact of Δ components in the nuclear wave function and nucleon off-shell corrections on extractions of the free neutron structure. Using the same framework we also make predictions for the Q2 dependence of quasielastic scattering from polarized 3He, data onmore » which can be used to constrain the spin-dependent nuclear smearing functions in 3He.« less

  15. Comparative study of nuclear effects in polarized electron scattering from 3He

    DOE PAGESBeta

    Ethier, Jacob James; Melnitchouk, Wally

    2013-11-04

    We present a detailed analysis of nuclear effects in inclusive electron scattering from polarized 3He nuclei for polarization asymmetries, structure functions and their moments, both in the nucleon resonance and deep-inelastic regions. We compare the results of calculations within the weak binding approximation at finite Q2 with the effective polarization ansatz often used in experimental data analyses, and explore the impact of Δ components in the nuclear wave function and nucleon off-shell corrections on extractions of the free neutron structure. Using the same framework we also make predictions for the Q2 dependence of quasielastic scattering from polarized 3He, data onmore » which can be used to constrain the spin-dependent nuclear smearing functions in 3He.« less

  16. SEOP polarized 3He Neutron Spin Filters for the JCNS user program

    NASA Astrophysics Data System (ADS)

    Babcock, Earl; Salhi, Zahir; Theisselmann, Tobias; Starostin, Denis; Schmeissner, Johann; Feoktystov, Artem; Mattauch, Stefan; Pistel, Patrick; Radulescu, Aurel; Ioffe, Alexander

    2016-04-01

    Over the past several years the JCNS has been developing in-house applications for neutron polarization analysis (PA). These methods include PA for separation of incoherent from coherent scattering in soft matter studies (SANS), and online polarization for analysis for neutron reflectometry, SANS, GISANS and eventually spectroscopy. This paper will present an overview of the user activities at the JCNS at the MLZ and gives an overview of the polarization 3He methods and devices used. Additionally we will summarise current projects which will further support the user activities using polarised 3He spin filters.

  17. Asymmetries in electron-induced breakup of polarized {sup 3}He

    SciTech Connect

    Sirca, Simon

    2011-10-01

    The Jefferson Lab Experiment E05-102 "Measurement of A{sub x}' and A{sub z}' asymmetries in the quasi-elastic {sup 3}He(e,e'd) reaction" was performed in Hall A in 2009. The main physics motivation of the experiment was to investigate the effects of small components of the {sup 3}He ground-state wave-function by a simultaneous measurement of double-polarization asymmetries in quasi-elastic kinematics for three exclusive channels, (e,e'd), (e,e'p), and (e,e'n), at almost identical momentum transfers, as well as for (e,e'). This experiment will help map the spin structure of the {sup 3}He nucleus onto the picture of the "free" polarized neutron. As such, it is of great relevance to the polarized-neutron programs at Jefferson Lab and beyond.

  18. Asymmetries in electron-induced breakup of polarized {sup 3}He

    SciTech Connect

    Sirca, S.

    2011-10-24

    The Jefferson Lab Experiment E05-102 'Measurement of A{sub x}{sup '} and A{sub z}{sup '} asymmetries in the quasi-elastic {sup 3}He(e,e'd) reaction' was performed in Hall A in 2009. The main physics motivation of the experiment was to investigate the effects of small components of the {sup 3}He ground-state wave-function by a simultaneous measurement of double-polarization asymmetries in quasi-elastic kinematics for three exclusive channels, (e,e'd), (e,e'p), and (e,e'n), at almost identical momentum transfers, as well as for (e,e'). This experiment will help map the spin structure of the {sup 3}He nucleus onto the picture of the ''free'' polarized neutron. As such, it is of great relevance to the polarized-neutron programs at Jefferson Lab and beyond.

  19. Development of high-performance alkali-hybrid polarized 3He targets for electron scattering

    NASA Astrophysics Data System (ADS)

    Singh, Jaideep T.; Dolph, P. A. M.; Tobias, W. A.; Averett, T. D.; Kelleher, A.; Mooney, K. E.; Nelyubin, V. V.; Wang, Yunxiao; Zheng, Yuan; Cates, G. D.

    2015-05-01

    Background: Polarized 3He targets have been used as effective polarized neutron targets for electron scattering experiments for over twenty years. Over the last ten years, the effective luminosity of polarized 3He targets based on spin-exchange optical pumping has increased by over an order of magnitude. This has come about because of improvements in commercially-available lasers and an improved understanding of the physics behind the polarization process. Purpose: We present the development of high-performance polarized 3He targets for use in electron scattering experiments. Improvements in the performance of polarized 3He targets, target properties, and operating parameters are documented. Methods: We utilize the technique of alkali-hybrid spin-exchange optical pumping to polarize the 3He targets. Spectrally narrowed diode lasers used for the optical pumping greatly improved the performance. A simulation of the alkali-hybrid spin-exchange optical pumping process was developed to provide guidance in the design of the targets. Data was collected during the characterization of 24 separate glass target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. Results: From the data obtained we made determinations of the so-called X -factors that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable 3He polarization to well under 100%. The presence of the X -factor spin-relaxation mechanism was clearly evident in our data. Good agreement between the simulation and the actual target performance was obtained by including details such as off-resonant optical pumping. Included in our results is a measurement of the K -3He spin-exchange rate coefficient kseK=(7.46 ±0.62 ) ×10-20cm3/s over the temperature range 503 K to 563 K. Conclusions: In order to achieve high performance under the operating conditions described in this paper

  20. Conceptual design of a polarized 3He neutron spin filter for polarized neutron spectrometer POLANO at J-PARC

    NASA Astrophysics Data System (ADS)

    Ino, T.; Ohoyama, K.; Yokoo, T.; Itoh, S.; Ohkawara, M.; Kira, H.; Hayashida, H.; Sakai, K.; Hiroi, K.; Oku, T.; Kakurai, K.; Chang, L. J.

    2016-04-01

    A 3He neutron spin filter (NSF) has been designed for a new polarized neutron chopper spectrometer called the Polarization Analysis Neutron Spectrometer with Correlation Method (POLANO) at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Research Complex. It is designed to fit in a limited space on the spectrometer as an initial neutron beam polarizer and is polarized in situ by spin exchange optical pumping. This will be the first generation 3He NSF on POLANO, and a polarized neutron beam up to 100 meV with a diameter of 50 mm will be available for research on magnetism, hydrogen materials, and strongly correlated electron systems.

  1. Progress Towards the Detection of Faraday Rotation on Spin Polarized 3He

    NASA Astrophysics Data System (ADS)

    Abney, Joshua; Broering, Mark; Korsch, Wolfgang

    2016-05-01

    Off-resonance Faraday rotation can offer a method to measure the nuclear spin optical rotation of the 3 He nucleus and gain access to new information about the atomic polarizability of the Helium atom. The interaction of the polarization state of light with the nuclear spin of the helium atom is very weak and has never been detected. A sensitive triple modulation technique has been developed which can detect the expected rotation angle on the order of 100 nrad. Once a Faraday rotation signal is observed, the next step is to separate the magnetic and electric contributions to the rotation by utilizing their different frequency dependencies. Recent studies involved optimizing several parameters which impact 3 He target polarization. Progress towards detecting nuclear spin optical rotation on 3 He will be reported. This research is supported by DOE Grant DE-FG02-99ER41101.

  2. B phase with polar distortion in superfluid {sup 3}He in “ordered” aerogel

    SciTech Connect

    Dmitriev, V. V. Senin, A. A.; Soldatov, A. A.; Surovtsev, E. V.; Yudin, A. N.

    2014-12-15

    The properties of the low-temperature superfluid phase of {sup 3}He in “nematically ordered” aerogel in which strands are almost parallel to one another are investigated by nuclear magnetic resonance methods. Such a strong anisotropy of the aerogel affects the phase diagram of {sup 3}He and the structure of superfluid phases. A theoretical model of the B phase with polar distortion is developed. It is shown that this model successfully describes the observed properties of the low-temperature phase.

  3. Double spin asymmetries of inclusive hadron electroproduction from a transversely polarized 3He target

    NASA Astrophysics Data System (ADS)

    Zhao, Y. X.; Allada, K.; Aniol, K.; Annand, J. R. M.; Averett, T.; Benmokhtar, F.; Bertozzi, W.; Bradshaw, P. C.; Bosted, P.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, C.; Chen, J.-P.; Chen, W.; Chirapatpimol, K.; Chudakov, E.; Cisbani, E.; Cornejo, J. C.; Cusanno, F.; Dalton, M.; Deconinck, W.; de Jager, C. W.; De Leo, R.; Deng, X.; Deur, A.; Ding, H.; Dolph, P. A. M.; Dutta, C.; Dutta, D.; El Fassi, L.; Frullani, S.; Gao, H.; Garibaldi, F.; Gaskell, D.; Gilad, S.; Gilman, R.; Glamazdin, O.; Golge, S.; Guo, L.; Hamilton, D.; Hansen, O.; Higinbotham, D. W.; Holmstrom, T.; Huang, J.; Huang, M.; Ibrahim, H. F.; Iodice, M.; Jiang, X.; Jin, G.; Jones, M. K.; Katich, J.; Kelleher, A.; Kim, W.; Kolarkar, A.; Korsch, W.; LeRose, J. J.; Li, X.; Li, Y.; Lindgren, R.; Liyanage, N.; Long, E.; Lu, H.-J.; Margaziotis, D. J.; Markowitz, P.; Marrone, S.; McNulty, D.; Meziani, Z.-E.; Michaels, R.; Moffit, B.; Muñoz Camacho, C.; Nanda, S.; Narayan, A.; Nelyubin, V.; Norum, B.; Oh, Y.; Osipenko, M.; Parno, D.; Peng, J.-C.; Phillips, S. K.; Posik, M.; Puckett, A. J. R.; Qian, X.; Qiang, Y.; Rakhman, A.; Ransome, R.; Riordan, S.; Saha, A.; Sawatzky, B.; Schulte, E.; Shahinyan, A.; Shabestari, M. H.; Širca, S.; Stepanyan, S.; Subedi, R.; Sulkosky, V.; Tang, L.-G.; Tobias, W. A.; Urciuoli, G. M.; Vilardi, I.; Wang, K.; Wojtsekhowski, B.; Wang, Y.; Yan, X.; Yao, H.; Ye, Y.; Ye, Z.; Yuan, L.; Zhan, X.; Zhang, Y.; Zhang, Y.-W.; Zhao, B.; Zheng, X.; Zhu, L.; Zhu, X.; Zong, X.; Jefferson Lab Hall A Collaboration

    2015-07-01

    We report the measurement of beam-target double spin asymmetries (ALT) in the inclusive production of identified hadrons, e ⃗ + 3He↑→h+X, using a longitudinally polarized 5.9-GeV electron beam and a transversely polarized 3He target. Hadrons (π ±,K±, and proton) were detected at 16° with an average momentum =2.35 GeV/c and a transverse momentum (pT) coverage from 0.60 to 0.68 GeV/c. Asymmetries from the 3He target were observed to be nonzero for π± production when the target was polarized transversely in the horizontal plane. The π+ and π- asymmetries have opposite signs, analogous to the behavior of ALT in semi-inclusive deep-inelastic scattering.

  4. Measuring Glass Thickness of a Reference Cell Used in a Polarized 3HE Experiment

    SciTech Connect

    Justis, N.; Chen, J.

    2005-01-01

    Studies of the spin structure of the neutron are often conducted using a polarized 3He target due to its close spin resemblance to that of a free neutron. Experiments are conducted by bombarding polarized 3He nuclei with high-energy electrons from a linear accelerator. The polarized 3He gas is contained in a glass tube-like cell called the target cell. In addition to the target cell, a reference cell is also used for calibration purposes. The thickness of each cell must be accurately determined for the analysis of the scattering data of the experiment. The thickness of a reference cell was determined by using a tunable infrared laser to create a thin-film interference pattern by reflecting the laser light off of the glass cell. The intensity of the pattern is known to vary sinusoidally as the wavelength of the laser changes. Such variation was recorded as an array of numbers by a LabView program at 26 different points on the cell. Each of the 26 sets of data were fit to an equation containing the thickness variable to determine the thickness of the glass. The cell side, or wall, thickness ranged from 1.42 mm to 1.65 mm, with an uncertainty of less than 5% in every case. End, or window, thickness measurements were also successfully taken, but have yet to be fitted to the derived equation.

  5. High-volume 100 Liter-per-day SEOP Polarization of 3He

    NASA Astrophysics Data System (ADS)

    Hersman, William; Watt, David W.; Ruset, Iulian C.; Distelbrink, Jan H.; Ketel, Jeff

    We describe a novel apparatus for large-scale production of polarized 3He using Spin-Exchange Optical Pumping (SEOP). The large optical pumping cell is enclosed inside a pressure containment vessel to equalize the differential pressure across the glass cell walls. Numerical simulations of laser absorption and spin-transfer guided our choice of pressure, temperature, and laser power. Computational fluid dynamics simulations of the two-zone thermal bath environment revealed buoyancy-induced flow which favored operation inclined at an angle. We prepared and tested three separate 8.5 liter cells at internal pressures up to six amagat (50 bar-liters) with hybrid alkali ratios of K:Rb of 10:1 by mass (4.4:1 by number ratio) and at temperatures up to 250°C. An early prototype used a 1.4 kW broadband laser, while our most recent prototype incorporated a new 2.2kW spectrally narrowed external cavity laser. Using small surface coil NMR to measure polarization, we obtained spin-up rates greater than 20% per hour consistent with our numerical simulations. Unfortunately, each cell installation to date has been compromised, limiting T1 relaxation times to 12 hours and asymptotic polarizations to values below 50%. If a cell could be installed with 50 hour lifetime and X-factor of 0.2, this polarizer will deliver 50 liters of over 70% polarized 3He twice each day.

  6. The First Measurement of Neutron Transversity on a Transversely Polarized 3He Target

    SciTech Connect

    Yi Qiang

    2009-12-01

    We recently measured the neutron target single spin asymmetry in the semi-inclusive deep inelastic 3He (e,e',pi+/-)X reactions with a transversely polarized 3He target. The experiment was performed in Hall A at Jefferson Lab from October 2008 to February 2009. Pions were detected in the high-resolution spectrometer in coincidence with scattered electrons detected by the BigBite spectrometer. The kinematic coverage focuses on the valence quark region, x = 0.1 - 0.4, at Q2 = 1-3 (GeV/c)2. With good particle identifications using a RICH detector and an aerogel Cherenkov counter, data on kaons were obtained at the same time. The data from this experiment, when combined with the world data, will provide constraints on the Transversity and Sivers distributions on both u-quark and d-quark in the valence quark region.

  7. Hybrid K-Rb Spin Exchange Optical Pumping Cells for the Polarization of ^3He

    NASA Astrophysics Data System (ADS)

    Couture, Alex; Daniels, Tim; Arnold, Charles; Clegg, Tom

    2006-11-01

    We are transitioning from polarizing ^3He using optical pumping cells charged with pure Rb to using a mixture of Rb and K, lean in Rb. The reason for this is the spin exchange efficiency between K and ^3He is an order of magnitude greater than that of Rb and ^3He. Also the spin exchange cross section between Rb and K is very large, which leads to a very fast rate of polarization transfer from Rb to K. Thus by optically pumping using a standard 795 nm Rb laser on a hybrid K-Rb cell, we can obtain significant improvements in spin-up time as well as improvements in overall polarization.[1] We produce hybrid pumping cells at TUNL using a filling station consisting of an oven and a turbo pumping station to bake out and pump away any impurities in the cells. The alkali metals are introduced into the pumping cells from a Y-shaped manifold with a separate retort for each alkali. We are able to determine the ratio of K to Rb in the vapor using white light absorption spectroscopy. Light from a halogen light bulb is incident upon the heated cell and enters a spectrometer beyond. We examine the relative sizes of the D1 and D2 absorption lines for the two alkali metals. We will have data comparing hybrid cells to pure Rb cells, GE-180 cells to Pyrex, and are working to obtain comparative performance data for spectrally unnarrowed and narrowed lasers. Our latest results will be reported. [1] E. Babcock, et al. (2003) Phys. Rev. Letter Vol. 91, Num.12, 123003

  8. Polarized 3He as an effective neutron target for deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Johnston, Kyle

    In undergraduate physics courses, we are all taught that a proton and a neutron both have a quantity called 'spin' which has a simple value of 1/2 in units of h. It was first naively understood that this value comes from the addition of the spins of the basic constituents, quarks and gluons. However, experiments revealed that it is not enough. The value of 1/2 has yet to be reconciled with the addition of not only the spins of the constituents but also their orbital motion. Clearly, the spin structure in terms of the basic constituents needs more investigation. This thesis aims to describe the polarization and calibration of a polarized 3He target, which can be used for probing the spin structure of the neutron in terms of its constituents, quarks and gluons.

  9. NMR Properties of the Polar Phase of Superfluid ^3He in Anisotropic Aerogel Under Rotation

    NASA Astrophysics Data System (ADS)

    Mineev, V. P.

    2016-09-01

    The polar phase of superfluid ^3He is stable in "nematically ordered" densed aerogel. A rotating vessel with the polar superfluid can be filled either by an array of the single quantum vortices or by an array of the half-quantum vortices. It is shown that the inhomogeneous distribution of the spin part of the order parameter arising in an array of half-quantum vortices in strong enough magnetic field tilted to the average direction of aerogel strands leads to the appearance of a satellite in the NMR signal shifted in the negative direction with respect to the Larmor frequency. The satellite is absent in the case of an array of single quantum vortices which allows to distinguish these two configurations. The polar state in the anisotropic aerogel with lower density transforms at lower temperatures to the axipolar state. The array of half-quantum vortices created in the polar phase keeps its structure under transition to the axipolar state. The temperature dependence of the vortex-satellite NMR frequency is found to be slower below the transition temperature to the axipolar state.

  10. NMR Properties of the Polar Phase of Superfluid ^3 He in Anisotropic Aerogel Under Rotation

    NASA Astrophysics Data System (ADS)

    Mineev, V. P.

    2016-04-01

    The polar phase of superfluid ^3 He is stable in "nematically ordered" densed aerogel. A rotating vessel with the polar superfluid can be filled either by an array of the single quantum vortices or by an array of the half-quantum vortices. It is shown that the inhomogeneous distribution of the spin part of the order parameter arising in an array of half-quantum vortices in strong enough magnetic field tilted to the average direction of aerogel strands leads to the appearance of a satellite in the NMR signal shifted in the negative direction with respect to the Larmor frequency. The satellite is absent in the case of an array of single quantum vortices which allows to distinguish these two configurations. The polar state in the anisotropic aerogel with lower density transforms at lower temperatures to the axipolar state. The array of half-quantum vortices created in the polar phase keeps its structure under transition to the axipolar state. The temperature dependence of the vortex-satellite NMR frequency is found to be slower below the transition temperature to the axipolar state.

  11. End-compensated magnetostatic cavity for polarized 3He neutron spin filters.

    PubMed

    McIver, J W; Erwin, R; Chen, W C; Gentile, T R

    2009-06-01

    We have expanded upon the "Magic Box" concept, a coil driven magnetic parallel plate capacitor constructed out of mu-metal, by introducing compensation sections at the ends of the box that are tuned to limit end-effects similar to those of short solenoids. This ability has reduced the length of the magic box design without sacrificing any loss in field homogeneity, making the device far more applicable to the often space limited neutron beam line. The appeal of the design beyond affording longer polarized 3He lifetimes is that it provides a vertical guide field, which facilitates neutron spin transport for typical polarized beam experiments. We have constructed two end-compensated magic boxes of dimensions 28.4 x 40 x 15 cm3 (length x width x height) with measured, normalized volume-averaged transverse field gradients ranging from 3.3 x 10(-4) to 6.3 x 10(-4) cm(-1) for cell sizes ranging from 8.1 x 6.0 to 12.0 x 7.9 cm2 (diameter x length), respectively. PMID:19566213

  12. Fabrication and tests of 3He and 2H targets for beam polarization measurement

    PubMed

    Naqvi; Aksoy; Nagadi; Al-Ohali; Kidwai; Fageeha

    2000-09-01

    3He and 2H targets were fabricated through implantation of 3He and 2H ions in 0.2-0.3 mm thick tantalum and titanium foils. The energy of 3He and 2H ions was 45-100 and 78 keV, respectively. Ions beams with typical current of 90-300 microA were used for implantation. Stability tests of 3He and 2H targets were carried out by monitoring the yield of 3He(d, p)4He and 2H(d, p)3H reactions. For the 3He target, the reaction yield was stable for both tantalum and titanium foils but the most stabilized maximum yield was observed for the 100 keV tantalum target. In the case of 2H targets, the yield increased with increasing total dose implanted on the target. PMID:10972150

  13. Spin exchange optical pumping based polarized {sup 3}He filling station for the Hybrid Spectrometer at the Spallation Neutron Source

    SciTech Connect

    Jiang, C. Y.; Tong, X.; Brown, D. R.; Culbertson, H.; Kadron, B.; Robertson, J. L.; Graves-Brook, M. K.; Hagen, M. E.; Lee, W. T.; Winn, B.

    2013-06-15

    The Hybrid Spectrometer (HYSPEC) is a new direct geometry spectrometer at the Spallation Neutron Source at the Oak Ridge National Laboratory. This instrument is equipped with polarization analysis capability with 60 Degree-Sign horizontal and 15 Degree-Sign vertical detector coverages. In order to provide wide angle polarization analysis for this instrument, we have designed and built a novel polarized {sup 3}He filling station based on the spin exchange optical pumping method. It is designed to supply polarized {sup 3}He gas to HYSPEC as a neutron polarization analyzer. In addition, the station can optimize the {sup 3}He pressure with respect to the scattered neutron energies. The depolarized {sup 3}He gas in the analyzer can be transferred back to the station to be repolarized. We have constructed the prototype filling station. Preliminary tests have been carried out demonstrating the feasibility of the filling station. Here, we report on the design, construction, and the preliminary results of the prototype filling station.

  14. Study of neutron spin structure functions at low Q{sup 2} with polarized {sup 3}He

    SciTech Connect

    Seonho Choi

    2000-12-12

    The recently completed experiment E94-010 at Jefferson Lab studies the neutron spin structure functions at low momentum transfer (Q{sup 2}) values. Using a polarized {sup 3} He target and polarized electron beam, we have measured the asymmetries and cross sections for {sup 3}He(e,e') from the elastic to the deep inelastic region. The covered Q{sup 2} ranges from 0.03 to 1.1 GeV{sup 2}. From the data, the Q{sup 2} evolution of the spin structure functions for {sup 3}He and neutron, and of the Gerasimov-Drell-Hearn (GDH) sum rule has been studied, and the preliminary results are presented.

  15. First result from the magic-PASTIS using large 3He SEOP-polarized GE180 doughnut cell

    NASA Astrophysics Data System (ADS)

    Salhi, Zahir; Babcock, Earl; Gainov, Ramil; Bussmann, Klaus; Kaemmerling, Hans; Pistel, Patrick; Russina, Margarita; Ioffe, Alexander

    2016-04-01

    We report on the first results of the newly proposed and prototyped PASTIS coil set, enabling for XYZ polarization analysis on the future thermal time-of flight spectrometers. Our setup uses a wide-angle banana shaped 3He Neutron Spin Filter cell (NSF) to cover a large range of scattering solid angle. The design assures relative magnetic field gradients < 10-3 cm-1 and large solid angle areas not interrupted by either coils or supports. In the vertical direction nearly 40° are open and the blind spots in the horizontal scattering plane comprise only 3° in 180° due to the square X and Y compensation coils. We present the first results of the field mapping and relaxations time measurements using a large 3He SEOP polarized GE180 doughnut cell.

  16. Direct measurements of the magnetic field induced by optically polarized sup 3 He atoms

    SciTech Connect

    Gudoshnikov, S.A.; Snigirev, O.V. ); Kozlov, A.N.; Maslennikov, Y.V.; Serebrjakov, A.Y. )

    1991-03-01

    This paper reports on an alternative magnetic field induced by the standard cell of the optically pumped {sup 3}He magnetometer directly measured by the SQUID-based second-order gradiometer with signal-to-noise ratio higher than 6. The magnitude of the measured field equal to 5 {times} 10{sup {minus}13} T at the 5-cm distance from the cell axis and transverse relaxation time T{sub 2} equal to 7 minutes have been found.

  17. Polarized 3He gas compression system using metastability-exchange optical pumping

    NASA Astrophysics Data System (ADS)

    Hussey, D. S.; Rich, D. R.; Belov, A. S.; Tong, X.; Yang, H.; Bailey, C.; Keith, C. D.; Hartfield, J.; Hall, G. D. R.; Black, T. C.; Snow, W. M.; Gentile, T. R.; Chen, W. C.; Jones, G. L.; Wildman, E.

    2005-05-01

    Dense samples (10-100barcm) of nuclear spin polarized He3 are utilized in high energy physics, neutron scattering, atomic physics, and magnetic resonance imaging. Metastability exchange optical pumping can rapidly produce high He3 polarizations (≈80%) at low pressures (few mbar). We describe a polarized He3 gas compressor system which accepts 0.26barlh-1 of He3 gas polarized to 70% by a 4W neodymium doped lanthanum magnesium hexaluminate (Nd:LMA) laser and compresses it into a 5barcm target with final polarization of 55%. The spin relaxation rates of the system's components have been measured using nuclear magnetic resonance and a model of the He3 polarization loss based on the measured relaxation rates and the gas flow is in agreement with a He3 polarization measurement using neutron transmission.

  18. Polarized /sup 3/he ion source based on the 2/sup 3/S/sub 1/ metastable state

    SciTech Connect

    Slobodrian, R.J.; Gagnon, Y.; Giroux, J.; Labrie, R.; Lapointe, R.; Pouliot, L.

    1983-08-01

    This /sup 3/He polarized ion source is based on the 2/sup 3/S/sub 1/ metastable atomic state. It will produce an intense metastable beam, 6x10/sup 15/p.sec/sup -1/.sr/sup -1/, of energies between 0.07 and 0.1 eV, using a cold cathode discharge. The separation and focussing of Zeeman components (F=/sup 1///sub 2/ m /SUB F/ =/sup 1///sub 2/) and (F=/sup 3///sub 2/m /SUB F/ =/sup 3///sub 2/) is effected with a sextupole of variable gap. An adiabatic RF transition enhances the nuclear polarization (theoretical) to 100%. Most design parameters of the source are now frozen for operation inside the H.V. terminal of a CN van de Graaff, but the source is of universal use in (+) ion accelerators.

  19. Measuring the axial form factor of {sup 3}He using weak capture of polarized electrons

    SciTech Connect

    Dutta, D.

    2013-11-07

    A low energy, high intensity polarized electron beam could enable the extraction of the A=3 weak axial form factors F{sub A} using the reaction →e+{sup 3}He→{sup 3}H+ν. These form factors have never been measured before. We discuss the feasibility of such an experiment using a small toroidal magnet and a radial low energy recoil detector to tag the recoil tritons. A moderately high intensity polarized electron beam (>500 μA) with beam energies between 50 - 150 MeV is necessary for the cross section measurement and to provides a free clean measurement of the background. Moreover, in addition to the cross section, by measuring the electron spin and recoil triton correlation coefficient it may be possible to search for second class currents and to extract the ratio of the axial to the vector form factor of the nucleon. Such novel electron scattering based measurements would have a completely different set of systematic uncertainties compared to polarized neutron beta decay, neutrino scattering and muon capture experiments which are typically used to extract the weak form-factors.

  20. Measurement of "pretzelosity" asymmetry of charged pion production in semi-inclusive deep inelastic scattering on a polarized 3He target

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Qian, X.; Allada, K.; Dutta, C.; Huang, J.; Katich, J.; Wang, Y.; Aniol, K.; Annand, J. R. M.; Averett, T.; Benmokhtar, F.; Bertozzi, W.; Bradshaw, P. C.; Bosted, P.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, C.; Chen, J.-P.; Chen, W.; Chirapatpimol, K.; Chudakov, E.; Cisbani, E.; Cornejo, J. C.; Cusanno, F.; Dalton, M. M.; Deconinck, W.; de Jager, C. W.; De Leo, R.; Deng, X.; Deur, A.; Ding, H.; Dolph, P. A. M.; Dutta, D.; El Fassi, L.; Frullani, S.; Gao, H.; Garibaldi, F.; Gaskell, D.; Gilad, S.; Gilman, R.; Glamazdin, O.; Golge, S.; Guo, L.; Hamilton, D.; Hansen, O.; Higinbotham, D. W.; Holmstrom, T.; Huang, M.; Ibrahim, H. F.; Iodice, M.; Jiang, X.; Jin, G.; Jones, M. K.; Kelleher, A.; Kim, W.; Kolarkar, A.; Korsch, W.; LeRose, J. J.; Li, X.; Li, Y.; Lindgren, R.; Liyanage, N.; Long, E.; Lu, H.-J.; Margaziotis, D. J.; Markowitz, P.; Marrone, S.; McNulty, D.; Meziani, Z.-E.; Michaels, R.; Moffit, B.; Muñoz Camacho, C.; Nanda, S.; Narayan, A.; Nelyubin, V.; Norum, B.; Oh, Y.; Osipenko, M.; Parno, D.; Peng, J. C.; Phillips, S. K.; Posik, M.; Puckett, A. J. R.; Qiang, Y.; Rakhman, A.; Ransome, R. D.; Riordan, S.; Saha, A.; Sawatzky, B.; Schulte, E.; Shahinyan, A.; Shabestari, M. H.; Širca, S.; Stepanyan, S.; Subedi, R.; Sulkosky, V.; Tang, L.-G.; Tobias, W. A.; Urciuoli, G. M.; Vilardi, I.; Wang, K.; Wojtsekhowski, B.; Yan, X.; Yao, H.; Ye, Y.; Ye, Z.; Yuan, L.; Zhan, X.; Zhang, Y.-W.; Zhao, B.; Zheng, X.; Zhu, L.; Zhu, X.; Zong, X.; Jefferson Lab Hall A Collaboration

    2014-11-01

    An experiment to measure single-spin asymmetries of semi-inclusive production of charged pions in deep-inelastic scattering on a transversely polarized 3He target was performed at Jefferson Laboratory in the kinematic region of 0.16 3He, which are expressed as the convolution of the h1T ⊥ transverse-momentum-dependent distribution functions and the Collins fragmentation functions in the leading order, were measured for the first time. Under the effective polarization approximation, we extracted the corresponding neutron asymmetries from the measured 3He asymmetries and cross-section ratios between the proton and 3He. Our results show that both π± on 3He and on neutron pretzelosity asymmetries are consistent with zero within experimental uncertainties.

  1. Single spin asymmetries of inclusive hadrons produced in electron scattering from a transversely polarized 3He target

    NASA Astrophysics Data System (ADS)

    Allada, K.; Zhao, Y. X.; Aniol, K.; Annand, J. R. M.; Averett, T.; Benmokhtar, F.; Bertozzi, W.; Bradshaw, P. C.; Bosted, P.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, C.; Chen, J.-P.; Chen, W.; Chirapatpimol, K.; Chudakov, E.; Cisbani, E.; Cornejo, J. C.; Cusanno, F.; Dalton, M.; Deconinck, W.; de Jager, C. W.; De Leo, R.; Deng, X.; Deur, A.; Ding, H.; Dolph, P. A. M.; Dutta, C.; Dutta, D.; Fassi, L. El; Frullani, S.; Gao, H.; Garibaldi, F.; Gaskell, D.; Gilad, S.; Gilman, R.; Glamazdin, O.; Golge, S.; Guo, L.; Hamilton, D.; Hansen, O.; Higinbotham, D. W.; Holmstrom, T.; Huang, J.; Huang, M.; Ibrahim, H. F.; Iodice, M.; Jiang, X.; Jin, G.; Jones, M. K.; Katich, J.; Kelleher, A.; Kim, W.; Kolarkar, A.; Korsch, W.; LeRose, J. J.; Li, X.; Li, Y.; Lindgren, R.; Liyanage, N.; Long, E.; Lu, H.-J.; Margaziotis, D. J.; Markowitz, P.; Marrone, S.; McNulty, D.; Meziani, Z.-E.; Michaels, R.; Moffit, B.; Camacho, C. Muñoz; Nanda, S.; Narayan, A.; Nelyubin, V.; Norum, B.; Oh, Y.; Osipenko, M.; Parno, D.; Peng, J.-C.; Phillips, S. K.; Posik, M.; Puckett, A. J. R.; Qian, X.; Qiang, Y.; Rakhman, A.; Ransome, R.; Riordan, S.; Saha, A.; Sawatzky, B.; Schulte, E.; Shahinyan, A.; Shabestari, M. H.; Širca, S.; Stepanyan, S.; Subedi, R.; Sulkosky, V.; Tang, L.-G.; Tobias, A.; Urciuoli, G. M.; Vilardi, I.; Wang, K.; Wang, Y.; Wojtsekhowski, B.; Yan, X.; Yao, H.; Ye, Y.; Ye, Z.; Yuan, L.; Zhan, X.; Zhang, Y.; Zhang, Y.-W.; Zhao, B.; Zheng, X.; Zhu, L.; Zhu, X.; Zong, X.; Jefferson Lab Hall A Collaboration

    2014-04-01

    We report the first measurement of target single spin asymmetries (AN) in the inclusive hadron production reaction, e +3He↑→h+X, using a transversely polarized 3He target. The experiment was conducted at Jefferson Lab in Hall A using a 5.9-GeV electron beam. Three types of hadrons (π±, K±, and proton) were detected in the transverse hadron momentum range 0.54 3He target and extracted for neutrons are opposite in sign with a small increase observed as a function of pT.

  2. Measurement of double-polarization asymmetries in the quasielastic (3)He[→](e[→],e(')d) process.

    PubMed

    Mihovilovič, M; Jin, G; Long, E; Zhang, Y-W; Allada, K; Anderson, B; Annand, J R M; Averett, T; Boeglin, W; Bradshaw, P; Camsonne, A; Canan, M; Cates, G D; Chen, C; Chen, J P; Chudakov, E; De Leo, R; Deng, X; Deltuva, A; Deur, A; Dutta, C; El Fassi, L; Flay, D; Frullani, S; Garibaldi, F; Gao, H; Gilad, S; Gilman, R; Glamazdin, O; Golak, J; Golge, S; Gomez, J; Hansen, O; Higinbotham, D W; Holmstrom, T; Huang, J; Ibrahim, H; de Jager, C W; Jensen, E; Jiang, X; Jones, M; Kang, H; Katich, J; Khanal, H P; Kievsky, A; King, P; Korsch, W; LeRose, J; Lindgren, R; Lu, H-J; Luo, W; Marcucci, L E; Markowitz, P; Meziane, M; Michaels, R; Moffit, B; Monaghan, P; Muangma, N; Nanda, S; Norum, B E; Pan, K; Parno, D; Piasetzky, E; Posik, M; Punjabi, V; Puckett, A J R; Qian, X; Qiang, Y; Qui, X; Riordan, S; Saha, A; Sauer, P U; Sawatzky, B; Schiavilla, R; Schoenrock, B; Shabestari, M; Shahinyan, A; Širca, S; Skibiński, R; John, J St; Subedi, R; Sulkosky, V; Tobias, W A; Tireman, W; Urciuoli, G M; Viviani, M; Wang, D; Wang, K; Wang, Y; Watson, J; Wojtsekhowski, B; Witała, H; Ye, Z; Zhan, X; Zhang, Y; Zheng, X; Zhao, B; Zhu, L

    2014-12-01

    We present a precise measurement of double-polarization asymmetries in the ^{3}He[over →](e[over →],e^{'}d) reaction. This particular process is a uniquely sensitive probe of hadron dynamics in ^{3}He and the structure of the underlying electromagnetic currents. The measurements have been performed in and around quasielastic kinematics at Q^{2}=0.25(GeV/c)^{2} for missing momenta up to 270  MeV/c. The asymmetries are in fair agreement with the state-of-the-art calculations in terms of their functional dependencies on p_{m} and ω, but are systematically offset. Beyond the region of the quasielastic peak, the discrepancies become even more pronounced. Thus, our measurements have been able to reveal deficiencies in the most sophisticated calculations of the three-body nuclear system, and indicate that further refinement in the treatment of their two-and/or three-body dynamics is required. PMID:25526124

  3. Single spin asymmetries of inclusive hadrons produced in electron scattering from a transversely polarized 3 He target

    DOE PAGESBeta

    Allada, K.; Zhao, Y. X.; Aniol, K.; Annand, J. R. M.; Averett, T.; Benmokhtar, F.; Bertozzi, W.; Bradshaw, P. C.; Bosted, P.; Camsonne, A.; et al

    2014-04-07

    We report the first measurement of target single-spin asymmetries (AN) in the inclusive hadron production reaction, e + 3He↑→h+X, using a transversely polarized 3 He target. This experiment was conducted at Jefferson Lab in Hall A using a 5.9-GeV electron beam. Three types of hadrons (π±, K± and proton) were detected in the transverse hadron momentum range 0.54 < pT < 0.74 GeV/c. The range of xF for pions was -0.29 < xF< -0.23 and for kaons -0.25 < xF<-0.18. The observed asymmetry strongly depends on the type of hadron. A positive asymmetry is observed for π+ and K+. Amore » negative asymmetry is observed for π–. The magnitudes of the asymmetries follow |Aπ –|<|Aπ +|<|AK +|. The K– and proton asymmetries are consistent with zero within the experimental uncertainties. The π+ and π– asymmetries measured for the 3He target and extracted for neutrons are opposite in sign with a small increase observed as a function of pT.« less

  4. Inclusive scattering of polarized electrons on polarized {sup 3}He: Effects of final state interaction and the magnetic form factor of the neutron

    SciTech Connect

    Ishikawa, S.; Golak, J.; Witala, H.; Kamada, H.; Gloeckle, W.; Hueber, D.

    1998-01-01

    Effects of final state interaction on asymmetries in inclusive scattering of polarized electrons on polarized {sup 3}He are investigated using a consistent {sup 3}He bound state wave function and 3N continuum scattering states. Significant effects are found, which influence the extraction of the magnetic neutron form factor from A{sub T{sup {prime}}}. The enhancement found experimentally for A{sub TL{sup {prime}}} near the 3N breakup threshold, which could not be explained in calculations carried through in plane wave impulse approximation up to now, occurs now also in theory if the full final state interaction is included. {copyright} {ital 1998} {ital The American Physical Society}

  5. A Metastability-Exchange Optical Pumping and Compression System using Polarized 3 He for a Proposed Laboratory Search for Neutron Monopole-Dipole Interactions

    NASA Astrophysics Data System (ADS)

    Smith, Erick; Ariadne Collaboration

    2015-04-01

    3 He nuclei polarized using the metastability-exchange optical pumping (MEOP) method have been used for scientific applications such as magnetometry in space, neutron polarization and analysis, and medical imaging. In this talk we explain how this technique is also well-suited for a proposed experiment to search for possible monopole-dipole interactions of polarized 3 He nuclei with matter. The P-odd and T-odd monopole-dipole potential proposed by Moody and Wilczek is proportional to s-> . r-> where s-> is the 3 He spin and r-> is the separation between the particles. It can be induced by axions, and ARIADNE proposes to perform NMR on a polarized 3 He ensemble at 4K with a radially-slotted tungsten disk spinning at a multiple of the 3 He Larmour frequency to induce a resonant monopole-dipole perturbation. The radial slot length variations are chosen to maximize sensitivity to a monopole-dipole interaction range corresponding to the axion window. We describe the advantages that MEOP presents for this experiment and describe the MEOP-based polarized 3 He gas compression system at Indiana University.

  6. In-situ compact 3He neutron spin polarizer based on a magneto-static cavity with built-in NMR coils

    NASA Astrophysics Data System (ADS)

    Lee, S.; Moon, M. K.; Kim, J.; Cho, S. J.; Lee, J. H.; Lee, C.-H.; Lee, S. W.; Ino, T.

    2016-04-01

    A polarized 3He neutron polarizer for in-situ neutron beam line operation was developed based on a compact magneto-static cavity with a dimension of 280×270×300 mm3 and a fiber-coupled VBG (Volume Bragg Grating) diode laser with a narrow spectral bandwidth of 25 GHz. Built-in NMR coils of the neutron spin polarizer designed for NMR signal measurements were described in detail and their performances were tested for monitoring the progress of in-situ 3He polarization.

  7. Spin-polarized /sup 3/He nuclear targets and metastable /sup 4/He atoms by optical pumping with a tunable, Nd:YAP laser

    SciTech Connect

    Bohler, C.L.; Schearer, L.D.; Leduc, M.; Nacher, P.J.; Zachorowski, L.; Milner, R.G.; McKeown, R.D.; Woodward, C.E.

    1988-04-15

    Several Nd:YAP lasers were constructed which could be broadly tuned in the 1083-nm region which includes the helium 2/sup 3/S-2/sup 3/P transition, using a Lyot filter and thin, uncoated etalons within the laser cavity. 1 W of power could be extracted at 1083 nm through a 1% transmitting output coupler. This laser beam was used to optically pump metastable /sup 4/He and /sup 3/He 2/sup 3/S helium atoms in a weak discharge cell, spin polarizing the metastable ensemble. In a /sup 3/He cell the polarization is transferred to the nuclear spin system. A /sup 3/He target cell at 0.3 Torr was polarized to 52% in a few minutes. We describe the application of this system to the design of polarized targets for experiments in nuclear physics.

  8. A compact spin-exchange optical pumping system for 3He polarization based on a solenoid coil, a VBG laser diode, and a cosine theta RF coil

    NASA Astrophysics Data System (ADS)

    Lee, Sungman; Kim, Jongyul; Moon, Myung Kook; Lee, Kye Hong; Lee, Seung Wook; Ino, Takashi; Skoy, Vadim R.; Lee, Manwoo; Kim, Guinyun

    2013-02-01

    For use as a neutron spin polarizer or analyzer in the neutron beam lines of the HANARO (High-flux Advanced Neutron Application ReactOr) nuclear research reactor, a 3He polarizer was designed based on both a compact solenoid coil and a VBG (volume Bragg grating) diode laser with a narrow spectral linewidth of 25 GHz. The nuclear magnetic resonance (NMR) signal was measured and analyzed using both a built-in cosine radio-frequency (RF) coil and a pick-up coil. Using a neutron transmission measurement, we estimated the polarization ratio of the 3He cell as 18% for an optical pumping time of 8 hours.

  9. Alkali-metal-atom polarization imaging in high-pressure optical-pumping cells

    NASA Astrophysics Data System (ADS)

    Baranga, A. Ben-Amar; Appelt, S.; Erickson, C. J.; Young, A. R.; Happer, W.

    1998-09-01

    We present a detailed experimental analysis of Rb-polarization imaging in high-pressure gas cells. The Rb vapor in these cells is optically pumped by high-power diode-laser arrays. We present images for high (35 G) and low (4 G) magnetic fields and for different He and Xe buffer-gas mixtures. We demonstrate that high-field imaging provides an absolute measurement of the Rb-polarization distribution in the cell, based on the fact that a spin-temperature distribution of the hyperfine magnetic sublevels is established in high-pressure buffer gases. A survey of various mechanisms that broaden the Rb magnetic-resonance lines is presented. These broadening mechanisms determine the limits of the spatial resolution achievable for images of the Rb-polarization distribution.

  10. ^3He Spin Pump

    NASA Astrophysics Data System (ADS)

    Yamaguchi, A.; Ishimoto, H.; Kojima, H.

    2009-03-01

    The superfluid component of ^3He A1 phase is spin-polarized. The process of forcing the superfluid component through a spin filtering structure, in a manner of mechano-magnetic effect, can be used to increase the spin polarization beyond the equilibrium under a given applied magnetic field. We have constructed a test cell in which a glass capillary array acts as the spin (and entropy) filter and an electrostatically actuated diaphragm forces the superfluid flow through it. Preliminary results show that a maximum relative increase of polarization by 50 % could be achieved. The maximum increase in polarization appears to be limited by the critical superfluid flow through the channels in the glass capillary array. The dependence of the observed effects on temperature, pressure and magnetic field will be presented.

  11. A high-field 3He metastability exchange optical pumping polarizer operating in a 1.5 T medical scanner for lung magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Collier, G.; Pałasz, T.; Wojna, A.; Głowacz, B.; Suchanek, M.; Olejniczak, Z.; Dohnalik, T.

    2013-05-01

    After being hyperpolarized using the technique of Metastability Exchange Optical Pumping (MEOP), 3He can be used as a contrast agent for lung magnetic resonance imaging (MRI). MEOP is usually performed at low magnetic field (˜1 mT) and low pressure (˜1 mbar), which results in a low magnetization production rate. Polarization preserving compression with a compression ratio of order 1000 is also required. It was demonstrated in sealed cells that high nuclear polarization values can be obtained at higher pressures with MEOP, if performed at high magnetic field (non-standard conditions). In this work, the feasibility of building a high-field polarizer that operates within a commercial 1.5 T scanner was evaluated. Preliminary measurements of nuclear polarization with sealed cells filled at different 3He gas pressures (1.33 to 267 mbar) were performed. The use of an annular shape for the laser beam increased by 25% the achievable nuclear polarization equilibrium value (Meq) at 32 and 67 mbar as compared to a Gaussian beam shape. Meq values of 66.4% and 31% were obtained at 32 and 267 mbar, respectively, and the magnetization production rate was increased by a factor of 10 compared to the best results obtained under standard conditions. To study the reproducibility of the method in a polarizing system, the same experiments were performed with small cells connected to a gas handling system. Despite careful cleaning procedure, the purity of the 3He gas could not be matched to that of the sealed cells. Consequently, the polarization build-up times were approximately 3 times longer in the 20-30 mbar range of pressure than those obtained for the 32 mbar sealed cell. However, reasonable Meq values of 40%-60% were achieved in a 90 ml open cell. Based on these findings, a novel compact polarizing system was designed and built. Its typical output is a 3He gas flow rate of 15 sccm with a polarization of 33%. In-vivo lung MRI ventilation images (Signal to Noise Ratio (SNR) of

  12. Relaxation time of 3He

    NASA Astrophysics Data System (ADS)

    Gao, Hayian

    2004-10-01

    The next generation of searches for the neutron electric dipole moment using ultra cold neutrons will use polarized ^3He as a co-magnetometer. The first such experiment has been proposed, with a goal of improving the current limit on the neutron EDM by two orders of magnitude. This experiment requires a systematic study of the properties of polarized ^3He at cryogenic temperatures under actual experimental conditions. These experimental conditions include polarized ^3He mixed in a bath of superfluid ^4He in low magnetic field and held in an acrylic cell which is coated with deuterated TetraphenylButadiene . Parts of these systematic studies will be done at Duke University using a newly built, novel refillable double cell ^3 He polarizer based on spin exchange optical pumping with Rubidium vapor. The polarimetry for this apparatus is done with a NMR polarimeter using the adiabatic fast passage method. An alternate polarimeter using free induction decay method is also being built. This apparatus is being used to study the relaxation time and other critical properties of polarized ^3He at temperatures ranging from 2.3 - 4.2 K, under simulated experimental conditions. We will present details about this novel polarizer and show preliminary results of our measurements.

  13. Single Spin Asymmetries in Charged Pion Production from Semi-Inclusive Deep Inelastic Scattering on a Transversely Polarized $^3$He Target

    SciTech Connect

    Qian, X; Allada, K; Huang, J; Katich, J; Wang, Y; Zhang, Y; Aniol, K; Annand, J.R.M.; Averett, T; Benmokhtar, F; Bertozzi, W; Bradshaw, P C; Bosted, P; Camsonne, A; Canan, M; Cates, G D; Chen, C; Chen, J -P; Chen, W; Chirapatpimol, K; Chudakov, E; Cisbani, E; Cornejo, J C; Cusanno, F; Dalton, M M; Deconinck, W; de Jager, C W; De Leo, R; Deng, X; Deur, A; Ding, H; Dolph, P.A.M.; Dutta, D; El Fassi, L; Frullani, S; Gao, H; Garibaldi, F; Gaskell, D; Gilad, S; Gilman, R; Glamazdin, O; Golge, S; Guo, L; Hamilton, D; Hansen, O; Higinbotham, D W; Holmstrom, T; Huang, M; Ibrahim, H F; Iodice, M; Jiang, X; Jin, G; Jones, M K; Kelleher, A; Kim, W; Kolarkar, A; Korsch, W; LeRose, J J; Li, X; Li, Y; Lindgren, R; Liyanage, N; Long, E; Lu, H -J; Margaziotis, D J; Markowitz, P; Marrone, S; McNulty, D; Meziani, Z -E; Michaels, R; Moffit, B; Munoz Camacho, C; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Oh, Y; Osipenko, M; Parno, D; Peng, J C; Phillips, S K; Posik, M; Puckett, A.J.R.; Qiang, Y; Rakhman, A; Ransome, R D; Riordan, S; Saha, A; Sawatzky, B; Schulte, E; Shahinyan, A; Shabestari, M H; Sirca, S; Stepanyan, S; Subedi, R; Sulkosky, V; Tang, L -G; Tobias, A; Urciuoli, G M; Vilardi, I; Wang, K; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yuan, L; Zhan, X; Zhang, Y -W; Zhao, B; Zheng, X; Zhu, L; Zhu, X; Zong, X

    2011-08-01

    We report the first measurement of target single spin asymmetries in the semi-inclusive $^3{He}(e,e'\\pi^\\pm)X$ reaction on a transversely polarized target. The experiment, conducted at Jefferson Lab using a 5.9 GeV electron beam, covers a range of 0.14 $< x <$ 0.34 with 1.3 $3$He are consistent with zero, except for the $\\pi^+$ moment at $x=0.34$, which deviates from zero by 2.3$\\sigma$. While the $\\pi^-$ Sivers moments are consistent with zero, the $\\pi^+$ Sivers moments favor negative values. The neutron results were extracted using the nucleon effective polarization and the measured cross section ratio of proton to $^3$He, and are largely consistent with the predictions of phenomenological fits and quark model calculations.

  14. High-intensity polarized H-(proton), deuteron and 3He++ion source development at BNL.

    SciTech Connect

    Zelenski,A.

    2008-06-23

    New techniques for the production of polarized electron, H{sup -} (proton), D (D+) and {sup 3}H{sup ++} ion beams are discussed. Feasibility studies of these techniques are in progress at BNL. An Optically Pumped Polarized H{sup -} Ion Source (OPPIS) delivers beam for polarization studies in RHIC. The polarized deuteron beam will be required for the deuteron Electron Dipole Moment (EDM) experiment, and the {sup 3}H{sup ++} ion beam is a part of the experimental program for the future eRHIC (Electron Ion) collider.

  15. Single polarity charge sensing in high pressure xenon using a coplanar anode configuration

    NASA Astrophysics Data System (ADS)

    Sullivan, Clair Julia

    A new design of a high pressure xenon ionization chamber has been fabricated in an attempt to eliminate the problems associated with acoustical vibrations of the Frisch grid. The function of the traditional Frisch grid has been accomplished by employing a coplanar anode system capable of single polarity charge sensing by means of the Shockley-Ramo theorem. Two different detectors have been built in order to determine if the operation of a high pressure xenon detector in coplanar anode mode is possible. The first is the helical detector comprised of two anode wires wound about a central ceramic core. Through calculation, it is shown that for a cathode bias of -5 kV a potential of 363 V is necessary to collect all of the electrons on the collecting anode, however this is contradicted by the observed pulse waveforms. The results of several experiments are presented that demonstrate the helical detector should work, however in the interest in determining if a coplanar high pressure xenon detector is viable, emphasis was placed on the second detector design. The second design is a parallel plate detector, more analogous to the coplanar semiconductor devices. This detector has demonstrated that it is possible to operate a high pressure xenon detector in coplanar anode mode. However, it is shown that the performance of this detector is limited by high surface leakage current and detector capacitance. Additionally, since the leakage current increases with potential between the two anodes, it is not possible to obtain very high resolution gamma-ray spectroscopy since the required potential between the two anodes for coplanar operation is so high that the detector is already dominated by surface leakage current as this value.

  16. Spin-exchange optically pumped polarized 3He target for low-energy charged particle scattering experiments

    NASA Astrophysics Data System (ADS)

    Katabuchi, T.; Buscemi, S.; Cesaratto, J. M.; Clegg, T. B.; Daniels, T. V.; Fassler, M.; Neufeld, R. B.; Kadlecek, S.

    2005-03-01

    We have constructed, tested, and calibrated a polarized He3 target system which facilitates p-He3 elastic scattering at proton energies as low as 2MeV. This system consists of a target cell placed in a uniform B field inside a scattering chamber and an external optical pumping station utilizing Rb spin exchange. Computer-controlled valves allow polarized He3 gas to be transferred quickly between the optical pumping station and the spherical Pyrex target cell, which has Kapton film covering apertures for the passing beam and the scattering particles. The magnetic field required to maintain He3 polarization in the target cell is created with a compact, shielded sine-theta coil. Target gas polarimetry is accomplished using nuclear magnetic resonance and calibrated using the known analyzing power of α-He3 scattering.

  17. Giant spin-driven ferroelectric polarization in TbMnO3 under high pressure.

    PubMed

    Aoyama, T; Yamauchi, K; Iyama, A; Picozzi, S; Shimizu, K; Kimura, T

    2014-01-01

    The recent research on multiferroics has provided solid evidence that the breaking of inversion symmetry by spin order can induce ferroelectric polarization P. This type of multiferroics, called spin-driven ferroelectrics, often show a gigantic change in P on application of a magnetic field B. However, their polarization (<~0.1 μC cm(-2)) is much smaller than that in conventional ferroelectrics (typically several to several tens of μC cm(-2)). Here we show that the application of external pressure to a representative spin-driven ferroelectric, TbMnO3, causes a flop of P and leads to the highest P (≈ 1.0 μC cm(-2)) among spin-driven ferroelectrics ever reported. We explain this behaviour in terms of a pressure-induced magnetoelectric phase transition, based on the results of density functional simulations. In the high-pressure phase, the application of B further enhances P over 1.8 μC cm(-2). This value is nearly an order of magnitude larger than those ever reported in spin-driven ferroelectrics. PMID:25215855

  18. Single spin asymmetries in charged kaon production from semi-inclusive deep inelastic scattering on a transversely polarized 3He target

    NASA Astrophysics Data System (ADS)

    Zhao, Y. X.; Wang, Y.; Allada, K.; Aniol, K.; Annand, J. R. M.; Averett, T.; Benmokhtar, F.; Bertozzi, W.; Bradshaw, P. C.; Bosted, P.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, C.; Chen, J.-P.; Chen, W.; Chirapatpimol, K.; Chudakov, E.; Cisbani, E.; Cornejo, J. C.; Cusanno, F.; Dalton, M. M.; Deconinck, W.; de Jager, C. W.; De Leo, R.; Deng, X.; Deur, A.; Ding, H.; Dolph, P. A. M.; Dutta, C.; Dutta, D.; El Fassi, L.; Frullani, S.; Gao, H.; Garibaldi, F.; Gaskell, D.; Gilad, S.; Gilman, R.; Glamazdin, O.; Golge, S.; Guo, L.; Hamilton, D.; Hansen, O.; Higinbotham, D. W.; Holmstrom, T.; Huang, J.; Huang, M.; Ibrahim, H. F.; Iodice, M.; Jiang, X.; Jin, G.; Jones, M. K.; Katich, J.; Kelleher, A.; Kim, W.; Kolarkar, A.; Korsch, W.; LeRose, J. J.; Li, X.; Li, Y.; Lindgren, R.; Liyanage, N.; Long, E.; Lu, H.-J.; Margaziotis, D. J.; Markowitz, P.; Marrone, S.; McNulty, D.; Meziani, Z.-E.; Michaels, R.; Moffit, B.; Muñoz Camacho, C.; Nanda, S.; Narayan, A.; Nelyubin, V.; Norum, B.; Oh, Y.; Osipenko, M.; Parno, D.; Peng, J.-C.; Phillips, S. K.; Posik, M.; Puckett, A. J. R.; Qian, X.; Qiang, Y.; Rakhman, A.; Ransome, R.; Riordan, S.; Saha, A.; Sawatzky, B.; Schulte, E.; Shahinyan, A.; Shabestari, M. H.; Širca, S.; Stepanyan, S.; Subedi, R.; Sulkosky, V.; Tang, L.-G.; Tobias, A.; Urciuoli, G. M.; Vilardi, I.; Wang, K.; Wojtsekhowski, B.; Yan, X.; Yao, H.; Ye, Y.; Ye, Z.; Yuan, L.; Zhan, X.; Zhang, Y.; Zhang, Y.-W.; Zhao, B.; Zheng, X.; Zhu, L.; Zhu, X.; Zong, X.; Jefferson Lab Hall A Collaboration

    2014-11-01

    We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive deep inelastic scattering of electrons off a transversely polarized 3He target. Both the Collins and Sivers moments, which are related to the nucleon transversity and Sivers distributions, respectively, are extracted over the kinematic range of 0.1

  19. Beam-target double-spin asymmetry A{LT} in charged pion production from deep inelastic scattering on a transversely polarized {3}He target at 1.4

    PubMed

    Huang, J; Allada, K; Dutta, C; Katich, J; Qian, X; Wang, Y; Zhang, Y; Aniol, K; Annand, J R M; Averett, T; Benmokhtar, F; Bertozzi, W; Bradshaw, P C; Bosted, P; Camsonne, A; Canan, M; Cates, G D; Chen, C; Chen, J-P; Chen, W; Chirapatpimol, K; Chudakov, E; Cisbani, E; Cornejo, J C; Cusanno, F; Dalton, M M; Deconinck, W; de Jager, C W; De Leo, R; Deng, X; Deur, A; Ding, H; Dolph, P A M; Dutta, D; El Fassi, L; Frullani, S; Gao, H; Garibaldi, F; Gaskell, D; Gilad, S; Gilman, R; Glamazdin, O; Golge, S; Guo, L; Hamilton, D; Hansen, O; Higinbotham, D W; Holmstrom, T; Huang, M; Ibrahim, H F; Iodice, M; Jiang, X; Jin, G; Jones, M K; Kelleher, A; Kim, W; Kolarkar, A; Korsch, W; Lerose, J J; Li, X; Li, Y; Lindgren, R; Liyanage, N; Long, E; Lu, H-J; Margaziotis, D J; Markowitz, P; Marrone, S; McNulty, D; Meziani, Z-E; Michaels, R; Moffit, B; Muñoz Camacho, C; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Oh, Y; Osipenko, M; Parno, D; Peng, J C; Phillips, S K; Posik, M; Puckett, A J R; Qiang, Y; Rakhman, A; Ransome, R D; Riordan, S; Saha, A; Sawatzky, B; Schulte, E; Shahinyan, A; Shabestari, M H; Sirca, S; Stepanyan, S; Subedi, R; Sulkosky, V; Tang, L-G; Tobias, A; Urciuoli, G M; Vilardi, I; Wang, K; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yuan, L; Zhan, X; Zhang, Y-W; Zhao, B; Zheng, X; Zhu, L; Zhu, X; Zong, X

    2012-02-01

    We report the first measurement of the double-spin asymmetry A{LT} for charged pion electroproduction in semi-inclusive deep-inelastic electron scattering on a transversely polarized {3}He target. The kinematics focused on the valence quark region, 0.163}He asymmetries and proton over {3}He cross section ratios using the effective polarization approximation. These new data probe the transverse momentum dependent parton distribution function g{1T}{q} and therefore provide access to quark spin-orbit correlations. Our results indicate a positive azimuthal asymmetry for π{-} production on {3}He and the neutron, while our π{+} asymmetries are consistent with zero. PMID:22400926

  20. Giant spin-driven ferroelectric polarization and magnetoelectric effect in perovskite rare-earth maganites under high pressure

    NASA Astrophysics Data System (ADS)

    Kimura, Tsuyoshi

    2015-03-01

    The discovery of ferroelectricity in TbMnO3 triggered extensive studies on a type of multiferroics, ``spin-driven ferroelectrics.'' Unlike conventional ferroelectrics such as BaTiO3, spin-driven ferroelectrics exhibit remarkable magnetoelectric (ME) effects. However, the ferroelectric polarization P in spin-driven ferroelectrics ever reported (<10-1 μ C/cm2) is much smaller than that in conventional ferroelectrics (typically 100 ~ 101 μ C/cm2). Thus, the quest for robust magnetically-controllable P comparable to that in conventional ferroelectrics is still a major challenge in the research on multiferroics. In this study, we utilized the ``high-pressure'' to attain a magnetically-controllable spin-driven P with its magnitude being comparable to that in conventional ferroelectrics [T. Aoyama et al., Nature Commun. 5, 4927 (2014)]. With a home-made high-pressure measurement system with a diamond anvil cell, we investigated high-pressure effects on ME properties of perovskite RMnO3 (R = Gd, Tb, and Dy). Our study revealed that these manganites exhibit a pressure-induced ME phase transition and that the high-pressure phase shows the largest P (e.g., 1 μC/cm2 in TbMnO3) among spin-driven ferroelectrics ever reported. Moreover, P is further enhanced by applying a magnetic field. Our study demonstrates that it is possible to attain giant spin-driven ferroelectric polarization which comes close to that in conventional ferroelectrics, and to control it magnetically.

  1. 3He Spin Filter for Neutrons

    PubMed Central

    Batz, M.; Baeßler, S.; Heil, W.; Otten, E. W.; Rudersdorf, D.; Schmiedeskamp, J.; Sobolev, Y.; Wolf, M.

    2005-01-01

    The strongly spin-dependent absorption of neutrons in nuclear spin-polarized 3He opens up the possibility of polarizing neutrons from reactors and spallation sources over the full kinematical range of cold, thermal and hot neutrons. This paper gives a report on the neutron spin filter (NSF) development program at Mainz. The polarization technique is based on direct optical pumping of metastable 3He atoms combined with a polarization preserving mechanical compression of the gas up to a pressure of several bar, necessary to run a NSF. The concept of a remote type of operation using detachable NSF cells is presented which requires long nuclear spin relaxation times of order 100 hours. A short survey of their use under experimental conditions, e.g. large solid-angle polarization analysis, is given. In neutron particle physics NSFs are used in precision measurements to test fundamental symmetry concepts. PMID:27308139

  2. Polarization and lattice strains in epitaxial BaTiO3 films grown by high-pressure sputtering

    NASA Astrophysics Data System (ADS)

    Petraru, A.; Pertsev, N. A.; Kohlstedt, H.; Poppe, U.; Waser, R.; Solbach, A.; Klemradt, U.

    2007-06-01

    High-quality BaTiO3 films with thicknesses ranging from 2.9to175nm were grown epitaxially on SrRuO3-covered (001)-oriented SrTiO3 substrates by high-pressure sputtering. The crystal structure of these films was studied by conventional and synchrotron x-ray diffraction. The in-plane and out-of-plane lattice parameters were determined as a function of film thickness by x-ray reciprocal space mapping around the asymmetric (1¯03) Bragg reflection. BaTiO3 films were found to be fully strained by the SrTiO3 substrate up to a thickness of about 30nm. Ferroelectric capacitors were then fabricated by depositing SrRuO3 top electrodes, and the polarization-voltage hysteresis loops were recorded at the frequencies 1-30kHz. The observed thickness effect on the lattice parameters and polarization in BaTiO3 films was analyzed in the light of strain and depolarizing-field effects using the nonlinear thermodynamics theory. The theoretical predictions are in reasonable agreement with the measured thickness dependences, although the maximum experimental values of the spontaneous polarization and the out-of-plane lattice parameter exceed the theoretical estimates (43μC /cm2 vs 35μC/cm2 and 4.166Å vs 4.143Å). Possible origins of the revealed discrepancy between theory and experiment are discussed.

  3. Single spin asymmetries in charged pion production from semi-inclusive deep inelastic scattering on a transversely polarized 3He Target at Q2 = 1.4-2.7 GeV2.

    PubMed

    Qian, X; Allada, K; Dutta, C; Huang, J; Katich, J; Wang, Y; Zhang, Y; Aniol, K; Annand, J R M; Averett, T; Benmokhtar, F; Bertozzi, W; Bradshaw, P C; Bosted, P; Camsonne, A; Canan, M; Cates, G D; Chen, C; Chen, J-P; Chen, W; Chirapatpimol, K; Chudakov, E; Cisbani, E; Cornejo, J C; Cusanno, F; Dalton, M M; Deconinck, W; de Jager, C W; De Leo, R; Deng, X; Deur, A; Ding, H; Dolph, P A M; Dutta, D; El Fassi, L; Frullani, S; Gao, H; Garibaldi, F; Gaskell, D; Gilad, S; Gilman, R; Glamazdin, O; Golge, S; Guo, L; Hamilton, D; Hansen, O; Higinbotham, D W; Holmstrom, T; Huang, M; Ibrahim, H F; Iodice, M; Jiang, X; Jin, G; Jones, M K; Kelleher, A; Kim, W; Kolarkar, A; Korsch, W; LeRose, J J; Li, X; Li, Y; Lindgren, R; Liyanage, N; Long, E; Lu, H-J; Margaziotis, D J; Markowitz, P; Marrone, S; McNulty, D; Meziani, Z-E; Michaels, R; Moffit, B; Camacho, C Muñoz; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Oh, Y; Osipenko, M; Parno, D; Peng, J C; Phillips, S K; Posik, M; Puckett, A J R; Qiang, Y; Rakhman, A; Ransome, R D; Riordan, S; Saha, A; Sawatzky, B; Schulte, E; Shahinyan, A; Shabestari, M H; Sirca, S; Stepanyan, S; Subedi, R; Sulkosky, V; Tang, L-G; Tobias, A; Urciuoli, G M; Vilardi, I; Wang, K; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yuan, L; Zhan, X; Zhang, Y-W; Zhao, B; Zheng, X; Zhu, L; Zhu, X; Zong, X

    2011-08-12

    We report the first measurement of target single spin asymmetries in the semi-inclusive (3)He(e,e'π(±))X reaction on a transversely polarized target. The experiment, conducted at Jefferson Lab using a 5.9 GeV electron beam, covers a range of 0.16 < x < 0.35 with 1.4 < Q(2) < 2.7 GeV(2). The Collins and Sivers moments were extracted from the azimuthal angular dependence of the measured asymmetries. The π(±) Collins moments for (3)He are consistent with zero, except for the π(+) moment at x = 0.35, which deviates from zero by 2.3σ. While the π(-) Sivers moments are consistent with zero, the π(+) Sivers moments favor negative values. The neutron results were extracted using the nucleon effective polarization and measured cross section ratios of proton to (3)He, and are largely consistent with the predictions of phenomenological fits and quark model calculations. PMID:21902386

  4. The n3He Experiment: Current Status

    NASA Astrophysics Data System (ADS)

    McCrea, Mark; n3He Collaboration

    2014-09-01

    The n3He experiment aims to make a high precision measurement of the hadronic weak interaction in the reaction n-> +3 He --> p + T by measuring the parity violating asymmetry in the direction of proton emission relative to the neutron polarization direction. As the weak interaction is the only interaction to violate parity this allows us to extract the much smaller weak interaction effects from the larger strong interaction effects. The range of the asymmetry is estimated to be (- 9 . 5 --> 2 . 5) ×10-8 . The goal is to measure this asymmetry with an accuracy of 2 ×10-8 to provide a benchmark for modern effective field theory calculations. n3He will run at the SNS Fundamental Neutron Physics Beamline. The combined target and detector is a multiwire 3He ionization chamber. A super mirror polarizer will be used to polarize the incoming cold neutron beam, and a spin flipper will reverse the spin in a sequence to control for systematic effects.

  5. The 3He Supply Problem

    SciTech Connect

    Kouzes, Richard T.

    2009-05-01

    One of the main uses for 3He is in gas proportional counters for neutron detection. Radiation portal monitors deployed for homeland security and non-proliferation use such detectors. Other uses of 3He are for research detectors, commercial instruments, well logging detectors, dilution refrigerators, for targets or cooling in nuclear research, and for basic research in condensed matter physics. The US supply of 3He comes almost entirely from the decay of tritium used in nuclear weapons by the US and Russia. A few other countries contribute a small amount to the world’s 3He supply. Due to the large increase in use of 3He for homeland security, the supply has dwindled, and can no longer meet the demand. This white paper reviews the problems of supply, utilization, and alternatives.

  6. IEC-^3He Breeder for D-^3He Satellite Systems.

    NASA Astrophysics Data System (ADS)

    Chacon, L.; Miley, G. H.

    1996-11-01

    D-^3He fusion minimizes neutrons and maximizes charged fusion products, enabling increased energy recovery efficiency by direct conversion. However, scarce ^3He terrestrial resources have deterred R&D on this alternative. Here, we explore ^3He production through Inertial Electrostatic Confinement^1 (IEC) D-breeders, which supply ^3He to FRC D-^3He satellite reactors.^2 Favorable features for the IEC breeder include simplicity, low cost, easy extraction of fusion products, and compatibility with direct conversion. The breeder-satellite system energy balance is analyzed taking the net energy gain of the overall system, Q_N, as the figure of merit. Breeding is applicable for systems where the satellite Q-value, Q_S, > the breeder Q-value, Q_B. For improved performance, i.e., for high Q_N, QS >= QB >> 1 is needed; however, lower QB values (typical of the IEC) are permissible and still offer sufficient Q_N. An economic study determined breeding produces ^3He at a cost comparable to lunar ^3He, already shown to lead to competitive power.^3 The cost of electricity (COE) for the breeder-satellite complex was compared with the ARTEMIS COE,^4 using lunar ^3He fuel: assuming one satellite (1000 MWe)/breeder (170 MWe), the ratio of the breeding system COE to the lunar mining base COE is ~ 1.2. However, economic breeding is driven by large IEC breeder powers, i.e., increased ^3He breeding rates. Thus, the COE ratio approaches unity with two or three satellites/breeder, requiring increased breeder size and power (340 MWe for 2 satellites, 510 MWe for 3 satellites). Such systems potentially provide a ``bridge'' to a future lunar ^3He economy. 1. G.H. Miley et al., Dense Z-pinches, AIP Conf. 299, AIP Press, 675-689 (1994). 2. G.H. Miley, Nucl. Instrum. Methods, A271, 197-202 (1988). 3. L.J. Wittenberg et al., Fusion Technol., 10, 167-178 (1986). 4. H. Momota et al., Fusion Technol., 21, 2307-2323 (1992).

  7. Measurement of the doubly-polarized 3He → (γ → , n) pp reaction at 16.5 MeV and its implications for the GDH sum rule

    NASA Astrophysics Data System (ADS)

    Laskaris, G.; Yan, X.; Mueller, J. M.; Zimmerman, W. R.; Xiong, W.; Ahmed, M. W.; Averett, T.; Chu, P.-H.; Deltuva, A.; Flower, C.; Fonseca, A. C.; Gao, H.; Golak, J.; Heideman, J. N.; Karwowski, H. J.; Meziane, M.; Sauer, P. U.; Skibiński, R.; Strakovsky, I. I.; Weller, H. R.; Witała, H.; Wu, Y. K.

    2015-11-01

    We report new measurements of the double-polarized photodisintegration of 3He at an incident photon energy of 16.5 MeV, carried out at the High Intensity γ-ray Source (HIγS) facility located at Triangle Universities Nuclear Laboratory (TUNL). The spin-dependent double-differential cross sections and the contribution from the three-body channel to the Gerasimov-Drell-Hearn (GDH) integrand were extracted and compared with the state-of-the-art three-body calculations. The calculations, which include the Coulomb interaction and are in good agreement with the results of previous measurements at 12.8 and 14.7 MeV, deviate from the new cross section results at 16.5 MeV. The GDH integrand was found to be about one standard deviation larger than the maximum value predicted by the theories.

  8. Study of the reactions /sup 2/H(d,p)/sup 3/H and /sup 2/H(d,n)/sup 3/He with a polarized deuteron beam. Measurement of the analyzing power

    SciTech Connect

    Ad'yasevich, B.P.; Antonenko, V.G.; Fomenko, D.E.

    1981-03-01

    The angular distributions of all charged particles produced in the mirror reactions /sup 2/H(d,p)/sup 3/H and /sup 2/H(d,n)/sup 3/He in a gaseous deuterium target approx.10 keV thick have been measured for polarized-deuteron energies from 60 to 485 keV for various orientations of the beam axis. The angular distributions of the analyzing powers A/sub y/(theta), A/sub z/z(theta), A/sub x/z(theta), and A/sub x/x-yy(theta) have been measured for 12 values of the energy for each reaction at angles from 20/sup 0/ to 150/sup 0/ (in the laboratory frame). The results are shown as contour diagrams and compared with the results of similar experiments. The differences found are attributed to the effect of the target thickness and the energy calibration.

  9. On 3He bolometer systems

    NASA Technical Reports Server (NTRS)

    Houck, J. R.

    1983-01-01

    A 3He cryostat which was constructed to cool a germanium bolometer for use as an infrared detector at submillimeter wavelength is discussed. The system had better sensitivity than any other existing system for these wavelengths; the system could be improved if better optical coupling could be achieved between the bolometer and the incoming photon stream. Considerable effort was expended to improve this coupling. Even the best results however, fell short of an ideal system by a factor of nearly 5 in coupling efficiency.

  10. A multipurpose 3He refrigerator

    NASA Astrophysics Data System (ADS)

    Pizzo, L.; Dall'Oglio, G.; Martinis, L.; Sabbatini, L.

    2006-10-01

    We introduce a mini 3He refrigerator, operating at ˜300 mK starting from 4.2 K without pumping on the main 4He bath. The innovative idea is that the present one is suitable for a very fast operation; for its use, it is sufficient a storage 4He Dewar. In this way we drastically reduce the time required to cool it down, because there is no need for a classic cryostat. This prototype is particularly aimed for all those operations in which it is necessary to test a large number of samples that do not require long duration measurements at low temperature.

  11. Precision Measurement of the Spin-dependent Asymmetry in the Threshold Region of Quasielastic 3He

    SciTech Connect

    Feng Xiong

    2002-09-01

    The first precision measurement of the spin-dependent asymmetry in the threshold region of polarized {sup 3}He(polarized e, e') was carried out in Hall A at the Jefferson Laboratory, using a longitudinally polarized continuous electron beam incident on a high-pressure polarized {sup 3}He gas target. The polarized electron beam was generated by illuminating a strained GaAs cathode with high intensity circularly polarized laser light, and an average beam polarization of about 70% was achieved. The {sup 3}He target was polarized based on the principle of spin-exchange optical pumpint and the average target polarization was about 30%. The scattered electrons were detected in the two Hall A high resolution spectrometers, HRSe and HRSh. The data from HRSh were used for this analysis and covered both the elastic peak and the threshold region. Two kinematic points were measured in the threshold region, one with a central Q{sup 2}-value of 0.1 (GeV/c){sup 2} at an incident beam energy E{sub 0} = 0.778 GeV and the other with a central Q{sup 2}-value of 0.2 (GeV/c){sup 2} at E-0 = 1.727 GeV. The average beam current was 10 mu-A, which was mainly due to the limitation of the polarized {sup 3}He target. The measured asymmetry was compared with both plane wave impulse approximation (PWIA) calculations and non-relativistic full Faddeev calculations which include both final-state interactions (FSIs) and meson-exchange currents (MECs) effects. The poor description of the data by PWIA calculations at both Q{sup 2}-values suggests the existence of strong FSI and MEC effects in the threshold region of polarized {sup 3}He (polarized e, e'). Indeed, the agreement between the data and full calculations is very good at Q{sup 2} = 0.1 (GeV/c){sup 2}. On the other hand, a small discrepancy at Q{sup 2} = 0.2 (GeV/c){sup 2} is observed, which might be due to some Q{sup 2} -dependent effects such as relativity and three-nucleon forces (3NFs), which are not included in the framework of non

  12. Hard Photodisintegration of 3He

    NASA Astrophysics Data System (ADS)

    Granados, Carlos

    2011-02-01

    Large angle photodisintegration of two nucleons from the 3He nucleus is studied within the framework of the hard rescattering model (HRM). In the HRM the incoming photon is absorbed by one nucleon's valence quark that then undergoes a hard rescattering reaction with a valence quark from the second nucleon producing two nucleons emerging at large transverse momentum . Parameter free cross sections for pp and pn break up channels are calculated through the input of experimental cross sections on pp and pn elastic scattering. The calculated cross section for pp breakup and its predicted energy dependency are in good agreement with recent experimental data. Predictions on spectator momentum distributions and helicity transfer are also presented.

  13. The contribution of the {}^3He(γ ,n)pp reaction to the GDH integrand below pion production threshold

    NASA Astrophysics Data System (ADS)

    Laskaris, G.

    2016-03-01

    The first measurements of the three-body phototdisintegration of 3He polarized parallel and anti-parallel to a circularly polarized γ-ray beam were carried out at the High Intensity γ-ray Source (HIγS) facility located at Triangle Universities Nuclear Laboratory (TUNL). A high pressure 3He target, polarized via spin-exchange optical pumping with alkali metals, was used in the experiments. The neutrons from the three-body photodisintegration were detected with sixteen 12.7 cm diameter liquid scintillator detectors. The spin-dependent cross sections and the contributions from the three-body photodisintegration to the 3He Gerasimov-Drell-Hearn sum rule integrand were extracted and compared with state-of-the-art three-body calculations at the incident photon energies of 12.8, 14.7, and 16.5 MeV. The calculations, which include the Coulomb interaction are in good agreement with the results of the measurements at 12.8 and 14.7 MeV but deviate from the results at 16.5 MeV.

  14. Ultrasensitive 3He magnetometer for measurements of high magnetic fields

    NASA Astrophysics Data System (ADS)

    Nikiel, Anna; Blümler, Peter; Heil, Werner; Hehn, Manfred; Karpuk, Sergej; Maul, Andreas; Otten, Ernst; Schreiber, Laura M.; Terekhov, Maxim

    2014-11-01

    We describe a 3He magnetometer capable to measure high magnetic fields ( B> 0.1 T) with a relative accuracy of better than 10-12. Our approach is based on the measurement of the free induction decay of gaseous, nuclear spin polarized 3He following a resonant radio frequency pulse excitation. The measurement sensitivity can be attributed to the long coherent spin precession time T2 ∗ being of order minutes which is achieved for spherical sample cells in the regime of "motional narrowing" where the disturbing influence of field inhomogeneities is strongly suppressed. The 3He gas is spin polarized in situ using a new, non-standard variant of the metastability exchange optical pumping. We show that miniaturization helps to increase T2 ∗ further and that the measurement sensitivity is not significantly affected by temporal field fluctuations of order 10-4.

  15. Combined single crystal polarized XAFS and XRD at high pressure: Probing the interplay between lattice distortions and electronic order at multiple length scales in high Tc cuprates

    DOE PAGESBeta

    Fabbris, G.; Hucker, M.; Gu, G. D.; Tranquada, J. M.; Haskel, D.

    2016-06-30

    Some of the most exotic material properties derive from electronic states with short correlation length (~10-500 Å), suggesting that the local structural symmetry may play a relevant role in their behavior. In this study, we discuss the combined use of polarized x-ray absorption fine structure and x-ray diffraction at high pressure as a powerful method to tune and probe structural and electronic orders at multiple length scales. Besides addressing some of the technical challenges associated with such experiments, we illustrate this approach with results obtained in the cuprate La1.875Ba0.125CuO4, in which the response of electronic order to pressure can onlymore » be understood by probing the structure at the relevant length scales.« less

  16. Combined single crystal polarized XAFS and XRD at high pressure: probing the interplay between lattice distortions and electronic order at multiple length scales in high T c cuprates

    DOE PAGESBeta

    Fabbris, G.; Hücker, M.; Gu, G. D.; Tranquada, J. M.; Haskel, D.

    2016-07-14

    Some of the most exotic material properties derive from electronic states with short correlation length (~10-500 Å), suggesting that the local structural symmetry may play a relevant role in their behavior. In this study, we discuss the combined use of polarized x-ray absorption fine structure and x-ray diffraction at high pressure as a powerful method to tune and probe structural and electronic orders at multiple length scales. Besides addressing some of the technical challenges associated with such experiments, we illustrate this approach with results obtained in the cuprate La1.875Ba0.125CuO4, in which the response of electronic order to pressure can onlymore » be understood by probing the structure at the relevant length scales.« less

  17. Nontarget analysis of polar contaminants in freshwater sediments influenced by pharmaceutical industry using ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry.

    PubMed

    Terzic, Senka; Ahel, Marijan

    2011-02-01

    A comprehensive analytical procedure for a reliable identification of nontarget polar contaminants in aquatic sediments was developed, based on the application of ultra-high-pressure liquid chromatography (UHPLC) coupled to hybrid quadrupole time-of-flight mass spectrometry (QTOFMS). The procedure was applied for the analysis of freshwater sediment that was highly impacted by wastewater discharges from the pharmaceutical industry. A number of different contaminants were successfully identified owing to the high mass accuracy of the QTOFMS system, used in combination with high chromatographic resolution of UHPLC. The major compounds, identified in investigated sediment, included a series of polypropylene glycols (n=3-16), alkylbenzene sulfonate and benzalkonium surfactants as well as a number of various pharmaceuticals (chlorthalidone, warfarin, terbinafine, torsemide, zolpidem and macrolide antibiotics). The particular advantage of the applied technique is its capability to detect less known pharmaceutical intermediates and/or transformation products, which have not been previously reported in freshwater sediments. PMID:21056522

  18. Metastability exchange optical pumping of 3He gas up to hundreds of millibars at 4.7 Tesla

    NASA Astrophysics Data System (ADS)

    Nikiel-Osuchowska, Anna; Collier, Guilhem; Głowacz, Bartosz; Pałasz, Tadeusz; Olejniczak, Zbigniew; Wȩglarz, Władysław P.; Tastevin, Geneviève; Nacher, Pierre-Jean; Dohnalik, Tomasz

    2013-09-01

    Metastability exchange optical pumping (MEOP) is experimentally investigated in 3He at 4.7 T, at room temperature and for gas pressures ranging from 1 to 267 mbar. The 23S-23P transition at 1083 nm is used for optical pumping and for detection of the laser-induced orientation of 3He atoms in the rf discharge plasma. The collisional broadening rate is measured (12.0 ± 0.4 MHz mbar-1 FHWM) and taken into account for accurate absorption-based measurements of both nuclear polarization in the ground state and atom number density in the metastable 23S state. The results lay the ground for a comprehensive assessment of the efficiency of MEOP, by comparison with achievements at lower field (1 mT-2 T) over an extended range of operating conditions. Stronger hyperfine decoupling in the optically pumped 23S state is observed to systematically lead to slower build-up of 3He orientation in the ground state, as expected. The nuclear polarizations obtained at 4.7 T still decrease at high pressure but in a less dramatic way than observed at 2 T in the same sealed glass cells. To date, thanks to the linear increase in gas density, they correspond to the highest nuclear magnetizations achieved by MEOP in pure 3He gas. The improved efficiency puts less demanding requirements for compression stages in polarized gas production systems and makes high-field MEOP particularly attractive for magnetic resonance imaging of the lungs, for instance.

  19. Quark-Hadron Duality in Neutron (3He) Spin Structure

    SciTech Connect

    Solvignon, Patricia; Liyanage, Nilanga; Chen, Jian-Ping; Choi, Seonho; Aniol, Konrad; Averett, Todd; Boeglin, Werner; Camsonne, Alexandre; Cates, Gordon; Chang, C.; Chang, C.C.; Chang, C.; Chang, C.C.; Chudakov, Eugene; Craver, Brandon; Cusanno, Francesco; Deur, Alexandre; Dutta, Dipangkar; Ent, Rolf; Feuerbach, Robert; Frullani, Salvatore; Gao, Haiyan; Garibaldi, Franco; Gilman, Ronald; Glashausser, Charles; Gorbenko, Viktor; Hansen, Jens-Ole; Higinbotham, Douglas; Ibrahim, Hassan; Jiang, Xiaodong; Jones, Mark; Kelleher, Aidan; Kelly, J.; Keppel, Cynthia; Kim, Wooyoung; Korsch, Wolfgang; Kramer, Kevin; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Ma, Bin; Margaziotis, Demetrius; Markowitz, Pete; McCormick, Kathy; Meziani, Zein-Eddine; Michaels, Robert; Moffit, Bryan; Monaghan, Peter; Munoz-Camacho, Carlos; Paschke, Kent; Reitz, Bodo; Saha, Arunava; Sheyor, Ran; Singh, Jaideep; Slifer, Karl; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Tobias, William; Urciuoli, Guido; Wang, Kebin; Wijesooriya, Krishni; Wojtsekhowski, Bogdan; Woo, Seungtae; Yang, Jae-Choon; Zheng, Xiaochao; Zhu, Lingyan

    2008-10-01

    We present experimental results of the first high-precision test of quark-hadron duality in the spin-structure function g_1 of the neutron and $^3$He using a polarized 3He target in the four-momentum-transfer-squared range from 0.7 to 4.0 (GeV/c)^2. Global duality is observed for the spin-structure function g_1 down to at least Q^2 = 1.8 (GeV/c)^2 in both targets. We have also formed the photon-nucleon asymmetry A_1 in the resonance region for 3He and found no strong Q^2-dependence above 2.2 (GeV/c)^2.

  20. Light-Front Dynamics and the {{3He}} Spectral Function

    NASA Astrophysics Data System (ADS)

    Pace, Emanuele; Del Dotto, Alessio; Kaptari, Leonid; Rinaldi, Matteo; Salmé, Giovanni; Scopetta, Sergio

    2016-07-01

    Two topics are presented. The first one is a novel approach for a Poincaré covariant description of nuclear dynamics based on light-front Hamiltonian dynamics. The key quantity is the light-front spectral function, where both normalization and momentum sum rule can be satisfied at the same time. Preliminary results are discussed for an initial analysis of the role of relativity in the EMC effect in {{3He}}. A second issue, very challenging, is considered in a non-relativistic framework, namely a distorted spin-dependent spectral function for {{3He}} in order to take care of the final state interaction between the observed pion and the remnant in semi-inclusive deep inelastic electron scattering off polarized {{3He}}. The generalization of the analysis within the light-front dynamics is outlined.

  1. Vortices in rotating superfluid 3He.

    PubMed

    Lounasmaa, O V; Thuneberg, E

    1999-07-01

    In this review we first present an introduction to 3He and to the ROTA collaboration under which most of the knowledge on vortices in superfluid 3He has been obtained. In the physics part, we start from the exceptional properties of helium at millikelvin temperatures. The dilemma of rotating superfluids is presented. In 4He and in 3He-B the problem is solved by nucleating an array of singular vortex lines. Their experimental detection in 3He by NMR is described next. The vortex cores in 3He-B have two different structures, both of which have spontaneously broken symmetry. A spin-mass vortex has been identified as well. This object is characterized by a flow of spins around the vortex line, in addition to the usual mass current. A great variety of vortices exist in the A phase of 3He; they are either singular or continuous, and their structure can be a line or a sheet or fill the whole liquid. Altogether seven different types of vortices have been detected in 3He by NMR. We also describe briefly other experimental methods that have been used by ROTA scientists in studying vortices in 3He and some important results thus obtained. Finally, we discuss the possible applications of experiments and theory of 3He to particle physics and cosmology. In particular, we report on experiments where superfluid 3He-B was heated locally by absorption of single neutrons. The resulting events can be used to test theoretical models of the Big Bang at the beginning of our universe. PMID:10393895

  2. Vortices in rotating superfluid 3He

    PubMed Central

    Lounasmaa, Olli V.; Thuneberg, Erkki

    1999-01-01

    In this review we first present an introduction to 3He and to the ROTA collaboration under which most of the knowledge on vortices in superfluid 3He has been obtained. In the physics part, we start from the exceptional properties of helium at millikelvin temperatures. The dilemma of rotating superfluids is presented. In 4He and in 3He-B the problem is solved by nucleating an array of singular vortex lines. Their experimental detection in 3He by NMR is described next. The vortex cores in 3He-B have two different structures, both of which have spontaneously broken symmetry. A spin-mass vortex has been identified as well. This object is characterized by a flow of spins around the vortex line, in addition to the usual mass current. A great variety of vortices exist in the A phase of 3He; they are either singular or continuous, and their structure can be a line or a sheet or fill the whole liquid. Altogether seven different types of vortices have been detected in 3He by NMR. We also describe briefly other experimental methods that have been used by ROTA scientists in studying vortices in 3He and some important results thus obtained. Finally, we discuss the possible applications of experiments and theory of 3He to particle physics and cosmology. In particular, we report on experiments where superfluid 3He-B was heated locally by absorption of single neutrons. The resulting events can be used to test theoretical models of the Big Bang at the beginning of our universe. PMID:10393895

  3. Superfluid phases of 3He in nanoscale channels

    NASA Astrophysics Data System (ADS)

    Wiman, J. J.; Sauls, J. A.

    2015-10-01

    Confinement of superfluid 3He on length scales comparable to the radial size of the p -wave Cooper pairs can greatly alter the phase diagram by stabilizing broken symmetry phases not observed in bulk 3He. We consider superfluid 3He confined within long cylindrical channels of radius 100 nm , and report new theoretical predictions for the equilibrium superfluid phases under strong confinement. The results are based on the strong-coupling formulation of Ginzburg-Landau (GL) theory with precise numerical minimization of the free energy functional to identify the equilibrium phases and their regions of stability. We introduce an extension of the standard GL strong-coupling theory that accurately accounts for the phase diagram at high pressures, including the tricritical point and TA B(p ) line defining the region of stability for the bulk A phase. We also introduce tuneable boundary conditions that allow us to explore boundary scattering ranging from maximal to minimal pairbreaking, and report results for the phase diagram as a function of pressure, temperature, and boundary conditions. Four stable phases are found: a polar phase stable in the vicinity of Tc, a strongly anisotropic, cylindrical analog of the bulk B phase stable at sufficiently low temperatures, and two chiral A-like phases with distinctly different orbital symmetry, one of which spontaneously breaks rotation symmetry about the axis of the cylindrical channel. The relative stability of these phases depends sensitively on pressure and the degree of pairbreaking by boundary scattering. The broken symmetries exhibited by these phases give rise to distinct signatures in transverse nuclear magnetic resonance (NMR) spectroscopy. We present theoretical results for the transverse NMR frequency shifts as functions of temperature, the rf pulse tipping angle, and the static NMR field orientation.

  4. Spin Duality on the Neutron (^3He)

    SciTech Connect

    Solvignon, Patricia

    2007-02-01

    Thomas Jefferson National Accelerator Facility experiment E01-012 measured the 3He spin structure functions and virtual photon asymmetries in the resonance region in the momentum transfer range 1.0 < Q2 < 4.0 (GeV/c)2. Our date, when compared with existing deep inelastic scattering data, can be used to test quark-hadron duality in g1 and A1 for 3He and the neutron. Preliminary results for A{sub 1}{sup {sup 3}He} are presented, as well as some details about the experiment.

  5. Theory of spin-exchange optical pumping of 3He and 129Xe

    NASA Astrophysics Data System (ADS)

    Appelt, S.; Baranga, A. Ben-Amar; Erickson, C. J.; Romalis, M. V.; Young, A. R.; Happer, W.

    1998-08-01

    We present a comprehensive theory of nuclear spin polarization of 3He and 129Xe gases by spin-exchange collisions with optically pumped alkali-metal vapors. The most important physical processes considered are (1) spin-conserving spin-exchange collisions between like or unlike alkali-metal atoms; (2) spin-destroying collisions of the alkali-metal atoms with each other and with buffer-gas atoms; (3) electron-nuclear spin-exchange collisions between alkali-metal atoms and 3He or 129Xe atoms; (4) spin interactions in van der Waals molecules consisting of a Xe atom bound to an alkali-metal atom; (5) optical pumping by laser photons; (6) spatial diffusion. The static magnetic field is assumed to be small enough that the nuclear spin of the alkali-metal atom is well coupled to the electron spin and the total spin is very nearly a good quantum number. Conditions appropriate for the production of large quantities of spin-polarized 3He or 129Xe gas are assumed, namely, atmospheres of gas pressure and nearly complete quenching of the optically excited alkali-metal atoms by collisions with N2 or H2 gas. Some of the more important results of this work are as follows: (1) Most of the pumping and relaxation processes are sudden with respect to the nuclear polarization. Consequently, the steady-state population distribution of alkali-metal atoms is well described by a spin temperature, whether the rate of spin-exchange collisions between alkali-metal atoms is large or small compared to the optical pumping rate or the collisional spin-relaxation rates. (2) The population distributions that characterize the response to sudden changes in the intensity of the pumping light are not described by a spin temperature, except in the limit of very rapid spin exchange. (3) Expressions given for the radio-frequency (rf) resonance linewidths and areas can be used to make reliable estimates of the local spin polarization of the alkali-metal atoms. (4) Diffusion effects for these high-pressure

  6. Gas cells for 3He hyperpolarized via spin-exchange optical pumping

    NASA Astrophysics Data System (ADS)

    Kim, W.; Stepanyan, S. S.; Kim, A.; Tan, J. A.; Woo, S.

    2016-01-01

    We present a device for the production of hyperpolarized 3He, which is widely used in spinrelated nuclear physics research. Spin-exchange optical pumping (SEOP) is employed to polarize 3He enclosed in a circular borosilicate glass cell suitable not only for the production of polarized gas but also for its storage. The portable glass cell can, thus, be transported to any other research facility. The glass cell can be refilled several times. Special attention is given to the preparation and the filling of the cell to minimize the impurities on its walls and in the gas. We employ glass tubes with shorter lengths and larger diameters in the gas-filling system to achieve the improvement in the air flow necessary to obtain purer polarized 3He samples. The cell is prepared, and after it has been filled with rubidium (Rb) and 3He-N2 mixture, it is sealed under high vacuum conditions. The cell containing the mixture is exposed to circularly-polarized laser light with a wavelength of 795 nm at temperatures of 180 - 220 °C for SEOP. The polarization of 3He is measured via nuclear magnetic resonance (NMR). We obtained 40% polarized 3He in less than 15 hours and 50% in about 25 hours. The longitudinal relaxation time T 1 of the polarized 3He we measured was about 58 hours.

  7. A compact SEOP 3He neutron spin filter with AFP NMR

    NASA Astrophysics Data System (ADS)

    Ino, Takashi; Arimoto, Yasushi; Shimizu, Hirohiko M.; Sakaguchi, Yoshifumi; Sakai, Kenji; Kira, Hiroshi; Shinohara, Takenao; Oku, Takayuki; Suzuki, Jun-ichi; Kakurai, Kazuhisa; Chang, Lieh-Jeng

    2012-02-01

    We developed AFP NMR in an aluminum container for polarized noble gas nuclei. The radio frequency magnetic field inside the aluminum container was designed from computer simulations. The polarization loss by the AFP spin flip of 3He was measured to be as low as 3.8×10-4. With this technique, a compact in-situ polarizing 3He neutron spin filter with AFP NMR is demonstrated.

  8. First measurement of the helicity dependence of 3He photoreactions in the Δ(1232) resonance region

    NASA Astrophysics Data System (ADS)

    Costanza, Susanna

    2014-03-01

    The first measurement of the helicity dependence for several photo-reaction channels on 3He was carried out in the photon energy range between 150 and 500 MeV at the MAMI accelerator (Mainz). The experiment used the large acceptance Crystal Ball spectrometer, complemented by charged particle and vertex detectors, a circularly polarised tagged photon beam and a longitudinally polarised high-pressure 3He gas target. Results of the helicity dependent total inclusive photoabsorption cross section on 3He and of both the unpolarised and polarised partial cross sections for the pion photoproduction channels γ 3He → πX and for the γ 3He → ppn channel, measured for the first time at MAMI, will be shown. They can also be found in [1].

  9. A new generation of 3He refrigerators

    NASA Astrophysics Data System (ADS)

    Graziani, A.; DalĺOglio, G.; Martinis, L.; Pizzo, L.; Sabbatini, L.

    2003-12-01

    The characteristics and performance of a new class of 3He refrigerators are discussed. We introduce a 3He refrigerator, which allows a temperature of 296 m K to be reached with a starting point of 4.2 K, without pumping on the main 4He bath. The operating principle is based on the single-expansion helium liquefier: gas cooling by isothermal compression and adiabatic expansion.

  10. Study of the reactions /sup 2/H(d, p)/sup 3/H and /sup 2/H(d,n)/sup 3/He with a polarized deuteron beam. Extrapolation of the cross sections to the low-energy region

    SciTech Connect

    Ad'yasevich, B.P.; Antonenko, V.G.; Bragin, V.N.

    1981-05-01

    On the basis of analysis of experimental data on the vector analyzing power of the nuclear reactions /sup 2/H(d,p)/sup 3/H and /sup 2/H(d,n)/sup 3/He and data on the total cross sections for these reactions at energies from 13 to 485 keV we have separated the total cross sections into partial cross sections for s and p waves and have calculated the total cross sections for very low energies down to 0.3 keV. For these same reactions we have calculated the intensities of production of energetic products in a heated deuterium plasma. A formula for practical calculations of this intensity is obtained.

  11. Zircon 4He/3He thermochronometry

    NASA Astrophysics Data System (ADS)

    Tripathy-Lang, Alka; Fox, Matthew; Shuster, David L.

    2015-10-01

    Multiple thermochronometric methods are often required to constrain time-continuous rock exhumation for studying tectonic processes or development of km-scale topography at Earth's surface. Here, we explore 4He/3He thermochronometry of zircon as a method for constraining continuous time-temperature (t-T) paths of individual samples through a temperature range that is complementary to methods such as 40Ar/39Ar thermochronometry of K-feldspar and 4He/3He thermochronometry of apatite. For different cooling rates and diffusion domain size, the temperature sensitivity of zircon 4He/3He thermochronometry ranges from slightly less than 100 °C to slightly greater than 250 °C; a typical sample provides continuous thermal constraints over ∼100 °C within that range. Outside these temperatures, 4He in zircon will either be quantitatively retained or completely lost by volume diffusion. As proof-of-concept, we present stepwise release 4He/3He spectra and associated U and Th concentration maps measured by laser ablation ICP-MS analysis of individual crystal aliquots of Fish Canyon Tuff (FCT) zircon and of a more complex setting in the Sierra Nevada batholith that experienced reheating from a proximal basaltic intrusion, the Little Devil's Postpile (LDP). The FCT zircon 4He/3He release spectra are consistent with a 4He spatial distribution dominated by alpha-ejection from crystal surfaces. The spatial distributions of U and Th measured in the same crystals do not substantially influence 4He/3He release spectra that are predicted for the known thermal history, even when incorporating spatially variable diffusivity due to accumulation of radiation damage. Conversely, the LDP 4He/3He release spectra are strongly influenced by the observed parent nuclide zonation. A three-dimensional (3D) numerical model of 4He production and diffusion, which incorporates crystal geometry, U and Th zonation, and spatially variable He diffusion kinetics, substantially improves the fit between

  12. Dislocation motion in solid hcp 3He

    NASA Astrophysics Data System (ADS)

    Beamish, John; Cheng, Zhi Gang

    At temperatures above about 100 mK, dislocations reduce the shear modulus of hcp 4He by as much as 90 %. This occurs when dislocations thermally unbind from the 3He impurities that pin them, becoming extraordinarily mobile. The elastic softening is accompanied by a thermally activated dissipation peak due to the 3He impurities. At higher temperatures the dissipation has an ωT4 dependence caused by scattering of thermal phonons from moving dislocations. Previous measurements on the fermi solid, hcp 3He, showed a similar dislocation softening, but the corresponding dissipation was not measured. We have extended these measurements by measuring the temperature, amplitude and frequency dependence of both the shear modulus and the dissipation in hcp 3He. The dissipation behavior is very different from that of hcp 4He. Neither the impurity unbinding peak associated with the elastic softening, nor the high temperature phonon scattering dissipation, were observed. Instead, there is a large and non-thermally activated dissipation which is largest at low frequencies. We believe that this unexpected dissipation is associated with a new dislocation damping mechanism in 3He, perhaps associated with spin rearrangements caused by moving dislocations. This work was supported by a grant from NSERC Canada.

  13. Optimised adiabatic fast passage spin flipping for 3He neutron spin filters

    NASA Astrophysics Data System (ADS)

    McKetterick, T. J.; Boag, S.; Stewart, J. R.; Frost, C. D.; Skoda, M. W. A.; Parnell, S. R.; Babcock, E.

    2011-06-01

    We describe here a method of performing adiabatic fast passage (AFP) spin flipping of polarized 3He used as a neutron spin filter (NSF) to polarize neutron beams. By reversing the spin states of the 3He nuclei the polarization of a neutron beam can be efficiently reversed allowing for the transmission of a neutron beam polarized in either spin state. Using an amplitude modulated frequency sweep lasting 500 ms we can spin flip a polarized 3He neutron spin filter with only 1.8×10-5 loss in 3He polarization. The small magnetic fields (10-15 G) used to house neutron spin filters mean the 3He resonant frequencies are low enough to be generated using a computer with a digital I/O card. The versatility of this systems allows AFP to be performed on any beamline or in any laboratory using 3He neutron spin filters and polarization losses can be minimised by adjusting sweep parameters.

  14. Photoproduction of eta-mesic 3He.

    PubMed

    Pfeiffer, M; Ahrens, J; Annand, J R M; Beck, R; Caselotti, G; Cherepnya, S; Föhl, K; Fog, L S; Hornidge, D; Janssen, S; Kashevarov, V; Kondratiev, R; Kotulla, M; Krusche, B; McGeorge, J C; MacGregor, I J D; Mengel, K; Messchendorp, J G; Metag, V; Novotny, R; Rost, M; Sack, S; Sanderson, R; Schadmand, S; Thomas, A; Watts, D P

    2004-06-25

    The photoproduction of eta-mesic 3He has been investigated using the TAPS calorimeter at the Mainz Microtron accelerator facility MAMI. The total inclusive cross section for the reaction gamma3He-->etaX has been measured for photon energies from threshold to 820 MeV. The total and angular differential coherent eta cross sections have been extracted up to energies of 745 MeV. A resonancelike structure just above the eta production threshold with an isotropic angular distribution suggests the existence of a resonant quasibound state. This is supported by studies of a competing decay channel of such a quasibound eta-mesic nucleus into pi(0)pX. A binding energy of (-4.4+/-4.2) MeV and a width of (25.6+/-6.1) MeV is deduced for the quasibound eta-mesic state in 3He. PMID:15244998

  15. Hyperfine structure of /sup 3/He

    SciTech Connect

    Druzbick, J.; Williams, H.T.

    1987-01-01

    Relativistic contribution to the hyperfine structure of /sup 3/He are reexamined in order to resolve inconsistencies in published values. The orbit-orbit and diamagnetic screening contributions are recomputed and are found to contribute less than one part per million (ppm), contrary to previous results. A new value (318 ppm compared to the perturbation result of 327 ppm) is obtained for the relativistic velocity correction using recently available relativistic Hartree-Fock wave functions. New values of the hyperfine-structure splitting of /sup 3/He in the 1S2S state and the /sup 3/He ion in the 1S and 2S states are presented. Comparison with experiment suggests that the relativistic velocity correction should be 323 ppm and the nuclear structure correction should be 184.2 ppm.

  16. Coherent Photoproduction of pi^+ from 3/^He

    SciTech Connect

    Rakhsha Nasseripour, Barry Berman

    2011-03-01

    We have measured the differential cross section for the $\\gamma$$^3$He$\\rightarrow \\pi^+ t$ reaction. This reaction was studied using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Real photons produced with the Hall-B bremsstrahlung tagging system in the energy range from 0.50 to 1.55 GeV were incident on a cryogenic liquid $^3$He target. The differential cross sections for the $\\gamma$$^3$He$\\rightarrow \\pi^+ t$ reaction were measured as a function of photon-beam energy and pion-scattering angle. Theoretical predictions to date cannot explain the large cross sections except at backward angles, showing that additional components must be added to the model.

  17. Nuclear electric dipole moment of 3He

    SciTech Connect

    Stetcu, Ionel; Friar, J L; Hayes, A C; Liu, C P; Navratil, P

    2008-01-01

    In the no-core shell model (NCSM) framework, we calculate the {sup 3}He electric dipole moment (EDM) generated by parity- and time-reversal violation in the nucleon-nucleon interaction. While the results are somehow sensitive to the interaction model chosen for the strong two- and three-body interactions, we demonstrate the pion-exchange dominance to the EDM of {sup 3}He, if the coupling constants for {pi}, {rho} and {omega}-exchanges are of comparable magnitude, as expected. Finally, our results suggest that a measurement of {sup 3}He EDM would be complementary to the currently planned neutron and deuteron experiments, and would constitute a powerful constraint to the models of the pion P- and T-violating interactions.

  18. Applications of {sup 3}He neutron detectors

    SciTech Connect

    Testov, D. A.; Briancon, Ch.; Dmitriev, S. N.; Yeremin, A. V.; Penionzhkevich, Yu. E.; Pyatkov, Yu. V.; Sokol, E. A.

    2009-01-15

    Neutron detectors with {sup 3}He-filled proportional counters are described. The use of these detectors in measuring the probability of neutron emission (in particular, multiparticle neutron emission) after the {beta} decay of neutron-rich nuclei and in studying rare events of spontaneous fission of superheavy nuclei is considered.

  19. Tunable high pressure lasers

    NASA Technical Reports Server (NTRS)

    Hess, R. V.

    1976-01-01

    Atmospheric transmission of high energy CO2 lasers is considerably improved by high pressure operation which, due to pressure broadening, permits tuning the laser lines off atmospheric absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers and for vertical transmission through the entire atmosphere. Applications of tunable high pressure CO2 lasers to energy transmission and to remote sensing are discussed along with initial efforts in tuning high pressure CO2 lasers.

  20. Surface tension maximum of liquid 3He

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koichi; Hasegawa, Syuichi; Suzuki, Masaru; Okuda, Yuichi

    2000-07-01

    The surface tension of liquid 3He was measured using the capillary-rise method. Suzuki et al. have reported that its temperature dependence was almost quenched below 120 mK. Here we have examined it with higher precision and found that it has a small maximum around 100 mK. The amount of the maximum is about 3×10 -4 as a fraction of the surface tension at 0 K. The density of liquid 3He increases with temperature by about 5×10 -4 in Δ ρ/ ρ between 0 and 100 mK. This density change could be one of the reasons of the surface tension maximum around 100 mK.

  1. Development of a 3He nuclear spin flip system on an in-situ SEOP 3He spin filter and demonstration for a neutron reflectometer and magnetic imaging technique

    NASA Astrophysics Data System (ADS)

    Hayashida, H.; Oku, T.; Kira, H.; Sakai, K.; Hiroi, K.; Ino, T.; Shinohara, T.; Imagawa, T.; Ohkawara, M.; Ohoyama, K.; Kakurai, K.; Takeda, M.; Yamazaki, D.; Oikawa, K.; Harada, M.; Miyata, N.; Akutsu, K.; Mizusawa, M.; Parker, J. D.; Matsumoto, Y.; Zhang, S.; Suzuki, J.; Soyama, K.; Aizawa, K.; Arai, M.

    2016-04-01

    We have been developing a 3He neutron spin filter (NSF) using the spin exchange optical pumping (SEOP) technique. The 3He NSF provides a high-energy polarized neutron beam with large beam size. Moreover the 3He NSF can work as a π-flipper for a polarized neutron beam by flipping the 3He nuclear spin using a nuclear magnetic resonance (NMR) technique. For NMR with the in-situ SEOP technique, the polarization of the laser must be reversed simultaneously because a non-reversed laser reduces the polarization of the spin-flipped 3He. To change the polarity of the laser, a half-wavelength plate was installed. The rotation angle of the half-wavelength plate was optimized, and a polarization of 97% was obtained for the circularly polarized laser. The 3He polarization reached 70% and was stable over one week. A demonstration of the 3He nuclear spin flip system was performed at the polarized neutron reflectometer SHARAKU (BL17) and NOBORU (BL10) at J-PARC. Off-specular measurement from a magnetic Fe/Cr thin film and magnetic imaging of a magnetic steel sheet were performed at BL17 and BL10, respectively.

  2. Coupling between Solid 3He on Aerogel and Superfluid 3He in the Low Temperature Limit

    SciTech Connect

    Bradley, D. I.; Fisher, S. N.; Guenault, A. M.; Haley, R. P.; Pickett, G. R.; Tsepelin, V.; Whitehead, R. C. V.; Skyba, P.

    2006-09-07

    We have cooled liquid 3He contained in a 98% open aerogel sample surrounded by bulk superfluid 3He-B at zero pressure to below 120 {mu}K. The aerogel sample is placed in a quasiparticle blackbody radiator cooled by a Lancaster-style nuclear cooling stage to {approx}200 {mu}K. We monitor the temperature of the 3He inside the blackbody radiator using a vibrating wire resonator. We find that reducing the magnetic field on the aerogel sample causes substantial cooling of all the superfluid inside the blackbody radiator. We believe this is due to the demagnetization of the solid 3He layers on the aerogel strands. This system has potential for achieving extremely low temperatures in the confined fluid.

  3. Investigation of the {sup 3}He wave function by quasifree scattering

    SciTech Connect

    Jones, C.E.; Hansen, J.O.; Bloch, C.

    1995-08-01

    The analysis of the data from the CE25 experiment at IUCF, which measured the target and beam analyzing powers and the spin correlation parameter in {sup 3}He(p,2p) and {sup 3}He(p,pn) quasielastic scattering, is nearing completion. At low missing momentum, the extracted polarization of the neutron and proton in {sup 3}He are consistent with Faddeev calculations. Two papers, one reporting the physics results and one describing the experiment, were published. The data from this experiment indicates that for q {>=} 500 MeV/c the plane wave impulse approximation is valid.

  4. A New Method for Precision Cold Neutron Polarimetry Using a 3He Spin Filter

    PubMed Central

    Wietfeldt, F. E.; Gentile, T. R.

    2005-01-01

    We present a new method for precision measurement of the capture flux polarization of a polychromatic (white), continuous cold neutron beam, polarized by a 3He spin filter. This method allows an in situ measurement and does not require knowledge of the neutron beam wavelength distribution. We show that a polarimetry precision of 0.1 % is possible.

  5. Nuclear Electric Dipole Moment of 3He

    SciTech Connect

    Stetcu, I; P.Liu, C; Friar, J L; Hayes, A C; Navratil, P

    2008-04-08

    A permanent electric dipole moment (EDM) of a physical system would require time-reversal (T) violation, which is equivalent to charge-conjugation-parity (CP) violation by CPT invariance. Experimental programs are currently pushing the limits on EDMs in atoms, nuclei, and the neutron to regimes of fundamental theoretical interest. Nuclear EDMs can be studied at ion storage rings with sensitivities that may be competitive with atomic and neutron measurements. Here we calculate the magnitude of the CP-violating EDM of {sup 3}He and the expected sensitivity of such a measurement to the underlying CP-violating interactions. Assuming that the coupling constants are of comparable magnitude for {pi}-, {rho}-, and {omega}-exchanges, we find that the pion-exchange contribution dominates. Finally, our results suggest that a measurement of the {sup 3}He EDM is complementary to the planned neutron and deuteron experiments, and could provide a powerful constraint for the theoretical models of the pion-nucleon P,T-violating interaction.

  6. Nuclear Electric Dipole Moment of ^{3}_He

    SciTech Connect

    Stetcu, I.; Liu, C.-P.; Friar, J. L.; Hayes, A. C.; Navratil, P.

    2008-01-01

    A permanent electric dipole moment (EDM) of a physical system would require time-reversal (T) violation, which is equivalent to charge-conjugation-parity (CP) violation by CPT invariance. Experimental programs are currently pushing the limits on EDMs in atoms, nuclei, and the neutron to regimes of fundamental theoretical interest. Nuclear EDMs can be studied at ion storage rings with sensitivities that may be competitive with atomic and neutron measurements. Here we calculate the magnitude of the CP-violating EDM of ^{3}_He and the expected sensitivity of such a measurement to the underlyng CP-violating interactions. Assuming that the coupling constants are of comparable magnitude for {\\pi}-, {\\rho}-, and {\\omega}-exchanges, we find that the pion-exchange contribution dominates. Our results suggest that a measurement of the ^{3}_He EDM is complementary to the planned neutron and deuteron experiments, and could provide a powerful constraint for the theoretical models of the pion-nucleon P,T-violating interaction.

  7. The Effect Of Neutron Attenuation On Power Deposition In Nuclear Pumped 3He-Lasers

    NASA Astrophysics Data System (ADS)

    Çetin, Füsun

    2007-04-01

    Nuclear-pumped lasers (NPLs) are driven by the products of nuclear reactions and directly convert the nuclear energy to directed optical energy. Pumping gas lasers by nuclear reaction products has the advantage of depositing large energies per reaction. The need for high laser power output implies high operating pressure. In the case of volumetric excitation by 3He(n, p)3H reactions, however, operation at high pressure (more than a few atm) causes excessive neutron attenuation in the 3He gas. This fact adversely effects on energy deposition and, hence, laser output power and beam quality. Here, spatial and temporal variations of neutron flux inside a closed 3He -filled cylindrical laser tube have been numerically calculated for various tube radii and operating pressures by using a previously reported dynamic model for energy deposition. Calculations are made by using ITU TRIGA Mark II Reactor as the neutron source. The effects of neutron attenuation on power deposition are examined.

  8. The Effect Of Neutron Attenuation On Power Deposition In Nuclear Pumped 3He-Lasers

    SciTech Connect

    Cetin, Fuesun

    2007-04-23

    Nuclear-pumped lasers (NPLs) are driven by the products of nuclear reactions and directly convert the nuclear energy to directed optical energy. Pumping gas lasers by nuclear reaction products has the advantage of depositing large energies per reaction. The need for high laser power output implies high operating pressure. In the case of volumetric excitation by 3He(n, p)3H reactions, however, operation at high pressure (more than a few atm) causes excessive neutron attenuation in the 3He gas. This fact adversely effects on energy deposition and, hence, laser output power and beam quality. Here, spatial and temporal variations of neutron flux inside a closed 3He -filled cylindrical laser tube have been numerically calculated for various tube radii and operating pressures by using a previously reported dynamic model for energy deposition. Calculations are made by using ITU TRIGA Mark II Reactor as the neutron source. The effects of neutron attenuation on power deposition are examined.

  9. High-pressure microfluidics

    NASA Astrophysics Data System (ADS)

    Hjort, K.

    2015-03-01

    When using appropriate materials and microfabrication techniques, with the small dimensions the mechanical stability of microstructured devices allows for processes at high pressures without loss in safety. The largest area of applications has been demonstrated in green chemistry and bioprocesses, where extraction, synthesis and analyses often excel at high densities and high temperatures. This is accessible through high pressures. Capillary chemistry has been used since long but, just like in low-pressure applications, there are several potential advantages in using microfluidic platforms, e.g., planar isothermal set-ups, large local variations in geometries, dense form factors, small dead volumes and precisely positioned microstructures for control of reactions, catalysis, mixing and separation. Other potential applications are in, e.g., microhydraulics, exploration, gas driven vehicles, and high-pressure science. From a review of the state-of-art and frontiers of high pressure microfluidics, the focus will be on different solutions demonstrated for microfluidic handling at high pressures and challenges that remain.

  10. Formation of 3He droplets in dilute 3He-4He solid solutions

    NASA Astrophysics Data System (ADS)

    Huan, Chao; Candela, Don; Kim, Sung; Yin, Liang; Xia, Jiang-Sheng; Sullivan, Neil

    2015-03-01

    We review the different stages of the formation of 3He droplets in dilute solid 3He-4He solutions. The studies are interesting because the phase separation in isotopic helium mixtures is a first-order transition with a conserved order parameter. The rate of growth of the droplets as observed in NMR studies is compared with the rates expected for homogeneous nucleation followed by a period of coarsening known as Ostwald ripening. Work suported by the National Science Foundation - DMR-1303599 and DMR- 1157490 (National High Magnetic Field Laboratory).

  11. {sup 3}He melting pressure thermometry

    SciTech Connect

    Ni, W.; Xia, J.S.; Adams, E.D.

    1995-10-01

    High-precision measurements of the {sup 3}He melting pressure versus temperature have been made from 500 {mu}K to 25 mK using a {sup 60}Co nuclear orientation primary thermometer and a Pt NMR susceptibility secondary thermometer. Temperatures for the fixed points on the melting curve are: the superfluid A transition T{sub A}=2.505 mK, the A-B transition T{sub AB}=1.948 mK, and the solid ordering temperature T{sub N}=0.934 mK. These fixed points and a functional form for P(T) constitute a convenient temperature scale, based on a primary thermometer, usable to well below 1 mK.

  12. A nanosecond surface dielectric barrier discharge in air at high pressures and different polarities of applied pulses: transition to filamentary mode

    NASA Astrophysics Data System (ADS)

    Stepanyan, S. A.; Starikovskiy, A. Yu; Popov, N. A.; Starikovskaia, S. M.

    2014-08-01

    The development of a nanosecond surface dielectric barrier discharge in air at pressures 1-6 bar is studied. At atmospheric pressure, the discharge develops as a set of streamers starting synchronously from the high-voltage electrode and propagating along the dielectric layer. Streamers cover the dielectric surface creating a ‘quasi-uniform’ plasma layer. At high pressures and high voltage amplitudes on the cathode, filamentation of the discharge is observed a few nanoseconds after the discharge starts. Parameters of the observed ‘streamers-to-filaments’ transition are measured; physics of transition is discussed on the basis of theoretical estimates and numerical modeling. Ionization-heating instability on the boundary of the cathode layer is suggested as a mechanism of filamentation.

  13. Double-Cell Geometry for 129Xe/3He Co-Magnetometry

    NASA Astrophysics Data System (ADS)

    Ohtomo, Yuichi; Ichikawa, Yuichi; Sato, Tomoya; Sakamoto, Yu; Kojima, Shuichiro; Suzuki, Takahiro; Shirai, Hazuki; Chikamori, Masatoshi; Hikota, Eri; Miyatake, Hirokazu; Nanao, Tsubasa; Suzuki, Kunifumi; Tsuchiya, Masato; Inoue, Takeshi; Furukawa, Takeshi; Yoshimi, Akihiro; Bidinosti, Christopher P.; Ino, Takashi; Ueno, Hideki; Matsuo, Yukari; Fukuyama, Takeshi; Asahi, Koichiro

    Comagnetometers play a key role in EDM experiments. They allow one to quantify, and subsequently correct for, any long-term drifts of the external magnetic field. In order to improve the performance of the 3He comagnetometer for our 129Xe EDM measurements, we have decided to incorporate a double-cell geometry which enables us to suppress a frequency shift due to contact interaction with polarized Rb atoms. In this study, the production and relaxation of 3He spin polarization in the double cell were studied. As a result, the followings were achieved: a polarization of 1.04(8)%, a longitudinal spin relaxation time of 10.1(5) h, and a transverse relaxation time of 2,340 s. With these improvements, concurrent operation of the 129Xe and 3He masers has been realized, and EDM measurement will be started in near future using a cell designed based on the results of this study.

  14. Simulation of detector signals in n+3 He --> p + t

    NASA Astrophysics Data System (ADS)

    Coppola, Christopher; n3He Collaboration

    2015-10-01

    The parity violating proton directional asymmetry from the capture of polarized neutrons on 3He is being measured with a pulsed neutron beam at the Spallation Neutron Source at Oak Ridge National Laboratory. The target is an ion chamber with 3He at approximately half an atmosphere. Signal wires at different locations in the chamber have different sensitivities to the physics asymmetry, which are determined by the geometry and configuration of the experiment. These geometry factors must be determined by simulation. In addition, a simulation can estimate the statistical precision of the experiment, optimize configuration variables, and assist with error analysis. To achieve the most accurate simulation of the detector signals, a custom simulation was written in C++ using weighted variables and taking advantage of parallel execution. The inputs used to construct the simulation came from measurements of the neutron phase space, ENDF cross sections, and PSTAR ionization data. A cell model was used to combine this physics to produce an accurate simulation of the experimental data. This simulation can be used to calculate accurate and tunable geometry factors, and to produce desired quanities for use in optimization and analysis.

  15. Singular behavior of the superfluid /sup 3/He-A at T = 0 and quantum field theory

    SciTech Connect

    Volovik, G.E.

    1987-05-01

    The interaction of the fermionic quasiparticles with bosonic collective modes in /sup 3/He-A recalls the interaction of massless chiral fermions with photons, W-bosons, and gravitational waves in high-energy physics. The chiral anomaly and vacuum polarization are responsible for singular dynamics of /sup 3/He-A at T = 0.

  16. Pomeranchuk cell for hyperpolarized 3He based on the brute force method

    NASA Astrophysics Data System (ADS)

    Makino, Seiji; Tanaka, Masayoshi; Ueda, Kunihiro; Fujiwara, Mamoru; Fujimura, Hisako; Yosoi, Masaru; Ohta, Takeshi; Frossati, Giorgio; de Waard, Arlette; Rouille, Gerard

    2014-09-01

    MRI (Magnetic Resonance Imaging) has been used for the medical diagnosis as a radiation-free imaging equipment. Since the proton has been mainly used for medical MRI, usefulness has been rather restrictive. As an example for expanding the range of applicability, MRI with hyperpolarized 3He gas has been used for the lung disease. Here, ``hyperpolarized'' means ``polarized higher than the thermal equilibrium polarization.'' For producing a large amount of hyperpolarized 3He gas at a time, we have been developing a hyperpolarization technique based on the brute force method which uses an ultralow temperature of a few mK and a strong magnetic field around 17 T in combination with the principle of the Pomeranchuk cooling. The Pomeranchuk cell made with non-metallic materials of small heat capacity is attached to the 3He/4He dilution refrigerator using a sintered silver allowing large heat conduction. After the sensors to monitor the temperature and pressure of 3He are calibrated and the Pomeranchuk cell is constructed, the system is tested. Then, the solidification of 3He and the measurement of NMR (Nuclear Magnetic Resonance) signals of 3He under the magnetic field of 17 T are carried out. The current status is reported in this talk.

  17. The spectra of mixed 3He-4He droplets.

    PubMed

    Fantoni, S; Guardiola, R; Navarro, J; Zuker, A

    2005-08-01

    The diffusion Monte Carlo technique is used to calculate and analyze the excitation spectrum of 3He atoms bound to a cluster of 4He atoms by using a previously determined optimum filling of single-fermion orbits with well-defined orbital angular momentum L, spin S, and parity quantum numbers. The study concentrates on the energies and shapes of the three kinds of states for which the fermionic part of the wave function is a single Slater determinant: maximum L or maximum S states within a given orbit, and fully polarized clusters. The picture that emerges is that of systems with strong shell effects, whose binding and excitation energies are essentially determined by averages over configuration at fixed number of particles and spin, i.e., by the monopole properties of an effective Hamiltonian. PMID:16108665

  18. Equilibrium helical order in radially confined superfluid 3He

    NASA Astrophysics Data System (ADS)

    Wiman, Joshua; Sauls, J. A.

    An exciting prediction of confined superfluid 3He is the presence of spontaneously broken translational symmetry, resulting in a superfluid phase that has a different translational symmetry than that of the confining geometry. Such phases have been described theoretically in films, cylinders, and ribbons. We predict an inhomogeneous superfluid phase with helical order that is energetically stable within cylindrical channels of radius comparable to the Cooper pair coherence length. By incorporating extensions to standard Ginzburg-Landau (GL) strong-coupling theory that accurately reproduce the bulk phase diagram at high pressures and allow tuneable boundary conditions, we find this new phase to be stable at both high and low pressures and favored by boundary conditions with strong pairbreaking. We present superfluid phase diagrams as functions of pressure, temperature, and channel radius showing the regions of stability for this ``spiral'' phase relative to those phases previously predicted for the channel. Transverse NMR frequency shifts are a possible experimental signature of this phase, and we present calculations of these shifts as functions of rf pulse tipping angle, field orientation, and temperature. Supported by NSF Grant DMR-1508730.

  19. Lunar source of /sup 3/He for commercial fusion power

    SciTech Connect

    Wittenberg, L.J.; Santarius, J.F.; Kulcinski, G.L.

    1986-09-01

    An analysis of astrophysical information indicates that the solar wind has deposited an abundant, easily extractable source of /sup 3/He onto the surface of the moon. Apollo lunar samples indicate that the moon's surface soil contains approx. =10/sup 9/kg of /sup 3/He. If this amount of /sup 3/He were to be used in a 50% efficient D-/sup 3/He fusion reactor, it would provide 10/sup 7/GW(electric) . yr of electrical power. The energy required to extract /sup 3/He from the lunar regolith and transport it to earth is calculated to be approx. =2400 GJ/kg. Since the D-/sup 3/He reaction produces 6 X 10/sup 5/ GJ of energy per kilogram of /sup 3/He, the energy payback ratio is approx. =250. Implications for the commercialization of D-/sup 3/He fusion reactors and for the development of fusion power are discussed.

  20. Photodisintegration of /sup 3/H and /sup 3/He. [Threshold to 25 MeV

    SciTech Connect

    Faul, D.D.

    1980-09-01

    The photoneutron cross sections for /sup 3/H and /sup 3/He have been measured from threshold to approx. 25 MeV with monoenergetic photons from the annihilation in flight of fast positrons at the LLL Electron-Positron Linear Accelerator facility. These reactions include the two-body breakup of /sup 3/H and the three-body breakup of both /sup 3/H and /sup 3/He; these measurements for /sup 3/H are the first to span the energy region across the peaks of the cross sections. An efficient BF/sub 3/-tube-and-paraffin neutron detector and high-pressure gaseous samples of several moles each (the activity of the /sup 3/H sample was approx. 200,000 Ci) were employed in these measurements. Measurements on /sup 16/O and /sup 2/H also were performed to verify the absolute cross-section scale. The results, when compared with each other and with results for the two-body breakup cross section for /sup 3/He from the literature, show that the two-body breakup cross sections for /sup 3/H and /sup 3/He have nearly the same shape, but the one for /sup 3/He lies lower in magnitude; the three-body breakup cross section for /sup 3/He lies higher in magnitude and is broader in the peak region and also rises less sharply from threshold than that for /sup 3/H; and these measured differences between the cross sections for the breakup modes largely compensate in their sum, so that the total photon absorption cross sections for /sup 3/H and /sup 3/He are nearly the same in both size and shape at energies near and above their peaks. Theoretical results from the literature disagree with the experimental results to a certain extent over the entire photon-energy region for which the photoneutron cross sections were measured. 50 figures, 7 tables.

  1. 3He gas gap heat switch

    NASA Astrophysics Data System (ADS)

    Catarino, I.; Paine, C.

    2011-01-01

    Thermal control at 1 K is still demanding for heat switches development. A gas gap heat switch using 3He gas as the heat-transfer fluid was tested and characterized. The switch is actuated by a sorption pump, whose triggering temperatures were also characterized. Switching times were recorded for different thermalizations of the sorption pump. This paper presents the conductance results of such switch. The temperature scanning of the actuator is also presented. The effect of filling pressure is discussed as well as the thermalization of the sorption pump. About 60 μW/K OFF-state conductance and 100 mW/K ON-state conductance were obtained at 1.7 K. The actuation temperature is slightly adjustable upon the charging pressure of the working gas. Thermalization of the sorption pump at about 8-10 K is enough for producing an OFF state - it can be comfortably linked to a 4 K stage. Temperatures of 15-20 K at the sorption pump are required for reaching the viscous range for maximum ON conduction. Switching time dependence on the thermalization of the sorption pump is discarded.

  2. Packed Powder as Superleak for Spin Pump Experiments in Superfluid 3He A1

    NASA Astrophysics Data System (ADS)

    Kamada, N.; Yamaguchi, A.; Motoyama, G.; Sumiyama, A.; Aoki, Y.; Okuda, Y.; Kojima, H.

    2014-04-01

    Experimental exploration of highly spin-polarized states of liquid 3He by applying external magnetic field is limited by the availability of static magnetic field. In the "ferromagnetic" superfluid A1 phase of liquid 3He there is an alternate method for boosting spin-polarization by the process of spin pumping without requiring such high magnetic field. The spin pumping in the A1 phase takes advantage of a superleak (SL) acting simultaneously as a filter for both entropy and spin. The spin pump technique that uses the SL-spin filter and a mechanical actuator enables us to directly boost polarization of 3He. The amount of enhancement of spin polarization has been limited so far. We are now developing a new type of SL filter made of packed aluminum oxide powder (referred as PAP-SL), in order to achieve greater enhancement of spin polarization. Several kinds of the PAP-SL filter were constructed by pressing aluminum oxide powders into a cylinder holder. The packed structures were carefully characterized by a flow-rate-measurement, X-ray tomography, and mercury intrusion porosimetry. The preliminary result shows that the PAP-SL works as SL filter for the superfluid 3He.

  3. High pressure furnace

    DOEpatents

    Morris, D.E.

    1993-09-14

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  4. High pressure furnace

    DOEpatents

    Morris, Donald E.

    1993-01-01

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  5. High pressure oxygen furnace

    DOEpatents

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  6. High pressure oxygen furnace

    DOEpatents

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  7. High pressure gas target

    NASA Astrophysics Data System (ADS)

    Gelbart, W.; Johnson, R. R.; Abeysekera, B.

    2012-12-01

    Compact, high pressure, high current gas target features all metal construction and semi-automatic window assembly change. The unique aspect of this target is the domed-shaped window. The Havar alloy window is electron beam welded to a metal ring, thus forming one, interchangeable assembly. The window assembly is sealed by knife-edges locked by a pneumatic toggle allowing a quick, in situ window change.

  8. The Neutron and 3He Spin Structure Functions at Low Q^2

    SciTech Connect

    Vincent Sulkosky

    2009-08-01

    Experiment E97-110 was performed at the Thomas Jefferson National Accelerator Facility in Hall A to provide a precise measurement of the moments of the neutron and $^{3}$He spin structure functions. A longitudinally-polarized electron beam was scattered from a longitudinally or transversely polarized $^{3}$He target. The extended Gerasimov-Drell-Hearn integral and other moments of the neutron and $^{3}$He spin structure functions were extracted at very low momentum transfers (0.02 $< Q^{2} <$ 0.3 [GeV$/c$]$^{2}$). These data allow us to make a benchmark check of Chiral Perturbation Theory calculations in a region where they are expected to be valid. In these proceedings, the experimental details are discussed and preliminary results on the moments of the spin structure functions are presented.

  9. A New 3He-Target Design for Compton Scattering Experiment

    NASA Astrophysics Data System (ADS)

    Mahalchick, S.; Gao, H.; Laskaris, G.; Weir, W.; Ye, Q.; Ye, Q. J.

    2011-10-01

    The neutron spin polarizabilities describe the stiffness of the neutron spin to external electric and magnetic fields. A double-polarized elastic Compton Scattering experiment will try to determine the neutron spin polarizabilities using a new polarized 3He target and the circularly polarized γ-beam of HI γS facility at the Duke Free Electron Laser Laboratory (DFELL). To polarize the 3He target, a newly constructed solenoid is being used which can provide a very uniform magnetic field around the target area and allows to place High Intensity Gamma Source NaI Detector Arrays (HINDA) closer to the target. The ideal target polarization is 40-60% and will be measured using the nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) techniques. A prototype of the polarized 3He target is being constructed in the Medium Energy Physics Group laboratories at Duke and is currently being tested. The experiment is expected to take place in 2013 after the DFELL upgrade. I will be presenting details of the construction process, including design specifications and data from the magnetic field mapping, as well as preliminary target polarization results. This work is supported by the US Department of Energy, under contract number DE-FG02-03ER41231, and by the National Science Foundation, grant number NSF-PHY-08-51813.

  10. HIGH PRESSURE DIES

    DOEpatents

    Wilson, W.B.

    1960-05-31

    A press was invented for subjecting specimens of bismuth, urania, yttria, or thoria to high pressures and temperatures. The press comprises die parts enclosing a space in which is placed an electric heater thermally insulated from the die parts so as not to damage them by heat. The die parts comprise two opposed inner frustoconical parts and an outer part having a double frustoconical recess receiving the inner parts. The die space decreases in size as the inner die parts move toward one another against the outer part and the inner parts, though very hard, do not fracture because of the mode of support provided by the outer part.

  11. Optical Pumping Spin Exchange {sup 3}He Gas Cells for Magnetic Resonance Imaging

    SciTech Connect

    Kim, W.; Stepanyan, S. S.; Kim, A.; Jung, Y.; Woo, S.; Yurov, M.; Jang, J.

    2009-08-04

    We present a device for spin-exchange optical pumping system to produce large quantities of polarized noble gases for Magnetic Resonance Imaging (MRI). A method and design of apparatus for pumping the polarization of noble gases is described. The method and apparatus enable production, storage and usage of hyperpolarized noble gases for different purposes, including Magnetic Resonance Imaging of human and animal subjects. Magnetic imaging agents breathed into lungs can be observed by the radio waves of the MRI scanner and report back physical and functional information about lung's health and desease. The technique known as spin exchange optical pumping is used. Nuclear magnetic resonance is implemented to measure the polarization of hyperpolarized gas. The cells prepared and sealed under high vacuum after handling Alkali metals into the cell and filling with the {sup 3}He-N{sub 2} mixture. The cells could be refilled. The {sup 3}He reaches around 50% polarization in 5-15 hours.

  12. Studies of 3He+3He, T+3He, and p +D nuclear reactions relevant to stellar or Big-Bang Nucleosynthesis using ICF plasmas at OMEGA

    NASA Astrophysics Data System (ADS)

    Zylstra, Alex; Gatu Johnson, Maria; Frenje, Johan; Li, Chikang; Seguin, Fredrick; Sio, Hong; Rosenberg, Michael; Rinderknecht, Hans; Petrasso, Richard; Herrmann, Hans; Kim, Yong Ho; Hale, Gerry; McNabb, Dennis; Sayre, Dan; Pino, Jesse; Brune, Carl; Bacher, Andy; Forrest, Chad; Glebov, Vladimir; Stoeckl, Christian; Janezic, Roger; Sangster, Craig

    2014-10-01

    The 3He+3He, T+3He, and p +D reactions directly relevant to Stellar or Big-Bang Nucleosynthesis (BBN) have been studied at the OMEGA laser facility using high-temperature low-density `exploding pusher' implosions. The advantage of using these plasmas is that they better mimic astrophysical systems than cold-target accelerator experiments. Measured proton spectra from the 3He3He reaction are used to constrain nuclear R-matrix modeling. The resulting T+3He γ-ray data rule out an anomalously-high 6Li production during BBN as an explanation to the high observed values in primordial material. The proton spectrum from the T+3He reaction is also being used to constrain the R-matrix model. Recent experiments have probed the p +D reaction for the first time in a plasma; this reaction is relevant to energy production in protostars, brown dwarfs and at higher CM energies to BBN. This work was partially supported by the US DOE, NLUF, LLE, and GA.

  13. The Q^2 Evolution of the GDH sum Rule (on 3He and the Neutron)

    SciTech Connect

    Gordon Cates

    2002-06-01

    We discuss the extention of the Gerasimov-Drell-Hearn (GDH) sum rule, which pertains to real photons, to include scattering due to virtual photons. We present data from Jefferson Laboratory experiment E94-010 which measured the inclusive scattering of polarized electrons from a polarized 3He target over the quasielastic and resonance regions. From these data we exctract the transverse-transverse interference cross section {sigma}{prime}_TT', and compute the Q^2 depenent extended GDH integral.

  14. Recycling of 3He from lung magnetic resonance imaging.

    PubMed

    Salhi, Z; Grossmann, T; Gueldner, M; Heil, W; Karpuk, S; Otten, E W; Rudersdorf, D; Surkau, R; Wolf, U

    2012-06-01

    We have developed the means to recycle (3) He exhaled by patients after imaging the lungs using magnetic resonance of hyperpolarized (3) He. The exhaled gas is collected in a helium leak proof bag and further compressed into a steel bottle. The collected gas contains about 1-2% of (3) He, depending on the amount administered and the number of breaths collected to wash out the (3) He gas from the lungs. (3) He is separated from the exhaled air using zeolite molecular sieve adsorbent at 77 K followed by a cold head at 8 K. Residual gaseous impurities are finally absorbed by a commercial nonevaporative getter. The recycled (3) He gas features high purity, which is required for repolarization by metastability exchange optical pumping. At present, we achieve a collection efficiency of 80-84% for exhaled gas from healthy volunteers and cryogenic separation efficiency of 95%. PMID:22135249

  15. HIGH PRESSURE GAS REGULATOR

    DOEpatents

    Ramage, R.W.

    1962-05-01

    A gas regulator operating on the piston and feedback principle is described. The device is particularly suitable for the delicate regulation of high pressure, i.e., 10,000 psi and above, gas sources, as well as being perfectly adaptable for use on gas supplies as low as 50 psi. The piston is adjustably connected to a needle valve and the movement of the piston regulates the flow of gas from the needle valve. The gas output is obtained from the needle valve. Output pressure is sampled by a piston feedback means which, in turn, regulates the movement of the main piston. When the output is other than the desired value, the feedback system initiates movement of the main piston to allow the output pressure to be corrected or to remain constant. (AEC)

  16. High pressure nitriding

    SciTech Connect

    Jung, M.; Hoffmann, F.T.; Mayr, P.; Minarski, P.

    1995-12-31

    The aim of the presented research project is the development of a new high pressure nitriding process, which avoids disadvantages of conventional nitriding processes and allows for new applications. Up to now, a nitriding furnace has been constructed and several investigations have been made in order to characterize the influence of pressure on the nitriding process. In this paper, connections between pressure in the range of 2 to 12 atm and the corresponding nitride layer formation for the steel grades AISI 1045, H11 and a nitriding steel are discussed. Results of the nitride layer formation are presented. For all steel grades, a growth of nitride layers with increasing pressure was obtained. Steels with passive layers, as the warm working steel H11, showed a better nitriding behavior at elevated pressure.

  17. High pressure mechanical seal

    NASA Technical Reports Server (NTRS)

    Babel, Henry W. (Inventor); Anderson, Raymond H. (Inventor)

    1996-01-01

    A relatively impervious mechanical seal is formed between the outer surface of a tube and the inside surface of a mechanical fitting of a high pressure fluid or hydraulic system by applying a very thin soft metal layer onto the outer surface of the hard metal tube and/or inner surface of the hard metal fitting. The thickness of such thin metal layer is independent of the size of the tube and/or fittings. Many metals and alloys of those metals exhibit the requisite softness, including silver, gold, tin, platinum, indium, rhodium and cadmium. Suitably, the coating is about 0.0025 millimeters (0.10 mils) in thickness. After compression, the tube and fitting combination exhibits very low leak rates on the order or 10.sup.-8 cubic centimeters per second or less as measured using the Helium leak test.

  18. High pressure mechanical seal

    NASA Technical Reports Server (NTRS)

    Babel, Henry W. (Inventor); Fuson, Phillip L. (Inventor); Chickles, Colin D. (Inventor); Jones, Cherie A. (Inventor); Anderson, Raymond H. (Inventor)

    1995-01-01

    A relatively impervious mechanical seal is formed between the outer surface of a tube and the inside surface of a mechanical fitting of a high pressure fluid or hydraulic system by applying a very thin soft metal layer onto the outer surface of the hard metal tube and/or inner surface of the hard metal fitting, prior to swaging the fitting onto the tube. The thickness of such thin metal layer is independent of the size of the tube and/or fittings. Many metals and alloys of those metals exhibit the requisite softness, including silver, gold, nickel, tin, platinum, indium, rhodium and cadmium. Suitably, the coating is about 0.0025 millimeters (0.10 mils) in thickness. After swaging, the tube and fitting combination exhibits very low leak rates on the order or 10.sup.-8 cubic centimeters per second or less as meaured using the Helium leak test.

  19. /sup 3/He functions in tokamak-pumped laser systems

    SciTech Connect

    Jassby, D.L.

    1986-10-01

    /sup 3/He placed in an annular cell around a tokamak fusion generator can convert moderated fusion neutrons to energetic ions by the /sup 3/He(n,p)T reaction, and thereby excite gaseous lasants mixed with the /sup 3/He while simultaneously breeding tritium. The total /sup 3/He inventory is about 4 kg for large tokamak devices. Special configurations of toroidal-field magnets, neutron moderators and beryllium reflectors are required to permit nearly uniform neutron current into the laser cell with minimal attenuation. The annular laser radiation can be combined into a single output beam at the top of the tokamak.

  20. Chromium at High Pressure

    NASA Astrophysics Data System (ADS)

    Jaramillo, Rafael

    2012-02-01

    Chromium has long served as the archetype of spin density wave magnetism. Recently, Jaramillo and collaborators have shown that Cr also serves as an archetype of magnetic quantum criticality. Using a combination of x-ray diffraction and electrical transport measurements at high pressures and cryogenic temperatures in a diamond anvil cell, they have demonstrated that the N'eel transition (TN) can be continuously suppressed to zero, with no sign of a concurrent structural transition. The order parameter undergoes a broad regime of exponential suppression, consistent with the weak coupling paradigm, before deviating from a BCS-like ground state within a narrow but accessible quantum critical regime. The quantum criticality is characterized by mean field scaling of TN and non mean field scaling of the transport coefficients, which points to a fluctuation-induced reconstruction of the critical Fermi surface. A comparison between pressure and chemical doping as means to suppress TN sheds light on different routes to the quantum critical point and the relevance of Fermi surface nesting and disorder at this quantum phase transition. The work by Jaramillo et al. is broadly relevant to the study of magnetic quantum criticality in a physically pure and theoretically tractable system that balances elements of weak and strong coupling. [4pt] [1] R. Jaramillo, Y. Feng, J. Wang & T. F. Rosenbaum. Signatures of quantum criticality in pure Cr at high pressure. Proc. Natl. Acad. Sci. USA 107, 13631 (2010). [0pt] [2] R. Jaramillo, Y. Feng, J. C. Lang, Z. Islam, G. Srajer, P. B. Littlewood, D. B. McWhan & T. F. Rosenbaum. Breakdown of the Bardeen-Cooper-Schrieffer ground state at a quantum phase transition. Nature 459, 405 (2009).

  1. Spin Correlation Parameter Cyy of p + 3He Elastic Backward Scattering at Intermediate Energy

    NASA Astrophysics Data System (ADS)

    Shimizu, Y.; Hatanaka, K.; Kobushkin, A. P.; Adachi, T.; Fujita, K.; Itoh, K.; Kawabata, T.; Kudoh, T.; Matsubara, H.; Ohira, H.; Okamura, H.; Sagara, K.; Sakemi, Y.; Sasamoto, Y.; Shimbara, Y.; Yoshida, H. P.; Suda, K.; Tameshige, Y.; Tamii, A.; Tomiyama, M.; Uchida, M.; Uesaka, T.; Wakasa, T.; Wakui, T.

    2007-01-01

    It is possible to use nucleon-nucleus scattering as a probe of the spin structure of the nuclei since target related observables are extremely sensitive to spin dependent parts of the target wave function. In addition, one can gain information about the nucleon-nucleus reaction mechanism, the spin dependent nucleon-nucleon interaction in the nuclear medium, and off-shell behavior of the nucleon-nucleon amplitudes. For 3He(p,3He)p elastic backward scattering, only small amount of data points exist for the differential cross section and no data exist for spin dependent observables. We developed a spin exchange type polarized 3He target and measured the spin correlation parameter Cyy at 200, 300, and 400 MeV.

  2. A System for Open-Access 3He Human Lung Imaging at Very Low Field

    PubMed Central

    RUSET, I.C.; TSAI, L.L.; MAIR, R.W.; PATZ, S.; HROVAT, M.I.; ROSEN, M.S.; MURADIAN, I.; NG, J.; TOPULOS, G.P.; BUTLER, J.P.; WALSWORTH, R.L.; HERSMAN, F.W.

    2010-01-01

    We describe a prototype system built to allow open-access very-low-field MRI of human lungs using laser-polarized 3He gas. The system employs an open four-coil electromagnet with an operational B0 field of 4 mT, and planar gradient coils that generate gradient fields up to 0.18 G/cm in the x and y direction and 0.41 G/cm in the z direction. This system was used to obtain 1H and 3He phantom images and supine and upright 3He images of human lungs. We include discussion on challenges unique to imaging at 50 –200 kHz, including noise filtering and compensation for narrow-bandwidth coils. PMID:20354575

  3. Longitudinal assessment of treatment effects on pulmonary ventilation using 1H/3He MRI multivariate templates

    NASA Astrophysics Data System (ADS)

    Tustison, Nicholas J.; Contrella, Benjamin; Altes, Talissa A.; Avants, Brian B.; de Lange, Eduard E.; Mugler, John P.

    2013-03-01

    The utitlity of pulmonary functional imaging techniques, such as hyperpolarized 3He MRI, has encouraged their inclusion in research studies for longitudinal assessment of disease progression and the study of treatment effects. We present methodology for performing voxelwise statistical analysis of ventilation maps derived from hyper­ polarized 3He MRI which incorporates multivariate template construction using simultaneous acquisition of IH and 3He images. Additional processing steps include intensity normalization, bias correction, 4-D longitudinal segmentation, and generation of expected ventilation maps prior to voxelwise regression analysis. Analysis is demonstrated on a cohort of eight individuals with diagnosed cystic fibrosis (CF) undergoing treatment imaged five times every two weeks with a prescribed treatment schedule.

  4. [High Pressure Gas Tanks

    NASA Technical Reports Server (NTRS)

    Quintana, Rolando

    2002-01-01

    Four high-pressure gas tanks, the basis of this study, were especially made by a private contractor and tested before being delivered to NASA Kennedy Space Center. In order to insure 100% reliability of each individual tank the staff at KSC decided to again submit the four tanks under more rigorous tests. These tests were conducted during a period from April 10 through May 8 at KSC. This application further validates the predictive safety model for accident prevention and system failure in the testing of four high-pressure gas tanks at Kennedy Space Center, called Continuous Hazard Tracking and Failure Prediction Methodology (CHTFPM). It is apparent from the variety of barriers available for a hazard control that some barriers will be more successful than others in providing protection. In order to complete the Barrier Analysis of the system, a Task Analysis and a Biomechanical Study were performed to establish the relationship between the degree of biomechanical non-conformities and the anomalies found within the system on particular joints of the body. This relationship was possible to obtain by conducting a Regression Analysis to the previously generated data. From the information derived the body segment with the lowest percentage of non-conformities was the neck flexion with 46.7%. Intense analysis of the system was conducted including Preliminary Hazard Analysis (PHA), Failure Mode and Effect Analysis (FMEA), and Barrier Analysis. These analyses resulted in the identification of occurrences of conditions, which may be becoming hazardous in the given system. These conditions, known as dendritics, may become hazards and could result in an accident, system malfunction, or unacceptable risk conditions. A total of 56 possible dendritics were identified. Work sampling was performed to observe the occurrence each dendritic. The out of control points generated from a Weighted c control chart along with a Pareto analysis indicate that the dendritics "Personnel not

  5. Early Days of Superfluid ^3He: An Experimenter's View

    NASA Astrophysics Data System (ADS)

    Lee, David

    2010-03-01

    The formulation of the BCS theory led theorists to investigate possible non-S-wave pairing in liquid ^3He. Unfortunately as time went on, estimates for the pairing temperature became unattainably low. Nevertheless, the push to lower temperatures by experimentalists continued and was facilitated by the invention of the dilution refrigerator. Nuclear adiabatic demagnetization could then be used to cool liquid ^3He to ˜1 mK as demonstrated by Goodkind. An alternate approach, suggested by Pomeranchuk, involved adiabatic compression of liquid ^3He into the solid phase. Efforts to develop this technique at the Kapitza Institute, La Jolla and Cornell achieved success in demonstrating cooling of mixtures of liquid and solid ^3He to ˜ 1 mK following dilution refrigerator pre-cooling. Although there was great pessimism regarding the possible observation of pairing in liquid ^3He, the unsettled problem of magnetic ordering in solid ^3He beckoned. Ultimately two phase transition along the melting curve were observed by Osheroff et al at Cornell. Although first associated with solid ^3He, extensive NMR studies showed them to be two new phases of liquid ^3He. A brief history of experiments at various laboratories following the discovery is given, along with early interpretations given by Anderson and Morel and Balian and Werthamer. The key role of Leggett's spin dynamics is also discussed.

  6. High pressure capillary connector

    DOEpatents

    Renzi, Ronald F.

    2005-08-09

    A high pressure connector capable of operating at pressures of 40,000 psi or higher is provided. This connector can be employed to position a first fluid-bearing conduit that has a proximal end and a distal end to a second fluid-bearing conduit thereby providing fluid communication between the first and second fluid-bearing conduits. The connector includes (a) an internal fitting assembly having a body cavity with (i) a lower segment that defines a lower segment aperture and (ii) an interiorly threaded upper segment, (b) a first member having a first member aperture that traverses its length wherein the first member aperture is configured to accommodate the first fluid-bearing conduit and wherein the first member is positioned in the lower segment of the internal fitting assembly, and (c) a second member having a second member aperture that traverses its length wherein the second member is positioned in the upper segment of the fitting assembly and wherein a lower surface of the second member is in contact with an upper surface of the first member to assert a compressive force onto the first member and wherein the first member aperture and the second member aperture are coaxial.

  7. High pressure storage vessel

    SciTech Connect

    Liu, Qiang

    2013-08-27

    Disclosed herein is a composite pressure vessel with a liner having a polar boss and a blind boss a shell is formed around the liner via one or more filament wrappings continuously disposed around at least a substantial portion of the liner assembly combined the liner and filament wrapping have a support profile. To reduce susceptible to rupture a locally disposed filament fiber is added.

  8. Recent Spin Pump Experiments on Superfluid 3He-A1

    NASA Astrophysics Data System (ADS)

    Yamaguchi, A.; Kamada, N.; Motoyama, G.; Sumiyama, A.; Aoki, Y.; Okuda, Y.; Kubota, M.; Kojima, H.

    2013-05-01

    The superfluid 3He A1 phase, containing a spin-polarized condensate allows us to explore the dynamics of superfluid spin current. In the mechano-spin effect (MSE), a mechanically applied pressure gradient and a superleak-spin filter enable one to directly boost spin polarization of 3He in a small chamber. We are developing new apparatus for achieving greater enhancement of spin density. A development of a new-type 3He-hydraulic actuator has been already reported. We present here the construction of new-type of superleak-spin-filter made of packed powder aluminum oxide (referred as PAP-SL). The PAP-SL is popular in the study of superfluid 4He, but has not been established for that of the superfluid 3He. The attempt to construct the PAP-SL for the spin pump experiment was made by using aluminum oxide powder with nominal 1 μm powder diameter and with packing fraction of 40 %. Before executing the experiment, the nuclear demagnetization cryostat of ISSP, Univ. Tokyo which has been used for this experimental activity, was heavily damaged by the 2011 Great East Japan (Higashi Nihon) Earthquake. The repair work and earthquake damage protection strengthening has just been accomplished.

  9. The Unusual Behavior of Solar Wind 3He++

    NASA Astrophysics Data System (ADS)

    Gloeckler, George; Fisk, L. A.; Geiss, J.

    2016-07-01

    The first measurements of the isotopic ratio of solar wind He by the Apollo SWC experiment revealed that 3He/4He is not constant, but varies from ˜~4•10-4 to ˜~5.5•10-4. Such variations are modest compared with the 3He/4He variations often seen in Helium-3 rich SEP events. Here we report and compare detailed measurements with ACE/SWICS of the densities, bulk speeds and thermal speeds of solar wind 1H+, 4He++ and 3He++ during one Carrington rotation (in January 2005). The most remarkable finding is the factor of ˜~100 variation in the solar wind 3He++/4He++ number density ratio from a low value of ˜~5•10-5 to a high value of ˜~6•10-3. The highest ratios occurred during four time intervals of one to two days each. Large ratios are observed during periods of low (< ˜~20 km/s) 3He++ thermal speeds and when the bulk speeds as well as the thermal speeds of 1H+, 4He++ and 3He++ are almost the same. Small ratios, on the other hand, were found when the spread between the thermal speeds as well as between the bulk speeds of 1H+, 4He++ and 3He++ was large. During times of small 3He++/4He++ ratios the thermal speed of 3He++ was above 20 km/s, and the proton and 4He++ thermal speeds exceeded ˜~50 km/s and ˜~35 km/s, respectively. We will examine additional time periods to determine whether the compositional variations of solar wind helium during this particular Carrington rotation are unusual or common, and will speculate on possible mechanisms that could produce the factor of 100 variations in the isotopic solar wind He ratio.

  10. Neutron Detection Alternatives to 3He for National Security Applications

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Lintereur, Azaree T.; Siciliano, Edward R.; Stephens, Daniel L.; Stromswold, David C.; Van Ginhoven, Renee M.; Woodring, Mitchell L.

    2010-11-21

    One of the main uses for 3He is in gas proportional counters for neutron detection. Large radiation detection systems deployed for homeland security and proliferation detection applications use such systems. Due to the large increase in use of 3He for homeland security and basic research, the supply has dwindled, and can no longer meet the demand. This has led to the search for an alternative technology to replace the use of 3He-based neutron detectors. In this paper, we review the testing of currently commercially available alternative technologies for neutron detection in large systems used in various national security applications.

  11. High-pressure neutron diffraction

    SciTech Connect

    Xu, Hongwu

    2011-01-10

    This lecture will cover progress and prospect of applications of high-pressure neutron diffraction techniques to Earth and materials sciences. I will first introduce general high-pressure research topics and available in-situ high-pressure techniques. Then I'll talk about high-pressure neutron diffraction techniques using two types of pressure cells: fluid-driven and anvil-type cells. Lastly, I will give several case studies using these techniques, particularly, those on hydrogen-bearing materials and magnetic transitions.

  12. Shear Modulus and Dislocations in bcc Solid ^3He

    NASA Astrophysics Data System (ADS)

    Cheng, Zhi Gang; Souris, Fabien; Beamish, John

    2016-05-01

    The shear modulus of hcp ^4He decreases significantly above ˜ 200 mK, as ^3He impurities unbind from dislocations, unpinning them, and softening the crystal. Here we report shear modulus measurements on a fermi quantum solid: bcc ^3He. In contrast to previous low-frequency measurements, which did not show dislocation softening in this system, we have observed a drop in shear modulus, accompanied by a dissipation peak, which we attribute to the unpinning of dislocations as ^4He impurities unbind. For large stresses, impurities cannot pin the dislocations and the low temperature stiffening is suppressed. At high frequencies, the modulus changes and dissipation peaks shift to higher temperature, indicating that the unbinding is thermally activated. For a 58 bar bcc ^3He crystal, we find an activation energy of 0.27 K, smaller than the 0.7 K binding energy for ^3He impurities in hcp ^4He.

  13. Solar Sources of 3He-rich Solar Energetic Particle Events in Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Nitta, Nariaki V.; Mason, Glenn M.; Wang, Linghua; Cohen, Christina; Wiedenbeck, Mark E.

    2015-04-01

    We still do not understand the origin of impulsive SEP events enriched in 3He and heavy ions. A major impediment may be the difficulty to observe them in the corona, apart from the common knowledge that 3He-rich SEP events are correlated with longer-than-metric type III radio bursts and <100 keV electron events. This is because their X-ray and EUV signatures tend to be tiny and short-lived. Using high-cadence and high-sensitivity EUV images obtained by SDO/AIA, we investigate the solar sources of 26 3He-rich SEP events during solar cycle 24 that were well-observed by ACE. The source locations are further confirmed in data from STEREO/EUVI, which capture solar activities in the regions inaccessible from the Earth. We confirm that 3He-rich events have a broad longitudinal distribution (including locations well behind the west limb) and that a frequent association with coronal jets and narrow CMEs. Some events were seen in association with eruptions of closed structures and large-scale coronal propagating fronts (LCPFs, aka EUV waves). While these LCPFs may account for the occasional mismatching polarities at the source region and L1 in such a way that the particles are transported to and released at a region that has the opposite polarity, their associated CMEs may not be fast enough to drive shock waves for particle acceleration. Moreover, open field lines from PFSS models may not be correct for the entire Sun although they often look reasonable in discrete locations. We also discuss the apparent lack of correlation between the solar sources and the basic properties of 3He-rich SEP events.

  14. sup 3 He and methane in the Gulf of Aden

    SciTech Connect

    Jean-Baptiste, P.; Alaux, G. ); Belviso, S.; Nguyen, B.C.; Mihalopoulos, N. )

    1990-01-01

    During the OCEAT cruise (July, 1987), the vertical and spatial distributions of {sup 3}He and methane were measured at six stations over the West Sheba Ridge (Gulf of Aden). The results show significant {delta}{sup 3}He anomalies (up to 49%). The authors conclude that the origin of this signal is independent from the well known Red Sea hydrothermal {sup 3}He (of the Red Sea Brines). Thus, active hydrothermalism occurs in this extensional basin associated with spreading along an incipient mid-ocean ridge. The {sup 3}He input from the Gulf of Aden accounts for the S-N positive gradient in {sup 3}He concentration observed in the western part of the Indian Ocean. Several methane anomalies are also present (up to 664 nl/l,i.e., 25 times the regional methane background), but the CH{sub 4} and {sup 3}He signals are not systematically correlated, suggesting complex production and consumption mechanisms of methane in these areas. The authors results confirm previous observations in the South West Pacific Ocean.

  15. On the limits of spin-exchange optical pumping of {sup 3}He

    SciTech Connect

    Chen, W. C. Ye, Q.; Gentile, T. R.; Walker, T. G.; Babcock, E.

    2014-07-07

    We have obtained improvement in the {sup 3}He polarization achievable by spin-exchange optical pumping (SEOP). These results were primarily obtained in large neutron spin filter cells using diode bar lasers spectrally narrowed with chirped volume holographic gratings. As compared to our past results with lasers narrowed with diffraction gratings, we have observed between 5% and 11% fractional increase in the {sup 3}He polarization P{sub He}. We also report a comparable improvement in P{sub He} for two small cells, for which we would not have expected an increase from improved laser performance. In particular, prior extensive studies had indicated that the alkali-metal polarization was within 3% of unity in one of these cells. These results have impact on understanding the maximum P{sub He} achievable by SEOP, whether the origin of the improvement is from increased alkali-metal polarization or decreased temperature-dependent relaxation. We conclude that the most likely explanation for the improvement in P{sub He} is increased alkali-metal polarization. We have observed P{sub He} of between 0.80 and 0.85 in several large cells, which marks a new precedent for the polarization achievable by SEOP.

  16. Electrokinetically pumped high pressure sprays

    DOEpatents

    Schoeniger, Joseph S.; Paul, Phillip H.; Schoeniger, Luke

    2005-11-01

    An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

  17. Electrokinetically pumped high pressure sprays

    DOEpatents

    Schoeniger, Joseph S.; Paul, Phillip H.; Schoeniger, Luke

    2002-01-01

    An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

  18. Fundamentals of high pressure adsorption

    SciTech Connect

    Zhou, Y.P.; Zhou, L.

    2009-12-15

    High-pressure adsorption attracts research interests following the world's attention to alternative fuels, and it exerts essential effect on the study of hydrogen/methane storage and the development of novel materials addressing to the storage. However, theoretical puzzles in high-pressure adsorption hindered the progress of application studies. Therefore, the present paper addresses the major theoretical problems that challenged researchers: i.e., how to model the isotherms with maximum observed in high-pressure adsorption; what is the adsorption mechanism at high pressures; how do we determine the quantity of absolute adsorption based on experimental data. Ideology and methods to tackle these problems are elucidated, which lead to new insights into the nature of high-pressure adsorption and progress in application studies, for example, in modeling multicomponent adsorption, hydrogen storage, natural gas storage, and coalbed methane enrichment, was achieved.

  19. Helicity dependence of the γ 3He → πX reactions in the Δ(1232) resonance region

    NASA Astrophysics Data System (ADS)

    Costanza, S.; Mushkarenkov, A.; Rigamonti, F.; Romaniuk, M.; Aguar Bartolomé, P.; Ahrens, J.; Annand, J. R. M.; Arends, H.-J.; Beck, R.; Braghieri, A.; Bekrenev, V.; Berghäuser, H.; Briscoe, W. J.; Cherepnya, S. N.; Collicott, C.; Downie, E. J.; Drexler, P.; Fil'kov, L. V.; Fix, A.; Glazier, D. I.; Hamilton, D.; Heid, E.; Heil, W.; Hornidge, D.; Howdle, D.; Jaegle, I.; Huber, G. M.; Jahn, O.; Jude, T.; Kashevarov, V. L.; Keshelashvili, I.; Kondratiev, R.; Korolija, M.; Krimmer, J.; Krusche, B.; Kruglov, S.; Kulbardis, A.; Lisin, V.; Livingston, K.; MacGregor, I. J. D.; Mancell, J.; Mandaglio, G.; Manley, D. M.; McGeorge, J. C.; Middleton, D. G.; Metag, V.; Nefkens, B. M. K.; Nikolaev, A.; Oberle, M.; Ostrick, M.; Ortega, H.; Otte, P. B.; Oussena, B.; Pedroni, P.; Pheron, F.; Polonski, A.; Prakhov, S.; Rosner, G.; Rostomyan, T.; Sarty, A. J.; Schumann, S.; Starostin, A.; Supek, I.; Thiel, M.; Thomas, A.; Unverzagt, M.; Watts, D. P.; Werthmüller, D.

    2014-11-01

    The helicity dependences of the differential cross sections for the semi-inclusive γ 3He → π0 X and γ 3He → π± X reactions have been measured for the first time in the energy region 200 < E γ 450 MeV. The experiment was performed at the tagged photon beam facility of the MAMI accelerator in Mainz using a longitudinally polarised high-pressure 3He gas target. Hadronic products were measured with the large-acceptance Crystal Ball detector complemented with additional devices for charged-particle tracking and identification. Unpolarised differential cross sections and their helicity dependence are compared with theoretical calculations using the Fix-Arenhövel model. The effect of the intermediate excitation of the Δ(1232) resonance can be clearly seen from this comparison, especially for the polarised case, where nuclear effects are relatively small. The model provides a better theoretical description of the unpolarised charged pion photoproduction data than the neutral pion channel. It does significantly better in describing the helicity-dependent data in both channels. These comparisons provide new information on the mechanisms involved in pion photoproduction on 3He and suggest that a polarised 3He target can provide valuable information on the corresponding polarised quasi-free neutron reactions.

  20. On the limits of spin-exchange optical pumping of 3 He

    NASA Astrophysics Data System (ADS)

    Gentile, T. R.; Chen, W. C.; Ye, Q.; Walker, T. G.; Babcock, E.

    2015-04-01

    We have obtained improvement in the 3 He polarization achievable by spin-exchange optical pumping (SEOP). These results were primarily obtained in large neutron spin filter cells using diode bar lasers spectrally narrowed with chirped volume holographic gratings. As compared to our past results with lasers narrowed with diffraction gratings, we have observed between 5% and 11% fractional increase in the 3 He polarization PHe. We also report a comparable improvement in PHe for two small cells, for which we would not have expected an increase from improved laser performance. In particular, prior extensive studies had indicated that the alkali-metal polarization was within 3% of unity in one of these cells. These results have impact on understanding the maximum PHe achievable by SEOP, whether the origin of the improvement is from increased alkali-metal polarization or decreased temperature-dependent relaxation. We have observed PHe of between 0.80 and 0.85 in several large cells, which marks a new precedent for the polarization achievable by SEOP. Recently we have obtained PHe as high as 0.88 with increased laser power. We will discuss these results and tests performed to understand their origin.

  1. 3He Films as Model Strongly Correlated Fermion Systems

    SciTech Connect

    Neumann, Michael; Casey, Andrew; Nyeki, Jan; Cowan, Brian; Saunders, John

    2006-09-07

    Helium films on graphite are atomically layered. This allows a wide variety of studies of strong correlations in two dimensions with density as a continuously tunable parameter. Studies of a monolayer of 3He adsorbed on graphite plated by a bi-layer of HD find a divergence of effective mass with increasing density, corresponding to a Mott-Hubbard transition between a 2D Fermi liquid and a quantum spin liquid phase. While the Fermi liquid survives in 2D, non-Fermi liquid features remain at finite T, recent theories find that this correction arises from the spin component of the backscattering amplitude. In another experiment a 3He film is grown on graphite plated by a bi-layer of 3He. The first 3He layer only solidifies in the presence of an overlayer. However in the regime in which the system comprises a 3He fluid bilayer, we observe a striking maximum in the temperature dependence of both heat capacity and magnetization. This feature is driven towards T = 0 with increasing film coverage, suggestive of a quantum critical point. Well below the maximum a linear temperature dependence of the heat capacity is recovered; the coverage dependence of the effective mass identifies a (bandwidth driven) Mott-Hubbard transition at 9.8 nm-2.

  2. Dynamics of vortex nucleation in sup 3 He- A flow

    SciTech Connect

    Kopnin, N.B.; Soininen, P.I.; Salomaa, M.M. )

    1992-03-01

    Quantum phase slippage in superfluid {sup 3}He flow is simulated numerically in rectangular slab geometries. Assuming that the flow is confined to a channel having horizontal surfaces close to each other, the spatial problem reduces to the two transverse dimensions; we report time-dependent computer simulations of superfluid {sup 3}He flow in 2+1 dimensions using the time-dependent Ginzburg-Landau equations. The quantum-dynamic processes of phase slippage in {sup 3}He are demonstrated to be associated with superfluid vortex nucleation; we thus confirm Anderson's assumption for phase slippage through vortex motion in superfluids. We also find several other phase-slip scenarios involving vortices, phase-slip lines, and combinations thereof for the coupled multicomponent order-parameter amplitudes. We consider both diffuse and specular boundary conditions at the side walls and demonstrate that our results are essentially independent of the boundaries. We compute the critical current for vortex nucleation as a function of the channel width, and compare it with existing theories of vortex nucleation; we also discuss our calculations in connection with experiments on phase slippage in {sup 3}He flow. One of our most important results is that the superfluid order parameter for the vortices generated in the computer simulations does not vanish anywhere; i.e., the vortices possess superfluid core structures; hence the processes of phase slip for superfluid {sup 3}He are nonlocal in space-time.

  3. Final state interaction in (3He, 2He) reactions

    NASA Astrophysics Data System (ADS)

    Congedo, T. V.; Lee-Fan, I. S.; Cohen, B. L.

    1980-09-01

    The two protons from 2He breakup following (3He, 2He) reactions were detected in coincidence, and energy and angular correlations between them were studied and compared with predictions of the final state interaction theories of Watson and Migdal and Phillips, Griffy, and Biedenharn. The angular correlation between the breakup protons drops off much faster than predicted by these theories; a final state interaction empirically derived to fit the angular correlation is sharply peaked at a breakup energy ~ 0.6 MeV and is quite narrow. Energy distributions of the protons have a dip at the center for small correlation angles which disappears at larger angles. This is well predicted by all final state interaction theories but the slopes of these distributions are much better fit by the empirical final state interaction than by Watson and Migdal or by Phillips, Griffy, and Biedenharn. By maintaining a constant small correlation angle (proton detectors close together), 2He angular distributions were measured and found to be in good agreement with distorted-wave Born approximation predictions. NUCLEAR REACTIONS 64Ni(3He, 2p), E=13 MeV; measured σ(θ), pp correlation; deduced pp FSI; calculated 2He detection efficiency. 9Be(3He, 2p), E=13 MeV; measured σ(θ). 27Al, 90Zr(3He, 2p) measured pp correlation. 51V, 65Cu, 89Y(3He, 2p), E=13 MeV, 17 MeV, measured σ(θ), DWBA analysis.

  4. Solar source regions of 3HE-rich particle events

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Stone, R. G.; Kahler, S. W.; Lin, R. P.; Liggett, M.

    1985-01-01

    Hydrogen alpha X-ray, and metric and kilometric radio data to examine the solar sources of energetic 3He-rich particle events observed near earth in association with impulsive 2 to 100 keV electron events were applied. Each 3He/electron event is associated with a kilometric type 3 burst belonging to a family of such bursts characterized by similar interplanetary propagation paths from the same solar active region. The 3He/electron events correlate very well with the interplanetary low frequency radio brightnesses of these events, but progressively worse with signatures from regions closer to the Sun. When H alpha brightnings can be associated with 3He/electron events, they have onsets coinciding to within 1 min of that of the associated metric type 3 burst but are often too small to be reported. The data are consistent with the earlier idea that many type 3 bursts, the 3He/electron events, are due to particle acceleration in the corona, well above the associated H alpha and X-ray flares.

  5. Neutron spin filters (NSF) obtained by metastability-exchange optical pumping (MEOP) and mechanical compressing of 3He gas

    NASA Astrophysics Data System (ADS)

    Hutanu, V.; Habicht, Klaus; Rupp, A.

    2004-10-01

    NSF using gaseous polarized 3He became a popular tool for many polarized neutron scattering applications due to the number of advantages that this technique presents, but also due to significant increasing of technical performancies demonstrated in that field in the last years. The realization of flexible and reliable devices for neutron beam polarization is a focal point in the instrumental development program at the Hahn-Meitner Institute Berlin (HMI). The technique applied in our case to obtain nuclear-spin-polarized 3He is metastability-exchange optical pumping (MEOP) using a cw Nd:LNA laser with 5.8 W output power and 2.5 GHz bandwidth. The general aspects regarding optical pumping in optical polarizing cells are described. The construction of the optical pumping volume is presented, the last results regarding optical pumping cells (OPC) and filter cells preparation are discussed. The status and perspectives of the project are presented.

  6. Strong-Coupling and the Stripe Phase of ^3He

    NASA Astrophysics Data System (ADS)

    Wiman, Joshua J.; Sauls, J. A.

    2016-09-01

    Thin films of superfluid 3He were predicted, based on weak-coupling BCS theory, to have a stable phase which spontaneously breaks translational symmetry in the plane of the film. This crystalline superfluid, or "stripe" phase, develops as a one-dimensional periodic array of domain walls separating degenerate B phase domains. We report calculations of the phases and phase diagram for superfluid 3He in thin films using a strong-coupling Ginzburg-Landau theory that accurately reproduces the bulk 3He superfluid phase diagram. We find that the stability of the Stripe phase is diminished relative to the A phase, but the Stripe phase is stable in a large range of temperatures, pressures, confinement, and surface conditions.

  7. Coherent photoproduction of {pi}{sup +} from {sup 3}He

    SciTech Connect

    Nasseripour, R.; Berman, B.L.; Briscoe, W.J.; Micherdzinska, A.M.; Munevar, E.; Adhikari, K.P.; Adikaram, D.; Hyde, C.E.; Klein, A.; Kuhn, S.E.; Mayer, M.; Seraydaryan, H.; Weinstein, L.B.; Anghinolfi, M.; Battaglieri, M.; De Vita, R.; Osipenko, M.; Ripani, M.; Ball, J.; Konczykowski, P.

    2011-03-15

    We have measured the differential cross section for the {gamma}{sup 3}He{yields}{pi}{sup +}t reaction. This reaction was studied using the Continuous Electron Beam Accelerator Facility (CEBAF) Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Real photons produced with the Hall-B bremsstrahlung tagging system in the energy range from 0.50 to 1.55 GeV were incident on a cryogenic liquid {sup 3}He target. The differential cross sections for the {gamma}{sup 3}He{yields}{pi}{sup +}t reaction were measured as a function of photon-beam energy and pion-scattering angle. Theoretical predictions to date cannot explain the large cross sections except at backward angles, showing that additional components must be added to the model.

  8. Surface Waves on the Superfluids ^3He and ^4He

    NASA Astrophysics Data System (ADS)

    Manninen, M. S.; Ranni, A.; Rysti, J.; Todoshchenko, I. A.; Tuoriniemi, J. T.

    2016-06-01

    Free surface waves were examined both in superfluids ^3He and ^4He with the premise that these inviscid media would represent ideal realizations for this fluid dynamics problem. The work in ^3He is one of the first of its kind, but in ^4He, it was possible to produce a much more complete set of data for meaningful comparison with theoretical models. Most measurements were performed at the zero temperature limit, meaning T< 100 mK for ^4He and T˜ 100 μ K for ^3He. Dozens of surface wave resonances, including up to 11 overtones, were observed and monitored as the liquid depth in the cell was varied. Despite of the wealth of data, perfect agreement with the constructed theoretical models could not be achieved.

  9. Surface Waves on the Superfluids ^3 He and ^4 He

    NASA Astrophysics Data System (ADS)

    Manninen, M. S.; Ranni, A.; Rysti, J.; Todoshchenko, I. A.; Tuoriniemi, J. T.

    2016-04-01

    Free surface waves were examined both in superfluids ^3 He and ^4 He with the premise that these inviscid media would represent ideal realizations for this fluid dynamics problem. The work in ^3 He is one of the first of its kind, but in ^4 He, it was possible to produce a much more complete set of data for meaningful comparison with theoretical models. Most measurements were performed at the zero temperature limit, meaning T< 100 mK for ^4 He and T˜ 100 μ K for ^3 He. Dozens of surface wave resonances, including up to 11 overtones, were observed and monitored as the liquid depth in the cell was varied. Despite of the wealth of data, perfect agreement with the constructed theoretical models could not be achieved.

  10. Nuclear electric dipole moment of {sup 3}He

    SciTech Connect

    Stetcu, I.; Friar, J. L.; Hayes, A. C.; Liu, C.-P.; Navratil, P.

    2009-01-28

    In the no-core shell model (NCSM) framework, we calculate the {sup 3}He electric dipole moment (EDM) generated by parity- and time-reversal violation in the nucleon-nucleon interaction. While the results are somehow sensitive to the interaction model chosen for the strong two- and three-body interactions, we demonstrate the pion-exchange dominance to the EDM of {sup 3}He, if the coupling constants for {pi}, {rho} and {omega}-exchanges are of comparable magnitude, as expected. Finally, our results suggest that a measurement of {sup 3}He EDM would be complementary to the currently planned neutron and deuteron experiments, and would constitute a powerful constraint to the models of the pion P- and T-violating interactions.

  11. Anisotropic phases of superfluid ^{3}he in compressed aerogel.

    PubMed

    Li, J I A; Zimmerman, A M; Pollanen, J; Collett, C A; Halperin, W P

    2015-03-13

    It has been shown that the relative stabilities of various superfluid states of ^{3}He can be influenced by anisotropy in a silica aerogel framework. We prepared a suite of aerogel samples compressed up to 30% for which we performed pulsed NMR on ^{3}He imbibed within the aerogel. We identified A and B phases and determined their magnetic field-temperature phase diagrams as a function of strain. From these results, we infer that the B phase is distorted by negative strain forming an anisotropic superfluid state more stable than the A phase. PMID:25815941

  12. A Study of 3He detectors for Active Interrogation

    SciTech Connect

    E.H. Seabury; D.L. Chichester

    2009-10-01

    3He proportional counters have long been used as neutron detectors for both passive and active detection of Special Nuclear Material (SNM). The optimal configuration of these detectors as far as gas pressure, amount of moderating material, and size are concerned is highly dependent on what neutron signatures are being used to detect and identify SNM. We present here a parametric study of the neutron capture response of 3He detectors, based on Monte Carlo simulations using the MCNPX radiation transport code. The neutron capture response of the detectors has been modeled as a function of time after an incident neutron pulse.

  13. Rotational quenching of CS in ultracold 3He collisions

    NASA Astrophysics Data System (ADS)

    Kaur, Rajwant; Dhilip Kumar, T. J.

    2016-08-01

    Quantum mechanical scattering calculations of rotational quenching of CS (v = 0) collision with 3He are performed at ultracold temperatures and results are compared with isotopic 4He collision. Rotational quenching cross sections and rate coefficients have been calculated in the ultracold region for rotational levels up to j = 10 using the He-CS potential energy surface computed at the CCSD(T)/aug-cc-pVQZ level of theory. The quenching cross sections are found to be two orders of magnitude larger for the 3He than the 4He isotope under ultracold conditions. Wigner threshold law is found to be valid below 10-3 K temperature.

  14. A Light-Front Approach to the 3He Spectral Function

    NASA Astrophysics Data System (ADS)

    Scopetta, Sergio; Del Dotto, Alessio; Kaptari, Leonid; Pace, Emanuele; Rinaldi, Matteo; Salmè, Giovanni

    2015-09-01

    The analysis of semi-inclusive deep inelastic electron scattering off polarized 3He at finite momentum transfers, aimed at the extraction of the quark transverse-momentum distributions in the neutron, requires the use of a distorted spin-dependent spectral function for 3He, which takes care of the final state interaction effects. This quantity is introduced in the non-relativistic case, and its generalization in a Poincaré covariant framework, in plane wave impulse approximation for the moment being, is outlined. Studying the light-front spin-dependent spectral function for a J = 1/2 system, such as the nucleon, it is found that, within the light-front dynamics with a fixed number of constituents and in the valence approximation, only three of the six leading twist T-even transverse-momentum distributions are independent.

  15. Probing lung microstructure with hyperpolarized 3He gradient echo MRI.

    PubMed

    Sukstanskii, Alexander L; Quirk, James D; Yablonskiy, Dmitriy A

    2014-12-01

    In this paper we demonstrate that gradient echo MRI with hyperpolarized (3)He gas can be used for simultaneously extracting in vivo information about lung ventilation properties, alveolar geometrical parameters, and blood vessel network structure. This new approach is based on multi-gradient-echo experimental measurements of hyperpolarized (3)He gas MRI signal from human lungs and a proposed theoretical model of this signal. Based on computer simulations of (3)He atoms diffusing in the acinar airway tree in the presence of an inhomogeneous magnetic field induced by the susceptibility differences between lung tissue (alveolar septa, blood vessels) and lung airspaces, we derive analytical expressions relating the time-dependent MR signal to the geometrical parameters of acinar airways and the blood vessel network. Data obtained on eight healthy volunteers are in good agreement with literature values. This information is complementary to the information obtained by means of the in vivo lung morphometry technique with hyperpolarized 3He diffusion MRI previously developed by our group, and opens new opportunities to study lung microstructure in health and disease. PMID:24920182

  16. Minimal mass size of a stable {sup 3}He cluster

    SciTech Connect

    Guardiola, R.; Navarro, J.

    2005-03-01

    The minimal number of {sup 3}He atoms required to form a bound cluster has been estimated by means of a diffusion Monte Carlo procedure within the fixed-node approximation. Several importance sampling wave functions have been employed in order to consider different shell-model configurations. The resulting upper bound for the minimal number is 32 atoms.

  17. Acoustic Spectroscopy of Superfluid 3He in Aerogel

    SciTech Connect

    Davis, J. P.; Choi, H.; Pollanen, J.; Halperin, W. P.

    2006-09-07

    We have designed an experiment to study the role of global anisotropic quasiparticle scattering on the dirty aerogel superfluid 3He system. We observe significant regions of two stable phases at temperatures below the superfluid transition at a pressure of 25 bar for a 98% aerogel.

  18. Flight performance of a rocket-borne 3He refrigerator

    NASA Astrophysics Data System (ADS)

    Duband, L.; Alsop, D.; Lange, A.; Hayata, S.; Matsumoto, T.; Sato, S.

    A self-contained, recyclable 3He refrigerator suitable for use in zero-gravity has been developed. This refrigerator successfully flew on 5 September 1989, as part of an S-520 sounding rocket payload designed to measure the spectrum of the cosmic submillimetre background. This paper presents the cryogenic performance of the refrigerator during flight.

  19. High-Pressure Fluorescence Spectroscopy.

    PubMed

    Maeno, Akihiro; Akasaka, Kazuyuki

    2015-01-01

    The combination of fluorescence and pressure perturbation is a widely used technique to study the effect of pressure on a protein system to obtain thermodynamic, structural and kinetic information on proteins. However, we often encounter the situation where the available pressure range up to 400 MPa of most commercial high-pressure fluorescence spectrometers is insufficient for studying highly pressure-stable proteins like inhibitors and allergenic proteins. To overcome the difficulty, we have recently developed a new high-pressure fluorescence system that allows fluorescence measurements up to 700 MPa. Here we describe the basic design of the apparatus and its application to study structural and thermodynamic properties of a couple of highly stable allergenic proteins, hen lysozyme and ovomucoid, using Tryptophan and Tyrosine/Tyrosinate fluorescence, respectively. Finally, we discuss the utility and the limitation of Trp and Tyr fluorescence. We discuss pitfalls of fluorescence technique and importance of simultaneous use of other high-pressure spectroscopy, particularly high-pressure NMR spectroscopy. PMID:26174405

  20. High pressure liquid level monitor

    DOEpatents

    Bean, Vern E.; Long, Frederick G.

    1984-01-01

    A liquid level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.

  1. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2003-06-03

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  2. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2001-01-01

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  3. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  4. A 3 He-129 Xe co-magnetometer with 87 Rb magnetometry

    NASA Astrophysics Data System (ADS)

    Limes, Mark; Sheng, Dong; Romalis, Mike

    2016-05-01

    We report progress on a 3 He-129 Xe co-magnetometer detected with a 87 Rb magnetometer. The noble-gas co-magnetometer is insensitive to any long-term bias field drifts, but the presence of hot Rb can cause instability in the ratio of 3 He-129 Xe precession frequencies. We use a sequence of Rb π pulses to suppress the instability due to Rb-noble gas interactions by a factor of 104 along all three spatial axes. For detection, our 87 Rb magnetometer operates using single-axis 87 Rb π pulses with σ+ /σ- pumping-this technique decouples the 87 Rb magnetometer from bias fields, and allows for SERF operation. We are presently investigating systematic effects due to combinations of several imperfections, such as longitudinal noble gas polarization, imperfect 87 Rb π pulses, and 87 Rb pump light shifts. Thus far, our 87 Rb magnetometer has a sensitivity of 40 fT/√{Hz}, and our 3 He-129 Xe co-magnetometer has achieved a single-shot precession frequency ratio error of 20 nHz and a long-term bias drift of 8 nHz at 7 h. We are developing the co-magnetometer for use as an NMR gyro, and to search for possible spin-gravity interactions. Supported by DARPA and NSF.

  5. /sup 3/Hearrow(p,p)/sup 3/He analyzing powers between 25 and 35 MeV

    SciTech Connect

    McCamis, R.H.; Verheijen, P.J.T.; van Oers, W.T.H.; Drakopoulos, P.; Lapointe, C.; Maughan, G.R.; Okumusoglu, N.T.; Brown, R.E.

    1985-05-01

    A polarized /sup 3/He target, which uses conventional optical pumping with /sup 4/He discharge lamps, has been used for the measurement of /sup 3/He analyzing powers A/sub y/(theta) at energies of 25.0, 30.0, 32.5, and 35.0 MeV. The statistical uncertainties in the data are on the order of 0.03; the systematic uncertainty is estimated to be 0.05. These data are compared with fits and predictions from various phase shift analyses.

  6. High-pressure well design

    SciTech Connect

    Krus, H.; Prieur, J.M. )

    1991-12-01

    Shell U.K. E and P (Shell Expro), operator in the U.K. North Sea on behalf of Shell and Esso, plans to drill 20 high-pressure oil and gas wells during the next 2 years. This paper reports that the well design is based on new standards developed after the U.K. Dept. of Energy restriction on high-pressure drilling in the autumn of 1988. Studies were carried out to optimize casing design and drilling performance on these wells. Several casing schemes, including a slim-hole option, were analyzed. The material specifications for casing and drillpipe were reviewed to ensure that they met the loads imposed during drilling, well- control, and well-testing operations. The requirement for sour-service material was weighted against possible H{sub 2}S adsorption by the mud film. As a result, a new drillstring and two high-pressure casing schemes have been specified. The high-pressure casing scheme used depends on the maximum expected surface pressure.

  7. High pressure neon arc lamp

    DOEpatents

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  8. High-pressure water facility

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  9. Heat Capacity of Dilute 3He-4He Monolayer Films

    NASA Astrophysics Data System (ADS)

    Morishita, Masashi

    2016-05-01

    The heat capacities of a small amount of 3He dissolved in monolayer 4He films are measured to clarify natures of monolayer 4He films. With increasing areal density, the measured heat capacities gradually increase and subsequently gradually decrease. With further increase in areal density, the measured heat capacity rapidly decreases to zero over a very narrow areal density range near that of the sqrt{3} × sqrt{3} phase. These slightly complex areal-density variations and dependence on 3He concentration are discussed from the viewpoint of the known properties of 4He films. The behaviors can be explained. However, the expected two-dimensional gas-liquid or gas-solid coexistence is not observed in this study.

  10. Hexapole magnet system for thermal energy 3He atom manipulation

    NASA Astrophysics Data System (ADS)

    Jardine, A. P.; Fouquet, P.; Ellis, J.; Allison, W.

    2001-10-01

    We present design and construction details for a novel high field, small bore permanent hexapole magnet. The design is intended for focusing atomic beams of 3He at thermal energies. The magnet uses an optimized polepiece design which includes vacuum gaps to enable its use with high intensity atomic and molecular beams. The 0.3 m long, 1 mm internal radius magnet achieves a polepiece tip field of 1.1 T using NdFeB permanent magnets and Permendur 49 polepieces. The polepiece shanks are designed to saturate so that the hexapole properties are determined predominantly by the shape of the polepiece tip. The performance of the hexapole assembly is demonstrated with an 8 meV 3He beam in the beam source of the Cambridge spin echo spectrometer and the measured focused beam results show excellent agreement with theoretical predictions and negligible beam attenuation.

  11. Nuclear spin heat capacity of 3He adsorbed on graphite

    NASA Astrophysics Data System (ADS)

    Greywall, Dennis S.

    1989-10-01

    The heat capacity of 3He adsorbed on graphite has been measured for films between one and five atomic layers and for temperatures between 2 and 200 mK. These results are compared with recent magnetization data which also show several anomalies in this coverage regime. Prior to third layer promotion the second layer is found to solidify into a registered structure with unusual propertis. This contradicts the model proposed to explain the NMR measurements.

  12. Density of liquid 3He in 8 T magnetic field

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koichi; Hasegawa, Syuichi; Okuda, Yuichi

    2000-07-01

    We report a precise measurement of the density of liquid 3He in a 8 T field. Measurements performed at saturated vapour pressure between 30 and 300 mK show a field-induced increase of density. The relative change is about 1×10 -5 in this temperature range. These results are in agreement with a calculation based on a Maxwell relation and the pressure dependence of the susceptibility.

  13. Hard two-body photodisintegration of 3He.

    PubMed

    Pomerantz, I; Ilieva, Y; Gilman, R; Higinbotham, D W; Piasetzky, E; Strauch, S; Adhikari, K P; Aghasyan, M; Allada, K; Amaryan, M J; Anefalos Pereira, S; Anghinolfi, M; Baghdasaryan, H; Ball, J; Baltzell, N A; Battaglieri, M; Batourine, V; Beck, A; Beck, S; Bedlinskiy, I; Berman, B L; Biselli, A S; Boeglin, W; Bono, J; Bookwalter, C; Boiarinov, S; Briscoe, W J; Brooks, W K; Bubis, N; Burkert, V; Camsonne, A; Canan, M; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Chirapatpimol, K; Cisbani, E; Cole, P L; Contalbrigo, M; Crede, V; Cusanno, F; D'Angelo, A; Daniel, A; Dashyan, N; de Jager, C W; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Dodge, G E; Doughty, D; Dupre, R; Dutta, C; Egiyan, H; El Alaoui, A; El Fassi, L; Eugenio, P; Fedotov, G; Fegan, S; Fleming, J A; Fradi, A; Garibaldi, F; Geagla, O; Gevorgyan, N; Giovanetti, K L; Girod, F X; Glister, J; Goetz, J T; Gohn, W; Golovatch, E; Gothe, R W; Griffioen, K A; Guegan, B; Guidal, M; Guo, L; Hafidi, K; Hakobyan, H; Harrison, N; Heddle, D; Hicks, K; Ho, D; Holtrop, M; Hyde, C E; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jiang, X; Jo, H S; Joo, K; Katramatou, A T; Keller, D; Khandaker, M; Khetarpal, P; Khrosinkova, E; Kim, A; Kim, W; Klein, F J; Koirala, S; Kubarovsky, A; Kubarovsky, V; Kuleshov, S V; Kvaltine, N D; Lee, B; LeRose, J J; Lewis, S; Lindgren, R; Livingston, K; Lu, H Y; MacGregor, I J D; Mao, Y; Martinez, D; Mayer, M; McCullough, E; McKinnon, B; Meekins, D; Meyer, C A; Michaels, R; Mineeva, T; Mirazita, M; Moffit, B; Mokeev, V; Montgomery, R A; Moutarde, H; Munevar, E; Munoz Camacho, C; Nadel-Turonski, P; Nasseripour, R; Nepali, C S; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Pappalardo, L L; Paremuzyan, R; Park, K; Park, S; Petratos, G G; Phelps, E; Pisano, S; Pogorelko, O; Pozdniakov, S; Procureur, S; Protopopescu, D; Puckett, A J R; Qian, X; Qiang, Y; Ricco, G; Rimal, D; Ripani, M; Ritchie, B G; Rodriguez, I; Ron, G; Rosner, G; Rossi, P; Sabatié, F; Saha, A; Saini, M S; Sarty, A J; Sawatzky, B; Saylor, N A; Schott, D; Schulte, E; Schumacher, R A; Seder, E; Seraydaryan, H; Shneor, R; Smith, G D; Sokhan, D; Sparveris, N; Stepanyan, S S; Stepanyan, S; Stoler, P; Subedi, R; Sulkosky, V; Taiuti, M; Tang, W; Taylor, C E; Tkachenko, S; Ungaro, M; Vernarsky, B; Vineyard, M F; Voskanyan, H; Voutier, E; Walford, N K; Wang, Y; Watts, D P; Weinstein, L B; Weygand, D P; Wojtsekhowski, B; Wood, M H; Yan, X; Yao, H; Zachariou, N; Zhan, X; Zhang, J; Zhao, Z W; Zheng, X; Zonta, I

    2013-06-14

    We have measured cross sections for the γ(3)He → pd reaction at photon energies of 0.4-1.4 GeV and a center-of-mass angle of 90°. We observe dimensional scaling above 0.7 GeV at this center-of-mass angle. This is the first observation of dimensional scaling in the photodisintegration of a nucleus heavier than the deuteron. PMID:25165915

  14. NOVEL CONCEPTS FOR ISOTOPIC SEPARATION OF 3HE/4HE

    SciTech Connect

    Roy, L.; Nigg, H.; Watson, H.

    2012-09-04

    The research outlined below established theoretical proof-of-concept using ab initio calculations that {sup 3}He can be separated from {sup 4}He by taking advantage of weak van der Waals interactions with other higher molecular weight rare gases such as xenon. To the best of our knowledge, this is the only suggested method that exploits the physical differences of the isotopes using a chemical interaction.

  15. High Efficiency Spin Flipper for the n3He Experiment

    NASA Astrophysics Data System (ADS)

    Hayes, Christopher; n3He Collaboration

    2015-10-01

    The n3He experiment, constructed on the Fundamental Neutron Physics Beamline (FnPB) at the Spallation Neutron Source, is designed to measure the parity violating (PV) proton asymmetry Ap in the capture reaction n +3 He -->3 H + p + 765 keV The asymmetry has an estimated value Ap ~ - 1 ×10-7 and is directly related to the weak isospin conserved couplings hρ0 and ωρ0 which are of fundamental interest in the verification of the meson exchange model of low energy NN intereactions. Data production for the n3He experiment began in February 2015 and is scheduled to continue thru December 2015 - reaching a statistical sensitivity δAp ~10-8 or better. I will discuss the spin flipper which is designed using the theory of double cosine-theta coils, and capable of flipping neutron spins with an efficiency approaching its maximum value ɛsf = 1 . I will also discuss the theory of Spin Magnetic Resonance (SMR) and how it is employed by the spin flipper to flip 60 Hz pulses of cold neutrons over a range of wavelengths.

  16. Uranium Neutron Coincidence Collar Model Utilizing 3He

    SciTech Connect

    Siciliano, Edward R.; Rogers, Jeremy L.; Schweppe, John E.; Lintereur, Azaree T.; Kouzes, Richard T.

    2012-07-30

    The Department of Energy Office of Nuclear Safeguards (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a boron-lined proportional tube based alternative system in a configuration typically used for 3He-based coincidence counter applications. The specific application selected for boron-lined tube replacement in this project was one of the Uranium Neutron Coincidence Collar (UNCL) designs. This report, providing results for model development of a UNCL, is a deliverable under Task 2 of the project. The current UNCL instruments utilize 3He tubes. As the first step in developing and optimizing a boron-lined proportional counter based version of the UNCL, models of eight different 3He-based UNCL detectors currently in use were developed and evaluated. A comparison was made between the simulated results and measured efficiencies for those systems with values reported in the literature. The reported experimental measurements for efficiencies and die-away times agree to within 10%.

  17. Dating degassed groundwater with 3H/3He

    NASA Astrophysics Data System (ADS)

    Visser, Ate; Broers, Hans Peter; Bierkens, Marc F. P.

    2007-10-01

    The production of gases in groundwater under contaminated locations by geochemical and biological processes is not uncommon. Degassing of these gases from groundwater and repartitioning of noble gases between water and gas phase distorts groundwater dating by 3H/3He. We observed noble gas concentrations below atmospheric equilibrium in 20 out of 34 groundwater samples from agriculturally polluted sandy areas in the Netherlands. From the absence of nitrate in degassed samples, we conclude that denitrification causes degassing. The 22Ne/20Ne ratios show that degassing had attained solubility equilibrium and had not caused isotopic fractionation by diffusion. To correct for the loss of tritiogenic 3He due to degassing, we present a single-step equilibrium degassing model. We use the total dissolved gas pressure at the monitoring screen to estimate the depth and timing of degassing, which is essential to estimate travel times from degassed samples. By propagating the uncertainties in the underlying measurements and assumptions through the travel time calculations, we found a travel time uncertainty of 3 years (a). We therefore conclude that 3H/3He dating can produce valuable information on groundwater flow even at sites with strong degassing.

  18. Enhancement of Magnetization in Liquid 3He at Aerogel Interface

    NASA Astrophysics Data System (ADS)

    Fukui, A.; Kondo, K.; Kato, C.; Obara, K.; Yano, H.; Ishikawa, O.; Hata, T.

    2013-05-01

    A novel feature of condensate state in liquid 3He is predicted theoretically, which consists of spin triplet s-wave Cooper pairs (Higashitani et al. in J. Low. Temp. Phys. 155:83-97, 2009). Such a spin triplet s-wave state will appear inside aerogel near the surface boundary contacting with superfluid 3He-B, and the enhancement of magnetization due to s-wave state is theoretically expected (Nagato et al. in J. Phys. Soc. Jpn. 78:123603, 2009; Higashitani et al. in Phys. Rev. B 85:024524, 2012). In order to detect this proximity effect, we made the interface in columnar glass tube which coated with 2.5 layer 4He, and set a saddle shape NMR coil very near the interface. At 7 bar, we found that superfluidity in liquid 3He inside aerogel never occurred, even at considerably low temperatures. At 24 bar below T/ T c =0.392, we observed no decrease of magnetization with decreasing temperatures. This phenomenon might be due to spin triplet s-wave Cooper pairs.

  19. High-pressure creep tests

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Lamoureux, J.; Hales, C.

    1986-01-01

    The automotive Stirling engine, presently being developed by the U.S. Department of Energy and NASA, uses high-pressure hydrogen as a working fluid; its long-term effects on the properties of alloys are relatively unknown. Hence, creep-rupture testing of wrought and cast high-temperature alloys in high-pressure hydrogen is an essential part of the research supporting the development of the Stirling cycle engine. Attention is given to the design, development, and operation of a 20 MPa hydrogen high-temperature multispecimen creep-rupture possessing high sensitivity. This pressure vessel allows for the simultaneous yet independent testing of six specimens. The results from one alloy, XF-818, are presented to illustrate how reported results are derived from the raw test data.

  20. Cryogenic High Pressure Sensor Module

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  1. High pressure rinsing system comparison

    SciTech Connect

    D. Sertore; M. Fusetti; P. Michelato; Carlo Pagani; Toshiyasu Higo; Jin-Seok Hong; K. Saito; G. Ciovati; T. Rothgeb

    2007-06-01

    High pressure rinsing (HPR) is a key process for the surface preparation of high field superconducting cavities. A portable apparatus for the water jet characterization, based on the transferred momentum between the water jet and a load cell, has been used in different laboratories. This apparatus allows to collected quantitative parameters that characterize the HPR water jet. In this paper, we present a quantitative comparison of the different water jet produced by various nozzles routinely used in different laboratories for the HPR process

  2. Electronic phenomena at high pressure

    SciTech Connect

    Drickamer, H.G.

    1981-01-01

    High pressure research is undertaken either to investigate intrinsically high pressure phenomena or in order to get a better understanding of the effect of the chemical environment on properties or processes at one atmosphere. Studies of electronic properties which fall in each area are presented. Many molecules and complexes can assume in the excited state different molecular arrangements and intermolecular forces depending on the medium. Their luminescence emission is then very different in a rigid or a fluid medium. With pressure one can vary the viscosity of the medium by a factor of 10/sup 7/ and thus control the distribution and rate of crossing between the excited state conformations. In rare earth chelates the efficiency of 4f-4f emission of the rare earth is controlled by the feeding from the singlet and triplet levels of the organic ligand. These ligand levels can be strongly shifted by pressure. A study of the effect of pressure on the emission efficiency permits one to understand the effect of ligand chemistry at one atmosphere. At high pressure electronic states can be sufficiently perturbed to provide new ground states. In EDA complexes these new ground states exhibit unusual chemical reactivity and new products.

  3. Nuclear Ordered Phases of Solid 3He in Silver Sinters

    NASA Astrophysics Data System (ADS)

    Schuberth, Erwin A.; Kath, Matthias; Bago, Simone

    2006-09-01

    To determine the exact spin structure of the nuclear magnetic ordered phases of solid 3He, the U2D2 low field and the high field phases above 0.4 T, a European Research and Training Network for neutron scattering from the ordered solid was established which consisted of a collaboration with the Hahn Meitner Institute, Berlin, and other European and US groups. For this experiment it is crucial to grow a single crystal within the sinter needed for cooling the solid to temperatures of the order of 500 μK and to keep it cold long enough to measure a magnetic neutron diffraction. The sinter is also necessary to absorb the major part (> 90%) of the heat generated by the neutron capture and decay reaction of the 3He nucleus. In this work we studied the growth of crystals in Ag sinters of different pore sizes and with different growth speeds to find an optimal way to obtain single crystalline samples, or at least samples with only a few grains. We used SQUID magnetometry and NMR to measure the magnetization in the ordered phases. They were indicated by the known drop of the intensity, both in the NMR signal and in the dc magnetization, for the U2D2 phase, and by an increase of about 30% for the high field phase. The best results for cooling were obtained with sinters made from 700 Å "Japanese powder" with a packing fraction of 50% which were annealed at 130 °C after sintering and then had a calculated particle size of about 4200 Å. In the dc magnetization we found a paramagnetic surface contribution from a few monolayers of 3He down to 500 μK in addition to the bulk magnetization.

  4. High-momentum response of liquid 3He.

    PubMed

    Mazzanti, F; Polls, A; Boronat, J; Casulleras, J

    2004-02-27

    A final-state-effects formalism suitable to analyze the high-momentum response of Fermi liquids is presented and used to study the dynamic structure function of liquid 3He. The theory, developed as a natural extension of the Gersch-Rodriguez formalism, incorporates the Fermi statistics explicitly through a new additive term which depends on the semidiagonal two-body density matrix. The use of a realistic momentum distribution, calculated using the diffusion Monte Carlo method, and the inclusion of this additive correction allows for good agreement with available deep-inelastic neutron scattering data. PMID:14995785

  5. 3He Spin-Dependent Cross Sections and Sum Rules

    SciTech Connect

    Slifer, Karl; Amaryan, Moscov; Amaryan, Moskov; Auerbach, Leonard; Averett, Todd; Berthot, J.; Bertin, Pierre; Bertozzi, William; Black, Tim; Brash, Edward; Brown, D.; Burtin, Etienne; Calarco, John; Cates, Gordon; Chai, Zhengwei; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Ciofi, Claudio; Cisbani, Evaristo; De Jager, Cornelis; Deur, Alexandre; DiSalvo, R.; Dieterich, Sonja; Djawotho, Pibero; Finn, John; Fissum, Kevin; Fonvieille, Helene; Frullani, Salvatore; Gao, Haiyan; Gao, Juncai; Garibaldi, Franco; Gasparian, Ashot; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Glashausser, Charles; Glockle, W.; Golak, J.; Goldberg, Emma; Gomez, Javier; Gorbenko, Viktor; Hansen, Jens-Ole; Hersman, F.; Holmes, Richard; Huber, Garth; Hughes, Emlyn; Humensky, Thomas; Incerti, Sebastien; Iodice, Mauro; Jensen, S.; Jiang, Xiaodong; Jones, C.; Jones, G.; Jones, Mark; Jutier, Christophe; Kamada, H.; Ketikyan, Armen; Kominis, Ioannis; Korsch, Wolfgang; Kramer, Kevin; Kumar, Krishna; Kumbartzki, Gerfried; Kuss, Michael; Lakuriqi, Enkeleida; Laveissiere, Geraud; LeRose, John; Liang, Meihua; Liyanage, Nilanga; Lolos, George; Malov, Sergey; Marroncle, Jacques; McCormick, Kathy; McKeown, Robert; Meziani, Zein-Eddine; Michaels, Robert; Mitchell, Joseph; Nogga, Andreas; Pace, Emanuele; Papandreou, Zisis; Pavlin, Tina; Petratos, Gerassimos; Pripstein, David; Prout, David; Ransome, Ronald; Roblin, Yves; Rowntree, David; Rvachev, Marat; Sabatie, Franck; Saha, Arunava; Salme, Giovanni; SCOPETTA, S.; Skibinski, R.; Souder, Paul; Saito, Teijiro; Strauch, Steffen; Suleiman, Riad; Takahashi, Kazunori; Todor, Luminita; Tsubota, Hiroaki; Ueno, Hiroaki; Urciuoli, Guido; van der Meer, Rob; Vernin, Pascal; Voskanyan, Hakob; Witala, Henryk; Wojtsekhowski, Bogdan; Xiong, Feng; Xu, Wang; Yang, Jae-Choon; Zhang, Bin; Zolnierczuk, Piotr

    2008-07-01

    We present a measurement of the spin-dependent cross sections for the \\vec{^3He}(\\vec{e},e')X} reaction in the quasielastic and resonance regions at four-momentum transfer 0.1 < Q^2< 0.9 GeV^2. The spin-structure functions have been extracted and used to evaluate the nuclear Burkhardt--Cottingham and extended GDH sum rules for the first time. Impulse approximation and exact three-body Faddeev calculations are also compared to the data in the quasielastic region.

  6. Hard Photodisintegration of Proton Pairs in {sup 3}He

    SciTech Connect

    Piasetzky, Eli; Pomerantz, Ishay; Higinbotham, D.; Strauch, S.; Gilman, R.

    2008-10-13

    Hard deuteron photodisintegration has been investigated for 20 years, as its cross section follows the constituent counting rule and it provides insight into the interplay between hadronic and quark-gluon degrees of freedom in high-momentum transfer exclusive reactions. We have now measured for the first time hard pp-pair disintegration in the reaction {gamma}{sup 3}He{yields}pp+n, using kinematics corresponding to a spectator neutron. Cross sections were measured for 90 deg. c.m. at 8 beam energies, from 0.8 to 4.7 GeV. Preliminary results will be presented and compared to the hard deuteron photodisintegration data.

  7. Isospin effects in the exclusive dp 3He reaction

    NASA Astrophysics Data System (ADS)

    Mielke, M.; Burmeister, I.; Chiladze, D.; Dymov, S.; Fritzsch, C.; Gebel, R.; Goslawski, P.; Hartmann, M.; Kacharava, A.; Khoukaz, A.; Kulessa, P.; Lorentz, B.; Mersmann, T.; Mikirtychiants, S.; Ohm, H.; Papenbrock, M.; Rausmann, T.; Serdyuk, V.; Ströher, H.; Täschner, A.; Valdau, Yu.; Wilkin, C.

    2014-06-01

    The differential cross section for the exclusive reaction has been measured with high resolution and large statistics over a large fraction of the backward 3He hemisphere at the excess energy 265 MeV using the COSY-ANKE magnetic spectrometer. Though the well-known ABC enhancement is observed in the spectrum, the differences detected between the and invariant-mass distributions show that there must be some isospin-one production even at relatively low excess energies. The invariant-mass differences are modeled in terms of the sequential decay.

  8. Fermion Monte Carlo Calculations on Liquid-3He

    SciTech Connect

    Kalos, M H; Colletti, L; Pederiva, F

    2004-03-16

    Methods and results for calculations of the ground state energy of the bulk system of {sup 3}He atoms are discussed. Results are encouraging: they believe that they demonstrate that their methods offer a solution of the ''fermion sign problem'' and the possibility of direct computation of many-fermion systems with no uncontrolled approximations. Nevertheless, the method is still rather inefficient compared with variational or fixed-node approximate methods. There appears to be a significant populations size effect. The situation is improved by the inclusion of ''Second Stage Importance Sampling'' and of ''Acceptance/Rejection'' adapted to their needs.

  9. NMR Studies of 3He Films on Boron Nitride

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Sullivan, N. S.

    2014-12-01

    We report the results of NMR studies of the dynamics of 3He adsorbed on hexagonal boron nitride. These studies can identify the phase transitions of the 2D films as a function of temperature. A thermally activated temperature dependence is observed for 2.6 < T < 8 K compared to a linear temperature dependence for 0.7 < T < 2.6 K. This linear dependence is consistent with that expected for thermal diffusion in a fluid for coverages of 0.4 - 0.6 of a monolayer.

  10. Quantum Phase Transition of 3He in Aerogel at a Nonzero Pressure

    NASA Astrophysics Data System (ADS)

    Matsumoto, K.; Porto, J. V.; Pollack, L.; Smith, E. N.; Ho, T. L.; Parpia, J. M.

    1997-07-01

    We present evidence for a nonzero pressure, T = 0 superfluid phase transition of 3He in 98.2% open aerogel. Unlike bulk 3He which is a superfluid at T = 0 at all pressures (densities) between zero and the melting pressure, 3He in aerogel is not superfluid unless the 3He density exceeds a critical value ρc. About 90% of the 3He added above ρc contributes to the superfluid density.

  11. Hard photodisintegration of a proton pair in {sup 3}He

    SciTech Connect

    Stanley Brodsky; Leonid Frankfurt; Ronald Gilman; J. R. Hiller; G. A. Miller; Eliezer Piasetzky; Misak Sargsian; Mark Strikman

    2003-05-01

    Hard photodisintegration of the deuteron has been extensively studied in order to understand the dynamics of the transition from hadronic to quark-gluon descriptions of the strong interaction. In this work, we discuss the extension of this program to hard photodisintegration of a pp pair in the {sup 3}He nucleus. Experimental confirmation of new features predicted here for the suggested reaction would advance our understanding of hard nuclear reactions. A main prediction, in contrast with low-energy observations, is that the pp breakup cross section is not much smaller than the one for pn break up. In some models, the energy-dependent oscillations observed for pp scattering are predicted to appear in the {gamma} {sup 3}He {yields} pp + n reaction. Such an observation would open up a completely new field in studies of color coherence phenomena in hard nuclear reactions. We also demonstrate that, in addition to the energy dependence, the measurement of the light-cone momentum distribution of the recoil neutron provides an independent test of the underlying dynamics of hard disintegration.

  12. Source investigation of impulsive 3He-rich particle events

    NASA Astrophysics Data System (ADS)

    Tan, Chengming; Yan, Yihua

    We have investigated the source characteristic and coronal magnetic field structure of six impulsive solar energetic particle (SEP) events selected from Wang et al. [Wang, Y.-M., Pick, M., Mason, G.M. Coronal holes, jets, and the origin of 3He-rich particle events. ApJ 639, 495, 2006] and Pick et al. [Pick, M., Mason, G.M., Wang, Y.-M., Tan, C., Wang, L. Solar source regions for 3He-rich solar energetic particle events identified using imaging radio, optical, and energetic particle observations. ApJ 648, 1247, 2006]. Some results are obtained: first, 2 events are associated with wide (≈100°) CMEs (hereafter wide CME events), another 4 events are associated with narrow (⩽40°) CMEs (hereafter narrow CME events); second, the coronal magnetic field configuration of narrow CME events appear more simple than that of the wide CME events; third, the photospheric magnetic field evolutions of all these events show new emergence of fluxes, while one case also shows magnetic flux cancellation; fourth, the EUV jets usually occurred very close to the footpoint of the magnetic field loop, while meter type III bursts occurred near or at the top of the loop and higher than EUV jets. Furthermore, the heights of type III bursts are estimated from the result of the coronal magnetic field extrapolations.

  13. Liquid and Solid Phases of 3He on Graphite

    NASA Astrophysics Data System (ADS)

    Gordillo, M. C.; Boronat, J.

    2016-04-01

    Recent heat-capacity experiments show quite unambiguously the existence of a liquid 3He phase adsorbed on graphite. This liquid is stable at an extremely low density, possibly one of the lowest found in nature. Previous theoretical calculations of the same system, and in strictly two dimensions, agree with the result that this liquid phase is not stable and the system is in the gas phase. We calculated the phase diagram of normal 3He adsorbed on graphite at T =0 using quantum Monte Carlo methods. Considering a fully corrugated substrate, we observe that at densities lower than 0.006 Å-2 the system is a very dilute gas that, at that density, is in equilibrium with a liquid of density 0.014 Å-2 . Our prediction matches very well the recent experimental findings on the same system. On the contrary, when a flat substrate is considered, no gas-liquid coexistence is found, in agreement with previous calculations. We also report results on the different solid structures, and on the corresponding phase transitions that appear at higher densities.

  14. Effective theory of 3H and 3He

    NASA Astrophysics Data System (ADS)

    König, Sebastian; Grießhammer, Harald W.; Hammer, H.-W.; van Kolck, U.

    2016-06-01

    We present a new perturbative expansion for pionless effective field theory with Coulomb interactions in which at leading order (LO) the spin-singlet nucleon–nucleon channels are taken in the unitarity limit. Presenting results up to next-to-leading order for the Phillips line and the neutron–deuteron doublet-channel phase shift, we find that a perturbative expansion in the inverse {}1{S}0 scattering lengths converges rapidly. Using a new systematic treatment of the proton–proton sector that isolates the divergence due to one-photon exchange, we renormalize the corresponding contribution to the {}3{{H}} –{}3{He} binding energy splitting and demonstrate that the Coulomb force in pionless EFT is a completely perturbative effect in the trinucleon bound-state regime. In our new expansion, the LO is exactly isospin-symmetric. At next-to-leading order, we include isospin breaking via the Coulomb force and two-body scattering lengths, and find for the energy splitting {({E}B{(}3{He})-{E}B{(}3{{H}}))}{NLO}\\quad =(-0.86+/- 0.17)\\quad {MeV}.

  15. The 3H-3He Charge Radii Difference

    NASA Astrophysics Data System (ADS)

    Myers, L. S.; Arrington, J. R.; Higinbotham, D. W.

    2016-03-01

    The upcoming E12-14-009 [1] experiment at Jefferson Lab will determine the ratio of the electric form factors for the A=3 mirror nuclei 3He and 3H. The measurement will use a 1.1 GeV electron beam, a special collimator plate to allow for simultaneous optics measurements, and the low-activity tritium target being prepared for Jefferson Lab. By observing the dependence of the form factor ratio as a function of Q2 over 0.05-0.09 GeV2, the dependence of the radii extraction on the shape of the form factors is minimized. As a result, we anticipate the uncertainty of the extracted charge radii difference to be 0.03 fm, a reduction of 70% from the current measurement. Using precise measurements of the 3He charge radius from isotopic shift or μHe measurements [2-4], we can deduce the absolute 3H charge radius. The results will provide a direct comparison to recent calculations of the charge radii.

  16. First observation of two hyperfine transitions in antiprotonic 3He

    PubMed Central

    Friedreich, S.; Barna, D.; Caspers, F.; Dax, A.; Hayano, R.S.; Hori, M.; Horváth, D.; Juhász, B.; Kobayashi, T.; Massiczek, O.; Sótér, A.; Todoroki, K.; Widmann, E.; Zmeskal, J.

    2011-01-01

    We report on the first experimental results for microwave spectroscopy of the hyperfine structure of p¯3He+. Due to the helium nuclear spin, p¯3He+ has a more complex hyperfine structure than p¯4He+, which has already been studied before. Thus a comparison between theoretical calculations and the experimental results will provide a more stringent test of the three-body quantum electrodynamics (QED) theory. Two out of four super-super-hyperfine (SSHF) transition lines of the (n,L)=(36,34) state were observed. The measured frequencies of the individual transitions are 11.12559(14) GHz and 11.15839(18) GHz, less than 1 MHz higher than the current theoretical values, but still within their estimated errors. Although the experimental uncertainty for the difference of these frequencies is still very large as compared to that of theory, its measured value agrees with theoretical calculations. This difference is crucial to be determined because it is proportional to the magnetic moment of the antiproton. PMID:21822351

  17. Double-quantum vortex in superfluid 3He-A

    PubMed

    Blaauwgeers; Eltsov; Krusius; Ruohio; Schanen; Volovik

    2000-03-30

    Linear defects are generic in continuous media. In quantum systems they appear as topological line defects which are associated with a circulating persistent current. In relativistic quantum field theories they are known as cosmic strings, in superconductors as quantized flux lines, and in superfluids and low-density Bose-Einstein condensates as quantized vortex lines. A conventional quantized vortex line consists of a central core around which the phase of the order parameter winds by 27(pi)n, while within the core the order parameter vanishes or is depleted from the bulk value. Usually vortices are singly quantized (that is, have n = 1). But it has been theoretically predicted that, in superfluid 3He-A, vortex lines are possible that have n = 2 and continuous structure, so that the orientation of the multicomponent order parameter changes smoothly throughout the vortex while the amplitude remains constant. Here we report direct proof, based on high-resolution nuclear magnetic resonance measurements, that the most common vortex line in 3He-A has n = 2. One vortex line after another is observed to form in a regular periodic process, similar to a phase-slip in the Josephson effect. PMID:10761908

  18. Textural domain walls in superfluid 3He-B

    NASA Astrophysics Data System (ADS)

    Mizushima, Takeshi

    Owing to the richness of symmetry, the superfluid 3He serves as a rich repository of topological quantum phenomena. This includes the emergence of surface Majorana fermions and their quantum mass acquisition at the topological critical point. Furthermore, the marriage of the prototype topological superfluid with nanofabrication techniques brings about a rich variety of spontaneous symmetry breaking, such as the formation of the stripe order and nontrivial domain walls. In this work, we examine the possible formation of textural domain walls in the superfluid 3He-B confined to a thin slab with a sub-micron thickness. When an applied magnetic field is much higher than the dipolar field, two nearly degenerate ground states appear, which are characterized by the Ising order associated with the spontaneous breaking of a magnetic order-two symmetry, lcirc;z = + 1 and - 1 . We here discuss the structure of the textural domain wall formed by the spatial modulation of the Ising order, such as low-lying quasiparticle excitations and spontaneous spin current. We also report bosonic modes bound to the textural domain wall.

  19. High pressure studies of superconductivity

    NASA Astrophysics Data System (ADS)

    Hillier, Narelle Jayne

    Superconductivity has been studied extensively since it was first discovered over 100 years ago. High pressure studies, in particular, have been vital in furthering our understanding of the superconducting state. Pressure allows researchers to enhance the properties of existing superconductors, to find new superconductors, and to test the validity of theoretical models. This thesis presents a series of high pressure measurements performed in both He-gas and diamond anvil cell systems on various superconductors and on materials in which pressure-induced superconductivity has been predicted. Under pressure the alkali metals undergo a radical departure from the nearly-free electron model. In Li this leads to a superconducting transition temperature that is among the highest of the elements. All alkali metals have been predicted to become superconducting under pressure. Pursuant to this, a search for superconductivity has been conducted in the alkali metals Na and K. In addition, the effect of increasing electron concentration on Li1-xMgx alloys has been studied. Metallic hydrogen and hydrogen-rich compounds are believed to be good candidates for high temperature superconductivity. High pressure optical studies of benzene (C6H6) have been performed to 2 Mbar to search for pressure-induced metallization. Finally, cuprate and iron-based materials are considered high-Tc superconductors. These layered compounds exhibit anisotropic behavior under pressure. Precise hydrostatic measurements of dTc/dP on HgBa2CuO 4+delta have been carried out in conjunction with uniaxial pressure experiments by another group. The results obtained provide insight into the effect of each of the lattice parameters on Tc. Finally, a series of hydrostatic and non-hydrostatic measurements on LnFePO (Ln = La, Pr, Nd) reveal startling evidence that the superconducting state in the iron-based superconductors is highly sensitive to lattice strain.

  20. Nano Materials Under High Pressures

    SciTech Connect

    Karmakar, S.; Garg, Nandini; Sharma, Surinder M.

    2010-12-01

    Materials comprising of units or particles of the size of a few nano-meters have significantly different high pressure behavior than their bulk counterparts. This is abundantly elucidated in our studies on transition metals encapsulated in carbon nanotubes. Carbon nanotubes filled with Argon also show that it affects the behavior of tubes as well as argon. Studies on nano-crystalline Si displays an interesting crystalline-amorphous reversible transition, unique of its kind in elemental solids. We also demonstrate that in some cases of nanocrystalline samples, a phase perceived to be an intermediate-transient may be actually realized.

  1. Electokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic system having no moving parts for converting electric potential to hydraulic force and for manipulating fluids. Electro-osmotic flow is used to provide a valve and means to compress a fluid or gas in a capillary-based system. By electro-osmotically moving an electrolyte between a first position opening communication between a fluid inlet and outlet and a second position closing communication between the fluid inlet and outlet the system can be configured as a valve. The system can also be used to generate forces as large as 2500 psi that can be used to compress a fluid, either a liquid or a gas.

  2. Improved high pressure turbine shroud

    NASA Technical Reports Server (NTRS)

    Bessen, I. I.; Rigney, D. V.; Schwab, R. C.

    1977-01-01

    A new high pressure turbine shroud material has been developed from the consolidation of prealloyed powders of Ni, Cr, Al and Y. The new material, a filler for cast turbine shroud body segments, is called Genaseal. The development followed the identification of oxidation resistance as the primary cause of prior shroud deterioration, since conversion to oxides reduces erosion resistance and increases spalling under thermal cycled engine conditions. The NICrAlY composition was selected in preference to NIAL and FeCRALY alloys, and was formulated to a prescribed density range that offers suitable erosion resistance, thermal conductivity and elastic modulus for improved behavior as a shroud.

  3. Nuclear reactivity control using laser induced polarization

    DOEpatents

    Bowman, Charles D.

    1991-01-01

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neutrons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  4. Nuclear reactivity control using laser induced polarization

    DOEpatents

    Bowman, Charles D.

    1990-01-01

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neturons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  5. Implementation of the thermonuclear process in D3He-9Be plasma on the basis of a Z pinch with an ultrafast laser ignition

    NASA Astrophysics Data System (ADS)

    Voronchev, V. T.; Kukulin, V. I.

    2010-01-01

    A new concept of inertial-magnetic confinement fusion is proposed. This concept is based on a high-current Z pinch combined with a femtosecond laser. The fusion target is composed of a D3He fuel contained under a high pressure inside a sealed cylindrical capsule made from metallic 9Be. An electric discharge along the capsule preheats the target and transforms it into a state of compressed liner. A subsequent TW femtosecond-laser pulse focused on a target end face causes ultrafast cold ignition of a small portion of the D3He fuel. This laser impact generates energetic electrons and ions, which trigger a nuclear-physics mechanism of a catalytic heating of the fuel and also creates a detonation shock wave capable of propagating along the plasma filament. It is shown that the self-sustaining fusion burn wave can appear in the D3He-9Be plasma, in which case the bulk of the energy release is carried by nonradioactive ions, with the energy gain being in excess of 50. The possibility of probing the fusion process by means of gamma-ray spectroscopy is also discussed. The radiative-capture reactions 3He( d, γ), D( d, γ), and 3He(3He, γ) naturally accompanying the burning of the D3He fuel are shown to serve as a convenient diagnostic tool. A nuclear “marker” of D3He fusion on the basis of the detection of monochromatic gamma rays produced in the reaction 9Be( α, γn), which is induced in the liner beryllium shell by energetic fusion alpha particles, is also examined.

  6. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  7. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  8. A dynamic model for power deposition in 3He lasers pumped by 3He(n,p) 3H reactions

    NASA Astrophysics Data System (ADS)

    Çetin, Füsun

    2004-07-01

    The coupled variation of power density with gas density in a nuclear-pumped laser, which is excited by 3He(n,p) 3H reaction products, is considered. In the literature, volumetric excitation by reaction products of 3He(n,p) 3H is only considered for the case in which gas density is uniform and does not change during the pumping. In this work, a time-dependent model describing the coupled fluid dynamic and particle transport behaviour of the gas has been developed. In modelling charge particle transport behaviour, a previously reported energy deposition model for a constant gas density is extended for a variable gas density by taking into account variations in the particle range, macroscopic cross sections and neutron flux depending on density field of the gas. The coupled equations, which are obtained by using the power deposition density expression obtained for variable gas density in the acoustically filtered equations of motion of the gas, are solved numerically. Spatial and temporal variations of power deposition density and gas density during the pumping pulse are determined for various operating pressures ranging from 0.5 to 10 atm. In the calculations, the characteristics of I.T.U TRIGA Mark-II Reactor are used and it is assumed that laser tube is placed in the centre of the reactor core. Obtained results are presented and examined.

  9. Miocene Flood Deposits in the Dry Valleys, Antarctica Dated Using Cosmogenic 3He Isotopes.

    NASA Astrophysics Data System (ADS)

    Margerison, H.; Phillips, W.; Stuart, F.; Sugden, D.

    2004-12-01

    In situ produced cosmogenic 3He measurements on deposits in the Dry Valleys, East Antarctica, provides information on Neogene climatic variation and East Antarctic ice sheet evolution. Ferrar dolerite cobble-size boulders located in the Coombs Hills form a series of mega-ripples (wavelength approximately 50 meters) associated with scabland features and stripped, corrugated bedrock surfaces. These features, together with topographic position, indicate the boulders were deposited by subglacial floodwaters. Such outburst flooding occurred during over-riding of the northern Dry Valleys by a greatly expanded East Antarctic ice sheet. Timing of the over-riding episode has been previously assigned to between 13.6 and 14.8 Ma by correlation with volcanic ash deposits dated in the Asgard Range of the Dry Valleys. Cosmogenic 3He concentrations in clinopyroxene from Ferrar dolerite boulder samples imply a minimum of 8.6 to 10.4 Ma exposure, calculated using scaling factors appropriate to Antarctica and assuming zero erosion. These are among the oldest surface exposure dates yet measured on Earth, but are however younger than the 40Ar/39Ar defined chronology. Erosion is an important influence on measured concentrations of cosmogenic isotopes and unconstrained erosion of samples can significantly influence the accuracy of stable cosmogenic isotope dating techniques in East Antarctica. Nearby Ferrar dolerite bedrock surfaces are used to yield an average cosmogenic 3He derived steady-state erosion rate of 0.24 m Ma-1. Applying a conservative erosion correction, (based on < 25% of this rate) to the oldest flood deposit causes apparent exposure ages to rise to over 14 Ma. These results provide independent support for the model of a stable, hyper-arid polar climate persisting in East Antarctica throughout the Neogene period and provide quantitative constraints on long term rates of erosion within the Dry Valleys.

  10. Direct energy conversion system for D(3)-He fusion

    NASA Astrophysics Data System (ADS)

    Tomita, Y.; Shu, L. Y.; Momota, H.

    1993-11-01

    A novel and highly efficient direct energy conversion system is proposed for utilizing D(3)-He fueled fusion. In order to convert kinetic energy of ions, we applied a pair of direct energy conversion systems each of which has a cusp-type DEC and a traveling wave DEC (TWDEC). In a cusp-type DEC, electrons are separated from the escaping ions at the first line-cusp and the energy of thermal ion components is converted at the second cusp DEC. The fusion protons go through the cusp-type DEC and arrive at the TWDEC, which principle is similar to 'LINAC'. The energy of fusion protons is recovered to electricity with an efficiency of more than 70%. These DEC's bring about the high efficient fusion plant.