Science.gov

Sample records for high-resolution electron-energy-loss spectroscopy

  1. High-Resolution Electron Energy-Loss Spectroscopy (HREELS) Using a Monochromated TEM/STEM

    NASA Technical Reports Server (NTRS)

    Sai, Z. R.; Bradley, J. P.; Erni, R.; Browning, N.

    2005-01-01

    A 200 keV FEI TF20 XT monochromated (scanning) transmission electron microscope funded by NASA's SRLIDAP program is undergoing installation at Lawrence Livermore National Laboratory. Instrument specifications in STEM mode are Cs =1.0 mm, Cc =1.2 mm, image resolution =0.18 nm, and in TEM mode Cs =1.3 mm, Cc =1.3 mm, information limit =0.14 nm. Key features of the instrument are a voltage-stabilized high tension (HT) supply, a monochromator, a high-resolution electron energy-loss spectrometer/energy filter, a high-resolution annular darkfield detector, and a solid-state x-ray energy-dispersive spectrometer. The high-tension tank contains additional sections for 60Hz and high frequency filtering, resulting in an operating voltage of 200 kV plus or minus 0.005V, a greater than 10-fold improvement over earlier systems. The monochromator is a single Wien filter design. The energy filter is a Gatan model 866 Tridiem-ERS high resolution GIF spec d for less than or equal to 0.15 eV energy resolution with 29 pA of current in a 2 nm diameter probe. 0.13 eV has already been achieved during early installation. The x-ray detector (EDAX/Genesis 4000) has a take-off angle of 20 degrees, an active area of 30 square millimeters, and a solid angle of 0.3 steradians. The higher solid angle is possible because the objective pole-piece allows the detector to be positioned as close as 9.47 mm from the specimen. The voltage-stabilized HT supply, monochromator and GIF enable high-resolution electron energy-loss spectroscopy (HREELS) with energy resolution comparable to synchrotron XANES, but with approximately 100X better spatial resolution. The region between 0 and 100 eV is called the low-loss or valence electron energy-loss spectroscopy (VEELS) region where features due to collective plasma oscillations and single electron transitions of valence electrons are observed. Most of the low-loss VEELS features we are detecting are being observed for the first time in IDPs. A major focus of

  2. Oxidation of diamond films by atomic oxygen: High resolution electron energy loss spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Shpilman, Z.; Gouzman, I.; Grossman, E.; Akhvlediani, R.; Hoffman, A.

    2007-12-01

    Diamond surface oxidation by atomic oxygen, annealing up to ˜700°C, and in situ exposure to thermally activated hydrogen were studied by high resolution electron energy loss spectroscopy (HREELS). After atomic oxygen (AO) exposure, HREELS revealed peaks associated with CHx groups, carbonyl, ether, and peroxide-type species and strong quenching of the diamond optical phonon and its overtones. Upon annealing of the oxidized surfaces, the diamond optical phonon overtones at 300 and 450meV emerge and carbonyl and peroxide species gradually desorb. The diamond surface was not completely regenerated after annealing to ˜700°C and in situ exposure to thermally activated hydrogen, probably due to the irreversible deterioration of the surface by AO.

  3. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping.

    PubMed

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E W; Guo, Jiandong

    2015-08-01

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi2Sr2CaCu2O(8+δ). The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution. PMID:26329206

  4. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping

    SciTech Connect

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E. W.; Guo, Jiandong

    2015-08-15

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ}. The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution.

  5. THE APPLICATION OF HIGH RESOLUTION ELECTRON ENERGY LOSS SPECTROSCOPY TO THE CHARACTERIZATION OF ADSORBED MOLECULES ON RHODIUM SINGLE CRYSTAL SURFACES

    SciTech Connect

    Dubois, L.H.; Somorjai, G.A.

    1980-01-01

    The scattering of low energy electrons by metal surfaces has been studied for many years now. The electron's ease of generation and detection and high surface sensitivity (low penetration depth) make it an ideal probe for surface scientists. The impinging electron can interact with the surface in basically two ways: it can either elastically reflect (or diffract) from the surface without losing energy or lose a portion of it's incident energy and inelastically scatter. In this paper we will be concerned with only one of many possible inelastic scattering processes: the loss of the electron's energy to the vibrational modes of atoms and molecules chemisorbed on the surface. This technique is known as high resolution electron energy loss spectroscopy (or ELS, EELS, HRELS, HREELS, etc.).

  6. Hydrogenated graphene on Ir(111): A high-resolution electron energy loss spectroscopy study of the vibrational spectrum

    NASA Astrophysics Data System (ADS)

    Kyhl, Line; Balog, Richard; Angot, Thierry; Hornekær, Liv; Bisson, Régis

    2016-03-01

    Hydrogen atom adsorption on high-quality graphene on Ir(111) [gr/Ir(111)] is investigated using high-resolution electron energy loss spectroscopy. The evolution of the vibrational spectrum, up to 400 meV, of gr/Ir(111) upon increasing hydrogen atom exposures is measured. The two dominant binding configurations of atomic hydrogen are identified as (1) graphanelike hydrogen clusters on the parts of the graphene more strongly interacting with the Ir(111) surface and (2) dimers bound more weakly to the freestanding parts of the graphene. The graphanelike surface structures lead to increased corrugation of the graphene sheet, yielding graphane-related phonon components. Additionally, a recent theoretical prediction of the existence of a bending character for a LO/TO graphane chair phonon mode is experimentally verified. No clear evidence was found for hydrogen bound on both sides of a high-quality graphene sheet and phonon features strongly suggest interactions between graphanelike hydrogen clusters and Ir atoms in the substrate.

  7. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P.; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J.; Neves, R. F. C.; Lopes, M. C. A.; de Oliveira, E. M.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Lima, M. A. P.; Jones, D. B.

    2015-10-01

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  8. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations.

    PubMed

    Ferreira da Silva, F; Lange, E; Limão-Vieira, P; Jones, N C; Hoffmann, S V; Hubin-Franskin, M-J; Delwiche, J; Brunger, M J; Neves, R F C; Lopes, M C A; de Oliveira, E M; da Costa, R F; Varella, M T do N; Bettega, M H F; Blanco, F; García, G; Lima, M A P; Jones, D B

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range. PMID:26472380

  9. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    SciTech Connect

    Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P. E-mail: michael.brunger@flinders.edu.au; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J. E-mail: michael.brunger@flinders.edu.au; and others

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  10. High-resolution electron-energy-loss spectroscopy and photoelectron-diffraction studies of the geometric structure of adsorbates on single-crystal metal surfaces

    SciTech Connect

    Rosenblatt, D.H.

    1982-11-01

    Two techniques which have made important contributions to the understanding of surface phenomena are high resolution electron energy loss spectroscopy (EELS) and photoelectron diffraction (PD). EELS is capable of directly measuring the vibrational modes of clean and adsorbate covered metal surfaces. In this work, the design, construction, and performance of a new EELS spectrometer are described. These results are discussed in terms of possible structures of the O-Cu(001) system. Recommendations for improvements in this EELS spectrometer and guidelines for future spectrometers are given. PD experiments provide accurate quantitative information about the geometry of atoms and molecules adsorbed on metal surfaces. The technique has advantages when used to study disordered overlayers, molecular overlayers, multiple site systems, and adsorbates which are weak electron scatterers. Four experiments were carried out which exploit these advantages.

  11. Probing optical band gaps at the nanoscale in NiFe₂O₄ and CoFe₂O₄ epitaxial films by high resolution electron energy loss spectroscopy

    SciTech Connect

    Dileep, K.; Loukya, B.; Datta, R.; Pachauri, N.; Gupta, A.

    2014-09-14

    Nanoscale optical band gap variations in epitaxial thin films of two different spinel ferrites, i.e., NiFe₂O₄ (NFO) and CoFe₂O₄ (CFO), have been investigated by spatially resolved high resolution electron energy loss spectroscopy. Experimentally, both NFO and CFO show indirect/direct band gaps around 1.52 eV/2.74 and 2.3 eV, and 1.3 eV/2.31 eV, respectively, for the ideal inverse spinel configuration with considerable standard deviation in the band gap values for CFO due to various levels of deviation from the ideal inverse spinel structure. Direct probing of the regions in both the systems with tetrahedral A site cation vacancy, which is distinct from the ideal inverse spinel configuration, shows significantly smaller band gap values. The experimental results are supported by the density functional theory based modified Becke-Johnson exchange correlation potential calculated band gap values for the different cation configurations.

  12. Image simulation for electron energy loss spectroscopy

    SciTech Connect

    Oxley, Mark P.; Pennycook, Stephen J.

    2007-10-22

    In this paper, aberration correction of the probe forming optics of the scanning transmission electron microscope has allowed the probe-forming aperture to be increased in size, resulting in probes of the order of 1 Å in diameter. The next generation of correctors promise even smaller probes. Improved spectrometer optics also offers the possibility of larger electron energy loss spectrometry detectors. The localization of images based on core-loss electron energy loss spectroscopy is examined as function of both probe-forming aperture and detector size. The effective ionization is nonlocal in nature, and two common local approximations are compared to full nonlocal calculations. Finally, the affect of the channelling of the electron probe within the sample is also discussed.

  13. Image simulation for electron energy loss spectroscopy

    DOE PAGESBeta

    Oxley, Mark P.; Pennycook, Stephen J.

    2007-10-22

    In this paper, aberration correction of the probe forming optics of the scanning transmission electron microscope has allowed the probe-forming aperture to be increased in size, resulting in probes of the order of 1 Å in diameter. The next generation of correctors promise even smaller probes. Improved spectrometer optics also offers the possibility of larger electron energy loss spectrometry detectors. The localization of images based on core-loss electron energy loss spectroscopy is examined as function of both probe-forming aperture and detector size. The effective ionization is nonlocal in nature, and two common local approximations are compared to full nonlocal calculations.more » Finally, the affect of the channelling of the electron probe within the sample is also discussed.« less

  14. Electron energy loss spectroscopy in advanced materials

    SciTech Connect

    Zaluzec, N.J.

    1991-01-01

    The combination of a Transmission Electron Microscope (TEM) with an electron energy loss spectrometer (EELS) yields a powerful tool for the microcharacterization of materials. However, the application of this technique to advanced materials problems can only be fully appreciated when the information obtained using EELS is related to that obtained from other analytical spectroscopies. In this chapter, we briefly discuss the relative performance of X-ray, Auger and Photoelectron Spectroscopies with EELS pointing out the limitations and merits of each. This comparison is followed by examples of the application of EELS to investigations involving high {Tc} superconductors, artificial metallic superlattices, amorphous magnetic materials and the characterization of metallic hydride phases. 14 refs., 22 figs.

  15. Spectral restoration in high resolution electron energy loss spectroscopy based on iterative semi-blind Lucy-Richardson algorithm applied to rutile surfaces

    NASA Astrophysics Data System (ADS)

    Lazzari, Rémi; Li, Jingfeng; Jupille, Jacques

    2015-01-01

    A new spectral restoration algorithm of reflection electron energy loss spectra is proposed. It is based on the maximum likelihood principle as implemented in the iterative Lucy-Richardson approach. Resolution is enhanced and point spread function recovered in a semi-blind way by forcing cyclically the zero loss to converge towards a Dirac peak. Synthetic phonon spectra of TiO2 are used as a test bed to discuss resolution enhancement, convergence benefit, stability towards noise, and apparatus function recovery. Attention is focused on the interplay between spectral restoration and quasi-elastic broadening due to free carriers. A resolution enhancement by a factor up to 6 on the elastic peak width can be obtained on experimental spectra of TiO2(110) and helps revealing mixed phonon/plasmon excitations.

  16. Spectral restoration in high resolution electron energy loss spectroscopy based on iterative semi-blind Lucy-Richardson algorithm applied to rutile surfaces

    SciTech Connect

    Lazzari, Rémi Li, Jingfeng Jupille, Jacques

    2015-01-15

    A new spectral restoration algorithm of reflection electron energy loss spectra is proposed. It is based on the maximum likelihood principle as implemented in the iterative Lucy-Richardson approach. Resolution is enhanced and point spread function recovered in a semi-blind way by forcing cyclically the zero loss to converge towards a Dirac peak. Synthetic phonon spectra of TiO{sub 2} are used as a test bed to discuss resolution enhancement, convergence benefit, stability towards noise, and apparatus function recovery. Attention is focused on the interplay between spectral restoration and quasi-elastic broadening due to free carriers. A resolution enhancement by a factor up to 6 on the elastic peak width can be obtained on experimental spectra of TiO{sub 2}(110) and helps revealing mixed phonon/plasmon excitations.

  17. Direct band gap measurement of Cu(In,Ga)(Se,S){sub 2} thin films using high-resolution reflection electron energy loss spectroscopy

    SciTech Connect

    Heo, Sung; Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su; Song, Taewon; Lee, Dongho Nam, Junggyu; Kang, Hee Jae; Choi, Pyung-Ho; Choi, Byoung-Deog

    2015-06-29

    To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.

  18. Characterization of the (0110) {alpha}-Ti/{gamma}-TiH interface using high-resolution Transmission Electron Microscopy (TEM) and Electron Energy Loss Spectroscopy (EELS)

    SciTech Connect

    Tsai, M.M.; Howe, J.M.

    1996-12-31

    Precipitation of {gamma}-TiH in {alpha}-Ti-H alloys involves a hcp {r_arrow} fct lattice transformation with hydrogen as an interstitial diffusing element. Results obtained from a previous TEM study have shown that the lengthening rate of {gamma}-TiH is diffusionally controlled at 25{degrees}C, and possibly interfacially controlled at temperatures of 50{degrees}C and higher. Therefore, it is essential to ascertain the presence or absence of hydrogen atoms at the interface. TEM foils from a 800 ppm wt.% Ti-H alloy were analyzed using high-resolution TEM and image simulations in order to determine the effects of hydrogen on high-resolution images of the {alpha}-Ti/{gamma}-TiH interface, and EELS was used to determine the whether the hydride structure was fully formed up to the interface.

  19. Electron energy loss spectroscopy of disilane

    SciTech Connect

    Dillon, M.A.; Spence, D.; Boesten, L.; Tanaka, H.

    1988-04-01

    Electron energy loss spectra of disilane have been recorded over an excitation energy range of 20 eV employing electrons of 20 and 200 eV incident energy for scattering angles of 0/sup 0/--90/sup 0/. Every transition detected except one appears at an energy consistent with the first observed members of Rydberg series converging to one of four possible ion states. The first two observed transitions belong to (2a/sub 1//sub g/)/sup 2/..-->../sup 1//sup ,//sup 3/(2a/sub 1//sub g/,4s) dipole forbidden channels appearing at excitation energies of )similarreverse arrowto)6.3 and 7.05 eV for the triplet and singlet, respectively. Evidence is presented for the identification of additional forbidden transitions as well as possible low-lying valence transition

  20. Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Dileep, K.; Sahu, R.; Sarkar, Sumanta; Peter, Sebastian C.; Datta, R.

    2016-03-01

    Layer specific direct measurement of optical band gaps of two important van der Waals compounds, MoS2 and ReS2, is performed at nanoscale by high resolution electron energy loss spectroscopy. For monolayer MoS2, the twin excitons (1.8 and 1.95 eV) originating at the K point of the Brillouin zone are observed. An indirect band gap of 1.27 eV is obtained from the multilayer regions. Indirect to direct band gap crossover is observed which is consistent with the previously reported strong photoluminescence from the monolayer MoS2. For ReS2, the band gap is direct, and a value of 1.52 and 1.42 eV is obtained for the monolayer and multilayer, respectively. The energy loss function is dominated by features due to high density of states at both the valence and conduction band edges, and the difference in analyzing band gap with respect to ZnO is highlighted. Crystalline 1T ReS2 forms two dimensional chains like superstructure due to the clustering between four Re atoms. The results demonstrate the power of HREELS technique as a nanoscale optical absorption spectroscopy tool.

  1. Probing battery chemistry with liquid cell electron energy loss spectroscopy

    DOE PAGESBeta

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; Unocic, Kinga A.; Sacci, Robert L.; Dudney, Nancy J.; More, Karren Leslie; Aguiar, Jeffery A.

    2015-09-15

    Electron energy loss spectroscopy (EELS) was used to determine the chemistry and oxidation state of LiMn2O4 and Li4Ti5O12 thin film battery electrodes in liquid cells for in situ scanning/transmission electron microscopy (S/TEM). Using the L2,3 white line intensity ratio method we determine the oxidation state of Mn and Ti in a liquid electrolyte solvent and discuss experimental parameters that influence measurement sensitivity.

  2. Electron Energy Loss Spectroscopy of a Chiral Plasmonic Structure

    NASA Astrophysics Data System (ADS)

    Paterson, G. W.; Karimullah, A.; Williamson, SDR; Kadodwala, M.; MacLaren, D. A.

    2015-10-01

    A detailed analysis of the plasmonic excitations within a nanopatterned gold chiral biosensor element, measured by scanning transmission electron microscopy electron energy loss spectroscopy, is presented. We discuss aspects of data acquisition, processing, analysis and simulation. The localised surface plasmonic resonance modes in the structure are extracted using non-negative matrix factorisation and we use simulations to correlate notable deviations from the idealised spectrum to nanometric fabrication imperfections. The methodology presented has wide applicability to a variety of metamaterials.

  3. Tomography of Particle Plasmon Fields from Electron Energy Loss Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hörl, Anton; Trügler, Andreas; Hohenester, Ulrich

    2013-08-01

    We theoretically investigate electron energy loss spectroscopy (EELS) of metallic nanoparticles in the optical frequency domain. Using a quasistatic approximation scheme together with a plasmon eigenmode expansion, we show that EELS can be rephrased in terms of a tomography problem. For selected single and coupled nanoparticles we extract the three-dimensional plasmon fields from a collection of rotated EELS maps. Our results pave the way for a fully three-dimensional plasmon-field tomography and establish EELS as a quantitative measurement device for plasmonics.

  4. Simulating electron energy loss spectroscopy with the MNPBEM toolbox

    NASA Astrophysics Data System (ADS)

    Hohenester, Ulrich

    2014-03-01

    Within the MNPBEM toolbox, we show how to simulate electron energy loss spectroscopy (EELS) of plasmonic nanoparticles using a boundary element method approach. The methodology underlying our approach closely follows the concepts developed by García de Abajo and coworkers (Garcia de Abajo, 2010). We introduce two classes eelsret and eelsstat that allow in combination with our recently developed MNPBEM toolbox for a simple, robust, and efficient computation of EEL spectra and maps. The classes are accompanied by a number of demo programs for EELS simulation of metallic nanospheres, nanodisks, and nanotriangles, and for electron trajectories passing by or penetrating through the metallic nanoparticles. We also discuss how to compute electric fields induced by the electron beam and cathodoluminescence. Catalogue identifier: AEKJ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKJ_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 38886 No. of bytes in distributed program, including test data, etc.: 1222650 Distribution format: tar.gz Programming language: Matlab 7.11.0 (R2010b). Computer: Any which supports Matlab 7.11.0 (R2010b). Operating system: Any which supports Matlab 7.11.0 (R2010b). RAM:≥1 GB Classification: 18. Catalogue identifier of previous version: AEKJ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183 (2012) 370 External routines: MESH2D available at www.mathworks.com Does the new version supersede the previous version?: Yes Nature of problem: Simulation of electron energy loss spectroscopy (EELS) for plasmonic nanoparticles. Solution method: Boundary element method using electromagnetic potentials. Reasons for new version: The new version of the toolbox includes two additional classes for the simulation of electron energy

  5. Probing battery chemistry with liquid cell electron energy loss spectroscopy.

    PubMed

    Unocic, Raymond R; Baggetto, Loïc; Veith, Gabriel M; Aguiar, Jeffery A; Unocic, Kinga A; Sacci, Robert L; Dudney, Nancy J; More, Karren L

    2015-11-25

    We demonstrate the ability to apply electron energy loss spectroscopy (EELS) to follow the chemistry and oxidation states of LiMn2O4 and Li4Ti5O12 battery electrodes within a battery solvent. This is significant as the use and importance of in situ electrochemical cells coupled with a scanning/transmission electron microscope (S/TEM) has expanded and been applied to follow changes in battery chemistry during electrochemical cycling. We discuss experimental parameters that influence measurement sensitivity and provide a framework to apply this important analytical method to future in situ electrochemical studies. PMID:26404766

  6. Probing battery chemistry with liquid cell electron energy loss spectroscopy

    SciTech Connect

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; Unocic, Kinga A.; Sacci, Robert L.; Dudney, Nancy J.; More, Karren Leslie; Aguiar, Jeffery A.

    2015-09-15

    Electron energy loss spectroscopy (EELS) was used to determine the chemistry and oxidation state of LiMn2O4 and Li4Ti5O12 thin film battery electrodes in liquid cells for in situ scanning/transmission electron microscopy (S/TEM). Using the L2,3 white line intensity ratio method we determine the oxidation state of Mn and Ti in a liquid electrolyte solvent and discuss experimental parameters that influence measurement sensitivity.

  7. Probing Battery Chemistry with Liquid Cell Electron Energy Loss Spectroscopy

    SciTech Connect

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; Aguiar, Jeffery A.; Unocic, Kinga A.; Sacci, Robert L.; Dudney, Nancy J.; More, Karren L.

    2015-11-25

    We demonstrate the ability to apply electron energy loss spectroscopy (EELS) to follow the chemistry and oxidation states of LiMn2O4 and Li4Ti5O12 battery electrodes within a battery solvent. The use and importance of in situ electrochemical cells coupled with a scanning/transmission electron microscope (S/TEM) has expanded and been applied to follow changes in battery chemistry during electrochemical cycling. Furthermore, we discuss experimental parameters that influence measurement sensitivity and provide a framework to apply this important analytical method to future in situ electrochemical studies.

  8. Low-energy excitations in Cu-O--based superconductors with electron-energy-loss spectroscopy

    SciTech Connect

    Kelly, M.K. ); Meng, Y. ); Hwu, Y.; Chang, Y. ); Chen, Y.; Lapeyre, G.J. ); Margaritondo, G. )

    1989-12-01

    We have investigated the ability of high-resolution electron-energy-loss spectroscopy to contribute to the understanding of the Cu-O superconductors. Our results do not show temperature dependence attributable to the superconducting transition, perhaps in part due to high surface sensitivity. A strong loss feature at 50 meV appears to be due to phonon modes, involving oxygen in the Cu-O planes, that have a strong dipole moment.

  9. Development of electron energy-loss spectroscopy for nanoscience.

    PubMed

    Yuan, Jun; Wang, Zhiwei; Fu, Xin; Xie, Lin; Sun, Yuekui; Gao, Shangpeng; Jiang, Jun; Hu, Xuerang; Xu, Chen

    2008-08-01

    Electron energy-loss spectroscopy (EELS) has been well established in providing the composition and chemical bonding information of materials, particularly for light elements. Its potential for structural determination has long been known but has yet to be fully explored. With the convergence of rapid development in computing power and improvement in the efficiency of the material specific electronic structure simulation, plus the recent breakthrough in the development of C(s)-corrected electron microscopy, the reconstruction of the local three dimensional structure of nanomaterial using EELS in conjunction with advanced structural imaging and diffraction techniques is becoming increasingly feasible. In this paper, we will review from our own examples the progress in EELS instrumentation, methods and simulation to illustrate the progress that has been made. They include the density-function-theory-based ab initio spectroscopic simulation for standard-less fingerprint applications for metastable polymorph identification, magic angle electron energy-loss spectroscopy as well as recent results from the dual-detectors EELS system which allows the energy instability of the spectrometer to be analyzed in real-time and eventually compensated on-line. PMID:18166483

  10. Electron energy loss spectroscopy of gold nanoparticles on graphene

    SciTech Connect

    DeJarnette, Drew; Roper, D. Keith

    2014-08-07

    Plasmon excitation decay by absorption, scattering, and hot electron transfer has been distinguished from effects induced by incident photons for gold nanoparticles on graphene monolayer using electron energy loss spectroscopy (EELS). Gold nano-ellipses were evaporated onto lithographed graphene, which was transferred onto a silicon nitride transmission electron microscopy grid. Plasmon decay from lithographed nanoparticles measured with EELS was compared in the absence and presence of the graphene monolayer. Measured decay values compared favorably with estimated radiative and non-radiative contributions to decay in the absence of graphene. Graphene significantly enhanced low-energy plasmon decay, increasing mode width 38%, but did not affect higher energy plasmon or dark mode decay. This decay beyond expected radiative and non-radiative mechanisms was attributed to hot electron transfer, and had quantum efficiency of 20%, consistent with previous reports.

  11. Characterizing Localized Surface Plasmons Using Electron Energy-Loss Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cherqui, Charles; Thakkar, Niket; Li, Guoliang; Camden, Jon P.; Masiello, David J.

    2016-05-01

    Electron energy-loss spectroscopy (EELS) offers a window to view nanoscale properties and processes. When performed in a scanning transmission electron microscope, EELS can simultaneously render images of nanoscale objects with subnanometer spatial resolution and correlate them with spectroscopic information at a spectral resolution of ˜10-100 meV. Consequently, EELS is a near-perfect tool for understanding the optical and electronic properties of individual plasmonic metal nanoparticles and few-nanoparticle assemblies, which are significant in a wide range of fields. This review presents an overview of basic plasmonics and EELS theory and highlights several recent noteworthy experiments involving the interrogation of plasmonic metal nanoparticle systems using electron beams.

  12. Modeling ellipsometry and electron energy loss spectroscopy of graphene

    SciTech Connect

    Lyon, Keenan A.; Miskovic, Zoran L.; Diebold, Alain C.; Idrobo, Juan-Carlos

    2014-03-31

    Recent studies of electronic excitations in graphene by Electron Energy Loss Spectroscopy (EELS) have revealed massive high-frequency peaks assigned to the π and σ+π plasmons [1], which were semi-quantitatively modeled with a two-dimensional, two-fluid hydrodynamic (HD) model [2]. On the other hand, Spectroscopic Ellipsometry (SE) of graphene covers the region of nearly constant absorbance due to graphene’s universal optical conductivity at infrared frequencies, which is not clearly resolved by EELS, and goes up to cover the π-plasmon peak at ultraviolet frequencies [3]. To attempt to model both the SE and EELS, we amend the HD model by including a low-frequency contribution of graphene’s inter-band transitions, while monitoring the fulfillment of the f-sum rule [4] up to frequencies that cover excitations of all valence electrons.

  13. Angle resolved electron energy loss spectroscopy on graphite

    NASA Astrophysics Data System (ADS)

    Diebold, U.; Preisinger, A.; Schattschneider, P.; Varga, P.

    We report on angle resolved electron energy loss spectroscopy (EELS) in reflection mode with low primary energy on a graphite single crystal. Measurements with primary electron energy of 175 eV have been performed in off-Bragg-reflex geometry in two different directions within the (0001) surface plane of the graphite single crystal. In addition, EELS measurements in specular reflection mode with different primary energies and angles of incidence were done in order to distinguish between surface and bulk plasmon losses. The energy losses and the transferred momenta of the losses have been analyzed. The results are compared with the loss functions for bulk and surface excitations calculated from the dielectric function ɛ(ω, q) obtained from TEELS-data (EELS in transmission mode) [Springer Tracts Mod. Phys. 54 (1970) 77].

  14. Data processing for atomic resolution electron energy loss spectroscopy.

    PubMed

    Cueva, Paul; Hovden, Robert; Mundy, Julia A; Xin, Huolin L; Muller, David A

    2012-08-01

    The high beam current and subangstrom resolution of aberration-corrected scanning transmission electron microscopes has enabled electron energy loss spectroscopy (EELS) mapping with atomic resolution. These spectral maps are often dose limited and spatially oversampled, leading to low counts/channel and are thus highly sensitive to errors in background estimation. However, by taking advantage of redundancy in the dataset map, one can improve background estimation and increase chemical sensitivity. We consider two such approaches--linear combination of power laws and local background averaging--that reduce background error and improve signal extraction. Principal component analysis (PCA) can also be used to analyze spectrum images, but the poor peak-to-background ratio in EELS can lead to serious artifacts if raw EELS data are PCA filtered. We identify common artifacts and discuss alternative approaches. These algorithms are implemented within the Cornell Spectrum Imager, an open source software package for spectroscopic analysis. PMID:22697429

  15. Single-atom electron energy loss spectroscopy of light elements

    PubMed Central

    Senga, Ryosuke; Suenaga, Kazu

    2015-01-01

    Light elements such as alkali metal (lithium, sodium) or halogen (fluorine, chlorine) are present in various substances and indeed play significant roles in our life. Although atomic behaviours of these elements are often a key to resolve chemical or biological activities, they are hardly visible in transmission electron microscope because of their smaller scattering power and higher knock-on probability. Here we propose a concept for detecting light atoms encaged in a nanospace by means of electron energy loss spectroscopy using inelastically scattered electrons. In this method, we demonstrate the single-atom detection of lithium, fluorine, sodium and chlorine with near-atomic precision, which is limited by the incident probe size, signal delocalization and atomic movement in nanospace. Moreover, chemical shifts of lithium K-edge have been successfully identified with various atomic configurations in one-dimensional lithium compounds. PMID:26228378

  16. Electron energy-loss spectroscopy study of thin film hafnium aluminates for novel gate dielectrics.

    PubMed

    Stemmer, S; Chen, Z Q; Zhu, W J; Ma, T P

    2003-04-01

    We have used conventional high-resolution transmission electron microscopy and electron energy-loss spectroscopy (EELS) in scanning transmission electron microscopy to investigate the microstructure and electronic structure of hafnia-based thin films doped with small amounts (6.8 at.%) of Al grown on (001) Si. The as-deposited film is amorphous with a very thin (approximately 0.5 nm) interfacial SiOx layer. The film partially crystallizes after annealing at 700 degrees C and the interfacial SiO2-like layer increases in thickness by oxygen diffusion through the Hf-aluminate layer and oxidation of the silicon substrate. Oxygen K-edge EELS fine-structures are analysed for both films and interpreted in the context of the films' microstructure. We also discuss valence electron energy-loss spectra of these ultrathin films. PMID:12694419

  17. Uranium trioxide behavior during electron energy loss spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Degueldre, Claude; Alekseev, Evgeny V.

    2015-03-01

    A sample of uranium trioxide (UO3) was produced by focused ion beam (~10 μm×~10 μm×<0.5 μm) for transmission electron and electron energy loss (EEL) spectroscopy examinations in a transmission electron microscope (TEM). The EEL spectra were recorded as a function of the thickness for the P and O edges in the low energy range 0-350 eV and were compared to spectra of UO3 small grains attached to a TEM grid. The EEL spectrum was studied through a range of thicknesses going from ~60 to ~260 nm. The EEL spectra recorded for UO3 are compared with those recorded for UO2. The reduction of UO3 into U4O9 and/or UO2 is readily observed apparently during the TEM investigations and as confirmed by electron diffraction (eD). This redox effect is similar to that known for other redox sensitive oxides. Recommendations are suggested to avoid sample decomposition.

  18. In situ electron energy-loss spectroscopy in liquids.

    PubMed

    Holtz, Megan E; Yu, Yingchao; Gao, Jie; Abruña, Héctor D; Muller, David A

    2013-08-01

    In situ scanning transmission electron microscopy (STEM) through liquids is a promising approach for exploring biological and materials processes. However, options for in situ chemical identification are limited: X-ray analysis is precluded because the liquid cell holder shadows the detector and electron energy-loss spectroscopy (EELS) is degraded by multiple scattering events in thick layers. Here, we explore the limits of EELS in the study of chemical reactions in their native environments in real time and on the nanometer scale. The determination of the local electron density, optical gap, and thickness of the liquid layer by valence EELS is demonstrated. By comparing theoretical and experimental plasmon energies, we find that liquids appear to follow the free-electron model that has been previously established for solids. Signals at energies below the optical gap and plasmon energy of the liquid provide a high signal-to-background ratio regime as demonstrated for LiFePO4 in an aqueous solution. The potential for the use of valence EELS to understand in situ STEM reactions is demonstrated for beam-induced deposition of metallic copper: as copper clusters grow, EELS develops low-loss peaks corresponding to metallic copper. From these techniques, in situ imaging and valence EELS offer insights into the local electronic structure of nanoparticles and chemical reactions. PMID:23721691

  19. Evidence for anisotropic dielectric properties of monoclinic hafnia using valence electron energy-loss spectroscopy in high-resolution transmission electron microscopy and ab initio time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Guedj, C.; Hung, L.; Zobelli, A.; Blaise, P.; Sottile, F.; Olevano, V.

    2014-12-01

    The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO2) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the same momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experiments and simulations evidence anisotropy in the dielectric properties of m-HfO2, most notably with the direction-dependent oscillator strength of the main bulk plasmon. The anisotropic nature of m-HfO2 may contribute to the differences among VEELS spectra reported in literature. The good agreement between the complex dielectric permittivity extracted from VEELS with nanometer spatial resolution, TDDFT modeling, and past literature demonstrates that the present HRTEM-VEELS device-oriented methodology is a possible solution to the difficult nanocharacterization challenges given in the International Technology Roadmap for Semiconductors.

  20. Evidence for anisotropic dielectric properties of monoclinic hafnia using valence electron energy-loss spectroscopy in high-resolution transmission electron microscopy and ab initio time-dependent density-functional theory

    SciTech Connect

    Guedj, C.; Hung, L.; Sottile, F.; Zobelli, A.; Blaise, P.; Olevano, V.

    2014-12-01

    The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO{sub 2}) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the same momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experiments and simulations evidence anisotropy in the dielectric properties of m-HfO{sub 2}, most notably with the direction-dependent oscillator strength of the main bulk plasmon. The anisotropic nature of m-HfO{sub 2} may contribute to the differences among VEELS spectra reported in literature. The good agreement between the complex dielectric permittivity extracted from VEELS with nanometer spatial resolution, TDDFT modeling, and past literature demonstrates that the present HRTEM-VEELS device-oriented methodology is a possible solution to the difficult nanocharacterization challenges given in the International Technology Roadmap for Semiconductors.

  1. Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy.

    PubMed

    Feng, Zhenbao; Yang, Bing; Lin, Yangming; Su, Dangsheng

    2015-12-01

    The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials. PMID:26646862

  2. Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy

    SciTech Connect

    Feng, Zhenbao; Yang, Bing; Lin, Yangming; Su, Dangsheng

    2015-12-07

    The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials.

  3. Quantification of ordering at a solid-liquid interface using plasmon electron energy loss spectroscopy

    SciTech Connect

    Gandman, Maria; Kauffmann, Yaron; Kaplan, Wayne D.

    2015-02-02

    We present an in situ electron energy loss spectroscopy (EELS) study of ordering of liquid Al at various Al-Al{sub 2}O{sub 3} interfaces. This technique utilizes precise measurements of the shifts in bulk plasmon resonance and their sensitivity to the valence electron density. Plasmon EELS combined with high resolution transmission electron microscopy provides information regarding the chemical composition in liquid Al at Al-Al{sub 2}O{sub 3} interfaces. Preferential oxygen segregation to the (0006) Al{sub 2}O{sub 3} plane was verified, and the (101{sup ¯}2) Al{sub 2}O{sub 3} plane was found to contain the lowest amount of segregated species.

  4. Electronic structure of Fe-based amorphous alloys studied using electron-energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, H. J.; Gu, X. J.; Poon, S. J.; Shiflet, G. J.

    2008-01-01

    The local atomic electronic structures of Fe-Mo-C-B metallic glasses are investigated using electron energy-loss spectroscopy (EELS). The fracture behavior of this Fe-based amorphous alloy system undergoes the transition from being ductile to exhibiting brittleness when alloyed with Cr or Er atoms. In addition, the glass-forming ability is also enhanced. This plastic-to-brittle transition is suggested to correlate with the change of local atomic short-range order or bonding configurations. Therefore, the bonding configuration of Fe-Mo-C-B-Er(Cr) amorphous alloys is investigated by studying the electronic structure of Fe and C atoms using electron energy-loss spectroscopy. It is shown that the normalized EELS white line intensities of Fe-L2,3 edges decrease slightly with an increasing amount of Er additions, while no noticeable difference is obtained with Cr additions. As for the C K edge, a prominent change of edge shape is observed for both alloy systems, where the first peak corresponding to a 1s→1π* transition increases with increasing Er and Cr additions. Accordingly, it is concluded that changes in the local atomic and electronic structure occur around Fe and C atoms when Er and Cr are introduced into the alloys. Furthermore, it is pointed out that the formation of Er-C and Cr-C carbide like local order inferred from the observed C K edge spectra can provide a plausible explanation for the plastic-to-brittle transition observed in these Fe-based amorphous alloys. In spite of the complexity of electronic and atomic structure in this multicomponent Fe-based metallic glass system, this study could serve as a starting point for providing a qualitative interpretation between electronic structure and plasticity in the Fe-Mo-C-B amorphous alloy system. Complimentary techniques, such as x-ray diffraction and high-resolution transmission electron microscope are also employed, providing a more complete structural characterization.

  5. High-Resolution Electron Energy Loss Studies of Oxygen, Hydrogen, Nitrogen, Nitric Oxide, and Nitrous Oxide Adsorption on Germanium Surfaces.

    NASA Astrophysics Data System (ADS)

    Entringer, Anthony G.

    The first high resolution electron energy loss spectroscopy (HREELS) studies of the oxidation and nitridation of germanium surfaces are reported. Both single crystal Ge(111) and disordered surfaces were studied. Surfaces were exposed to H, O_2, NO, N _2O, and N, after cleaning in ultra-high vacuum. The Ge surfaces were found to be non-reactive to molecular hydrogen (H_2) at room temperature. Exposure to atomic hydrogen (H) resulted hydrogen adsorption as demonstrated by the presence of Ge-H vibrational modes. The HREEL spectrum of the native oxide of Ge characteristic of nu -GeO_2 was obtained by heating the oxide to 200^circC. Three peaks were observed at 33, 62, and 106 meV for molecular oxygen (O_2) adsorbed on clean Ge(111) at room temperature. These peaks are indicative of dissociative bonding and a dominant Ge-O-Ge bridge structure. Subsequent hydrogen exposure resulted in a shift of the Ge-H stretch from its isolated value of 247 meV to 267 meV, indicative of a dominant +3 oxidation state. A high density of dangling bonds and defects and deeper oxygen penetration at the amorphous Ge surface result in a dilute bridge structure with a predominant +1 oxidation state for similar exposures. Molecules of N_2O decompose at the surfaces to desorbed N_2 molecules and chemisorbed oxygen atoms. In contrast, both oxygen and nitrogen are detected at the surfaces following exposure to NO molecules. Both NO and N_2O appear to dissociate and bond at the top surface layer. Molecular nitrogen (N_2) does not react with the Ge surfaces, however, a precursor Ge nitride is observed at room temperature following exposure to nitrogen atoms and ions. Removal of oxygen by heating of the NO-exposed surface to 550^circC enabled the identification of the Ge-N vibrational modes. These modes show a structure similar to that of germanium nitride. This spectrum is also identical to that of the N-exposed surface heated to 550^circC. Surface phonon modes of the narrow-gap semiconducting

  6. Precessed electron beam electron energy loss spectroscopy of graphene: Beyond channelling effects

    SciTech Connect

    Yedra, Ll.; Estradé, S.; Torruella, P.; Eljarrat, A.; Peiró, F.; Darbal, A. D.; Weiss, J. K.

    2014-08-04

    The effects of beam precession on the Electron Energy Loss Spectroscopy (EELS) signal of the carbon K edge in a 2 monolayer graphene sheet are studied. In a previous work, we demonstrated the use of precession to compensate for the channeling-induced reduction of EELS signal when in zone axis. In the case of graphene, no enhancement of EELS signal is found in the usual experimental conditions, as graphene is not thick enough to present channeling effects. Interestingly, though it is found that precession makes it possible to increase the collection angle, and, thus, the overall signal, without a loss of signal-to-background ratio.

  7. Investigation of the oxidation states of Cu additive in colored borosilicate glasses by electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Cheng, Shaodong; Li, Chao; Zhong, Jiasong; Ma, Chuansheng; Wang, Zhao; Xiang, Weidong

    2014-12-01

    Three optically transparent colorful (red, green, and blue) glasses were synthesized by the sol-gel method. Nano-sized precipitates were found in scanning electron microscopy images. The precipitates were analyzed by transmission electron microscopy (TEM) and high resolution TEM. The measured lattice parameters of these precipitates were found to fit the metallic copper in red glass but deviate from single valenced Cu oxides in green and blue glasses. The chemistry of these nano-sized particles was confirmed by electron energy loss spectroscopy (EELS). By fitting the EELS spectra obtained from the precipitates with the linear combination of reference spectra from Cu reference compounds, the oxidation states of Cu in the precipitates have been derived. First principle calculations suggested that the Cu nano-particles, which are in the similar oxidation states as our measurement, would show green color in the visible light range.

  8. Investigation of the oxidation states of Cu additive in colored borosilicate glasses by electron energy loss spectroscopy

    SciTech Connect

    Yang, Guang Cheng, Shaodong; Li, Chao; Ma, Chuansheng; Zhong, Jiasong; Xiang, Weidong; Wang, Zhao

    2014-12-14

    Three optically transparent colorful (red, green, and blue) glasses were synthesized by the sol-gel method. Nano-sized precipitates were found in scanning electron microscopy images. The precipitates were analyzed by transmission electron microscopy (TEM) and high resolution TEM. The measured lattice parameters of these precipitates were found to fit the metallic copper in red glass but deviate from single valenced Cu oxides in green and blue glasses. The chemistry of these nano-sized particles was confirmed by electron energy loss spectroscopy (EELS). By fitting the EELS spectra obtained from the precipitates with the linear combination of reference spectra from Cu reference compounds, the oxidation states of Cu in the precipitates have been derived. First principle calculations suggested that the Cu nano-particles, which are in the similar oxidation states as our measurement, would show green color in the visible light range.

  9. Toward 10 meV electron energy-loss spectroscopy resolution for plasmonics.

    PubMed

    Bellido, Edson P; Rossouw, David; Botton, Gianluigi A

    2014-06-01

    Energy resolution is one of the most important parameters in electron energy-loss spectroscopy. This is especially true for measurement of surface plasmon resonances, where high-energy resolution is crucial for resolving individual resonance peaks, in particular close to the zero-loss peak. In this work, we improve the energy resolution of electron energy-loss spectra of surface plasmon resonances, acquired with a monochromated beam in a scanning transmission electron microscope, by the use of the Richardson-Lucy deconvolution algorithm. We test the performance of the algorithm in a simulated spectrum and then apply it to experimental energy-loss spectra of a lithographically patterned silver nanorod. By reduction of the point spread function of the spectrum, we are able to identify low-energy surface plasmon peaks in spectra, more localized features, and higher contrast in surface plasmon energy-filtered maps. Thanks to the combination of a monochromated beam and the Richardson-Lucy algorithm, we improve the effective resolution down to 30 meV, and evidence of success up to 10 meV resolution for losses below 1 eV. We also propose, implement, and test two methods to limit the number of iterations in the algorithm. The first method is based on noise measurement and analysis, while in the second we monitor the change of slope in the deconvolved spectrum. PMID:24690472

  10. A Monte Carlo study of reflection electron energy loss spectroscopy spectrum of a carbon contaminated surface

    SciTech Connect

    Da, B.; Li, Z. Y.; Chang, H. C.; Ding, Z. J.; Mao, S. F.

    2014-09-28

    It has been experimentally found that the carbon surface contamination influences strongly the spectrum signals in reflection electron energy loss spectroscopy (REELS) especially at low primary electron energy. However, there is still little theoretical work dealing with the carbon contamination effect in REELS. Such a work is required to predict REELS spectrum for layered structural sample, providing an understanding of the experimental phenomena observed. In this study, we present a numerical calculation result on the spatially varying differential inelastic mean free path for a sample made of a carbon contamination layer of varied thickness on a SrTiO{sub 3} substrate. A Monte Carlo simulation model for electron interaction with a layered structural sample is built by combining this inelastic scattering cross-section with the Mott's cross-section for electron elastic scattering. The simulation results have clearly shown that the contribution of the electron energy loss from carbon surface contamination increases with decreasing primary energy due to increased individual scattering processes along trajectory parts carbon contamination layer. Comparison of the simulated spectra for different thicknesses of the carbon contamination layer and for different primary electron energies with experimental spectra clearly identifies that the carbon contamination in the measured sample was in the form of discontinuous islands other than the uniform film.

  11. Diamond /111/ studied by electron energy loss spectroscopy in the characteristic loss region

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1982-01-01

    Unoccupied surface states on diamond (111) annealed at greater than 900 C are studied by electron energy loss spectroscopy with valence band excitation. A feature found at 2.1 eV loss energy is attributed to an excitation from occupied surface states into unoccupied surface states of energy within the bulk band gap. A surface band gap of approximately 1 eV is estimated. This result supports a previous suggestion for unoccupied band gap states based on core level energy loss spectroscopy. Using the valence band excitation energy loss spectrosocpy, it is also suggested that hydrogen is removed from the as-polished diamond surface by a Menzel-Gomer-Redhead mechanism.

  12. Electron energy loss spectroscopy of excitons in two-dimensional-semiconductors as a function of temperature

    NASA Astrophysics Data System (ADS)

    Tizei, Luiz H. G.; Lin, Yung-Chang; Lu, Ang-Yu; Li, Lain-Jong; Suenaga, Kazu

    2016-04-01

    We have explored the benefits of performing monochromated Electron Energy Loss Spectroscopy (EELS) in samples at cryogenic temperatures. As an example, we have observed the excitonic absorption peaks in single layer Transition Metal Dichalcogenides. These peaks appear separated by small energies due to spin orbit coupling. We have been able to distinguish the split for MoS2 below 300 K and for MoSe2 below 220 K. However, the distinction between peaks is only clear at 150 K. We have measured the change in absorption threshold between 150 K and 770 K for MoS2 and MoSe2. We discuss the effect of carbon and ice contamination in EELS spectra. The increased spectral resolution available made possible with modern monochromators in electron microscopes will require the development of stable sample holders which reaches temperatures far below that of liquid nitrogen.

  13. Electron energy-loss spectroscopy of anomalous plutonium behavior in nuclear waste materials.

    PubMed

    Buck, Edgar C; Finn, Patricia A; Bates, John K

    2004-01-01

    Plutonium-enriched layer has been observed in corroded spent uranium oxide fuel (CSNF). These Pu-enriched regions were examined with analytical transmission electron microscopy combined with electron energy-loss spectroscopy (EELS). The enriched region also contained U, Am, Ru, Zr, but only minor enrichment of rare earth elements. The Pu, possibly as Pu(V) according to EELS measurements, was dispersed within re-precipitated uranium oxide (identified as U3O8) nano-crystals between U(VI) secondary phases and the CSNF surface. The U, Pu, and Am enrichment was observed in the corrosion products with tests on different nuclear fuels. This may have implications for the long-term behavior of CSNF under storage in a geologic waste repository. Furthermore, there may be an increased potential for the generation of Pu-bearing colloids from this type of weathered CSNF. PMID:15003610

  14. Electron Energy-loss Spectroscopy of Anomalous Plutonium Behavior in Nuclear Waste Materials

    SciTech Connect

    Buck, Edgar C.; Finn, patricia A.; Bates, John K.

    2004-06-01

    Plutonium-enriched layer has been observed in corroded spent uranium oxide fuel (CSNF). These Pu-enriched regions were examined with analytical transmission electron microscopy combined with electron energy-loss spectroscopy. The enriched region also contained U, Am, Ru, Zr, but only minor enrichment of rare earth elements. The Pu, possibly as Pu(V) according to EELS measurements, was dispersed within re-precipitated uranium oxide (identified as U3O8) nano-crystals between U(VI) secondary phases and the CSNF surface. The U, Pu, and Am enrichment was observed in the corrosion products with tests on different nuclear fuels. This may have implications for the long-term behavior of CSNF under storage in a geologic waste repository. Furthermore, there may be an increased potential for the generation of Pu-bearing colloids from this type of weathered CSNF.

  15. Visualizing plasmon coupling in closely spaced chains of Ag nanoparticles by electron energy-loss spectroscopy.

    PubMed

    Song, Fengqi; Wang, Tingyu; Wang, Xuefeng; Xu, Changhui; He, Longbing; Wan, Jianguo; Van Haesendonck, Christian; Ringer, Simon P; Han, Min; Liu, Zongwen; Wang, Guanghou

    2010-02-01

    Anisotropic plasmon coupling in closely spaced chains of Ag nanoparticles is visualized using electron energy-loss spectroscopy in a scanning transmission electron microscope. For dimers as the simplest chain, mapping the plasmon excitations with nanometer spatial resolution and an energy resolution of 0.27 eV intuitively identifies two coupling plasmons. The in-phase mode redshifts from the ultraviolet region as the interparticle spacing is reduced, reaching the visible range at 2.7 eV. Calculations based on the discrete-dipole approximation confirm its optical activeness, where the longitudinal direction is constructed as the path for light transportation. Two coupling paths are then observed in an inflexed four-particle chain. PMID:20077517

  16. Electron energy loss spectroscopy of plasmon resonances in titanium nitride thin films

    NASA Astrophysics Data System (ADS)

    Herzing, Andrew A.; Guler, Urcan; Zhou, Xiuli; Boltasseva, Alexandra; Shalaev, Vladimir; Norris, Theodore B.

    2016-04-01

    The plasmon resonance characteristics of refractory TiN thin films were analyzed using electron energy-loss spectroscopy (EELS). A bulk plasmon resonance was observed at 2.81 eV and a weaker surface plasmon resonance peak was detected at 2.05 eV. These findings are compared to finite-difference time-domain simulations based on measured optical data. The calculated values for both the bulk and surface resonances (2.74 eV and 2.15 eV, respectively) show reasonable agreement with those measured via EELS. The amplitude of the experimentally observed surface resonance was weaker than that typically encountered in noble metal nanostructures, and this is discussed in the context of electron density and reduced spatial confinement of the resonance mode in the thin-film geometry.

  17. Transformation Optics: A Time- and Frequency-Domain Analysis of Electron-Energy Loss Spectroscopy.

    PubMed

    Kraft, Matthias; Luo, Yu; Pendry, J B

    2016-08-10

    Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) play a pivotal role in many of the cutting edge experiments in plasmonics. EELS and CL experiments are usually supported by numerical simulations, which-though accurate-may not provide as much physical insight as analytical calculations do. Fully analytical solutions to EELS and CL systems in plasmonics are rare and difficult to obtain. This paper aims to narrow this gap by introducing a new method based on transformation optics that allows to calculate the quasistatic frequency- and time-domain response of plasmonic particles under electron beam excitation. We study a nonconcentric annulus (and ellipse in the Supporting Information ) as an example. PMID:27380143

  18. Electron energy-loss spectroscopy of V₂O₅ nanofibers synthesized by electro-spinning.

    PubMed

    Carrillo-Flores, D M; Ochoa-Lara, M T; Espinosa-Magaña, F

    2013-01-01

    The dielectric properties of V₂O₅ nanofibers, synthesized by the electrospinning method, are studied by analyzing the low-loss region of the electron energy loss spectroscopy (EELS) in a transmission electron microscope. A comparison of experimental EELS spectra and ab initio density-functional theory calculations (WIEN2k code) within the Generalized Gradient Approximation (GGA) is presented, having found an excellent agreement between them. Although the experimental EELS has been acquired for the nanoparticles composing the fibers, and numerical calculations were carried out for bulk material, agreement between experimental and calculated results shows that no difference exists between the electronic structure in calculated bulk material and the nanoparticles. Furthermore, our results from EELS confirm that we accomplished the expected crystalline phase. The origins of interband transitions are identified in the electronic band structure by calculating the partial imaginary part of the dielectric function and the partial density of states. PMID:23972604

  19. Detection of water and its derivatives on individual nanoparticles using vibrational electron energy-loss spectroscopy.

    PubMed

    Crozier, Peter A; Aoki, Toshihiro; Liu, Qianlang

    2016-10-01

    Understanding the role of water, hydrate and hydroxyl species on nanoparticle surfaces and interfaces is very important in both physical and life sciences. Detecting the presence of oxygen-hydrogen species with nanometer resolution is extremely challenging at present. Here we show that the recently developed vibrational electron energy-loss spectroscopy using subnanometer focused electron beams can be employed to spectroscopically identify the local presence and variation of OH species on nanoscale surfaces. The hydrogen-oxygen fingerprint can be correlated with highly localized structural and morphological information obtained from electron imaging. Moreover, the current approach exploits the aloof beam mode of spectral acquisition which does not require direct electron irradiation of the sample thus greatly reducing beam damage to the OH bond. These findings open the door for using electron microscopy to probe local hydroxyl and hydrate species on nanoscale organic and inorganic structures. PMID:27423795

  20. Electron energy loss spectroscopy techniques for the study of microbial chromium(VI) reduction

    NASA Technical Reports Server (NTRS)

    Daulton, Tyrone L.; Little, Brenda J.; Lowe, Kristine; Jones-Meehan, Joanne

    2002-01-01

    Electron energy loss spectroscopy (EELS) techniques were used to determine oxidation state, at high spatial resolution, of chromium associated with the metal-reducing bacteria, Shewanella oneidensis, in anaerobic cultures containing Cr(VI)O4(2-). These techniques were applied to fixed cells examined in thin section by conventional transmission electron microscopy (TEM) as well as unfixed, hydrated bacteria examined by environmental cell (EC)-TEM. Two distinct populations of bacteria were observed by TEM: bacteria exhibiting low image contrast and bacteria exhibiting high contrast in their cell membrane (or boundary) structure which was often encrusted with high-contrast precipitates. Measurements by EELS demonstrated that cell boundaries became saturated with low concentrations of Cr and the precipitates encrusting bacterial cells contained a reduced form of Cr in oxidation state + 3 or lower.

  1. Electron energy loss and thermal desorption spectroscopy of pyridine adsorbed on Pt(111)

    SciTech Connect

    Grassian, V.H.; Muetterties, E.L.

    1986-10-23

    The chemisorption behavior of pyridine (NC/sub 5/H/sub 5/) on a Pt(111) surface has been examined by using thermal desorption and electron energy loss spectroscopy as a function of adsorption temperature. The vibrational spectrum of pyridine adsorbed to room temperature on this surface shows intense loss peaks in the specular direction from vibrational modes which can be characterized as in-plane stretching and bending modes. This vibrational spectrum has been interpreted as the formation of an ..cap alpha..-pyridyl species (NC/sub 5/H/sub 4/) on the surface. The pyridyl moiety is bonded to the platinum surface through the nitrogen and one of the ..cap alpha..-carbon atoms with the pyridyl plane perpendicular to the metal surface. When pyridine is adsorbed at low temperature (120 K), it bonds to the surface through both the nitrogen atom and the ..pi.. and ..pi../sup */ orbitals of the pyridine ring. As the crystal is warmed to 260 K, at saturation coverage, approximately 50% of the molecules desorb as molecular pyridine. The remaining pyridine molecules partially decompose on the surface to form an ..cap alpha..-pyridyl fragment. The electron energy loss spectra of pyridine adsorbed at both low and room temperature is compared to the infrared spectra of two osmium cluster compounds: Os/sub 3/(CO)/sub 11/(NC/sub 5/H/sub 5/), a pyridine complex, and HOs/sub 3/(CO)/sup 18/NC/sub 5/H/sub 4/), a pyridyl complex.

  2. Electron Energy-Loss Spectroscopy: Fundamentals and applications in the characterization of minerals

    SciTech Connect

    Krishnan, K.M.

    1989-04-01

    The combined use of an energy-loss spectrometer and an analytical electron microscope with fine probe forming capabilities provides a wealth of information about the sample at high spatial resolution. Fundamental principles governing the physics of the interaction between the fast electron and a thin foil sample, to account for the fine structure in the inelastically scattered fast electron distribution (Electron-Energy Loss Spectroscopy, EELS), will be reviewed. General application of EELS is in the area of low atomic number elements (Z < 11) microanalysis, where it significantly complements the more widely used Energy Dispersive X-ray Spectroscopy (EDXS). However, a careful analysis of the low loss plasmon oscillations and the fine structure in the core-loss edges, can provide additional information related to the bonding and electronic structure of the sample. An illustration of this is presented from our study of Cdelta diamond residue from the Allende carbonaceous chondrite. Combination of EELS with channeling effects can provide specific site occupation/valence information in crystalline materials. Details of this novel crystallographic method will be outlined and illustrated with an example of the study of chromite spinels. Finally, some pertinent experimental details will be discussed. 7 figs.

  3. Derivation of optical properties of carbonaceous aerosols by monochromated electron energy-loss spectroscopy.

    PubMed

    Zhu, Jiangtao; Crozier, Peter A; Ercius, Peter; Anderson, James R

    2014-06-01

    Monochromated electron energy-loss spectroscopy (EELS) is employed to determine the optical properties of carbonaceous aerosols from the infrared to the ultraviolet region of the spectrum. It is essential to determine their optical properties to understand their accurate contribution to radiative forcing for climate change. The influence of surface and interface plasmon effects on the accuracy of dielectric data determined from EELS is discussed. Our measurements show that the standard thin film formulation of Kramers-Kronig analysis can be employed to make accurate determination of the dielectric function for carbonaceous particles down to about 40 nm in size. The complex refractive indices of graphitic and amorphous carbon spherules found in the atmosphere were determined over the wavelength range 200-1,200 nm. The graphitic carbon was strongly absorbing black carbon, whereas the amorphous carbon shows a more weakly absorbing brown carbon profile. The EELS approach provides an important tool for exploring the variation in optical properties of atmospheric carbon. PMID:24735494

  4. Determination of Elemental Ratio in an Atomic Column by Electron Energy Loss Spectroscopy.

    PubMed

    Haruta, Mitsutaka; Hosaka, Yoshiteru; Ichikawa, Noriya; Saito, Takashi; Shimakawa, Yuichi; Kurata, Hiroki

    2016-07-26

    Atomic-resolution quantification of the elemental ratio of Fe to Mn at the octahedral and tetrahedral sites in brownmillerite Ca2Fe1.07Mn0.93O5 was determined using electron energy-loss spectroscopy combined with aberration-corrected scanning transmission electron microscopy. The combined techniques revealed that oversampling of the spectral imaging data yielded a spatially resolved area that very nearly reflects atomic resolution (∼1.2 Å radius). The average experimental ratios of Fe to Mn within this region were 17.5:82.5 for the octahedral sites and 81.6:18.4 for the tetrahedral sites. The elemental ratio in an octahedral atomic column was successfully extracted by estimating the mixing of signals from nearest neighbor columns. The results indicated that the ratio of Fe to Mn was 13:87 at the octahedral site, which is in good agreement with the results of neutron diffraction analysis. In addition, the uncertainty of experimental results obtained by using an average 1.2 Å radius was less than 10% at octahedral sites, depending on the sample thickness. In contrast, the experimental error due to dechanneling of incident electrons was larger at the tetrahedral sites. This experimental procedure has wide application for determining the spatially resolved composition ratio of elements in perovskite-like compounds. PMID:27341006

  5. Valence electron energy-loss spectroscopy study of ZrSiO₄ and ZrO₂.

    PubMed

    Jiang, Nan; Spence, John C H

    2013-11-01

    ZrSiO4 (zircon) and m-ZrO2 (zirconia) are fundamental and industrially important materials. This work reports the detailed valence electron energy-loss spectroscopy (VEELS) studies of these compounds. The dielectric response functions, as well as single-electron interband transition spectra, are derived from VEELS data for both ZrSiO4 and m-ZrO2, in the range 5-50 eV using the Kramers-Kronig analysis method. Our interpretation of the interband transitions is given with the aid of ab initio calculations of density of states. The bandgap energies for both materials are also measured using VEELS. The surface and bulk plasmons are identified: the surface plasmon peaks locate at around 12 eV, and two bulk plasmon peaks are ∼15-16 eV and ∼25-27 eV, respectively. Although similarities in the VEELS exist between ZrSiO4 and m-ZrO2, two major differences are also noticed and explained in terms of composition and structure differences. PMID:23916829

  6. Automated background subtraction technique for electron energy-loss spectroscopy and application to semiconductor heterostructures.

    PubMed

    Angadi, Veerendra C; Abhayaratne, Charith; Walther, Thomas

    2016-05-01

    Electron energy-loss spectroscopy (EELS) has become a standard tool for identification and sometimes also quantification of elements in materials science. This is important for understanding the chemical and/or structural composition of processed materials. In EELS, the background is often modelled using an inverse power-law function. Core-loss ionization edges are superimposed on top of the dominating background, making it difficult to quantify their intensities. The inverse power-law has to be modelled for each pre-edge region of the ionization edges in the spectrum individually rather than for the entire spectrum. To achieve this, the prerequisite is that one knows all core losses possibly present. The aim of this study is to automatically detect core-loss edges, model the background and extract quantitative elemental maps and profiles of EELS, based on several EELS spectrum images (EELS SI) without any prior knowledge of the material. The algorithm provides elemental maps and concentration profiles by making smart decisions in selecting pre-edge regions and integration ranges. The results of the quantification for a semiconductor thin film heterostructure show high chemical sensitivity, reasonable group III/V intensity ratios but also quantification issues when narrow integration windows are used without deconvolution. PMID:26998582

  7. Electron energy loss spectroscopy analysis of the interaction of Cr and V with MWCNTs.

    PubMed

    Ilari, Gabriele M; Chawla, Vipin; Matam, Santhosh; Zhang, Yucheng; Michler, Johann; Erni, Rolf

    2016-05-01

    The presented scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS) results show the strong reaction of Cr and V with the graphitic walls of MWCNTs. For Vanadium, an interfacial VC layer could be observed at the interface between VN and MWCNTs, when the samples were heated in situ to 750°C. Knowledge about this interfacial VC layer is important for the formation of VN-MWCNT hybrid materials, used in supercapacitor electrodes, often synthesized at high temperatures. Chromium reacts at 500°C with the MWCNTs to form Cr3C2 and in some cases, dissolved the MWCNT completely. Together with the previously published results about the interaction of MWCNTs with Cu (no interaction) and Ni (a slight rehybridisation trend for the outermost MWCNT-wall observed with EELS) (Ilari et al., 2015) the influence of the valence d-orbital occupancy of 3d transition metals on the interaction strength with CNTs is shown experimentally. For a transition metal to form chemical bonds towards CNT-walls, unoccupied states in its valence d-orbitals are needed. While Ni (2 unoccupied states) interacts only slightly, Cr (5 unoccupied states) and V (7 unoccupied states) react much stronger and can dissolve the MWCNTs, at least partially. PMID:26925830

  8. Quantification of the boron speciation in alkali borosilicate glasses by electron energy loss spectroscopy

    PubMed Central

    Cheng, Shaodong; Yang, Guang; Zhao, Yanqi; Peng, MingYing; Skibsted, Jørgen; Yue, Yuanzheng

    2015-01-01

    Transmission electron microscopy and related analytical techniques have been widely used to study the microstructure of different materials. However, few research works have been performed in the field of glasses, possibly due to the electron-beam irradiation damage. In this paper, we have developed a method based on electron energy loss spectroscopy (EELS) data acquisition and analyses, which enables determination of the boron speciation in a series of ternary alkali borosilicate glasses with constant molar ratios. A script for the fast acquisition of EELS has been designed, from which the fraction of BO4 tetrahedra can be obtained by fitting the experimental data with linear combinations of the reference spectra. The BO4 fractions (N4) obtained by EELS are consistent with those from 11B MAS NMR spectra, suggesting that EELS can be an alternative and convenient way to determine the N4 fraction in glasses. In addition, the boron speciation of a CeO2 doped potassium borosilicate glass has been analyzed by using the time-resolved EELS spectra. The results clearly demonstrate that the BO4 to BO3 transformation induced by the electron beam irradiation can be efficiently suppressed by doping CeO2 to the borosilicate glasses. PMID:26643370

  9. Electron energy-loss spectroscopy of carbon in interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Bradley, John P.; Thomas, Kathie L.; Mckay, David S.

    1994-01-01

    The nature of the carbon-bearing phases in IDP's provides information regarding the chemical and physical processes involved in the formation and evolution of the early solar system. Several carbon-bearing materials have been observed in IDP's, but details of their nature, abundance, and distribution are still poorly known. A knowledge of the abundance and nature of carbon in IDP's is useful in constraining the sources of IDP's and for comparisons with other chondritic materials. Estimates of carbon abundance in anhydrous and hydrated IDP's indicate that most of these particles have significantly higher carbon than the carbonaceous chondrites. Mineralogical analyses show that carbonates are only a minor component of most hydrated IDP's, and so the high carbon abundances in this group of IDP's indicates that other carbon-bearing phases are present in significant concentrations. Using the technique of electron energy-loss spectroscopy (EELS), we have identified two forms of carbon in a hydrated IDP, oxidized carbon (carbonates), and amorphous elemental carbon.

  10. Nanoscale Concentration Quantification of Pharmaceutical Actives in Amorphous Polymer Matrices by Electron Energy-Loss Spectroscopy.

    PubMed

    Ricarte, Ralm G; Lodge, Timothy P; Hillmyer, Marc A

    2016-07-26

    We demonstrated the use of electron energy-loss spectroscopy (EELS) to evaluate the composition of phenytoin:hydroxypropyl methylcellulose acetate succinate (HPMCAS) spin-coated solid dispersions (SDs). To overcome the inability of bright-field and high-angle annular dark-field TEM imaging to distinguish between glassy drug and polymer, we used the π-π* transition peak in the EELS spectrum to detect phenytoin within the HPMCAS matrix of the SD. The concentration of phenytoin within SDs of 10, 25, and 50 wt % drug loading was quantified by a multiple least-squares analysis. Evaluating the concentration of 50 different regions in each SD, we determined that phenytoin and HPMCAS are intimately mixed at a length scale of 200 nm, even for drug loadings up to 50 wt %. At length scales below 100 nm, the variance of the measured phenytoin concentration increases; we speculate that this increase is due to statistical fluctuations in local concentration and chemical changes induced by electron irradiation. We also performed EELS analysis of an annealed 25 wt % phenytoin SD and showed that the technique can resolve concentration differences between regions that are less than 50 nm apart. Our findings indicate that EELS is a useful tool for quantifying, with high accuracy and sub-100 nm spatial resolution, the composition of many pharmaceutical and soft matter systems. PMID:27419264

  11. Revealing the electronic structure of the iron pnictides with electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Idrobo, J. C.; Zhou, W.; Chisholm, M. F.; Prange, M. P.; Sefat, A. S.; McGuire, M. A.; Sales, B. C.; Pennycook, S. J.; Pantelides, S. T.

    2011-03-01

    We report electron energy-loss spectroscopy (EELS) studies of the parent compounds (LnFeAsO, Ln=La, Ce, Pr, Nd, Sm, Gd) using scanning transmission electron microscopy. We find that all the studied LnFeAsO present a Fe L-edge fine structure closer to that of metallic iron than iron oxides. We observe a direct correlation between the Fe valence state (obtained from EELS) and TC , i.e. the smaller the calculated Fe valence state, the larger is the TC for that compound. We also find an anomalous crystallographic orientation-dependence of the Ln M45 edge fine structure. In particular, we find difference in the apparent crystal field splitting of Ce and Gd f- bands when the spectra are collected parallel and perpendicular to the c-axis. This research was partially supported by NSF Grant No. DMR-0938330 (JCI, WZ), by ORNL's Shared Research Equipment (SHaRE) User Facility, which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy (JCI) and the Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy (MC, ASS, MAM, BCS & SJP), DOE grant DE- F002-09ER46554 (MP, STP), and by the McMinn Endowment (STP) at Vanderbilt University.

  12. Quasinormal mode theory and modelling of electron energy loss spectroscopy for plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Ge, Rong-Chun; Hughes, Stephen

    2016-05-01

    Understanding light-matter interactions using localized surface plasmons (LSPs) is of fundamental interest in classical and quantum plasmonics and has a wide range of applications. In order to understand the spatial properties of LSPs, electron energy loss spectroscopy (EELS) is a common and powerful method of spatially resolving the extreme localized fields that can be obtained with metal resonators. However, modelling EELS for general shaped resonators presents a major challenge in computational electrodynamics, requiring the full photon Green function as a function of two space points and frequency. Here we present an intuitive and computationally simple method for computing EELS maps of plasmonic resonators using a quasinormal mode (QNM) expansion technique. By separating the contribution of the QNM and the bulk material, we give closed-form analytical formulas for the plasmonic QNM contribution to the EELS maps. We exemplify our technique for a split ring resonator, a gold nanorod, and a nanorod dimer structure. The method is accurate, intuitive, and gives orders of magnitude improvements over direct dipole simulations that numerically solve the full 3D Maxwell equations. We also show how the same QNM Green function can be used to obtain the Purcell factor (and projected local density of optical states) from quantum dipole emitters or two level atoms, and we demonstrate how the spectral features differ in general to the EELS spectrum.

  13. Electron energy loss spectroscopy on semiconductor heterostructures for optoelectronics and photonics applications.

    PubMed

    Eljarrat, A; López-Conesa, L; Estradé, S; Peiró, F

    2016-05-01

    In this work, we present characterization methods for the analysis of nanometer-sized devices, based on silicon and III-V nitride semiconductor materials. These methods are devised in order to take advantage of the aberration corrected scanning transmission electron microscope, equipped with a monochromator. This set-up ensures the necessary high spatial and energy resolution for the characterization of the smallest structures. As with these experiments, we aim to obtain chemical and structural information, we use electron energy loss spectroscopy (EELS). The low-loss region of EELS is exploited, which features fundamental electronic properties of semiconductor materials and facilitates a high data throughput. We show how the detailed analysis of these spectra, using theoretical models and computational tools, can enhance the analytical power of EELS. In this sense, initially, results from the model-based fit of the plasmon peak are presented. Moreover, the application of multivariate analysis algorithms to low-loss EELS is explored. Finally, some physical limitations of the technique, such as spatial delocalization, are mentioned. PMID:26366876

  14. Advantages of a monochromator for bandgap measurements using electron energy-loss spectroscopy.

    PubMed

    Kimoto, Koji; Kothleitner, Gerald; Grogger, Werner; Matsui, Yoshio; Hofer, Ferdinand

    2005-01-01

    The practical advantages of a monochromator for electron energy-loss spectroscopy (EELS) in transmission electron microscopy are reviewed. The zero-loss peaks (ZLPs) of a monochromator and a cold field emission gun are compared in terms of bandgap measurement performance. The intensity of the ZLP tails at the bandgap energy is more important than the full-width at half maximum of the ZLP, and a monochromator is preferable to conventional electron sources. The silicon bandgap of 1.1eV is evaluated from the onset in the EEL spectrum obtained using the monochromator without a numerical procedure. We also show a high-speed instability-correction technique to realize the inherent energy resolution of the monochromator, in which instabilities of less than 335Hz are corrected using 512 EEL spectra obtained with an exposure time of 1.4ms. It will be useful in bandgap measurements and advanced studies for elucidating sub-eV EEL spectra. PMID:15629650

  15. Atomic scale structure and chemistry of interfaces by Z-contrast imaging and electron energy loss spectroscopy in the STEM

    SciTech Connect

    McGibbon, M.M.; Browning, N.D.; Chisholm, M.F.; Pennycook, S.J.

    1993-12-01

    The macroscopic properties of many materials are controlled by the structure and chemistry at the grain boundaries. A basic understanding of the structure-property relationship requires a technique which probes both composition and chemical bonding on an atomic scale. The high-resolution Z-contrast imaging technique in the scanning transmission electron microscope (STEM) forms an incoherent image in which changes in atomic structure and composition can be interpreted intuitively. This direct image allows the electron probe to be positioned over individual atomic columns for parallel detection electron energy loss spectroscopy (PEELS) at a spatial resolution approaching 0.22nm. The bonding information which can be obtained from the fine structure within the PEELS edges can then be used in conjunction with the Z-contrast images to determine the structure at the grain boundary. In this paper we present 3 examples of correlations between the structural, chemical and electronic properties at materials interfaces in metal-semiconductor systems, superconducting and ferroelectric materials.

  16. The beta-SiC(100) surface studied by low energy electron diffraction, Auger electron spectroscopy, and electron energy loss spectra

    NASA Technical Reports Server (NTRS)

    Dayan, M.

    1986-01-01

    The beta-SiC(100) surface has been studied by low energy electron diffraction, Auger electron spectroscopy, high resolution electron energy loss spectra (HREELS), and core level excitation EELS. Two new Si-terminated phases have been discovered, one with (3 x 2) symmetry, and the other with (2 x 1) symmetry. Models are presented to describe these phases. New results, for the C-rich surface, are presented and discussed. In addition, core level excitation EELS results are given and compared with theory.

  17. Study of the Dielectric Function of Graphene from Spectroscopic Ellipsometry and Electron Energy Loss Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nelson, Florence

    For more than 60 years, semiconductor research has been advancing up the periodic table. The first transistor was made from germanium. This later gave way to silicon-based devices due to the latter's ability to form an excellent interface with thermally-grown oxide. Now for the last ˜8 years, the focus has moved up one more row to carbon for post-CMOS devices in order to comply with the scaling limitations of Moore's law. However, for each of these, the measurements of film properties and dimensions have always been required for technological applications. These measurement methods often incorporate the use of light or electrons in order to take advantage of a wavelength that is on the order of, or smaller than, the feature sizes of interest. This thesis compares the dielectric function of graphene measured by an optical method to that obtained from an electron energy loss method in order to observe the effect of contamination and substrate on the optical properties of graphene exposed to the environment. Whether viewed in terms of how light affects a material (dielectric function) or how a material affects light (refractive index), the optical response is a quantity that may be used to obtain information about a film's thickness, energy structure, and the types of excitations that are responsible for energy loss. The three main experimental methods used in this thesis work are spectroscopic ellipsometry (SE), scanning transmission electron microscopy (STEM), and electron energy loss spectroscopy (EELS). SE is commonly used in clean-room environments for optical measurement over the energy range of ˜0-5 eV. This method is used to study graphene's dielectric function from the ultraviolet (UV) through infrared (IR) regions through use of an oscillator dispersion model. A nearly constant absorbance over the IR and into the visible region is observed due to vertical transitions between graphene's linearly dispersed pi-bands at the Dirac points. An exciton

  18. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale.

    PubMed

    Colliex, Christian; Kociak, Mathieu; Stéphan, Odile

    2016-03-01

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  19. Electronic and optical properties of selected polymers studied by reflection electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Tahir, Dahlang; Tougaard, Sven

    2012-03-01

    We have determined the electronic and optical properties of six polymers: Polymethyl-methacrylate (PMMA), polyethylene (PE), polyvinyl chloride (PVC), polyester (PET), polypyrrole (PPY), and polyamide (PA6) for energy losses from 0 to 70 eV by analysis of reflection electron energy-loss spectroscopy (REELS) spectra. We found that the surface was easily damaged by the incident electron beam, in particular for energies above 500 eV. The damage results in new peaks in the bandgap region and the polymers become metallic. Great care was exerted to determine experimental conditions under which these effects are minimized. The REELS spectra were corrected for multiple inelastically scattered electrons with the QUASES-XS-REELS software to determine the effective inelastic-scattering cross sections. From these cross sections, we found that the band gaps for PMMA, PE, PVC, PET, PPY, and PA6 are 5.0 eV, 7.5 eV, 7.0 eV, 3.0 eV, 3.5 eV, and 5.1 eV, respectively. Quantitative analysis of the experimental cross sections was carried out by using the QUEELS-ɛ(k,ω)-REELS software to determine the dielectric function and optical properties. This is done by comparing the experimental REELS inelastic electron-scattering cross-section with a simulated cross section in which the only input is Im(-1/ɛ). The dielectric function is expressed as a sum of oscillators and the oscillator parameters are determined. Good agreement between the experimental and theoretical cross section is achieved for all polymers. From Im(-1/ɛ), the real and imaginary parts of ɛ (ω), the refractive index, and the extinction coefficient were determined for all polymers in the energy range ћω = 0 to 70 eV. An oscillator is clearly observed for PPY, PET, and PA6 at ˜ 6.7 eV, which corresponds to the π plasmon. This oscillator is not found for PMMA, PE, and PVC. A set of oscillators in the 20-30 eV energy range corresponding to the σ+π plasmon is found for all polymers.

  20. Combined study of the ground and unoccupied electronic states of graphite by electron energy-loss spectroscopy

    SciTech Connect

    Feng, Zhenbao; Löffler, Stefan; Eder, Franz; Meyer, Jannik C.; Su, Dangsheng; Schattschneider, Peter

    2013-11-14

    Both the unoccupied and ground electronic states of graphite have been studied by electron energy-loss spectroscopy in a transmission electron microscope. Electron energy-loss near-edge structures of the K-edge of carbon have been investigated in detail for scattering angles from 0 to 2.8 mrad. The π{sup *} and σ{sup *} components were separated. The angular and energy dependences of the π{sup *} and σ{sup *} structures were in fair agreement with theory. Electron energy loss Compton spectra of graphite were recorded at scattering angles from 45 to 68 mrad. One Compton scattering spectrum was obtained in 1 min compared with several hours or days using photons. The contributions of core electrons were calculated by the exact Hartree-Slater method in the Compton scattering region. The electron Compton profile for graphite is in good agreement with other conventional Compton profile measurements, as well as with theory, thus establishing the validity of the technique.

  1. High Resolution Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brünken, S.; Schlemmer, S.

    2016-05-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limitations of conventional absorption spectroscopy. Throughout this review examples demonstrating the strong interplay between laboratory and observational studies will be given.

  2. Microstructure of highly strained BiFeO3 thin films: Transmission electron microscopy and electron-energy loss spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Heon Kim, Young; Bhatnagar, Akash; Pippel, Eckhard; Alexe, Marin; Hesse, Dietrich

    2014-01-01

    Microstructure and electronic structure of highly strained bismuth ferrite (BiFeO3) thin films grown on lanthanum aluminate substrates are studied using high-resolution transmission and scanning transmission electron microscopies and electron energy loss spectroscopy (EELS). Monoclinic and tetragonal phases were observed in films grown at different temperatures, and a mix of both phases was detected in a film grown at intermediate temperature. In this film, a smooth transition of the microstructure was found between the monoclinic and the tetragonal phases. A considerable increase in the c-axis parameters was observed in both phases compared with the rhombohedral bulk phase. The off-center displacement of iron (Fe) ions was increased in the monoclinic phase as compared with the tetragonal phase. EEL spectra show different electronic structures in the monoclinic and the tetragonal phases. These experimental observations are well consistent with the results of theoretical first-principle calculations performed.

  3. Microstructure of highly strained BiFeO{sub 3} thin films: Transmission electron microscopy and electron-energy loss spectroscopy studies

    SciTech Connect

    Heon Kim, Young; Bhatnagar, Akash; Pippel, Eckhard; Hesse, Dietrich; Alexe, Marin

    2014-01-28

    Microstructure and electronic structure of highly strained bismuth ferrite (BiFeO{sub 3}) thin films grown on lanthanum aluminate substrates are studied using high-resolution transmission and scanning transmission electron microscopies and electron energy loss spectroscopy (EELS). Monoclinic and tetragonal phases were observed in films grown at different temperatures, and a mix of both phases was detected in a film grown at intermediate temperature. In this film, a smooth transition of the microstructure was found between the monoclinic and the tetragonal phases. A considerable increase in the c-axis parameters was observed in both phases compared with the rhombohedral bulk phase. The off-center displacement of iron (Fe) ions was increased in the monoclinic phase as compared with the tetragonal phase. EEL spectra show different electronic structures in the monoclinic and the tetragonal phases. These experimental observations are well consistent with the results of theoretical first-principle calculations performed.

  4. A Complete Overhaul of the Electron Energy-Loss Spectroscopy and X-Ray Absorption Spectroscopy Database: eelsdb.eu.

    PubMed

    Ewels, Philip; Sikora, Thierry; Serin, Virginie; Ewels, Chris P; Lajaunie, Luc

    2016-06-01

    The electron energy-loss spectroscopy (EELS) and X-ray absorption spectroscopy (XAS) database has been completely rewritten, with an improved design, user interface, and a number of new tools. The database is accessible at https://eelsdb.eu/ and can now be used without registration. The submission process has been streamlined to encourage spectrum submissions and the new design gives greater emphasis on contributors' original work by highlighting their papers. With numerous new filters and a powerful search function, it is now simple to explore the database of several hundred EELS and XAS spectra. Interactive plots allow spectra to be overlaid, facilitating online comparison. An application-programming interface has been created, allowing external tools and software to easily access the information held within the database. In addition to the database itself, users can post and manage job adverts and read the latest news and events regarding the EELS and XAS communities. In accordance with the ongoing drive toward open access data increasingly demanded by funding bodies, the database will facilitate open access data sharing of EELS and XAS spectra. PMID:26899024

  5. Oxygen diffusion from anodic surface oxide films on titanium subhydride studies by auger electron spectroscopy and electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, P. S.; Wittberg, T. N.; Wolf, J. D.; Keil, R. G.

    TiH sub x (0.5 less than x less than 1.7) samples were prepared from titanium foil in order to study the diffusion of oxygen in the titanium subhydride. An anodic oxide, 1000A thick, was grown on the titanium subhydride foils in an agueous saturated solution of ammonium tetraborate. These anodized samples were then heat treated at temperatures between 500 and 600(0)C and changes in the profile of oxygen concentration as a function of depth were monitored using auger electron spectroscopy. From this data then it was possible to calculate the diffusivity of oxygen in the titanium subhydride. It was also found that electron energy loss spectroscopy could be used to determine the titanium subhydride stoichiometry in the near-surface region. This was done by measuring the energy of the bulk plasmon loss peak, which for TiH sub x, varies linearly with hydrogen content. The amount of dehydriding which occurred following a given heat treatment could be determined from profiles of the plasmon loss energy as a function of depth. A sample of anodized TiH0 87 was studied in some detail. Significant dehydriding of this sample for heat treatment times of less than one hour only occured at temperatures above 550(0)C.

  6. Analysis of catalytic gas products using electron energy-loss spectroscopy and residual gas analysis for operando transmission electron microscopy.

    PubMed

    Miller, Benjamin K; Crozier, Peter A

    2014-06-01

    Operando transmission electron microscopy (TEM) of catalytic reactions requires that the gas composition inside the TEM be known during the in situ reaction. Two techniques for measuring gas composition inside the environmental TEM are described and compared here. First, electron energy-loss spectroscopy, both in the low-loss and core-loss regions of the spectrum was utilized. The data were quantified using a linear combination of reference spectra from individual gasses to fit a mixture spectrum. Mass spectrometry using a residual gas analyzer was also used to quantify the gas inside the environmental cell. Both electron energy-loss spectroscopy and residual gas analysis were applied simultaneously to a known 50/50 mixture of CO and CO2, so the results from the two techniques could be compared and evaluated. An operando TEM experiment was performed using a Ru catalyst supported on silica spheres and loaded into the TEM on a specially developed porous pellet TEM sample. Both techniques were used to monitor the conversion of CO to CO2 over the catalyst, while simultaneous atomic resolution imaging of the catalyst was performed. PMID:24815065

  7. Low-loss electron energy loss spectroscopy: An atomic-resolution complement to optical spectroscopies and application to graphene

    DOE PAGESBeta

    Kapetanakis, Myron; Zhou, Wu; Oxley, Mark P.; Lee, Jaekwang; Prange, Micah P.; Pennycook, Stephen J.; Idrobo Tapia, Juan Carlos; Pantelides, Sokrates T.

    2015-09-25

    Photon-based spectroscopies have played a central role in exploring the electronic properties of crystalline solids and thin films. They are a powerful tool for probing the electronic properties of nanostructures, but they are limited by lack of spatial resolution. On the other hand, electron-based spectroscopies, e.g., electron energy loss spectroscopy (EELS), are now capable of subangstrom spatial resolution. Core-loss EELS, a spatially resolved analog of x-ray absorption, has been used extensively in the study of inhomogeneous complex systems. In this paper, we demonstrate that low-loss EELS in an aberration-corrected scanning transmission electron microscope, which probes low-energy excitations, combined with amore » theoretical framework for simulating and analyzing the spectra, is a powerful tool to probe low-energy electron excitations with atomic-scale resolution. The theoretical component of the method combines density functional theory–based calculations of the excitations with dynamical scattering theory for the electron beam. We apply the method to monolayer graphene in order to demonstrate that atomic-scale contrast is inherent in low-loss EELS even in a perfectly periodic structure. The method is a complement to optical spectroscopy as it probes transitions entailing momentum transfer. The theoretical analysis identifies the spatial and orbital origins of excitations, holding the promise of ultimately becoming a powerful probe of the structure and electronic properties of individual point and extended defects in both crystals and inhomogeneous complex nanostructures. The method can be extended to probe magnetic and vibrational properties with atomic resolution.« less

  8. Low-loss electron energy loss spectroscopy: An atomic-resolution complement to optical spectroscopies and application to graphene

    SciTech Connect

    Kapetanakis, Myron; Zhou, Wu; Oxley, Mark P.; Lee, Jaekwang; Prange, Micah P.; Pennycook, Stephen J.; Idrobo Tapia, Juan Carlos; Pantelides, Sokrates T.

    2015-09-25

    Photon-based spectroscopies have played a central role in exploring the electronic properties of crystalline solids and thin films. They are a powerful tool for probing the electronic properties of nanostructures, but they are limited by lack of spatial resolution. On the other hand, electron-based spectroscopies, e.g., electron energy loss spectroscopy (EELS), are now capable of subangstrom spatial resolution. Core-loss EELS, a spatially resolved analog of x-ray absorption, has been used extensively in the study of inhomogeneous complex systems. In this paper, we demonstrate that low-loss EELS in an aberration-corrected scanning transmission electron microscope, which probes low-energy excitations, combined with a theoretical framework for simulating and analyzing the spectra, is a powerful tool to probe low-energy electron excitations with atomic-scale resolution. The theoretical component of the method combines density functional theory–based calculations of the excitations with dynamical scattering theory for the electron beam. We apply the method to monolayer graphene in order to demonstrate that atomic-scale contrast is inherent in low-loss EELS even in a perfectly periodic structure. The method is a complement to optical spectroscopy as it probes transitions entailing momentum transfer. The theoretical analysis identifies the spatial and orbital origins of excitations, holding the promise of ultimately becoming a powerful probe of the structure and electronic properties of individual point and extended defects in both crystals and inhomogeneous complex nanostructures. The method can be extended to probe magnetic and vibrational properties with atomic resolution.

  9. Localized magnetoplasmons in quantum dots: Scrutinizing the eligibility of FIR, Raman, and electron energy-loss spectroscopies

    NASA Astrophysics Data System (ADS)

    Kushwaha, M.

    We report on a one-component, quasi-zero dimensional, quantum plasma exposed to a parabolic potential and an applied magnetic field in the symmetric gauge. If the size of such a system as can be realized in the semiconducting quantum dots is on the order of the de-Broglie wavelength, the electronic and optical properties become highly tunable. Then the quantum size effects challenge the observation of many-particle phenomena such as the magneto-optical absorption, Raman intensity, and electron-energy-loss spectrum. An exact analytical solution of the problem leads us to infer that these many-particle phenomena are, in fact, dictated by the generalized Kohn's theorem in the long-wavelength limit. Maneuvering the confinement and/or the magnetic field furnishes the resonance energy capable of being explored with the FIR, Raman, or electron-energy-loss spectroscopy. This implies that either of these probes should be competent in observing the localized magnetoplasmons in the system. A deeper insight into the physics of quantum dots is paving the way for their implementation in such diverse fields as quantum computing and medical imaging1. 1. M.S. Kushwaha, Unpublished.

  10. Distinguishing cubic and hexagonal phases within InGaN/GaN microstructures using electron energy loss spectroscopy

    PubMed Central

    CHERNS, D; ALBERT, S.; BENGOECHEA‐ENCABO, A.; ANGEL SANCHEZ, M.; CALLEJA, E.; SCHIMPKE, T.; STRASSBURG, M.

    2015-01-01

    Summary 3D InGaN/GaN microstructures grown by metal organic vapor phase epitaxy (MOVPE) and molecular beam epitaxy (MBE) have been extensively studied using a range of electron microscopy techniques. The growth of material by MBE has led to the growth of cubic GaN material. The changes in these crystal phases has been investigated by Electron Energy Loss Spectroscopy, where the variations in the fine structure of the N K‐edge shows a clear difference allowing the mapping of the phases to take place. GaN layers grown for light emitting devices sometimes have cubic inclusions in the normally hexagonal wurtzite structures, which can influence the device electronic properties. Differences in the fine structure of the N K‐edge between cubic and hexagonal material in electron energy loss spectra are used to map cubic and hexagonal regions in a GaN/InGaN microcolumnar device. The method of mapping is explained, and the factors limiting spatial resolution are discussed. PMID:26366483

  11. Distinguishing cubic and hexagonal phases within InGaN/GaN microstructures using electron energy loss spectroscopy.

    PubMed

    Griffiths, I J; Cherns, D; Albert, S; Bengoechea-Encabo, A; Angel Sanchez, M; Calleja, E; Schimpke, T; Strassburg, M

    2016-05-01

    3D InGaN/GaN microstructures grown by metal organic vapor phase epitaxy (MOVPE) and molecular beam epitaxy (MBE) have been extensively studied using a range of electron microscopy techniques. The growth of material by MBE has led to the growth of cubic GaN material. The changes in these crystal phases has been investigated by Electron Energy Loss Spectroscopy, where the variations in the fine structure of the N K-edge shows a clear difference allowing the mapping of the phases to take place. GaN layers grown for light emitting devices sometimes have cubic inclusions in the normally hexagonal wurtzite structures, which can influence the device electronic properties. Differences in the fine structure of the N K-edge between cubic and hexagonal material in electron energy loss spectra are used to map cubic and hexagonal regions in a GaN/InGaN microcolumnar device. The method of mapping is explained, and the factors limiting spatial resolution are discussed. PMID:26366483

  12. Electronic properties of Mn-phthalocyanine–C{sub 60} bulk heterojunctions: Combining photoemission and electron energy-loss spectroscopy

    SciTech Connect

    Roth, Friedrich; Lupulescu, Cosmin; Darlatt, Erik; Gottwald, Alexander; Eberhardt, Wolfgang

    2015-11-14

    The electronic properties of co-evaporated mixtures (blends) of manganese phthalocyanine and the fullerene C{sub 60} (MnPc:C{sub 60}) have been studied as a function of the concentration of the two constituents using two supplementary electron spectroscopic methods, photoemission spectroscopy (PES) and electron energy-loss spectroscopy (EELS) in transmission. Our PES measurements provide a detailed picture of the electronic structure measured with different excitation energies as well as different mixing ratios between MnPc and C{sub 60}. Besides a relative energy shift, the occupied electronic states of the two materials remain essentially unchanged. The observed energy level alignment is different compared to that of the related CuPc:C{sub 60} bulk heterojunction. Moreover, the results from our EELS investigations show that, despite the rather small interface interaction, the MnPc related electronic excitation spectrum changes significantly by admixing C{sub 60} to MnPc thin films.

  13. Electronic properties of Mn-phthalocyanine-C60 bulk heterojunctions: Combining photoemission and electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Roth, Friedrich; Herzig, Melanie; Lupulescu, Cosmin; Darlatt, Erik; Gottwald, Alexander; Knupfer, Martin; Eberhardt, Wolfgang

    2015-11-01

    The electronic properties of co-evaporated mixtures (blends) of manganese phthalocyanine and the fullerene C60 (MnPc:C60) have been studied as a function of the concentration of the two constituents using two supplementary electron spectroscopic methods, photoemission spectroscopy (PES) and electron energy-loss spectroscopy (EELS) in transmission. Our PES measurements provide a detailed picture of the electronic structure measured with different excitation energies as well as different mixing ratios between MnPc and C60. Besides a relative energy shift, the occupied electronic states of the two materials remain essentially unchanged. The observed energy level alignment is different compared to that of the related CuPc:C60 bulk heterojunction. Moreover, the results from our EELS investigations show that, despite the rather small interface interaction, the MnPc related electronic excitation spectrum changes significantly by admixing C60 to MnPc thin films.

  14. Examining Substrate-Induced Plasmon Mode Splitting and Localization in Truncated Silver Nanospheres with Electron Energy Loss Spectroscopy.

    PubMed

    Li, Guoliang; Cherqui, Charles; Wu, Yueying; Bigelow, Nicholas W; Simmons, Philip D; Rack, Philip D; Masiello, David J; Camden, Jon P

    2015-07-01

    Motivated by the need to study the size dependence of nanoparticle-substrate systems, we present a combined experimental and theoretical electron energy loss spectroscopy (EELS) study of the plasmonic spectrum of substrate-supported truncated silver nanospheres. This work spans the entire classical range of plasmonic behavior probing particles of 20-1000 nm in diameter, allowing us to map the evolution of localized surface plasmons into surface plasmon polaritons and study the size dependence of substrate-induced mode splitting. This work constitutes the first nanoscopic characterization and imaging of these effects in truncated nanospheres, setting the stage for the systematic study of plasmon-mediated energy transfer in nanoparticle-substrate systems. PMID:26266735

  15. Effect of multipole excitations in electron energy-loss spectroscopy of surface plasmon modes in silver nanowires

    SciTech Connect

    Zhou, Xiuli; Norris, Theodore B.; Hörl, Anton; Trügler, Andreas; Hohenester, Ulrich; Herzing, Andrew A.

    2014-12-14

    We have characterized the surface plasmon resonance (SPR) in silver nanowires using spatially resolved electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope. Non-symmetric EELS spectra due to high-k SPR propagation along the nanowire and spectral shifts due to higher-order mode excitation are observed when the beam is positioned near the tip of the nanowire. When the beam is far from the tip region and on the side of nanowire, no spectral shifts are observed as the beam is scanned in the radial direction of the nanowire. The experimental spectra are compared with three different theoretical approaches: direct numerical calculation of the energy loss, analytical models for energy loss, and numerical simulations using an optical model. All three models reproduce the spectral shifts as the electron beam approaches the cap of the nanowire. The analytical model reveals the origin of the shifts in high-order plasmon mode excitation.

  16. Full Three-Dimensonal Reconstruction of the Dyadic Green Tensor from Electron Energy Loss Spectroscopy of Plasmonic Nanoparticles

    PubMed Central

    2015-01-01

    Electron energy loss spectroscopy (EELS) has emerged as a powerful tool for the investigation of plasmonic nanoparticles, but the interpretation of EELS results in terms of optical quantities, such as the photonic local density of states, remains challenging. Recent work has demonstrated that, under restrictive assumptions, including the applicability of the quasistatic approximation and a plasmonic response governed by a single mode, one can rephrase EELS as a tomography scheme for the reconstruction of plasmonic eigenmodes. In this paper we lift these restrictions by formulating EELS as an inverse problem and show that the complete dyadic Green tensor can be reconstructed for plasmonic particles of arbitrary shape. The key steps underlying our approach are a generic singular value decomposition of the dyadic Green tensor and a compressed sensing optimization for the determination of the expansion coefficients. We demonstrate the applicability of our scheme for prototypical nanorod, bowtie, and cube geometries. PMID:26523284

  17. Experimental and theoretical determination of the low-loss electron energy loss spectroscopy of nanostructured ZnO.

    PubMed

    Morales-Rodríguez, H J; Espinosa-Magaña, F

    2012-02-01

    The dielectric properties of nanostructured wurtzite-type ZnO are studied by analyzing the low-loss region of the electron energy loss spectroscopy (EELS) in a transmission electron microscope. Characteristic peaks at about 12 and 32 eV in the imaginary part of the dielectric function shift to lower energies as particle size decreases. A comparison of experimental EELS spectra and ab initio density-functional theory calculations (WIEN2k code) within the generalized gradient approximation (GGA), GGA+U and modified Becke-Johnson (mBJ) is presented. The origins of interband transitions are identified in the electronic band structure by calculating the partial imaginary part of the dielectric function and the partial density of states of Zn and O. PMID:21813282

  18. Electronic structure of tin oxides by electron energy loss spectroscopy and real-space multiple scattering calculations

    SciTech Connect

    Moreno, M. S.; Egerton, R.F.; Rehr, J.J.; Midgley, P.A.

    2005-01-15

    The electronic structure of the tin oxides SnO and SnO{sub 2} is studied using the fine structure of the Sn-M{sub 4,5} and oxygen K-edges measured by electron energy loss spectroscopy (EELS). The experimental results are compared with real-space multiple scattering calculations. It is observed that both edges are overlapped. The calculations reveal that the observed fine structure is due largely to the oxygen states, and that it can be used to fingerprint each phase. The calculated densities of states are similar for both compounds and suggest a covalent nature. The structures appearing within the first 10 eV above the threshold arise from a covalent mixing of mainly O 2p and Sn 5s-p. For SnO the oxygen edge is satisfactorily reproduced. Discrepancies in the predicted energy position of the features in the EELS of SnO{sub 2} are briefly discussed.

  19. Oxygen diffusion from anodic surface oxide films on titanium subhydride studied by auger electron spectroscopy and electron energy loss spectroscopy

    SciTech Connect

    Wang, P.S.; Wittberg, T.N.; Wolf, J.D.; Keil, R.G.

    1984-01-01

    In the present study, TiH/sub x/ (0.5 < x < 1.7) samples were prepared from titanium foil in order to study the diffusion of oxygen in the titanium subhydride. An anodic oxide, 1000A thick, was grown on the titanium subhydride foils in an aqueous saturated solution of ammonium tetraborate. These anodized samples were then heat treated at temperatures between 500 and 600/sup 0/C and changes in the profile of oxygen concentration as a function of depth were monitored using AES. From this data then it was possible to calculate the diffusivity of oxygen in the titanium subhydride. It was also found that electron energy loss spectroscopy (EELS) could be used to determine the titanium subhydride stoichiometry in the near-surface region. This was done by measuring the energy of the bulk plasmon loss peak, which for TiH/sub x/, varies linearly with hydrogen content. The amount of dehydriding which had occurred following a given heat treatment could be determined from profiles of the plasmon loss energy as a function of depth. A sample of anodized TiH/sub 0/ /sub 87/ was studied in some detail. Significant dehydriding of this sample for heat treatment times of less than one hour, only occurred at temperatures above 550/sup 0/C. Likewise, oxide dissolution was only significant at temperatures greater than 550/sup 0/C. In general, for the heat treatment parameters which were chosen, the diffusivity of oxygen in TiH/sub 0/ /sub 87/ was about an order of magnitude lower than that for oxygen in titanium.

  20. Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers.

    PubMed

    Bigelow, Nicholas W; Vaschillo, Alex; Camden, Jon P; Masiello, David J

    2013-05-28

    Through numerical simulation, we predict the existence of the Fano interference effect in the electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) of symmetry-broken nanorod dimers that are heterogeneous in material composition and asymmetric in length. The differing selection rules of the electron probe in comparison to the photon of a plane wave allow for the simultaneous excitation of both optically bright and dark plasmons of each monomer unit, suggesting that Fano resonances will not arise in EELS and CL. Yet, interferences are manifested in the dimer's scattered near- and far-fields and are evident in EELS and CL due to the rapid π-phase offset in the polarizations between super-radiant and subradiant hybridized plasmon modes of the dimer as a function of the energy loss suffered by the impinging electron. Depending upon the location of the electron beam, we demonstrate the conditions under which Fano interferences will be present in both optical and electron spectroscopies (EELS and CL) as well as a new class of Fano interferences that are uniquely electron-driven and are absent in the optical response. Among other things, the knowledge gained from this work bears impact upon the design of some of the world's most sensitive sensors, which are currently based upon Fano resonances. PMID:23594310

  1. Investigation of the dispersion and the effective masses of excitons in bulk 2 H -MoS2 using transition electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Habenicht, Carsten; Knupfer, Martin; Büchner, Bernd

    2015-06-01

    We have investigated the electronic excitations in bulk 2 H -MoS2 using electron energy-loss spectroscopy. The electron energy-loss spectra in the Γ M and Γ K directions were measured for various momentum transfer values. The results allow the identification of the A1 and B1 exciton peaks and in particular their energy-momentum dispersion. The dispersions exhibit approximately quadratic upward trends and slight anisotropies in the Γ M and Γ K directions. The fitted energy-momentum transfer functions allow the estimation of the effective masses of the excitons which are in close proximity to predicted values.

  2. A reverse Monte Carlo method for deriving optical constants of solids from reflection electron energy-loss spectroscopy spectra

    SciTech Connect

    Da, B.; Sun, Y.; Ding, Z. J.; Mao, S. F.; Zhang, Z. M.; Jin, H.; Yoshikawa, H.; Tanuma, S.

    2013-06-07

    A reverse Monte Carlo (RMC) method is developed to obtain the energy loss function (ELF) and optical constants from a measured reflection electron energy-loss spectroscopy (REELS) spectrum by an iterative Monte Carlo (MC) simulation procedure. The method combines the simulated annealing method, i.e., a Markov chain Monte Carlo (MCMC) sampling of oscillator parameters, surface and bulk excitation weighting factors, and band gap energy, with a conventional MC simulation of electron interaction with solids, which acts as a single step of MCMC sampling in this RMC method. To examine the reliability of this method, we have verified that the output data of the dielectric function are essentially independent of the initial values of the trial parameters, which is a basic property of a MCMC method. The optical constants derived for SiO{sub 2} in the energy loss range of 8-90 eV are in good agreement with other available data, and relevant bulk ELFs are checked by oscillator strength-sum and perfect-screening-sum rules. Our results show that the dielectric function can be obtained by the RMC method even with a wide range of initial trial parameters. The RMC method is thus a general and effective method for determining the optical properties of solids from REELS measurements.

  3. High-carbon concentrations at the silicon dioxide-silicon carbide interface identified by electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Chang, K. C.; Nuhfer, N. T.; Porter, L. M.; Wahab, Q.

    2000-10-01

    High carbon concentrations at distinct regions at thermally-grown SiO2/6H-SiC(0001) interfaces have been detected by electron energy loss spectroscopy (EELS). The thickness of these C-rich regions is estimated to be 10-15 Å. The oxides were grown on n-type 6H-SiC at 1100 °C in a wet O2 ambient for 4 h immediately after cleaning the substrates with the complete RCA process. In contrast, C-rich regions were not detected from EELS analyses of thermally grown SiO2/Si interfaces nor of chemical vapor deposition deposited SiO2/SiC interfaces. Silicon-rich layers within the SiC substrate adjacent to the thermally grown SiO2/SiC interface were also evident. The interface state density Dit in metal-oxide-SiC diodes (with thermally grown SiO2) was approximately 9×1011cm-2 eV-1 at E-Ev=2.0 eV, which compares well with reported values for SiC metal-oxide-semiconductor (MOS) diodes that have not received a postoxidation anneal. The C-rich regions and the change in SiC stoichiometry may be associated with the higher than desirable Dit's and the low channel mobilities in SiC-based MOS field effect transistors.

  4. Verifying the Presence of Low Levels of Neptunium in a Uranium Matrix with Electron Energy-Loss Spectroscopy

    SciTech Connect

    Buck, Edgar C.; Douglas, Matthew; Wittman, Richard S.

    2010-01-01

    This paper examines the problems associated with the analysis of low levels of neptunium (Np) in a uranium (U) matrix with electron energy-loss spectroscopy (EELS) on the transmission electron microscope (TEM). The detection of Np in a matrix of uranium (U) can be impeded by the occurrence of a plural scattering event from U (U-M5 + U-O4,5) that results in severe overlap on the Np-M5 edge at 3665 eV. Low levels (1600 - 6300 ppm) of Np can be detected in U solids by confirming the energy gap between the Np-M5 and Np-M4 edges is at 184 eV and showing that the M4/M5 ratio for the Np is smaller than that for U. The Richardson-Lucy deconvolution method was applied to energy-loss spectral images and was shown to increase the signal to noise. This method also improves the limits of detection for Np in a U matrix.

  5. Comprehensive studies of the electronic structure of pristine and potassium doped chrysene investigated by electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Roth, Friedrich; Mahns, Benjamin; Schönfelder, Ronny; Hampel, Silke; Nohr, Markus; Büchner, Bernd; Knupfer, Martin

    2012-09-01

    We have performed electron energy-loss spectroscopy studies in order to investigate the electronic properties of chrysene molecular solids. The valence band electronic excitation spectra and the C 1s core level excitations have been measured for pristine and potassium doped chrysene. The core level studies show a fine structure which signals the presence of four close lying conduction bands close to the Fermi level. Upon potassium doping, these bands are filled with electrons, and we have reached a doping level of about K2.7chrysene. Furthermore, undoped chrysene is characterized by an optical gap of about 3.3 eV and five, relatively weak, excitonic features following the excitation onset. Doping induces major changes in the electronic excitation spectra, with a new, prominent low energy excitation at about 1.3 eV. The results of a Kramers-Kronig analysis indicate that this new feature can be assigned to a charge carrier plasmon in the doped material, and momentum dependent studies reveal a negative plasmon dispersion.

  6. Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas.

    PubMed

    Brintlinger, Todd; Herzing, Andrew A; Long, James P; Vurgaftman, Igor; Stroud, Rhonda; Simpkins, B S

    2015-06-23

    We have produced large numbers of hybrid metal-semiconductor nanogap antennas using a scalable electrochemical approach and systematically characterized the spectral and spatial character of their plasmonic modes with optical dark-field scattering, electron energy loss spectroscopy with principal component analysis, and full wave simulations. The coordination of these techniques reveal that these nanostructures support degenerate transverse modes which split due to substrate interactions, a longitudinal mode which scales with antenna length, and a symmetry-forbidden gap-localized transverse mode. This gap-localized transverse mode arises from mode splitting of transverse resonances supported on both antenna arms and is confined to the gap load enabling (i) delivery of substantial energy to the gap material and (ii) the possibility of tuning the antenna resonance via active modulation of the gap material's optical properties. The resonant position of this symmetry-forbidden mode is sensitive to gap size, dielectric strength of the gap material, and is highly suppressed in air-gapped structures which may explain its absence from the literature to date. Understanding the complex modal structure supported on hybrid nanosystems is necessary to enable the multifunctional components many seek. PMID:25961937

  7. Band gap and defect states of MgO thin films investigated using reflection electron energy loss spectroscopy

    SciTech Connect

    Heo, Sung; Cho, Eunseog; Lee, Hyung-Ik; Park, Gyeong Su; Kang, Hee Jae; Nagatomi, T.; Choi, Pyungho; Choi, Byoung-Deog

    2015-07-15

    The band gap and defect states of MgO thin films were investigated by using reflection electron energy loss spectroscopy (REELS) and high-energy resolution REELS (HR-REELS). HR-REELS with a primary electron energy of 0.3 keV revealed that the surface F center (FS) energy was located at approximately 4.2 eV above the valence band maximum (VBM) and the surface band gap width (E{sub g}{sup S}) was approximately 6.3 eV. The bulk F center (F{sub B}) energy was located approximately 4.9 eV above the VBM and the bulk band gap width was about 7.8 eV, when measured by REELS with 3 keV primary electrons. From a first-principles calculation, we confirmed that the 4.2 eV and 4.9 eV peaks were F{sub S} and F{sub B}, induced by oxygen vacancies. We also experimentally demonstrated that the HR-REELS peak height increases with increasing number of oxygen vacancies. Finally, we calculated the secondary electron emission yields (γ) for various noble gases. He and Ne were not influenced by the defect states owing to their higher ionization energies, but Ar, Kr, and Xe exhibited a stronger dependence on the defect states owing to their small ionization energies.

  8. Electron Energy-Loss Spectroscopy (EELS)Calculation in Finite-Difference Time-Domain (FDTD) Package: EELS-FDTD

    NASA Astrophysics Data System (ADS)

    Large, Nicolas; Cao, Yang; Manjavacas, Alejandro; Nordlander, Peter

    2015-03-01

    Electron energy-loss spectroscopy (EELS) is a unique tool that is extensively used to investigate the plasmonic response of metallic nanostructures since the early works in the '50s. To be able to interpret and theoretically investigate EELS results, a myriad of different numerical techniques have been developed for EELS simulations (BEM, DDA, FEM, GDTD, Green dyadic functions). Although these techniques are able to predict and reproduce experimental results, they possess significant drawbacks and are often limited to highly symmetrical geometries, non-penetrating trajectories, small nanostructures, and free standing nanostructures. We present here a novel approach for EELS calculations using the Finite-difference time-domain (FDTD) method: EELS-FDTD. We benchmark our approach by direct comparison with results from the well-established boundary element method (BEM) and published experimental results. In particular, we compute EELS spectra for spherical nanoparticles, nanoparticle dimers, nanodisks supported by various substrates, and gold bowtie antennas on a silicon nitride substrate. Our EELS-FDTD implementation can be easily extended to more complex geometries and configurations and can be directly implemented within other numerical methods. Work funded by the Welch Foundation (C-1222, L-C-004), and the NSF (CNS-0821727, OCI-0959097).

  9. Using Plasmon Peaks in Electron Energy-Loss Spectroscopy to Determine the Physical and Mechanical Properties of Nanoscale Materials

    SciTech Connect

    Howe, James M.

    2013-05-09

    In this program, we developed new theoretical and experimental insights into understanding the relationships among fundamental universality and scaling phenomena, the solid-state physical and mechanical properties of materials, and the volume plasmon energy as measured by electron energy-loss spectroscopy (EELS). Particular achievements in these areas are summarized as follows: (i) Using a previously proposed physical model based on the universal binding-energy relation (UBER), we established close phenomenological connections regarding the influence of the valence electrons in materials on the longitudinal plasma oscillations (plasmons) and various solid-state properties such as the optical constants (including absorption and dispersion), elastic constants, cohesive energy, etc. (ii) We found that carbon materials, e.g., diamond, graphite, diamond-like carbons, hydrogenated and amorphous carbon films, exhibit strong correlations in density vs. Ep (or maximum of the volume plasmon peak) and density vs. hardness, both from available experimental data and ab initio DFT calculations. This allowed us to derive a three-dimensional relationship between hardness and the plasmon energy, that can be used to determine experimentally both hardness and density of carbon materials based on measurements of the plasmon peak position. (iii) As major experimental accomplishments, we demonstrated the possibility of in-situ monitoring of changes in the physical properties of materials with conditions, e.g., temperature, and we also applied a new plasmon ratio-imaging technique to map multiple physical properties of materials, such as the elastic moduli, cohesive energy and bonding electron density, with a sub-nanometer lateral resolution. This presents new capability for understanding material behavior. (iv) Lastly, we demonstrated a new physical phenomenon - electron-beam trapping, or electron tweezers - of a solid metal nanoparticle inside a liquid metal. This phenomenon is

  10. Density Functional Theory Modeling of Low-Loss Electron Energy-Loss Spectroscopy in Wurtzite III-Nitride Ternary Alloys.

    PubMed

    Eljarrat, Alberto; Sastre, Xavier; Peiró, Francesca; Estradé, Sónia

    2016-06-01

    In the present work, the dielectric response of III-nitride semiconductors is studied using density functional theory (DFT) band structure calculations. The aim of this study is to improve our understanding of the features in the low-loss electron energy-loss spectra of ternary alloys, but the results are also relevant to optical and UV spectroscopy results. In addition, the dependence of the most remarkable features with composition is tested, i.e. applying Vegard's law to band gap and plasmon energy. For this purpose, three wurtzite ternary alloys, from the combination of binaries AlN, GaN, and InN, were simulated through a wide compositional range (i.e., Al x Ga1-x N, In x Al1-x N, and In x Ga1-x N, with x=[0,1]). For this DFT calculations, the standard tools found in Wien2k software were used. In order to improve the band structure description of these semiconductor compounds, the modified Becke-Johnson exchange-correlation potential was also used. Results from these calculations are presented, including band structure, density of states, and complex dielectric function for the whole compositional range. Larger, closer to experimental values, band gap energies are predicted using the novel potential, when compared with standard generalized gradient approximation. Moreover, a detailed analysis of the collective excitation features in the dielectric response reveals their compositional dependence, which sometimes departs from a linear behavior (bowing). Finally, an advantageous method for measuring the plasmon energy dependence from these calculations is explained. PMID:26868876

  11. Electron energy loss spectroscopy of CH/sub 3/N/sub 2/CH/sub 3/ adsorbed on Ni(100), Ni(111), Cr(100), Cr(111)

    SciTech Connect

    Schulz, M.A.

    1985-07-01

    A study of the adsorption of CH/sub 3/N/sub 2/CH/sub 3/ on Ni(100), Ni(111), Cr(100), and Cr(111) using high resolution electron energy loss spectroscopy (EELS) is presented. Under approximately the same conditions of coverage, the vibrational spectra of CH/sub 3/N/sub 2/CH/sub 3/ on these four surfaces are quite distinct from one another, implying that the CH/sub 3/N/sub 2/CH/sub 3/-substrate interaction is very sensitive to the physical and electronic structure of each surface. In addition to the room temperature studies, the evolution of surface species on the Ni(100) surface in the temperature range 300 to 425 K was studied. Analysis of the Ni(100) spectra indicates that molecular adsorption, probably through the N lone pair, occurs at room temperature. Spectra taken after annealing the CH/sub 3/N/sub 2/CH/sub 3/-Ni(100) surfaces indicate that CH and CN bond scission occurred at the elevated temperatures. Decomposition of CH/sub 3/N/sub 2/CH/sub 3/ takes place on the Ni(111), Cr(100), and Cr(111) surfaces at room temperature, as evidenced by the intensity of the carbon-metal stretch in the corresponding spectra. Possible identities of coadsorbed dissociation products are considered. The stable coverage of surface species on all four surfaces at 300 K is less than one monolayer. A general description of an electron energy loss (EEL) spectrometer is given. Followed by a more specific discussion of some recent modifications to the EEL monochromator assembly used in this laboratory. Both the previous configuration of our monochromator and the new version are briefly described, as an aid to understanding the motivation for the changes as well as the differences in operation of the two versions. For clarity, the new monochromator design is referred to as variable pass, while the previous design is referred to as double pass. A modified tuning procedure for the new monochromator is also presented. 58 refs., 11 figs.

  12. Study of semiconductor valence plasmon line shapes via electron energy-loss spectroscopy in the transmission electron microscope

    SciTech Connect

    Kundmann, M.K.

    1988-11-01

    Electron energy-loss spectra of the semiconductors Si, AlAs, GaAs, InAs, InP, and Ge are examined in detail in the regime of outer-shell and plasmon energy losses (0--100eV). Particular emphasis is placed on modeling and analyzing the shapes of the bulk valence plasmon lines. A line shape model based on early work by Froehlich is derived and compared to single-scattering probability distributions extracted from the measured spectra. Model and data are found to be in excellent agreement, thus pointing the way to systematic characterization of the plasmon component of EELS spectra. The model is applied to three separate investigations. 82 refs.

  13. Electron energy-loss spectroscopy analysis of HfO2 dielectric films on strained and relaxed SiGe /Si substrates

    NASA Astrophysics Data System (ADS)

    Jang, Jiyoung; Park, Tae Joo; Kwon, Ji-Hwan; Jang, Jae Hyuck; Hwang, Cheol Seong; Kim, Miyoung

    2008-06-01

    In this investigation, HfO2 thin films were deposited on strained and strain-relaxed epitaxial-SiGe /Si substrates, and subsequently subjected to annealing. Electron energy-loss spectroscopy analysis was used to investigate the electronic structure and composition of the film as well as the interfacial layer (IL). While the energy-loss function of the dielectric films revealed predominant Si diffusion in the strained substrates, post deposition annealing (PDA) significantly influenced the diffusion and altered the local composition of the IL in strain-relaxed substrates. Analysis of electronic structures revealed the origin of significant loss of Ge atoms at the IL during PDA.

  14. Direct characterization of the energy level alignments and molecular components in an organic hetero-junction by integrated photoemission spectroscopy and reflection electron energy loss spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Yun, Dong-Jin; Shin, Weon-Ho; Bulliard, Xavier; Park, Jong Hwan; Kim, Seyun; Chung, Jae Gwan; Kim, Yongsu; Heo, Sung; Kim, Seong Heon

    2016-08-01

    A novel, direct method for the characterization of the energy level alignments at bulk-heterojunction (BHJ)/electrode interfaces on the basis of electronic spectroscopy measurements is proposed. The home-made in situ photoemission system is used to perform x-ray/ultraviolet photoemission spectroscopy (XPS/UPS), reflection electron energy loss spectroscopy (REELS) and inverse photoemission spectroscopy of organic-semiconductors (OSCs) deposited onto a Au substrate. Through this analysis system, we are able to obtain the electronic structures of a boron subphthalocyanine chloride:fullerene (SubPC:C60) BHJ and those of the separate OSC/electrode structures (SubPC/Au and C60/Au). Morphology and chemical composition analyses confirm that the original SubPC and C60 electronic structures remain unchanged in the electrodes prepared. Using this technique, we ascertain that the position and area of the nearest peak to the Fermi energy (EF = 0 eV) in the UPS (REELS) spectra of SubPC:C60 BHJ provide information on the highest occupied molecular orbital level (optical band gap) and combination ratio of the materials, respectively. Thus, extracting the adjusted spectrum from the corresponding SubPC:C60 BHJ UPS (REELS) spectrum reveals its electronic structure, equivalent to that of the C60 materials. This novel analytical approach allows complete energy-level determination for each combination ratio by separating its electronic structure information from the BHJ spectrum.

  15. Direct characterization of the energy level alignments and molecular components in an organic hetero-junction by integrated photoemission spectroscopy and reflection electron energy loss spectroscopy analysis.

    PubMed

    Yun, Dong-Jin; Shin, Weon-Ho; Bulliard, Xavier; Park, Jong Hwan; Kim, Seyun; Chung, Jae Gwan; Kim, Yongsu; Heo, Sung; Kim, Seong Heon

    2016-08-26

    A novel, direct method for the characterization of the energy level alignments at bulk-heterojunction (BHJ)/electrode interfaces on the basis of electronic spectroscopy measurements is proposed. The home-made in situ photoemission system is used to perform x-ray/ultraviolet photoemission spectroscopy (XPS/UPS), reflection electron energy loss spectroscopy (REELS) and inverse photoemission spectroscopy of organic-semiconductors (OSCs) deposited onto a Au substrate. Through this analysis system, we are able to obtain the electronic structures of a boron subphthalocyanine chloride:fullerene (SubPC:C60) BHJ and those of the separate OSC/electrode structures (SubPC/Au and C60/Au). Morphology and chemical composition analyses confirm that the original SubPC and C60 electronic structures remain unchanged in the electrodes prepared. Using this technique, we ascertain that the position and area of the nearest peak to the Fermi energy (EF = 0 eV) in the UPS (REELS) spectra of SubPC:C60 BHJ provide information on the highest occupied molecular orbital level (optical band gap) and combination ratio of the materials, respectively. Thus, extracting the adjusted spectrum from the corresponding SubPC:C60 BHJ UPS (REELS) spectrum reveals its electronic structure, equivalent to that of the C60 materials. This novel analytical approach allows complete energy-level determination for each combination ratio by separating its electronic structure information from the BHJ spectrum. PMID:27420635

  16. Oxidation study by Auger electron spectroscopy and electron energy-loss spectroscopy of GaSb(001) surfaces grown by molecular-beam epitaxy

    SciTech Connect

    Raisin, C.; Da Silva, F.W.O.; Lassabatere, L. , Place Eugene Bataillon, 34095 Montpellier-Cedex 5, France )

    1990-01-01

    GaSb (001) surfaces were prepared by molecular-beam epitaxy. Auger electron spectroscopy (AES) and electron energy-loss spectroscopy (EELS) are reported for clean surfaces exposed to oxygen, and during the process the ionization gauge of the vacuum system is turned on. Successive stages of chemisorption can be distinguished. For oxygen coverage up to 0.5 monolayer, the surface states are saturated by bonding of the oxygen with Ga and Sb atoms. Sb atoms desorb causing significant Sb depletion in the first layer. Larger exposures further increase the coverage and induce, in the EELS spectra, losses related to O(2{ital p}) and O(2{ital s}) atomic states and new plasmon excitations. In the AES spectra the shift of Auger emission lines which are characteristic of Sb and Ga oxide forms appear; at coverages of about one monolayer back bonds break forming Sb{sub 2}O{sub 3} and Ga{sub 2}O{sub 3}. Further exposures to oxygen result in thicker oxide layers of Ga and Sb.

  17. Electron-energy-loss spectroscopy and X-ray absorption spectroscopy as complementary probes for complex f-electron metals: cerium and plutonium

    NASA Astrophysics Data System (ADS)

    Moore, K. T.; Wall, M. A.; Schwartz, A. J.; Chung, B. W.; Morton, S. A.; Tobin, J. G.; Lazar, S.; Tichelaar, F. D.; Zandbergen, H. W.; Söderlind, P.; van der Laan, G.

    2004-04-01

    In this paper, we demonstrate the power of electron-energy-loss spectroscopy (EELS) in a transmission electron microscope by investigating the electron structure of two f-electron metals: Ce and Pu. It is shown that EELS in a transmission electron microscope may be used to circumvent the difficulty of producing single-phase or single-crystal samples owing to its high spatial resolution, and that diffraction patterns and images can be acquired, providing unambiguous phase determination when acquiring spectra. EELS results are supported by synchrotron-radiation-based X-ray absorption, multielectron atomic spectral simulations, and local density approximation calculations based on density-functional theory with the generalized gradient approximation. For Ce, it is shown that changes in {111} stacking sequences can drive substantial modifications in the electronic structure of close-packed phases of Ce that have similar atomic volumes, contrary to previous assumptions in literature. For Pu, it is shown that Russell-Saunders (L-S) coupling fails for the 5f states and that either a j-j or an intermediate scheme must be used for the actinides because of the considerable spin-orbit interaction in the 5f states. We present a model showing how the 5f states behave along the light actinide series.

  18. Observability of localized magnetoplasmons in quantum dots: Scrutinizing the eligibility of far-infrared, Raman, and electron-energy-loss spectroscopies

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir S.

    2016-03-01

    We investigate a one-component, quasi-zero dimensional, quantum plasma exposed to a parabolic potential and an applied magnetic field in the symmetric gauge. If the size of such a system as can be realized in the semiconducting quantum dots is on the order of the de-Broglie wavelength, the electronic and optical properties become highly tunable. Then the quantum size effects challenge the observation of many-particle phenomena such as the magneto-optical absorption, Raman intensity, and electron energy-loss spectrum. An exact analytical solution of the problem leads us to infer that these many-particle phenomena are, in fact, dictated by the generalized Kohn's theorem (GKT) in the long-wavelength limit. Maneuvering the confinement and/or the magnetic field furnishes the resonance energies capable of being explored with the FIR, Raman, and/or electron-energy-loss spectroscopy. This implies that either of these probes is competent in observing the localized magnetoplasmons in the system. As an application of the rigorous analytical diagnosis of the system, we have presented various pertinent single-particle, such as Fock-Darwin spectrum, Fermi energy, zigzag excitation spectrum, and magneto-optical transitions, and the many-particle phenomena, such as magneto-optical absorption, Raman intensity, and electron energy-loss probability. In the latter, the energy position of the resonance peaks is observed to be independent of the electron-electron interactions and hence of the number of electrons in the quantum dot in compliance with the GKT. It is found that both confinement potential and magnetic field play a decisive role in influencing the aforementioned many-particle phenomena. Specifically, increasing (decreasing) the strength of the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots and results into a blue (red) shift in the respective spectra. Intensifying the magnetic field has two-fold effects in the resonance

  19. Combination of electron energy-loss spectroscopy and energy dispersive x-ray spectroscopy to determine indium concentration in InGaN thin film structures

    NASA Astrophysics Data System (ADS)

    Wang, X.; Chauvat, M. P.; Ruterana, P.; Walther, T.

    2015-11-01

    We demonstrate a method to determine the indium concentration, x, of In x Ga1-x N thin films by combining plasmon excitation studies in electron energy-loss spectroscopy (EELS) with a novel way of quantification of the intensity of x-ray lines in energy-dispersive x-ray spectroscopy (EDXS). The plasmon peak in EELS of InGaN is relatively broad. We fitted a Lorentz function to the main plasmon peak to suppress noise and the influence from the neighboring Ga 3d transition in the spectrum, which improves the precision in the evaluation of the plasmon peak position. As the indium concentration of InGaN is difficult to control during high temperature growth due to partial In desorption, the nominal indium concentrations provided by the growers were not considered reliable. The indium concentration obtained from EDXS quantification using Oxford Instrument ISIS 300 x-ray standard quantification software often did not agree with the nominal indium concentration, and quantification using K and L lines was inconsistent. We therefore developed a self-consistent iterative procedure to determine the In content from thickness-dependent k-factors, as described in recent work submitted to Journal of Microscopy. When the plasmon peak position is plotted versus the indium concentration from EDXS we obtain a linear relationship over the whole compositional range, and the standard error from linear least-squares fitting shows that the indium concentration can be determined from the plasmon peak position to within Δx = ± 0.037 standard deviation.

  20. Isolated energy level in the band gap of Yb2Si2O7 identified by electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Ogawa, Takafumi; Kobayashi, Shunsuke; Wada, Masashi; Fisher, Craig A. J.; Kuwabara, Akihide; Kato, Takeharu; Yoshiya, Masato; Kitaoka, Satoshi; Moriwake, Hiroki

    2016-05-01

    We report the detection of an isolated energy level in the band gap of crystalline Yb2Si2O7 in the low-energy-loss region of its electron energy-loss (EEL) spectrum, obtained using a monochromated scanning transmission electron microscope. The experimental results are corroborated by first-principles calculations of the theoretical EEL spectrum. The calculations reveal that unoccupied Yb 4 f orbitals constitute an isolated energy level about 1 eV below the conduction band minimum (CBM), resulting in a terrace about 1 eV wide at the band edge of the EEL spectrum. In the case of Yb2O3 , no band edge terrace is present because the unoccupied f level lies just below the CBM. We also examined optical absorption properties of Yb2Si2O7 using UV-vis diffuse reflectance spectroscopy, which shows that the isolated energy level could not be detected in the band edge of the obtained absorbance spectrum. These findings demonstrate the utility of low-loss EEL spectroscopy with high energy resolution for probing semilocalized electronic features.

  1. Band-Gap Widening at the Cu(In,Ga)(S,Se)2 Surface: A Novel Determination Approach Using Reflection Electron Energy Loss Spectroscopy.

    PubMed

    Hauschild, Dirk; Handick, Evelyn; Göhl-Gusenleitner, Sina; Meyer, Frank; Schwab, Holger; Benkert, Andreas; Pohlner, Stephan; Palm, Jörg; Tougaard, Sven; Heske, Clemens; Weinhardt, Lothar; Reinert, Friedrich

    2016-08-17

    Using reflection electron energy loss spectroscopy (REELS), we have investigated the optical properties at the surface of a chalcopyrite-based Cu(In,Ga)(S,Se)2 (CIGSSe) thin-film solar cell absorber, as well as an indium sulfide (InxSy) buffer layer before and after annealing. By fitting the characteristic inelastic scattering cross-section λK(E) to cross sections evaluated by the QUEELS-ε(k,ω)-REELS software package, we determine the surface dielectric function and optical properties of these samples. A comparison of the optical values at the surface of the InxSy film with bulk ellipsometry measurements indicates a good agreement between bulk- and surface-related optical properties. In contrast, the properties of the CIGSSe surface differ significantly from the bulk. In particular, a larger (surface) band gap than for bulk-sensitive measurements is observed, providing a complementary and independent confirmation of earlier photoelectron spectroscopy results. Finally, we derive the inelastic mean free path λ for electrons in InxSy, annealed InxSy, and CIGSSe at a kinetic energy of 1000 eV. PMID:27463021

  2. Electron-energy-loss spectroscopy of YBa sub 2 Cu sub 3 minus x Fe sub x O sub 7 minus y superconductors

    SciTech Connect

    Vaishnava, P.P.; Taylor, C.A. II ); Foiles, C.L. )

    1990-03-01

    YBa{sub 2}Cu{sub 3{minus}{ital x}}Fe{sub {ital x}}O{sub 7{minus}{ital y}} ({ital x}=0.0, 0.05, 0.1) compounds have been studied using energy-dispersive x-ray (EDX) and electron-energy-loss spectroscopy (EELS). X-ray diffraction data indicated the formation of structurally known superconducting compounds. Transition temperatures, as measured by a Faraday balance, showed a decrease as the iron concentration was increased. Using the spot mode in an analytical electron microscope, the EDX and EELS data were obtained for identifiable, well-defined small regions of the superconducting particles. EDX spectra have been used to analyze different components and phases present in the samples. Detailed EELS data for the O 1{ital s} excitation have been obtained, and a peak in the pre-edge continuum has been observed in all the samples. The intensity and the nature of this peak are found to depend upon the iron concentration. The results of this investigation suggest structural disorder and orthorhombic-to-tetragonal transition as major reasons for the decrease in transition temperature for the iron-doped superconductors.

  3. Microstructure and Electron Energy-Loss Spectroscopy Analysis of Interface Between Cu Substrate and Al2O3 Film Formed by Aerosol Deposition Method

    NASA Astrophysics Data System (ADS)

    Naoe, Kazuaki; Nishiki, Masashi; Sato, Keishi

    2014-12-01

    Aerosol deposition method is a technique to form dense films by impacting solid particles on a substrate at room temperature. To clarify the bonding mechanism between AD films and substrates, TEM observation and electron energy-loss spectroscopy (EELS) analysis of the interface between Al2O3 AD films and Cu substrates were conducted. The Al2O3 film was directly adhered to the Cu substrate without any void or crack. The film was composed of randomly oriented α-Al2O3 crystal grains of about 10-20 nm large. At the Al2O3/Cu interface, the lattice fringes of the film were recognized, and no interfacial layer with nanometer-order thickness could be found. EELS spectra near O- K edge obtained at the interface had the pre-peak feature at around 528 eV. According to previously reported experiments and theoretical calculations, this suggests interactions between Cu and O in Al2O3 at the interface. It is inferred that not only the anchoring effect but also the ionic bonding and covalent bonding that originates from the Cu-O interactions contribute to the bonding between Al2O3 AD films and Cu substrates.

  4. Free electrons and ionic liquids: study of excited states by means of electron-energy loss spectroscopy and the density functional theory multireference configuration interaction method.

    PubMed

    Regeta, Khrystyna; Bannwarth, Christoph; Grimme, Stefan; Allan, Michael

    2015-06-28

    The technique of low energy (0-30 eV) electron impact spectroscopy, originally developed for gas phase molecules, is applied to room temperature ionic liquids (IL). Electron energy loss (EEL) spectra recorded near threshold, by collecting 0-2 eV electrons, are largely continuous, assigned to excitation of a quasi-continuum of high overtones and combination vibrations of low-frequency modes. EEL spectra recorded by collecting 10 eV electrons show predominantly discrete vibrational and electronic bands. The vibrational energy-loss spectra correspond well to IR spectra except for a broadening (∼0.04 eV) caused by the liquid surroundings, and enhanced overtone activity indicating a contribution from resonant excitation mechanism. The spectra of four representative ILs were recorded in the energy range of electronic excitations and compared to density functional theory multireference configuration interaction (DFT/MRCI) calculations, with good agreement. The spectra up to about 8 eV are dominated by π-π* transitions of the aromatic cations. The lowest bands were identified as triplet states. The spectral region 2-8 eV was empty in the case of a cation without π orbitals. The EEL spectrum of a saturated solution of methylene green in an IL band showed the methylene green EEL band at 2 eV, indicating that ILs may be used as a host to study nonvolatile compounds by this technique in the future. PMID:26018044

  5. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy.

    PubMed

    Shimoyamada, Atsushi; Yamamoto, Kazuo; Yoshida, Ryuji; Kato, Takehisa; Iriyama, Yasutoshi; Hirayama, Tsukasa

    2015-12-01

    All-solid-state Li-ion batteries (LIBs) with solid electrolytes are expected to be the next generation devices to overcome serious issues facing conventional LIBs with liquid electrolytes. However, the large Li-ion transfer resistance at the electrode/solid-electrolyte interfaces causes low power density and prevents practical use. In-situ-formed negative electrodes prepared by decomposing the solid electrolyte Li(1+x+3z)Alx(Ti,Ge)(2-x)Si(3z)P(3-z)O12 (LASGTP) with an excess Li-ion insertion reaction are effective electrodes providing low Li-ion transfer resistance at the interfaces. Prior to our work, however, it had still been unclear how the negative electrodes were formed in the parent solid electrolytes. Here, we succeeded in dynamically visualizing the formation by in situ spatially resolved electron energy-loss spectroscopy in a transmission electron microscope mode (SR-TEM-EELS). The Li-ions were gradually inserted into the solid electrolyte region around 400 nm from the negative current-collector/solid-electrolyte interface in the charge process. Some of the ions were then extracted in the discharge process, and the rest were diffused such that the distribution was almost flat, resulting in the negative electrodes. The redox reaction of Ti(4+)/Ti(3+) in the solid electrolyte was also observed in situ during the Li insertion/extraction processes. The in situ SR-TEM-EELS revealed the mechanism of the electrochemical reaction in solid-state batteries. PMID:26337787

  6. Optical dark field and electron energy loss imaging and spectroscopy of symmetry-forbidden modes in loaded nanogap antennas (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Brintlinger, Todd; Herzing, Andrew; Long, James P.; Vurgaftman, Igor; Stroud, Rhonda; Simpkins, Blake S.

    2015-09-01

    Theoretical work has identified a new type of hybrid nanoresonator akin to a loaded-gap antenna, wherein the gap between two collinearly aligned metal nanorods is filled with active dielectric material. The gap optical load has a profound impact on resonances supported by such a "nanogap" antenna, and thus provides opportunity for (i) active modulation of the antenna resonance and (ii) delivery of substantial energy to the gap material. To this end, we have (i) used a bottom-up technique to fabricate nanogap antennas (Au/CdS/Au); (ii) characterized the optical modes of individual antennas with polarization- and wavevector-controlled dark-field microscopy; (iii) mapped the spatial profiles of the dominant modes with electron energy loss spectroscopy and imaging; and (iv) utilized full-wave finite-difference time-domain simulations to reveal the nanoscopic origin of the radiating modes supported on such nanogap antennas. In addition to conventional transverse and longitudinal resonances, these loaded nanogap antennas support a unique symmetry-forbidden gap-localized transverse mode arising from the splitting of degenerate transverse modes located on the two gap faces. This previously unobserved mode is strong (E2 enhanced ~20), tightly localized in the nanoscopic (~30 nm separation) gap region, and is shown to red-shift with decreased gap size and increased gap dielectric constant. In fact, the mode is highly suppressed in air-gapped structures which may explain its absence from the literature to date. Understanding the complex modal structure supported on hybrid nanosystems is necessary to enable the multi-functional components many seek.

  7. Star formation seen with high resolution spectroscopy.

    NASA Astrophysics Data System (ADS)

    Winnewisser, G.

    1990-03-01

    More than 90 anorganic and organic molecules have been detected by high resolution spectroscopy in interstellar molecular clouds or in the envelopes of stars. The detected wavelengths of the lines - predominantly located in the millimeter- and submillimeter wavelength region - unequivocally identify the molecules and give precise knowledge of the physical and chemical conditions of molecular clouds from which the radiation emanates. The line intensities and line profiles contain information about the densities, temperatures and dynamics prevailing in molecular clouds.

  8. New insights into the chemical structure of Y2Ti2O7-δ nanoparticles in oxide dispersion-strengthened steels designed for sodium fast reactors by electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Badjeck, V.; Walls, M. G.; Chaffron, L.; Malaplate, J.; March, K.

    2015-01-01

    In this paper we study by high resolution scanning transmission electron microscopy coupled with electron energy-loss spectroscopy (STEM-EELS) an oxide dispersion-strengthened (ODS) steel with the nominal composition Fe-14Cr-1W-0.3TiH2-0.3Y2O3 (wt.%) designed to withstand the extreme conditions met in Gen. IV nuclear reactors. After denoising via principal component analysis (PCA) the data are analyzed using independent component analysis (ICA) which is useful in the investigation of the physical properties and chemical structure of the material by separating the individual spectral responses. The Y-Ti-O nanoparticles are found to be homogeneously distributed in the ferritic matrix, sized from 1 to 20 nm and match a non-stoichiometric pyrochlore-Y2Ti2O7-δ structure for sizes greater than 5 nm. We show that they adopt a (Y-Ti-O)-Cr core-shell structure and that Cr also segregates at the matrix grain boundaries, which may slightly modify the corrosion properties of the steel. Using Ti-L2,3 and O-K fine structure (ELNES) the Ti oxidation state is shown to vary from the center of the nanoparticles to their periphery, from Ti4+ in distorted Oh symmetry to a valency often lower than 3+. The sensitivity of the Ti "white lines" ELNES to local symmetry distortions is also shown to be useful when investigating the strain induced in the nanoparticles by the surrounding matrix. The Cr-shell and the variation of the Ti valence state highlight a complex nanoparticle-matrix interface.

  9. Efficient modal-expansion discrete-dipole approximation: Application to the simulation of optical extinction and electron energy-loss spectroscopies

    NASA Astrophysics Data System (ADS)

    Guillaume, Stéphane-Olivier; de Abajo, F. Javier García; Henrard, Luc

    2013-12-01

    An efficient procedure is introduced for the calculation of the optical response of individual and coupled metallic nanoparticles in the framework of the discrete-dipole approximation (DDA). We introduce a modal expansion in the basis set of discrete dipoles and show that a few suitably selected modes are sufficient to compute optical spectra with reasonable accuracy, thus reducing the required numerical effort relative to other DDA approaches. Our method offers a natural framework for the study of localized plasmon modes, including plasmon hybridization. As a proof of concept, we investigate optical extinction and electron energy-loss spectra of monomers, dimers, and quadrumers formed by flat silver squares. This method should find application to the previously prohibited simulation of complex particle arrays.

  10. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2003-01-01

    Spectroscopic parameters (such as line position, intensity, broadening and shifting coefficients and their temperature dependences, line mixing coefficients etc.) for various molecular species of atmospheric interest are determined. In order to achieve these results, infrared spectra of several molecular bands are obtained using high-resolution recording instruments such as tunable diode laser spectrometer and Fourier transform spectrometers. Using sophisticated analysis routines (Multispectrum nonlinear least squares technique) these high-resolution infrared spectra are processed to determine the various spectral line parameters that are cited above. Spectra were taken using the McMath-Pierce Fourier transform spectrometer (FTS) at the National Solar Observatory on Kitt Peak, Arizona as well as the Bruker FTS at the Pacific Northwest National Laboratory (PNNL) at Richland, Washington. Most of the spectra are acquired not only at room temperature, but also at several different cold temperatures. This procedure is necessary to study the variation of the spectral line parameters as a function of temperature in order to simulate the Earth's and other planetary atmospheric environments. Depending upon the strength or weakness of the various bands recorded and analyzed, the length(s) of the absorption cells in which the gas samples under study are kept varied from a few centimeters up to several meters and the sample temperatures varied from approximately +30 C to -63 C. Research on several infrared bands of various molecular species and their isotopomers are undertaken. Those studies are briefly described.

  11. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  12. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon-and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  13. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2006-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as H2O (water vapor), O3 (ozone), HCN (hydrogen cyanide), CH4 (methane), NO2 (nitrogen dioxide) and CO (carbon monoxide). The data required for the analyses were obtained from two different Fourier Transform Spectrometers (FTS); one of which is located at the National Solar Observatory (NSO) on Kitt Peak, Arizona and the other instrument is located at the Pacific Northwest National Laboratories (PNNL) at Richland, Washington. The data were analyzed using a modified multispectrum nonlinear least squares fitting algorithm developed by Dr. D. Chris Benner of the College of William and Mary. The results from these studies made significant improvements in the line positons and intensities for these molecules. The measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced shift coefficients for hundreds of infrared transitions of HCN, CO3 CH4 and H2O were also performed during this period. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research Satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields. The research conducted during the period 2003-2006 has resulted in publications given in this paper. In addition to Journal publications, several oral and poster presentations were given at various Scientific conferences within the United States

  14. Electron energy loss spectrometry of interstellar diamonds

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.; Gibbons, Patrick C.; Lewis, Roy S.

    1990-01-01

    The results are reported of electron energy loss spectra (EELS) measurements on diamond residues from carbonaceous meteorites designed to elucidate the structure and composition of interstellar diamonds. Dynamic effective medium theory is used to model the dielectric properties of the diamonds and in particular to synthesize the observed spectra as mixtures of diamond and various pi-bonded carbons. The results are shown to be quantitatively consistent with the idea that diamonds and their surfaces are the only contributors to the electron energy loss spectra of the diamond residues and that these peculiar spectra are the result of the exceptionally small grain size and large specific surface area of the interstellar diamonds.

  15. Applications of high resolution inverse Raman spectroscopy

    SciTech Connect

    Owyoung, A.; Esherick, P.

    1980-01-01

    The use of high-power, narrow-band lasers has significantly improved the resolving power and sensitivity of inverse Raman spectroscopy of gases. In this paper we shall describe this technique, illustrate its capabilities by showing some Q-branch spectra of heavy spherical tops, and survey some possible future applications.

  16. High-resolution flurescence spectroscopy in immunoanalysis

    SciTech Connect

    Grubor, Nenad M.

    2005-05-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  17. Background fitting for electron energy-loss spectra

    SciTech Connect

    Bentley, J.; Lehman, G.L.; Sklad, P.S.

    1981-01-01

    Microanalysis using electron energy loss spectroscopy is now well established. In order to assess true edge profiles and obtain integrated intensities of the inner shell ionization edges of interest, it is first necessary to subtract the background. Usually a simple inverse power law is used, but for some spectra this form does not fit well. An alternative form which results in superior fits is described.

  18. Nano-scale simultaneous observation of Li-concentration profile and Ti-, O electronic structure changes in an all-solid-state Li-ion battery by spatially-resolved electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuo; Yoshida, Ryuji; Sato, Takeshi; Matsumoto, Hiroaki; Kurobe, Hisanori; Hamanaka, Tadashi; Kato, Takehisa; Iriyama, Yasutoshi; Hirayama, Tsukasa

    2014-11-01

    All-solid-state Li-ion batteries having incombustible solid electrolytes are expected to be promising candidates for safe next-generation energy storage devices that have a long lifetime and high energy density. However, it is essential to address the large resistance of Li-ion transfer at the electrode/solid-electrolyte interfaces. A new concept electrode that is formed in situ from the Li2O-Al2O3-TiO2-P2O5-based glass-ceramic solid electrolytes with Si and Ge doping (LASGTP) produces atomic scale connection at the interfaces, which provides extremely low interfacial resistance. However, the formation mechanism and the reason for the low resistance are still unclear. Here we applied spatially-resolved electron energy-loss spectroscopy in a transmission electron microscope mode (SR-TEM-EELS) to visualize the nanometer-scale Li distribution and its effects on the electronic structures of other important elements (Ti and O). Local electron diffraction showed that the in situ formed electrode was an amorphous phase caused by the Li insertion. Picometer-scale expansion of O-O distance due to the Li insertion was also visualized in the electrode. These electronic and crystal changes and gradual Li distribution contribute to the low resistance and stable battery cycles.

  19. High resolution electron microscopy and spectroscopy of ferritin in thin window liquid cells

    NASA Astrophysics Data System (ADS)

    Wang, Canhui; Qiao, Qiao; Shokuhfar, Tolou; Klie, Robert

    2014-03-01

    In-situ transmission electron microscopy (TEM) has seen a dramatic increase in interest in recent years with the commercial development of liquid and gas stages. High-resolution TEM characterization of samples in a liquid environment remains limited by radiation damage and loss of resolution due to the thick window-layers required by the in-situ stages. We introduce thin-window static-liquid cells that enable sample imaging with atomic resolution and electron energy-loss (EEL) spectroscopy with 1.3 nm resolution. Using this approach, atomic and electronic structures of biological samples such as ferritin is studied via in-situ transmission electron microscopy experiments. Ferritin in solution is encapsulated using the static liquid cells with reduced window thickness. The integrity of the thin window liquid cell is maintained by controlling the electron dose rate. Radiation damage of samples, such as liquid water and protein, is quantitatively studied to allow precision control of radiation damage level within the liquid cells. Biochemical reactions, such as valence change of the iron in a functioning ferritin, is observed and will be quantified. Relevant biochemical activity: the release and uptake of Fe atoms through the channels of ferritin protein shell is also imaged at atomic resolution. This work is funded by Michigan Technological University. The UIC JEOL JEM-ARM200CF is supported by an MRI-R2 grant from the National Science Foundation (Grant No. DMR-0959470).

  20. High resolution X-ray spectroscopy using microcalorimeters

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Holt, S. S.; Madejski, G. M.; Moseley, S. H.; Schoelkopf, R. J.; Szymkowiak, A. E.

    1988-01-01

    The use of microcalorimeters for high-resolution, high quantum efficiency, nondispersive X-ray spectroscopy has been demonstrated over the past few years. In this paper, the principles of X-ray calorimetry are reviewed, and the results of ongoing X-ray tests using microcalorimetry are summarized. An approach to building an X-ray calorimeter spectrometer is discussed.

  1. Electron energy-loss spectra in molecular fluorine

    NASA Technical Reports Server (NTRS)

    Nishimura, H.; Cartwright, D. C.; Trajmar, S.

    1979-01-01

    Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.

  2. An Introduction to High Resolution Coherent Multidimensional Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Wells, Thresa A.; House, Zuri R.; Strangfeld, Benjamin R.

    2013-06-01

    High resolution coherent multidimensional spectroscopy is a technique that can be used to analyze and assign peaks for molecules that have resisted spectral analysis. Molecules that yield heavily congested and seemingly patternless spectra using conventional methods can yield 2D spectra that have recognizable patterns. The off-diagonal region of the coherent 2D plot shows only cross-peaks that are related by rotational selection rules. The resulting patterns facilitate peak assignment if they are sufficiently resolved. For systems that are not well-resolved, coherent 3D spectra may be generated to further improve resolution and provide selectivity. This presentation will provide an introduction to high resolution coherent 2D and 3D spectroscopies.

  3. Single-sided sensor for high-resolution NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Perlo, J.; Casanova, F.; Blümich, B.

    2006-06-01

    The unavoidable spatial inhomogeneity of the static magnetic field generated by open sensors has precluded their use for high-resolution NMR spectroscopy. In fact, this application was deemed impossible because these field variations are usually orders of magnitude larger than those created by the microscopic structure of the molecules to be detected. Recently, chemical shift resolved NMR spectra were observed for the first time outside a portable single-sided magnet by implementing a method that exploits inhomogeneities in the rf field designed to reproduce variations of the static magnetic field [J. Perlo, V. Demas, F. Casanova, C.A. Meriles, J. Reimer, A. Pines, B. Blümich, High-resolution spectroscopy with a portable single-sided sensor, Science 308 (2005) 1279]. In this communication, we describe in detail the magnet system built from permanent magnets as well as the rf coil geometry used to compensate the static field variations.

  4. Adaptive optics high resolution spectroscopy: present status and future direction

    SciTech Connect

    Alcock, C; Angel, R; Ciarlo, D; Fugate, R O; Ge, J; Kuzmenko, P; Lloyd-Hart, M; Macintosh, B; Najita, J; Woolf, N

    1999-07-27

    High resolution spectroscopy experiments with visible adaptive optics (AO) telescopes at Starfire Optical Range and Mt. Wilson have demonstrated that spectral resolution can be routinely improved by a factor of - 10 over the seeing-limited case with no extra light losses at visible wavelengths. With large CCDs now available, a very wide wavelength range can be covered in a single exposure. In the near future, most large ground-based telescopes will be equipped with powerful A0 systems. Most of these systems are aimed primarily at diffraction-limited operation in the near IR. An exciting new opportunity will thus open up for high resolution IR spectroscopy. Immersion echelle gratings with much coarser grooves being developed by us at LLNL will play a critical role in achieving high spectral resolution with a compact and low cost IR cryogenically cooled spectrograph and simultaneous large wavelength coverage on relatively small IR detectors. We have constructed a new A0 optimized spectrograph at Steward Observatory to provide R = 200,000 in the optical, which is being commissioned at the Starfire Optical Range 3.5m telescope. We have completed the optical design of the LLNL IR Immersion Spectrograph (LISPEC) to take advantage of improved silicon etching technology. Key words: adaptive optics, spectroscopy, high resolution, immersion gratings

  5. Electron-energy losses in hemispherical targets

    SciTech Connect

    Aizpurua, J.; Rivacoba, A.; Apell, S.P.

    1996-07-01

    In the framework of classical dielectric theory, the hemispherical geometry is studied. Calculations on surface modes are carried out for isolated Drude-like hemispheres. The convergence of the results with respect to the number of coupled terms in the expressions of the potential is discussed. The electron-energy-loss probability is studied for Al and Ag particles involving this geometry. The surface modes and hence the energy-loss probability are given by coupled expressions, the physical meaning of which is the coupling among multipolar terms, because of the particular geometry. The results obtained here present a good quantitative agreement with experiments in the case of clear surfaces (Ag) and provide a qualitative understanding for the experiments in Al, in terms of the position and impact parameter of the beam. This allows us to set the validity of the dielectric theory for cases that seemed to question it. {copyright} {ital 1996 The American Physical Society.}

  6. High Resolution Coherent 3d Spectroscopy of Bromine

    NASA Astrophysics Data System (ADS)

    Strangfeld, Benjamin R.; Wells, Thresa A.; House, Zuri R.; Chen, Peter C.

    2013-06-01

    The high resolution gas phase electronic spectrum of bromine is rather congested due to many overlapping vibrational and rotational transitions with similar transition frequencies, and also due to isotopomeric effects. Expansion into the second dimension will remove some of this congestion; however through the implementation of High Resolution Coherent 3D Spectroscopy, the density of peaks is further reduced by at least two orders of magnitude. This allows for the selective examination of a small number of spatially resolved multidimensional bands, separated by vibrational quantum number and by isotopomer, which facilitates the fitting of many rovibrational peaks in bromine. The ability to derive information about the molecular constants for the electronic states involved will be discussed.

  7. High resolution coherent three dimensional spectroscopy of NO2.

    PubMed

    Wells, Thresa A; Muthike, Angelar K; Robinson, Jessica E; Chen, Peter C

    2015-06-01

    Expansion from coherent 2D spectroscopy to coherent 3D spectroscopy can provide significant advantages when studying molecules that have heavily perturbed energy levels. This paper illustrates such advantages by demonstrating how high resolution coherent 3D (HRC3D) spectroscopy can be used to study a portion of the visible spectrum of nitrogen dioxide. High resolution coherent 2D spectra usually contain rotational and vibrational patterns that are easy to analyze, but severe congestion and complexity preclude its effective use for many parts of the NO2 spectrum. HRC3D spectroscopy appears to be much more effective; multidimensional rotational and vibrational patterns produced by this new technique are easy to identify even in the presence of strong perturbations. A method for assigning peaks, which is based upon analyzing the resulting multidimensional patterns, has been developed. The higher level of multidimensionality is useful for reducing uncertainty in peak assignments, improving spectral resolution, providing simultaneous information on multiple levels and states, and predicting, verifying, and categorizing peaks. PMID:26049446

  8. A high-resolution Fourier Transform Spectrometer for planetary spectroscopy

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Sinton, W. M.

    1973-01-01

    The employment of a high-resolution Fourier Transform Spectrometer (FTS) is described for planetary and other astronomical spectroscopy in conjunction with the 88-inch telescope at Mauna Kea Observatory. The FTS system is designed for a broad range of uses, including double-beam laboratory spectroscopy, infrared gas chromatography, and nuclear magnetic resonance spectroscopy. The data system is well-suited to astronomical applications because of its great speed in acquiring and transforming data, and because of the enormous storage capability of the magnetic tape unit supplied with the system. The basic instrument is outlined 2nd some of the initial results from the first attempted use on the Mauna Kea 88-inch telescope are reported.

  9. High-Resolution Infrared Spectroscopy with Synchrotron Sources

    SciTech Connect

    McKellar, A.

    2010-01-01

    Most applications of synchrotron radiation lie in the ultraviolet and X-ray region, but it also serves as a valuable continuum source of infrared (IR) light which is much brighter (i.e. more highly directional) than that from normal thermal sources. The synchrotron brightness advantage was originally exploited for high spatial resolution spectroscopy of condensed-phase samples. But it is also valuable for high spectral resolution of gas-phase samples, particularly in the difficult far-IR (terahertz) range (1/{lambda} {approx} 10-1000 cm{sup -1}). Essentially, the synchrotron replaces the usual thermal source in a Fourier transform IR spectrometer, giving a increase of up to two (or even more) orders of magnitude in signal at very high-resolution. Following up on pioneering work in Sweden (MAX-lab) and France (LURE), a number of new facilities have recently been constructed for high-resolution gas-phase IR spectroscopy. In the present paper, this new field is reviewed. The advantages and difficulties associated with synchrotron IR spectroscopy are outlined, current and new facilities are described, and past, present, and future spectroscopic results are summarized.

  10. High resolution X-ray spectroscopy of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    1990-01-01

    After a brief review of the principal problems of AGN research, selected potential high-resolution observations are discussed with a view toward assessing their scientific value and the degree of resolution they will require. Two classes of observations pertaining directly to AGNs are discussed. Fe K-alpha spectroscopy relevant to the dynamical and thermal character of the emission line zones; and measurement of resonance line absorption by highly-ionized species in BL Lac objects, which should provide information about entrainment of interstellar material by relativistic jets. A third class of potentially important observations uses AGNs as background light sources in order to directly measure the distance to clusters of galaxies.

  11. High resolution ultrasonic spectroscopy system for nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Chen, C. H.

    1991-01-01

    With increased demand for high resolution ultrasonic evaluation, computer based systems or work stations become essential. The ultrasonic spectroscopy method of nondestructive evaluation (NDE) was used to develop a high resolution ultrasonic inspection system supported by modern signal processing, pattern recognition, and neural network technologies. The basic system which was completed consists of a 386/20 MHz PC (IBM AT compatible), a pulser/receiver, a digital oscilloscope with serial and parallel communications to the computer, an immersion tank with motor control of X-Y axis movement, and the supporting software package, IUNDE, for interactive ultrasonic evaluation. Although the hardware components are commercially available, the software development is entirely original. By integrating signal processing, pattern recognition, maximum entropy spectral analysis, and artificial neural network functions into the system, many NDE tasks can be performed. The high resolution graphics capability provides visualization of complex NDE problems. The phase 3 efforts involve intensive marketing of the software package and collaborative work with industrial sectors.

  12. Techniques in molecular spectroscopy: from broad bandwidth to high resolution

    NASA Astrophysics Data System (ADS)

    Cossel, Kevin C.

    This thesis presents a range of different experiments all seeking to extended the capabilities of molecular spectroscopy and enable new applications. The new technique of cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) provides a unique combination of broad bandwidth, high resolution, and high sensitivity that can be useful for a wide range of applications. Previous demonstrations of CE-DFCS were confined to the visible or near-infrared and operated over a limited bandwidth: for many applications it is desirable to increase the spectral coverage and to extend to the mid-infrared where strong, fundamental vibrational modes of molecules occur. There are several key requirements for CE-DFCS: a frequency comb source that provides broad bandwidth and high resolution, an optical cavity for high sensitivity, and a detection system capable of multiplex detection of the comb spectrum transmitted through the cavity. We first discuss comb sources with emphasis on the coherence properties of spectral broadening in nonlinear fiber and the development of a high-power frequency comb source in the mid-infrared based on an optical-parametric oscillator (OPO). To take advantage of this new mid-infrared comb source for spectroscopy, we also discuss the development of a rapid-scan Fourier-transform spectrometer (FTS). We then discuss the first demonstration of CE-DFCS with spectrally broadened light from a highly nonlinear fiber with the application to measurements of impurities in semiconductor manufacturing gases. We also cover our efforts towards extending CE-DFCS to the mid-infrared using the mid-infrared OPO and FTS to measure ppb levels of various gases important for breath analysis and atmospheric chemistry and highlight some future applications of this system. In addition to the study of neutral molecules, broad-bandwidth and high-resolution spectra of molecular ions are useful for astrochemistry where many of the observed molecules are ionic, for studying

  13. Metallicity determination of M dwarfs. High-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindgren, Sara; Heiter, Ulrike; Seifahrt, Andreas

    2016-02-01

    Context. Several new techniques to determine the metallicity of M dwarfs with better precision have been developed over the last decades. However, most of these studies were based on empirical methods. In order to enable detailed abundance analysis, standard methods established for warmer solar-like stars, i.e. model-dependent methods using fitting of synthetic spectra, still need to be used. Aims: In this work we continue the reliability confirmation and development of metallicity determinations of M dwarfs using high-resolution infrared spectra. The reliability was confirmed through analysis of M dwarfs in four binary systems with FGK dwarf companions and by comparison with previous optical studies of the FGK dwarfs. Methods: The metallicity determination was based on spectra taken in the J band (1.1-1.4 μm) with the CRIRES spectrograph. In this part of the infrared, the density of stellar molecular lines is limited, reducing the amount of blends with atomic lines enabling an accurate continuum placement. Lines of several atomic species were used to determine the stellar metallicity. Results: All binaries show excellent agreement between the derived metallicity of the M dwarf and its binary companion. Our results are also in good agreement with values found in the literature. Furthermore, we propose an alternative way to determine the effective temperature of M dwarfs of spectral types later than M2 through synthetic spectral fitting of the FeH lines in our observed spectra. Conclusions: We have confirmed that a reliable metallicity determination of M dwarfs can be achieved using high-resolution infrared spectroscopy. We also note that metallicites obtained with photometric metallicity calibrations available for M dwarfs only partly agree with the results we obtain from high-resolution spectroscopy. Based on data obtained at ESO-VLT, Paranal Observatory, Chile, Program ID 082.D-0838(A) and 084.D-1042(A).

  14. High Resolution Laboratory Spectroscopy: Unraveling the Secrets of Interstellar Chemistry

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.

    2008-05-01

    At present, over 140 different chemical compounds have been identified in interstellar and circumstellar gas. Such observations have offered a unique avenue by which to probe the cold, dense regions in our Galaxy and in external galaxies. Because these molecules are primarily present in colder material, they are usually studied at high spectral resolutions (1 part in 106-107) via their pure rotational transitions, which typically occur at millimeter and sub-millimeter wavelengths. Such studies cannot be carried out, however, without the input of high resolution laboratory spectroscopy. Such measurements provide the "fingerprint” spectral pattern critical for accurate astronomical identifications. Because of the complexity of current interstellar spectra and the propensity of unidentified features, precise laboratory data are essential. Current methods employed in the laboratory for high resolution measurements include millimeter/sub-mm direct absorption, velocity modulation, and Fourier transform microwave spectroscopy (FTMW). Each of these experimental techniques has certain unique advantages, which will be discussed. Also of importance are the synthetic methods utilized to create the radicals, ions, and other transient species typically found in interstellar space. Such molecules are generated in DC and AC glow discharges, pulsed supersonic jet expansions, and using Broida-type ovens. In addition, spectral analyses can be quite complex, in particular if there are low lying excited torsional or electronic states, or if molecular inversion is present. Recent laboratory results for potential interstellar species will also be presented, in particular those for negative ions, phosphorus-bearing radicals, and organic "prebiotic” species.

  15. High Resolution Phonon-assisted Quasi-resonance Fluorescence Spectroscopy.

    PubMed

    Czarnocki, Cyprian; Kerfoot, Mark L; Casara, Joshua; Jacobs, Andrew R; Jennings, Cameron; Scheibner, Michael

    2016-01-01

    High resolution optical spectroscopy methods are demanding in terms of either technology, equipment, complexity, time or a combination of these. Here we demonstrate an optical spectroscopy method that is capable of resolving spectral features beyond that of the spin fine structure and homogeneous linewidth of single quantum dots (QDs) using a standard, easy-to-use spectrometer setup. This method incorporates both laser and photoluminescence spectroscopy, combining the advantage of laser line-width limited resolution with multi-channel photoluminescence detection. Such a scheme allows for considerable improvement of resolution over that of a common single-stage spectrometer. The method uses phonons to assist in the measurement of the photoluminescence of a single quantum dot after resonant excitation of its ground state transition. The phonon's energy difference allows one to separate and filter out the laser light exciting the quantum dot. An advantageous feature of this method is its straight forward integration into standard spectroscopy setups, which are accessible to most researchers. PMID:27405015

  16. Recent Results in Quantum Chemical Kinetics from High Resolution Spectroscopy

    SciTech Connect

    Quack, Martin

    2007-12-26

    We outline the approach of our group to derive intramolecular kinetic primary processes from high resolution spectroscopy. We then review recent results on intramolecular vibrational redistribution (IVR) and on tunneling processes. Examples are the quantum dynamics of the C-H-chromophore in organic molecules, hydrogen bond dynamics in (HF){sub 2} and stereomutation dynamics in H{sub 2}O{sub 2} and related chiral molecules. We finally discuss the time scales for these and further processes which range from 10 fs to more than seconds in terms of successive symmetry breakings, leading to the question of nuclear spin symmetry and parity violation as well as the question of CPT symmetry.

  17. High Resolution Absorption Spectroscopy using Externally Dispersed Interferometry

    SciTech Connect

    Edelstein, J; Erskine, D J

    2005-07-06

    We describe the use of Externally Dispersed Interferometry (EDI) for high-resolution absorption spectroscopy. By adding a small fixed-delay interferometer to a dispersive spectrograph, a precise fiducial grid in wavelength is created over the entire spectrograph bandwidth. The fiducial grid interacts with narrow spectral features in the input spectrum to create a moire pattern. EDI uses the moire pattern to obtain new information about the spectra that is otherwise unavailable, thereby improving spectrograph performance. We describe the theory and practice of EDI instruments and demonstrate improvements in the spectral resolution of conventional spectrographs by a factor of 2 to 6. The improvement of spectral resolution offered by EDI can benefit space instruments by reducing spectrograph size or increasing instantaneous bandwidth.

  18. High Resolution K-Band Spectroscopy of Selected M Dwarfs

    NASA Astrophysics Data System (ADS)

    Nakajima, Tadashi

    2013-06-01

    We propose to obtain high-resolution K-band spectra of selected M dwarfs to study stellar properties such as effective temperature and metallicity. M dwarfs are under scrutiny as potential planet hosts. They have sufficiently low masses and small radii that exoplanets induce considerably larger reflex velocities and transit depths than an identical planet would around larger, more massive hosts. The low temperatures of M dwarfs imply short-period planets are in the habitable zone. However, due to the cool atmosphere, the characterization of M dwarfs at visible wavelengths has been rather difficult and the previously known stellar parameters have been rather crude. Recently a new method to use medium resolution K-band spectroscopy to determine the effective temperature and metallicity was devised. The purposes of this proposal is to examine the validity of the new method with a spectral resolution one order of magnitude higher and, if possible, to find a better method to determine the stellar properties.

  19. High-Resolution Imaging and Spectroscopy at High Pressure: A Novel Liquid Cell for the TEM

    PubMed Central

    Tanase, Mihaela; Winterstein, Jonathan; Sharma, Renu; Aksyuk, Vladimir; Holland, Glenn; Liddle, J. Alexander

    2016-01-01

    We demonstrate quantitative core-loss electron energy-loss spectroscopy of iron oxide nanoparticles and imaging resolution of Ag nanoparticles in liquid down to 0.24 nm, in both transmission and scanning-transmission modes, in a novel, monolithic liquid cell developed for the transmission electron microscope (TEM). At typical SiN membrane thicknesses of 50 nm the liquid layer thickness has a maximum change of only 30 nm for the entire TEM viewing area of 200 μm × 200 μm. PMID:26650072

  20. Improvement of sensitivity in high-resolution Rutherford backscattering spectroscopy

    SciTech Connect

    Hashimoto, H.; Nakajima, K.; Suzuki, M.; Kimura, K.; Sasakawa, K.

    2011-06-15

    The sensitivity (limit of detection) of high-resolution Rutherford backscattering spectroscopy (HRBS) is mainly determined by the background noise of the spectrometer. There are two major origins of the background noise in HRBS, one is the stray ions scattered from the inner wall of the vacuum chamber of the spectrometer and the other is the dark noise of the microchannel plate (MCP) detector which is commonly used as a focal plane detector of the spectrometer in HRBS. In order to reject the stray ions, several barriers are installed inside the spectrometer and a thin Mylar foil is mounted in front of the detector. The dark noise of the MCP detector is rejected by the coincidence measurement with the secondary electrons emitted from the Mylar foil upon the ion passage. After these improvements, the background noise is reduced by a factor of 200 at a maximum. The detection limit can be improved down to 10 ppm for As in Si at a measurement time of 1 h under ideal conditions.

  1. High-resolution NMR spectroscopy under the fume hood.

    PubMed

    Küster, Simon K; Danieli, Ernesto; Blümich, Bernhard; Casanova, Federico

    2011-08-01

    This work reports the possibility to acquire high-resolution (1)H NMR spectra with a fist-sized NMR magnet directly installed under the fume hood. The small NMR sensor based on permanent magnets was used to monitor the trimerization of propionaldehyde catalyzed by indium trichloride in real time by continuously circulating the reaction mixture through the magnet bore in a closed loop with the help of a peristaltic pump. Thanks to the chemical selectivity of NMR spectroscopy the progress of the reaction can be monitored on-line by determining the concentrations of both reactant and product from the area under their respective lines in the NMR spectra as a function of time. This in situ measurement demonstrates that NMR probes can be used in chemistry laboratories, e.g. for reaction optimization, or installed at specific points of interest along industrial process lines. Therefore, it will open the door for the implementation of feedback control based on spectroscopic NMR data. PMID:21698335

  2. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    SciTech Connect

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  3. High-Resolution Spectroscopy of the Lunar Sodium Exosphere

    NASA Technical Reports Server (NTRS)

    Mierkiewicz, E. J.; Oliversen, R. J.; Roesler, F. L.; Lupie, O. L.

    2014-01-01

    We have applied high-resolution Fabry-Perot spectroscopy to the study of the lunar sodium exosphere for the study of exospheric effective temperature and velocity variations. Observing from the National Solar Observatory McMath-Pierce Telescope, we used a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,000 to measure line widths and Doppler shifts of the sodium D2 (5889.95 Å) emission line. Our field of view was 360 km, and measurements were made in equatorial and polar regions from 500 km to 3500 km off the limb. Data were obtained from full moon to 3 days following full moon (waning phase) in March 2009. Measured Doppler line widths within 1100 km of the sunlit east and south lunar limbs for observations between 5 and 40 deg lunar phase imply effective temperatures ranging between 3260 +/- 190 and 1000 +/- 135 K. Preliminary line center analysis indicates velocity displacements between different locations off the lunar limb ranging between 100 and 600 m/s from the lunar rest velocity with a precision of +/-20 to +/-50 m/s depending on brightness. Based on the success of these exploratory observations, an extensive program has been initiated that is expected to constrain lunar atmospheric and surface-process modeling and help quantify source and escape mechanisms.

  4. Pluto's atmosphere in 2015 from high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Roe, Henry G.; Cook, Jason C.; Mace, Gregory N.; Holler, Bryan J.; Young, Leslie A.; McLane, Jacob N.; Jaffe, Daniel T.

    2015-11-01

    Pluto's thin N2/CH4 atmosphere is in vapor-pressure equilibrium with ices on its surface. The atmosphere evolves seasonally with the varying insolation pattern on Pluto's heterogenous surface, perhaps even largely freezing out to the surface during the coldest portion of Pluto's year. We use high-resolution (R≈25,000-50,000) near-infrared spectroscopy to resolve atmospheric methane absorption lines from Pluto's continuum spectra, as well as separate Pluto's atmospheric lines from the telluric spectrum. In addition to measuring the abundance and temperature of Pluto's atmospheric CH4, with broad wavelength coverage we are able to search for the inevitable products of N2/CH4 photochemistry. In 2015 we are undertaking an intensive campaign using NIRSPEC at Keck Observatory and IGRINS (Immersion Grating INfrared Spectrometer) at McDonald Observatory to coincide with the New Horizons Pluto encounter. We will report initial results from this 2015 campaign and compare the state of Pluto's atmosphere at the time of the New Horizons encounter with earlier years.

  5. Johann Spectrometer for High Resolution X-ray Spectroscopy

    SciTech Connect

    Machek, Pavel; Froeba, Michael; Welter, Edmund; Caliebe, Wolfgang; Brueggmann, Ulf; Draeger, Guenter

    2007-01-19

    A newly designed vacuum Johann spectrometer with a large focusing analyzer crystal for inelastic x-ray scattering and high resolution fluorescence spectroscopy has been installed at the DORIS III storage ring. Spherically bent crystals with a maximum diameter of 125 mm, and cylindrically bent crystals are employed as dispersive optical elements. Standard radius of curvature of the crystals is 1000 mm, however, the design of the mechanical components also facilitates measurements with smaller and larger bending radii. Up to four crystals are mounted on a revolving crystal changer which enables crystal changes without breaking the vacuum. The spectrometer works at fixed Bragg angle. It is preferably designed for the measurements in non-scanning mode with a broad beam spot, and offers a large flexibility to set the sample to the optimum position inside the Rowland circle. A deep depletion CCD camera is employed as a position sensitive detector to collect the energy-analyzed photons on the circumference of the Rowland circle. The vacuum in the spectrometer tank is typically 10-6 mbar. The sample chamber is separated from the tank either by 25 {mu}m thick Kapton windows, which allows samples to be measured under ambient conditions, or by two gate valves. The spectrometer is currently installed at wiggler beamline W1 whose working range is 4-10.5 keV with typical flux at the sample of 5x1010photons/s/mm2. The capabilities of the spectrometer are illustrated by resonant inelastic experiments on 3d transition metals and rare earth compounds, and by chemical shift measurements on chromium compounds.

  6. Johann Spectrometer for High Resolution X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Machek, Pavel; Welter, Edmund; Caliebe, Wolfgang; Brüggmann, Ulf; Dräger, Günter; Fröba, Michael

    2007-01-01

    A newly designed vacuum Johann spectrometer with a large focusing analyzer crystal for inelastic x-ray scattering and high resolution fluorescence spectroscopy has been installed at the DORIS III storage ring. Spherically bent crystals with a maximum diameter of 125 mm, and cylindrically bent crystals are employed as dispersive optical elements. Standard radius of curvature of the crystals is 1000 mm, however, the design of the mechanical components also facilitates measurements with smaller and larger bending radii. Up to four crystals are mounted on a revolving crystal changer which enables crystal changes without breaking the vacuum. The spectrometer works at fixed Bragg angle. It is preferably designed for the measurements in non-scanning mode with a broad beam spot, and offers a large flexibility to set the sample to the optimum position inside the Rowland circle. A deep depletion CCD camera is employed as a position sensitive detector to collect the energy-analyzed photons on the circumference of the Rowland circle. The vacuum in the spectrometer tank is typically 10-6 mbar. The sample chamber is separated from the tank either by 25 μm thick Kapton windows, which allows samples to be measured under ambient conditions, or by two gate valves. The spectrometer is currently installed at wiggler beamline W1 whose working range is 4-10.5 keV with typical flux at the sample of 5×1010photons/s/mm2. The capabilities of the spectrometer are illustrated by resonant inelastic experiments on 3d transition metals and rare earth compounds, and by chemical shift measurements on chromium compounds.

  7. High-resolution tunnelling spectroscopy of a graphene quartet.

    PubMed

    Song, Young Jae; Otte, Alexander F; Kuk, Young; Hu, Yike; Torrance, David B; First, Phillip N; de Heer, Walt A; Min, Hongki; Adam, Shaffique; Stiles, Mark D; MacDonald, Allan H; Stroscio, Joseph A

    2010-09-01

    Electrons in a single sheet of graphene behave quite differently from those in traditional two-dimensional electron systems. Like massless relativistic particles, they have linear dispersion and chiral eigenstates. Furthermore, two sets of electrons centred at different points in reciprocal space ('valleys') have this dispersion, giving rise to valley degeneracy. The symmetry between valleys, together with spin symmetry, leads to a fourfold quartet degeneracy of the Landau levels, observed as peaks in the density of states produced by an applied magnetic field. Recent electron transport measurements have observed the lifting of the fourfold degeneracy in very large applied magnetic fields, separating the quartet into integer and, more recently, fractional levels. The exact nature of the broken-symmetry states that form within the Landau levels and lift these degeneracies is unclear at present and is a topic of intense theoretical debate. Here we study the detailed features of the four quantum states that make up a degenerate graphene Landau level. We use high-resolution scanning tunnelling spectroscopy at temperatures as low as 10 mK in an applied magnetic field to study the top layer of multilayer epitaxial graphene. When the Fermi level lies inside the fourfold Landau manifold, significant electron correlation effects result in an enhanced valley splitting for even filling factors, and an enhanced electron spin splitting for odd filling factors. Most unexpectedly, we observe states with Landau level filling factors of 7/2, 9/2 and 11/2, suggestive of new many-body states in graphene. PMID:20829790

  8. Characterizing The Nearest Young Moving Groups Through High Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    McCarthy, Kyle; Wilhelm, Ronald J.

    2015-01-01

    We present a detailed method for characterizing the nearest young moving groups via high resolution spectroscopy. This method has three diagnostics which classify a moving group: (1) Chemical Homogeneity, (2) Kinematic Traceback, and (3) Isochrone Fitting. We have applied this technique on 10 F- and G-type stars from the AB Doradus Moving Group (ABD) and found 8 stars share similar metal abundances with an average abundance for ABD of <[M/H]> = -0.03 ± 0.06; of the two outliers, one is metal rich and the other metal poor. Seven stars follow a common traceback and share a common origin around 125 Myr. One of the outlying traceback stars diverges around 90-100 Myr, and is the same star which is metal rich. Eight stars fall along the same isochrone of 100 Myr, which is synonymous with the main sequence. We further evaluated this technique on 5 members of the newly discovered Octans-Near Moving Group (ONMG). Two of these were listed as possible members with the other three being probable members. There is a large spread in the metal abundance with <[M/H]> = -0.17 ± 0.1 and no core group of stars that define the cluster in abundance space. ONMG is also enigmatic because several age indicators (e.g. lithium abundance, surface gravities, activity) indicate a much younger cluster; however, the traceback age shows these stars were closest around 150 Myr (though this age should be taken very lightly) and 4 of the 5 stars fall on the main sequence. We therefore conclude that while these stars do share present day velocities and positions, the group is not well defined in abundance, origin, or age, and should be concidered with caution.

  9. Simulation of electron energy loss spectra of nanomaterials with linear-scaling density functional theory.

    PubMed

    Tait, E W; Ratcliff, L E; Payne, M C; Haynes, P D; Hine, N D M

    2016-05-18

    Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree with those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. Finally, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable. PMID:27094207

  10. Simulation of electron energy loss spectra of nanomaterials with linear-scaling density functional theory

    NASA Astrophysics Data System (ADS)

    Tait, E. W.; Ratcliff, L. E.; Payne, M. C.; Haynes, P. D.; Hine, N. D. M.

    2016-05-01

    Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree with those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. Finally, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable.

  11. High Resolution Coherent Three-Dimensional Spectroscopy of Iodine

    NASA Astrophysics Data System (ADS)

    House, Zuri R.; Wells, Thresa A.; Chen, Peter C.; Strangfeld, Benjamin R.

    2013-06-01

    The heavy congestion found in many one-dimensional spectra can make it difficult to study many transitions. A new coherent three-dimensional spectroscopic technique has been developed to eliminate the kind of congestion commonly seen in high resolution electronic spectra. The molecule used for this test was Iodine. A well-characterized transition (X to B) was used to determine which four wave mixing process or processes were responsible for the peaks in the resulting multidimensional spectrum. The resolution of several peaks that overlap in a coherent 2D spectrum can be accomplished by using a higher dimensional (3D) spectroscopic method. This talk will discuss strategies for finding spectroscopic constants using this high resolution coherent 3D spectroscopic method.

  12. High Resolution Thz and FIR Spectroscopy of SOCl_2

    NASA Astrophysics Data System (ADS)

    Martin-Drumel, M. A.; Cuisset, A.; Sadovskii, D. A.; Mouret, G.; Hindle, F.; Pirali, O.

    2013-06-01

    Thionyl chloride (SOCl_2) is an extremely powerful oxidant widely used in industrial processes and playing a role in the chemistry of the atmosphere. In addition, it has a molecular configuration similar to that of phosgene (COCl_2), and is therefore of particular interest for security and defense applications. Low resolution vibrational spectra of gas phase SOCl_2 as well as high resolution pure rotational transitions up to 25 GHz have previously been investigated. To date no high resolution data are reported at frequencies higher than 25 GHz. We have investigated the THz absorption spectrum of SOCl_2 in the spectral region 70-650 GHz using a frequency multiplier chain coupled to a 1 m long single path cell containing a pressure of about 15 μbar. At the time of the writing, about 8000 pure rotational transitions of SO^{35}Cl_2 with highest J and K_a values of 110 and 50 respectively have been assigned on the spectrum. We have also recorded the high resolution FIR spectra of SOCl_2 in the spectral range 50-700 wn using synchrotron radiation at the AILES beamline of SOLEIL facility. A White-type cell aligned with an absorption path length of 150 m has been used to record, at a resolution of 0.001 wn, two spectra at pressures of 5 and 56 μbar of SOCl_2. On these spectra all FIR modes of SOCl_2 are observed (ν_2 to ν_6) and present a resolved rotational structure. Their analysis is in progress. T. J. Johnson et al., J. Phys. Chem. A 107, 6183 (2003) D. E. Martz and R. T. Lagemann, J. Chem. Phys. 22,1193 (1954) H. S. P. Müller and M. C. L. Gerry, J. Chem. Soc. Faraday Trans. 90, 3473 (1994)

  13. High-Resolution Spectroscopy of Some Very Inactive Southern Stars

    NASA Astrophysics Data System (ADS)

    Villarreal, A.; King, J. R.; Soderblom, D. R.; Henry, T. J.

    2001-12-01

    We have obtained high-resolution echelle spectra of a few dozen solar-type stars that an earlier low resolution Ca II H & K survey suggested have modest evels of chromospheric activity. We present Hα -based chromospheric activity measures, binarity information, and Li abundances of the sample. As expected, our spectra: confirm the low levels of chromospheric activity; suggest that these objects are apparently single; indicate the stars have small projected rotational velocities; and yield low photospheric abundances of Li. This work was supported by NSF grant AST-0086576 to JRK.

  14. Quadrature phase interferometer for high resolution force spectroscopy

    NASA Astrophysics Data System (ADS)

    Paolino, Pierdomenico; Aguilar Sandoval, Felipe A.; Bellon, Ludovic

    2013-09-01

    In this article, we present a deflection measurement setup for Atomic Force Microscopy (AFM). It is based on a quadrature phase differential interferometer: we measure the optical path difference between a laser beam reflecting above the cantilever tip and a reference beam reflecting on the static base of the sensor. A design with very low environmental susceptibility and another allowing calibrated measurements on a wide spectral range are described. Both enable a very high resolution (down to 2.5 × 10^{-15} m/sqrtHz), illustrated by thermal noise measurements on AFM cantilevers. They present an excellent long-term stability and a constant sensitivity independent of the optical phase of the interferometer. A quick review shows that our precision is equaling or out-performing the best results reported in the literature, but for a much larger deflection range, up to a few μm.

  15. High-resolution near-infrared spectroscopy of water dimer

    NASA Technical Reports Server (NTRS)

    Huang, Z. S.; Miller, R. E.

    1989-01-01

    High-resolution near-infrared spectra are reported for all of the O-H stretch vibrational bands of the water dimer. The four O-H vibrations are characterized as essentially independent proton-donor or proton-acceptor motions. In addition to the rotational and vibrational information contained in these spectra, details are obtained concerning the internal tunneling dynamics in both the ground and excited vibrational states. These results show that, for tunneling motions which involve the interchange of the proton donor and acceptor molecules, the associated frequencies decrease substantially due to vibrational excitation. The predissociation lifetimes for the various states of the dimer are determined from linewidth measurements. These results clearly show that the predissociation dynamics is strongly dependent on the tunneling states, as well as the Ka quantum number, indicating that the internal tunneling dynamics plays an important role in determining the dissociation rate in this complex.

  16. Quadrature phase interferometer for high resolution force spectroscopy

    SciTech Connect

    Paolino, Pierdomenico; Aguilar Sandoval, Felipe A.; Bellon, Ludovic

    2013-09-15

    In this article, we present a deflection measurement setup for Atomic Force Microscopy (AFM). It is based on a quadrature phase differential interferometer: we measure the optical path difference between a laser beam reflecting above the cantilever tip and a reference beam reflecting on the static base of the sensor. A design with very low environmental susceptibility and another allowing calibrated measurements on a wide spectral range are described. Both enable a very high resolution (down to 2.5×10{sup −15} m/√(Hz)), illustrated by thermal noise measurements on AFM cantilevers. They present an excellent long-term stability and a constant sensitivity independent of the optical phase of the interferometer. A quick review shows that our precision is equaling or out-performing the best results reported in the literature, but for a much larger deflection range, up to a few μm.

  17. MAGELLAN: High resolution spectroscopy at FUV and EUV wavelengths

    NASA Technical Reports Server (NTRS)

    Grewing, M.; Alighieri, S. D.; Burton, W.; Coleman, C. I.; Hoekstra, R.; Jamar, C.; Labeque, A.; Laurent, C.; Vidal-Madjar, A.; Rafanelli, P.

    1982-01-01

    The aim of ESA's MAGELLAN mission is to provide high resolution spectra of celestial sources down to sixteenth magnitude over the extreme ultraviolet wavelength range (between 50 and 140 nm). This range extends from studies of interstellar matter in the disc and halo of this and other galaxies, to stellar envelopes, hot and evolved stars, clusters, intergalactic matter, nuclei of galaxies, quasars, and, finally, planets and satellites. The instrument has a nonconventional optical design using only one reflecting surface; a high groove density concave grating collects the star light, diffracts it and focuses its spectrum into a bidimensional windowless detector operated in a photon counting mode. The slitless configuration provides the spectra of all the sources (point like and extended) in the field of view of the grating. This field of view is limited by a grid collimator to reduce the diffuse background, the stray light and the probability of overlapping spectra in crowded fields.

  18. High resolution spectroscopy from low altitude satellites. [gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Nakano, G. H.; Imhof, W. L.

    1978-01-01

    The P 78 1 satellite to be placed in a synchronous polar orbit at an altitude of 550-660 km will carry two identical high resolution spectrometers each consisting of a single (approximately 85 cc) intrinsic germanium IGE detector. The payload also includes a pair of phoswitch scintillators, an array of CdTe detectors and several particle detectors, all of which are mounted on the wheel of the satellite. The intrinsic high purity IGE detectors receive cooling from two Stirling cycle refrigerators and facilitate the assembly of large and complex detector arrays planned for the next generation of high sensitivity instruments such as those planned for the gamma ray observatory. The major subsystems of the spectrometer are discussed as well as its capabilities.

  19. Quadrature phase interferometer for high resolution force spectroscopy.

    PubMed

    Paolino, Pierdomenico; Aguilar Sandoval, Felipe A; Bellon, Ludovic

    2013-09-01

    In this article, we present a deflection measurement setup for Atomic Force Microscopy (AFM). It is based on a quadrature phase differential interferometer: we measure the optical path difference between a laser beam reflecting above the cantilever tip and a reference beam reflecting on the static base of the sensor. A design with very low environmental susceptibility and another allowing calibrated measurements on a wide spectral range are described. Both enable a very high resolution (down to 2.5×10(-15) m/√Hz), illustrated by thermal noise measurements on AFM cantilevers. They present an excellent long-term stability and a constant sensitivity independent of the optical phase of the interferometer. A quick review shows that our precision is equaling or out-performing the best results reported in the literature, but for a much larger deflection range, up to a few μm. PMID:24089852

  20. High-resolution spectroscopy of a giant solar filament

    NASA Astrophysics Data System (ADS)

    Kuckein, Christoph; Denker, Carsten; Verma, Meetu

    2014-01-01

    High-resolution spectra of a giant solar quiescent filament were taken with the Echelle spectrograph at the Vacuum Tower Telescope (VTT; Tenerife, Spain). A mosaic of various spectroheliograms (Hα, Hα+/-0.5 Å and Na D2) were chosen to examine the filament at different heights in the solar atmosphere. In addition, full-disk images (He i 10830 Å and Ca ii K) of the Chromspheric Telescope and full-disk magnetograms of the Helioseismic and Magnetic Imager were used to complement the spectra. Preliminary results are shown of this filament, which had extremely large linear dimensions (~740'') and was observed in November 2011 while it traversed the northern solar hemisphere.

  1. CARMENES science preparation. High-resolution spectroscopy of M dwarfs

    NASA Astrophysics Data System (ADS)

    Montes, D.; Caballero, J. A.; Jeffers, S.; Alonso-Floriano, F. J.; Mundt, R.; CARMENES Consortium

    2015-05-01

    To ensure an efficient use of CARMENES observing time, and the highest chances of success, it is necessary first to select the most promising targets. To achieve this, we are observing 500 M dwarfs at high-resolution (R = 30,000-48,000), from which we determine the projected rotational velocity vsin{i} with an accuracy better than 0.5-0.2 km/s and radial-velocity stability better than 0.2-0.1 km/s. Our aim is to have at least two spectra at different epochs of the final 300 CARMENES targets. Our observations with FEROS at ESO/MPG 2.2 m La Silla, CAFE at 2.2 m Calar Alto and HRS at Hobby Eberly Telescope allow us to identify single- and double-line spectroscopic binaries and, especially, fast rotators, which should be discarded from the target list for exoplanet searches. Here we present preliminary results.

  2. High resolution {gamma}-ray spectroscopy: The first 85 years

    SciTech Connect

    Deslattes, R.D.

    2000-02-01

    This opening review attempts to follow the main trends in crystal diffraction spectrometry of nuclear {gamma} rays from its 1914 beginning in Rutherford's laboratory to the ultra-high resolution instrumentation realized in the current generation of spectrometers at the Institute Laue Langeven (ILL). The authors perspective is that of an instrumentalist hoping to convey a sense of intellectual debt to a number of predecessors, each of whom realized a certain elegance in making the tools that have enabled much good science, including that to which the remainder of this workshop is dedicated. This overview follows some of the main ideas along a trajectory toward higher resolution at higher energies, thereby enabling not only the disentangling of dense spectra, but also allowing detailed study of aspects of spectral profiles sensitive to excited state lifetimes and interatomic potentials. The parallel evolution toward increasing efficiency while preserving needed resolution is also an interesting story of artful compromise that should not be neglected. Finally, it is the robustness of the measurement chain connecting {gamma}-ray wavelengths with optical wave-lengths associated with the Rydberg constant that only recently has allowed {gamma}-ray data to contribute to determine of particle masses and fundamental constants, as will be described in more detail in other papers from this workshop.

  3. High Resolution Spectroscopy of Two FK Comae Stars

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.

    The FK Comae stars are a class of extremely rapidly rotating G-K giants that exhibit among the brightest UV and X-ray emission seen in late type stars. Previous IUE and optical observations have indicated that the activity (the extreme surface fluxes) in FK Comae may be qualitatively different from that in "normal" late type stars, and that the other four members of the class are far less bizarre than FK Comae itself. A definitive method for determining the structure of the outer atmospheres of these stars, and deciding whether the heating mechanism is normal chromospheric heating or accretion heating is by analysis of high resolution SWP spectra. We propose, in collaboration with S. Rucinski, to obtain 16-20 hour collaborative NASA-ESA SWP-HI spectra of FK Comae, which exhibits Hot and MgII line widths of ˜500 kms^-1, and HD 36705, which appears to be a far less bizarre member of this class. These observations would be the first high dispersion SWP spectra ever obtained of FK Comae stars.

  4. Exploring conical intersections through high resolution photofragment translational spectroscopy

    NASA Astrophysics Data System (ADS)

    Ashfold, Michael

    2007-03-01

    High resolution measurements of the kinetic energies of H atom fragments formed during UV photolysis of gas phase imidazole, [1,2] pyrrole, [3] phenol [4] and thiophenol molecules show that: (i) X-H (X = N, O, S) bond fission is an important non-radiative decay process from the ^1πσ* excited states in each of these molecules, and (ii) that the respective co-fragments (imidazolyl, pyrrolyl, phenoxyl and thiophenoxyl) are formed in very limited sub-sets of their available vibrational states. Identification of these product states yields uniquely detailed insights into the vibronic couplings involved in the photo-induced evolution from parent molecule to ultimate fragments. [1] M.N.R. Ashfold, B. Cronin, A.L. Devine, R.N. Dixon and M.G.D. Nix, Science (2006), 312, 1637. [2] A.L. Devine, B. Cronin, M.G.D. Nix and M.N.R. Ashfold, J. Chem. Phys. (in press). [3] B. Cronin, M.G.D. Nix, R.H. Qadiri and M.N.R. Ashfold, Phys. Chem. Chem. Phys. (2004), 6, 5031. [4] M.G.D. Nix, A.L. Devine, B. Cronin, R.N. Dixon and M.N.R. Ashfold, J. Chem. Phys. (2006), 125, 133318.

  5. High resolution photoelectron spectroscopy of clusters of Group V elements

    SciTech Connect

    Wang, Lai-sheng; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    High resolution HeI (580{angstrom}) photoelectron spectra of As{sub 2}, As{sub 4}, and P{sub 4} were obtained with a newly-built high temperature molecular beam source. Vibrational structure was resolved in the photoelectron spectra of the three cluster species. The Jahn-Teller effect is discussed for the {sup 2}E and {sup 2}T{sub 2} states of P{sub 4}{sup +} and As{sub 4}{sup +}. As a result of the Jahn-Teller effect, the {sup 2}E state splits into two bands, and the {sup 2}T{sub 2} state splits into three bands, in combination with the spin-orbit effect. It was observed that the {nu}{sub 2} normal vibrational mode was involved in the vibronic interaction of the {sup 2}E state, while both the {nu}{sub 2} and {nu}{sub 3} modes were active in the {sup 2}T{sub 2} state. 26 refs., 5 figs., 3 tabs.

  6. High Resolution FIR and IR Spectroscopy of Methanol Isotopologues

    SciTech Connect

    Lees, R. M.; Xu, Li-Hong; Appadoo, D. R. T.; Billinghurst, B.

    2010-02-03

    New astronomical facilities such as HIFI on the Herschel Space Observatory, the SOFIA airborne IR telescope and the ALMA sub-mm telescope array will yield spectra from interstellar and protostellar sources with vastly increased sensitivity and frequency coverage. This creates the need for major enhancements to laboratory databases for the more prominent interstellar 'weed' species in order to model and account for their lines in observed spectra in the search for new and more exotic interstellar molecular 'flowers'. With its large-amplitude internal torsional motion, methanol has particularly rich spectra throughout the FIR and IR regions and, being very widely distributed throughout the galaxy, is perhaps the most notorious interstellar weed. Thus, we have recorded new spectra for a variety of methanol isotopic species on the high-resolution FTIR spectrometer on the CLS FIR beamline. The aim is to extend quantum number coverage of the data, improve our understanding of the energy level structure, and provide the astronomical community with better databases and models of the spectral patterns with greater predictive power for a range of astrophysical conditions.

  7. High Resolution X-Ray Spectroscopy Using Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.

    1997-01-01

    During the past 13 years high resolution X ray spectrometers have been developed that use cryogenically cooled microcalorimeters. These devices have inherently high signal-to-noise by operating at temperatures below 0.1 K and can achieve an energy resolution of < 10 eV over the 0.1-10 keV band. Existing devices use doped semiconductor thermometers and typically employ HgTe absorbers. The energy resolution depends on achieving a low heat capacity for the device. For soft X ray applications a relatively thin absorber (approximately 1 micrometer) may be used and an energy resolution of approximately 7 eV has been achieved. For applications up to approximately 10 keV an absorber thickness of approximately 10 micrometer is required and the energy resolution is typically approximately 12 eV. Improvements to the energy resolution in this energy band could be achieved if the problems of thermalizing X rays in low heat capacity superconductors can be overcome. The recent work on transition edge thermometers by Irwin et nl. looks particularly promising because of the higher sensitivity achievable from a sharp superconducting transition. The relatively low impedance of such a device permits the use of a low noise SQUID amplifier for readout. This would also significantly reduce the cryogen heat load compared with JFETs required by higher impedance semiconductor thermometers.

  8. High-Resolution Laser Spectroscopy on the Negative Osmium Ion

    SciTech Connect

    Warring, U.; Amoretti, M.; Canali, C.; Fischer, A.; Heyne, R.; Meier, J. O.; Morhard, Ch.; Kellerbauer, A.

    2009-01-30

    We have applied a combination of laser excitation and electric-field detachment to negative atomic ions for the first time, resulting in an enhancement of the excited-state detection efficiency for spectroscopy by at least 2 orders of magnitude. Applying the new method, a measurement of the bound-bound electric-dipole transition frequency in {sup 192}Os{sup -} was performed using collinear spectroscopy with a narrow-bandwidth cw laser. The transition frequency was found to be 257.831 190(35) THz [wavelength 1162.747 06(16) nm, wave number 8600.3227(12) cm{sup -1}], in agreement with the only prior measurement, but with more than 100-fold higher precision.

  9. Electron energy-loss spectroscopic tomography of FexCo(3-x)O4 impregnated Co3O4 mesoporous particles: unraveling the chemical information in three dimensions.

    PubMed

    Yedra, L; Eljarrat, A; Arenal, R; López-Conesa, L; Pellicer, E; López-Ortega, A; Estrader, M; Sort, J; Baró, M D; Estradé, S; Peiró, F

    2016-08-01

    Electron energy-loss spectroscopy-spectrum image (EELS-SI) tomography is a powerful tool to investigate the three dimensional chemical configuration in nanostructures. Here, we demonstrate, for the first time, the possibility to characterize the spatial distribution of Fe and Co cations in a complex FexCo(3-x)O4/Co3O4 ordered mesoporous system. This hybrid material is relevant because of the ferrimagnetic/antiferromagnetic coupling and high surface area. We unambiguously prove that the EELS-SI tomography shows a sufficiently high resolution to simultaneously unravel the pore structure and the chemical signal. PMID:27314942

  10. Giant quiescent solar filament observed with high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuckein, C.; Verma, M.; Denker, C.

    2016-05-01

    Aims: An extremely large filament was studied in various layers of the solar atmosphere. The inferred physical parameters and the morphological aspects are compared with smaller quiescent filaments. Methods: A giant quiet-Sun filament was observed with the high-resolution Echelle spectrograph at the Vacuum Tower Telescope at Observatorio del Teide, Tenerife, Spain, on 2011 November 15. A mosaic of spectra (ten maps of 100″ × 182″) was recorded simultaneously in the chromospheric absorption lines Hα and Na i D2. Physical parameters of the filament plasma were derived using cloud model (CM) inversions and line core fits. The spectra were complemented with full-disk filtergrams (He i λ10830 Å, Hα, and Ca ii K) of the Chromospheric Telescope (ChroTel) and full-disk magnetograms of the Helioseismic and Magnetic Imager (HMI). Results: The filament had extremely large linear dimensions (~817 arcsec), which corresponds to about 658 Mm along a great circle on the solar surface. A total amount of 175119 Hα contrast profiles were inverted using the CM approach. The inferred mean line-of-sight (LOS) velocity, Doppler width, and source function were similar to previous works of smaller quiescent filaments. However, the derived optical thickness was higher. LOS velocity trends inferred from the Hα line core fits were in accord but weaker than those obtained with CM inversions. Signatures of counter-streaming flows were detected in the filament. The largest brightening conglomerates in the line core of Na i D2 coincided well with small-scale magnetic fields as seen by HMI. Mixed magnetic polarities were detected close to the ends of barbs. The computation of photospheric horizontal flows based on HMI magnetograms revealed flow kernels with a size of 5-8 Mm and velocities of 0.30-0.45 km s-1 at the ends of the filament. Conclusions: The physical properties of extremely large filaments are similar to their smaller counterparts, except for the optical thickness, which in

  11. Theoretical interpretation of electron energy-loss spectroscopic images

    DOE PAGESBeta

    Allen, L. J.; D'Alfonso, Adrian J.; Findlay, Scott D.; Oxley, Mark P.; Bosman, M.; Keast, V. J.; Cossgriff, E. C.; Behan, G.; Nellist, P. D.; Kirkland, Angus I.

    2008-04-10

    In this paper, we discuss the theory of electron energy-loss spectroscopic images in scanning transmission electron microscopy. Three case studies are presented which have as common themes issues of inelastic scattering, coherence and image interpretation. The first is a state-by-state inelastic transitions analysis of a spectroscopic image which does not admit direct visual interpretation. The second compares theory and experiment for two-dimensional mapping. Finally, the third considers imaging in three dimensions via depth sectioning.

  12. Molecular Chirality: Enantiomer Differentiation by High-Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hirota, Eizi

    2014-06-01

    I have demonstrated that triple resonance performed on a three-rotational-level system of a chiral molecule of C1 symmetry exhibits signals opposite in phase for different enantiomers, thereby making enantiomer differentiation possible by microwave spectroscopy This prediction was realized by Patterson et al. on 1,2-propanediol and 1,3-butanediol. We thus now add a powerful method: microwave spectroscopy to the study of chiral molecules, for which hitherto only the measurement of optical rotation has been employed. Although microwave spectroscopy is applied to molecules in the gaseous phase, it is unprecedentedly superior to the traditional method: polarimeter in resolution, accuracy, sensitivity, and so on, and I anticipate a new fascinating research area to be opened in the field of molecular chirality. More versatile and efficient systems should be invented and developed for microwave spectroscopy, in order to cope well with new applications expected for this method For C2 and Cn (n ≥ 3)chiral molecules, the three-rotational-level systems treated above for C1 molecules are no more available within one vibronic state. It should, however, be pointed out that, if we take into account an excited vibronic state in addition to the ground state, for example, we may encounter many three-level systems. Namely, either one rotational transition in the ground state is combined with two vibronic transitions, or such a rotational transition in an excited state may be connected through two vibronic transitions to a rotational level in the ground state manifold. The racemization obviously plays a crucial role in the study of molecular chirality. However, like many other terms employed in chemistry, this important process has been "defined" only in a vague way, in other words, it includes many kinds of processes, which are not well classified on a molecular basis. I shall mention an attempt to obviate these shortcomings in the definition of racemization and also to clarify the

  13. High-Resolution Waveguide THz Spectroscopy of Biological Molecules☆

    PubMed Central

    Laman, N.; Harsha, S. Sree; Grischkowsky, D.; Melinger, Joseph S.

    2008-01-01

    Abstract Low-frequency vibrational modes of biological molecules consist of intramolecular modes, which are dependent on the molecule as a whole, as well as intermolecular modes, which arise from hydrogen-bonding interactions and van der Waals forces. Vibrational modes thus contain important information about conformation dynamics of biological molecules, and can also be used for identification purposes. However, conventional Fourier transform infrared spectroscopy and terahertz time-domain spectroscopy (THz-TDS) often result in broad, overlapping features that are difficult to distinguish. The technique of waveguide THz-TDS has been recently developed, resulting in sharper features. For this technique, an ordered polycrystalline film of the molecule is formed on a metal sample plate. This plate is incorporated into a metal parallel-plate waveguide and probed via waveguide THz-TDS. The planar order of the film reduces the inhomogeneous broadening, and cooling of the samples to 77K reduces the homogenous broadening. This combination results in the line-narrowing of THz vibrational modes, in some cases to an unprecedented degree. Here, this technique has been demonstrated with seven small biological molecules, thymine, deoxycytidine, adenosine, D-glucose, tryptophan, glycine, and L-alanine. The successful demonstration of this technique shows the possibilities and promise for future studies of internal vibrational modes of large biological molecules. PMID:17933879

  14. High resolution ion Doppler spectroscopy at Prairie View Rotamak

    SciTech Connect

    Houshmandyar, Saeid; Yang Xiaokang; Magee, Richard

    2012-10-15

    A fast ion Doppler spectroscopy (IDS) diagnostic system is installed on the Prairie View Rotamak to measure ion temperature and plasma flow. The diagnostic employs a single channel photomultiplier tube and a Jarrell-Ash 50 monochromator with a diffraction grating line density of 1180 lines/mm, which allows for first order spectra of 200-600 nm. The motorized gear of the monochromator allows spectral resolution of 0.01 nm. Equal IDS measurements are observed for various impurity emission lines of which carbon lines exhibit stronger intensities. Furthermore, the diagnostics is examined in an experiment where plasma experiences sudden disruption and quick recovery. In this case, the IDS measurements show {approx}130% increase in ion temperature. Flow measurements are shown to be consistent with plasma rotation.

  15. Mobile sensor for high resolution NMR spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Danieli, Ernesto; Mauler, Jörg; Perlo, Juan; Blümich, Bernhard; Casanova, Federico

    2009-05-01

    In this work we describe the construction of a mobile NMR tomograph with a highly homogeneous magnetic field. Fast MRI techniques as well as NMR spectroscopy measurements were carried out. The magnet is based on a Halbach array built from identical permanent magnet blocks generating a magnetic field of 0.22 T. To shim the field inhomogeneities inherent to magnet arrays constructed from these materials, a shim strategy based on the use of movable magnet blocks is employed. With this approach a reduction of the line-width from ˜20 kHz to less than 0.1 kHz was achieved, that is by more than two orders of magnitude, in a volume of 21 cm 3. Implementing a RARE sequence, 3D images of different objects placed in this volume were obtained in short experimental times. Moreover, by reducing the sample size to 1 cm 3, sub ppm resolution is obtained in 1H NMR spectra.

  16. High resolution gamma-ray spectroscopy at GANIL

    SciTech Connect

    France, G. de

    2014-11-11

    Gamma-ray spectroscopy is intensively used at GANIL to measure low lying states in exotic nuclei on the neutron-rich as well as on the neutron-deficient side of the nuclear chart. On the neutron deficient border, gamma-rays have been observed for the first time in {sup 92}Pd. The level scheme which could be established points to the role of isoscalar pairing. On the neutron rich side, the lifetime of excited states in nuclei around {sup 68}Ni have been been measured using the plunger technique. This allows us to study the evolution of collectivity in a broad range of nuclei. In 2014 GANIL will host the AGATA array for a campaign of at least 2 years. This array is based on the gamma-ray tracking technique, which allows an impressive gain in resolving power.

  17. High resolution FTIR spectroscopy of the ClO radical

    NASA Technical Reports Server (NTRS)

    Lang, Valerie; Sander, Stanley P.; Friedl, Randy

    1988-01-01

    The chlorine monoxide radical, ClO, plays a significant role in the catalytic destruction of ozone in the Earth's stratosphere. Because of its atmospheric importance, ClO has been the subject of numerous observational attempts. In order to deduce ClO concentrations from stratospheric infrared measurements, the infrared spectroscopy of ClO must be well characterized. Approximately 830 individual lines were measured form ClO imfrared spectra with the ClO concentration between 1 x 10 to the 13th power and 6 x 10 to the 13th power molecules per cu cu. The lines were then averaged and fit to a function of m (where m = O, -J or J+1 for the Q,P and R branches respectively) to obtain the band strength, S sub v and the first Herman-Wallis coefficient, alpha. The total S sub v for the two main isotopmers was 13.11 plus or minus 1 cm(-2) atm(-1) while alpha was 0.00412 plus or minus .00062.

  18. Multiple scattering calculations of relativistic electron energy loss spectra

    NASA Astrophysics Data System (ADS)

    Jorissen, K.; Rehr, J. J.; Verbeeck, J.

    2010-04-01

    A generalization of the real-space Green’s-function approach is presented for ab initio calculations of relativistic electron energy loss spectra (EELS) which are particularly important in anisotropic materials. The approach incorporates relativistic effects in terms of the transition tensor within the dipole-selection rule. In particular, the method accounts for relativistic corrections to the magic angle in orientation resolved EELS experiments. The approach is validated by a study of the graphite CK edge, for which we present an accurate magic angle measurement consistent with the predicted value.

  19. An electron energy-loss study of picene and chrysene based charge transfer salts

    SciTech Connect

    Müller, Eric; Mahns, Benjamin; Büchner, Bernd; Knupfer, Martin

    2015-05-14

    The electronic excitation spectra of charge transfer compounds built from the hydrocarbons picene and chrysene, and the strong electron acceptors F{sub 4}TCNQ (2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) and TCNQ (7,7,8,8-tetracyanoquinodimethan) have been investigated using electron energy-loss spectroscopy. The corresponding charge transfer compounds have been prepared by co-evaporation of the pristine constituents. We demonstrate that all investigated combinations support charge transfer, which results in new electronic excitation features at low energy. This might represent a way to synthesize low band gap organic semiconductors.

  20. Ultra high resolution molecular beam cars spectroscopy with application to planetary atmospheric molecules

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1982-01-01

    The measurement of high resolution pulsed and continuous wave (CW) coherent anti-Stokes Raman spectroscopy (CARS) measurements in pulsed and steady state supersonic expansions were demonstrated. Pulsed molecular beam sources were characterized, and saturation of a Raman transition and, for the first time, the Raman spectrum of a complex molecular cluster were observed. The observation of CW CARS spectra in a molecular expansion and the effects of transit time broadening is described. Supersonic expansion is established as a viable technique for high resolution Raman spectroscopy of cold molecules with resolutions of 100 MH2.

  1. High-Resolution Solid-State NMR Spectroscopy: Characterization of Polymorphism in Cimetidine, a Pharmaceutical Compound

    ERIC Educational Resources Information Center

    Pacilio, Julia E.; Tokarski, John T.; Quiñones, Rosalynn; Iuliucci, Robbie J.

    2014-01-01

    High-resolution solid-state NMR (SSNMR) spectroscopy has many advantages as a tool to characterize solid-phase material that finds applications in polymer chemistry, nanotechnology, materials science, biomolecular structure determination, and others, including the pharmaceutical industry. The technology associated with achieving high resolution…

  2. Application of high-resolution laser spectroscopy to the monitoring of vapor-phase metals

    SciTech Connect

    Lipert, R.J.; Wang, Z.M.; Schuler, R.; Edelson, M.C.

    1992-10-01

    Research conducted in the Ames Laboratory Nuclear Safeguards and Security Program is reviewed. Progress in applying high-resolution laser spectroscopy to the monitoring of vapor-phase metals is described. The spectroscopic techniques employed include fluorescence excitation in an atomic beam, laser atomic absorption in a heat-pipe oven and atomic beam, Doppler-free saturated absorption in a heat-pipe oven, and Doppler-free polarization spectroscopy for the stabilization of the laser wavelength.

  3. Very high resolution UV and X-ray spectroscopy and imagery of solar active regions

    NASA Technical Reports Server (NTRS)

    Bruner, M.; Brown, W. A.; Haisch, B. M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.

  4. High-resolution heteronuclear correlation spectroscopy based on spatial encoding and coherence transfer in inhomogeneous fields

    NASA Astrophysics Data System (ADS)

    Wang, Kaiyu; Zhang, Zhiyong; Chen, Hao; Cai, Shuhui; Chen, Zhong

    2015-11-01

    Two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy has been proven to be a powerful technique for chemical, biological, and medical studies. Heteronuclear single quantum correlation (HSQC) and heteronuclear multiple bond correlation (HMBC) are two frequently used 2D NMR methods. In combination with spatially encoded techniques, a heteronuclear 2D NMR spectrum can be acquired in several seconds and may be applied to monitoring chemical reactions. However, it is difficult to obtain high-resolution NMR spectra in inhomogeneous fields. Inspired by the idea of tracing the difference of precession frequencies between two different spins to yield high-resolution spectra, we propose a method with correlation acquisition option and J-resolved-like acquisition option to ultrafast obtain high-resolution HSQC/HMBC spectra and heteronuclear J-resolved-like spectra in inhomogeneous fields.

  5. [Measurement of OH radicals in flame with high resolution differential optical absorption spectroscopy].

    PubMed

    Liu, Yu; Liu, Wen-Qing; Kan, Rui-Feng; Si, Fu-Qi; Xu, Zhen-Yu; Hu, Ren-Zhi; Xie, Pin-Hua

    2011-10-01

    The present paper describes a new developed high resolution differential optical absorption spectroscopy instrument used for the measurement of OH radicals in flame. The instrument consists of a Xenon lamp for light source; a double pass high resolution echelle spectrometer with a resolution of 3.3 pm; a multiple-reflection cell of 20 meter base length, in which the light reflects in the cell for 176 times, so the whole path length of light can achieve 3 520 meters. The OH radicals'6 absorption lines around 308 nm were simultaneously observed in the experiment. By using high resolution DOAS technology, the OH radicals in candles, kerosene lamp, and alcohol burner flames were monitored, and their concentrations were also inverted. PMID:22250529

  6. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    SciTech Connect

    Rahn, L.A.

    1993-12-01

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  7. Electron-energy loss study of nonlocal effects in connected plasmonic nanoprisms.

    PubMed

    Wiener, Aeneas; Duan, Huigao; Bosman, Michel; Horsfield, Andrew P; Pendry, John B; Yang, Joel K W; Maier, Stefan A; Fernández-Domínguez, Antonio I

    2013-07-23

    We investigate the emergence of nonlocal effects in plasmonic nanostructures through electron-energy loss spectroscopy. To theoretically describe the spatial dispersion in the metal permittivity, we develop a full three-dimensional nonlocal hydrodynamic solution of Maxwell's equations in frequency domain that implements the electron beam as a line current source. We use our numerical approach to perform an exhaustive analysis of the impact of nonlocality in the plasmonic response of single triangular prisms and connected bowtie dimers. Our results demonstrate the complexity of the interplay between nonlocal and geometric effects taking place in these structures. We show the different sensitivities to both effects of the various plasmonic modes supported by these systems. Finally, we present an experimental electron-energy loss study on gold nanoprisms connected by bridges as narrow as 1.6 nm. The comparison with our theoretical predictions enables us to reveal in a phenomenological fashion the enhancement of absorption damping that occurs in these atomistic junctions due to quantum confinement and grain boundary electron scattering. PMID:23782059

  8. High-Resolution 3D Structure Determination of Kaliotoxin by Solid-State NMR Spectroscopy

    PubMed Central

    Korukottu, Jegannath; Schneider, Robert; Vijayan, Vinesh; Lange, Adam; Pongs, Olaf; Becker, Stefan; Baldus, Marc; Zweckstetter, Markus

    2008-01-01

    High-resolution solid-state NMR spectroscopy can provide structural information of proteins that cannot be studied by X-ray crystallography or solution NMR spectroscopy. Here we demonstrate that it is possible to determine a protein structure by solid-state NMR to a resolution comparable to that by solution NMR. Using an iterative assignment and structure calculation protocol, a large number of distance restraints was extracted from 1H/1H mixing experiments recorded on a single uniformly labeled sample under magic angle spinning conditions. The calculated structure has a coordinate precision of 0.6 Å and 1.3 Å for the backbone and side chain heavy atoms, respectively, and deviates from the structure observed in solution. The approach is expected to be applicable to larger systems enabling the determination of high-resolution structures of amyloid or membrane proteins. PMID:18523586

  9. High resolution X-ray spectroscopy of astrophysical sources: current and future

    NASA Astrophysics Data System (ADS)

    Paerels, Frits

    High resolution spectroscopy of cosmic X-ray sources has become a well-established technique over the last decade, with the wide variety of investigations performed with the diffraction grating spectrometers on Chandra and XMM-Newton. I will review some of the common themes that have emerged from these studies, which comprises observations of "sources" as varied as the intergalactic medium and the atmospheres of hot neutron stars. With the microcalorimeter spectrometer array on Astro-H, we will be making two more big steps: true imaging spectroscopy, and extension of the high resolution to the Fe K band. I will outline some of the issues we will encounter, against the background of possible discoveries we may make.

  10. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall G. E.; Goncharov, V.

    2012-05-29

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  11. High-resolution extreme-ultraviolet spectroscopy of potassium using anti-Stokes radiation

    NASA Technical Reports Server (NTRS)

    Rothenberg, J. E.; Young, J. F.; Harris, S. E.

    1981-01-01

    The use of a new extreme-ultraviolet radiation source based on spontaneous anti-Stokes scattering for high-resolution absorption spectroscopy of transition originating from the 3p6 shell of potassium is reported. The region from 546.6 to 536.8 A is scanned at a resolution of about 1.2 Kayser. Within this region, four previously unreported lines are observed.

  12. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall, G.E.

    2011-05-31

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  13. Beamline 9.0.1 - a high-resolution undulator beamline for gas-phase spectroscopy

    SciTech Connect

    Bozek, J.D.; Heimann, P.A.; Mossessian, D.

    1997-04-01

    Beamline 9.0.1 at the Advanced Light Source is an undulator beamline with a Spherical Grating Monochromator (SGM) which provides very high resolution and flux over the photon energy range 20-320eV. The beamline has been used primarily by the atomic and molecular science community to conduct spectroscopy experiments using electron, ion and fluorescence photon detection. A description of the beamline and its performance will be provided in this abstract.

  14. Update of High Resolution (e,e'K^+) Hypernuclear Spectroscopy at Jefferson Lab's Hall A

    SciTech Connect

    Cusanno, F; Bydzovsky, P; Chang, C C; Cisbani, E; De Jager, C W; De Leo, R; Frullani, S; Garibaldi, F; Higinbotham, D W; Iodice, M; LeRose, J J; Markowitz, P; Marrone, S; Sotona, M; Urciuoli, G M

    2010-03-01

    Updated results of the experiment E94-107 hypernuclear spectroscopy in Hall A of the Thomas Jefferson National Accelerator Facility (Jefferson Lab), are presented. The experiment provides high resolution spectra of excitation energy for 12B_\\Lambda, 16N_\\Lambda, and 9Li_\\Lambda hypernuclei obtained by electroproduction of strangeness. A new theoretical calculation for 12B_\\Lambda, final results for 16N_\\Lambda, and discussion of the preliminary results of 9Li_\\Lambda are reported.

  15. High-resolution heteronuclear multi-dimensional NMR spectroscopy in magnetic fields with unknown spatial variations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyong; Huang, Yuqing; Smith, Pieter E. S.; Wang, Kaiyu; Cai, Shuhui; Chen, Zhong

    2014-05-01

    Heteronuclear NMR spectroscopy is an extremely powerful tool for determining the structures of organic molecules and is of particular significance in the structural analysis of proteins. In order to leverage the method’s potential for structural investigations, obtaining high-resolution NMR spectra is essential and this is generally accomplished by using very homogeneous magnetic fields. However, there are several situations where magnetic field distortions and thus line broadening is unavoidable, for example, the samples under investigation may be inherently heterogeneous, and the magnet’s homogeneity may be poor. This line broadening can hinder resonance assignment or even render it impossible. We put forth a new class of pulse sequences for obtaining high-resolution heteronuclear spectra in magnetic fields with unknown spatial variations based on distant dipolar field modulations. This strategy’s capabilities are demonstrated with the acquisition of high-resolution 2D gHSQC and gHMBC spectra. These sequences’ performances are evaluated on the basis of their sensitivities and acquisition efficiencies. Moreover, we show that by encoding and decoding NMR observables spatially, as is done in ultrafast NMR, an extra dimension containing J-coupling information can be obtained without increasing the time necessary to acquire a heteronuclear correlation spectrum. Since the new sequences relax magnetic field homogeneity constraints imposed upon high-resolution NMR, they may be applied in portable NMR sensors and studies of heterogeneous chemical and biological materials.

  16. Broadband High-Resolution Spectroscopy with Fabry-Perot Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Wang, Yin; Wysocki, Gerard

    2014-06-01

    Simultaneous spectroscopic detection of large molecules with broad ro-vibrational spectra, and small molecules with well-resolved narrow spectral lines requires both broadband optical frequency coverage (>50 wn) and high resolution (<0.01 wn) to perform accurate spectral measurements. With the advent of room temperature, high power, continuous wave quantum cascade lasers (QCLs), high resolution mid-IR spectrometers for field applications became feasible. So far to address the broadband spectral coverage, external cavity (EC) QCLs with >100 wn tuning ranges have been spectroscopic sources of choice in the mid-IR; however EC-QCLs are rather complex opto-mechanical systems, which are vibration-sensitive, and construction of robust transportable systems is difficult. In this work we present a new method of performing broadband mid-IR spectroscopy using two free-running Fabry-Perot (FP) QCLs to perform multi-heterodyne down-conversion of optical signals to RF domain. The sample transmission spectrum probed by one multi-mode FP-QCL is down-converted to the RF domain through an optical multi-heterodyne process using a second FP-QCL as the local oscillator. Both a broadband multi-mode spectral measurement as well as high-resolution ( 15 MHz or 0.0005 wn) absorption spectroscopy of NH3 and N2O are demonstrated and show potential for all-solid-state FP-laser-based spectrometers for chemical sensing. Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, "High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers," Appl Phys Lett 104, 0311141-0311145 (2014)

  17. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models

    SciTech Connect

    Kempton, Eliza M.-R.; Perna, Rosalba; Heng, Kevin

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup –1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption

  18. High Resolution Transmission Spectroscopy as a Diagnostic for Jovian Exoplanet Atmospheres: Constraints from Theoretical Models

    NASA Astrophysics Data System (ADS)

    Kempton, Eliza M.-R.; Perna, Rosalba; Heng, Kevin

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s-1, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption signatures.

  19. Fast acquisition of high-resolution 2D NMR spectroscopy in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Lin, Liangjie; Wei, Zhiliang; Zeng, Qing; Yang, Jian; Lin, Yanqin; Chen, Zhong

    2016-05-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical and biological analyses. In this study, we combine the J-coupling coherence transfer module with the echo-train acquisition technique for fast acquisition of high-resolution 2D NMR spectra in magnetic fields with unknown spatial variations. The proposed method shows satisfactory performance on a 5 mM ethyl 3-bromopropionate sample, under a 5-kHz (10 ppm at 11.7 T) B0 inhomogeneous field, as well as under varying degrees of pulse-flip-angle deviations. Moreover, a simulative ex situ NMR measurement is also conducted to show the effectiveness of the proposed pulse sequence.

  20. HERMES at Mercator, competitive high-resolution spectroscopy with a small telescope

    NASA Astrophysics Data System (ADS)

    Raskin , G.; Van Winckel, H.

    2014-01-01

    HERMES, a fibre-fed high-resolution (R = 85 000) échelle spectrograph with good stability and excellent throughput, is the work-horse instrument of the 1.2-m Mercator telescope on La Palma. HERMES targets building up time series of high-quality data of variable stellar phenomena, mainly for asteroseismology and binary-evolution research. In this paper we present the HERMES project and discuss the instrument design, performance, and a future upgrade. We also present some results of the first four years of HERMES observations. We illustrate the value of small telescopes, equipped with efficient instrumentation, for high-resolution spectroscopy. Based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  1. Protected Plasmonic Nanostructures for High Resolution Chemical Imaging using Tip Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Butt, Rebecca; Barrios, Carlos; Malkovskiy, Andrey; Kisliuk, Alexander; Sokolov, Alexei; Foster, Mark

    2009-03-01

    Tip enhanced Raman spectroscopy (TERS), an emerging technique that combines optical microscopy and scanning probe microscopy, provides the sensitivity and selectivity necessary for high-resolution chemical imaging of polymer surfaces. An unprecedented 20 nm lateral resolution for the chemical imaging has been achieved. Unfortunately, the fragile plasmonic structures used to enhance the electric field are prone to mechanical, chemical, and thermal degradation. Developing robust noble metal nanostructures with stable plasmonic resonance is essential to reliable high resolution chemical imaging. Covering the metal layer with organic and inorganic ultrathin coatings is being investigated to extend the plasmonic activity of the engineered nanostructures. Addition of an ultrathin aluminum oxide (Al2O3) coating to a silver-coated scanning probe microscopy tip for TERS significantly improves plasmonic structure stability without sacrificing the initial TERS efficiency. This ultrathin coating provides wear resistance and stops chemical degradation responsible for the loss of signal enhancement.

  2. High resolution coherent three dimensional spectroscopy of NO{sub 2}

    SciTech Connect

    Wells, Thresa A.; Muthike, Angelar K.; Robinson, Jessica E.; Chen, Peter C.

    2015-06-07

    Expansion from coherent 2D spectroscopy to coherent 3D spectroscopy can provide significant advantages when studying molecules that have heavily perturbed energy levels. This paper illustrates such advantages by demonstrating how high resolution coherent 3D (HRC3D) spectroscopy can be used to study a portion of the visible spectrum of nitrogen dioxide. High resolution coherent 2D spectra usually contain rotational and vibrational patterns that are easy to analyze, but severe congestion and complexity preclude its effective use for many parts of the NO{sub 2} spectrum. HRC3D spectroscopy appears to be much more effective; multidimensional rotational and vibrational patterns produced by this new technique are easy to identify even in the presence of strong perturbations. A method for assigning peaks, which is based upon analyzing the resulting multidimensional patterns, has been developed. The higher level of multidimensionality is useful for reducing uncertainty in peak assignments, improving spectral resolution, providing simultaneous information on multiple levels and states, and predicting, verifying, and categorizing peaks.

  3. Synchrotron-Based High Resolution Spectroscopy of N-Bearing Pahs

    NASA Astrophysics Data System (ADS)

    Gruet, Sébastien; Pirali, Olivier; Goubet, Manuel; Brechignac, Philippe

    2014-06-01

    For thirty years, the Polycyclic Aromatic Hydrocarbons (PAHs) have been suspected to give rise to the numerous Unidentified Infrared Bands (UIBs) observed in most astrophysical objects. Pure carbon molecules as well as derivatives with nitrogen atom(s) incorporated into the carbon skeleton have been considered. These N-bearing molecules are interesting candidates for astronomical research since they possess a larger permanent dipole moment than purely carbon-based PAHs. Most of the data reported in the literature deal with rotationally unresolved data. During the last decade, high-resolution microwave spectroscopy initiated high resolution studies of this broad family of molecules. Recent advances in laboratory techniques permitted to provide interesting new results to rotationally resolve the IR/Far-IR vibrational bands of these relatively large C-bearing molecules, in particular, making use of synchrotron radiation as the IR continuum source of high resolution Fourier transform (FT) spectrometers. We will present an overview of the synchrotron-based high resolution FTIR spectroscopy of 5 aza-derivatives of naphthalene (isoquinoline, quinoline, quinoxaline, quinazoline, [1,5] naphthyridine) using a room temperature long path absorption cell at the French facility SOLEIL. In support to the rovibrational analysis of these FIR spectra, very accurate anharmonic DFT calculations were performed. A. Leger, J. L. Puget, Astron. Astrophys. 137, L5-L8 (1984) L. J. Allamandola et al. Astrophys. J. 290, L25-L28 (1985). Z. Kisiel et al. J. Mol. Spectrosc. 217, 115 (2003) S. Thorwirth et al. Astrophys. J. 662, 1309 (2007) D. McNaughton et al. J. Chem. Phys. 124, 154305 (2011). S. Albert et al. Faraday Discuss. 150, 71-99 (2011) B. E. Brumfield et al. Phys. Chem. Lett. 3, 1985-1988 (2012) O. Pirali et al. Phys. Chem. Chem. Phys. 15, 10141 (2013) M. Goubet, O. Pirali, J. Chem. Phys., 140, 044322 (2014).

  4. High-resolution pulsed-field ionization photoelectron spectroscopy using multi-bunch synchrotron radiation

    SciTech Connect

    Hsu, C.W.; Evans, M.; Ng, C.Y.; Heimann, P.

    1997-04-01

    BL9.0.2.2 is the newly constructed experimental End Station 2 at the Chemical Dynamics Beamline 9.0.2 of the Advanced Light Source (ALS). It is dedicated to the high resolution photoionization study of molecules of interest to atmospheric and combustion chemistry. This End Station is equipped with a high resolution scanning monochromator, which has been demonstrated to have a world record resolution of E/{delta}E=70,000. Taking the advantage of the high resolution ALS light, the authors have improved the energy resolution in threshold photoelectron spectroscopy (TPES) to 0.8 meV. The TPES is a popular technique for photoionization experiments at all synchrotron radiation facilities due to its high energy resolution as compared to that of traditional photoelectron spectroscopy (PES). TPES achieves higher energy resolution by preferentially detecting near zero kinetic energy photoelectrons resulting from threshold photoionization. However, the spectra obtained from the TPES technique generally are complicated by the simultaneous detection of electrons with nonzero kinetic energy, which are not fully discriminated against. On the other hand, the spectra obtained from pulsed field ionization photoelectron spectroscopy (PFI-PES) are completely free of the contamination from kinetic electrons. The PFI-PE technique basically involves the detection of the photoelectrons from field ionization of the very high-n Rydberg states, a few cm{sup {minus}1} below the ionization energy (IE), by applying a delayed pulsed electric field. Within a delay of a few microseconds, all the prompt electrons formed from direct ionization will escape from the photoionization region and will not be collected. The authors have recently overcome problems with energy resolution of an electron time-of-flight technique, and incorporated the PFI-PE technique with multi-bunch VUV synchrotron radiation.

  5. High-Resolution Kaonic-Atom X-ray Spectroscopy with Transition-Edge-Sensor Microcalorimeters

    NASA Astrophysics Data System (ADS)

    Okada, S.; Bennett, D. A.; Doriese, W. B.; Fowler, J. W.; Irwin, K. D.; Ishimoto, S.; Sato, M.; Schmidt, D. R.; Swetz, D. S.; Tatsuno, H.; Ullom, J. N.; Yamada, S.

    2014-09-01

    We are preparing for an ultra-high resolution X-ray spectroscopy of kaonic atoms using an X-ray spectrometer based on an array of superconducting transition-edge-sensor microcalorimeters developed by NIST. The instrument has excellent energy resolutions of 2-3 eV (FWHM) at 6 keV and a large collecting area of about 20 mm. This will open new door to investigate kaon-nucleus strong interaction and provide new accurate charged-kaon mass value.

  6. High-resolution magic-angle-spinning NMR spectroscopy of intact tissue.

    PubMed

    Giskeødegård, Guro F; Cao, Maria D; Bathen, Tone F

    2015-01-01

    High-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy is a nondestructive technique that is used to obtain the metabolite profile of a tissue sample. This method requires minimal sample preparation. However, it is important to handle the sample with care and keep it frozen during preparation to minimize degradation. Here, we describe a typical protocol for HR-MAS analysis of intact tissue. We also include examples of typical pulse sequence programs and quantification methods that are used today. PMID:25677145

  7. Determination of Ionization Potential of Calcium by High-Resolution Resonance Ionization Spectroscopy

    NASA Astrophysics Data System (ADS)

    Miyabe, Masabumi; Geppert, Christopher; Kato, Masaaki; Oba, Masaki; Wakaida, Ikuo; Watanabe, Kazuo; Wendt, Klaus D. A.

    2006-03-01

    High-resolution resonance ionization spectroscopy has been utilized to determine a precise ionization potential of Ca. Three-step resonance excitation with single-mode extended-cavity diode lasers populates long and unperturbed Rydberg series of 4snp (1P1) and 4snf (1F3) states in the range of n=20--150. Using an extended Ritz formula for quantum defects, the series convergence limit has been determined to be 49305.9240(20) cm-1 with the accuracy improved one order of magnitude higher than previously reported ones.

  8. High-Resolution Spectroscopy with the Chandra X-ray Observatory

    ScienceCinema

    Canizares, Claude R. [MIT, Cambridge, Massachusetts, United States

    2010-01-08

    The capabilities of the Chandra X-ray Observatory and XMM-Newton for high-resolution spectroscopy have brought tradition plasma diagnostic techniques to the study of cosmic plasma. Observations have probed nearly every class of astronomical object, from young proto-starts through massive O starts and black hole binaries, supernova remnants, active galactic nuclei, and the intergalactic medium. Many of these sources show remarkable rich spectra that reveal new physical information, such as emission measure distributions, elemental abundances, accretion disk and wind signatures, and time variability. This talk will present an overview of the Chandra instrumentaton and selected examples of spectral observations of astrophysical and cosmological importance.

  9. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    SciTech Connect

    Niu, B.

    1992-09-01

    High resolution He I[alpha] photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a soft'' mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  10. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    SciTech Connect

    Niu, B.

    1992-09-01

    High resolution He I{alpha} photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a ``soft`` mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  11. High-Resolution Structure of the Photosynthetic Mn4Ca Catalyst from X-ray Spectroscopy

    SciTech Connect

    Yachandra, Vittal; Yano, Junko; Kern, Jan; Pushkar, Yulia; Sauer, Kenneth; Glatzel, Pieter; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.

    2007-08-01

    The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, are described. Issues of X-ray damage especially at the metal sites in the Mn4Ca cluster are discussed. The structure of the Mn4Ca catalyst at high-resolution which has so far eluded attempts of determination by X-ray diffraction, EXAFS and other spectroscopic techniques has been addressed using polarized EXAFS techniques applied to oriented PS II membrane preparations and PS II single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and K? emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.

  12. A tunable low-energy photon source for high-resolution angle-resolved photoemission spectroscopy

    SciTech Connect

    Harter, John W.; Monkman, Eric J.; Shai, Daniel E.; Nie Yuefeng; Uchida, Masaki; Burganov, Bulat; Chatterjee, Shouvik; King, Philip D. C.; Shen, Kyle M.

    2012-11-15

    We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to {approx}7 eV, delivering under typical conditions >10{sup 12} ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.

  13. Automatic pole-zero/zero-pole digital compensator for high-resolution spectroscopy: Design and experiments

    SciTech Connect

    Geraci, A.; Pullia, A.; Ripamonti, G.

    1999-08-01

    In a high-resolution spectroscopy system the relatively long exponential decay due to the charge preamplifier is customarily canceled in an analogue fashion by means of a PZ (Pole-Zero) stage. The accurateness of such a compensation has a big impact on the energy resolution because it strongly affects the baseline-stability problems. The authors have automatically and on-line performed such a compensation in a digital way, while maintaining a spectroscopy performance and keeping at minimum both the ADC sampling frequency (thus power consumption) and its resolution (thus cost). This is done through an IIR filter, implemented within a FPGA by a DSP. The so-compensated waveform has, in excellent approximation, an all-pole shape. Starting from such a signal, the minimum-noise filters for energy and/or time measurements are then promptly synthesized and implemented for real time operation through the same DSP.

  14. Forensic examination of electrical tapes using high resolution magic angle spinning ¹H NMR spectroscopy.

    PubMed

    Schoenberger, Torsten; Simmross, Ulrich; Poppe, Christian

    2016-01-01

    The application of high resolution magic angle spinning (HR-MAS) (1)H NMR spectroscopy is ideally suited for the differentiation of plastics. In addition to the actual material composition, the different types of polymer architectures and tacticity provide characteristic signals in the fingerprint of the (1)H NMR spectra. The method facilitates forensic comparison, as even small amounts of insoluble but swellable plastic particles are utilized. The performance of HR-MAS NMR can be verified against other methods that were recently addressed in various articles about forensic tape comparison. In this study samples of the 90 electrical tapes already referenced by the FBI laboratory were used. The discrimination power of HR-MAS is demonstrated by the fact that more tape groups can be distinguished by NMR spectroscopy than by using the combined evaluation of several commonly used analytical techniques. An additional advantage of this robust and quick method is the very simple sample preparation. PMID:26558760

  15. High resolution Halpha spectroscopy and R-band photometry of Swift J1357.2-0933

    NASA Astrophysics Data System (ADS)

    Casares, Jorge; Torres, Manuel A. P.; Negueruela, Ignacio; Gonzalez-Fernandez, Carlos; Corral-Santana, Jesus M.; Zurita, Cristina; Llano, Sergio Rodriguez

    2011-03-01

    We report on high resolution Halpha spectroscopy and time-resolved photometry of the optical counterpart to the X-ray transient Swift J1357.2-0933 in outburst (Krimm et al. ATEL #3138). SPECTROSCOPY: Six 30-33 min spectra were obtained on the nights of 2011 Feb 25-27 using the IDS Spectrograph on the 2.5m Isaac Newton Telescope (INT) at the Observatorio del Roque de Los Muchachos. The observations were performed with the H1800V grating and a slit width 1.6 arcsec to yield a spectral coverage of 6270-7000 Angs with a 30 km/s FWHM spectral resolution at Halpha..

  16. High-resolution laser spectroscopy with the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE

    NASA Astrophysics Data System (ADS)

    Cocolios, T. E.; de Groote, R. P.; Billowes, J.; Bissell, M. L.; Budinčević, I.; Day Goodacre, T.; Farooq-Smith, G. J.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Gins, W.; Heylen, H.; Kron, T.; Li, R.; Lynch, K. M.; Marsh, B. A.; Neyens, G.; Rossel, R. E.; Rothe, S.; Smith, A. J.; Stroke, H. H.; Wendt, K. D. A.; Wilkins, S. G.; Yang, X.

    2016-06-01

    The Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN has achieved high-resolution resonance ionisation laser spectroscopy with a full width at half maximum linewidth of 20(1) MHz for 219,221 Fr, and has measured isotopes as short lived as 5 ms with 214 Fr. This development allows for greater precision in the study of hyperfine structures and isotope shifts, as well as a higher selectivity of single-isotope, even single-isomer, beams. These achievements are linked with the development of a new laser laboratory and new data-acquisition systems.

  17. Electronic excitation of carbonyl sulphide (COS) by high-resolution vacuum ultraviolet photoabsorption and electron-impact spectroscopy in the energy region from 4 to 11 eV

    SciTech Connect

    Limão-Vieira, P.; Ferreira da Silva, F.; Almeida, D.; Hoshino, M.; Tanaka, H.; Mogi, D.; Tanioka, T.; Mason, N. J.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.

    2015-02-14

    The electronic state spectroscopy of carbonyl sulphide, COS, has been investigated using high resolution vacuum ultraviolet photoabsorption spectroscopy and electron energy loss spectroscopy in the energy range of 4.0–10.8 eV. The spectrum reveals several new features not previously reported in the literature. Vibronic structure has been observed, notably in the low energy absorption dipole forbidden band assigned to the (4π←3π) ({sup 1}Δ←{sup 1}Σ{sup +}) transition, with a new weak transition assigned to ({sup 1}Σ{sup −}←{sup 1}Σ{sup +}) reported here for the first time. The absolute optical oscillator strengths are determined for ground state to {sup 1}Σ{sup +} and {sup 1}Π transitions. Based on our recent measurements of differential cross sections for the optically allowed ({sup 1}Σ{sup +} and {sup 1}Π) transitions of COS by electron impact, the optical oscillator strength f{sub 0} value and integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis. Subsequently, ICSs predicted by the scaling are confirmed down to 60 eV in the intermediate energy region. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of carbonyl sulphide in the upper stratosphere (20–50 km)

  18. Electronic excitation of carbonyl sulphide (COS) by high-resolution vacuum ultraviolet photoabsorption and electron-impact spectroscopy in the energy region from 4 to 11 eV.

    PubMed

    Limão-Vieira, P; Ferreira da Silva, F; Almeida, D; Hoshino, M; Tanaka, H; Mogi, D; Tanioka, T; Mason, N J; Hoffmann, S V; Hubin-Franskin, M-J; Delwiche, J

    2015-02-14

    The electronic state spectroscopy of carbonyl sulphide, COS, has been investigated using high resolution vacuum ultraviolet photoabsorption spectroscopy and electron energy loss spectroscopy in the energy range of 4.0-10.8 eV. The spectrum reveals several new features not previously reported in the literature. Vibronic structure has been observed, notably in the low energy absorption dipole forbidden band assigned to the (4π←3π) ((1)Δ←(1)Σ(+)) transition, with a new weak transition assigned to ((1)Σ(-)←(1)Σ(+)) reported here for the first time. The absolute optical oscillator strengths are determined for ground state to (1)Σ(+) and (1)Π transitions. Based on our recent measurements of differential cross sections for the optically allowed ((1)Σ(+) and (1)Π) transitions of COS by electron impact, the optical oscillator strength f0 value and integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis. Subsequently, ICSs predicted by the scaling are confirmed down to 60 eV in the intermediate energy region. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of carbonyl sulphide in the upper stratosphere (20-50 km). PMID:25681902

  19. High resolution energy loss research: Si compound ceramics and composites. [1990 annual progress report

    SciTech Connect

    Carpenter, R W; Lin, S H

    1990-12-31

    This report discusses proposed work on silicon compound ceramics and composites. High resolution composition and structure analysis of interfaces in ceramic and metal matrix composites and certain grain boundaries in silicon and its interfaces with oxides and nitrides is proposed. Composition and bonding analysis will be done with high spatial resolution (20 Angstroms or better) parallel electron energy loss spectroscopy using a field emission analytical electron microscope. Structural analysis will be done at the 1.8 Angstrom resolution level at 200kV by HREM. Theoretical electron energy loss cross section computations will be used to interpret electronic structure of these materials. Both self-consistent field MO and multiple scattering computational methods are being done and evaluated.

  20. Continuous wave terahertz wave spectrometer based on diode laser pumping: potential applications in high resolution spectroscopy.

    PubMed

    Tanabe, Tadao; Ragam, Srinivasa; Oyama, Yutaka

    2009-11-01

    We constructed a high resolution terahertz (THz) spectroscopic system with an automatic scanning control using a continuous wave (cw) THz wave generator based on difference frequency generation method by excitation of phonon-polariton mode in GaP. The pump and signals lasers were compact, tunable external cavity laser, and distributed feedback (DFB) lasers, respectively. The generated THz waves were tuned automatically by changing the temperature of the DFB laser using a system control. We present the water vapor transmission characteristics of the THz wave and also absorption spectrum of a white polyethylene in the frequency range of 1.97-2.45 THz. The spectroscopic measurements performed at an output power level of 2 nW, which was obtained with a 15-mm-long GaP crystal at 2 THz. The advantage of this cw THz spectrometer is wide frequency tuning range (0.7-4.42 THz) with an estimated linewidth of full width at quarter maximum <8 MHz and this system has a potential application in high resolution spectroscopy. PMID:19947715

  1. High-resolution magic-angle spinning (13)C spectroscopy of brain tissue at natural abundance.

    PubMed

    Yang, Yongxia; Chen, Lei; Gao, Hongchang; Zeng, Danlin; Yue, Yong; Liu, Maili; Lei, Hao; Deng, Feng; Ye, Chaohui

    2006-03-01

    High-resolution magic-angle spinning (MAS) (1)H and (13)C magnetic resonance spectroscopy (MRS) has recently been applied to study the metabolism in intact biological tissue samples. Because of the low natural abundance and the low gyromagnetic ratio of the (13)C nuclei, signal enhancement techniques such as cross-polarization (CP) and distortionless enhancement by polarization transfer (DEPT) are often employed in MAS (13)C MRS to improve the detection sensitivity. In this study, several sensitivity enhancement techniques commonly used in liquid- and solid-state NMR, including CP, DEPT and nuclear Overhauser enhancement (NOE), were combined with MAS to acquire high-resolution (13)C spectra on intact rat brain tissue at natural abundance, and were compared for their performances. The results showed that different signal enhancement techniques are sensitive to different classes of molecules/metabolites, depending on their molecular weights and mobility. DEPT was found to enhance the signals of low-molecular weight metabolites exclusively, while the signals of lipids, which often are associated with membranes and have relatively lower mobility, were highly sensitive to CP enhancement. PMID:16477685

  2. In situ high-resolution X-ray photoelectron spectroscopy - Fundamental insights in surface reactions

    NASA Astrophysics Data System (ADS)

    Papp, Christian; Steinrück, Hans-Peter

    2013-11-01

    Since the advent of third generation synchrotron light sources optimized for providing soft X-rays up to 2 keV, X-ray photoelectron spectroscopy (XPS) has been developed to be an outstanding tool to study surface properties and surface reactions at an unprecedented level. The high resolution allows identifying various surface species, and for small molecules even the vibrational fine structure can be resolved in the XP spectra. The high photon flux reduces the required measuring time per spectrum to the domain of a few seconds or even less, which enables to follow surface processes in situ. Moreover, it also provides access to very small coverages down to below 0.1% of a monolayer, enabling the investigation of minority species or processes at defect sites. The photon energy can be adjusted according to the requirement of a particular experiment, i.e., to maximize or minimize the surface sensitivity or the photoionization cross-section of the substrate or the adsorbate. For a few instruments worldwide, a next step forward was taken by combining in situ high-resolution spectrometers with supersonic molecular beams. These beams allow to control and vary the kinetic and internal energies of the incident molecules and provide a local pressure of up to ~10-5 mbar, which can be switched on and off in a controllable way, thus offering a well-defined time structure to study adsorption or reaction processes.

  3. High-resolution X-ray spectroscopy of four active galaxies - Probing the intercloud medium

    NASA Technical Reports Server (NTRS)

    Lum, Kenneth S. K.; Canizares, Claude R.; Markert, Thomas H.; Arnaud, Keith A.

    1990-01-01

    The focal plane crystal spectrometer (FPCS) on the Einstein Observatory has been used to perform a high-resolution spectroscopic search for oxygen X-ray line emission from four active galaxies: Fairall 9, Mrk 421, Mrk 501, and PKS 0548 - 322. Specifically, O VIII Ly-alpha and Ly-beta, whose unredshifted energies are 653 and 775 eV, respectively, were sought. No narrow-line emission was detected within the energy bands searched. Upper limits are calculated on the line flux from these sources of 30 eV equivalent width and use a photoionization model to place corresponding upper limits on the densities of diffuse gas surrounding the active nuclei. The upper limits on gas density range from about 0.02-50/cu cm and probe various radial distances from the central source. This is the first time high-resolution X-ray spectroscopy has been used to place constraints on the intercloud medium in active galaxies.

  4. Diamond-machined ZnSe immersion grating for NIR high-resolution spectroscopy

    SciTech Connect

    Ikeda, Y; Kobayashi, N; Kuzmenko, P J; Little, S L; Yasui, C; Kondo, S; Minami, A; Motohara, K

    2008-07-25

    ZnSe immersion gratings (n {approx} 2.45) provide the possibility of high-resolution spectroscopy for the near-infrared (NIR) region. Since ZnSe has a lower internal attenuation than other NIR materials, it is most suitable for immersion grating, particularly in short NIR region (0.8-1.4 {micro}m). We are developing an extremely high-resolution spectrograph with {lambda}/{Delta}{lambda} = 100,000, WINERED, customized for the short NIR region, using ZnSe (or ZnS) immersion grating. However, it had been very difficult to make fine grooves on ZnSe substrate with a small pitch of less than 50 {micro}m because ZnSe is a soft/brittle material. We have overcome this problem and successfully machined sharp grooves with fine pitch on ZnSe substrates by nano precision fly-cutting technique at LLNL. The optical testing of the sample grating with HeNe laser shows an excellent performance: the relative efficiency more than 87.4 % at 0.633 {micro}m for a classical grating configuration. The diffraction efficiency when used as an immersion grating is estimated to be more than 65 % at 1 {micro}m. Following this progress, we are about to start machining a grating on a large ZnSe prism with an entrance aperture of 23mm x 50mm and the blaze angle of 70{sup o}.

  5. Low energy nuclear spin excitations in Ho metal investigated by high resolution neutron spectroscopy.

    PubMed

    Chatterji, Tapan; Jalarvo, Niina

    2013-04-17

    We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter. PMID:23507905

  6. Past, Present and Future Prospects of High Resolution X-ray Spectroscopy of Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Kaastra, J.

    2006-08-01

    The first high resolution X-ray spectra of clusters of galaxies have revolutionised the study of cooling flows. These excellent data have been obtained with an instrument (the RGS of XMM-Newton) that has not been optimised for spectroscopy of extended sources. I will present a few recent examples of what can be achieved further with the RGS in combination with the imaging EPIC cameras for the study of chemical enrichment of clusters. The new generation of high spectral resolution imaging TES arrays that is currently being studied for a variety of possible future X-ray observatories (such as XEUS, Constellation-X, DIOS, Estremo and NEW) offer exciting new opportunities to study the physics of clusters of galaxies. I will present examples of how these new instruments will achieve this.

  7. Alkyl-terminated Si(111) surfaces: A high-resolution, core level photoelectron spectroscopy study

    SciTech Connect

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E.

    1999-01-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied with high-resolution core level photoelectron spectroscopy (PES). Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) Olefin insertion into the H{endash}Si bond of the H{endash}Si(111) surface, and (ii) replacement of Cl on the Cl{endash}Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, PES has revealed a C 1s component shifted to lower binding energy and a Si 2p component shifted to higher binding energy. Both components are attributed to the presence of a C{endash}Si bond at the interface. Along with photoelectron diffraction data [Appl. Phys. Lett. {bold 71}, 1056, (1997)], these data are used to show that these two synthetic methods can be used to functionalize the Si(111) surface. {copyright} {ital 1999 American Institute of Physics.}

  8. Superconducting Detector System for High-Resolution Energy-Dispersive Soft X-Ray Spectroscopy

    SciTech Connect

    Friedrich, S; Niedermayr, T; Drury, O; Funk, T; Frank, M; Labov, S E; Cramer, S

    2001-02-21

    Synchrotron-based soft x-ray spectroscopy is often limited by detector performance. Grating spectrometers have the resolution, but lack the efficiency for the analysis of dilute samples. Semiconducting Si(Li) or Ge detectors are efficient, but often lack the resolution to separate weak signals from strong nearby lines in multi-element samples. Superconducting tunnel junctions (STJs) operated at temperatures below 1 K can be used as high-resolution high-efficiency x-ray detectors. They combine high energy resolution around 10 eV FWHM with the broad band efficiency of energy-dispersive detectors. We have designed a two-stage adiabatic demagnetization refrigerator (ADR) to operate STJ detectors in x-ray fluorescence measurements at beam line 4 of the ALS. We demonstrate the capabilities of such a detector system for fluorescence analysis of dilute metal sites in proteins and inorganic model compounds.

  9. Recent results on high resolution hypernuclear spectroscopy by electroproduction at Jefferson Lab, Hall A

    SciTech Connect

    F. Garibaldi; H. Breuer; P. Brindza; P. Bydzovski; G. Chang; E. Cisbani; S. Colilli; F. Cusanno; R. De Leo; G. De Cataldo; K. De Jager; R. Feuerbach; E. Folts; R. Fratoni; S. Frullani; F. Giuliani; M. Gricia; D. Higinbotham; M. Iodice; B. Kross; L. Lagamba; J.J.Le Rose; M. Lucentini; P. Markowitz; S. Marrone; R. Michaels; E. Nappi; Y. Qiang; B. Reitz; F. Santavenere; J. Segal; M. Sotona; G.M.Urciuoli; P. Veneroni; B.Wojtsekhowski; C. Zorn

    2005-12-01

    The first ''systematic'' study of 1 p shell hypernuclei with electromagnetic probes has started in Hall A at Jefferson Lab [?]. The aim is to perform hypernuclear high resolution spectroscopy by the electroproduction of strangeness on four 1p-shell targets: 12C, 9Be, 16O, 7Li. The first part of the experiment on 12C and 9Be has been performed in 2004, the second part (16O and 7Li) is scheduled for June 2005. To overcome the major experimental difficulties, namely the low counting rate and the challenging Particle IDentification (PID), two septum magnets and a Ring Imaging CHerenkov (RICH) detector had to be added to the existing apparatus. After underlining the particular role the electroproduction reaction plays in hypernuclear physics we describe the challenging modifications of the Hall A apparatus. Preliminary results on 12C and 9Be are presented.

  10. High-resolution photoelectron spectroscopy analysis of sulfidation of brass at the rubber/brass interface

    NASA Astrophysics Data System (ADS)

    Ozawa, Kenichi; Kakubo, Takashi; Shimizu, Katsunori; Amino, Naoya; Mase, Kazuhiko; Komatsu, Takayuki

    2013-01-01

    High resolution photoelectron spectroscopy is utilized to investigate the chemical composition at the rubber/brass interface to elucidate the origin of strong adhesion as well as the degradation between rubber and brass. Special attention has been given to copper sulfides formed at the interface during the vulcanization reaction at 170 °C. At least five sulfur-containing species are identified in the adhesive interlayer including crystalline CuS and amorphous CuxS (x ≃ 2). These copper sulfide species are not uniformly distributed within the layer, but there exits the concentration gradation; the concentration of CuxS is high in the region on the rubber side and is diminished in the deeper region, while vice versa for that of CuS. Degradation of the interface adhesive strength by prolonged vulcanization arises from the decrease in the CuxS/CuS ratio accompanying desulfurization of the adhesive layer.

  11. High Resolution Spectroscopy of Naphthalene Calibrated by AN Optical Frequency Comb

    NASA Astrophysics Data System (ADS)

    Nishiyama, Akiko; Nakashima, Kazuki; Matsuba, Ayumi; Misono, Masatoshi

    2015-06-01

    In high-resolution molecular spectroscopy, the precise measure of the optical frequency is crucial to evaluate minute shifts and splittings of the energy levels. On the other hand, in such spectroscopy, thousands of spectral lines distributed over several wavenumbers have to be measured by a continuously scanning cw laser. Therefore, the continuously changing optical frequency of the scanning laser has to be determined with enough precision. To satisfy these contradictory requirements, we have been developed two types of high-resolution spectroscopic systems employing an optical frequency comb. One of the systems employs RF band-pass filters to generate equally spaced frequency markers for optical frequency calibration, and is appropriate for wide wavelength-range measurement with relatively high scanning rate.^a In the other system, the beat frequency between the optical frequency comb and the scanning laser is controlled by an acousto-optic frequency shifter. This system is suitable for more precise measurement, and enables detailed analyses of frequency characteristics of scanning laser.^b In the present study, we observe Doppler-free two-photon absorption spectra of A^1B1u (v_4 = 1) ← X^1A_g (v = 0) transition of naphthalene around 298 nm. The spectral lines are rotationally resolved and the resolution is about 100 kHz. For ^qQ transition, the rotational lines are assigned, and molecular constants in the excited state are determined. In addition, we analyze the origin of the measured linewidth and Coriolis interactions between energy levels. To determine molecular constants more precisely, we proceed to measure and analyze spectra of other transitions, such as ^sS transitions. ^a A. Nishiyama, D. Ishikawa, and M. Misono, J. Opt. Soc. Am. B 30, 2107 (2013). ^b A. Nishiyama, A. Matsuba, and M. Misono, Opt. Lett. 39, 4923 (2014).

  12. a Thz Photomixing Synthesizer Based on a Fiber Frequency Comb for High Resolution Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hindle, Francis; Mouret, Gael; Cuisset, Arnaud; Yang, Chun; Eliet, Sophie; Bocquet, Robin

    2010-06-01

    To date the principal application for photomixing sources has been for high resolution spectroscopy of gases due to the large tuning range and spectral purity. New Developments of the Opto-Electronic THz Spectrometer have been performed in order to obtain a powerful tool for High-Resolution Spectroscopy. The combination of two extended cavity laser diodes and fast charge carrier lifetime semiconductor materials has allowed a continuous-wave THz spectrometer to be constructed based on optical heterodyning. Unlike many THz sources, this instrument gives access to all frequencies in the range 0.3 to 3.5 THz with a resolution of 1 MHz. The main spectroscopic applications of this spectrometer were dedicated to line profile analysis of rotational transitions referenced in the spectroscopic databases. One limitation of the THz spectrometer was accuracy with which the generated frequency is known. Recently, this obstacle has been circled with the construction of a photomixing spectrometer where the two pump lasers are phase locked to two modes of a repetition rate stabilized frequency doubled fiber laser frequency comb. In order to achieve a tuning range in excess to 100 MHz a third cw laser was required in the new configuration of the THz spectrometer. To assess the performances of this instrument, the frequencies of the pure rotational transitions of OCS molecules have been measured between 0,8 to 1,2 THz. A rms inferior to 100 kHz, deduced from the frequencies measured, demonstrates that the THz photomixing synthesizer is now able to be competitive with microwave and submillimeter techniques. S. Matton, F. Rohart, R. Bocquet, D. Bigourd, A. Cuisset, F. Hindle, G. Mouret, J. Mol. Spectrosc., 2006, 239: 182. C. Yang, J. Buldyreva, I. E. Gordon, F. Rohart, A. Cuisset, G. Mouret, R. Bocquet, F. Hindle, J. Quant. Spectrosc. Radiat. Transfer, 2008, 109: 2857. G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, D. Rovera, Opt. Express, 2009, 17: 22031.

  13. The role of electronic energy loss in ion beam modification of materials

    DOE PAGESBeta

    Weber, William J.; Duffy, Dorothy M.; Thome, Lionel; Zhang, Yanwen

    2014-10-05

    The interaction of energetic ions with solids results in energy loss to both atomic nuclei and electrons in the solid. In this article, recent advances in understanding and modeling the additive and competitive effects of nuclear and electronic energy loss on the response of materials to ion irradiation are reviewed. Experimental methods and large-scale atomistic simulations are used to study the separate and combined effects of nuclear and electronic energy loss on ion beam modification of materials. The results demonstrate that nuclear and electronic energy loss can lead to additive effects on irradiation damage production in some materials; while inmore » other materials, the competitive effects of electronic energy loss leads to recovery of damage induced by elastic collision cascades. Lastly, these results have significant implications for ion beam modification of materials, non-thermal recovery of ion implantation damage, and the response of materials to extreme radiation environments.« less

  14. The role of electronic energy loss in ion beam modification of materials

    SciTech Connect

    Weber, William J.; Duffy, Dorothy M.; Thome, Lionel; Zhang, Yanwen

    2014-10-05

    The interaction of energetic ions with solids results in energy loss to both atomic nuclei and electrons in the solid. In this article, recent advances in understanding and modeling the additive and competitive effects of nuclear and electronic energy loss on the response of materials to ion irradiation are reviewed. Experimental methods and large-scale atomistic simulations are used to study the separate and combined effects of nuclear and electronic energy loss on ion beam modification of materials. The results demonstrate that nuclear and electronic energy loss can lead to additive effects on irradiation damage production in some materials; while in other materials, the competitive effects of electronic energy loss leads to recovery of damage induced by elastic collision cascades. Lastly, these results have significant implications for ion beam modification of materials, non-thermal recovery of ion implantation damage, and the response of materials to extreme radiation environments.

  15. Partial-Homogeneity-Based Two-Dimensional High-Resolution Nuclear Magnetic Resonance Spectroscopy under Inhomogeneous Magnetic Fields.

    PubMed

    Qiu, Wenqi; Wei, Zhiliang; Ding, Nan; Yang, Yu; Ye, Qimiao; Lin, Yulan; Chen, Zhong

    2016-05-18

    High-resolution multidimensional nuclear magnetic resonance (NMR) spectroscopy serves as an irreplaceable and versatile tool in various chemical investigations. In this study, a method based on the concept of partial homogeneity is developed to offer two-dimensional (2D) high-resolution NMR spectra under inhomogeneous fields. Oscillating gradients are exerted to encode the high-resolution information, and a field-inhomogeneity correction algorithm based on pattern recognition is designed to recover high-resolution spectra. Under fields where inhomogeneity primarily distributes along a single orientation, the proposed method will improve performances of 2D NMR spectroscopy without increasing the experimental duration or significant loss in sensitivity, and thus may open important perspectives for studies of inhomogeneous chemical systems. PMID:26891886

  16. Transfer-printing of single DNA molecule arrays on graphene for high resolution electron imaging and analysis

    PubMed Central

    Cerf, Aline; Alava, Thomas; Barton, Robert A.; Craighead, Harold G.

    2011-01-01

    Graphene represents the ultimate substrate for high-resolution transmission electron microscopy, but the deposition of biological samples on this highly hydrophobic material has until now been a challenge. We present a reliable method for depositing ordered arrays of individual elongated DNA molecules on single-layer graphene substrates for high resolution electron beam imaging and electron energy loss spectroscopy analysis. This method is a necessary step towards the observation of single elongated DNA molecules with single base spatial resolution to directly read genetic and epigenetic information. PMID:21919532

  17. High-resolution atomic force microscopy and spectroscopy of native membrane proteins

    NASA Astrophysics Data System (ADS)

    Bippes, Christian A.; Muller, Daniel J.

    2011-08-01

    Membranes confining cells and cellular compartments are essential for life. Membrane proteins are molecular machines that equip cell membranes with highly sophisticated functionality. Examples of such functions are signaling, ion pumping, energy conversion, molecular transport, specific ligand binding, cell adhesion and protein trafficking. However, it is not well understood how most membrane proteins work and how the living cell regulates their function. We review how atomic force microscopy (AFM) can be applied for structural and functional investigations of native membrane proteins. High-resolution time-lapse AFM imaging records membrane proteins at work, their oligomeric state and their dynamic assembly. The AFM stylus resembles a multifunctional toolbox that allows the measurement of several chemical and physical parameters at the nanoscale. In the single-molecule force spectroscopy (SMFS) mode, AFM quantifies and localizes interactions in membrane proteins that stabilize their folding and modulate their functional state. Dynamic SMFS discloses fascinating insights into the free energy landscape of membrane proteins. Single-cell force spectroscopy quantifies the interactions of live cells with their environment to single-receptor resolution. In the future, technological progress in AFM-based approaches will enable us to study the physical nature of biological interactions in more detail and decipher how cells control basic processes.

  18. Exploring the High-Resolution Spectroscopy of Molecules that can Affect the Quality of your Life

    NASA Astrophysics Data System (ADS)

    Miller, Terry A.

    2014-06-01

    Few things affect your quality of life more than the air you breathe and the temperature of your immediate environment. Since more than 80% of the energy used in the industrialized world today is still derived from fossil fuels, these two quantities are not unrelated. Most organic molecules injected into the troposphere are degraded via oxidative processes involving free radical intermediates, and many of these intermediates are the same as the ones involved in the combustion of fossil fuels. Key oxidizing intermediates are hydroxyl, OH (day), and nitrate, NO_3 (night), and early intermediates of oxidized organic compounds include the alkoxy (RO) and peroxy (RO_2) families of radicals. Recently we have explored the spectroscopy of RO, RO_2, and NO_3 radicals both for diagnostic purposes and to characterize their molecular properties and benchmark quantum chemistry calculations. We have utilized moderate resolution cavity ringdown spectroscopy (CRDS) to study ambient temperature radicals and high resolution CRDS and laser induced fluorescence (LIF) to study jet-cooled radicals. Peroxy radicals and NO_3 have weak tilde{A}-tilde{X} electronic transitions in the near infrared which we have studied with CRDS. Comparable LIF measurements have been made for the alkoxy species in the UV. Both vibrational and rotational resolution of the electronic spectra is observed. Data obtained from the spectral observations provide information about both the geometric and electronic structure of these radicals as well as their dynamics and also provide the capability for unambiguous diagnostics of their concentrations and reactions.

  19. Millimeter and Sub-millimeter High Resolution Spectroscopy: New Frontiers with ALMA

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.

    2016-06-01

    It is becoming increasingly clear that new laboratory data will be critical for the next decade of observations with the Atacama Large Millimeter Array (ALMA). The high spatial resolution offered by ALMA will probe new regions of molecular complexity, including the inner envelopes of evolved stars, regions dominated by UV radiation, and the densest cores of molecular clouds. New molecular lines will be discovered in the wide wavelength range covered by the ALMA bands, and high resolution, gas-phase spectroscopy are needed to provide crucial “rest frequencies.” In particular, highly accurate methods that measure millimeter and sub-millimeter rotational transitions, such as direct absorption and Fourier transform mm-wave techniques, are important, especially when coupled to exotic molecular production schemes. Recent ALMA studies of SH+ and larger organic species have already demonstrated the need for laboratory measurements. New laboratory work will likely be required for circumstellar refractory molecules, radicals and ions generated near photon-dominated regions (PDRs), and large, organic-type species. This talk will give an overview of current contributions of laboratory spectroscopy to ALMA observations, summarize relevant spectroscopic techniques, and provide input into future prospects and directions.

  20. Far Infrared High Resolution Synchrotron FTIR Spectroscopy of the Low Frequency Bending Modes of Dmso

    NASA Astrophysics Data System (ADS)

    Cuisset, Arnaud; Smirnova, Irina; Bocquet, Robin; Hindle, Francis; Mouret, Gael; Sadovskii, Dmitrii A.; Pirali, Olivier; Roy, Pascale

    2010-06-01

    In addition to its importance for industrial and environmental studies, the monitoring of DiMethylSulfOxyde (DMSO, (CH_3)_2SO) concentrations is of considerable interest for civil protection. The existing high resolution gas phase spectroscopic data of DMSO only concerned the pure rotational transitions in the ground state. In the Far-IR domain, the low-frequency rovibrational transitions have never previously resolved. The high brightness of the AILES beamline of the synchrotron SOLEIL and the instrumental sensitivity provided by the multipass cell allowed to measure for the first time these transitions. 1581 A-type and C-type transitions in the ν11 band have been assigned and 25 molecular constants of Watson's s-form hamiltonian developed to degree 8 have been fitted within the experimental accuracy. The use of then synchrotron radiation has opened many possibilities for new spectroscopic studies. Together with several other recent studies, our successful measurement and analysis of DMSO convincingly demonstrates the potential of the AILES beamline for high resolution FIR spectroscopy. Thus our present work is just at the beginning of unraveling the rovibrational structure of low frequency bending and torsional vibrational states of DMSO and yielding important comprehensive structural and spectroscopic information on this molecule. L. Margules, R. A. Motienko, E. A. Alekseev, J. Demaison, J. Molec. Spectrosc., 260(23),2009 V. Typke, M. Dakkouri, J. Molec. Struct., 599(177),2001 A. Cuisset, L. Nanobashvili, I. Smirnova, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy, D. Sadovskii, Chem. Phys. Lett., accepted for publication

  1. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    SciTech Connect

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

  2. M31 GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY

    SciTech Connect

    Colucci, Janet E.; McWilliam, Andrew; Cohen, Judith G. E-mail: sacamero@umich.ed E-mail: andy@ociw.ed

    2009-10-10

    We report the first detailed chemical abundances for five globular clusters (GCs) in M31 from high-resolution (R approx 25,000) spectroscopy of their integrated light (IL). These GCs are the first in a larger set of clusters observed as part of an ongoing project to study the formation history of M31 and its GC population. The data presented here were obtained with the HIRES echelle spectrograph on the Keck I telescope and are analyzed using a new IL spectra analysis method that we have developed. In these clusters, we measure abundances for Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, and Ba, ages >=10 Gyr, and a range in [Fe/H] of -0.9 to -2.2. As is typical of Milky Way GCs, we find these M31 GCs to be enhanced in the alpha-elements Ca, Si, and Ti relative to Fe. We also find [Mg/Fe] to be low relative to other [alpha/Fe], and [Al/Fe] to be enhanced in the IL abundances. These results imply that abundances of Mg, Al (and likely O, Na) recovered from IL do display the inter- and intra-cluster abundance variations seen in individual Milky Way GC stars, and that special care should be taken in the future in interpreting low- or high-resolution IL abundances of GCs that are based on Mg-dominated absorption features. Fe-peak and the neutron-capture elements Ba and Y also follow Milky Way abundance trends. We also present high-precision velocity dispersion measurements for all five M31 GCs, as well as independent constraints on the reddening toward the clusters from our analysis.

  3. Correlating high-resolution magic angle spinning NMR spectroscopy and gene analysis in osteoarthritic cartilage.

    PubMed

    Tufts, Lauren; Shet Vishnudas, Keerthi; Fu, Eunice; Kurhanewicz, John; Ries, Michael; Alliston, Tamara; Li, Xiaojuan

    2015-05-01

    Osteoarthritis (OA) is a common multifactorial and heterogeneous degenerative joint disease, and biochemical changes in cartilage matrix occur during the early stages of OA before morphological changes occur. Thus, it is desired to measure regional biochemical changes in the joint. High-resolution magic angle spinning (HRMAS) NMR spectroscopy is a powerful method of observing cartilaginous biochemical changes ex vivo, including the concentrations of alanine and N-acetyl, which are markers of collagen and total proteoglycan content, respectively. Previous studies have observed significant changes in chondrocyte metabolism of OA cartilage via the altered gene expression profiles of ACAN, COL2A1 and MMP13, which encode aggrecan, type II collagen and matrix metalloproteinase 13 (a protein crucial in the degradation of type II collagen), respectively. Employing HRMAS, this study aimed to elucidate potential relationships between N-acetyl and/or alanine and ACAN, COL2A1 and/or MMP13 expression profiles in OA cartilage. Thirty samples from the condyles of five subjects undergoing total knee arthroplasty to treat OA were collected. HRMAS spectra were obtained at 11.7 T for each sample. RNA was subsequently extracted to determine gene expression profiles. A significant negative correlation between N-acetyl metabolite and ACAN gene expression levels was observed; this provides further evidence of N-acetyl as a biomarker of cartilage degeneration. The alanine doublet was distinguished in the spectra of 15 of the 30 specimens of this study. Alanine can only be detected with HRMAS NMR spectroscopy when the collagen framework has been degraded such that alanine is sufficiently mobile to form a distinguished peak in the spectrum. Thus, HRMAS NMR spectroscopy may provide unique localized measurements of collagenous degeneration in OA cartilage. The identification of imaging markers that could provide a link between OA pathology and chondrocyte metabolism will facilitate the

  4. What can we Expect of High-Resolution Spectroscopies on Carbohydrates?

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Ecija, Patricia; Uriarte, Iciar; Usabiaga, Imanol; Fernández, José A.; Basterretxea, Francisco J.; Lesarri, Alberto; Davis, Benjamin G.

    2015-06-01

    Carbohydrates are one of the most multifaceted building blocks, performing numerous roles in living organisms. We present several structural investigations on carbohydrates exploiting an experimental strategy which combines microwave (MW) and laser spectroscopies in high-resolution. Laser spectroscopy offers high sensitivity coupled to mass and conformer selectivity, making it ideal for polysaccharides studies. On the other hand, microwave spectroscopy provides much higher resolution and direct access to molecular structure of monosaccharides. This combined approach provides not only accurate chemical insight on conformation, structure and molecular properties, but also benchmarking standards guiding the development of theoretical calculations. In order to illustrate the possibilities of a combined MW-laser approach we present results on the conformational landscape and structural properties of several monosaccharides and oligosaccharides including microsolvation and molecular recognition processes of carbohydrates. E.J. Cocinero, A. Lesarri, P. écija, F.J. Basterretxea, J.-U. Grabow, J.A. Fernández and F. Casta {n}o Angew. Chem. Int. Ed. 51, 3119-3124, 2012. E.J. Cocinero, A. Lesarri, P. écija, Á. Cimas, B.G. Davis, F.J. Basterretxea, J.A. Fernández and F. Casta {n}o J. Am. Chem. Soc. 135, 2845-2852, 2013. E.J. Cocinero, P. Çarçabal, T.D. Vaden, J.P. Simons and B.G. Davis Nature 469, 76-80, 2011. C.S. Barry, E.J. Cocinero, P. Çarçabal, D.P. Gamblin, E.C. Stanca-Kaposta, S. M. Fernández-Alonso, S. Rudić, J.P. Simons and B.G. Davis J. Am. Chem. Soc. 135, 16895-16903, 2013.

  5. Elemental electron energy loss mapping of a precipitate in a multi-component aluminium alloy.

    PubMed

    Mørtsell, Eva A; Wenner, Sigurd; Longo, Paolo; Andersen, Sigmund J; Marioara, Calin D; Holmestad, Randi

    2016-07-01

    The elemental distribution of a precipitate cross section, situated in a lean Al-Mg-Si-Cu-Ag-Ge alloy, has been investigated in detail by electron energy loss spectroscopy (EELS) and aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). A correlative analysis of the EELS data is connected to the results and discussed in detail. The energy loss maps for all relevant elements were recorded simultaneously. The good spatial resolution allows elemental distribution to be evaluated, such as by correlation functions, in addition to being compared with the HAADF image. The fcc-Al lattice and the hexagonal Si-network within the precipitates were resolved by EELS. The combination of EELS and HAADF-STEM demonstrated that some atomic columns consist of mixed elements, a result that would be very uncertain based on one of the techniques alone. EELS elemental mapping combined with a correlative analysis have great potential for identification and quantification of small amounts of elements at the atomic scale. PMID:27124585

  6. Evolutionary developments in x ray and electron energy loss microanalysis instrumentation for the analytical electron microscope

    NASA Astrophysics Data System (ADS)

    Zaluzec, Nester J.

    Developments in instrumentation for both X ray Dispersive and Electron Energy Loss Spectroscopy (XEDS/EELS) over the last ten years have given the experimentalist a greatly enhanced set of analytical tools for characterization. Microanalysts have waited for nearly two decades now in the hope of getting a true analytical microscope and the development of 300 to 400 kV instruments should have allowed us to attain this goal. Unfortunately, this has not generally been the case. While there have been some major improvements in the techniques, there has also been some devolution in the modern AEM (Analytical Electron Microscope). In XEDS, the majority of today's instruments are still plagued by the hole count effect, which was first described in detail over fifteen years ago. The magnitude of this problem can still reach the 20 percent level for medium atomic number species in a conventional off-the-shelf intermediate voltage AEM. This is an absurd situation and the manufacturers should be severely criticized. Part of the blame, however, also rests on the AEM community for not having come up with a universally agreed upon standard test procedure. Fortunately, such a test procedure is in the early stages of refinement. The proposed test specimen consists of an evaporated Cr film approx. 500 to 1000A thick supported upon a 3mm diameter Molybdenum 200 micron aperture.

  7. Synthesis of Electron Energy Loss Spectra for the Quantification of Detection Limits

    NASA Astrophysics Data System (ADS)

    Menon, Nanda K.; Krivanek, Ondrej L.

    2002-06-01

    We describe a method for predicting detection limits of minority elements in electron energy loss spectroscopy (EELS), and its implementation as a software package that gives quantitative predictions for user-specified materials and experimental conditions. The method is based on modeling entire energy loss spectra, including shot noise as well as instrumental noise, and taking into account all the relevant experimental parameters. We describe the steps involved in modeling the entire spectrum, from the zero loss up to inner shell edges, and pay particular attention to the contributions to the pre-edge background. The predicted spectra are used to evaluate the signal-to-noise ratios (SNRs) for inner shell edges from user-specified minority elements. The software also predicts the minimum detectable mass (MDM) and minimum mass fraction (MMF). It can be used to ascertain whether an element present at a particular concentration should be detectable for given experimental conditions, and also to quickly and quantitatively explore ways of optimizing the experimental conditions for a particular EELS analytical task. We demonstrate the usefulness of the software by confirming the recent empirical observation of single atom detection using EELS of phosphorus in thin carbon films, and show the effect on the SNR of varying the acquisition parameters. The case of delta-doped semiconductors is also considered as an important example from materials science where low detection limits and high spatial resolution are essential, and the feasibility of such characterization using EELS is assessed.

  8. High-Resolution Spectroscopy of Mars: Recent Results and Implications for Atmospheric Evolution

    NASA Technical Reports Server (NTRS)

    Krasnopolsky, V. A.; Owen, T. C.; Maillard, J. P.

    1999-01-01

    It is believed that Earth, Venus, and Mars were formed by the same rocky and icy planetesimals, which resembled meteorites and comets in their composition, respectively. These planets are thus expected to have initially had the same chemical and isotope composition. Scaling the mass of the terrestrial ocean by the planetary mass ratio, the expected initial H2O abundance on Mars is a layer of about 1 km thick. Scaling the abundance of CO2 on Venus, the expected initial CO2 abundance on Mars is 15 bars. Evidently, significant parts of the initial H2O and CO2 abundances have been lost. Intense meteorite impact erosion and hydrodynamic escape of hydrogen (which could drag to escape more heavy species) were dominant loss processes in the first 0.8 Byr. Later, atmospheric sputtering by O+ ions resulted in the dissociation of CO2 and massive losses of O, C, and H. Formation of carbonates also reduced CO2 to its present abundance which currently exists in the atmosphere, on the polar caps, and is absorbed by regolith. Water loss is currently due to thermal escape of H and nonthermal escape of O, both formed by photodissociation of H2O. All loss processes resulted in fractionation of the H, O, and C isotopes. Therefore, the current isotope ratios in H2O and CO2 are clues to the history of volatiles on Mars. There are three tools to study H2O and CO2 isotopes in the martian atmosphere: (i) mass spectrometry from landing probes, (ii) analyses of Mars' gases trapped in the SNC meteorites which were ejected from Mars, and (iii) high-resolution spectroscopy of the H2O andCO2 bands. Method (i) is the best but is the most expensive. Mass spectrometers to be used should be designed for high-precision isotope measurements. Method (ii) makes it possible to reach an uncertainty +/- 0.1%. However, the obtained results are affected by some uncontrolled interactions: isotope fractionations of (1) trapped gases and (2) those released in pyrolysis, (3) contribution of the impactor, isotope

  9. The Astro-H Mission and High Resolution X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kelley, Richard L.; Mitsuda, K.; Awaki, H.; Fujimoto, R.; den Herder, J. W.; Ishida, M.; Kilbourne, C. A.; Kunieda, H.; Maeda, Y.; McCammon, D.; Ohashi, T.; Okajima, T.; Porter, F.; Serlemitsos, P.; Soong, Y.; Szymkowiak, A. E.; Takahashi, T.; Takei, Y.; Tashiro, M.; Tawara, Y.; Yamasaki, N. Y.; Astro-H Collaboration

    2010-03-01

    The Japan Aerospace Exploration Agency's Institute of Space and Aeronautical Science (JAXA/ISAS) is developing a major new high-energy astrophysics observatory. Astro-H will provide broadband, high-resolution spectroscopy and imaging over the 0.3-600 keV band using four co-aligned instruments operated simultaneously. The mission will have major US participation supported by NASA as well as contributions from Europe and Canada. For high-resolution x-ray spectroscopy, the soft x-ray spectrometer (SXS) will feature an x-ray calorimeter spectrometer and x-ray mirror. The instrument will cover the energy range 0.3-12 keV and is expected to have an energy resolution better than 5 eV (FWHM) with a collecting area of over 200 cm2 at 6 keV. The cooling system will have both cryogenic and mechanical coolers for up to five years of operation. The SXS is a joint collaboration between NASA/GSFC, ISAS/JAXA and SRON, and the NASA participation was selected as an Explorers Mission of Opportunity in June 2008. As part of this investigation, a fully supported US guest observer program was also proposed and is under review by NASA. Other instruments on Astro-H include a soft x-ray imager (SXI) consisting of a large area CCD camera with 35 arcmin field-of-view and a hard x-ray imager (HXI) that uses focusing x-ray optics combined with both double-sided silicon strip detectors and CdTe array. The 12-m focal length optical system will provide an effective area of 300 cm2 at 30 keV, and high sensitivity from 10-80 keV using multilayer x-ray mirrors with 2-4 arcmin imaging. The soft gamma detector (SGD) is a non-focusing instrument based on a new, narrow-field-of-view Compton telescope with an energy range of 10-600 keV and sensitivity at 300 keV that is more than 10 times higher than Suzaku. Astro-H is planned for launch in 2014 aboard a JAXA HII-A rocket.

  10. Quantitative neuropathology by high resolution magic angle spinning proton magnetic resonance spectroscopy

    PubMed Central

    Cheng, L. L.; Ma, M. J.; Becerra, L.; Ptak, T.; Tracey, I.; Lackner, A.; González, R. G.

    1997-01-01

    We describe a method that directly relates tissue neuropathological analysis to medical imaging. Presently, only indirect and often tenuous relationships are made between imaging (such as MRI or x-ray computed tomography) and neuropathology. We present a biochemistry-based, quantitative neuropathological method that can help to precisely quantify information provided by in vivo proton magnetic resonance spectroscopy (1HMRS), an emerging medical imaging technique. This method, high resolution magic angle spinning (HRMAS) 1HMRS, is rapid and requires only small amounts of unprocessed samples. Unlike chemical extraction or other forms of tissue processing, this method analyzes tissue directly, thus minimizing artifacts. We demonstrate the utility of this method by assessing neuronal damage using multiple tissue samples from differently affected brain regions in a case of Pick disease, a human neurodegenerative disorder. Among different regions, we found an excellent correlation between neuronal loss shown by traditional neurohistopathology and decrease of the neuronal marker N-acetylaspartate measured by HRMAS 1HMRS. This result demonstrates for the first time, to our knowledge, a direct, quantitative link between a decrease in N-acetylaspartate and neuronal loss in a human neurodegenerative disease. As a quantitative method, HRMAS 1HMRS has potential applications in experimental and clinical neuropathologic investigations. It should also provide a rational basis for the interpretation of in vivo 1HMRS studies of human neurological disorders. PMID:9177231

  11. Determination of reference ultrasound parameters for model and hydrofluoroalkane propellants using high-resolution ultrasonic spectroscopy.

    PubMed

    Hoe, Susan; Young, Paul M; Rogueda, Philippe; Traini, Daniela

    2008-01-01

    The aim of this research was to determine the reference ultrasonic velocity (v) and attenuation coefficient (alpha) for 2H, 3H-perfluoropentane (HPFP), 1,1,1,2-tetrafluoroethane (HFA-134a) and 1,1,1,2,3,3,3-tetrafluoroethane (HFA-227) propellants, for the future purpose of characterising pressurised metered dose inhaler (pMDI) formulations using high-resolution ultrasonic spectroscopy (HRUS). Perfluoroheptane (PFH) was used as a reference material for HPFP. With its velocity and attenuation coefficient determined at 25 degrees C, HPFP was subsequently used as a reference for HFA-134a and HFA-227. It was found that there is a linear decline in ultrasonic velocity with an increase in temperature. As with HPFP, the ultrasonic velocity of HFA-134a and HFA-227 were successfully calculated at 25 degrees C. However, the difference in density and viscosity between reference and sample prevented accurate determination of reference attenuation coefficient for the hydrofluoroalkanes. With ultrasonic velocity alone, dispersion concentration and stability monitoring for experimental pMDI formulations is possible using HRUS. However, at this point in time measurement of particle size is not feasible. PMID:18459053

  12. High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals

    DOE PAGESBeta

    Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, Lynn A.; Watkins, S. P.

    2016-01-01

    Here, Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-dopants. We present high-resolution photoluminescence spectroscopy studies of unintentionally doped and Sn doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I10 bound exciton transition which was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. PL linewidths are exceptionally sharp for these samples, enabling clear identification of several donor species. Temperature dependent PL measurements of the I10 line emission energy and intensity dependence reveal a behavior similar tomore » other shallow donors in ZnO. Ionized donor bound exciton and two electron satellite transitions of the I10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule), confirming the shallow nature of this defect center, which we attribute to a SnZn double donor compensated by an unknown single acceptor.« less

  13. On the accuracy of CO line positions for high resolution IR stellar spectroscopy

    NASA Technical Reports Server (NTRS)

    Sauval, A. J.; Farrenq, R.; Guelachvili, G.; Grevesse, N.; Farmer, C. B.; Norton, R. H.

    1992-01-01

    The paper demonstrates the high accuracy of line positions derived from improved sets of Dunham coefficients for the four more abundant isotopic species of carbon monoxide - (C-12)(O-16), (C-13)(O-16), (C-12)(O-18), and (C-12)(O-17) - which are present in the sun and in cool stellar atmospheres. These new spectroscopic constants make it possible to predict very accurate positions of CO lines at any J-values, especially at very high rotational excitation (up to J around 135). Earlier proposed identifications of CO lines at large J-values are checked, and some incorrect identifications in sunspot spectra are found. The present accurate line positions are also compared with predictions from other available sets of molecular constants. It is concluded that the present improved sets of molecular constants are the most appropriate to all problems of high-resolution stellar and solar spectroscopy at any J- and v-values, particularly for synthetic spectra of cool stars.

  14. High-Resolution Spectroscopy of Winds Associated with T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Iguchi, Naoto; Itoh, Yoichi

    2016-02-01

    We carried out optical high-resolution spectroscopy of T Tauri stars using the Subaru Telescope. Using archived data from the Keck Telescope and the Very Large Telescope, we detected forbidden lines of [S II] at 4069 Å, in addition to those of [O I] at 5577 Å and 6300 Å, for 13 T Tauri stars. We consider that low-velocity components of these forbidden lines emanate from the wind associated with T Tauri stars. Using two flux ratios of the three lines, we simultaneously determined the hydrogen density and temperature of the winds. The winds of T Tauri stars have a hydrogen density of 2.5 × 106 cm-3 - 2.5 × 109 cm-3 and a temperature of 10800 -18 000 K. The mass loss rates by the wind are estimated to lie in the range from 2.0 × 10-10 M⊙ yr-1 to 1.4 × 10-9 M⊙ yr-1. The mass loss rates are found to increase with increasing mass accretion rates. The ratio of the mass loss rate to the mass accretion rate is 0.001-0.1 for classical T Tauri stars and 0.1-1 for transitional disk objects.

  15. Practical high resolution detection method for laser-induced breakdown spectroscopy

    SciTech Connect

    Andrew J. Effenberger Jr; Jill R. Scott

    2012-02-01

    A Fabry-Perot etalon was coupled to a Czerny-Turner spectrometer to acquire high-resolution measurements in laser-induced breakdown spectroscopy (LIBS). The spectrometer was built using an inexpensive etalon coupled to a standard 0.5-m imaging spectrometer. The Hg emission doublet at 313.2 nm was used to evaluate instrument performance because it has a splitting of 29 pm. The 313.2 nm doublet was chosen due to the similar splitting seen in isotope splitting from uranium at 424.437 nm, which is 25 pm. The Hg doublet was easily resolved from a continuous source Hg-lamp with a 2 s acquisition. The doublet was also resolved in LIBS spectra of cinnabar (HgS) from the accumulation of 600 laser shots at rate of 10 Hz, or 1 min, under a helium atmosphere. In addition to observed spitting of the 313.2 nm Hg doublet, the FWHM of the 313.1844 nm line from the doublet is reported at varying He atmospheric pressures. The high performance, low cost, and compact footprint makes this system highly competitive with 2-m double pass Czerny-Turner spectrometers.

  16. High-resolution x-ray absorption spectroscopy studies of metal compounds in neurodegenerative brain tissue

    SciTech Connect

    Collingwood, J.F.; Mikhaylova, A.; Davidson, M.R.; Batich, C.; Streit, W.J.; Eskin, T.; Terry, J.; Barrea, R.; Underhill, R.S.; Dobson, J.

    2008-06-16

    Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (< 5 microns). Recent progress in developing the technique is reviewed. Synchrotron X-rays are used to map tissue sections for metals of interest, and XANES and XAFS are used to characterize anomalous concentrations of the metals in-situ so that they can be correlated with tissue structures and disease pathology. Iron anomalies associated with biogenic magnetite, ferritin and haemoglobin are located and identified in an avian tissue model with a pixel resolution {approx} 5 microns. Subsequent studies include brain tissue sections from transgenic Huntington's mice, and the first high-resolution mapping and identification of iron biominerals in human Alzheimer's and control autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.

  17. Earle K. Plyler Prize Talk: Using High Resolution Electronic Spectroscopy to Probe Reactive Chemical Intermediates

    NASA Astrophysics Data System (ADS)

    Miller, Terry

    2009-03-01

    Gas phase chemical reactions, such as occur in atmospheric chemistry, combustion, plasma processing, etc. are of great importance to our economy and society. These reactions are typically very complex involving up to 1000's of elementary steps with a corresponding number of reactive chemical intermediates. Spectrospic diagnostics, based upon well analyzed and well understood spectra of the intermediates, are crucial for monitoring such reactions and unraveling their mechanisms. These spectral analyses often benefit from the guidance provided by quantum chemical calculations and conversely the molecular parameters, experimentally determined from the spectra, serve as ``gold standards'' for benchmarking such calculations. Such standards are especially valuable for reactive intermediates whose electronic or geometric structure is particularly complex because of electron-spin interactions, Jahn-Teller effects or other vibronic interactions, hindered internal motions, large molecular size and weight, etc. The organic alkoxy, RO., and peroxy, RO2., (R=alkyl group) free radicals are excellent examples of such species. The talk will focus on our recent characterization of these radicals via their ``high-resolution,'' mostly rotationally resolved, electronic spectra utilizing the techniques of laser induced fluorescence, stimulated emission pumping, and cavity ringdown spectroscopy. Selected spectra, their analysis, and the molecular information resulting therefrom will be discussed.

  18. High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals

    SciTech Connect

    Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, Lynn A.; Watkins, S. P.

    2016-01-01

    Here, Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-dopants. We present high-resolution photoluminescence spectroscopy studies of unintentionally doped and Sn doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I10 bound exciton transition which was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. PL linewidths are exceptionally sharp for these samples, enabling clear identification of several donor species. Temperature dependent PL measurements of the I10 line emission energy and intensity dependence reveal a behavior similar to other shallow donors in ZnO. Ionized donor bound exciton and two electron satellite transitions of the I10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule), confirming the shallow nature of this defect center, which we attribute to a SnZn double donor compensated by an unknown single acceptor.

  19. Spectral characteristics of chlorites and Mg-serpentines using high- resolution reflectance spectroscopy

    USGS Publications Warehouse

    King, T.V.V.; Clark, R.N.

    1989-01-01

    The present laboratory study using high-resolution reflectance spectroscopy (0.25-2.7 ??m) focuses on two primary phyllosilicate groups, serpentines and chlorites. The results show that it is possible to spectrally distinguish between isochemical end-members of the Mg-rich serpentine group (chrysotile, antigorite, and lizardite) and to recognize spectral variations in chlorites as a function of Fe/Mg ratio (~8-38 wt% Fe). The position and relative strength of the 1.4-??m absorption feature in the trioctahedral chlorites appear to be correlated to the total iron content and/or the Mg/Si ratio and the loss on ignition values of the sample. Spectral differences in the 2.3-??m wavelength region can be attributed to differences in lattice environments and are characteristic for specific trioctahedral chlorites. The 1.4-??m feature in the isochemical Mg-rich serpentines (total iron content ~1.5-7.0 wt%) show marked spectral differences, apparently due to structural differences. -Authors

  20. Advances in Computational High-Resolution Mechanical Spectroscopy HRMSPart I: Logarithmic Decrement

    NASA Astrophysics Data System (ADS)

    Majewski, M.; Piłat, A.; Magalas, L. B.

    2012-02-01

    The comparison between different methods used to compute the logarithmic decrement in high-resolution mechanical spectroscopy (HRMS) is analyzed. The performance of parametric OMI method (Optimization in Multiple Intervals) and interpolated discrete Fourier transform (IpDFT) methods are investigated as a function of the sampling frequency used to digitize free decaying oscillations in low-frequency resonant mechanical spectrometers. It is clearly demonstrated that a new Yoshida-Magalas (YM) method is the most powerful IpDFT-based method which outperforms the standard Yoshida (Y) method and other DFT-based methods. Four IpDFT methods and the OMI method are carefully analyzed as a function of the sampling frequency. The results presented in this work clearly show that the relative error in the estimation of the logarithmic decrement depends both on the length of free decaying signal and on the sampling frequency. The effect of the sampling frequency was not yet reported in the literature. The performance of different methods used in the computations of the logarithmic decrement can be listed in the following order: (1) the OMI, (2) the Yoshida-Magalas YM, (3) the Yoshida-Magalas YMC, and finally (4) the Yoshida Y.

  1. High-resolution spectroscopy on the laser-cooling candidate La^{-}.

    PubMed

    Jordan, E; Cerchiari, G; Fritzsche, S; Kellerbauer, A

    2015-09-11

    The bound-bound transition from the 5d^{2}6s^{2} ^{3}F_{2}^{e} ground state to the 5d6s^{2}6p ^{3}D_{1}^{o} excited state in negative lanthanum has been proposed as a candidate for laser cooling, which has not yet been achieved for negative ions. Anion laser cooling holds the potential to allow the production of ultracold ensembles of any negatively charged species. We have studied the aforementioned transition in a beam of negative La ions by high-resolution laser spectroscopy. The center-of-gravity frequency was measured to be 96.592 80(10) THz. Seven of the nine expected hyperfine structure transitions were resolved. The observed peaks were unambiguously assigned to the predicted hyperfine transitions by a fit, confirmed by multiconfigurational self-consistent field calculations. From the determined hyperfine structure we conclude that La^{-} is a promising laser cooling candidate. Using this transition, only three laser beams would be required to repump all hyperfine levels of the ground state. PMID:26406825

  2. High-resolution X-ray spectroscopy: the coming-of-age

    NASA Astrophysics Data System (ADS)

    Kaastra, J.

    2016-06-01

    Since the launch of Chandra and XMM-Newton, high-resolution X-ray spectra of cosmic sources of all kinds have become available. These spectra have resulted in major scientific breakthroughs. However, due to the techniques used, in general high-quality spectra can only be obtained for the brightest few sources of each class. Moreover, except for the most compact extended sources, like cool core clusters, grating spectra are limited to point sources. ASTRO-H makes another major step forward, in yielding for the first time high-quality spectra of extended sources, and improved spectral sensitivity in the Fe-K band. With the launch of Athena, X-ray spectroscopy will become mature. It allows us to extend the investigations from the few handful of brightest sources of each category to a large number of sources far away in space and time, or to get high time-resolution, high-spectral resolution spectra of bright time variable sources.

  3. High resolution X-ray spectroscopy of SN 1987 A: monitoring with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Sturm, R.; Haberl, F.; Aschenbach, B.; Hasinger, G.

    2010-06-01

    Context. The ongoing propagation of the supernova blast wave of SN 1987 A through its inner circumstellar ring has caused a drastic increase in X-ray luminosity in the past few years, which has allowed detailed high resolution X-ray spectroscopy to be performed with the Reflection Grating Spectrometer. Aims: We report the results of our XMM-Newton monitoring of SN 1987 A, which may be used to follow the detailed evolution of the arising supernova remnant. Methods: The fluxes and broadening of the numerous emission lines measured in the dispersed spectra provide information about the evolution of the X-ray emitting plasma and its dynamics. These were analyzed in combination with the EPIC-pn spectra, which allow a precise determination of the higher temperature plasma. We modeled individual emission lines and fitted plasma emission models. Results: For observations between 2003 and 2007 in particular, we detect significant evolution in the plasma parameters and a deceleration of the radial velocity in the lower temperature plasma regions. We detected (at 3σ-level) an iron K feature in the coadded EPIC-pn spectra. Conclusions: By comparing with Chandra grating observations in 2004, we observe a clear temporal coherence of the spectral evolution and the sudden deceleration of the expansion velocity detectable in X-ray images ~6100 days after the explosion.

  4. High-efficiency blazed transmission gratings for high-resolution soft x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alexander R.; Schattenburg, Mark L.

    2015-09-01

    High-resolution spectroscopy of astrophysical sources is the key to gaining a quantitative understanding of the history, dynamics, and current conditions of the cosmos. A large-area (> 1,000 cm2), high resolving power (R = λ/Δλ> 3000) soft x-ray grating spectrometer (XGS) that covers the lines of C, N, O, Ne and Fe ions is the ideal tool to address a number of high-priority science questions from the 2010 Decadal Survey, such as the connection between super-massive black holes and large-scale structure via cosmic feedback, the evolution of large- scale structure, the behavior of matter at high densities, and the conditions close to black holes. While no grating missions or instruments are currently approved, an XGS aboard a potential future X-ray Surveyor could easily surpass the above performance metrics. To improve the chances for future soft x-ray grating spectroscopy missions or instruments, grating technology has to progress and advance to higher Technology Readiness Levels (TRLs). To that end we have developed Critical-Angle Transmission (CAT) gratings that combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, high transparency at higher energies). A CAT grating-based spectrometer can provide performance 1-2 orders of magnitude better than current grating instruments on Chandra and Newton-XMM with minimal resource requirements. At present we have fabricated large-area freestanding CAT gratings with narrow integrated support structures from silicon-on- insulator wafers using advanced lithography and a combination of deep reactive-ion and wet etching. Our latest x-ray test results show record high absolute diffraction efficiencies in blazed orders in excess of 30% with room for improvement.

  5. High-efficiency blazed transmission gratings for high-resolution soft x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alexander R.; Schattenburg, Mark L.

    2015-01-01

    High-resolution spectroscopy of astrophysical sources is the key to gaining a quantitative understanding of the history, dynamics, and current conditions of the cosmos. A large-area (> 1,000 cm2), high resolving power (R = λ/Δλ > 3,000) soft x-ray spectrometer that covers the lines of C, N, O, Ne and Fe ions is the ideal tool to address a number of high-priority sciences questions from the 2010 Decadal Survey, such as the connection between super-massive black holes and large-scale structure via cosmic feedback, the evolution of large-scale structure, the behavior of matter at high densities, and the conditions close to black holes. Numerous mission concepts that meet these requirements have been studied and proposed over the last few years, including grating instruments for the International X-ray Observatory. Nevertheless, no grating missions are currently approved. To improve the chances for future soft x-ray grating spectroscopy missions, grating technology has to progress and be advanced to higher TRLs. We have developed Critical-Angle Transmission (CAT) gratings that combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, transparent at higher energies). A CAT grating-based spectrometer can provide performance 1-2 orders of magnitude better than current grating instruments on Chandra and Newton-XMM with minimal resource requirements. We have fabricated large-area free-standing CAT gratings with minimal integrated support structures from silicon-on-insulator wafers using advanced lithography and a combination of deep reactive-ion and wet etching, and will present our latest x-ray test results showing record high diffraction efficiencies in blazed orders.

  6. High Resolution Imaging Spectroscopy for Characterizing Soil Properties over Large Areas

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Kumar, P.

    2014-12-01

    Quantitative mapping of high resolution surface soil texture (percentage sand, silt and clay), soil organic matter and chemical constituents are important for understanding infiltration, runoff and other surficial hydrologic processes at different scales. The Visible Near Infrared Analysis (VNIRA) method, which is a combination of imaging spectroscopy and laboratory chemical analysis with an underlying statistical model, has been established for the quantification of soil properties from imaging spectrometer data. In this study we characterize the feasibility of quantifying soil properties over large areas with the aim that these methods may be extended to space-borne sensors such as HyspIRI. Hyperspectral Infrared Imager (HyspIRI) is a space-borne NASA mission concept having 10nm contiguous bands in the VSWIR region (380nm to 2500nm) of the electromagnetic spectra. High resolution (7.6m) Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data collected by NASA immediately after the massive 2011 Mississippi River floods at the Birds Point New Madrid (BPNM) floodway, coupled with in situ samples obtained at the time of the flight, is used to generate HyspIRI like data at 60m resolution. The VNIRA method is applied in a data-mining framework for quantification of the different soil textural properties and chemical constituents. The empirical models are further used for creating quantitative maps of the soil properties for the entire BPNM floodway. These maps are compared with the fine resolution AVIRIS maps of the same area for the different legacy landscape features and spatial correlations with the underlying topography immediately disturbed by the flooding event. The scales of variation in the soil constituents captured by the fine resolution data are also compared to the scales of variation captured by coarser resolution data. This study further explores the issues of applicability, challenges (such as the sensitivity of NDVI from mixed neighborhood pixels

  7. Ge-diode detector combined with crystal-diffraction spectrometer permits high-resolution gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Namenson, A. I.; Smither, R. K.

    1969-01-01

    Crystal-diffraction spectrometer, combined with a lithium-drifted Ge-diode detector, performs high-resolution gamma ray spectroscopy on the complicated neutron-capture gamma ray spectra. The system is most useful in the 1-3 MeV energy range and improves the signal to background ratio.

  8. Fluorescence Spectroscopy as a Rapid, High-Resolution Tool for Detecting Biomolecules in Glacial Ice

    NASA Astrophysics Data System (ADS)

    Rohde, R. A.; Price, P. B.; Bramall, N.; Bay, R.

    2007-12-01

    We have developed new instruments utilizing the intrinsic fluorescence of specific biomolecules as a sensitive, non-destructive tool for detecting microorganisms. Using a 224-nm excitation, we detect protein-bound tryptophan (an amino acid present in all cells) at a detection threshold of approximately 1 cell per laser excitation volume and a duty cycle of 100 ms per measurement. Tryptophan is easily distinguished from inorganic backgrounds due to its characteristic spectral shape and ~300 times higher intensity per unit volume than typical inorganic compounds. A different excitation was also used to detect coenzyme F420, a characteristic marker for viable methanogenic cells. At the National Ice Core Laboratory, systematic scans of a 1 meter core sections took about 15 minutes and generated ~5000 measurements per meter. The high-resolution of this work revealed strong variability of microbial content on a scale of cm within individual cores, which suggests that microbial deposition at polar sites is strongly influenced by meteorological events (e.g. storms) on subannual and interannual scales. In addition, high levels of microbes are found to correlate with anomalously high concentrations of metabolic gases (e.g. methane, nitrous oxide, and 18O/16O of O2), suggesting that many of the isolated "gas artifacts" identified in deep ice cores are the accumulated waste products of in situ metabolism. This means that fluorescence spectroscopy may be a useful tool for identifying regions where high microbial concentrations have contaminated gas records. The existing instrumentation is suitcase portable and could be easily deployed in a variety of environments. Future versions of these instruments may be practical for continuous, rapid scans of entire cores, as an on-site deployable technique for characterizing microbial abundances in ice, and for searching for as few as 1 microbe per cm3 in ice-bound planets. This work was supported by NSF grant ANT-0440609.

  9. Long-term High-Resolution Spectroscopy of γ Cas, ζ Tau, and π Aqr

    NASA Astrophysics Data System (ADS)

    Bjorkman, K. S.; Miroshnichenko, A. S.; Krugov, V. D.

    2000-05-01

    High-resolution spectroscopic data (λ λ 5285-6595 Angstroms) for three bright classical Be stars with unusual Hα profiles (γ Cas, ζ Tau, and π Aqr) have been obtained during the time period 1993-2000 at the Ritter Observatory of the University of Toledo. The data for γ Cas are supplemented by medium-resolution spectroscopy taken at the Terskol station of the Main Astronomical Observatory of the Ukranian Academy of Sciences. The stars show the presence of an additional variable (central) emission peak in the Hα line, which has a double-peaked profile in most stars of this type. Long-term radial velocity (RV) variations of H I, He I, Si II, and Fe II lines are detected in γ Cas and ζ Tau. The RV of the central peak of Hα in ζ Tau seem to follow the binary orbital motion (period 132.9 days) on top of the long-term variations (period 1420 days). In γ Cas this peak shows a constant trend towards negative velocities since 1993, which is opposite to the behavior of other emission lines. Short-term RV variations of the Hα emission peak with a period 84 days are found in π Aqr during its weak-disk phase (since 1996). This work has been supported in part by NASA grant NAG5-8054 to the Univ. of Toledo, and by a Cottrell Scholars Award to KSB from the Research Corporation. Support for Ritter Observatory has been provided in part by NSF grant AST-9024802, and in part by a grant from the Fund for Astrophysical Research.

  10. High-Resolution Spectroscopy of Stratospheric Ethane Following the Jupiter Impact of 2009

    NASA Technical Reports Server (NTRS)

    Fast, Kelly; Kostiuk, Theodor; Livengood, Timothy A.; Hewagama, Tilak; Amen, John

    2010-01-01

    We report on high-resolution infrared spectroscopy of ethane (C2H6) performed at the latitude of an impact site on Jupiter discovered on 19 July 2009 by A. Wesley from a location in Murrumbateman, Australia. The observations used the NASA Goddard Space Flight Center's Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. HIPWAC is a mid-infrared (9-12 microns) heterodyne spectrometer operating at the highest limit of spectral resolving power (lambda\\Delta\\lambda > l06), providing information on atmospheric constituent abundance and temperature through fully resolved tine shapes. Ethane is a stable trace product of methane photochemistry that is nearly uniformly mixed in Jupiter's stratosphere, providing an effective probe of that altitude region. Ethane emission line profiles near 11,74 microns in the Ug band were measured in Jupiter's stratosphere at 25 MHz (11.00083/cm) resolution. A sequence of spectra of ethane acquired over a range of longitude at the impact latitude (56S planetocentric) probes constituent abundance and temperature profile, both on and off the impact region. Near the site of the impact, ethane emission increased above levels measured well outside the impact region. Radiative transfer analysis indicates increased ethane mole fraction (30% greater). Variation in the measured continuum level and line intensities within 75deg of the impact longitude indicate the presence of an opacity source (haze) at altitudes near and above the tropopause and as high as the 10-mbar level near the impact site. The indication of possible haze opacity up to the 10-mbar level in the atmosphere is consistent with measurements made by HIPWAC's predecessor as part of the IRTF Shoemaker Levy-9 campaign in 1994.

  11. Imaging and high-resolution spectroscopy of the Planetary Nebula NGC 3242

    NASA Astrophysics Data System (ADS)

    Gómez-Muñoz, Marco Antonio; Wendolyn Blanco Cárdenas, Mónica; Vázquez, Roberto; Zavala, Saúl A.; Guillén, Pedro F.; Ayala, Sandra A.

    2015-08-01

    We present a high-resolution imaging and high-dispersion spectroscopy study of the complex morphological and kinematical structure of the planetary nebula NGC 3242. We analyze narrowband Hα, [O III] and [N II] images, addressing important morphological features: in the [O III] image we found one knot oriented to PA=-4°, in the [N II] image, three knots oriented at PA1=155°, PA2=+157°, and PA3=-45.5°, and in the Hα image, two bubbles in the internal region, one of them oriented toward SE and the other toward NW. Additionally we used the unsharp-masking technique and found faint structures in the halo that have not been studied before. These structures are presented in two pairs of arcs, one pair oriented toward PA=-35° and the other toward PA=140°. NGC 3242 is a morphologically rich PN with bubbles, asymmetrical outflows, and some knots in a double-shell nebular structure. Ground-based long-slit echelle spectra were obtained crossing NGC 3242 at twelve different positions to precisely determine kinematical features in the structure of the nebula. We obtain a systemic velocity of VLSR=-6.6 km/s. We have used the software SHAPE (Steffen et al. 2011, IEEE Trans. Vis. Comput. Graphics, 17, 454), to reconstruct a 3D model of NGC 3242 which fits all our observational data. Preliminary results (deprojected velocities and kinematical ages) of all these structures will be presented.This project has been supported by grant PAPIIT-DGAPA-UNAM IN107914. MWB is in grateful receipt of a DGAPA-UNAM postdoctoral scholarship. MAG acknowledges CONACYT for his graduate scholarship.

  12. IGRINS Near-IR High-resolution Spectroscopy of Multiple Jets around LkHα 234

    NASA Astrophysics Data System (ADS)

    Oh, Heeyoung; Pyo, Tae-Soo; Yuk, In-Soo; Park, Byeong-Gon; Park, Chan; Chun, Moo-Young; Pak, Soojong; Kim, Kang-Min; Sok Oh, Jae; Jeong, Ueejeong; Yu, Young Sam; Lee, Jae-Joon; Kim, Hwihyun; Hwang, Narae; Kaplan, Kyle; Pavel, Michael; Mace, Gregory; Lee, Hye-In; Nguyen Le, Huynh Anh; Lee, Sungho; Jaffe, Daniel T.

    2016-02-01

    We present the results of high-resolution near-IR spectroscopy toward the multiple outflows around the Herbig Be star LkHα 234 using the Immersion Grating Infrared Spectrograph. Previous studies indicate that the region around LkHα 234 is complex, with several embedded young stellar objects and the outflows associated with them. In simultaneous H- and K-band spectra from HH 167, we detected 5 [Fe ii] and 14 H2 emission lines. We revealed a new [Fe ii] jet driven by radio continuum source VLA 3B. Position-velocity diagrams of the H2 1-0 S(1) λ2.122 μm line show multiple velocity peaks. The kinematics may be explained by a geometrical bow shock model. We detected a component of H2 emission at the systemic velocity (VLSR = -10.2 km s-1) along the whole slit in all slit positions, which may arise from the ambient photodissociation region. Low-velocity gas dominates the molecular hydrogen emission from knots A and B in HH 167, which is close to the systemic velocity; [Fe ii] emission lines are detected farther from the systemic velocity, at VLSR = -100--130 km s-1. We infer that the H2 emission arises from shocked gas entrained by a high-velocity outflow. Population diagrams of H2 lines imply that the gas is thermalized at a temperature of 2500-3000 K and the emission results from shock excitation. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  13. High Resolution Far Infrared Fourier Transform Spectroscopy of the NH_2 Radical.

    NASA Astrophysics Data System (ADS)

    Martin-Drumel, M. A.; Pirali, O.; Balcon, D.; Vervloet, M.

    2011-06-01

    First identified toward Sgr B2, the NH_2 radical has recently been detected in the interstellar medium by the HIFI instrument on board of Herschel. Despite the fact that this radical has not been detected in brown dwarfs and exoplanets yet, it is already included in physical and chemical models of those environments (temperature higher than 2000 K expected in several objects). Its detection in those objects will depend on the existence of a reliable high temperature and high resolution spectroscopic database on the NH_2 radical.The absorption spectrum of NH_2 has been recorded between 15 and 700 Cm-1 at the highest resolution available using the Bruker IFS125HR Fourier transform interferometer connected to the far infrared AILES beamline at SOLEIL (R=0.001 Cm-1). The radical was produced by an electrical discharge (DC) through a continuous flow of NH_3 and He using the White-type discharge cell developped on the beamline (optical path: 24m). Thanks to the brilliance of the synchrotron radiation, more than 700 pure rotational transitions of NH_2 have been identified with high N values (NMax=25) in its fundamental and first excited vibrational modes. By comparison to the previous FT spectroscopic study on that radical in the FIR spectral range, asymmetric splitting as well as fine and hyperfine structure have been resolved for several transitions. E. F. Van Dishoeck, D. J. Jansen, P. Schilke, T. G. Phillips The Astrophysical Journal 416, L83-L86 (1993) C. M. Persson, J. H. Black, J. Cernicharo et al. Astronomy and Astrophysics 521, L45 (2010) K. Lodders and B. Fegley, Jr Icarus 155, 393-424 (2002) I. Morino and K. Kawaguchi Journal of Molecular Spectroscopy 182, 428-438 (1997)

  14. Kramers-Kronig analysis of reflection electron-energy-loss spectra measured with a cylindrical mirror analyzer

    NASA Astrophysics Data System (ADS)

    Ohno, Youichi

    1989-04-01

    We have discussed a valence-electron energy-loss spectrum measured in reflection geometry using a cylindrical mirror analyzer (CMA) and derived the angular distribution of inelastic scattering, the momentum transfer, and the differential cross section per unit energy. If a critical inelastic-scattering angle is smaller than the angular aperture of the analyzer, the differential cross section no longer depends on momentum transfer. The reflection electron-energy-loss spectroscopy (REELS) spectra of MoS2 and graphite have been measured and the Kramers-Kronig analysis has been applied. The results are compared with those of the composite energy-loss function calculated from the energy-loss functions perpendicular and parallel to the c axis. It has been shown that the Kramers-Kronig analysis is still valid for the REELS spectra at higher incident energies than 500 eV and that the derived optical constants consist approximately of 80% of the perpendicular component and 20% of the parallel component.

  15. Development of an Apparatus for High-Resolution Auger Photoelectron Coincidence Spectroscopy (APECS) and Electron Ion Coincidence (EICO) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto

    We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.

  16. Effect of surface topography on reflection electron energy loss plasmon spectra of group III metals

    SciTech Connect

    Strawbridge, B.; Singh, R. K.; Beach, C.; Mahajan, S.; Newman, N.

    2006-09-15

    In situ reflection electron energy loss spectroscopy (REELS) and reflection high energy electron diffraction employing a 20 keV electron beam at a 2 deg. grazing angle were used to characterize the surface properties of molecular beam epitaxy (MBE) grown Al, Ga, and In metals on silicon and sapphire substrates. In our study we found that the surface topography strongly influences the REELS plasmon spectra. Smooth Al films with <1 nm rms roughness exhibited surface plasmon peaks. Both surface and bulk plasmons are seen from an Al film with a rms roughness of 3.5 nm. Aluminum surfaces with >5 nm rms roughness yielded only bulk plasmon peaks. To understand the EELS spectrum for the Ga and In films, the rms roughness alone is not the relevant figure of merit as the electron beam interaction with the surface is influenced most by the shape of the tops of the surface grains and the grain size. Indium films on Si with a rms roughness of 52 nm were found to excite predominantly surface plasmons as the grazing angle electron beam scattered mostly off the flat top surface of each grain and was not strongly influenced by the crevices between the grains. The rounded tops of the Ga topography with 31 nm rms roughness facilitated transmission through the grains and therefore excited a combination of bulk and surface plasmons. This experimental method is very surface sensitive, as a probe depth of 0.8 nm was inferred from the diminishing intensity of the substrate peak with increasing coverage of a flat metal surface. The techniques and methods discussed here can be readily applied to other thin film systems such as MBE-grown III-V semiconductors, sputtered oxides, and other vacuum deposited materials.

  17. Site-selective high-resolution X-ray absorption spectroscopy and high-resolution X-ray emission spectroscopy of cobalt nanoparticles.

    PubMed

    Kühn, Timna-Josua; Hormes, Josef; Matoussevitch, Nina; Bönnemann, Helmut; Glatzel, Pieter

    2014-08-18

    The special (macroscopic) properties of nanoparticles are mainly due to their large surface-to-volume ratio. Thus, the separate characterization of geometric and electronic properties of surface and bulk would be favorable for a better understanding of the properties of nanoparticles. Because of the chemical sensitivity of X-ray fluorescence lines, in particular those involving higher lying electronic states, high-resolution fluorescence-detected X-ray absorption spectra (HRFD-XAS) offer these opportunities. In this study, three types of wet-chemically synthesized Co nanoparticles, ∼6 nm in diameter with varying thicknesses of a protective shell, were investigated at the ID26 beamline of the European Synchrotron Radiation Facility. HRFD-XAS spectra at the Co K-edge, that is, X-ray absorption near-edge structure (HRFD-XANES) and extended X-ray absorption fine structure (HRFD-EXAFS) spectra, were recorded via detection of the Kβ1,3 fluorescence at specific energies. As these spectra are only partly site-selective due to a strong overlap of the emission lines, a numerical procedure was applied based on a least-squares fitting procedure, realized by singular value decomposition. The detailed analysis of the obtained site-selective spectra, regarding chemical composition and crystallographic phase, using measured and simulated FEFF9-based reference spectra, showed that the metallic core had mainly hexagonal close-packed structure with lattice constants matching bulk Co; the spectra for the shell could be satisfactorily fitted by a mixture of CoO and CoCO3; however, with an obvious need for at least a third compound. To obtain additional information about ligands attached to Co, valence-to-core X-ray emission spectra (VTC-XES) using the Kβ2,5 and the satellite structure Kβ″ and VTC-XANES spectra thereof were also recorded, by which the former results are confirmed. Further on, FEFF simulations indicate that a Co-N compound is a very likely candidate for the third

  18. The Wesleyan Hobby-Eberly High-Resolution Exoplanetary Atmospheric Transmission Spectroscopy Survey: Latest Results

    NASA Astrophysics Data System (ADS)

    Jensen, Adam G.; Redfield, S.; Cochran, W. D.; Endl, M.; Koesterke, L.; Barman, T. S.

    2013-01-01

    The Wesleyan Hobby-Eberly High-Resolution Exoplanetary Atmospheric Transmission Spectroscopy Survey (W[HE]2ATS2) has used the 9.2m Hobby-Eberly Telescope (HET) at McDonald Observatory to make observations of the transmission spectra of hot Jupiter atmospheres at high spectral resolution ( 60,000). This program has made the first ground-based detection of neutral sodium in an exoplanetary atmosphere (Redfield et al. 2008) and the first detection of exoplanetary Hα (Jensen et al. 2012). A primary goal of exoplanet characterization science is to press toward smaller, Earth-like atmospheres. Though such Earth-like atmospheres are largely beyond the reach of current instrumentation, the W[HE]2ATS2 program has obtained data on a hot Neptune-class planet and a highly irradiated hot Jupiter. The purpose of studying a hot Neptune is to explore a planet with a lower surface gravity and possibly a different atmospheric molecular weight and scale height. The goal of observing the irradiated hot Jupiter is to explore the effects of star-planet interactions on exoplanetary atmospheres. Though such a planet is not a precise analogy to Super-Earths or Earth-like planets, there is a great deal of interest in planets around relatively active M dwarf stars, where the habitable zone is much closer to the star and the star-planet interaction may have a great effect on the planet’s atmosphere. Here we present our initial results for our newest data, where we search for resonance absorption lines of alkali metals such as sodium and potassium, and nonthermally excited material such as n=2 hydrogen detected through Hα absorption. We also discuss directions for future work with the HET and the W[HE]2ATS2 program. This work is supported by the National Science Foundation through an Astronomy and Astrophysics Research Grant (AST-0903573). The Hobby-Eberly Telescope is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig

  19. High-resolution spectroscopy for Cepheids distance determination. IV. Time series of Hα line profiles

    NASA Astrophysics Data System (ADS)

    Nardetto, N.; Groh, J. H.; Kraus, S.; Millour, F.; Gillet, D.

    2008-10-01

    Context: In recent years, infrared interferometry has revealed the presence of faint dusty circumstellar envelopes (CSE) around Cepheids. However the size, shape, chemical nature, and the interaction of the CSE with the star itself are still under investigation. The presence of a CSE might have an effect on the angular diameter estimates used in the interferometric Baade-Wesselink and surface-brightness methods of determining the distance of Cepheids. Aims: By studying Hα profiles as a function of the period, we investigate the permanent mass loss and the CSE around Cepheids. Our high spectral- and time-resolution data, combined with a very good S/N, will be useful in constraining future hydrodynamical models of Cepheids atmosphere and their close environment. Methods: We present HARPS (High Accuracy Radial velocity Planetary Search project developed by the European Southern Observatory.) high-resolution spectroscopy (R = 120 000) of eight galactic Cepheids: R Tra, S Cru, Y Sgr, β Dor, zeta Gem, RZ Vel, ell Car, and RS Pup, providing a good period sampling (P = 3.39 d to P = 41.52 d). The Hα line profiles are described for all stars using a 2D (wavelength versus pulsation phase) representation. For each star, an average spectral line profile is derived, together with its first moment (γ-velocity) and its asymmetry (γ-asymmetry). Results: Short-period Cepheids show Hα line profiles following the pulsating envelope of the star, while long-period Cepheids show very complex line profiles and, in particular, large asymmetries. We find a new relationship between the period of Cepheids and their γ-velocities and -asymmetries. These results may be related to the dynamical structure of the atmosphere and to a permanent mass loss of Cepheids. In particular, we confirm for ell Car a dominant absorption component whose velocity is constant and nearly of zero km s-1 in the stellar rest frame. This component is attributed to the presence of circumstellar envelope

  20. Investigation of Exploding Wire Plasmas Using High Resolution Point Projection X-ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Knapp, Patrick

    2011-10-01

    We have determined the properties of plasma around and between two exploding wires using high-resolution x-ray absorption spectroscopy. Plasma densities and temperatures ranging from 1020 cm-3 and a few eV to 1017 cm-3 and 30 eV have been measured in experiments at Cornell University with two 25 μm aluminum (Al) wires spaced 1 mm apart driven by ~ 100 kA peak current pulses with 50 - 100 ns rise time. The wire plasma was backlit by the 1 . 4 - 1 . 6 keV continuum radiation produced by a Mo wire X-pinch. The spectrometer employed two spherically bent quartz crystals to record the absorption and backlighter spectra simultaneously. The transition between the dense Al wire core and the coronal plasma is seen as a transition from cold K-edge absorption to Mg-, Na- and finally Ne-like absorption at the boundary. In the plasma that accumulates between the wires, ionization states up to Be-Like Al have been seen. The spectrometer geometry and ~ 2 μm X-pinch source size provide 0 . 3 eV spectral resolution and 20 μm spatial resolution, enabling us to see 1 --> 2 satellite transitions as separate lines as well as O-, F- and N-like 1 --> 3 transitions that have not been seen before. A step wedge was used to calibrate the transmission, enabling density to be measured within 50 % and temperature to be measured within 25 % . A genetic algorithm was developed to fit synthetic spectra calculated using the collisional-radiative code SCRAM to the experimental spectra. In order to obtain agreement it was necessary to assume 3 plasma regions with variable thicknesses, thereby allowing the inferred plasma conditions to vary along the absorption path. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the National Nuclear Security Administration under DE-AC04-94AL85000 This research was carried out at Cornell University sponsored by the NNSA Stewardship Science Academic Alliances program under DOE agreement DE-FC03-02NA00057.

  1. A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate

    DOE PAGESBeta

    Liu, Peng; Zhang, Yanwen; Xue, Haizhou; Jin, Ke; Crespillo, Miguel L.; Wang, Xuelin; Weber, William J.

    2016-01-09

    Understanding irradiation effects induced by elastic energy loss to atomic nuclei and inelastic energy loss to electrons in a crystal, as well as the coupled effect between them, is a scientific challenge. Damage evolution in LiNbO3 irradiated by 0.9 and 21 MeV Si ions at 300 K has been studied utilizing Rutherford backscattering spectrometry in channeling mode. During the low-energy ion irradiation process, damage accumulation produced due to elastic collisions is described utilizing a disorder accumulation model. Moreover, low electronic energy loss is shown to induce observable damage that increases with ion fluence. For the same electronic energy loss, themore » velocity of the incident ion could affect the energy and spatial distribution of excited electrons, and therefore effectively modify the diameter of the ion track. Furthermore, nonlinear additive phenomenon of irradiation damage induced by high electronic energy loss in pre-damaged LiNbO3 has been observed. The result indicates that pre-existing damage induced from nuclear energy loss interacts synergistically with inelastic electronic energy loss to promote the formation of amorphous tracks and lead to rapid phase transformation, much more efficient than what is observed in pristine crystal solely induced by electronic energy loss. As a result, this synergistic effect is attributed to the fundamental mechanism that the defects produced by the elastic collisions result in a decrease in thermal conductivity, increase in the electron-phonon coupling, and further lead to higher intensity in thermal spike from intense electronic energy deposition along high-energy ion trajectory.« less

  2. Investigating Protostellar Carbon Reservoirs with High-Resolution Spectroscopy Toward Massive Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Smith, R. L.; Blake, G. A.; Boogert, A. C. A.; Pontoppidan, K. M.; Lockwood, A. C.

    2014-09-01

    High-resolution CO spectra toward massive YSOs reveal less dispersion in [12C16O]/[13C16O] gas compared to low-mass YSOs, while these ratios may be similarly affected by CO ice. Our new data suggest that CO2 may not originate from a CO reservoir.

  3. High-Resolution Vibration-Rotation Spectroscopy of CO[subscript 2]: Understanding the Boltzmann Distribution

    ERIC Educational Resources Information Center

    Castle, Karen J.

    2007-01-01

    In this undergraduate physical chemistry laboratory experiment, students acquire a high-resolution infrared absorption spectrum of carbon dioxide and use their data to show that the rotational-vibrational state populations follow a Boltzmann distribution. Data are acquired with a mid-infrared laser source and infrared detector. Appropriate…

  4. Magnetic dynamics studied by high-resolution electron spectroscopy and time-resolved electron microscopy

    NASA Astrophysics Data System (ADS)

    Jayaraman, Rajeswari

    Future information technology requires an increased magnetically encoded data density and novel electromagnetic modes of data transfer. While to date magnetic properties are observed and characterized mostly statically, the need emerges to monitor and capture their fast dynamics. In this talk, I will focus on the spin dynamics i.e. spin wave excitations and the dynamics of a new topological distribution of spins termed ``skyrmions''. Wave packets of spin waves offer the unique capability to transport a quantum bit, the spin, without the transport of charge or mass. Here, large wave-vector spin waves are of particular interest as they admit spin localization within a few nanometers. By using our recently developed electron energy loss spectrometer, we could study such spin waves in ultrathin films with an unprecedented energy resolution of 4 meV. By virtue of the finite penetration depth of low energy electrons, spin waves localized at interfaces between a substrate and a thin capping layer can be been studied yielding information about the exchange coupling between atoms at the interface. The quantization of spin waves with wave vectors perpendicular to the film gives rise to standing modes to which EELS has likewise access. Such studies when carried out as function of the film thickness again yield information on the layer dependence of the exchange coupling. Magnetic skyrmions are promising candidates as information carriers in logic or storage devices. Currently, little is known about the influence of disorder, defects, or external stimuli on the spatial distribution and temporal evolution of the skyrmion lattice. In this talk, I will describe the dynamical role of disorder in a large and flat thin film of Cu2OSeO3, exhibiting a skyrmion phase in an insulating material. We image up to 70,000 skyrmions by means of cryo-Lorentz Transmission Electron Microscopy as a function of the applied magnetic field. In the skyrmion phase, dislocations are shown to cause the

  5. Sensitivity enhancement in high resolution stimulated Raman spectroscopy of gases with hollow-core photonic crystal fibers.

    PubMed

    Doménech, José Luis; Cueto, Maite

    2013-10-15

    We show the first experimental evidence of the sensitivity enhancement that can be achieved in high resolution stimulated Raman spectroscopy of gases using hollow-core photonic crystal fibers (HCPCFs). Using low power cw lasers and a HCPCF containing the gas, we have observed more than four orders of magnitude enhancement of sensitivity when compared with the cw single focus regime, and a similar sensitivity to that achieved in the more sensitive quasi-cw setups with multipass cells. PMID:24321926

  6. Coordination defects in bismuth-modified arsenic selenide glasses: High-resolution x-ray photoelectron spectroscopy measurements

    SciTech Connect

    Golovchak, Roman; Shpotyuk, Oleh

    2008-05-01

    The possibility of coordination defects formation in Bi-modified chalcogenide glasses is examined by high-resolution x-ray photoelectron spectroscopy. The results provide evidence for the formation of positively charged fourfold coordinated defects on As and Bi sites in glasses with low Bi concentration. At high Bi concentration, mixed As{sub 2}Se{sub 3}-Bi{sub 2}Se{sub 3} nanocrystallites are formed in the investigated Se-rich As-Se glasses.

  7. Impact of potassium doping on the electronic structure of tetracene and pentacene: An electron energy-loss study.

    PubMed

    Roth, Friedrich; Knupfer, Martin

    2015-10-21

    We report the doping induced changes of the electronic structure of tetracene and pentacene probed by electron energy-loss spectroscopy in transmission. A comparison between the dynamic response of undoped and potassium-intercalated tetracene and pentacene emphasizes the appearance of a new excitation feature in the former gap upon potassium addition. Interestingly, the momentum dependency of this new excitation shows a negative dispersion. Moreover, the analysis of the C 1s and K 2p core-level excitation results in a significantly lower doping level compared to potassium doped picene, a recently discovered superconductor. Therefore, the present electronic structure investigations open a new pathway to better understand the exceptional differences between acenes and phenacene and their divergent behavior upon alkali doping. PMID:26493923

  8. Impact of potassium doping on the electronic structure of tetracene and pentacene: An electron energy-loss study

    NASA Astrophysics Data System (ADS)

    Roth, Friedrich; Knupfer, Martin

    2015-10-01

    We report the doping induced changes of the electronic structure of tetracene and pentacene probed by electron energy-loss spectroscopy in transmission. A comparison between the dynamic response of undoped and potassium-intercalated tetracene and pentacene emphasizes the appearance of a new excitation feature in the former gap upon potassium addition. Interestingly, the momentum dependency of this new excitation shows a negative dispersion. Moreover, the analysis of the C 1s and K 2p core-level excitation results in a significantly lower doping level compared to potassium doped picene, a recently discovered superconductor. Therefore, the present electronic structure investigations open a new pathway to better understand the exceptional differences between acenes and phenacene and their divergent behavior upon alkali doping.

  9. Impact of potassium doping on the electronic structure of tetracene and pentacene: An electron energy-loss study

    SciTech Connect

    Roth, Friedrich

    2015-10-21

    We report the doping induced changes of the electronic structure of tetracene and pentacene probed by electron energy-loss spectroscopy in transmission. A comparison between the dynamic response of undoped and potassium-intercalated tetracene and pentacene emphasizes the appearance of a new excitation feature in the former gap upon potassium addition. Interestingly, the momentum dependency of this new excitation shows a negative dispersion. Moreover, the analysis of the C 1s and K 2p core-level excitation results in a significantly lower doping level compared to potassium doped picene, a recently discovered superconductor. Therefore, the present electronic structure investigations open a new pathway to better understand the exceptional differences between acenes and phenacene and their divergent behavior upon alkali doping.

  10. High-resolution Infrared Spectroscopy of Starspots on RS CVn Stars

    NASA Astrophysics Data System (ADS)

    O'Neal, D.; Neff, J. E.; Saar, S. H.

    1997-12-01

    We present results from a study of magnetically active stars using the PHOENIX infrared spectrograph at KPNO. We constrain starspot coverages on RS CVn stars using high-resolution observations of two temperature-sensitive OH lines near 1.563mu m (6397 cm(-1) ). The use of these features holds two advantages over the TiO bands that we have used previously: the OH lines are visible in spots up to ~ 4500 K; and spots are much brighter, relative to the unspotted photosphere, in the infrared than in the visible. These properties also make these OH lines excellent candidates for the first Doppler imaging study to use high-resolution observations of infrared spectral features. Using the OH lines, we also search for previously unknown secondary stars in ``single-lined'' RS CVn binary systems, including II Pegasi (HD 224085).

  11. High-resolution multiple quantum MAS NMR spectroscopy of half-integer quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Wu, Gang; Rovnyank, David; Sun, Boqin; Griffin, Robert G.

    1996-02-01

    We demonstrate the utility of a two-pulse sequence in obtaining high-resolution solid state NMR spectra of half-integer quadrupolar nuclei with magic-angle-spinning (MAS). The experiment, which utilizes multiple/single-quantum correlation, was first described in a different form by Frydman and Harwood [J. Am. Chem. Soc. 117 (1995) 5367] and yields high-resolution isotropic NMR spectra where shifts are determined by the sum of resonance offset (chemical shift) and second-order quadrupolar effects. The two-pulse sequence described here is shown to provide a higher and more uniform excitation of multiple-quantum coherence than the three-pulse sequence used previously.

  12. Differential high-resolution stimulated CW Raman spectroscopy of hydrogen in a hollow-core fiber.

    PubMed

    Westergaard, Philip G; Lassen, Mikael; Petersen, Jan C

    2015-06-15

    We demonstrate sensitive high-resolution stimulated Raman measurements of hydrogen using a hollow-core photonic crystal fiber (HC-PCF). The Raman transition is pumped by a narrow linewidth (< 50 kHz) 1064 nm continuous-wave (CW) fiber laser. The probe light is produced by a homebuilt CW optical parametric oscillator (OPO), tunable from around 800 nm to 1300 nm (linewidth ∼ 5 MHz). These narrow linewidth lasers allow for an excellent spectral resolution of approximately 10(-4) cm(-1). The setup employs a differential measurement technique for noise rejection in the probe beam, which also eliminates background signals from the fiber. With the high sensitivity obtained, Raman signals were observed with only a few mW of optical power in both the pump and probe beams. This demonstration allows for high resolution Raman identification of molecules and quantification of Raman signal strengths. PMID:26193604

  13. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    SciTech Connect

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.; Maryland Univ., College Park, MD . Dept. of Chemistry and Biochemistry; Lawrence Berkeley Lab., CA )

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeI{alpha} (584{angstrom}) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As{sub 2}, As{sub 4}, and ZnCl{sub 2} are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab.

  14. High resolution mass spectroscopy for the characterization of complex, fossil organic mixtures

    SciTech Connect

    Winans, R.E.; Haas, G.W.; Kim, Y.L.; Hunt, J.E.

    1995-12-31

    The nature of molecules with heteroatom functionality in the Argonne Premium Coal Samples and petroleum samples is being explored using high resolution mass spectrometry (HRMS). Both desorption electron impact and desorption chemical ionization (DCI) are used to sample the mixtures. Structural information is obtained from tandem MS experiments using high resolution to select the ions to fragment. The first DCI HRMS spectra of complex mixtures will be shown. Quantitative aspects and the method for obtaining precise mass measurements in chemical ionization will be discussed. Molecular weight distribution determined by DCI are similar to those determined by laser desorption and field ionization mass spectrometry with very little ion intensity observed at greater than 1000 Daltons. Results will be correlated with other techniques such as NMR, XPS, and XANES.

  15. High resolution X- and gamma-ray spectroscopy of cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1983-01-01

    A high resolution X-ray spectrometer and large area phoswich detector were designed and co-aligned in a common elevation mounting in order to measure solar and cosmic X-ray and gamma ray emission in the 13 to 600 KeV energy range from a balloon. The instrument is described and results obtained for the Crab Nebula, the supernova remnant Cas A, and the Sun are discussed and analyzed.

  16. New High Resolution Spectroscopy Studies of Methyl Nitrite CH_3ONO

    NASA Astrophysics Data System (ADS)

    Sironneau, V.; Chelin, P.; Tchana, F. Kwabia; Kleiner, I.; Orphal, J.; Pirali, O.; Guillemin, J.-C.; Margules, L.; Motiyenko, R.; Cooke, S.; Youngblood, W. J.; Agnew, A.; Dewberry, C. T.

    2010-06-01

    Methyl nitrite CH3ONO is an important species in atmospheric chemistry involved in photochemical oxidation of volatile organic compounds. The cis conformer (more stable by about 298 cm-1) has a high internal rotation potential barrier for the methyl group (731 cm-1) whereas for the trans conformer the barrier to internal rotation is extremely low (10 cm-1), leading to large internal rotation splittings. Only one high resolution infrared study was performed prior to this study. For the first time, high-resolution spectrum of CH3ONO was recorded in the far infrared region (30-500 cm-1) using the synchrotron SOLEIL far-infrared beamline (AILES) and a Fourier transform (FT) spectrometer. Some 987 lines were assigned for the cis isomer up to J=65 and combined with 66 previously recorded microwave lines. In addition, high-resolution spectrum of the ν9 band of the cis isomer around 627.9 cm-1 was also recorded using the FT spectrometer at LISA. New microwave data is currently recorded to improve the knowledge of both the cis and trans ground state parameters. P. N. Gosh, A. Bauder and Hs. H. Gunthard, Chem. Phys. 53, 39-60 (1980) P. H. Turner, M. J. Corkill, and A. P. Cox, J. Chem. Phys. 83, 1473-1482 1979) L. M. Goss, C. D. Mortensen and T. A. Blake, J. Mol. Spectrosc., 225, 182-188 (2004)

  17. Effect of strain on low-loss electron energy loss spectra of group-III nitrides

    NASA Astrophysics Data System (ADS)

    Palisaitis, J.; Hsiao, C.-L.; Junaid, M.; Birch, J.; Hultman, L.; Persson, P. O. Å.

    2011-12-01

    Thin films of AlN experiencing different strain states were investigated with a scanning transmission electron microscope (STEM) by low-loss electron energy loss spectroscopy (EELS). The results conclude that the low-loss properties and in particular, the plasmon peak position is shifted as a direct consequence of the inherent strain of the sample. The results reveal that strain, even minor levels, can be measured by STEM-EELS. These results were further corroborated by full potential calculations and expanded to include the similar III nitrides GaN and InN. It is found that a unit-cell volume change of 1% results in a bulk plasmon peak shift of 0.159, 0.168, and 0.079 eV for AlN, GaN, and InN, respectively, according to simulations. The AlN peak shift was experimentally corroborated with a corresponding peak shift of 0.156 eV. The unit-cell volume is used here since it is found that regardless of in- and out-of-plane lattice augmentation, the low-loss properties appear near identical for constant volume. These results have an impact on the interpretation of the plasmon energy and its applicability for determining and separating stress and composition. It is found that while the bulk plasmon energy can be used as a measure of the composition in a group-III nitride alloy for relaxed structures, the presence of strain significantly affects such a measurement. The strain is found to have a lower impact on the peak shift for Al1-xInxN (˜3% compositional error per 1% volume change) and In1-xGaxN alloys compared to significant variations for Al1-xGaxN (16% compositional error for 1% volume change). Hence a key understanding in low-loss studies of III nitrides is that strain and composition are coupled and affect one another.

  18. Coherent Vibrational Dynamics and High-Resolution Nonlinear Spectroscopy: A Comparison with the Air/DMSO Liquid Interface

    SciTech Connect

    Velarde Ruiz Esparza, Luis A.; Lu, Zhou; Wang, Hongfei

    2013-12-27

    In this report we present a comparative study on the C-H stretching vibrations at air/DMSO (dimethyl sulfoxide) interface with both the free-induction decay (FID) coherent vibrational dynamics and sub-wavenumber high resolution sum-frequency generation vibrational spectroscopy measurements. In principle the frequency-domain and time-domain spectroscopic measurements should generate identical information for a given molecular system. However, when the molecular systems are with several coupled or overlapping vibrational modes, to obtain detailed spectroscopic and coherent dynamics information is not as straightforward and rather difficult from either the time-domain or the frequency domain measurements. For the case of air/DMSO interface that is with moderately complex vibrational spectra, we show that the frequency-domain measurement with sub-wavenumber high-resolution SFGVS is probably more advantageous than the time-domain measurement in obtaining quantitative understanding of the structure and coherent dynamics of the molecular interface.

  19. Use of a Continuous Wave Laser and Pockels Cell for Sensitive High-Resolution Collinear Resonance Ionization Spectroscopy

    NASA Astrophysics Data System (ADS)

    de Groote, R. P.; Budinčević, I.; Billowes, J.; Bissell, M. L.; Cocolios, T. E.; Farooq-Smith, G. J.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Heylen, H.; Li, R.; Lynch, K. M.; Marsh, B. A.; Neyens, G.; Rossel, R. E.; Rothe, S.; Stroke, H. H.; Wendt, K. D. A.; Wilkins, S. G.; Yang, X.

    2015-09-01

    New technical developments have led to a 2 orders of magnitude improvement of the resolution of the collinear resonance ionization spectroscopy (CRIS) experiment at ISOLDE, CERN, without sacrificing the high efficiency of the CRIS technique. Experimental linewidths of 20(1) MHz were obtained on radioactive beams of francium, allowing us for the first time to determine the electric quadrupole moment of the short lived [t1 /2=22.0 (5 ) ms ] 219Fr Qs=-1.21 (2 ) eb , which would not have been possible without the advantages offered by the new method. This method relies on a continuous-wave laser and an external Pockels cell to produce narrow-band light pulses, required to reach the high resolution in two-step resonance ionization. Exotic nuclei produced at rates of a few hundred ions/s can now be studied with high resolution, allowing detailed studies of the anchor points for nuclear theories.

  20. Use of a Continuous Wave Laser and Pockels Cell for Sensitive High-Resolution Collinear Resonance Ionization Spectroscopy.

    PubMed

    de Groote, R P; Budinčević, I; Billowes, J; Bissell, M L; Cocolios, T E; Farooq-Smith, G J; Fedosseev, V N; Flanagan, K T; Franchoo, S; Garcia Ruiz, R F; Heylen, H; Li, R; Lynch, K M; Marsh, B A; Neyens, G; Rossel, R E; Rothe, S; Stroke, H H; Wendt, K D A; Wilkins, S G; Yang, X

    2015-09-25

    New technical developments have led to a 2 orders of magnitude improvement of the resolution of the collinear resonance ionization spectroscopy (CRIS) experiment at ISOLDE, CERN, without sacrificing the high efficiency of the CRIS technique. Experimental linewidths of 20(1) MHz were obtained on radioactive beams of francium, allowing us for the first time to determine the electric quadrupole moment of the short lived [t_{1/2}=22.0(5) ms] ^{219}Fr Q_{s}=-1.21(2) eb, which would not have been possible without the advantages offered by the new method. This method relies on a continuous-wave laser and an external Pockels cell to produce narrow-band light pulses, required to reach the high resolution in two-step resonance ionization. Exotic nuclei produced at rates of a few hundred ions/s can now be studied with high resolution, allowing detailed studies of the anchor points for nuclear theories. PMID:26451548

  1. HIGH-RESOLUTION XMM-NEWTON SPECTROSCOPY OF THE COOLING FLOW CLUSTER A3112

    SciTech Connect

    Bulbul, G. Esra; Smith, Randall K.; Foster, Adam; Cottam, Jean; Loewenstein, Michael; Mushotzky, Richard; Shafer, Richard

    2012-03-01

    We examine high signal-to-noise XMM-Newton European Photon Imaging Camera (EPIC) and Reflection Grating Spectrometer (RGS) observations to determine the physical characteristics of the gas in the cool core and outskirts of the nearby rich cluster A3112. The XMM-Newton Extended Source Analysis Software data reduction and background modeling methods were used to analyze the XMM-Newton EPIC data. From the EPIC data, we find that the iron and silicon abundance gradients show significant increase toward the center of the cluster while the oxygen abundance profile is centrally peaked but has a shallower distribution than that of iron. The X-ray mass modeling is based on the temperature and deprojected density distributions of the intracluster medium determined from EPIC observations. The total mass of A3112 obeys the M-T scaling relations found using XMM-Newton and Chandra observations of massive clusters at r{sub 500}. The gas mass fraction f{sub gas} = 0.149{sup +0.036}{sub -0.032} at r{sub 500} is consistent with the seven-year Wilkinson Microwave Anisotropy Probe results. The comparisons of line fluxes and flux limits on the Fe XVII and Fe XVIII lines obtained from high-resolution RGS spectra indicate that there is no spectral evidence for cooler gas associated with the cluster with temperature below 1.0 keV in the central <38'' ({approx}52 kpc) region of A3112. High-resolution RGS spectra also yield an upper limit to the turbulent motions in the compact core of A3112 (206 km s{sup -1}). We find that the contribution of turbulence to total energy is less than 6%. This upper limit is consistent with the energy contribution measured in recent high-resolution simulations of relaxed galaxy clusters.

  2. High Resolution UV Emission Spectroscopy of Molecules Excited by Electron Impact

    NASA Technical Reports Server (NTRS)

    James, G. K.; Ajello, J. M.; Beegle, L.; Ciocca, M.; Dziczek, D.; Kanik, I.; Noren, C.; Jonin, C.; Hansen, D.

    1999-01-01

    Photodissociation via discrete line absorption into predissociating Rydberg and valence states is the dominant destruction mechanism of CO and other molecules in the interstellar medium and molecular clouds. Accurate values for the rovibronic oscillator strengths of these transitions and predissociation yields of the excited states are required for input into the photochemical models that attempt to reproduce observed abundances. We report here on our latest experimental results of the electron collisional properties of CO and N2 obtained using the 3-meter high resolution single-scattering spectroscopic facility at JPL.

  3. High resolution spectroscopy of the new FU Orionis object BBW 76

    NASA Astrophysics Data System (ADS)

    Eisloeffel, J.; Hessman, F. V.; Mundt, R.

    1990-06-01

    High-resolution spectra of the new FU Orionis object BBW 76 are presented. Although the photometric outburst of this FU Orionis object could not be observed, its spectral characteristics clearly identify it as belonging to this class. BBW 76 shows Balmer line profiles typical for FU Orionis stars. Its absorption line spectrum and, in particular, the line widths are strikingly similar to that of FU Ori. Other similarities to FU Ori are the presence of an arclike nebula, and the FIR luminosities and color temperatures.

  4. High-resolution spectroscopy with the multi-anode microchannel array detector systems

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Joseph, C. L.; Wolf, S. C.

    1982-01-01

    The results of a series of high-resolution spectroscopic observations undertaken with a linear (1 x 1024)-pixel visible-light Multi-Anode Microchannel Array (MAMA) detector on the Coudespectrograph of the 2.2-meter telescope at the Mauna Kea Observatory and on the vacuum spectrograph of the McMath Solar telescope at the Kitt Peak National Observatory are described. In addition, the two-dimensional MAMA detector systems with (16 x 1024)-pixel, (24 x 1024)-pixel, and (256 x 1024)-pixel formats which are now being readied for use in a series of ground-based, balloon, and sounding-rocket observing programs are briefly described.

  5. Synthesis, High-Resolution Infrared Spectroscopy, and Vibrational Structure of Cubane, C8H8.

    PubMed

    Boudon, V; Lamy, M; Dugue-Boyé, F; Pirali, O; Gruet, S; D'Accolti, L; Fusco, C; Annese, C; Alikhani, M E

    2016-06-30

    Carbon-cage molecules have generated a considerable interest from both experimental and theoretical points of view. We recently performed a high-resolution study of adamantane (C10H16), the smallest hydrocarbon cage belonging to the diamandoid family ( Pirali , O. ; et al. J. Chem. Phys. 2012 , 136 , 024310 ). There exist another family of hydrocarbon cages with additional interesting chemical properties: the so-called platonic hydrocarbons that comprise dodecahedrane (C20H20) and cubane (C8H8). Both possess C-C bond angles that deviate from the tetrahedral angle (109.8°) of the sp(3) hybridized form of carbon. This generates a considerable strain in the molecule. We report a new wide-range high-resolution study of the infrared spectrum of cubane. The sample was synthesized in Bari upon decarboxylation of 1,4-cubanedicarboxylic acid thanks to the improved synthesis of literature. Several spectra have been recorded at the AILES beamline of the SOLEIL synchrotron facility. They cover the 600-3200 cm(-1) region. Besides the three infrared-active fundamentals (ν10, ν11, and ν12), we could record many combination bands, all of them displaying a well-resolved octahedral rotational structure. We present here a preliminary analysis of some of the recorded bands, performed thanks the SPVIEW and XTDS software, based on the tensorial formalism developed in the Dijon group. A comparison with ab initio calculations, allowing to identify some combination bands, is also presented. PMID:27267150

  6. Spatially resolved high resolution x-ray spectroscopy for magnetically confined fusion plasmas (invited)

    SciTech Connect

    Ince-Cushman, A.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Marmar, E. S.; Bitter, M.; Hill, K. W.; Scott, S.; Gu, M. F.; Eikenberry, E.; Broennimann, Ch.; Lee, S. G.

    2008-10-15

    The use of high resolution x-ray crystal spectrometers to diagnose fusion plasmas has been limited by the poor spatial localization associated with chord integrated measurements. Taking advantage of a new x-ray imaging spectrometer concept [M. Bitter et al., Rev. Sci. Instrum. 75, 3660 (2004)], and improvements in x-ray detector technology [Ch. Broennimann et al., J. Synchrotron Radiat. 13, 120 (2006)], a spatially resolving high resolution x-ray spectrometer has been built and installed on the Alcator C-Mod tokamak. This instrument utilizes a spherically bent quartz crystal and a set of two dimensional x-ray detectors arranged in the Johann configuration [H. H. Johann, Z. Phys. 69, 185 (1931)] to image the entire plasma cross section with a spatial resolution of about 1 cm. The spectrometer was designed to measure line emission from H-like and He-like argon in the wavelength range 3.7 and 4.0 A with a resolving power of approximately 10 000 at frame rates up to 200 Hz. Using spectral tomographic techniques [I. Condrea, Phys. Plasmas 11, 2427 (2004)] the line integrated spectra can be inverted to infer profiles of impurity emissivity, velocity, and temperature. From these quantities it is then possible to calculate impurity density and electron temperature profiles. An overview of the instrument, analysis techniques, and example profiles are presented.

  7. High-resolution subtyping of Staphylococcus aureus strains by means of Fourier-transform infrared spectroscopy.

    PubMed

    Johler, Sophia; Stephan, Roger; Althaus, Denise; Ehling-Schulz, Monika; Grunert, Tom

    2016-05-01

    Staphylococcus aureus causes a variety of serious illnesses in humans and animals. Subtyping of S. aureus isolates plays a crucial role in epidemiological investigations. Metabolic fingerprinting by Fourier-transform infrared (FTIR) spectroscopy is commonly used to identify microbes at species as well as subspecies level. In this study, we aimed to assess the suitability of FTIR spectroscopy as a tool for S. aureus subtyping. To this end, we compared the subtyping performance of FTIR spectroscopy to other subtyping methods such as pulsed field gel electrophoresis (PFGE) and spa typing in a blinded experimental setup and investigated the ability of FTIR spectroscopy for identifying S. aureus clonal complexes (CC). A total of 70 S. aureus strains from human, animal, and food sources were selected, for which clonal complexes and a unique virulence and resistance gene pattern had been determined by DNA microarray analysis. FTIR spectral analysis resulted in high discriminatory power similar as obtained by spa typing and PFGE. High directional concordance was found between FTIR spectroscopy based subtypes and capsular polysaccharide expression detected by FTIR spectroscopy and the cap specific locus, reflecting strain specific expression of capsular polysaccharides and/or other surface glycopolymers, such as wall teichoic acid, peptidoglycane, and lipoteichoic acid. Supervised chemometrics showed only limited possibilities for differentiation of S. aureus CC by FTIR spectroscopy with the exception of CC45 and CC705. In conclusion, FTIR spectroscopy represents a valuable tool for S. aureus subtyping, which complements current molecular and proteomic strain typing. PMID:27021524

  8. High-Resolution Infrared Spectroscopy of Cubane, C_8H_8

    NASA Astrophysics Data System (ADS)

    Boudon, Vincent; Pirali, Olivier; Gruet, Sébastien; D'accolti, Lucia; Fusco, Caterina; Annese, Cosimo

    2014-06-01

    Carbon-cage molecules have generated a considerable interest from both experimental and theoretical point of views. We recently performed a high-resolution study of adamantane (C10H16), the smallest hydrocarbon cage belonging to the diamandoid family. There exist another family of hydrocarbon cages with additional interesting chemical properties: the so-called Platonic hydrocarbons that comprise dodecahedrane (C20H20) and cubane (C_8H_8). Both possess C-C bond angles that deviate from the tetrahedral angle (109.8°) of the sp^3 hybridized form of carbon. This generates a considerable strain in the molecule. Cubane itself has the highest density of all hydrocarbons (1.29 g/cm^3). This makes it able to store larges amounts of energy, although the molecule is fully stable. Up to now, only one high-resolution study of cubane has been performed on a few bands [2]. We report here a new wide-range high-resolution study of the infrared spectrum of cubane. The sample was synthesized in Bari upon decarboxylation of 1,4-cubanedicarboxylic acid thanks to the improved synthesis of literature [3]; its {}1H and 13C NMR, FTIR, and mass spectrometry agreed with reported data [4]. Several spectra have been recorded at the AILES beamline of the SOLEIL French synchrotron facility. They cover the 800 to 3100 cm-1 region. Besides the three infrared-active fundamentals (ν10, ν11 and ν12), we could record many combination bands, all of them displaying a well-resolved octahedral rotational structure. We present here a preliminary analysis of some of the recorded bands, performed thanks the SPVIEW and XTDS software, based on the tensrorial formalism developed in the Dijon group [5]. [1] O. Pirali, V. Boudon, J. Oomens, M. Vervloet, J. Chem. Phys., 136, 024310 (2012). [2] A. S. Pine, A. G. Maki, A. G. Robiette, B. J. Krohn, J. K. G. Watson, Th. Urbanek, J. Am. Chem. Soc., 106, 891-897 (1984). [3] P. E. Eaton, N. Nordari, J. Tsanaktsidis, P. S. Upadhyaya, Synthesis, 1, 501, (1995). [4] E

  9. High resolution infrared spectroscopy: Some new approaches and applications to planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.

    1978-01-01

    The principles of spectral line formation and of techniques for retrieval of atmospheric temperature and constituent profiles are discussed. Applications to the atmospheres of Earth, Mars, Venus, and Jupiter are illustrated by results obtained with Fourier transform and infrared heterodyne spectrometers at resolving powers (lambda/delta hyperon lambda of approximately 10,000 and approximately 10 to the seventh power), respectively, showing the high complementarity of spectroscopy at these two widely different resolving powers. The principles of heterodyne spectroscopy are presented and its applications to atmospheric probing and to laboratory spectroscopy are discussed. Direct absorption spectroscopy with tuneable semiconductor lasers is discussed in terms of precision frequency-and line strength-measurements, showing substantial advances in laboratory infrared spectroscopy.

  10. Single particle plasmon spectroscopy of silver nanowires and gold nanorods.

    SciTech Connect

    N'Gom, M.; Ringnalda, J.; Mansfield, J. F.; Agarwal, A.; Kotov, N.; Zaluzec, N. J.; Norris, T. B.; Materials Science Division; Univ. of Michigan at Ann Arbor; Ohio State Univ.

    2008-01-01

    The excitation of surface plasmons in individual silver nanowires and gold nanorods is investigated by means of high-resolution electron energy loss spectroscopy in a transmission electron microscope. The transverse and longitudinal modes of these nanostructures are resolved, and the size variation of the plasmon peaks is studied. The effect of electromagnetic coupling between closely spaced nanoparticles is also observed. Finally, the relation between energy-loss measurements and optical spectroscopy of nanoparticle plasmon modes is discussed.

  11. High-resolution photoassociation spectroscopy of the 6Li2 A(11Σu+) state

    NASA Astrophysics Data System (ADS)

    Gunton, Will; Semczuk, Mariusz; Dattani, Nikesh S.; Madison, Kirk W.

    2013-12-01

    We present spectroscopic measurements of seven vibrational levels v=29-35 of the A(11Σu+) excited state of Li2 molecules by the photoassociation of a degenerate Fermi gas of 6Li atoms. The absolute uncertainty of our measurements is ±0.00002 cm-1 (±600 kHz) and we use these new data to further refine an analytic potential for this state. This work provides high accuracy photoassociation resonance locations essential for the eventual high-resolution mapping of the X(11Σg+) state enabling further improvements to the s-wave scattering length determination of Li and enabling the eventual creation of ultracold ground-state 6Li2 molecules.

  12. High-resolution spectroscopy and mode identification in non-radially pulsating stars

    NASA Astrophysics Data System (ADS)

    Pollard, K. R.; Wright, D. J.; Zima, W.; Cottrell, P. L.; De Cat, P.

    2008-12-01

    We have obtained high-resolution spectroscopic data of a sample of non-radially pulsating stars with the HERCULES spectrograph on the 1.0-m telescope at the Mt John University Observatory in New Zealand. We have developed and used a new technique which cross- correlates stellar spectra with scaled delta function templates to obtain high signal-to-noise representative spectral line profiles for further analysis. Using these profiles, and employing the Fourier Parameter Fit method, we have been able to place constraints on the degree, ℓ, and azimuthal order, m, of the non-radial pulsation modes in one β Cephei star, V2052 Oph and two γ Doradus stars, QW Pup and HD 139095.

  13. High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited).

    PubMed

    Forrest, C J; Radha, P B; Glebov, V Yu; Goncharov, V N; Knauer, J P; Pruyne, A; Romanofsky, M; Sangster, T C; Shoup, M J; Stoeckl, C; Casey, D T; Gatu-Johnson, M; Gardner, S

    2012-10-01

    The areal density (ρR) of cryogenic DT implosions on Omega is inferred by measuring the spectrum of neutrons that elastically scatter off the dense deuterium (D) and tritium (T) fuel. Neutron time-of-flight (nTOF) techniques are used to measure the energy spectrum with high resolution. High signal-to-background data has been recorded on cryogenic DT implosions using a well-collimated 13.4-m line of sight and an nTOF detector with an advanced liquid scintillator compound. An innovative method to analyze the elastically scattered neutron spectra was developed using well-known cross sections of the DT nuclear reactions. The estimated areal densities are consistent with alternative ρR measurements and 1-D simulations. PMID:23126921

  14. High-resolution NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids.

    PubMed

    Nucci, Nathaniel V; Valentine, Kathleen G; Wand, A Joshua

    2014-04-01

    High-resolution multi-dimensional solution NMR is unique as a biophysical and biochemical tool in its ability to examine both the structure and dynamics of macromolecules at atomic resolution. Conventional solution NMR approaches, however, are largely limited to examinations of relatively small (<25kDa) molecules, mostly due to the spectroscopic consequences of slow rotational diffusion. Encapsulation of macromolecules within the protective nanoscale aqueous interior of reverse micelles dissolved in low viscosity fluids has been developed as a means through which the 'slow tumbling problem' can be overcome. This approach has been successfully applied to diverse proteins and nucleic acids ranging up to 100kDa, considerably widening the range of biological macromolecules to which conventional solution NMR methodologies may be applied. Recent advances in methodology have significantly broadened the utility of this approach in structural biology and molecular biophysics. PMID:24656086

  15. High resolution FTIR spectroscopy of 1,1,1,2-tetrafluoroethane: ν6

    NASA Astrophysics Data System (ADS)

    Thompson, Christopher D.; Robertson, Evan G.; Evans, Corey J.; McNaughton, Don

    2003-03-01

    High resolution FTIR spectra of 1,1,1,2-tetrafluoromethane (R134a) were recorded using both an enclosive flow cell and a supersonic jet expansion. The temperature in the collisionally cooled enclosive flow was approximately 150 K, whilst in the jet a rotational temperature of 65 K was achieved. A rovibrational analysis was performed for ν6, an a/b hybrid band at 1104.5 cm-1. Least squares fits were used to derive effective rotational and centrifugal distortion constants for ν6 using a total of 799 assigned transitions with quantum numbers up to Ka=21 and J=32. A second fit is presented considering the Coriolis interactions with two dark state combination bands perturbing the rotational structure of the fundamental, fitting a total of 1118 lines and with quantum numbers up to Ka=21 and J=42.

  16. High resolution gamma-ray spectroscopy applied to bulk sample analysis

    SciTech Connect

    Kosanke, K.L.; Koch, C.D.; Wilson, R.D.

    1980-01-01

    A high resolution Ge(Li) gamma-ray spectrometer has been installed and made operational for use in routine bulk sample analysis by the Bendix Field Engineering Corporation (BFEC) geochemical analysis department. The Ge(Li) spectrometer provides bulk sample analyses for potassium, uranium, and thorium that are superior to those obtained by the BFEC sodium iodide spectrometer. The near term analysis scheme permits a direct assay for uranium that corrects for bulk sample self-absorption effects and is independent of the uranium/radium disequilibrium condition of the sample. A more complete analysis scheme has been developed that fully utilizes the gamma-ray data provided by the Ge(Li) spectrometer and that more properly accounts for the sample self-absorption effect. This new analysis scheme should be implemented on the BFEC Ge(Li) spectrometer at the earliest date.

  17. High-resolution spectroscopy of jet-cooled CH{sub 5}{sup +}: Progress

    SciTech Connect

    Savage, C.; Dong, F.; Nesbitt, D. J.

    2015-01-22

    Protonated methane (CH{sub 5}{sup +}) is thought to be a highly abundant molecular ion in interstellar medium, as well as a potentially bright μwave- mm wave emitter that could serve as a tracer for methane. This paper describes progress and first successful efforts to obtain a high resolution, supersonically cooled spectrum of CH{sub 5}{sup +} in the 2900-3100 cm{sup −1} region, formed in a slit supersonic discharge at low jet temperatures and with sub-Doppler resolution. Short term precision in frequency measurement (< 5 MHz on an hour time scale) is obtained from a thermally controlled optical transfer cavity servoloop locked onto a frequency stabilized HeNe laser. Long term precision (< 20 MHz day-to-day) due to pressure, temperature and humidity dependent index of refraction effects in the optical transfer cavity is also present and discussed.

  18. High Resolution Near-IR Spectroscopy of Protostars With Large Telescopes

    NASA Technical Reports Server (NTRS)

    Greene, Tom; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    It is now possible to measure absorption spectra of Class I protostars using D greater than or = 8m telescopes equipped with sensitive cryogenic IR spectrographs. Our latest high-resolution (R approx. 20,000) Keck data reveal that Class I protostars are indeed low-mass stars with dwarf-like features. However, they differ from T Tauri stars in that Class I protostars have much higher IR veilings (tau(sub k) greater than or = 1 - 3+) and they are rotating quickly, v sin i greater than 20 km/s. Interestingly, the vast majority of protostellar absorption spectra show stellar - not disk - absorption features. A preliminary H-R diagram suggests that protostellar photospheres may have different physical structures than T Tauri stars, perhaps due to their higher accretion rates.

  19. High-Resolution Threshold Photoionization and Photoelectron Spectroscopy of Propene and 2-BUTYNE

    NASA Astrophysics Data System (ADS)

    Michaud, Julie M.; Vasilatou, Konstantina; Merkt, Frédéric

    2009-06-01

    The high-resolution photoionization and pulsed-field ionization zero-kinetic energy (PFI-ZEKE) photoelectron spectra of propene and 2-butyne and their perdeuterated isotopologues have been recorded in the vicinity of the first adiabatic ionization energy following single-photon excitation from the neutral ground state using a narrowband vacuum ultraviolet laser system. The spectral resolution of better than 0.1 cm^{-1} achieved in these spectra has enabled us to partially resolve the rotational structure of the photoelectron spectra and to obtain information on the internal rotation/torsional vibration of the methyl groups in the cationic ground state. The intensity distributions observed in the photoelectron spectra will be discussed in terms of rovibronic photoionization selection rules and Franck-Condon factors for transitions between the neutral and ionized molecules.

  20. High-resolution NMR spectroscopy of biological tissues usingprojected Magic Angle Spinning

    SciTech Connect

    Martin, Rachel W.; Jachmann, Rebecca C.; Sakellariou, Dimitris; Nielsen, Ulla Gro; Pines, Alexander

    2005-01-27

    High-resolution NMR spectra of materials subject toanisotropic broadening are usually obtained by rotating the sample aboutthe magic angle, which is 54.7 degrees to the static magnetic field. Inprojected Magic Angle Spinning (p-MAS), the sample is spun about twoangles, neither of which is the magic angle. This provides a method ofobtaining isotropic spectra while spinning at shallow angles. The p-MASexperiment may be used in situations where spinning the sample at themagic angle is not possible due to geometric or other constraints,allowing the choice of spinning angle to be determined by factors such asthe shape of the sample, rather than by the spin physics. The applicationof this technique to bovine tissue samples is demonstrated as a proof ofprinciple for future biological or medical applications.

  1. High-resolution NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids

    NASA Astrophysics Data System (ADS)

    Nucci, Nathaniel V.; Valentine, Kathleen G.; Wand, A. Joshua

    2014-04-01

    High-resolution multi-dimensional solution NMR is unique as a biophysical and biochemical tool in its ability to examine both the structure and dynamics of macromolecules at atomic resolution. Conventional solution NMR approaches, however, are largely limited to examinations of relatively small (<25 kDa) molecules, mostly due to the spectroscopic consequences of slow rotational diffusion. Encapsulation of macromolecules within the protective nanoscale aqueous interior of reverse micelles dissolved in low viscosity fluids has been developed as a means through which the ‘slow tumbling problem' can be overcome. This approach has been successfully applied to diverse proteins and nucleic acids ranging up to 100 kDa, considerably widening the range of biological macromolecules to which conventional solution NMR methodologies may be applied. Recent advances in methodology have significantly broadened the utility of this approach in structural biology and molecular biophysics.

  2. High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited)

    SciTech Connect

    Forrest, C. J.; Radha, P. B.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Pruyne, A.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J. III; Stoeckl, C.; Casey, D. T.; Gatu-Johnson, M.; Gardner, S.

    2012-10-15

    The areal density ({rho}R) of cryogenic DT implosions on Omega is inferred by measuring the spectrum of neutrons that elastically scatter off the dense deuterium (D) and tritium (T) fuel. Neutron time-of-flight (nTOF) techniques are used to measure the energy spectrum with high resolution. High signal-to-background data has been recorded on cryogenic DT implosions using a well-collimated 13.4-m line of sight and an nTOF detector with an advanced liquid scintillator compound. An innovative method to analyze the elastically scattered neutron spectra was developed using well-known cross sections of the DT nuclear reactions. The estimated areal densities are consistent with alternative {rho}R measurements and 1-D simulations.

  3. High-resolution photoassociation spectroscopy of ultracold ytterbium atoms by using the intercombination transition.

    PubMed

    Tojo, Satoshi; Kitagawa, Masaaki; Enomoto, Katsunari; Kato, Yutaka; Takasu, Yosuke; Kumakura, Mitsutaka; Takahashi, Yoshiro

    2006-04-21

    We observed high-resolution photoassociation spectra of laser-cooled ytterbium (Yb) atoms in the spin-forbidden 1S0 - 3P1 intercombination line. The rovibrational levels in the 0u+ state were measured for red detunings of the photoassociation laser ranging from 2.9 MHz to 1.97 GHz with respect to the atomic resonance. The rotational splitting of the vibrational levels near the dissociation limit were fully resolved due to the sub-MHz linewidth of the spectra in contrast to previous measurements using the spin-allowed singlet transition. In addition, from a comparison between the spectra of 174Yb and those of 176Yb, a d-wave shape resonance for 174Yb is strongly suggested. PMID:16712155

  4. CARMENES at PPVI. High-Resolution Spectroscopy of M Dwarfs with FEROS, CAFE and HRS

    NASA Astrophysics Data System (ADS)

    Alonso-Floriano, F. J.; Montes, D.; Jeffers, S.; Caballero, J. A.; Zechmeister, M.; Mundt, R.; Reiners, A.; Amado, P. J.; Casal, E.; Cortés-Contreras, M.; Modroño, Z.; Ribas, I.; Rodríguez-López, C.; Quirrenbach, A.

    2013-07-01

    To ensure an efficient use of CARMENES observing time, and the highest chances of success, it is necessary first to select the most promising targets. To achieve this, we are observing ~500 M dwarfs at high-resolution (R = 30,000-48,000), from which we determine the projected rotational velocity vsini with an accuracy better than 0.5-0.2 km/s and radial-velocity stability better than 0.2-0.1 km/s. Our aim is to have at least two spectra at different epochs of the final 300 CARMENES targets. Our observations with FEROS at ESO/MPG 2.2m La Silla , CAFE at 2.2m Calar Alto and HRS at Hobby Eberly Telescope allow us to identify single- and double-line spectroscopic binaries and, especially, fast rotators, which should be discarded from the target list for exoplanet searches. Here we present preliminary results.

  5. An atomic beam of 6Li — 7Li for high resolution spectroscopy from matrix isolation sublimation

    NASA Astrophysics Data System (ADS)

    Oliveira, A. N.; Sacramento, R. L.; Silva, B. A.; Uhlmann, F. O.; Wolff, W.; Cesar, C. L.

    2016-07-01

    We propose the Matrix Isolation Sublimation (MlSu) technique for generating cold lithium atoms for the measurement of the 6Li - 7Li isotope shift in D1 and D2 transitions. The technique is capable of generating cold 6Li and 7Li beams at 4 K with forward velocity of 125 m/s. Using this beam we offer a distinguished source of lithium atoms for transitions measurements, adding a new possibility to make high resolution spectroscopy towards improving the experimental checks of the theory.

  6. High-resolution Inductively Coupled Plasma--Atomic Emission Spectroscopy applied to problems in Nuclear Waste Management

    SciTech Connect

    Edelson, M.C.; Winge, R.K.; Eckels, D.E. ); Douglas, J.G. )

    1990-01-01

    High-resolution Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) is a variant of the more conventional ICP-AES that is widely used for environmental monitoring. The relevance of high-resolution capabilities of three such analytical problems are discussed herein. (1) Pu in very complex, radioactive matrices can be determined with good accuracy without the need for prior chemical separations. Isotopically resolved spectra from actinides in fuel dissolver solutions can be obtained after a simple ion-exchange step. (2) High-resolution methods permit the simultaneous determination of fission products and actinides in simulated high-level nuclear waste solutions. Such measurements can be useful for both safeguards and waste processing. (3) The ICP-AES technique, with a photodiode array detector, can be used to determine the composition of nuclear waste glasses. Such measurements can assist the glass producer as well as providing predictors of nuclear waste form performance in a repository. 16 refs., 5 figs., 4 tabs.

  7. High Resolution X-Ray Absorption Spectroscopy: Distribution of Matter in and around Galaxies

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert; MIT/CAT Team

    2015-10-01

    The chemical evolution of the Universe embraces aspects that reachdeep into modern astrophysics and cosmology. We want to know how present and past matter is affected by various levels and types of nucleo-synthesis and stellar evolution. Three major categories were be identified: 1. The study of pre-mordial star formation including periods of super-massive black hole formation, 2. The embedded evolution of the intergalactic medium IGM, 3. The status and evolution of stars and the interstellar medium ISM in galaxies. Today a fourth category relates to our understanding of dark matter in relationwith these three categories. The X-ray band is particularly sensitive to K- and L-shell absorption and scattering from high abundant elements like C, N, O, Ne, Mg, Si, S,Ar, Ca, Fe, and Ni. Like the Lyman alpha forest in the optical band, absorbers in the IGM produce an X-ray line forest along the line of sight in the X-rayspectrum of a background quasar. Similary bright X-ray sources within galaxies and the Milky Way produce a continuum, which is being absorbed by elements invarious phases of the ISM. High resolution X-ray absorption surveys are possible with technologies ready for flight within decade. == high efficiency X-ray optics with optical performance 3== high resolution X-ray gratings with R 3000 for E 1.5 keV== X-ray micro-calorimeters with R 2000 for E 1.5 keV. The vision for the next decade needs to lead to means and strategies which allows us to perform such absorption surveys as effectively as surveys are now or in very near future quite common in astronomy pursued in other wave length bands such as optical, IR, and sub-mm.

  8. Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy.

    PubMed

    Kuse, Naoya; Ozawa, Akira; Kobayashi, Yohei

    2013-05-01

    We demonstrate a fiber Bragg grating (FBG) strain sensor with optical frequency combs. To precisely characterize the optical response of the FBG when strain is applied, dual-comb spectroscopy is used. Highly sensitive dual-comb spectroscopy of the FBG enabled strain measurements with a resolution of 34 nε. The optical spectral bandwidth of the measurement exceeds 1 THz. Compared with conventional FBG strain sensor using a continuous-wave laser that requires rather slow frequency scanning with a limited range, the dynamic range and multiplexing capability are significantly improved by using broadband dual-comb spectroscopy. PMID:23669971

  9. High resolution Raman spectroscopy of complexes and clusters in molecular beams

    SciTech Connect

    Felker, P.M.

    1991-01-01

    The DOE-sponsored project in this laboratory has two facets. The first is the development of methods of nonlinear Raman spectroscopy for application in studies of sparse samples. The second is the application of such methods to structural and dynamical studies of species in supersonic molecular beams. The progress we have made in both of these areas is described in this paper. The report is divided into five remaining sections. The first pertains to theoretical and experimental developments in Fourier transform stimulated emission spectroscopy and Fourier transform hole-burning spectroscopy. The second deals with progress in the development of ionization-detected stimulated Raman spectroscopies (IDSRS). The third describes results from the application of IDSRS methods to studies of jet-cooled benzene clusters. The fourth describes IDSRS results from studies of hydrogen-bonded complexes containing phenols. The fifth relates to studies of carbazole-(Ar){sub n} clusters.

  10. Quantitative high-resolution on-line NMR spectroscopy in reaction and process monitoring.

    PubMed

    Maiwald, Michael; Fischer, Holger H; Kim, Young-Kyu; Albert, Klaus; Hasse, Hans

    2004-02-01

    On-line nuclear magnetic resonance spectroscopy (on-line NMR) is a powerful technique for reaction and process monitoring. Different set-ups for direct coupling of reaction and separation equipment with on-line NMR spectroscopy are described. NMR spectroscopy can be used to obtain both qualitative and quantitative information from complex reacting multicomponent mixtures for equilibrium or reaction kinetic studies. Commercial NMR probes can be used at pressures up to 35 MPa and temperatures up to 400 K. Applications are presented for studies of equilibria and kinetics of complex formaldehyde-containing mixtures as well as homogeneously and heterogeneously catalyzed esterification kinetics. Direct coupling of a thin-film evaporator is described as an example for the benefits of on-line NMR spectroscopy in process monitoring. PMID:14729025

  11. High resolution Raman spectroscopy of complexes and clusters in molecular beams. Performance report

    SciTech Connect

    Felker, P.M.

    1991-12-31

    The DOE-sponsored project in this laboratory has two facets. The first is the development of methods of nonlinear Raman spectroscopy for application in studies of sparse samples. The second is the application of such methods to structural and dynamical studies of species in supersonic molecular beams. The progress we have made in both of these areas is described in this paper. The report is divided into five remaining sections. The first pertains to theoretical and experimental developments in Fourier transform stimulated emission spectroscopy and Fourier transform hole-burning spectroscopy. The second deals with progress in the development of ionization-detected stimulated Raman spectroscopies (IDSRS). The third describes results from the application of IDSRS methods to studies of jet-cooled benzene clusters. The fourth describes IDSRS results from studies of hydrogen-bonded complexes containing phenols. The fifth relates to studies of carbazole-(Ar){sub n} clusters.

  12. Cassini UVIS Solar Zenith Angle Studies of Titan Dayglow Based on N2 High Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ajello, Joseph; West, Robert; Holsclaw, Greg; Royer, Emilie; Heays, Alan; Bradley, Todd; Stevens, Michael

    2014-11-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan’s day and night limb-airglow on multiple occasions, including during an eclipse observation. On one occasion the UVIS made a Solar Zenith Angle (SZA) study of the Titan limb dayglow (2011 DOY 171) from about 70 to 95 degrees SZA. The UV intensity variation observations of the N2 photoelectron excited spectral features from the EUV (563-118.2 nm) and FUV (111.5-191.2nm) sub-systems followed a Chapman function. For other observations at night on the limb, the emission features are much weaker in intensity. Beyond 120 deg SZA, when the upper atmosphere of Titan below 1200 km is in total XUV darkness, there is an indication of weak and sporadic night side UV airglow emission excited by magnetosphere plasma collisions with ambient thermosphere gas, with similar N2 excited features as above in the daylight or twilight glow over an extended altitude range. We have analyzed the UVIS airglow spectra with models based on high resolution laboratory electron impact induced fluorescence spectra. We have measured high-resolution (FWHM = 0.2 Å) extreme-ultraviolet (EUV, 800-1350 Å) laboratory emission spectra of molecular nitrogen excited by electron impact at 20 and 100 eV. Molecular emission was observed to vibrationally-excited ground state levels as high as v''=17, from the a 1Πg , b 1Πu, and b‧ 1Σu+ excited valence states and the Rydberg series c‧n+1 1Σu+, cn 1Πu and o 1Πu for n between 3 and 9. A total of 491 emission features were observed from N2 electronic-vibrational transitions and atomic N I and N II multiplets. Their emission cross sections were measured.The blended molecular emission bands were disentangled with the aid of a model which solves the coupled-Schroedinger equation

  13. High Resolution Spectroscopy in the Non-thermal Infrared: Use of an Existing Coude System

    NASA Astrophysics Data System (ADS)

    Basri, Gibor; Marcy, Geoffrey W.

    1993-05-01

    We describe a recent effort to use a NICMOS 3 chip as the detector on the 160" coude spectrograph camera at Lick Observatory. This new instrument (IRCS) has a useful spectral range of 1-2mu with spectral coverage in one exposure of about 25 Angstroms, and resolutions up to 75000. We have successfully obtained astronomical observations with essentially no modification of the (uncooled) spectrograph, using an existing grating blazed at 1.22mu , and a dewar without optics (but containing a filter) easily mounted at the position of the old photographic plates. The throughput of the system is very high. Its sensitivity is primarily limited by the background from the warm spectrograph. Using filters with 0.1mu bandwidth, the expected background is negligible below 1.5mu , but limits exposures to one minute near 2mu . With an optimized dewar, one can remain photon (rather than background) limited down to 10th magnitude even at 2mu . Our current system (using a test dewar and engineering grade chip) has been tested at 1.6mu . We have operated with and without an image slicer. We show spectra and discuss the current successes and problems. Our first application is to study the Zeeman--sensitive line at 1.56mu at high resolution. We expect to be able to achieve S/N of 200:1 in 10 minutes on 6th magnitude stars now, and eventually 100:1 in one hour on 10th magnitude stars using the 3-m telescope. This opens the possibility of measuring magnetic fields for large numbers of RS CVN and dM(e) stars (in addition to many G,K dwarfs), and even perhaps a few pre-main sequence stars. There is a lot of potential for science in the 1-2mu range at high resolution, which cannot be done as easily with any other type of instrument. This includes: (1) molecular lines in giants and winds, (2) lines from the ISM for abundances and kinematics, (3) detailed atmospheric analysis of embedded stars (and disks?).

  14. On-chip near-infrared spectroscopy of CO2 using high resolution plasmonic filter array

    NASA Astrophysics Data System (ADS)

    Chong, Xinyuan; Li, Erwen; Squire, Kenneth; Wang, Alan X.

    2016-05-01

    We report an ultra-compact, cost-effective on-chip near-infrared spectroscopy system for CO2 sensing using narrow-band optical filter array based on plasmonic gratings with a waveguide layer. By varying the periodicity of the gratings, the transmission spectra of the filters can be continuously tuned to cover the 2.0 μm sensing window with high spectral resolution around 10 nm. Our experimental results show that the on-chip spectroscopy system can resolve the two symmetric vibrational bands of CO2 at 2.0 μm wavelength, which proves its potential to replace the expensive commercial IR spectroscopy system for on-site gas sensing.

  15. New results in high-resolution X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Žitnik, Matjaž; Kavčič, Matjaž; Bučar, Klemen; Mihelič, Andrej; Bohinc, Rok

    2014-04-01

    We present some recent results dealing with resonant inelastic X-ray scattering (RIXS) on atomic targets in the 3-5 keV enegy region. In this so-called tender spectral region, the K-shell fluorescence branching ratios become reasonably large, but a full vacuum enclosure is still preferable to avoid detection efficiency loss due to the sizeable arms of high resolution crystal spectrometers. By squeezing energy resolution in the fluorescence decay channel, one may improve the spectral resolution of photoabsorption, enable separation of multielectron excitation and relaxation channels, and completely eliminate the need to scan across the selected energy range of the photon probe in order to acquire the photoabsorption spectrum. On the other hand, the spectra may be untrivially modified by effects such as interference of absorption-emission paths or structured relaxation modes, and a more elaborated modelling is needed to understand the emitted signal. We illustrate these aspects by presenting four cases: the reconstruction of Ar KM and Ar KL absorption edges from a series of highly resolved emission spectra recorded at different probe energies, the reconstruction of the Xe L3 edge from a single X-ray emission spectrum, and the analysis of the radiative Ar K-MM Auger decay preceeded by the resonant or nonresonant photon absorption.

  16. 5f-electron states in uranium dioxide investigated using high-resolution neutron spectroscopy

    NASA Astrophysics Data System (ADS)

    Amoretti, G.; Blaise, A.; Caciuffo, R.; Fournier, J. M.; Hutchings, M. T.; Osborn, R.; Taylor, A. D.

    1989-07-01

    High-resolution, high-energy-transfer, inelastic neutron scattering has been used to explore the crystal-field (CF) excitations in UO2. As all the dipole-allowed transitions within the free-ion ground manifold have been identified, the observations provide a complete determination of the crystal-field potential and 5f-electron eigenstates. The fourth- and sixth-degree CF parameters are V4=-123 meV and V6=26.5 meV. In spite of the strength of the CF, the ground state is accurately given by the intermediate-coupling approximation with little modification by J-mixing effects. In the antiferromagnetic phase below TN=30.8 K, a splitting of the cubic CF levels, due to the combined effects of the molecular field and the distortion of the oxygen-ligand cage surrounding the U4+ ions, has been observed. Detailed CF calculations are presented both for the case of a double-k magnetic structure with a monoclinic distortion of the oxygen sublattice, and for a combined triple-k distortion and magnetic order. The observed splittings are shown to be more consistent with the triple-k model.

  17. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons: The Realm of Anharmonicity

    NASA Technical Reports Server (NTRS)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2016-01-01

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3 micrometers CH stretching region of Polycyclic Aromatic Hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold ((is) approximately 4K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions enhanced with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main modes that fall within 0.5% of the experimental frequencies. The implications for the Aromatic Infrared Bands, specifically the 3-m band are discussed.

  18. Lineshape spectroscopy with a very high resolution, very high signal-to-noise crystal spectrometer

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Chen, H.; Emig, J.; Hell, N.; Bitter, M.; Hill, K. W.; Allan, P.; Brown, C. R. D.; Hill, M. P.; Hoarty, D. J.; Hobbs, L. M. R.; James, S. F.

    2016-06-01

    We have developed a high-resolution x-ray spectrometer for measuring the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility. The instrument utilizes a spherically bent crystal geometry to spatially focus and spectrally analyze photons from foil or microdot targets. The high photon collection efficiency resulting from its imaging properties allows the instrument to be mounted outside the Orion chamber, where it is far less sensitive to particles, hard x-rays, or electromagnetic pulses than instruments housed close to the target chamber center in ten-inch manipulators. Moreover, Bragg angles above 50° are possible, which provide greatly improved spectral resolution compared to radially viewing, near grazing-incidence crystal spectrometers. These properties make the new instrument an ideal lineshape diagnostic for determining plasma temperature and density. We describe its calibration on the Livermore electron beam ion trap facility and present spectral data of the K-shell emission from highly charged sulfur produced by long-pulse as well as short-pulse beams on the Orion laser in the United Kingdom.

  19. Applications of High Resolution Laser: Induced Breakdown Spectroscopy for Environmental and Biological Samples

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Labbe, Nicole; Wagner, Rebekah J.

    This chapter details the application of LIBS in a number of environmental areas of research such as carbon sequestration and climate change. LIBS has also been shown to be useful in other high resolution environmental applications for example, elemental mapping and detection of metals in plant materials. LIBS has also been used in phytoremediation applications. Other biological research involves a detailed understanding of wood chemistry response to precipitation variations and also to forest fires. A cross-section of Mountain pine (pinceae Pinus pungen Lamb.) was scanned using a translational stage to determine the differences in the chemical features both before and after a fire event. Consequently, by monitoring the elemental composition pattern of a tree and by looking for abrupt changes, one can reconstruct the disturbance history of a tree and a forest. Lastly we have shown that multivariate analysis of the LIBS data is necessary to standardize the analysis and correlate to other standard laboratory techniques. LIBS along with multivariate statistical analysis makes it a very powerful technology that can be transferred from laboratory to field applications with ease.

  20. High-resolution rovibrational spectroscopy of carbon monoxide isotopologues isolated in solid parahydrogen.

    PubMed

    Fajardo, Mario E

    2013-12-19

    We report high-resolution infrared absorption spectra of six different CO isotopologues isolated in cryogenic parahydrogen (pH2) solids. These data provide a stringent test for theories of nearly free molecular rotors in crystalline solids, such as crystal field theory, rotation-translation coupling theory, and the pseudorotating cage model. A gas-phase molecule rotates about its center-of-mass (C.M.); a trapped molecule instead rotates about its "center of interaction" (C.I.) with the trapping cage, which may differ from the C.M. for heteronuclear diatomics like CO. Isotopic manipulation of CO allows the systematic variation of the C.M. relative to the C.I. We report remarkably good straight line correlation plots between the observed matrix effects and C.M. locations. Extrapolation of these lines to the limit of vanishing matrix effects yields an "experimental prediction" of the C.I. in excellent (fortuitous?) agreement with the C.I. calculated using a linear pH2-CO-pH2 toy model. PMID:24102285

  1. Applications of High Resolution Laser Induced Breakdown Spectroscopy for Environmental and Biological Samples

    SciTech Connect

    Martin, Madhavi Z; Labbe, Nicole; Wagner, Rebekah J.

    2013-01-01

    This chapter details the application of LIBS in a number of environmental areas of research such as carbon sequestration and climate change. LIBS has also been shown to be useful in other high resolution environmental applications for example, elemental mapping and detection of metals in plant materials. LIBS has also been used in phytoremediation applications. Other biological research involves a detailed understanding of wood chemistry response to precipitation variations and also to forest fires. A cross-section of Mountain pine (pinceae Pinus pungen Lamb.) was scanned using a translational stage to determine the differences in the chemical features both before and after a fire event. Consequently, by monitoring the elemental composition pattern of a tree and by looking for abrupt changes, one can reconstruct the disturbance history of a tree and a forest. Lastly we have shown that multivariate analysis of the LIBS data is necessary to standardize the analysis and correlate to other standard laboratory techniques. LIBS along with multivariate statistical analysis makes it a very powerful technology that can be transferred from laboratory to field applications with ease.

  2. ISIS: An Interactive Spectral Interpretation System for High Resolution X-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Houck, J. C.; Denicola, L. A.

    The Interactive Spectral Interpretation System (ISIS) is designed to facilitate the interpretation and analysis of high resolution X-ray spectra like those obtained using the grating spectrographs on Chandra and XMM and the microcalorimeter on Astro-E. It is being developed as an interactive tool for studying the physics of X-ray spectrum formation, supporting measurement and identification of spectral features, and interaction with a database of atomic structure parameters and plasma emission models. The current version uses the atomic data and collisional ionization equilibrium models in the Astrophysical Plasma Emission Database (APED) of Brickhouse et.al., and also provides access to earlier plasma emission models including Raymond-Smith and MEKAL. Although the current version focuses on collisional ionization equilibrium plasmas, the system is designed to allow use of other databases to provide better support for studies of non-equilibrium and photoionized plasmas. To maximize portability between Unix operating systems, ISIS is being written entirely in ANSI C using free-software components (CFITSIO, PGPLOT and S-Lang).

  3. HIGH-RESOLUTION SPECTROSCOPY OF FEIGE 24 IN THE EXTREME-ULTRAVIOLET

    SciTech Connect

    Kowalski, M. P.; Wood, K. S.; Yentis, D. J.; Berendse, F. B.; Cruddace, R. G.; Barstow, M. A.; Lapington, J. S.; Fritz, G. G.; Barbee, T. W. Jr E-mail: kent.wood@nrl.navy.mil E-mail: raymond.cruddace@nrl.navy.mil E-mail: jsl12@star.le.ac.uk E-mail: barbee2@llnl.gov

    2011-04-01

    We report the first high-resolution (R = 4000) spectroscopic observation of the binary DA white dwarf Feige 24 in the extreme-ultraviolet band 220-250 A. A stellar atmosphere model assuming a homogeneous element distribution yields a best fit to the data that excludes a significant abundance of photospheric helium. The upper limit on the photospheric helium abundance is 2.5 x 10{sup -6} (90% confidence), equivalent to a lower limit of 1.2 x 10{sup -13} M{sub sun} on the overlying layer of hydrogen. An ionized interstellar He component (3.9 x 10{sup 17} cm{sup -2}) is clearly present along the line of sight, which implies an He ionization fraction of 0.72, considerably higher than is typical of the local interstellar medium. However, some of this material may be associated with circumstellar gas, which has been detected by analysis of the C IV absorption line doublet in a Hubble Space Telescope/Space Telescope Imaging Spectrograph spectrum.

  4. Spectroscopy of 9B via high-resolution ejectile-tagged recoil break-up

    NASA Astrophysics Data System (ADS)

    Wheldon, C.; Kokalova, Tz.; Freer, M.; Walshe, J.; Hertenberger, R.; Wirth, H.-F.; Ashwood, N. I.; Barr, M.; Curtis, N.; Faestermann, Th.; Lutter, R.; Malcolm, J. D.; Marín-Lámbarri, D. J.

    2015-02-01

    An experiment has been carried out using the 9Be(3He ,t )B9* reaction at a beam energy of 33 MeV. A large acceptance silicon-strip array was used to detect the B9* break-up in coincidence with the triton ejectiles in the high-resolution Munich-Q3D spectrograph. The excitation energy regime <3 MeV has been explored and the spectrum resulting from proton decaying states, isolated and characterized. Additional resonance strength is observed at 1.86 MeV ±70 keV(stat) ±35 keV(syst), in agreement with two other recent measurements at higher energies and different angles. The consequences for the "missing" ½+ first excited state are discussed. Additionally, the branching ratios for the 2.36 MeV 5/2 - state have been measured as Γα 0/Γ =0.98 ±0.12 and Γp 0/Γ =0.016 ±0.008 , in close agreement with earlier work.

  5. Lineshape spectroscopy with a very high resolution, very high signal-to-noise crystal spectrometer.

    PubMed

    Beiersdorfer, P; Magee, E W; Brown, G V; Chen, H; Emig, J; Hell, N; Bitter, M; Hill, K W; Allan, P; Brown, C R D; Hill, M P; Hoarty, D J; Hobbs, L M R; James, S F

    2016-06-01

    We have developed a high-resolution x-ray spectrometer for measuring the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility. The instrument utilizes a spherically bent crystal geometry to spatially focus and spectrally analyze photons from foil or microdot targets. The high photon collection efficiency resulting from its imaging properties allows the instrument to be mounted outside the Orion chamber, where it is far less sensitive to particles, hard x-rays, or electromagnetic pulses than instruments housed close to the target chamber center in ten-inch manipulators. Moreover, Bragg angles above 50° are possible, which provide greatly improved spectral resolution compared to radially viewing, near grazing-incidence crystal spectrometers. These properties make the new instrument an ideal lineshape diagnostic for determining plasma temperature and density. We describe its calibration on the Livermore electron beam ion trap facility and present spectral data of the K-shell emission from highly charged sulfur produced by long-pulse as well as short-pulse beams on the Orion laser in the United Kingdom. PMID:27370448

  6. High-Resolution Spectroscopy of C3 around 3 μm

    NASA Astrophysics Data System (ADS)

    Krieg, J.; Lutter, V.; Endres, C. P.; Keppeler, I. H.; Jensen, P.; Harding, M. E.; Vazquez, J.; Schlemmer, S.; Giesen, T. F.; Thorwirth, S.

    2013-03-01

    We report on the detection of the (1001)-(0000) vibrational band of gas-phase C3 and the two of its mono 13C substituted isotopologs in the infrared region around 3200 cm-1. Additionally, the associated hot band (1111)-(0110) has been assigned for the parent isotopolog. Spectra have been recorded using a supersonic jet spectrometer with a laser ablation source in combination with a continuous-wave optical parametric oscillator as radiation source. High-level quantum-chemical ab initio calculations have been performed and used to assist the assignment. A combined fit for the vibrational states of C3 found in this study has been done together with previously reported high-resolution data to increase the accuracy of the molecular parameters, especially for the ground state. The vibrational energies are 3260.126, 3205.593, and 3224.751 cm-1 for the (1001) state of C3, 12C13C12C, and 13C12C12C, respectively. The (1111) state of C3 has been found to be at 3330.509 cm-1.

  7. High Resolution FTIR Spectroscopy of DCCCl: Anharmonic Resonances in the nu(1) and nu(2) Bands.

    PubMed

    Wang, DongBing; Imajo, Takashi; Tanaka, Keiichi; Tanaka, Takehiko; Bürger, Hans

    2001-05-01

    High-resolution infrared spectra of the nu(1) and nu(2) bands of DCCCl were observed using Bruker IFS 120HR Fourier transform spectrometers at resolutions of 0.0044 and 0.0035 cm(-1), respectively. For the DCC(35)Cl isotopomer, the nu(1) as well as the nu(2) band was found to be heavily perturbed. Detailed analyses revealed that the nu(1) state is in resonance with the l=0 substate of the nu(3)+4nu(4) state and that the nu(2) state is in resonance with the l=0 substate of the nu(3)+4nu(5) state. The rotational constants played a key role in identifying the perturbing states. In contrast, for the DCC(37)Cl isotopomer, the rotational structures of the nu(1) and nu(2) states are almost regular but slightly perturbed by interactions with the nu(3)+4nu(4) and nu(3)+4nu(5) states, respectively. The constants of resonances as well as the molecular constants for the nu(1), nu(2), nu(3)+4nu(4) and nu(3)+4nu(5) states were determined. Copyright 2001 Academic Press. PMID:11336523

  8. High Resolution FTIR Spectroscopy of DCCCl: Anharmonic Resonances in the ν 1 and ν 2 Bands

    NASA Astrophysics Data System (ADS)

    Wang, DongBing; Imajo, Takashi; Tanaka, Keiichi; Tanaka, Takehiko; Bürger, Hans

    2001-05-01

    High-resolution infrared spectra of the ν1 and ν2 bands of DCCCl were observed using Bruker IFS 120HR Fourier transform spectrometers at resolutions of 0.0044 and 0.0035 cm-1, respectively. For the DCC35Cl isotopomer, the ν1 as well as the ν2 band was found to be heavily perturbed. Detailed analyses revealed that the ν1 state is in resonance with the l=0 substate of the ν3+4ν4 state and that the ν2 state is in resonance with the l=0 substate of the ν3+4ν5 state. The rotational constants played a key role in identifying the perturbing states. In contrast, for the DCC37Cl isotopomer, the rotational structures of the ν1 and ν2 states are almost regular but slightly perturbed by interactions with the ν3+4ν4 and ν3+4ν5 states, respectively. The constants of resonances as well as the molecular constants for the ν1, ν2, ν3+4ν4 and ν3+4ν5 states were determined.

  9. High-resolution electron momentum spectroscopy of valence satellites of carbon disulfide

    NASA Astrophysics Data System (ADS)

    Huang, Chengwu; Shan, Xu; Zhang, Zhe; Wang, Enliang; Li, Zhongjun; Chen, XiangJun

    2010-09-01

    The binding energy spectrum of carbon disulphide (CS2) in the energy range of 9-23 eV has been measured by a high-resolution (e,2e) spectrometer employing asymmetric noncoplanar kinematics at an impact energy of 2500 eV plus the binding energy. Taking the advantage of the high energy resolution of 0.54 eV, four main peaks and five satellites in the outer-valence region are resolved. The assignments and pole strengths for these satellite states are achieved by comparing the experimental electron momentum profiles with the corresponding theoretical ones calculated using Hartree-Fock and density functional theory methods. The results are also compared in detail with the recent SAC-CI general-R calculations. General agreement is satisfactory, while the present experiment suggests cooperative contributions from Π2u, Σg+2 states to satellite 2 and Σg+2, Π2g states to satellite 3. Besides, relatively low pole strength for X Π2g state is obtained which contradicts all the theoretical calculations [2ph-TDA, ADC(3), SAC-CI general-R, ADC(4)] so far.

  10. High-resolution photoelectron imaging spectroscopy of cryogenically cooled Fe4O- and Fe5O-

    NASA Astrophysics Data System (ADS)

    Weichman, Marissa L.; DeVine, Jessalyn A.; Neumark, Daniel M.

    2016-08-01

    We report high-resolution photodetachment spectra of the cryogenically cooled iron monoxide clusters Fe4O- and Fe5O- obtained with slow photoelectron velocity-map imaging (cryo-SEVI). Well-resolved vibrational progressions are observed in both sets of spectra, and transitions to low-lying excited states of both species are seen. In order to identify the structural isomers, electronic states, and vibrational modes that contribute to the cryo-SEVI spectra of these clusters, experimental results are compared with density functional theory calculations and Franck-Condon simulations. The main bands observed in the SEVI spectra are assigned to the 15A2←16B2 photodetachment transition of Fe4O- and the 17A'←18A″ photodetachment transition of Fe5O-. We report electron affinities of 1.6980(3) eV for Fe4O and 1.8616(3) eV for Fe5O, although there is some uncertainty as to whether the 15A2 state is the true ground state of Fe4O. The iron atoms have a distorted tetrahedral geometry in Fe4O0/- and a distorted trigonal-bipyramidal arrangement in Fe5O0/-. For both neutral and anionic species, the oxygen atom preferably binds in a μ2-oxo configuration along the cluster edge. This finding is in contrast to prior predictions that Fe5O0/- exhibits a μ3 face-bound structure.

  11. HIGH-RESOLUTION INFRARED IMAGING AND SPECTROSCOPY OF THE Z CANIS MAJORIS SYSTEM DURING QUIESCENCE AND OUTBURST

    SciTech Connect

    Hinkley, Sasha; Hillenbrand, Lynne; Crepp, Justin R.; Oppenheimer, Ben R.; Zimmerman, Neil; Brenner, Douglas; Rice, Emily L.; Pueyo, Laurent; Vasisht, Gautam; Roberts, Jennifer E.; Roberts, Lewis C. Jr.; Burruss, Rick; Wallace, J. Kent; Cady, Eric; Zhai, Chengxing; Kraus, Adam L.; Ireland, Michael J.; Beichman, Charles; Dekany, Richard; Parry, Ian R.; and others

    2013-01-20

    We present adaptive optics photometry and spectra in the JHKL bands along with high spectral resolution K-band spectroscopy for each component of the Z Canis Majoris system. Our high angular resolution photometry of this very young ({approx}<1 Myr) binary, comprised of an FU Ori object and a Herbig Ae/Be star, was gathered shortly after the 2008 outburst while our high-resolution spectroscopy was gathered during a quiescent phase. Our photometry conclusively determines that the outburst was due solely to the embedded Herbig Ae/Be member, supporting results from earlier works, and that the optically visible FU Ori component decreased slightly ({approx}30%) in luminosity during the same period, consistent with previous works on the variability of FU Ori type systems. Further, our high-resolution K-band spectra definitively demonstrate that the 2.294 {mu}m CO absorption feature seen in composite spectra of the system is due solely to the FU Ori component, while a prominent CO emission feature at the same wavelength, long suspected to be associated with the innermost regions of a circumstellar accretion disk, can be assigned to the Herbig Ae/Be member. These findings clarify previous analyses of the origin of the CO emission in this complex system.

  12. Mid-infrared high-resolution absorption spectroscopy by use of a semimonolithic entangled-cavity optical parametric oscillator.

    PubMed

    Desormeaux, A; Lefebvre, M; Rosencher, E; Huignard, J P

    2004-12-15

    By recording low-pressure absorption lines of N2O around 3.9 microm, we fully qualify a pulsed entangled-cavity doubly resonant optical parametric oscillator as a power tool for high-resolution spectroscopy. This compact source runs at a high repetition rate (>10 kHz) with a low threshold of oscillation (<8 microJ), is mode-hop-free tunable over 5 cm(-1), and displays single-frequency Fourier-transformed-limited operation (linewidth <0.005 cm(-1)). A high potential for nonlinear spectroscopy is also expected given the high peak power (70 W) and the good quality (M2 < 2) of the output beam. PMID:15645813

  13. High-resolution VUV spectroscopy: New results from the Advanced Light Source

    SciTech Connect

    Schlachter, F.; Bozek, J.

    1996-06-01

    Third-generation synchrotron light sources are providing photon beams of unprecedented brightness for researchers in atomic and molecular physics. Beamline 9.0.1, an undulator beamline at the Advanced Light Source (ALS), produces a beam in the vacuum-ultraviolet (VUV) region of the spectrum with exceptional flux and spectral resolution. Exciting new results from experiments in atomic and molecular VUV spectroscopy of doubly excited autoionizing states of helium, hollow lithium, and photoelectron spectroscopy of small molecules using Beamline 9.0.1 at the ALS are reported.

  14. High-resolution terahertz spectroscopy with a single tunable frequency comb.

    PubMed

    Skryl, A S; Pavelyev, D G; Tretyakov, M Y; Bakunov, M I

    2014-12-29

    We report an improvement of three orders of magnitude in the spectral resolution of a recently proposed single-comb terahertz spectroscopy [Opt. Lett.39, 5669 (2014)]. The improvement is achieved by using a femtosecond optical pulse train with a tunable repetition rate. Terahertz comb with tunable spectral line spacing generated by the train is detected via nonlinear mixing with a harmonic of a CW signal from a microwave frequency synthesizer. By applying this technique to the low-pressure gas spectroscopy, we achieved a 100 kHz spectral resolution in measuring separate absorption lines of the rotational manifold of fluoroform (CF3H). PMID:25607192

  15. USING HIGH-RESOLUTION SOLUTION-STATE NMR SPECTROSCOPY TO INVESTIGATE PMDI REACTIONS WITH WOOD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solution-state NMR spectroscopy provides a powerful tool for understanding the formation of chemical bonds between wood components and adhesives. Finely ground cell wall (CW) material fully dissolves in a solvent system containing dimethylsulfoxide (DMSO-d6) and N-methyl¬imidazole (NMI-d6), keeping ...

  16. High resolution spectroscopy of six SOCl2 isotopologues from the microwave to the far-infrared

    NASA Astrophysics Data System (ADS)

    Martin-Drumel, M. A.; Roucou, A.; Brown, G. G.; Thorwirth, S.; Pirali, O.; Mouret, G.; Hindle, F.; McCarthy, M. C.; Cuisset, A.

    2016-02-01

    Despite its potential role as an atmospheric pollutant, thionyl chloride, SOCl2, remains poorly characterized in the gas phase. In this study, the pure rotational and ro-vibrational spectra of six isotopologues of this molecule, all detected in natural abundance, have been extensively studied from the cm-wave band to the far-infrared region by means of three complementary techniques: chirped-pulse Fourier transform microwave spectroscopy, sub-millimeter-wave spectroscopy using frequency multiplier chain, and synchrotron-based far-infrared spectroscopy. Owing to the complex line pattern which results from two nuclei with non-zero spins, new, high-level quantum-chemical calculations of the hyperfine structure played a crucial role in the spectroscopic analysis. From the combined experimental and theoretical work, an accurate semi-experimental equilibrium structure (reSE) of SOCl2 has been derived. With the present data, spectroscopy-based methods can now be applied with confidence to detect and monitor this species, either by remote sensing or in situ.

  17. Understanding AGB evolution in Galactic bulge stars from high-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Uttenthaler, S.; Blommaert, J. A. D. L.; Wood, P. R.; Lebzelter, T.; Aringer, B.; Schultheis, M.; Ryde, N.

    2015-08-01

    An analysis of high-resolution near-infrared spectra of a sample of 45 asymptotic giant branch (AGB) stars towards the Galactic bulge is presented. The sample consists of two subsamples, a larger one in the inner and intermediate bulge, and a smaller one in the outer bulge. The data are analysed with the help of hydrostatic model atmospheres and spectral synthesis. We derive the radial velocity of all stars, and the atmospheric chemical mix ([Fe/H], C/O, 12C/13C, Al, Si, Ti, and Y) where possible. Our ability to model the spectra is mainly limited by the (in)completeness of atomic and molecular line lists, at least for temperatures down to Teff ≈ 3100 K. We find that the subsample in the inner and intermediate bulge is quite homogeneous, with a slightly subsolar mean metallicity and only few stars with supersolar metallicity, in agreement with previous studies of non-variable M-type giants in the bulge. All sample stars are oxygen-rich, C/O < 1.0. The C/O and carbon isotopic ratios suggest that third dredge-up (3DUP) is absent among the sample stars, except for two stars in the outer bulge that are known to contain technetium. These stars are also more metal-poor than the stars in the intermediate or inner bulge. Current stellar masses are determined from linear pulsation models. The masses, metallicities and 3DUP behaviour are compared to AGB evolutionary models. We conclude that these models are partly in conflict with our observations. Furthermore, we conclude that the stars in the inner and intermediate bulge belong to a more metal-rich population that follows bar-like kinematics, whereas the stars in the outer bulge belong to the metal-poor, spheroidal bulge population.

  18. HIGH-RESOLUTION FOURIER TRANSFORM SPECTROSCOPY OF LANTHANUM IN Ar DISCHARGE IN THE NEAR-INFRARED

    SciTech Connect

    Güzelçimen, F.; Başar, Gö.; Tamanis, M.; Kruzins, A.; Ferber, R.; Windholz, L.; Kröger, S. E-mail: sophie.kroeger@htw-berlin.de

    2013-10-01

    A high-resolution spectrum of lanthanum has been recorded by a Fourier Transform spectrometer in the wavelength range from 833 nm to 1666 nm (6000 cm{sup –1} to 12,000 cm{sup –1}) using as light source a hollow cathode lamp operated with argon as the discharge carrier gas. In total, 2386 spectral lines were detected in this region, of which 555 lines could be classified as La I transitions and 10 lines as La II transitions. All La II transitions and 534 of these La I transitions were classified for the first time, and 6 of the La II transitions and 433 of the classified La I transitions appear to be new lines, which could not be found in the literature. The corresponding energy level data of classified lines are given. Additionally, 430 lines are assigned as Ar I lines and 394 as Ar II lines, of which 179 and 77, respectively, were classified for the first time. All 77 classified Ar II transitions as well as 159 of the classified Ar I transitions are new lines. Furthermore, the wavenumbers of 997 unclassified spectral lines were determined, 235 of which could be assigned as La lines, because of their hyperfine pattern. The remaining 762 lines may be either unclassified Ar lines or unresolved and unclassified La lines with only one symmetrical peak with an FWHM in the same order of magnitude as the Ar lines. The accuracy of the wavenumber for the classified lines with signal-to-noise-ratio higher than four is better than 0.006 cm{sup –1} which corresponds to an accuracy of 0.0004 nm at 830 nm and 0.0017 nm at 1660 nm, respectively.

  19. Jupiter’s tropospheric composition and cloud structure from high-resolution ground-based spectroscopy

    NASA Astrophysics Data System (ADS)

    Giles, Rohini Sara; Fletcher, Leigh N.; Irwin, Patrick G. J.

    2015-11-01

    The CRIRES instrument on the Very Large Telescope was used to make high-resolution (R=100,000) observations of Jupiter in the 4.5-5.2 μm spectral range. At these wavelengths, Jupiter’s atmosphere is optically thin and the spectra are sensitive to the 4-8 bar region. This enabled us to spectrally resolve the line shapes of four minor species in Jupiter’s troposphere: CH3D, GeH4, AsH3 and PH3. The slit was aligned north-south along Jupiter’s central meridian, allowing us to search for latitudinal variability in these line shapes. The spectra were analysed using the NEMESIS radiative transfer code and retrieval algorithm.The CH3D line shape is narrower in the cool zones than in the warm belts. CH3D is chemically stable and does not condense in Jupiter’s atmosphere, so this difference cannot be due to variations in the CH3D abundance. Instead, it can be modelled as variations in the opacity of a deep cloud located at around 4 bar. This deep cloud is opaque in the zones and transparent in the belts.We also observe variability in the GeH4 line shape, with stronger absorption features in the belts than in the zones. As a disequilibrium species, GeH4 is expected to vary with latitude, but we found that the variations in the line shape could be entirely explained by the variations in the cloud structure.In contrast, there is clear evidence for spatial variability in the remaining two molecular species, AsH3 and PH3. Their absorption features are weak near the equator and significantly stronger at high latitudes. A full latitudinal retrieval leads to a broadly symmetric profile for both species, with a minimum at the equator and an enhancement towards the poles.

  20. High Resolution Emission Spectroscopy of the Vibration-Rotation Bands of Hbo and Hbs.

    NASA Astrophysics Data System (ADS)

    Li, G.; Ram, R. S.; Hargreaves, R. J.; Bernath, P. F.; Li, H.

    2012-06-01

    The vibration-rotation spectra of HBO and HBS have been investigated at high resolution using a Fourier transform spectrometer. The HBO molecules were produced in a high temperature furnace from the reaction of H2O vapor with boron by heating a mixture of crystalline boron and boron oxide (B2O3) at a temperature ˜1350°C. The spectra were recorded in the 1100-2200 cm-1 and 1700-4000 cm-1 wavenumber regions covering the ν3 and ν1 fundamentals, respectively. In total 24 vibrational bands involving 30 vibrational levels of H11BO and 12 bands involving 18 levels of H10BO have been rotationally analyzed. After combining the existing microwave and infrared measurements, the absolute term values have been determined for a number of vibrationally-excited states of H11BO and H10BO. The HBS molecules were formed by the reaction of CS2 and water vapor with crystalline boron at a temperature ˜1300°C. The spectra were recorded in the 850-1500 cm-1 and 1750-4000 cm-1 wavenumber regions covering the ν3 and ν1 frequency regions. In total 29 vibrational bands involving 33 vibrationally-excited levels of H11BS and 9 bands involving 12 vibrational levels of H10BS have been analyzed. The fitted spectroscopic parameters agree very well with the results of our {ab initio} calculations. {L}-resonance interactions observed between the 0200 (Σ) and 0220 (Δ) levels of HBO and HBS were analyzed using a 2×2 matrix to yield deperturbed constants.

  1. HIGH-RESOLUTION, DIFFERENTIAL, NEAR-INFRARED TRANSMISSION SPECTROSCOPY OF GJ 1214b

    SciTech Connect

    Crossfield, I. J. M.; Hansen, Brad M. S.; Barman, Travis

    2011-08-01

    The nearby star GJ 1214 hosts a planet intermediate in radius and mass between Earth and Neptune, resulting in some uncertainty as to its nature. We have observed this planet, GJ 1214b, during transit with the high-resolution, near-infrared NIRSPEC spectrograph on the Keck II telescope, in order to characterize the planet's atmosphere. By cross-correlating the spectral changes through transit with a suite of theoretical atmosphere models, we search for variations associated with absorption in the planet atmosphere. Our observations are sufficient to rule out tested model atmospheres with wavelength-dependent transit depth variations {approx}> 5 x 10{sup -4} over the wavelength range 2.1-2.4 {mu}m. Our sensitivity is limited by variable slit loss and telluric transmission effects. We find no positive signatures but successfully rule out a number of plausible atmospheric models, including the default assumption of a gaseous, H-dominated atmosphere in chemical equilibrium. Such an atmosphere can be made consistent if the absorption due to methane is reduced. Clouds can also render such an atmosphere consistent with our observations, but only if they lie higher in the atmosphere than indicated by recent optical and infrared measurements. When taken in concert with other observational constraints, our results support a model in which the atmosphere of GJ 1214b contains significant H and He, but where CH{sub 4} is depleted. If this depletion is the result of photochemical processes, it may also produce a haze that suppresses spectral features in the optical.

  2. High-Resolution Spectroscopy of Long-Range Molecular States of 85Rb_2

    NASA Astrophysics Data System (ADS)

    Carollo, Ryan; Eyler, Edward E.; Bruneau, Yoann; Gould, Phillip; Stwalley, W. C.

    2015-06-01

    We present analysis of low-n long-range molecular Rydberg states in 85Rb_2, based on high-resolution spectra. The weakly bound states are accessed by bound-bound transitions from high-v levels of the a ^3 σ _u^+ state, which are prepared by photoassociation of laser-cooled atoms. Single-photon transitions to target states near the 5s + 7p asymptote are excited by a frequency-doubled pulse-amplified CW laser with a narrow linewidth, under 200 MHz. The long-range portion of the bonding potential is dominated by the elastic scattering interaction of the Rydberg electron of a perturbed 7p atom and a nearby ground-state atom, in much the same manner as trilobite states. We use time of flight to selectively measure molecular ions, which are formed via autoionization. This technique gives a two orders-of-magnitude improvement in linewidth over our previous work, reported in Ref. [1]. We also present calculations of a proposed scheme for STIRAP transfer from the current v''=35 level of the a ^3 σ _u^+ state to the v''=39 level. The long-range states accessible to us are defined in large part by the Franck-Condon factors, which are dominated by the outer lobe of the wavefunction. Thus, choosing a v'' sets R, and determines the Franck-Condon window. The proposed v'' = 39 level has a classical outer turning point at ˜ 72 a_0, and will provide access to higher-n states with longer-range wells. This work is supported by the NSF and AFOSR. [1] M. A. Bellos et al., Phys. Rev. Lett. 111, 053001 (2013)

  3. SUBARU HIGH-RESOLUTION SPECTROSCOPY OF STAR G IN THE TYCHO SUPERNOVA REMNANT

    SciTech Connect

    Kerzendorf, Wolfgang E.; Schmidt, Brian P.; Yong, David; Asplund, M.; Nomoto, Ken'ichi; Podsiadlowski, Ph.; Frebel, Anna; Fesen, Robert A. E-mail: brian@mso.anu.edu.au E-mail: nomoto@astron.s.u-tokyo.ac.jp E-mail: anna@astro.as.utexas.edu

    2009-08-20

    It is widely believed that Type Ia supernovae (SNe Ia) originate in binary systems where a white dwarf accretes material from a companion star until its mass approaches the Chandrasekhar mass and carbon is ignited in the white dwarf's core. This scenario predicts that the donor star should survive the supernova (SNe) explosion, providing an opportunity to understand the progenitors of SNe Ia. In this paper, we argue that rotation is a generic signature expected of most nongiant donor stars that is easily measurable. Ruiz-Lapuente et al. examined stars in the center of the remnant of SN 1572 (Tycho SN) and showed evidence that a subgiant star (Star G by their naming convention) near the remnant's center was the system's donor star. We present high-resolution (R {approx_equal} 40, 000) spectra taken with the High Dispersion Spectrograph on Subaru of this candidate donor star and measure the star's radial velocity as 79 {+-} 2 km s{sup -1} with respect to the local standard of rest and put an upper limit on the star's rotation of 7.5 km s{sup -1}. In addition, by comparing images that were taken in 1970 and 2004, we measure the proper motion of Star G to be {mu} {sub l} = -1.6 {+-} 2.1 mas yr{sup -1} and {mu} {sub b} = -2.7 {+-} 1.6 mas yr{sup -1}. We demonstrate that all of the measured properties of Star G presented in this paper are consistent with those of a star in the direction of Tycho SN that is not associated with the SN event. However, we discuss an unlikely, but still viable scenario for Star G to be the donor star, and suggest further observations that might be able to confirm or refute it.

  4. High-resolution infrared spectroscopy and ab initio studies of the cyclopropane-carbon dioxide interaction.

    PubMed

    Su, Zheng; Tam, Wai Shun; Xu, Yunjie

    2006-01-14

    A jet-cooled high-resolution infrared spectrum of the cyclopropane-carbon dioxide complex was detected for the first time, using a rapid scan infrared spectrometer with an astigmatic multipass sample cell. The spectrum was recorded in the vicinity of the CO2 asymmetric stretching band (nu3) and exhibits a b-dipole selection rule. Altogether, over 200 lines were observed, assigned, and fitted to Watson's S-reduction Hamiltonian. Rotational and quartic distortion constants were obtained. The band origin was located at 2347.6263(2) cm(-1), redshifted by 1.5230(2) cm(-1) from the corresponding frequency of the CO2 monomer. The experimentally determined structure shows that CO2 lies next to a C-C bond edge and is perpendicular to the C3 ring, indicating that the interaction is characterized by the bonding between the carbon atom of CO2 and the pseudo-pi system of cyclopropane. The intermolecular distance between the carbon atom of CO2 and the center of mass of cyclopropane was determined to be 3.667(2) A. Complete ab initio geometry optimizations and harmonic frequency calculations were carried out at the level of second-order Moller-Plesset perturbation theory with four different basis sets: cc-pVDZ, 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ. The lowest-energy structure identified with the three larger basis sets is in accord with the experimental finding. In addition, a transition state was identified and the tunneling barrier height was computed. PMID:16422587

  5. Mapping the Local Interstellar Medium Using High-Resolution UV Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Malamut, Craig; Redfield, S.; Linsky, J.

    2013-01-01

    Observations using the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope have provided high-resolution near ultraviolet spectra showing MgII, FeII and MnII absorption in the local interstellar medium (LISM). The sample includes sight lines towards over 30 stars within 100 parsecs and across a wide range of spectral types. Observations span the entire sky, probing previously unobserved regions of the LISM. The heavy ions studied in this survey produce narrow absorption features that make possible the identification of multiple interstellar components. Our simultaneous fits of the MgII, FeII, and MnII doublets reveal anywhere from one to six individual absorption components in a particular sight line, where the number of absorbers roughly correlates with the length of the sight line. The simultaneous fitting procedure reduces the systematic errors involved in continuum placement and number of absorbers. Already, sight lines show evidence of previously unidentified clouds within the Local Bubble. These measurements will be added to a growing data set of 81 near UV sight lines. The increase in the number of sight lines will test and improve a three dimensional kinematic model of the local interstellar medium. With an improved understanding of the LISM's kinematical structure, it will be possible to distinguish blended components within the absorption features of lighter ions. Specifically, the MAST Archive contains FUV observations of interstellar absorption by low mass ions (DI, CII, NI, OI) along the the same sight lines. The combination of these data will constrain properties of the LISM such as temperature, turbulence, ionization, abundances and depletions. We acknowledge support for this project through NASA HST Grant GO-11568 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555, and a student research fellowship from the

  6. Extended fine structures in the electron energy loss spectrum of InAs

    NASA Technical Reports Server (NTRS)

    Schowengerdt, F. D.; Grunthaner, F. J.

    1988-01-01

    The possibility of using electron energy loss fine structure (EELFS) for the characterization of thin pseudomorphic quantum wells of InAs and GaAs(100) is investigated. It is shown that the EELFS technique can yield reliable radial distribution functions for bulk InAs, provided beam-induced sample degradation is controlled stringently. Additional improvements in the data collection procedures, including better control of the sample condition, are required as well as more detailed work on separating contributions from multiple edges in the data analysis.

  7. Vanishing electronic energy loss of very slow light ions in insulators with large band gaps.

    PubMed

    Markin, S N; Primetzhofer, D; Bauer, P

    2009-09-11

    Electronic energy loss of light ions in nanometer films of materials with large band gaps has been studied for very low velocities. For LiF, a threshold velocity is observed at 0.1 a.u. (250 eV/u), below which the ions move without transferring energy to the electronic system. For KCl, a lower (extrapolated) threshold velocity is found, identical for H and He ions. For SiO2, no clear velocity threshold is observed for He particles. For protons and deuterons, electronic stopping is found to perfectly fulfill velocity scaling, as expected for binary ion-electron interaction. PMID:19792368

  8. Vanishing Electronic Energy Loss of Very Slow Light Ions in Insulators with Large Band Gaps

    SciTech Connect

    Markin, S. N.; Primetzhofer, D.; Bauer, P.

    2009-09-11

    Electronic energy loss of light ions in nanometer films of materials with large band gaps has been studied for very low velocities. For LiF, a threshold velocity is observed at 0.1 a.u. (250 eV/u), below which the ions move without transferring energy to the electronic system. For KCl, a lower (extrapolated) threshold velocity is found, identical for H and He ions. For SiO{sub 2}, no clear velocity threshold is observed for He particles. For protons and deuterons, electronic stopping is found to perfectly fulfill velocity scaling, as expected for binary ion-electron interaction.

  9. Design and performance of a spin-polarized electron energy loss spectrometer with high momentum resolution.

    PubMed

    Vasilyev, D; Kirschner, J

    2016-08-01

    We describe a new "complete" spin-polarized electron energy loss spectrometer comprising a spin-polarized primary electron source, an imaging electron analyzer, and a spin analyzer of the "spin-polarizing mirror" type. Unlike previous instruments, we have a high momentum resolution of less than 0.04 Å(-1), at an energy resolution of 90-130 meV. Unlike all previous studies which reported rather broad featureless data in both energy and angle dependence, we find richly structured spectra depending sensitively on small changes of the primary energy, the kinetic energy after scattering, and of the angle of incidence. The key factor is the momentum resolution. PMID:27587131

  10. First principles study of electronic properties, interband transitions and electron energy loss of α-graphyne

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh

    2016-04-01

    The electronic and optical properties of α-graphyne sheet are investigated by using density functional theory. The results confirm that α-graphyne sheet is a zero-gap semimetal. The optical properties of the α-graphyne sheet such as dielectric function, refraction index, electron energy loss function, reflectivity, absorption coefficient and extinction index are calculated for both parallel and perpendicular electric field polarizations. The optical spectra are strongly anisotropic along these two polarizations. For (E ∥ x), absorption edge is at 0 eV, while there is no absorption below 8 eV for (E ∥ z).

  11. Monochromated, spatially resolved electron energy-loss spectroscopic measurements of gold nanoparticles in the plasmon range.

    PubMed

    Schaffer, B; Riegler, K; Kothleitner, G; Grogger, W; Hofer, F

    2009-02-01

    Gold nanoparticles show optical properties different from bulk material due to resonance phenomena which depend on local structure and geometry. Electron energy-loss spectrometry (EELS) in scanning transmission electron microscopy (STEM) allows the spatially resolved measurement of these properties at a resolution of few nanometers. In this work, the first monochromated measurements of gold nanoparticles (spheres, rods and triangles) are presented. Due to the improved energy resolution of about 0.2 eV, surface plasmon excitations at energies below 1 eV could be accurately measured from raw experimental data. PMID:18722779

  12. High-resolution optical spectroscopy using multimode interference in a compact tapered fibre

    NASA Astrophysics Data System (ADS)

    Wan, Noel H.; Meng, Fan; Schröder, Tim; Shiue, Ren-Jye; Chen, Edward H.; Englund, Dirk

    2015-07-01

    Optical spectroscopy is a fundamental tool in numerous areas of science and technology. Much effort has focused on miniaturizing spectrometers, but thus far at the cost of spectral resolution and broad operating range. Here we describe a compact spectrometer that achieves both high spectral resolution and broad bandwidth. The device relies on imaging multimode interference from leaky modes along a multimode tapered optical fibre, resulting in spectrally distinguishable spatial patterns over a wide range of wavelengths from 500 to 1,600 nm. This tapered fibre multimode interference spectrometer achieves a spectral resolution down to 40 pm in the visible spectrum and 10 pm in the near-infrared spectrum (corresponding to resolving powers of 104-105). Multimode interference spectroscopy is suitable in a variety of device geometries, including planar waveguides in a broad range of transparent materials.

  13. Rapid probe of the nicotine spectra by high-resolution rotational spectroscopy.

    PubMed

    Grabow, Jens-Uwe; Mata, S; Alonso, José L; Peña, I; Blanco, S; López, Juan C; Cabezas, C

    2011-12-21

    Nicotine has been investigated in the gas phase and two conformational forms were characterized through their rotational spectra. Two spectroscopic techniques have been used to obtain the spectra: a new design of broadband Fourier transform microwave (FTMW) spectroscopy with an in-phase/quadrature-phase-modulation passage-acquired-coherence technique (IMPACT) and narrowband FTMW spectroscopy with coaxially oriented beam-resonator arrangement (COBRA). The rotational, centrifugal distortion and hyperfine quadrupole coupling constants of two conformers of nicotine have been determined and found to be in N-methyl trans configurations with the pyridine and pyrrolidine rings perpendicular to one another. The quadrupole hyperfine structure originated by two (14)N nuclei has been completely resolved for both conformers and used for their unambiguous identification. PMID:22020263

  14. Estimating photosynthesis with high resolution field spectroscopy in a Mediterranean grassland under different nutrient availability

    NASA Astrophysics Data System (ADS)

    Perez-Priego, O.; Guan, J.; Fava, F.; Rossini, M.; Wutzler, T.; Moreno, G.; Carrara, A.; Kolle, O.; Schrumpf, M.; Reichstein, M.; Migliavacca, M.

    2014-12-01

    Recent studies have shown how human induced N:P imbalances are affecting essential processes (e.g. photosynthesis, plant growth rate) that lead to important changes in ecosystem structure and function. In this regard, the accuracy of the approaches based on remotely-sensed data for monitoring and modeling gross primary production (GPP) relies on the ability of vegetation indices (VIs) to track the dynamics of vegetation physiological and biophysical properties/variables. Promising results have been recently obtained when Chlorophyll-sensitive VIs and Chlorophyll fluorescence are combined with structural indices in the framework of the Monteith's light use efficiency (LUE) model. However, further ground-based experiments are required to validate LUE model performances, and their capability to be generalized under different nutrient availability conditions. In this study, the overall objective was to investigate the sensitivity of VIs to track short- and long-term GPP variations in a Mediterranean grassland under different N and P fertilization treatments. Spectral VIs were acquired manually using high resolution spectrometers (HR4000, OceanOptics, USA) along a phenological cycle. The VIs examined included photochemical reflectance index (PRI), MERIS terrestrial-chlorophyll index (MTCI) and normalized difference vegetation index (NDVI). Solar-induced chlorophyll fluorescence calculated at the oxygen absorption band O2-A (F760) using spectral fitting methods was also used. Simultaneously, measurements of GPP and environmental variables were conducted using a transient-state canopy chamber. Overall, GPP, F760 and VIs showed a clear seasonal time-trend in all treatments, which was driven by the phenological development of the grassland. Results showed significant differences (p<0.05) in midday GPP values between N and without N addition plots, in particular at the peak of the growing season during the flowering stage and at the end of the season during senescence. While

  15. High Resolution Spectroscopy Using a Tunable Thz Synthesizer Based on Photomixing

    NASA Astrophysics Data System (ADS)

    Cuisset, Arnaud; Hindle, Francis; Mouret, Gael; Eliet, Sophie; Guinet, Mickael; Bocquet, Robin

    2011-06-01

    Optical heterodyning, also know as photomixing is an attractive solution as a single device able to cover the entire frequency range from 300 GHz to 3 THz. As the THz frequency is extracted from the difference frequency of two lasers, the accuracy with which the generated frequency is known is directly determined by the frequency accuracy of the lasers. In order to fully characterize the spectral fingerprint of a given molecule an accuracy approximately one order of magnitude finer than the Doppler linewidth is required, around 100 kHz for smaller polar compounds. To generate accurate cw-THz the frequency spacing of the modes of a Frequency Comb (FC) has been employed to constrain the emission frequency of a photomixing source.footnote{G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, D. Rovera, Opt. Express, 2009, 17: 22031.} Two phase locked loops are implemented coherently locking the two cw-lasers (CW1 and CW2) to different modes of the FC. Although this solution allows accurate generation of narrowband THz the continuous tuning of the frequency presents some obstacles. To overcome these difficulties a system architecture with a third cw-laser (CW3) phase locked to CW2 has been implemented. The beatnote between CW2 and CW3 is free from the FC modes therefore the PLL frequency can be freely scanned over its entire operating range, in our case around 200 MHz. The most of polar compounds may be studied at high resolution in the THz domain with this synthesizer. Three different examples of THz analysis with atmospherical and astrophysical interests will be presented: The ground and vibrationnally excited states of H_2CO revisited in the 0.5-2 THz frequency region The rotational dependences of the broadening coefficients of CH_3Cl studied at high J and K values The molecular discrimination of a complex mixture containing methanol and ethanol. F. Hindle, A. Cuisset, G. Mouret, R. Bocquet Comptes Rendus Physique, 2008, 9: 262-275.

  16. Discrimination of Basal Cell Carcinoma from Normal Skin Tissue Using High-Resolution Magic Angle Spinning 1H NMR Spectroscopy

    PubMed Central

    Mun, Je-Ho; Lee, Heonho; Yoon, Dahye; Kim, Byung-Soo; Kim, Moon-Bum; Kim, Shukmann

    2016-01-01

    High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy is a useful tool for investigating the metabolism of various cancers. Basal cell carcinoma (BCC) is the most common skin cancer. However, to our knowledge, data on metabolic profiling of BCC have not been reported in the literature. The objective of the present study was to investigate the metabolic profiling of cutaneous BCC using HR-MAS 1H NMR spectroscopy. HR-MAS 1H NMR spectroscopy was used to analyze the metabolite profile and metabolite intensity of histopathologically confirmed BCC tissues and normal skin tissue (NST) samples. The metabolic intensity normalized to the total spectral intensities in BCC and NST was compared, and multivariate analysis was performed with orthogonal partial least-squares discriminant analysis (OPLS-DA). P values < 0.05 were considered statistically significant. Univariate analysis revealed 9 metabolites that showed statistically significant difference between BCC and NST. In multivariate analysis, the OPLS-DA models built with the HR-MAS NMR metabolic profiles revealed a clear separation of BCC from NST. The receiver operating characteristic curve generated from the results revealed an excellent discrimination of BCC from NST with an area under the curve (AUC) value of 0.961. The present study demonstrated that the metabolite profile and metabolite intensity differ between BCC and NST, and that HR-MAS 1H NMR spectroscopy can be a valuable tool in the diagnosis of BCC. PMID:26934749

  17. High-resolution photodetachment spectroscopy from the lowest threshold of O{sup -}

    SciTech Connect

    Joiner, Anne; Mohr, Robert H.; Yukich, J. N.

    2011-03-15

    We conducted photodetachment spectroscopy near the lowest detachment threshold from O{sup -} in a 1-T field with sufficient resolution to observe a magnetic field structure similar to that observed in experiments conducted at the threshold of the electron affinity. These observations included not only cyclotron structure but also, to a smaller degree, individual Zeeman thresholds. The experiment was conducted in a Penning ion trap and with a single-mode, tunable, amplified diode laser. Finally, analysis of our results yielded a measurement of the lowest threshold energy.

  18. Activators of photoluminescence in calcite: evidence from high-resolution, laser-excited luminescence spectroscopy

    USGS Publications Warehouse

    Pedone, V.A.; Cercone, K.R.; Burruss, R.C.

    1990-01-01

    Laser-excited luminescence spectroscopy of a red-algal, biogenic calcite and a synthetic Mn-calcite can make the distinction between organic and trace-element activators of photoluminescence. Organic-activated photoluminescence in biogenic calcite is characterized by significant peak shifts and increasing intensity with shorter-wavelength excitation and by significant decreases in intensity after heating to ??? 400??C. In contrast, Mn-activated photoluminescence shows no peak shift, greatest intensity under green excitation and limited changes after heating. Examination of samples with a high-sensitivity spectrometer using several wavelengths of exciting light is necessary for identification of photoluminescence activators. ?? 1990.

  19. High-resolution pulse-counting array detectors for imaging and spectroscopy at ultraviolet wavelengths

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn; Bybee, Richard L.

    1986-01-01

    The performance characteristics of multianode microchannel array (MAMA) detector systems which have formats as large as 256 x 1024 pixels and which have application to imaging and spectroscopy at UV wavelengths are evaluated. Sealed and open-structure MAMA detector tubes with opaque CsI photocathodes can determine the arrival time of the detected photon to an accuracy of 100 ns or better. Very large format MAMA detectors with CsI and Cs2Te photocathodes and active areas of 52 x 52 mm (2048 x 2048 pixels) will be used as the UV solar blind detectors for the NASA STIS.

  20. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy

    PubMed Central

    Hindle, Francis; Yang, Chun; Mouret, Gael; Cuisset, Arnaud; Bocquet, Robin; Lampin, Jean-François; Blary, Karine; Peytavit, Emilien; Akalin, Tahsin; Ducournau, Guillaume

    2009-01-01

    A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements. PMID:22291552

  1. 3D Visualization of the Iron Oxidation State in FeO/Fe3O4 Core-Shell Nanocubes from Electron Energy Loss Tomography.

    PubMed

    Torruella, Pau; Arenal, Raúl; de la Peña, Francisco; Saghi, Zineb; Yedra, Lluís; Eljarrat, Alberto; López-Conesa, Lluís; Estrader, Marta; López-Ortega, Alberto; Salazar-Alvarez, Germán; Nogués, Josep; Ducati, Caterina; Midgley, Paul A; Peiró, Francesca; Estradé, Sonia

    2016-08-10

    The physicochemical properties used in numerous advanced nanostructured devices are directly controlled by the oxidation states of their constituents. In this work we combine electron energy-loss spectroscopy, blind source separation, and computed tomography to reconstruct in three dimensions the distribution of Fe(2+) and Fe(3+) ions in a FeO/Fe3O4 core/shell cube-shaped nanoparticle with nanometric resolution. The results highlight the sharpness of the interface between both oxides and provide an average shell thickness, core volume, and average cube edge length measurements in agreement with the magnetic characterization of the sample. PMID:27383904

  2. High-Resolution Hypernuclear Spectroscopy Electron Scattering at Jlab, Hall A

    SciTech Connect

    Franco Garibaldi

    2010-12-01

    Hypernuclear spectroscopy via electromagnetic induced reactions is a valuable and powerful way to study hypernuclei, hadronic systems with non-zero strangeness content, providing an alternative to the hadron induced reactions mainly studied so far. Electron-induced hypernuclear spectroscopy has been studied in Hall A at Jefferson Lab on three nuclei, 12C, 16O, and 9Be with unprecedented resolution and with an improved particle identification system, using a RICH detector, in order to unambiguously identify kaons, thus allowing the measurement of high-quality, almost background-free, hypernuclear spectra. Two superconducting septum magnets were added to the existing apparatus in order to permit particle detection at very forward angle providing a reasonable counting rate. These studies have provided the first quantitative information on, for instance, core-excited states in hypernuclei. In the case of oxygen, a waterfall target has been employed allowing for the simultaneous measurement of hypernuclear production on oxygen and of elementary kaon-Lambda electro-production on protons: a crucial measurement to disentangle the contribution of the elementary reaction from the measured hypernuclear production cross section, yielding direct access to the nucleus-hypernucleus transition structure. Final results for 12C and 16O as well as preliminary results on 9Be will be presented.

  3. High-precision three-dimensional field mapping of a high resolution magnetic spectrometer for hypernuclear spectroscopy at JLab

    SciTech Connect

    Fujii, Yuu; Hashimoto, Osamu; Miyoshi, Toshinobu; Nakamura, Satoshi N.; Ohtani, Atsushi; Okayasu, Yuichi; Oyamada, Masamichi; Yamamoto, Yosuke; Kato, Seigo; Matsui, Jumei; Sako, Katsuhisa; Brindza, Paul

    2015-09-01

    The High Resolution Kaon Spectrometer (HKS), which consists of two quadrupole magnets and one dipole magnet, was designed and constructed for high-resolution spectroscopy of hypernuclei using the (e,e'K+) reaction in Hall C, Jefferson Lab (JLab). It was used to analyze momenta of around 1.2 GeV/c K^+ s with a resolution of 2 ×10^-4 (FWHM). To achieve the target resolution, a full three-dimensional magnetic field measurement of each magnet was successfully performed, and a full three-dimensional magnetic field map of the HKS magnets was reconstructed. Using the measured field map, the initial reconstruction function was generated. The target resolution would be achieved via careful tuning of the reconstruction function of HKS with the p(e,e'K+)Lambda,Sigma^0 and C-12 (e,e'K+)12_Lambda B_g.s. reactions. After tuning of the initial reconstruction function generated from the measured map, the estimated HKS momentum resolution was 2.2×10^-4 (FWHM).

  4. High resolution broad-band spectroscopy in the NIR using the Triplespec externally dispersed interferometer at the Hale telescope

    NASA Astrophysics Data System (ADS)

    Erskine, David J.; Edelstein, J.; Sirk, M.; Wishnow, E.; Ishikawa, Y.; McDonald, E.; Shourt, W. V.

    2014-07-01

    High resolution broad-band spectroscopy at near-infrared wavelengths has been performed using externally dis- persed interferometry (EDI) at the Hale telescope at Mt. Palomar. The EDI technique uses a field-widened Michelson interferometer in series with a dispersive spectrograph, and is able to recover a spectrum with a resolution 4 to 10 times higher than the existing grating spectrograph. This method increases the resolution well beyond the classical limits enforced by the slit width and the detector pixel Nyquist limit and, in principle, decreases the effect of pupil variation on the instrument line-shape function. The EDI technique permits arbi- trarily higher resolution measurements using the higher throughput, lower weight, size, and expense of a lower resolution spectrograph. Observations of many stars were performed with the TEDI interferometer mounted within the central hole of the 200 inch primary mirror. Light from the interferometer was then dispersed by the TripleSpec near-infrared echelle spectrograph. Continuous spectra between 950 and 2450 nm with a resolution as high as ~27,000 were recovered from data taken with TripleSpec at a native resolution of ˜2,700. Aspects of data analysis for interferometric spectral reconstruction are described. This technique has applications in im- proving measurements of high-resolution stellar template spectra, critical for precision Doppler velocimetry using conventional spectroscopic methods. A new interferometer to be applied for this purpose at visible wavelengths is under construction.

  5. Structural analysis of IPC zeolites and related materials using positron annihilation spectroscopy and high-resolution argon adsorption.

    PubMed

    Jagiello, J; Sterling, M; Eliášová, P; Opanasenko, M; Zukal, A; Morris, R E; Navaro, M; Mayoral, A; Crivelli, P; Warringham, R; Mitchell, S; Pérez-Ramírez, J; Čejka, J

    2016-06-01

    The advanced investigation of pore networks in isoreticular zeolites and mesoporous materials related to the IPC family was performed using high-resolution argon adsorption experiments coupled with the development of a state-of-the-art non-local density functional theory approach. The optimization of a kernel for model sorption isotherms for materials possessing the same layer structure, differing only in the interlayer connectivity (e.g. oxygen bridges, single- or double-four-ring building units, mesoscale pillars etc.) revealed remarkable differences in their porous systems. Using high-resolution adsorption data, the bimodal pore size distribution consistent with crystallographic data for IPC-6, IPC-7 and UTL samples is shown for the first time. A dynamic assessment by positron annihilation lifetime spectroscopy (PALS) provided complementary insights, simply distinguishing the enhanced accessibility of the pore network in samples incorporating mesoscale pillars and revealing the presence of a certain fraction of micropores undetected by gas sorption. Nonetheless, subtle differences in the pore size could not be discriminated based on the widely-applied Tao-Eldrup model. The combination of both methods can be useful for the advanced characterization of microporous, mesoporous and hierarchical materials. PMID:27210107

  6. Method And Apparatus For High Resolution Ex-Situ Nmr Spectroscopy

    DOEpatents

    Pines, Alexander; Meriles, Carlos A.; Heise, Henrike; Sakellariou, Dimitrios; Moule, Adam

    2004-01-06

    A method and apparatus for ex-situ nuclear magnetic resonance spectroscopy for use on samples outside the physical limits of the magnets in inhomogeneous static and radio-frequency fields. Chemical shift spectra can be resolved with the method using sequences of correlated, composite z-rotation pulses in the presence of spatially matched static and radio frequency field gradients producing nutation echoes. The amplitude of the echoes is modulated by the chemical shift interaction and an inhomogeneity free FID may be recovered by stroboscopically sampling the maxima of the echoes. In an alternative embodiment, full-passage adiabatic pulses are consecutively applied. One embodiment of the apparatus generates a static magnetic field that has a variable saddle point.

  7. High resolution core level spectroscopy of hydrogen-terminated (1 0 0) diamond.

    PubMed

    Schenk, A K; Rietwyk, K J; Tadich, A; Stacey, A; Ley, L; Pakes, C I

    2016-08-01

    Synchrotron-based photoelectron spectroscopy experiments are presented that address a long standing inconsistency in the treatment of the C1s core level of hydrogen terminated (1 0 0) diamond. Through a comparison of surface and bulk sensitive measurements we show that there is a surface related core level component to lower binding energy of the bulk diamond component; this component has a chemical shift of [Formula: see text] eV which has been attributed to carbon atoms which are part of the hydrogen termination. Additionally, our results indicate that the asymmetry of the hydrogen terminated (1 0 0) diamond C1s core level is an intrinsic aspect of the bulk diamond peak which we have attributed to sub-surface carbon layers. PMID:27299369

  8. Natural abundance high-resolution solid state 2 H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.

    1994-08-01

    We report for the first time an approach for natural abundance solid state 2 H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1 H decoupling (HPPD) and 1 H- 2 H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2 H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2 H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1 H to 2 H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.

  9. Natural abundance high-resolution solid state 2 H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.

    1994-08-01

    We report for the first time an approach for natural abundance solid state 2H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1H decoupling (HPPD) and 1H- 2H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1H to 2H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.

  10. Multiresonant Spectroscopy and the High-Resolution Threshold Photoionization of Combustion Free Radicals

    SciTech Connect

    Edward R. Grant

    2005-09-07

    This report describes the results of a program of research on the thermochemistry, spectroscopy and intramolecular relaxation dynamics of the combustion intermediate, HCO. We prepare this radical from acetaldehyde as a photo-precursor in a differentially pumped laser-ionization source quadrupole mass spectrometer. Using a multiresonant spectroscopic technique established in our laboratory, we select individual rotational states and overcome Franck-Condon barriers associated with neutral-to-cation geometry changes to promote transitions to individual autoionizing series and state-resolved ionization thresholds. Systematic analysis of rotational structure and associated lineshapes provide experimental insight on autoionization dynamics as input for theoretical modeling. Extrapolation of series, combined with direct threshold-photoelectron detection, yield precise ionization potentials that constitute an important contribution to the thermochemical base of information on HCO.

  11. High-resolution detectors for imaging and spectroscopy at ultraviolet and soft X-ray wavelengths

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Morgan, J. S.; Slater, D. C.

    1988-01-01

    The Multi-Anode Microchannel Arrays (MAMAs) are a family of pulse-counting imaging array detectors designed specifically for astrophysical investigations in space. The MAMAs have a number of unique performance characteristics which make them particularly suitable for imaging and spectroscopy at ultraviolet and soft X-ray wavelengths. First, they employ 'solar blind' photocathodes eliminating the 'red leak' problem associated with solid state arrays such as the CCDs. Second, they operate with zero readout noise, yielding photon-statistics limited signals. Third, they utilize a random readout technique and can determine both the location of a detected photon and also its arrival time to an accuracy of the order of 100 ns. This paper gives an overview of the construction, mode of operation, and performance characteristics of the MAMA detectors and describes the current status of the development program.

  12. High Resolution Spectroscopy of 12B Hypernuclei by the (e,e'K) Reaction

    SciTech Connect

    M. Sarsour

    2002-05-01

    Jefferson Laboratory experiment E89-009 used the reaction (e,e' K+ ) to produce 12/{Lambda}B hypernuclei from a carbon target. The scattered electrons were tagged at 0 degrees to take advantage of the increased virtual photon flux at forward angles, and the electroproduced kaons were also detected at small angles, {approx}3 degrees, to minimize the momentum transfer. To do this, a splitter magnet was used to bend the scattered electrons into an Enge split-pole spectrometer and the kaons into a short orbit spectrometer. In addition to increasing the production rate, tagging the scattered electrons at 0 degrees minimizes the optical aberrations on the focal plane of the Enge split-pole spectrometer. In this experiment, the spectroscopy of the 12/{Lambda}B hypernuclei was studied and excellent energy resolution was achieved, {approx} 918 keV. The differential cross section of the ground state doublet was also calculated.

  13. High resolution core level spectroscopy of hydrogen-terminated (1 0 0) diamond

    NASA Astrophysics Data System (ADS)

    Schenk, A. K.; Rietwyk, K. J.; Tadich, A.; Stacey, A.; Ley, L.; Pakes, C. I.

    2016-08-01

    Synchrotron-based photoelectron spectroscopy experiments are presented that address a long standing inconsistency in the treatment of the C1s core level of hydrogen terminated (1 0 0) diamond. Through a comparison of surface and bulk sensitive measurements we show that there is a surface related core level component to lower binding energy of the bulk diamond component; this component has a chemical shift of -0.16+/- 0.05 eV which has been attributed to carbon atoms which are part of the hydrogen termination. Additionally, our results indicate that the asymmetry of the hydrogen terminated (1 0 0) diamond C1s core level is an intrinsic aspect of the bulk diamond peak which we have attributed to sub-surface carbon layers.

  14. High-resolution (13)C nuclear magnetic resonance spectroscopy pattern recognition of fish oil capsules.

    PubMed

    Aursand, Marit; Standal, Inger B; Axelson, David E

    2007-01-10

    13C NMR (nuclear magnetic resonance) spectroscopy, in conjunction with multivariate analysis of commercial fish oil-related health food products, have been used to provide discrimination concerning the nature, composition, refinement, and/or adulteration or authentication of the products. Supervised (probabilistic neural networks, PNN) and unsupervised (principal component analysis, PCA; Kohonen neural networks; generative topographic mapping, GTM) pattern recognition techniques were used to visualize and classify samples. Simple PCA score plots demonstrated excellent, but not totally unambiguous, class distinctions, whereas Kohonen and GTM visualization provided better results. Quantitative class predictions with accuracies >95% were achieved with PNN analysis. Trout, salmon, and cod oils were completely and correctly classified. Samples reported to be salmon oils and cod liver oils did not cluster with true salmon and cod liver oil samples, indicating mislabeling or adulteration. PMID:17199311

  15. High-intensity xenon plasma discharge lamp for bulk-sensitive high-resolution photoemission spectroscopy

    SciTech Connect

    Souma, S.; Sato, T.; Takahashi, T.; Baltzer, P.

    2007-12-15

    We have developed a highly brilliant xenon (Xe) discharge lamp operated by microwave-induced electron cyclotron resonance (ECR) for ultrahigh-resolution bulk-sensitive photoemission spectroscopy (PES). We observed at least eight strong radiation lines from neutral or singly ionized Xe atoms in the energy region of 8.4-10.7 eV. The photon flux of the strongest Xe I resonance line at 8.437 eV is comparable to that of the He I{alpha} line (21.218 eV) from the He-ECR discharge lamp. Stable operation for more than 300 h is achieved by efficient air-cooling of a ceramic tube in the resonance cavity. The high bulk sensitivity and high-energy resolution of PES using the Xe lines are demonstrated for some typical materials.

  16. High-resolution emission spectroscopy of random lasing in GaN films pumped by UV-pulsed laser

    NASA Astrophysics Data System (ADS)

    Cachoncinlle, C.; Millon, E.; Petit, A.

    2016-06-01

    We report on room temperature photoluminescence on GaN films grown by metal organic chemical vapor deposition (MOCVD). A NdYAG pulsed-laser at 266 nm illuminates the films. Two components, at 363 nm and 370 nm, are identified in the near band edge structure on the spectra. A laser threshold of 700±150 kW cm-2 is evidenced and corresponds to random lasing in the GaN film. A drastic narrowing of the spectral bandwidth from 5.2 to 1.8 nm is observed at 370 nm. High-resolution spectroscopy measurements show laser mode widths thinner than 50 pm leading to a high quality factor Q=7750. Low-resolution measurements show redshift from 370.0 to 373.1 nm for one component and from 363.1 nm to 363.9 nm for the other. Interpretation of this redshift is discussed.

  17. High resolution Fourier transform spectroscopy and crystal-field analysis in Tm,Ho:BaY2F8

    NASA Astrophysics Data System (ADS)

    Baraldi, A.; Capelletti, R.; Mazzera, M.; Riolo, P.; Amoretti, G.; Magnani, N.; Sani, E.; Toncelli, A.; Tonelli, M.

    2005-01-01

    A Tm3+- Ho3+ -codoped single crystal of monoclinic BaY2F8 has been characterized by means of high resolution FTIR spectroscopy in the wave number range 2000-24000 cm-1 and in the temperature range 9-300 K. The energy level schemes of the two lanthanide ions as determined by the optical absorption spectra is presented, analyzed, and fitted within a single ion Hamiltonian model. The very small energy separation (about 0.6-1.6 cm-1) measured between the first and second sublevels of the ground state manifolds for both the ions is in line with the theoretical predictions. The impurity-phonon coupling is put into evidence by the thermally induced line shift and broadening, and by the detection of vibronic replicas of a few lines.

  18. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing

    PubMed Central

    Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo

    2016-01-01

    The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line. PMID:26901199

  19. Variation of Surface Charge along the Surface of Wool Fibers Assessed by High-Resolution Force Spectroscopy

    PubMed Central

    Zimmerman, Bonnie; Chow, James; Abbott, Albert G.; Ellison, Michael S.; Kennedy, Marian S.; Dean, Delphine

    2011-01-01

    In this study, we have mapped the surface charge of wool fibers using chemically specific high-resolution force spectroscopy in order to better understand the dispersion of amino acids in relation to fiber morphology. The inter-surface forces between standard atomic force microscopy (AFM) probe tips (tip radius ~ 50 nm) functionalized with COOH and NH3 terminated alkanethiol self assembling monolayers and the wool surface were used to estimate the surface charge per unit area using linear Poisson-Boltzmann-based electrostatic double layer theory. The positional measurement of nano-scale surface charge showed a correlation between the surface charge and fiber morphology, indicated that basic amino acids are located near the scale edges. PMID:21866220

  20. Design and performance of a soft-x-ray interferometer for ultra-high-resolution fourier transform spectroscopy

    SciTech Connect

    Moler, E.J.; Hussain, Z.; Duarte, R.M.; Howells, M.R.

    1997-04-01

    A Fourier Transform Soft X-ray spectrometer (FT-SX) has been designed and is under construction for the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory as a branch of beamline 9.3.2. The spectrometer is a novel soft x-ray interferometer designed for ultra-high resolution (theoretical resolving power E/{delta}E{approximately}10{sup 6}) spectroscopy in the photon energy region of 60-120 eV. This instrument is expected to provide experimental results which sensitively test models of correlated electron processes in atomic and molecular physics. The design criteria and consequent technical challenges posed by the short wavelengths of x-rays and desired resolving power are discussed. The fundamental and practical aspects of soft x-ray interferometry are also explored.

  1. Development of high-resolution real-time sub-ppb ethane spectroscopy and some pilot studies in life science.

    PubMed

    Skeldon, Kenneth D; Gibson, Graham M; Wyse, Cathy A; McMillan, Lesley C; Monk, Steve D; Longbottom, Chris; Padgett, Miles J

    2005-08-01

    We describe a high-resolution real-time spectroscopy system targeted to ethane gas with sensitivity > or = 70 ppt and response time from > or = 0.7 s. The measurement technique is based on a mid-IR lead-salt laser passing through a Herriott cell through which a gas sample flows. We compare wavelength scanning and locked configurations and discuss their relative merits. The technology has been motivated by clinical breath testing applications, ethane being widely regarded as the most important breath biomarker for cell damage via free-radical-mediated oxidative attack. We discuss preliminary human and animal studies in which ultrasensitive real-time ethane detection offers new diagnostic and monitoring potential. PMID:16075884

  2. High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array

    SciTech Connect

    Noroozian, Omid; Mates, John A. B.; Bennett, Douglas A.; Brevik, Justus A.; Fowler, Joseph W.; Gao, Jiansong; Hilton, Gene C.; Horansky, Robert D.; Irwin, Kent D.; Schmidt, Daniel R.; Vale, Leila R.; Ullom, Joel N.; Kang, Zhao

    2013-11-11

    We demonstrate very high resolution photon spectroscopy with a microwave-multiplexed two-pixel transition-edge sensor (TES) array. We measured a {sup 153}Gd photon source and achieved an energy resolution of 63 eV full-width-at-half-maximum at 97 keV and an equivalent readout system noise of 86 pA/√(Hz) at the TES. The readout circuit consists of superconducting microwave resonators coupled to radio-frequency superconducting-quantum-interference-devices and transduces changes in input current to changes in phase of a microwave signal. We use flux-ramp modulation to linearize the response and evade low-frequency noise. This demonstration establishes one path for the readout of cryogenic X-ray and gamma-ray sensor arrays with more than 10{sup 3} elements and spectral resolving powers R=λ/Δλ>10{sup 3}.

  3. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing.

    PubMed

    Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo

    2016-01-01

    The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF₂ microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line. PMID:26901199

  4. Experimentally characterizing the electronic structures of f-electron systems using advanced high resolution Fourier transform microwave spectroscopies

    SciTech Connect

    Cooke, Stephen, A

    2013-02-03

    We aim to (i) provide data that directly addresses the fundamental roles of actinide valence electrons in chemical bonding, and (ii) serve to provide prototypical data for the heavy element computational chemistry community. These goals will be achieved through the first pure rotational spectroscopic measurements on prototypical systems at ultra-high resolution. These systems encompass low oxidation state uranium and thorium compounds including, but not limited to, UX and ThX, X = F, Cl, Br, I, and UY and ThY, Y = O, S, and other simple U and Th-containing compounds. Our primary experimental tools involve time-domain rotational spectroscopy achieving line widths and resolutions of a few kHz.

  5. High-resolution three-dimensional compositional imaging by double-pulse laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Schiavo, C.; Menichetti, L.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Poggialini, F.; Pagnotta, S.; Palleschi, V.

    2016-08-01

    In this paper we present a new instrument specifically realized for high-resolution three-dimensional compositional analysis and mapping of materials. The instrument is based on the coupling of a Double-Pulse Laser-Induced Breakdown Spectroscopy (LIBS) instrument with an optical microscope. The compositional mapping of the samples is obtained by scanning the laser beam across the surface of the sample, while the in depth analysis is performed by sending multiple laser pulses on the same point. Depths of analysis of several tens of microns can be obtained. The instrument presented has definite advantages with respect to Laser Ablation-ICP Mass Spectrometry in many applications related to material analysis, biomedicine and environmental diagnostics. An application to the diagnostics of industrial ceramics is presented, demonstrating the feasibility of Double-Pulse LIBS Imaging and its advantages with respect to conventional single-pulse LIBS imaging.

  6. High-Resolution Rotational Spectroscopy Study of the Smallest Sugar Dimer: Interplay of Hydrogen Bonds in the Glycolaldehyde Dimer.

    PubMed

    Zinn, Sabrina; Medcraft, Chris; Betz, Thomas; Schnell, Melanie

    2016-05-10

    Molecular recognition of carbohydrates plays an important role in nature. The aggregation of the smallest sugar, glycolaldehyde, was studied in a conformer-selective manner using high-resolution rotational spectroscopy. Two different dimer structures were observed. The most stable conformer reveals C2 -symmetry by forming two intermolecular hydrogen bonds, giving up the strong intramolecular hydrogen bonds of the monomers and thus showing high hydrogen bond selectivity. By analyzing the spectra of the (13) C and (18) O isotopologues of the dimer in natural abundance, we could precisely determine the heavy backbone structure of the dimer. Comparison to the monomer structure and the complex with water provides insight into intermolecular interactions. Despite hydrogen bonding being the dominant interaction, precise predictions from quantum-chemical calculations highly rely on the consideration of dispersion. PMID:27060475

  7. ALMA-backed NIR high resolution integral field spectroscopy of the NUGA galaxy NGC 1433

    NASA Astrophysics Data System (ADS)

    Smajić, Semir; Moser, Lydia; Eckart, Andreas; Valencia-S., Mónica; Combes, Françoise; Horrobin, Matthew; García-Burillo, Santiago; García-Marín, Macarena; Fischer, Sebastian; Zuther, Jens

    2014-07-01

    Aims: We present the results of near-infrared (NIR) H- and K-band European Southern Observatory SINFONI integral field spectroscopy (IFS) of the Seyfert 2 galaxy NGC 1433. We investigate the central 500 pc of this nearby galaxy, concentrating on excitation conditions, morphology, and stellar content. NGC 1433 was selected from our extended NUGA(-south) sample, which was additionally observed with the Atacama Large Millimeter/submillimeter Array (ALMA). NGC 1433 is a ringed, spiral galaxy with a main stellar bar in roughly east-west direction (PA 94°) and a secondary bar in the nuclear region (PA 31°). Several dusty filaments are detected in the nuclear region with the Hubble Space Telescope. ALMA detects molecular CO emission coinciding with these filaments. The active galactic nucleus is not strong and the galaxy is also classified as a low-ionization emission-line region (LINER). Methods: The NIR is less affected by dust extinction than optical light and is sensitive to the mass-dominating stellar populations. SINFONI integral field spectroscopy combines NIR imaging and spectroscopy, allowing us to analyse several emission and absorption lines to investigate the stellar populations and ionization mechanisms over the 10″ × 10″ field of view (FOV). Results: We present emission and absorption line measurements in the central kpc of NGC 1433. We detect a narrow Balmer line and several H2 lines. We find that the stellar continuum peaks in the optical and NIR in the same position, indicating that there is no covering of the center by a nuclear dust lane. A strong velocity gradient is detected in all emission lines at that position. The position angle of this gradient is at 155° whereas the galactic rotation is at a position angle of 201°. Our measures of the molecular hydrogen lines, hydrogen recombination lines, and [Fe ii] indicate that the excitation at the nucleus is caused by thermal excitation, i.e., shocks that can be associated with active galactic

  8. Interpretation of monoclinic hafnia valence electron energy-loss spectra by time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Hung, L.; Guedj, C.; Bernier, N.; Blaise, P.; Olevano, V.; Sottile, F.

    2016-04-01

    We present the valence electron energy-loss spectrum and the dielectric function of monoclinic hafnia (m -HfO2) obtained from time-dependent density-functional theory (TDDFT) predictions and compared to energy-filtered spectroscopic imaging measurements in a high-resolution transmission-electron microscope. Fermi's golden rule density-functional theory (DFT) calculations can capture the qualitative features of the energy-loss spectrum, but we find that TDDFT, which accounts for local-field effects, provides nearly quantitative agreement with experiment. Using the DFT density of states and TDDFT dielectric functions, we characterize the excitations that result in the m -HfO2 energy-loss spectrum. The sole plasmon occurs between 13 and 16 eV, although the peaks ˜28 and above 40 eV are also due to collective excitations. We furthermore elaborate on the first-principles techniques used, their accuracy, and remaining discrepancies among spectra. More specifically, we assess the influence of Hf semicore electrons (5 p and 4 f ) on the energy-loss spectrum, and find that the inclusion of transitions from the 4 f band damps the energy-loss intensity in the region above 13 eV. We study the impact of many-body effects in a DFT framework using the adiabatic local-density approximation (ALDA) exchange-correlation kernel, as well as from a many-body perspective using "scissors operators" matched to an ab initio G W calculation to account for self-energy corrections. These results demonstrate some cancellation of errors between self-energy and excitonic effects, even for excitations from the Hf 4 f shell. We also simulate the dispersion with increasing momentum transfer for plasmon and collective excitation peaks.

  9. The high-resolution microchannel plate detector for FUV spectroscopy in the BepiColombo mission

    NASA Astrophysics Data System (ADS)

    Murakami, Go; Ezawa, Fukuhiro; Yoshioka, Kazuo; Yoshikawa, Ichiro; Chassefiere, Eric; Maria, Jean-Luc

    Mariner-10 UV measurements and telescopic spectroscopy from the Earth identified six elements (Ca, Na, K, H, He, and O) in the Mercury's exosphere. Other species are expected, e.g. H2 , OH, and some noble gasses (Ar, Ne, and Xe). All species representative of the surface composition, directly produced by impact vaporization driven by micrometeoroids, physical sputtering, photo-stimulated desorption, and thermal desorption from the regolith, should also be present. To determine the composition of the Mercury's exosphere, the PHEBUS (Probing of Hermean Exosphere By Ultraviolet Spectroscopy) instrument on Mercury Planetary Orbiter (MPO) will measure the emission lines of the exosphere. PHEBUS is a dual FUV-EUV spectrometer working in the wavelength range from 55 to 315 nm. We are now developing the compact detector system sensitive to FUV airglow emissions of the Mercury. The FUV detector is required to have high spatial resolution (80 µm) so that the wavelength resolution of the PHEBUS instrument should be 2 nm at the FUV range. The FUV detector consists of a Cs2 Te photocathode, microchannel plates (MCPs), and a resistive anode encoder (RAE). In a position-sensitive system with an RAE, the spatial resolution is determined by the signal-to-noise ratios at the anode terminals. Therefore, a high and stable electron gain of MCPs allows the position determination of each photoelectron event with high spatial resolution. We studied a method for achieving a high and stable electron gain. We fabricated a test model of the FUV detector incorporating a clamped pair of MCPs (V-stack) followed by a gap and a clamped triplet of MCPs (Z-stack) in cascade. We have investigated the effect of the negative potential applied across the inter-stack (V-Z) gap on the PHD and the spatial resolution by means of calculation and experiments. The calculation with a simple ballistic model showed that the negative inter-stack potential reduced the size of the electron cloud by 70%. The result

  10. 256-pixel microcalorimeter array for high-resolution γ-ray spectroscopy of mixed-actinide materials

    NASA Astrophysics Data System (ADS)

    Winkler, R.; Hoover, A. S.; Rabin, M. W.; Bennett, D. A.; Doriese, W. B.; Fowler, J. W.; Hays-Wehle, J.; Horansky, R. D.; Reintsema, C. D.; Schmidt, D. R.; Vale, L. R.; Ullom, J. N.

    2015-01-01

    The application of cryogenic microcalorimeter detectors to γ-ray spectroscopy allows for measurements with unprecedented energy resolution. These detectors are ideally suited for γ-ray spectroscopy applications for which the measurement quality is limited by the spectral overlap of many closely spaced transitions using conventional detector technologies. The non-destructive analysis of mixed-isotope Pu materials is one such application where the precision can be potentially improved utilizing microcalorimeter detectors compared to current state-of-the-art high-purity Ge detectors (HPGe). The LANL-NIST γ-ray spectrometer, a 256-pixel microcalorimeter array based on transition-edge sensors (TESs), was recently commissioned and used to collect data on a variety of Pu isotopic standards to characterize the instrument performance. These measurements represent the first time the simultaneous readout of all 256 pixels for measurements of mixed-isotope Pu materials has been achieved. The LANL-NIST γ-ray spectrometer has demonstrated an average pixel resolution of 55 eV full-width-at-half-maximum at 100 keV, nearly an order of magnitude better than HPGe detectors. Some challenges of the analysis of many-channel ultra-high resolution data and the techniques used to produce quality spectra for isotopic analysis will be presented. The LANL-NIST γ-ray spectrometer has also demonstrated stable operation and obtained high resolution measurements at total array event rates beyond 1 kHz. For a total event rate of 1.25 kHz, approximately 5.6 cps/pixel, a 72.2 eV average FWHM for the 103 keV photopeak of 153Gd was achieved.

  11. Superconducting tunnel junction x-ray detectors for high resolution spectroscopy

    SciTech Connect

    Labov, S., LLNL

    1998-06-01

    We are developing low-tcmpaature detectors for optical, ultraviolet, X-ray, and gamma-ray spectroscopy, and for biomolecular mass spectrometry. We present here a some of our recent work in developing these detectors and some of the first results in applying these detectors to X-ray fluorescence analysis. We have measured thin-film Nb/Al/Al{sub 2}O{sub 3}/Al/Nb superconducting tunnel junction (STJ) X-ray detectors in the 0 2 to 1 keV band with a range of different junction sizes and aluminum film thicknesses. In one case, we have achieved the statistical limit to the energy resolution in this band. We have measured the performance of these STJ detectors as a function of count rate. and demonstrated a resolution of 13 eV FWHM at 271 eV with an output count rate of 20,600 cts/s Using X rays from SSRL to study compos- ite materials, we have demonstrated that we can resolve the L lines of transition metals from the nearby K lines of light elements We describe the first use of a low-temperature X-ray detector to measure X-ray fluoresccncc from the dilute metal component in a protein.

  12. High Resolution Stark Spectroscopy of Model Donor-Acceptor Aminobenzonitriles in the Gas Phase.

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Clements, Casey L.; Bird, Ryan G.; Pratt, David W.; Alvarez-Valtierra, Leonardo

    2011-06-01

    Electronic communication between donor-acceptor systems is prevalent in many chemical processes. Unfortunately, an accurate description of the changes in molecular geometry responsible for intramolecular charge transfer (ICT) is difficult to ascertain. Reported here are the S0, LA, and LB electronic state structures and dipole moments of two model ICT systems, 4-(1H-pyrrol-l-yl)benzonitrile (PBN) and 4-(1-pyrrolidinyl)benzonitrile (PDBN), as measured by rotationally resolved electronic spectroscopy. As was observed for phenylpyrrole, the unsaturted rings of PBN become collectively more planar following excitation with UV light, in support of the planar ICT model. However, in PDBN the twist/inversion angle between rings is nearly zero in both the ground and excited electronic states. The unperturbed dipole moments measured here, taken in conjunction with available solvatochromism data, provide an estimate for the polarization, dispersion, and charge transfer contributions to solvent-mediated excited state stabilization. J.A. Thomas, J.W. Young, A.J. Fleisher, L. Álvarez-Valtierra, and D.W. Pratt, J. Phys. Chem. Lett. 1, 2017 (2010).

  13. High-resolution imaging and spectroscopy of interfacial water at single bond limit

    NASA Astrophysics Data System (ADS)

    Jiang, Ying

    Hydrogen bond is one of the most important weak interactions in nature and plays an essential role in a broad spectrum of physics, chemistry, biology, energy and material sciences. The conventional methods for studying hydrogen-bonding interaction are all based on spectroscopic or diffraction techniques. However, those techniques have poor spatial resolution and only measure the average properties of many hydrogen bonds, which are susceptible to the structural inhomogeneity and local environments, especially when interfacial systems are concerned. The spatial variation and inter-bond coupling of the hydrogen bonds leads to significant spectral broadening, which prohibits the accurate understanding of the experimental data. In this talk, I will present our recent progress on the development of new-generation scanning probe microscopy/spectroscopy (SPM/S) with unprecedentedly high sensitivity and resolution, for addressing weak inter- and intra-molecular interactions, such as hydrogen bonds and van der Waals force. Based on a qPlus sensor, we have succeeded to push the real-space study of a prototypical hydrogen-bonded system, i.e. water, down to single bond limit. Combined with state-of-the-arts quantum simulations, we have discovered exotic nuclear quantum effects (NQEs) in interfacial water and revealed the quantum nature of the hydrogen bond from a completely new perspective

  14. The high-resolution absorption spectroscopy branch on the VUV beamline DESIRS at SOLEIL.

    PubMed

    de Oliveira, Nelson; Joyeux, Denis; Roudjane, Mourad; Gil, Jean François; Pilette, Bertrand; Archer, Lucy; Ito, Kenji; Nahon, Laurent

    2016-07-01

    A VUV absorption spectroscopy facility designed for ultra-high spectral resolution is in operation as a dedicated branch on the DESIRS beamline at Synchrotron SOLEIL. This branch includes a unique VUV Fourier transform spectrometer (FTS) and a dedicated versatile gas sample chamber. The FTS instrument can cover a large UV-VUV spectral range from 4 to 30 eV, with an ultimate line width of 0.08 cm(-1) on a large spectral window, ΔE/E = 7%, over which all spectral features can be acquired in a multiplex way. The performance can be considered to be a middle ground between broadband moderate-resolution spectrometers based on gratings and ultra-high-spectral-resolution VUV tunable-laser-based techniques over very narrow spectral windows. The various available gaseous-sample-handling setups, which function over a wide range of pressures and temperatures, and the acquisition methodology are described. A selection of experimental results illustrates the performance and limitations of the FTS-based facility. PMID:27359137

  15. High-resolution spectroscopy of the blue compact dwarf galaxy Haro 15 - II. Chemodynamics

    NASA Astrophysics Data System (ADS)

    Hägele, Guillermo F.; Firpo, Verónica; Bosch, Guillermo; Díaz, Ángeles I.; Morrell, Nidia

    2012-06-01

    We present a detailed study of the physical properties of the nebular material in four star-forming knots of the blue compact dwarf galaxy Haro 15. Using long-slit and echelle spectroscopy obtained at Las Campanas Observatory, we study the physical conditions (electron density and temperatures), ionic and total chemical abundances of several atoms, reddening and ionization structure, for the global flux and for the different kinematical components. The latter was derived by comparing the oxygen and sulphur ionic ratios to their corresponding observed emission-line ratios (the η and η' plots) in different regions of the galaxy. Applying the direct method or empirical relationships for abundance determination, we perform a comparative analysis between these regions. The similarities found in the ionization structure of the different kinematical components imply that the effective temperatures of the ionizing radiation fields are very similar in spite of some small differences in the ionization state of the different elements. Therefore, the different gaseous kinematical components identified in each star-forming knot are probably ionized by the same star cluster. However, the difference in the ionizing structure of the two knots with knot A showing a lower effective temperature than knot B suggests a different evolutionary stage for them consistent with the presence of an older and more evolved stellar population in the first.

  16. Determination of rank and kerogen type by high resolution NMR spectroscopy

    SciTech Connect

    Dickinson, W.W.; Collen, J.D. ); Newman, R.H. )

    1990-06-01

    Nuclear magnetic resonance (NMR) spectroscopy is a nondestructive technique for measuring the chemical and structural properties of organic matter. Although used in organic geochemistry for the past 14 years, the technique has continually undergone refinement. Initially, only the aromatic and aliphatic signal areas of the carbon NMR spectrum could be measured. Carboxylic groups as well as oxygen-substituted groups on aromatic and aliphatic carbon can now be qualitatively measured. The authors have examined coal and shale samples of various ranks from the Williston and San Juan basins, USA, and the Taranaki and Great South basins, New Zealand. Kerogen type can be distinguished on a plot of aromaticity versus the methylene to methyl ratio. For type III kerogens, vitrinite reflectance correlates very well with the percent of oxygen substitution on aromatic carbon and aromaticity. These parameters are excellent indicators of rank because they reflect the decrease in oxygen content and the increase in aromatic carbon as organic matter matures. Although the initial cost of NMR equipment is high, the vast amount of chemical information on kerogen that may be obtained from a small sample and very little laboratory preparation make it a valuable tool for petroleum geochemistry.

  17. High Resolution Photoacoustic Spectroscopy of the Oxygen A-Band to Support the OCO Missions

    NASA Astrophysics Data System (ADS)

    Cich, M. J.; Lunny, E. M.; Bui, T. Q.; Drouin, B. J.; Okumura, M.; Stroscio, G. D.

    2015-12-01

    NASA's Orbiting Carbon Observatory missions require spectroscopic parameterization of the Oxygen A-Band absorption (757-775 nm) with unprecedented detail to meet the objective of delivering space-based column CO2 measurements with an accuracy of better than 1 ppm. This requires spectroscopic parameters with accuracies at the 0.1% level. To achieve this it is necessary for line shape models to include deviations from the Voigt line shape, including the collisional effects of Dicke narrowing, speed-dependence, line mixing (LM), and collision-induced absorption (CIA). To measure these effects to high accuracy, new innovative lab measurements are required. LM and CIA in particular are difficult to measure using standard spectroscopic techniques because, while present at atmospheric temperatures, these effects are difficult to quantify. At pressures of several atmospheres these effects contribute several percent to the A-Band absorption. While the O2 A-band is too weak for direct absorption measurements via a diode laser, a very sensitive photoacoustic spectroscopy technique is being used to study the pressure- dependence of the spectral line shape up to pressures of 5 atm. This spectrometer has a high S/N of about 10,000 and an advantageous zero baseline. In addition, temperature effects on the line shape are studied using a newly developed temperature control scheme. The latest results are reported.

  18. Next generation techniques in the high resolution spectroscopy of biologically relevant molecules.

    PubMed

    Neill, Justin L; Douglass, Kevin O; Pate, Brooks H; Pratt, David W

    2011-04-28

    Recent advances in the technology of test and measurement equipment driven by the computer and telecommunications industries have made possible the development of a new broadband, Fourier-transform microwave spectrometer that operates on principles similar to FTNMR. This technique uses a high sample-rate arbitrary waveform generator to construct a phase-locked chirped microwave pulse that gives a linear frequency sweep over a wide frequency range in 1 μs. The chirped pulse efficiently polarizes the molecular sample at all frequencies lying within this band. The subsequent free induction decay of this polarization is measured with a high-speed digitizer and then fast Fourier-transformed to yield a broadband, frequency-resolved rotational spectrum, spanning up to 11.5 GHz and containing lines that are as narrow as 100 kHz. This new technique is called chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy. The technique offers the potential to determine the structural and dynamical properties of very large molecules solely from fully resolved pure rotational spectra. FTMW double resonance techniques employing a low-resolution UV laser facilitate an easy assignment of overlapping spectra produced by different conformers in the sample. Of particular interest are the energy landscapes of conformationally flexible molecules of biological importance, including studies of their interaction with solvent and/or other weakly bound molecules. An example is provided from the authors' work on p-methoxyphenethylamine, a neurotransmitter, and its complexes with water. PMID:21394332

  19. High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Labbé, Nicole; André, Nicolas; Harris, Ronny; Ebinger, Michael; Wullschleger, Stan D.; Vass, Arpad A.

    2007-12-01

    Laser-induced breakdown spectroscopy (LIBS) has been used in the elemental analysis for a variety of environmental samples and as a proof of concept for a host of forensic applications. In the first application, LIBS was used for the rapid detection of carbon from a number of different soil types. In this application, a major breakthrough was achieved by using a multivariate analytical approach that has brought us closer towards a "universal calibration curve". In a second application, it has been demonstrated that LIBS in combination with multivariate analysis can be employed to analyze the chemical composition of annual tree growth rings and correlate them to external parameters such as changes in climate, forest fires, and disturbances involving human activity. The objectives of using this technology in fire scar determinations are: 1) To determine the characteristic spectra of wood exposed to forest fires and 2) To examine the viability of this technique for detecting fire occurrences in stems that did not develop fire scars. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications. LIBS was also applied to a variety of proof of concept forensic applications such as the analysis of cremains (human cremation remains) and elemental composition analysis of prosthetic implants.

  20. High Resolution Applications of Laser-Induced Breakdown Spectroscopy for Environmental and Forensic Applications

    SciTech Connect

    Martin, Madhavi Z; Labbe, Nicole; Andre, Nicolas O; Harris, Ronny D; Ebinger, Michael H; Wullschleger, Stan D; Vass, Arpad Alexander

    2007-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been used in the elemental analysis for a variety of environmental samples and as a proof of concept for a host of forensic applications. In the first application, LIBS was used for the rapid detection of carbon from a number of different soil types. In this application, a major breakthrough was achieved by using a multivariate analytical approach that has brought us closer towards a "universal calibration curve". In a second application, it has been demonstrated that LIBS in combination with multivariate analysis can be employed to analyze the chemical composition of annual tree growth rings and correlate them to external parameters such as changes in climate, forest fires, and disturbances involving human activity. The objectives of using this technology in fire scar determinations are: 1) To determine the characteristic spectra of wood exposed to forest fires and 2) To examine the viability of this technique for detecting fire occurrences in stems that did not develop fire scars. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications. LIBS was also applied to a variety of proof of concept forensic applications such as the analysis of cremains (human cremation remains) and elemental composition analysis of prosthetic implants.

  1. High-Resolution Laser-Induced Breakdown Spectroscopy used in Homeland Security and Forensic Applications

    SciTech Connect

    Martin, Madhavi Z; Wullschleger, Stan D; Vass, Arpad Alexander; Martin, Rodger Carl; Grissino-Mayer, Henri

    2006-01-01

    The technique of laser-induced breakdown spectroscopy (LIBS) to detect elements for a variety of homeland security applications such as nuclear materials identification and inventory,and forensic applications has been demonstrated. For nuclear materials applications, we detected and profiled metals in coatings that were used to encapsulate nuclear fuel. Multivariate analysis has been successfully employed in the quantification of elements present in treated wood and engineered wood composites. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications related to homeland security. Three key advantages are evident: (1) small samples (mg) are sufficient; (2) samples can be analyzed by LIBS very rapidly, and (3) biological materials such as human and animal bones and wood can be analyzed with minimal sample preparation. For forensic applications they have used LIBS to determine differences in animal and human bones. They have also applied this technique in the determination of counterfeit and non-counterfeit currency. They recently applied LIBS in helping to solve a murder case.

  2. New Atomic Data for Doubly Ionized Iron Group Atoms by High Resolution UV Fourier Transform Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smith, Peter L.; Pickering, Juliet C.; Thorne, A. P.

    2002-01-01

    Currently available laboratory spectroscopic data of doubly ionized iron-group element were obtained about 50 years ago using spectrographs of modest dispersion, photographic plates, and eye estimates of intensities. The accuracy of the older wavelength data is about 10 mAngstroms at best, whereas wavelengths are now needed to an accuracy of 1 part in 10(exp 6) to 10(exp 7) (0.2 to 2 mAngstroms at 2000 Angstroms). The Fourier transform (FT) spectroscopy group at Imperial College, London, and collaborators at the Harvard College Observatory have used a unique VUV FT spectrometer in a program focussed on improving knowledge of spectra of many neutral and singly and doubly ionized, astrophysically important, iron group elements. Spectra of Fe II and Fe III have been recorded at UV and VUV wavelengths with signal-to-noise ratios of several hundred for the stronger lines. Wavelengths and energy levels for Fe III are an order of magnitude more accurate than previous work; analysis is close to completion. f-values for Fe II have been published.

  3. High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential.

    PubMed

    Uhlig, J; Doriese, W B; Fowler, J W; Swetz, D S; Jaye, C; Fischer, D A; Reintsema, C D; Bennett, D A; Vale, L R; Mandal, U; O'Neil, G C; Miaja-Avila, L; Joe, Y I; El Nahhas, A; Fullagar, W; Gustafsson, F Parnefjord; Sundström, V; Kurunthu, D; Hilton, G C; Schmidt, D R; Ullom, J N

    2015-05-01

    X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edge sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies. PMID:25931095

  4. Changes in plant defense chemistry (pyrrolizidine alkaloids) revealed through high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Carvalho, Sabrina; Macel, Mirka; Schlerf, Martin; Moghaddam, Fatemeh Eghbali; Mulder, Patrick P. J.; Skidmore, Andrew K.; van der Putten, Wim H.

    2013-06-01

    Plant toxic biochemicals play an important role in defense against natural enemies and often are toxic to humans and livestock. Hyperspectral reflectance is an established method for primary chemical detection and could be further used to determine plant toxicity in the field. In order to make a first step for pyrrolizidine alkaloids detection (toxic defense compound against mammals and many insects) we studied how such spectral data can estimate plant defense chemistry under controlled conditions. In a greenhouse, we grew three related plant species that defend against generalist herbivores through pyrrolizidine alkaloids: Jacobaea vulgaris, Jacobaea erucifolia and Senecio inaequidens, and analyzed the relation between spectral measurements and chemical concentrations using multivariate statistics. Nutrient addition enhanced tertiary-amine pyrrolizidine alkaloids contents of J. vulgaris and J. erucifolia and decreased N-oxide contents in S. inaequidens and J. vulgaris. Pyrrolizidine alkaloids could be predicted with a moderate accuracy. Pyrrolizidine alkaloid forms tertiary-amines and epoxides were predicted with 63% and 56% of the variation explained, respectively. The most relevant spectral regions selected for prediction were associated with electron transitions and Csbnd H, Osbnd H, and Nsbnd H bonds in the 1530 and 2100 nm regions. Given the relatively low concentration in pyrrolizidine alkaloids concentration (in the order of mg g-1) and resultant predictions, it is promising that pyrrolizidine alkaloids interact with incident light. Further studies should be considered to determine if such a non-destructive method may predict changes in PA concentration in relation to plant natural enemies. Spectroscopy may be used to study plant defenses in intact plant tissues, and may provide managers of toxic plants, food industry and multitrophic-interaction researchers with faster and larger monitoring possibilities.

  5. High Resolution Time-resolved UCLES Spectroscopy of AE Aqr: I. The Secondary Star Revealed

    NASA Astrophysics Data System (ADS)

    Echevarria, J.; Diego, F.; Mills, D.; Connon Smith, R.

    2006-06-01

    High-dispersion time-resolved spectroscopy of the cataclysmic variable AE Aqr has been obtained. The emission lines have a complex structure that make difficult to measure the motion of the white dwarf. The cross correlation for the absorption lines shows a clear asymmetric profile as expected from a heated side of the red star. The spectral type for the secondary star varies from K2 to K5; there are clear indications that the temperature varies as a function of star longitude. The radial velocity analysis yield Kab = 165.2 ± 0.6 Km s-1 for the cross-correlated secondary star. The rotational velocity of the red star has been measured as a function of orbital period. It shows ellipsoidal variations with a period half the orbital period. The rotational velocities vary within the range Vrot sin i = 105 ± 3 Km s-1 and Vrot sin i = 130 ± 3 Km s-1. The former can be used to constrain the white dwarf semi-amplitude value to yield Kem = 139 ± 4 Km s-1 consistent with derived values from published radial velocity measurements. From a variation in the absorption line strength of 30%, we constrain the inclination angle to i = 58° ± 3. The estimated masses of the binary are: Mw = 1.07 ± 0.07 M? and Mr = 0.90 ± 0.05 M?. If this is correct we should expect a spectral type of G5 if the secondary star is a main sequence star. We suggest that the discrepancy is explained if the star has a radius 40% greater than a main sequence star for a mass of 0.90 M?.

  6. MULTI-EPOCH OBSERVATIONS OF HD 69830: HIGH-RESOLUTION SPECTROSCOPY AND LIMITS TO VARIABILITY

    SciTech Connect

    Beichman, C. A.; Tanner, A. M.; Bryden, G.; Akeson, R. L.; Ciardi, D. R.; Lisse, C. M.; Boden, A. F.; Dodson-Robinson, S. E.; Salyk, C.; Wyatt, M. C.

    2011-12-10

    The main-sequence solar-type star HD 69830 has an unusually large amount of dusty debris orbiting close to three planets found via the radial velocity technique. In order to explore the dynamical interaction between the dust and planets, we have performed multi-epoch photometry and spectroscopy of the system over several orbits of the outer dust. We find no evidence for changes in either the dust amount or its composition, with upper limits of 5%-7% (1{sigma} per spectral element) on the variability of the dust spectrum over 1 year, 3.3% (1{sigma}) on the broadband disk emission over 4 years, and 33% (1{sigma}) on the broadband disk emission over 24 years. Detailed modeling of the spectrum of the emitting dust indicates that the dust is located outside of the orbits of the three planets and has a composition similar to main-belt, C-type asteroids in our solar system. Additionally, we find no evidence for a wide variety of gas species associated with the dust. Our new higher signal-to-noise spectra do not confirm our previously claimed detection of H{sub 2}O ice leading to a firm conclusion that the debris can be associated with the break-up of one or more C-type asteroids formed in the dry, inner regions of the protoplanetary disk of the HD 69830 system. The modeling of the spectral energy distribution and high spatial resolution observations in the mid-infrared are consistent with a {approx}1 AU location for the emitting material.

  7. Spectroscopy and high-resolution imaging of the gravitational lens SDSS J1206+4332

    NASA Astrophysics Data System (ADS)

    Agnello, Adriano; Sonnenfeld, Alessandro; Suyu, Sherry H.; Treu, Tommaso; Fassnacht, Christopher D.; Mason, Charlotte; Bradač, Maruša; Auger, Matthew W.

    2016-06-01

    We present spectroscopy and laser guide star adaptive optics (LGSAO) images of the doubly imaged lensed quasar SDSS J1206+4332. We revise the deflector redshift proposed previously to zd = 0.745, and measure for the first time its velocity dispersion σ = (290 ± 30) km s-1. The LGSAO data show the lensed quasar host galaxy stretching over the astroid caustic thus forming an extra pair of merging images, which was previously thought to be an unrelated galaxy in seeing limited data. Owing to the peculiar geometry, the lens acts as a natural coronagraph on the broad-line region of the quasar so that only narrow C III]emission is found in the fold arc. We use the data to reconstruct the source structure and deflector potential, including nearby perturbers. We reconstruct the point-spread function (PSF) from the quasar images themselves, since no additional point source is present in the field of view. From gravitational lensing and stellar dynamics, we find the slope of the total mass density profile to be γ' = -log ρ/log r = 1.93 ± 0.09. We discuss the potential of SDSS J1206+4332 for measuring a time-delay distance (and thus H0 and other cosmological parameters), or as a standard ruler, in combination with the time-delay published by the COSMOGRAIL collaboration. We conclude that this system is very promising for cosmography. However, in order to achieve competitive precision and accuracy, an independent characterization of the PSF is needed. Spatially resolved kinematics of the deflector would reduce the uncertainties further. Both are within the reach of current observational facilities.

  8. High-resolution electronic spectroscopy of the doorway states to intramolecular charge transfer.

    PubMed

    Fleisher, Adam J; Bird, Ryan G; Zaleski, Daniel P; Pate, Brooks H; Pratt, David W

    2013-04-25

    Reported here are several of the ground, first, and second excited state structures and dipole moments of three benchmark intramolecular charge transfer (ICT) systems; 4-(1H-pyrrol-1-yl)benzonitrile (PBN), 4,4'-dimethylaminobenzonitrile (DMABN), and 4-(1-pyrrolidinyl)benzonitrile (PYRBN), isolated in the gas phase and probed by rotationally resolved spectroscopy in a molecular beam. The related molecules 1-phenylpyrrole (PP) and 4-aminobenzonitrile (ABN) also are discussed. We find that the S1 electronic state is of B symmetry in all five molecules. In PBN, a second excited state (S2) of A symmetry is found only ~400 cm(-1) above the presumed origin of the S1 state. The change in dipole moment upon excitation to the A state is measured to be Δμ ≈ 3.0 D, significantly smaller than the value predicted by theory and also smaller than that observed for the "anomalous" ICT band of PBN in solution. The B state dipole moments of DMABN and PYRBN are large, ~10.6 D, slightly larger than those attributed to "normal" LE fluorescence in solution. In addition, we find the unsaturated donor molecules (PP, PBN) to be twisted in their ground states and to become more planar upon excitation, even in the A state, whereas the saturated donor molecules (ABN, DMABN, PYRBN), initially planar, either remain planar or become more twisted in their excited states. It thus appears that the model that is appropriate for describing ICT in these systems depends on the geometry of the ground state. PMID:22913563

  9. High-Resolution Infrared Imaging and Spectroscopy of the Pistol Nebula: Evidence for Ejection

    NASA Astrophysics Data System (ADS)

    Figer, Donald F.; Morris, Mark; Geballe, T. R.; Rich, R. Michael; Serabyn, Eugene; McLean, Ian S.; Puetter, R. C.; Yahil, Amos

    1999-11-01

    We present new infrared images, obtained with the Hubble Space Telescope (HST) Near-Infrared Camera and Multiobject Spectrometer (NICMOS), and Brα (4.05 μm) spectroscopy, obtained using CGS4 on UKIRT, of the Pistol Star and its associated nebula. We find strong evidence to support the hypothesis that the Pistol Nebula was ejected from the Pistol Star. The Paα (1.87 μm) NICMOS image shows that the nebula completely surrounds the Pistol Star, although the line intensity is much stronger on its northern and western edges. The Brα CGS4 spectra show the classical ringlike signature of quasi-spherical expansion. The blueshifted emission (Vmax~-60 km s-1) is much weaker than the redshifted emission (Vmax~+10 km s-1), where the velocities are with respect to the velocity of the Pistol Star; further, the redshifted emission spans a very narrow range of velocities, i.e., it appears ``flattened'' in the position-velocity diagram. These data suggest that the nebula was ejected from the star several thousand years ago, with a velocity between the current terminal velocity of the stellar wind (95 km s-1) and the present expansion velocity of gas in the outer shell of the nebula (60 km s-1). The Paα image reveals several emission-line stars in the region, including two newly identified emission-line stars north of the Pistol Star, both of which are likely to be the hottest known stars in the Galactic center with spectral types earlier than WC8 and Teff>50,000 K). The presence of these stars, the morphology of the Paα emission, and the velocity field in the gas suggest that the side of the nebula farthest from us is approaching, and being ionized by, the hot stars of the Quintuplet and that the highest velocity redshifted gas has been decelerated by winds from the Quintuplet stars. We also discuss the possibility that the nebular gas might be magnetically confined by the ambient magnetic field delineated by the nearby nonthermal filaments. Based on observations with the

  10. Inelastic mean-free paths and surface excitation parameters by absolute reflection electron-energy loss measurements

    NASA Astrophysics Data System (ADS)

    Nagatomi, T.; Goto, K.

    2007-06-01

    An analytical approach is proposed for simultaneously determining the inelastic mean-free path (IMFP), the surface excitation parameter (SEP), and the differential SEP (DSEP) in absolute units from an absolute reflection electron energy loss spectroscopy (REELS) spectrum under the assumption that the normalized differential inelastic mean-free path for bulk excitations and the elastic scattering cross section are known. This approach was applied to an analysis of REELS spectra for Ni, and the IMFP, SEP, and DSEP in Ni for 300-3000eV electrons were determined. The resulting IMFPs showed good agreement with those calculated using the TPP-2M predictive equations and with those calculated from optical data. The deduced DSEPs show a reasonable agreement with those theoretically predicted. The obtained SEPs were compared with those calculated using several predictive equations. The present SEP results agreed well with the Chen formula with a material parameter proposed for Ni. The present approach has high potential for the experimental determination of IMFPs, SEPs, and DSEPs in absolute units.

  11. Measurement of Absolute Excitation Cross Sections in Highly-Charged Ions Using Electron Energy Loss and Merged Beams

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Smith, Steven J.; Lozano, J.

    2002-01-01

    There is increasing emphasis during this decade on understanding energy balance and phenomena observed in high electron temperature plasmas. The UV spectral return from FUSE, the X-ray spectral return from the HETG on Chandra and the LETGS 011 XMM-Newton are just beginning. Line emissions are almost entirely from highly-charged ions (HCIs) of C, N, 0, Ne, Mg, S, Si, Ca, and Fe. The Constellation-X mission will provide X-ray spectroscopy up to photon energies of 0.12 nm (10 keV) where primary line emitters will be HCIs. A variety of atomic parameters are required to model the stellar and solar plasma. These include cross sections for excitation, ionization, charge-exchange, X-ray emission, direct and indirect recombination, lifetimes and branching ratios, and dependences on l, m mixing by external E and B fields. In almost all cases the atomic quantities are calculated, and few comparisons to experiment have been carried out. Collision strengths and Einstein A-values are required to convert the observed spectral intensities to electron temperatures and densities in the stellar plasma. The JPL electron energy-loss and merged beam approach has been used to measure absolute collision strengths in a number of ions, with critical comparison made to the best available theories.

  12. Comparison of the electronic structure of a thermoelectric skutterudite before and after adding rattlers: an electron energy loss study.

    PubMed

    Prytz, O; Saeterli, R; Løvvik, O M; Taftø, J

    2008-08-01

    Skutterudites, with rattler atoms introduced in voids in the crystal unit cell, are promising thermoelectric materials. We modify the binary skutterudite with atomic content Co(8)P(24) in the cubic crystal unit cell by adding La as rattlers in all available voids and replacing Co by Fe to maintain charge balance, resulting in La(2)Fe(8)P(24). The intention is to leave the electronic structure unaltered while decreasing the thermal conductivity due to the presence of the rattlers. We compare the electronic structure of these two compounds by studying the L-edges of P and of the transition elements Co and Fe using electron energy loss spectroscopy (EELS). Our studies of the transition metal white lines show that the 3d electron count is similar for Co and Fe in these compounds. As elemental Fe has one electron less than Co, this supports the notion that each La atom donates three electrons. The L-edges of P in these two skutterudites are quite similar, signalling only minor differences in electronic structure. This is in reasonable agreement with density functional theory (DFT) calculations, and with our multiple scattering FEFF calculations of the near edge structure. However, our experimental plasmon energies and dielectric functions deviate considerably from predictions based on DFT calculations. PMID:18042390

  13. Quantitative analysis of electron energy loss spectra and modelling of optical properties of multilayer systems for extreme ultraviolet radiation regime

    SciTech Connect

    Gusenleitner, S.; Hauschild, D.; Reinert, F.; Handick, E.

    2014-03-28

    Ruthenium capped multilayer coatings for use in the extreme ultraviolet (EUV) radiation regime have manifold applications in science and industry. Although the Ru cap shall protect the reflecting multilayers, the surface of the heterostructures suffers from contamination issues and surface degradation. In order to get a better understanding of the effects of these impurities on the optical parameters, reflection electron energy loss spectroscopy (REELS) measurements of contaminated and H cleaned Ru multilayer coatings were taken at various primary electron beam energies. Experiments conducted at low primary beam energies between 100 eV and 1000 eV are very surface sensitive due to the short inelastic mean free path of the electrons in this energy range. Therefore, influences of the surface condition on the above mentioned characteristics can be appraised. In this paper, it can be shown that carbon and oxide impurities on the mirror surface decrease the transmission of the Ru cap by about 0.75% and the overall reflectance of the device is impaired as the main share of the non-transmitted EUV light is absorbed in the contamination layer.

  14. Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards

    NASA Astrophysics Data System (ADS)

    Ye, Jun

    1997-09-01

    Advanced laser stabilization techniques now enable one to lock laser frequencies onto line centers of natural atomic/molecular resonances with unprecedented precision and accuracy. In this dissertation we discuss our effort in utilizing these techniques to establish visible optical frequency standards. By summarizing our earlier results on frequency measurements of the 87Rb D2 line at 780 nm 127I2 hyperfine transitions at 532 nm, we show the advantage of using a higher quality reference line, usually characterized by its narrower linewidth, higher attainable signal-to-noise ratio and lower sensitivity toward external perturbations. We then present a novel approach of cavity-enhanced frequency modulation spectroscopy for ultra-sensitive detections. The powerful utility of this new technique in the field of frequency standards is demonstrated by probing saturated molecular overtone transitions in the visible and near infrared. Weakly-absorbing gases such as C2H2 and C2HD are placed inside an external high-finesse resonator to enhance their detection sensitivities. A frequency modulation technique is employed to achieve a shot noise limited signal-to- noise ratio. The rf modulation frequency is chosen to match the cavity's free spectral range in order to avoid the cavity-induced conversion of laser frequency noise into amplitude noise. The molecular saturated dispersion signal is directly recovered after demodulation of the cavity transmitted light. A record high integrated absorption sensitivity of 5× 10-13/ (1× 10-14/cm) (at 1 second averaging time) has been obtained. Systematic studies on this new technique are presented on topics of detection sensitivity, signal line shape, signal size and slope, and pressure dependent linewidth broadening and linecenter shift. A Nd:YAG laser is stabilized on the P(5) transition in the (ν2+3/ ν3) overtone band of C2HD at 1.064 μm. Its absolute frequency is established. The excellent signal- to-noise ratio produces a frequency

  15. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoacetica metabolic profiles.

    PubMed

    Xue, Junfeng; Isern, Nancy G; Ewing, R James; Liyu, Andrei V; Sears, Jesse A; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R; Ahring, Birgitte K; Majors, Paul D

    2014-10-01

    An in situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution NMR (HR-NMR) spectroscopy. In situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at 500 MHz, and aliquots of the bioreactor contents were taken for 600-MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol, and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in situ NMR bioreactor facilitated monitoring of the fermentation process, enabling identification of intermediate and endpoint metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts. PMID:24946863

  16. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoaceticum metabolic profiles

    SciTech Connect

    Xue, Junfeng; Isern, Nancy G.; Ewing, R James; Liyu, Andrey V.; Sears, Jesse A.; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R.; Ahring, Birgitte K.; Majors, Paul D.

    2014-06-20

    An in-situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch-growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution, high sensitivity NMR (HR-NMR) spectroscopy. In-situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at an NMR frequency of 500 MHz, and aliquots of the bioreactor contents were taken for 600 MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in-situ NMR bioreactor facilitated monitoring of the fermentation process in real time, enabling identification of intermediate and end-point metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with the HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  17. The Effect Of Electronic Energy Loss On Irradiation-induced Grain Growth In Nanocrystalline Oxides

    SciTech Connect

    Zhang, Yanwen; Aidhy, Dilpuneet S.; Varga, Tamas; Moll, Sandra; Edmondson, Philip D.; Namavar, Fereydoon; Jin, Ke; Ostrouchov, Christopher N.; Weber, William J.

    2014-03-03

    Grain growth of nanocrystalline materials is generally thermally activated, but can also be driven by irradiation at much lower temperature. In nanocrystalline ceria and zirconia, energetic ions deposit their energy to both atomic nuclei and electrons. Our experimental results have shown that irradiationinduced grain growth is dependent on the total energy deposited, where electronic energy loss and elastic collisions between atomic nuclei both contribute to the production of disorder and grain growth. Our atomistic simulations reveal that a high density of disorder near grain boundaries leads to locally rapid grain movement. The additive effect from both electronic excitation and atomic collision cascades on grain growth demonstrated in this work opens up new possibilities for controlling grain sizes to improve functionality of nanocrystalline materials.

  18. Phase analysis of nanocomposite magnetic materials by electron energy loss spectrometry

    NASA Astrophysics Data System (ADS)

    Hébert-Souche, C.; Bernardi, J.; Schattschneider, P.; Fidler, J.; Jouffrey, B.

    2000-02-01

    EELS (electron energy loss spectrometry) in the transmission electron microscope (TEM) was used to determine the composition of a nanocrystalline magnetic specimen. The relative amounts of the hard magnetic phase Nd2Fe{14}B and the soft magnetic phase Fe3B at the point of measurement was measured by standard EELS quantification. In order to determine the structure of Fe3B present, the fine structure of the boron K-ionisation edge was analysed. Comparison of the experimental spectra with simulations of the fine structures based on the TELNES extension of the WIEN97 program package, a full potential linearised augmented plane wave approach to the calculation of electronic structure in crystals, shows that the tetragonal form of Fe3B is predominant.

  19. Simulation of Probe Position-Dependent Electron Energy-Loss Fine Structure

    SciTech Connect

    Oxley, M. P.; Kapetanakis, M. D.; Prange, Micah P.; Varela, M.; Pennycook, Stephen J.; Pantelides, Sokrates T.

    2014-03-31

    We present a theoretical framework for calculating probe-position-dependent electron energy-loss near-edge structure for the scanning transmission electron microscope by combining density functional theory with dynamical scattering theory. We show how simpler approaches to calculating near-edge structure fail to include the fundamental physics needed to understand the evolution of near-edge structure as a function of probe position and investigate the dependence of near-edge structure on probe size. It is within this framework that density functional theory should be presented, in order to ensure that variations of near-edge structure are truly due to local electronic structure and how much from the diffraction and focusing of the electron beam.

  20. High-resolution optical spectroscopy of Os-with a view to laser cooling of atomic anions

    NASA Astrophysics Data System (ADS)

    Kellerbauer, Alban; Fritzsche, Stephan

    2012-11-01

    Atomic anions are generally not amenable to optical spectroscopy because they are loosely bound systems and rarely have bound excited states. Until recently, there was only one known negative ion with a strong bound-bound electronic transition, the osmium anion Os-. The electric-dipole transition between the 4Fe9/2 ground and 6DoJ excited state of this ion provides unique insight into the structure of atomic anions. In addition, it may enable the preparation of ultracold ensembles of negative ions. Laser excitation of the electric-dipole transition in Os- ions could be used to laser-cool them to microkelvin temperatures. If demonstrated to be successful, the technique would allow the cooling of any species of negatively charged ions - from subatomic particles to molecular anions - to ultracold temperatures by sympathetic cooling. We have been investigating the bound-bound electric-dipole transition in Os- by high-resolution laser spectroscopy with a view to using it for the first laser cooling of negative ions. The principle of the method, its potential applications, as well as experimental results are presented.

  1. Resonant x-ray emission spectroscopy of liquid water: novel instrumentation, high resolution, and the"map" approach

    SciTech Connect

    Weinhardt, L.; Fuchs, O.; Blum, M.; Bär, M.; Weigand, M.; Denlinger, J.D.; Zubavichus, Y.; Zharnikov, M.; Grunze, M.; Heske, C.; Umbach, E.

    2008-06-17

    Techniques to study the electronic structure of liquids are rare. Most recently, resonant x-ray emission spectroscopy (XES) has been shown to be an extremely versatile spectroscopy to study both occupied and unoccupied electronic states for liquids in thermodynamic equilibrium. However, XES requires high-brilliance soft x-ray synchrotron radiation and poses significant technical challenges to maintain a liquid sample in an ultra-high vacuum environment. Our group has therefore developed and constructed a novel experimental setup for the study of liquids, with the long-term goal of investigating the electronic structure of biological systems in aqueous environments. We have developed a flow-through liquid cell in which the liquid is separated from vacuum by a thin Si3N4 or SiC window and which allows a precise control of temperature. This approach has significant advantages compared to static liquids cells used in the past. Furthermore, we have designed a dedicated high-transmission, high-resolution soft x-ray spectrometer. The high transmission makes it possible to measure complete resonant XES"maps" in less than an hour, giving unprecedented detailed insight into the electronic structure of the investigated sample. Using this new equipment we have investigated the electronic structure of liquid water. Furthermore, our XES spectra and maps give information about ultra-fast dissociation on the timescale of the O 1s core hole lifetime, which is strongly affected by the initial state hydrogen bonding configuration.

  2. Structural model of homogeneous As–S glasses derived from Raman spectroscopy and high-resolution XPS

    SciTech Connect

    Golovchak, R.; Shpotyuk, O.; Mccloy, J. S.; Riley, B. J.; Windisch, C. F.; Sundaram, S. K.; Kovalskiy, A.; Jain, H.

    2010-11-28

    The structure of homogeneous bulk As x S100- x (25 ≤ x ≤ 42) glasses, prepared by the conventional rocking–melting–quenching method, was investigated using high-resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. It is shown that the main building blocks of their glass networks are regular AsS3/2 pyramids and sulfur chains. In the S-rich domain, the existence of quasi-tetrahedral (QT) S = As(S1/2)3 units is deduced from XPS data, but with a concentration not exceeding ~3–5% of total atomic sites. Therefore, QT units do not appear as primary building blocks of the glass backbone in these materials, and an optimally-constrained network may not be an appropriate description for glasses when x < 40. Finally, it is shown that, in contrast to Se-based glasses, the ‘chain-crossing’ model is only partially applicable to sulfide glasses.

  3. Experiments with the High Resolution Kaon Spectrometer at Jlab Hall C and the New Spectroscopy of ^12_Lambda B Hypernuclei

    SciTech Connect

    Tang, Liguang; Chen, Chunhua; Gogami, Toshiyuki; Kawama, Daisuke; Han, Yuncheng; Yuan, Lulin; Matsumura, Akihiko; Okayasu, Yuichi; Seva, Tomislav; Rodriguez, Victor; Baturin, Pavlo; Acha Quimper, Armando; Achenbach, Carsten; Ahmidouch, Abdellah; Albayrak, Ibrahim; Androic, Darko; Asaturyan, Arshak; Asaturyan, Razmik; Ates, Ozgur; Badui, Rafael; Baker, Oliver; Benmokhtar, Fatiha; Boeglin, Werner; Bono, Jason; Bosted, Peter; Brash, Edward; Carter, Philip; Carlini, Roger; Chiba, Atsushi; Christy, Michael; Cole, Leon; Dalton, Mark; Danagoulian, Samuel; Daniel, Aji; De Leo, Raffaele; Dharmawardane, Kahanawita; Doi, Daisuke; Egiyan, Kim; Elaasar, Mostafa; Ent, Rolf; Fenker, Howard; Fujii, Yu; Furic, Miroslav; Gabrielyan, Marianna; Gan, Liping; Garibaldi, Franco; Gaskell, David; Gasparian, Ashot; Gibson, Edward; Gueye, Paul; Hashimoto, Osamu; Honda, D; Horn, Tanja; Hu, Bitao; Hungerford, Ed; Jayalath, Chandana; Jones, Mark; Johnston, Kathleen; Kalantarians, Narbe; Kanda, Hiroki; Kaneta, M; Kato, F; Kato, Seigo; Kawai, Masaharu; Keppel, Cynthia; Khanal, Hari; Kohl, M; Kramer, Laird; Lan, Kejian; Li, Ya; Habarakada Liyanage, Anusha; Luo, Wei; Mack, David; Maeda, Kazushige; Malace, Simona; Margaryan, Amur; Marikyan, Gagik; Markowitz, Pete; Maruta, Tomofumi; Maruyama, Nayuta; Maxwell, Victor; Millener, David; Miyoshi, Toshinobu; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Motoba, Toshio; Nagao, Sho; Nakamura, Satoshi; Narayan, Amrendra; Neville, Casey; Niculescu, Gabriel; Niculescu, Maria; Nunez, Angel; Nuruzzaman, nfn; Nomura, Hiroshi; Nonaka, Kenichi; Ohtani, Atsushi; Oyamada, Masamichi; Perez, Naipy; Petkovic, Tomislav; Pochodzalla, J; Qiu, Xiyu; Randeniya, Kapugodage; Raue, Brian; Reinhold, Joerg; Rivera, R; Roche, Julie; Samanta, Chhanda; Sato, Yoshinori; Sawatzky, Bradley; Segbefia, Edwin; Schott, Diane; Shichijo, Ayako; Simicevic, Neven; Smith, Gregory; Song, Yushou; Sumihama, Mizuki; Tadevosyan, Vardan; Takahashi, Toshiyuki; Taniya, Naotaka; Tsukada, Kyo; Tvaskis, Vladas; Veilleux, Micah; Vulcan, William; Wells, Steven; Wesselmann, Frank; Wood, Stephen; Yamamoto, Taku; Yan, Chen; Ye, Z; Yokota, Kosuke; Zhamkochyan, Simon; Zhu, Lingyan

    2014-09-01

    Since the pioneering experiment, E89-009 studying hypernuclear spectroscopy using the $(e,e^{\\prime}K^+)$ reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "Tilt Method", to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet were added to produce precision, high-resolution hypernuclear spectroscopy. These two experiments, E01-011 and E05-115, resulted in two new data sets, producing sub-MeV energy resolution in the spectra of ${}^{7}_{\\Lambda}\\text{He}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{28}_{\\Lambda} \\text{Al}$ and ${}^{7}_{\\Lambda}\\text{He}$, ${}^{10}_{\\Lambda}\\text{Be}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{52}_{\\Lambda}\\text{V}$. All three experiments obtained a ${}^{12}_{\\Lambda}\\text{B}$, spectrum, which is the most characteristic $p$-shell hypernucleus and is commonly used for calibration. Independent analyses of these different experiments demonstrate excellent consistency and provide the clearest level structure to date of this hypernucleus as produced by the $(e,e^{\\prime}K^+)$ reaction. This paper presents details of these experiments, and the extraction and analysis of the observed ${}^{12}_{\\Lambda}\\text{B}$ spectrum.

  4. Characterization of carbonaceous meteoritic fragments found in Antarctica by high-resolution Raman spectroscopy and SEM/EDS

    NASA Astrophysics Data System (ADS)

    Dall Asen, Analia; Baer, Brandon; Mittelstaedt, Jake; Gerton, Jordan; Bromley, Benjamin; Kenyon, Scott

    2016-03-01

    Carbonaceous chondritic meteorites are composed mainly of chondrules (micro/millimeter-sized inclusions) surrounding by a matrix of microparticles, and are considered the most primitive surviving materials from the early Solar System. Understanding their properties and history may provide clues to the formation of planets from micron-size dust grains in the Solar nebula. Our approach is to study the structure and composition of carbonaceous chondrites with high-resolution micro-Raman spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. These techniques enable us to capture details on a wide range of spatial scales, from micrometers to millimeters. Here we provide the first analysis of a set of meteorite fragments from Antarctica (MIL 07002 and ALH 84028), mapping elemental and molecular abundances, as well as large-scale morphological features. We present characterizations of individual chondrules and the surrounding matrix, and we consider on how our findings reflect physical processes believed to be operating during the early stages of planet formation.

  5. The SEGUE Stellar Parameter Pipeline. III. Comparison with High-Resolution Spectroscopy of SDSS/SEGUE Field Stars

    SciTech Connect

    Allende Prieto, C.; Sivarani, T.; Beers, T.C.; Lee, Y.S.; Koesterke, L.; Shetrone, M.; Sneden, C.; Lambert, D.L.; Wilhelm, R.; Rockosi, C.M.; Lai, D.

    2007-10-01

    The authors report high-resolution spectroscopy of 125 field stars previously observed as part of the Sloan Digital Sky Survey and its program for Galactic studies, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). These spectra are used to measure radial velocities and to derive atmospheric parameters, which they compare with those reported by the SEGUE Stellar Parameter Pipeline (SSPP). The SSPP obtains estimates of these quantities based on SDSS ugriz photometry and low-resolution (R {approx} 2000) spectroscopy. For F- and G-type stars observed with high signal-to-noise ratios (S/N), they empirically determine the typical random uncertainties in the radial velocities, effective temperatures, surface gravities, and metallicities delivered by the SSPP to be 2.4 km s{sup -1}, 130 K (2.2%), 0.21 dex, and 0.11 dex, respectively, with systematic uncertainties of a similar magnitude in the effective temperatures and metallicities. They estimate random errors for lower S/N spectra based on numerical simulations.

  6. Calculation of the first four moments of electronic energy loss of protons in insulators

    NASA Astrophysics Data System (ADS)

    Biersack, J. P.

    2000-05-01

    A novel scheme is presented for obtaining energy loss distributions for protons slowing-down in metals and bandgap materials. This scheme is here applied mainly to compare electronic energy loss distributions at low velocities, where the bandgap is most effective (projectile velocity less than Fermi velocity, velectronic energy loss is governed by the Pauli principle which leads immediately to the results that the energy loss moments Mn, n=1,…,4, change proportionally to the nth power of projectile velocity, Wn=dMn/dx=Cn∗vn, in metals (no band gap), and they are due to the energy transfers to conduction electrons only. In bandgap materials, the smallest energy transfers cannot occur, and all energy loss moments Wn are thus reduced. Only at velocities near the Fermi velocity, the valence electrons reach nearly the same level as the conduction electrons in a metal, and at this velocity also the inner shell electrons begin to contribute, so that the stopping power (the first moment of energy loss) reaches its maximum above vF. At higher velocities, we find that the moments Mn increase proportionally to the (n-2)th power of projectile energy, Wn=dMn/dx=Cn∗En-2,n>1. The stopping power (n=1, first moment of energy loss) comes very close to the predictions of Bethe or Bloch. At low velocities, all energy transfers are reduced considerably by the presence of a bandgap, and differ greatly from metals. Despite of using some simplifications, the results obtained for lithium metal and for the bandgap material diamond agree quite well with recent experimental findings.

  7. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS FROM SDSS/SEGUE. I. ATMOSPHERIC PARAMETERS AND CHEMICAL COMPOSITIONS

    SciTech Connect

    Aoki, Wako; Suda, Takuma; Beers, Timothy C.; Lee, Young Sun; Honda, Satoshi; Ito, Hiroko; Takada-Hidai, Masahide; Frebel, Anna; Fujimoto, Masayuki Y.; Carollo, Daniela; Sivarani, Thirupathi E-mail: takuma.suda@nao.ac.jp E-mail: lee@pa.msu.edu E-mail: hidai@apus.rh.u-tokai.ac.jp E-mail: fujimoto@astro1.sci.hokudai.ac.jp E-mail: sivarani@iiap.res.in

    2013-01-01

    Chemical compositions are determined based on high-resolution spectroscopy for 137 candidate extremely metal-poor (EMP) stars selected from the Sloan Digital Sky Survey (SDSS) and its first stellar extension, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). High-resolution spectra with moderate signal-to-noise (S/N) ratios were obtained with the High Dispersion Spectrograph of the Subaru Telescope. Most of the sample (approximately 80%) are main-sequence turnoff stars, including dwarfs and subgiants. Four cool main-sequence stars, the most metal-deficient such stars known, are included in the remaining sample. Good agreement is found between effective temperatures estimated by the SEGUE stellar parameter pipeline, based on the SDSS/SEGUE medium-resolution spectra, and those estimated from the broadband (V - K){sub 0} and (g - r){sub 0} colors. Our abundance measurements reveal that 70 stars in our sample have [Fe/H] < -3, adding a significant number of EMP stars to the currently known sample. Our analyses determine the abundances of eight elements (C, Na, Mg, Ca, Ti, Cr, Sr, and Ba) in addition to Fe. The fraction of carbon-enhanced metal-poor stars ([C/Fe] > +0.7) among the 25 giants in our sample is as high as 36%, while only a lower limit on the fraction (9%) is estimated for turnoff stars. This paper is the first of a series of papers based on these observational results. The following papers in this series will discuss the higher-resolution and higher-S/N observations of a subset of this sample, the metallicity distribution function, binarity, and correlations between the chemical composition and kinematics of extremely metal-poor stars.

  8. High-Resolution Spectroscopy of Metal-rich Giants in ω Centauri: First Indication of Type Ia Supernova Enrichment

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Pasquini, L.; Hill, V.; Ferraro, F. R.; Bellazzini, M.

    2002-04-01

    We have obtained high-resolution, high signal-to-noise ratio spectra for six red giants in ω Centauri: three belong to the recently discovered metal-rich red giant branch (RGB-a as defined by Pancino et al.) and three to the metal-intermediate population (RGB-MInt). Accurate iron, copper, and α-element (Ca and Si) abundances have been derived and discussed. In particular, we have obtained the first direct abundance determination based on high-resolution spectroscopy for the RGB-a population, <[Fe/H]>=-0.60+/-0.15. Although this value is lower than previous estimates based on calcium triplet measurements, we confirm that this population is the most metal-rich in ω Cen. In addition, we have found a significant difference in the α-element enhancement of the two populations. The three RGB-MInt stars have the expected overabundance, typical of halo and globular cluster stars: <[α/Fe]>=0.29+/-0.01. The three RGB-a stars show, instead, a significantly lower α-enhancement: <[α/Fe]>=0.10+/-0.04. We have also detected an increasing trend of [Cu/Fe] with metallicity, similar to the one observed for field stars by Sneden et al. The observational facts presented in this Letter, if confirmed by larger samples of giants, are the first indication that supernovae Type Ia ejecta have contaminated the medium from which the metal-rich RGB-a stars have formed. The implications for current scenarios on the formation and evolution of ω Cen are briefly discussed. Based on Ultraviolet-Visual Echelle Spectrograph observations collected at the European Southern Observatory, Paranal, Chile, within the observing program 165.L-0263. Also based on Wide-Field Imager observations collected at La Silla, Chile, within the observing programs 62.L-0354 and 64.L-0439.

  9. Globular Cluster Abundances from High-resolution, Integrated-light Spectroscopy. III. The Large Magellanic Cloud: Fe and Ages

    NASA Astrophysics Data System (ADS)

    Colucci, Janet E.; Bernstein, Rebecca A.; Cameron, Scott A.; McWilliam, Andrew

    2011-07-01

    In this paper, we refine our method for the abundance analysis of high-resolution spectroscopy of the integrated light of unresolved globular clusters (GCs). This method was previously demonstrated for the analysis of old (>10 Gyr) Milky Way (MW) GCs. Here, we extend the technique to young clusters using a training set of nine GCs in the Large Magellanic Cloud. Depending on the signal-to-noise ratio of the data, we use 20-100 Fe lines per cluster to successfully constrain the ages of old clusters to within a ~5 Gyr range, the ages of ~2 Gyr clusters to a 1-2 Gyr range, and the ages of the youngest clusters (0.05-1 Gyr) to a ~200 Myr range. We also demonstrate that we can measure [Fe/H] in clusters with any age less than 12 Gyr with similar or only slightly larger uncertainties (0.1-0.25 dex) than those obtained for old MW GCs (0.1 dex) the slightly larger uncertainties are due to the rapid evolution in stellar populations at these ages. In this paper, we present only Fe abundances and ages. In the next paper in this series, we present our complete analysis of ~20 elements for which we are able to measure abundances. For several of the clusters in this sample, there are no high-resolution abundances in the literature from individual member stars; our results are the first detailed chemical abundances available. The spectra used in this paper were obtained at Las Campanas with the echelle on the du Pont Telescope and with the MIKE spectrograph on the Magellan Clay Telescope. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  10. GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. III. THE LARGE MAGELLANIC CLOUD: Fe AND AGES

    SciTech Connect

    Colucci, Janet E.; Bernstein, Rebecca A.; McWilliam, Andrew E-mail: rab@ucolick.org E-mail: andy@ociw.edu

    2011-07-01

    In this paper, we refine our method for the abundance analysis of high-resolution spectroscopy of the integrated light of unresolved globular clusters (GCs). This method was previously demonstrated for the analysis of old (>10 Gyr) Milky Way (MW) GCs. Here, we extend the technique to young clusters using a training set of nine GCs in the Large Magellanic Cloud. Depending on the signal-to-noise ratio of the data, we use 20-100 Fe lines per cluster to successfully constrain the ages of old clusters to within a {approx}5 Gyr range, the ages of {approx}2 Gyr clusters to a 1-2 Gyr range, and the ages of the youngest clusters (0.05-1 Gyr) to a {approx}200 Myr range. We also demonstrate that we can measure [Fe/H] in clusters with any age less than 12 Gyr with similar or only slightly larger uncertainties (0.1-0.25 dex) than those obtained for old MW GCs (0.1 dex); the slightly larger uncertainties are due to the rapid evolution in stellar populations at these ages. In this paper, we present only Fe abundances and ages. In the next paper in this series, we present our complete analysis of {approx}20 elements for which we are able to measure abundances. For several of the clusters in this sample, there are no high-resolution abundances in the literature from individual member stars; our results are the first detailed chemical abundances available. The spectra used in this paper were obtained at Las Campanas with the echelle on the du Pont Telescope and with the MIKE spectrograph on the Magellan Clay Telescope.

  11. New frontiers of high-resolution spectroscopy: Probing the atmospheres of brown dwarfs and reflected light from exoplanets

    NASA Astrophysics Data System (ADS)

    Birkby, Jayne; Alonso, Roi; Brogi, Matteo; Charbonneau, David; Fortney, Jonathan; Hoyer, Sergio; Johnson, John Asher; de Kok, Remco; Lopez-Morales, Mercedes; Montet, Ben; Snellen, Ignas

    2015-12-01

    High-resolution spectroscopy (R>25,000) is a robust and powerful tool in the near-infrared characterization of exoplanet atmospheres. It has unambiguously revealed the presence of carbon monoxide and water in several hot Jupiters, measured the rotation rate of beta Pic b, and suggested the presence of fast day-to-night winds in one atmosphere. The method is applicable to transiting, non-transiting, and directly-imaged planets. It works by resolving broad molecular bands in the planetary spectrum into a dense, unique forest of individual lines and tracing them directly by their Doppler shift, while the star and tellurics remain essentially stationary. I will focus on two ongoing efforts to expand this technique. First, I will present new results on 51 Peg b revealing its infrared atmospheric compositional properties, then I will discuss an ongoing optical HARPS-N/TNG campaign (due mid October 2015) to obtain a detailed albedo spectrum of 51 Peg b at 387-691 nm in bins of 50nm. This spectrum would provide strong constraints on the previously claimed high albedo and potentially cloudy nature of this planet. Second, I will discuss preliminary results from Keck/NIRSPAO observations (due late September 2015) of LHS 6343 C, a 1000 K transiting brown dwarf with an M-dwarf host star. The high-resolution method converts this system into an eclipsing, double-lined spectroscopic binary, thus allowing dynamical mass and radius estimates of the components, free from astrophysical assumptions. Alongside probing the atmospheric composition of the brown dwarf, these data would provide the first model-independent study of the bulk properties of an old brown dwarf, with masses accurate to <5%, placing a crucial constraint on brown dwarf evolution models.

  12. 15N/14N Ratio Determination in the ISM with Herschel with High Resolution Spectroscopy of Nitrogen Radicals

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Bailleux, S.; Wlodarczak, G.; Pirali, O.; Martin-Drumel, M.-A.; Roy, P.; Roueff, E.; Gerin, M.

    2011-06-01

    The very high resolution of the HIFI instrument (134 kHz-1MHz) on board of Herschel needs very accurate laboratory measurements to detect unambiguously the signature of stable and unstable molecular species. Concerning the pure rotation spectra of new species, and particularly of open shell molecules, the first prediction could be far away and up to few hundred MHz. The 15N/14N ratio is not well measured in the ISM. However, the 15N/14N in the isotopomers is a potential tracer of the formation processes and the possible link with cometary molecules. Recent measurements include the detection of 15NH_2D N15NH+ and 15NH_3. The NH and NH_2 species are the simplest nitrogen radicals and are intermediate products in the NH_3 synthesis. They have been easily detected by Herschel and it therefore is interesting to now search for 15NH and 15NH_2. No spectrocopic data have been reported for these two radicals up to now. We present here the studies with high resolution spectroscopy in the THz range. The high sensitivity and the wide range of Synchrotron (0.6-6 THz) was essential to improve the prediction of the spectra of these two species in order to measure them in Lille (0.6-1 THz) with both a higher accuracy and resolution. The combined studies now give the most accurate predictions. ISM searches on these radicals are in progress in the HERSCHEL spectra. This work is supported by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS) M. Gerin, N. Marcellino, N. Biver, et al., Astron. & Astrophys. 498 (2009) 9. L. Bizzochi, P. Caselli, and L. Dore, Astron. & Astrophys. 510 (2010) L5. D. C. Lis, A. Wooten, M. Gerin and E. Roueff, Astrophys. J. 710 (2010) L49.

  13. Fourier-ratio deconvolution techniques for electron energy-loss spectroscopy (EELS).

    PubMed

    Wang, Feng; Egerton, Ray; Malac, Marek

    2009-09-01

    We discuss several ways of using Fourier-ratio deconvolution to process low-loss spectra. They include removal of the tail arising from the zero-loss peak, extraction of the spectrum of a particle from data recorded from the particle on a substrate, separation of the bulk and surface components in spectra recorded from samples of the same composition but different thickness, and investigation of interface energy-loss modes. We also demonstrate the use of a Bayesian-equivalent procedure based on the Richardson-Lucy algorithm. PMID:19577847

  14. Electron Energy-Loss Spectroscopy (EELS) of Fe-bearing Sheet Silicates in CM Chondrites

    NASA Technical Reports Server (NTRS)

    Zega, Thomas J.; Garvie, Laurence A. J.; Buseck, Peter R.

    2003-01-01

    The primitive character and hydrated mineralogy of the CM chondrites offers insight into some of the earliest reactions between solids and water. Such reactions profoundly affected the matrices and fine-grained rims (FGRs) [1-4], two of the most significant components of these meteorites [5]. We are using EELS combined with a transmission electron microscope (TEM) to investigate the compositions of Fe-bearing minerals, with emphasis on determining oxidation states and quantification of oxidation-state ratios. Iron is among the most abundant elements in the solar system and it can occur naturally in three oxidation states: Fe0, Fe2+, and Fe3+. Determination of oxidation- state ratios is useful because they can be used to infer the redox conditions under which the minerals formed or were last equilibrated [6, 7]. We are particularly interested in understanding how the oxidation state of Fe was affected by the aqueous reactions of the CM chondrites.

  15. Properties of the Open Cluster Tombaugh 1 from High-resolution Spectroscopy and uvbyCaHβ Photometry

    NASA Astrophysics Data System (ADS)

    Sales Silva, João V.; Carraro, Giovanni; Anthony-Twarog, Barbara J.; Moni Bidin, Christian; Costa, Edgardo; Twarog, Bruce A.

    2016-01-01

    Open clusters can be the key to deepening our knowledge on various issues involving the structure and evolution of the Galactic disk and details of stellar evolution because a cluster's properties are applicable to all its members. However, the number of open clusters with detailed analysis from high-resolution spectroscopy or precision photometry imposes severe limitations on studies of these objects. To expand the number of open clusters with well-defined chemical abundances and fundamental parameters, we investigate the poorly studied, anticenter open cluster Tombaugh 1. Using precision uvbyCaHβ photometry and high-resolution spectroscopy, we derive the cluster's reddening, obtain photometric metallicity estimates, and, for the first time, present a detailed abundance analysis of 10 potential cluster stars (nine clump stars and one Cepheid). Using the radial position from the cluster center and multiple color indices, we have isolated a sample of unevolved, probable single-star members of Tombaugh 1. From 51 stars, the cluster reddening is found to be E(b-y) = 0.221 ± 0.006 or E(B-V) = 0.303 ± 0.008, where the errors refer to the internal standard errors of the mean. The weighted photometric metallicity from m1 and hk is [Fe/H] = -0.10 ± 0.02, while a match to the Victoria-Regina Strömgren isochrones leads to an age of 0.95 ± 0.10 Gyr and an apparent modulus of (m-M) = 13.10 ± 0.10. Radial velocities identify six giants as probable cluster members, and the elemental abundances of Fe, Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Y, Ba, Ce, and Nd have been derived for both the cluster and the field stars. Tombaugh 1 appears to be a typical inner thin disk, intermediate-age open cluster of slightly subsolar metallicity, located just beyond the solar circle, with solar elemental abundance ratios except for the heavy s-process elements, which are a factor of two above solar. Its metallicity is consistent with a steep metallicity gradient in the galactocentric region

  16. Extended electron energy loss fine structure simulation of the local boron environment in sodium aluminoborosilicate glasses containing gadolinium

    SciTech Connect

    Qian, Morris; Li, Hong; Li, Liyu ); Strachan, Denis M. )

    2003-12-01

    Phase separation in sodium-aluminoborosilicate glasses was systematically studied as a function of Gd2O3 concentration with transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) methods. Gadolinium-induced phase separation in the three systems can be consistently explained by proposing that Gd cations partition to the borate-rich environments and subsequent agglomeration of the Gd-borate moieties, or short-range ordered structural groups, in the glass. Agglomeration of the Gd-borate rich environments is further discussed within the context of excess metal oxides,[Na2O]ex or[Al2O3]ex=|Na2O - Al2O3|, and excess B2O3,[B2O3]ex, available for incorporating Gd cations. Results showed that agglomeration of the Gd-borate rich environments occurred at a much lower Gd2O3 concentration in the glass without[Na2O]ex or[Al2O3]ex and at a significantly higher Gd2O3 concentration in the glass with either[Na2O]ex or[Al2O3]ex. Assuming 1BO4 : 1Gd : 2BO3 (based on literature-reported Gd-metaborate structure) as a local Gd-borate environment in glass, we introduced the saturation index of boron, SI[B]= Gd2O3/(1/3[B2O3]ex), to examine the glass susceptibility to Gd-induced phase separation for all three alkali-aluminoborosilicate systems. While our results have provided some insight to the glass structure, they also provide insight to the mechanism by which the metal oxide is dissolved into the melt. This appears to occur predominantly through boron complexation of the metal oxide.

  17. High-resolution line-shape spectroscopy during a laser pulse based on Dual-Broad-Band-CARS interferometry

    SciTech Connect

    Vereschagin, Konstantin A; Vereschagin, Alexey K; Smirnov, Valery V; Stelmakh, O M; Fabelinskii, V I; Clauss, W; Klimenko, D N; Oschwald, M E-mail: Al_Vereshchagin@mail.r E-mail: stelmakh@kapella.gpi.r

    2006-07-31

    A high-resolution spectroscopic method is developed for recording Raman spectra of molecular transitions in transient objects during a laser pulse with a resolution of {approx}0.1 cm{sup -1}. The method is based on CARS spectroscopy using a Fabry-Perot interferometer for spectral analysis of the CARS signal and detecting a circular interferometric pattern on a two-dimensional multichannel photodetector. It is shown that the use of the Dual-Broad-Band-CARS configuration to obtain the CARS process provides the efficient averaging of the spectral-amplitude noise of the CARS signal generated by a laser pulse and, in combination with the angular integration of the two-dimensional interference pattern, considerably improves the quality of interferograms. The method was tested upon diagnostics of the transient oxygen-hydrogen flame where information on the shapes of spectral lines of the Q-branch of hydrogen molecules required for measuring temperature was simultaneously obtained and used. (special issue devoted to the 90th anniversary of a.m. prokhorov)

  18. Evaluation of Cancer Metabolomics Using ex vivo High Resolution Magic Angle Spinning (HRMAS) Magnetic Resonance Spectroscopy (MRS)

    PubMed Central

    Fuss, Taylor L.; Cheng, Leo L.

    2016-01-01

    According to World Health Organization (WHO) estimates, cancer is responsible for more deaths than all coronary heart disease or stroke worldwide, serving as a major public health threat around the world. High resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS) has demonstrated its usefulness in the identification of cancer metabolic markers with the potential to improve diagnosis and prognosis for the oncology clinic, due partially to its ability to preserve tissue architecture for subsequent histological and molecular pathology analysis. Capable of the quantification of individual metabolites, ratios of metabolites, and entire metabolomic profiles, HRMAS MRS is one of the major techniques now used in cancer metabolomic research. This article reviews and discusses literature reports of HRMAS MRS studies of cancer metabolomics published between 2010 and 2015 according to anatomical origins, including brain, breast, prostate, lung, gastrointestinal, and neuroendocrine cancers. These studies focused on improving diagnosis and understanding patient prognostication, monitoring treatment effects, as well as correlating with the use of in vivo MRS in cancer clinics. PMID:27011205

  19. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    SciTech Connect

    Zhang, Libing; Lu, Zhou; Velarde, Luis; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Arthur; Wang, Hong-Fei; Yang, Bin

    2015-03-03

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.

  20. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    DOE PAGESBeta

    Zhang, Libing; Lu, Zhou; Velarde, Luis; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Arthur; Wang, Hong-Fei; Yang, Bin

    2015-03-03

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signaturesmore » in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.« less

  1. Triosmium clusters on a support: determination of structure by X-ray absorption spectroscopy and high-resolution microscopy.

    PubMed

    Mehraeen, Shareghe; Kulkarni, Apoorva; Chi, Miaofang; Reed, Bryan W; Okamoto, Norihiko L; Browning, Nigel D; Gates, Bruce C

    2011-01-17

    The structures of small, robust metal clusters on a solid support were determined by a combination of spectroscopic and microscopic methods: extended X-ray absorption fine structure (EXAFS) spectroscopy, scanning transmission electron microscopy (STEM), and aberration-corrected STEM. The samples were synthesized from [Os(3) (CO)(12) ] on MgO powder to provide supported clusters intended to be triosmium. The results demonstrate that the supported clusters are robust in the absence of oxidants. Conventional high-angle annular dark-field (HAADF) STEM images demonstrate a high degree of uniformity of the clusters, with root-mean-square (rms) radii of 2.03±0.06 Å. The EXAFS OsOs coordination number of 2.1±0.4 confirms the presence of triosmium clusters on average and correspondingly determines an average rms cluster radius of 2.02±0.04 Å. The high-resolution STEM images show the individual Os atoms in the clusters, confirming the triangular structures of their frames and determining OsOs distances of 2.80±0.14 Å, matching the EXAFS value of 2.89±0.06 Å. IR and EXAFS spectra demonstrate the presence of CO ligands on the clusters. This set of techniques is recommended as optimal for detailed and reliable structural characterization of supported clusters. PMID:21226118

  2. Triosmium Clusters on a Support: Determination of Structure by X-Ray Absorption Spectroscopy and High-Resolution Microscopy

    SciTech Connect

    Shareghe, Mehraeen; Chi, Miaofang; Browning, Nigel D.

    2011-01-01

    The structures of small, robust metal clusters on a solid support were determined by a combination of spectroscopic and microscopic methods: extended X-ray absorption fine structure (EXAFS) spectroscopy, scanning transmission electron microscopy (STEM), and aberration-corrected STEM. The samples were synthesized from [Os{sub 3}(CO){sub 12}] on MgO powder to provide supported clusters intended to be triosmium. The results demonstrate that the supported clusters are robust in the absence of oxidants. Conventional high-angle annular dark-field (HAADF) STEM images demonstrate a high degree of uniformity of the clusters, with root-mean-square (rms) radii of 2.03 {+-} 0.06 {angstrom}. The EXAFS OsOs coordination number of 2.1 {+-} 0.4 confirms the presence of triosmium clusters on average and correspondingly determines an average rms cluster radius of 2.02 {+-} 0.04 {angstrom}. The high-resolution STEM images show the individual Os atoms in the clusters, confirming the triangular structures of their frames and determining OsOs distances of 2.80 {+-} 0.14 {angstrom}, matching the EXAFS value of 2.89 {+-} 0.06 {angstrom}. IR and EXAFS spectra demonstrate the presence of CO ligands on the clusters. This set of techniques is recommended as optimal for detailed and reliable structural characterization of supported clusters.

  3. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: LEO IV

    SciTech Connect

    Simon, Joshua D.; McWilliam, Andrew; Thompson, Ian B.; Frebel, Anna; Kirby, Evan N. E-mail: andy@ociw.ed E-mail: afrebel@cfa.harvard.ed

    2010-06-10

    We present high-resolution Magellan/MIKE spectroscopy of the brightest star in the ultra-faint dwarf galaxy Leo IV. We measure an iron abundance of [Fe/H] = -3.2, adding to the rapidly growing sample of extremely metal-poor (EMP) stars being identified in Milky Way satellite galaxies. The star is enhanced in the {alpha} elements Mg, Ca, and Ti by {approx}0.3 dex, very similar to the typical Milky Way halo abundance pattern. All of the light and iron-peak elements follow the trends established by EMP halo stars, but the neutron-capture elements Ba and Sr are significantly underabundant. These results are quite similar to those found for stars in the ultra-faint dwarfs Ursa Major II, Coma Berenices, Booetes I, and Hercules, suggesting that the chemical evolution of the lowest-luminosity galaxies may be universal. The abundance pattern we observe is consistent with predictions for nucleosynthesis from a Population III supernova explosion. The extremely low metallicity of this star also supports the idea that a significant fraction ({approx}>10%) of the stars in the faintest dwarfs have metallicities below [Fe/H] = -3.0.

  4. Formation, characterization, and stability of methaneselenolate monolayers on Au(111): an electrochemical high-resolution photoemission spectroscopy and DFT study.

    PubMed

    Cometto, F P; Calderón, C A; Morán, M; Ruano, G; Ascolani, H; Zampieri, G; Paredes-Olivera, P; Patrito, E M

    2014-04-01

    We investigated the mechanism of formation and stability of self-assembled monolayers (SAMs) of methaneselenolate on Au(111) prepared by the immersion method in ethanolic solutions of dimethyl diselenide (DMDSe). The adsorbed species were characterized by electrochemical measurements and high-resolution photoelectron spectroscopy (HR-XPS). The importance of the headgroup on formation mechanism and the stability of the SAMs was addressed by comparatively studying methaneselenolate (MSe) and methanethiolate (MT) monolayers. Density Functional Theory (DFT) calculations were performed to identify the elementary reaction steps in the mechanisms of formation and decomposition of the monolayers. Reductive desorption and HR-XPS measurements indicated that a MSe monolayer is formed at short immersion times by the cleavage of the Se-Se bond of DMDSe. However, the monolayer decomposes at long immersion times at room temperature, as evidenced by the appearance of atomic Se on the surface. The decomposition is more pronounced for MSe than for MT monolayers. The MSe monolayer stability can be greatly improved by two modifications in the preparation method: immersion at low temperatures (-20 °C) and the addition of a reducing agent to the forming solution. PMID:24645647

  5. High Resolution and Low-Temperature Photoelectron Spectroscopy of an Oxygen-Linked Fullerene Dimer Dianion: C120O2-

    SciTech Connect

    Wang, Xue B.; Matheis, Katerina; Ioffe, Ilya N.; Goryunkov, Alexey A.; Yang, Jie; Kappes, Manfred M.; Wang, Lai S.

    2008-03-21

    C120O comprises two C60 cages linked by a furan ring and is formed by reactions of C60O and C60. We have produced doubly-charged anions of this fullerene dimer (C120O2–) and studied its electronic structure and stability using photoelectron spectroscopy and theoretical calculations. High resolution and vibrationally resolved photoelectron spectra were obtained at 70 K and at several photon energies. The second electron affinity of C120O was measured to be 1.02 ± 0.03 eV and the intramolecular Coulomb repulsion was estimated to be about 0.8 eV in C120O2– on the basis of the observed repulsive Coulomb barrier. A low-lying excited state (2B1) was also observed for C120O– at 0.09 eV above the ground state (2A1). The C120O2– dianion can be viewed as a single electron on each C60 ball very weakly coupled. Theoretical calculations showed that the singlet and triplet states of C120O2– are nearly degenerate and can both be present in the experiment. The computed electron binding energies and excitation energies, as well as Franck-Condon factors, are used to help interpret the photoelectron spectra. A C-C bond-cleaved isomer, C60-O-C602–, was also observed with a higher electron binding energy of 1.54 eV.

  6. High resolution cathodoluminescence spectroscopy of carbonate cementation in Khurmala Formation (Paleocene-L. Eocene) from Iraqi Kurdistan Region, Northern Iraq

    NASA Astrophysics Data System (ADS)

    Omer, Muhamed F.; Omer, Dilshad; Zebari, Bahroz Gh.

    2014-12-01

    A combination of high resolution cathodoluminsecnce-spectroscopy (HRS-CL) with spatial electron microprobe analysis and optical microscopy is used to determine paragenesis and history of cementation in the limestones and dolostones of Khurmala Formation which is exposed in many parts of Northern Iraq. Khurmala Formation was subjected to different diagenetic processes such as micritization, compaction, dissolution, neomorphism, pyritization and cementation that occurred during marine to shallow burial stages and culminated during intermediate to deep burial later stages. Five dolomite textures are recognized and classified according to crystal size distribution and crystal-boundary shape. Dolomitization is closely associated with the development of secondary porosity that pre-and postdates dissolution and corrosion; meanwhile such porosity was not noticed in the associated limestones. Microprobe analysis revealed three types of cement, calcite, dolomite and ankerite which range in their luminescence from dull to bright. Cathodoluminescence study indicated four main texture generations. These are (1) unzoned microdolomite of planar and subhedral shape, with syntaxial rim cement of echinoderm that show dull to red luminescence, (2) equant calcite cements filling interparticle pores which shows dull luminescence and weak zonal growth, (3.1) homogenous intrinsic blue stoichiometric calcite with dull luminescence and without activators, (3.2) coarse blocky calcite cement with strong oscillatory zoning and bright orange luminescence which postdates other calcite cements, (4) ankerite cement with red to orange, non-luminescence growth zonation which is the last formed cement.

  7. Baseline restoration and pile-up correction based on bipolar cusp-like shaping for high-resolution radiation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kafaee, Mahdi; Moussavi-Zarandi, Ali

    2016-04-01

    The baseline may shift in many radiation measurement systems. The shift is time variant and depends on the events. Also, with high count rates, pulses may overlap in random time intervals. These phenomena can affect the peak values of the pulses. Piled-up events are traditionally rejected, but this reduces the detection efficiency considerably. In other approaches, the corrupted events are reconstructed, and information about the single pulses is extracted. The peaks carry much of the basic information, so many shaping methods have been proposed so far. For pile-up mitigation, a narrow unipolar shaping is enough, but a baseline shift is eliminated by using bipolar shaping. However, the latter decreases the signal-to-noise ratio (SNR), which is critical for high-resolution spectroscopy. In this paper, we propose bipolar cusp-like shaping as a tradeoff between mitigating the baseline shift and pulse pile-up. A novel recursive algorithm, implementable on digital pulse processors (DPPs), is introduced and is then evaluated. Finally, the superior noise-reduction capability is studied by using Monte Carlo simulations, a real piled-up pulse stream shaped by using the algorithm, and the results show its advantages.

  8. Structure of Se-rich As-Se glasses by high-resolution x-ray photoelectron spectroscopy

    SciTech Connect

    Golovchak, R.; Kovalskiy, A.; Miller, A. C.; Jain, H.; Shpotyuk, O.

    2007-09-15

    To establish the validity of various proposed structural models, we have investigated the structure of the binary As{sub x}Se{sub 100-x} chalcogenide glass family (x{<=}40) by high-resolution x-ray photoelectron spectroscopy. From the composition dependence of the valence band, the contributions to the density of states from the 4p lone pair electrons of Se and the 4p bonding states and 4s electrons of Se and As are identified in the top part of the band. The analysis of Se 3d and As 3d core-level spectra supports the so-called chain crossing model for the atomic structure of Se-rich As{sub x}Se{sub 100-x} bulk glasses. The results also indicate small deviations ({approx}3-8%) from this model, especially for glass compositions with short Se chains (25

  9. Vibrational Spectral Signatures of Crystalline Cellulose Using High Resolution Broadband Sum Frequency Generation Vibrational Spectroscopy (HR-BB-SFG-VS)

    SciTech Connect

    Zhang, Libing; Lu, Zhou; Velarde Ruiz Esparza, Luis A.; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Art J.; Wang, Hongfei; Yang, Bin

    2015-03-03

    Here we reported the first sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) study on both the C-H and O-H region spectra of crystalline cellulose. HR-BB-SFG-VS has about 10 times better resolution than the conventional scanning SFG-VS and is known to be able to measure the intrinsic spectral lineshape and to resolve much more spectral details. With HR-BB-SFG-VS, we found that in cellulose from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the OH regions were unique for different allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C-H regions varied in all samples examined. Even though the origin of the different behaviors of the crystalline cellulose in the O-H and C-H vibrational frequency regions is yet to be correlated to the structure of cellulose, these results provided new spectroscopic methods and opportunities to classify and understand the basic crystalline structure, as well as variations, in polymorphism of the crystalline cellulose structure.

  10. High resolution infrared spectroscopy from space: A preliminary report on the results of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment on Spacelab 3

    NASA Technical Reports Server (NTRS)

    Farmer, Crofton B.; Raper, Odell F.

    1987-01-01

    The ATMOS (Atmospheric Trace Molecule Spectroscopy) experiment has the broad purpose of investigating the physical structure, chemistry, and dynamics of the upper atmosphere through the study of the distributions of the neutral minor and trace constituents and their seasonal and long-term variations. The technique used is high-resolution infrared absorption spectroscopy using the Sun as the radiation source, observing the changes in the transmission of the atmosphere as the line-of-sight from the Sun to the spacecraft penetrates the atmosphere close to the Earth's limb at sunrise and sunset. During these periods, interferograms are generated at the rate of one each second which yield, when transformed, high resolution spectra covering the 2.2 to 16 micron region of the infrared. Twenty such occultations were recorded during the Spacelab 3 flight, which have produced concentration profiles for a large number of minor and trace upper atmospheric species in both the Northern and Southern Hemispheres. Several of these species have not previously been observed in spectroscopic data. The data reduction and analysis procedures used following the flight are discussed; a number of examples of the spectra obtained are shown, and a bar graph of the species detected thus far in the analysis is given which shows the altitude ranges for which concentration profiles were retrieved.

  11. Live-cell high resolution magic angle spinning magnetic resonance spectroscopy for in vivo analysis of Pseudomonas aeruginosa metabolomics.

    PubMed

    Righi, Valeria; Constantinou, Caterina; Kesarwani, Meenu; Rahme, Laurence G; Tzika, Aria A

    2013-09-01

    Pseudomonas aeruginosa (PA) is a pathogenic gram-negative bacterium that is widespread in nature, inhabiting soil, water, plants and animals. PA is a prevalent cause of deleterious human infections, particularly in patients whose host defense mechanisms have been compromised. Metabolomics is an important tool used to study host-pathogen interactions and to identify novel therapeutic targets and corresponding compounds. The aim of the present study was to report the metabolic profile of live PA bacteria using in vivo high-resolution magic angle spinning (HRMAS) nuclear magnetic resonance spectroscopy (NMR), in combination with 1- and 2-dimensional HRMAS NMR. This methodology provides a new and powerful technique to rapidly interrogate the metabolome of intact bacterial cells and has several advantages over traditional techniques that identify metabolome components from disrupted cells. Furthermore, application of multidimensional HRMAS NMR, in combination with the novel technique total through-Bond correlation Spectroscopy (TOBSY), is a promising approach that may be used to obtain in vivo metabolomics information from intact live bacterial cells and can mediate such analyses in a short period of time. Moreover, HRMAS (1)H NMR enables the investigation of the associations between metabolites and cell processes. In the present study, we detected and quantified several informative metabolic molecules in live PA cells, including N-acetyl, betaine, citrulline, alanine and glycine, which are important in peptidoglycan synthesis. The results provided a complete metabolic profile of PA for future studies of PA clinical isolates and mutants. In addition, this in vivo NMR biomedical approach might have clinical utility and should prove useful in gene function validation, the study of pathogenetic mechanisms, the classification of microbial strains into functional/clinical groups, the testing of anti-bacterial agents and the determination of metabolic profiles of bacterial

  12. Characterization of metabolites in infiltrating gliomas using ex vivo ¹H high-resolution magic angle spinning spectroscopy.

    PubMed

    Elkhaled, Adam; Jalbert, Llewellyn; Constantin, Alexandra; Yoshihara, Hikari A I; Phillips, Joanna J; Molinaro, Annette M; Chang, Susan M; Nelson, Sarah J

    2014-05-01

    Gliomas are routinely graded according to histopathological criteria established by the World Health Organization. Although this classification can be used to understand some of the variance in the clinical outcome of patients, there is still substantial heterogeneity within and between lesions of the same grade. This study evaluated image-guided tissue samples acquired from a large cohort of patients presenting with either new or recurrent gliomas of grades II-IV using ex vivo proton high-resolution magic angle spinning spectroscopy. The quantification of metabolite levels revealed several discrete profiles associated with primary glioma subtypes, as well as secondary subtypes that had undergone transformation to a higher grade at the time of recurrence. Statistical modeling further demonstrated that these metabolomic profiles could be differentially classified with respect to pathological grading and inter-grade conversions. Importantly, the myo-inositol to total choline index allowed for a separation of recurrent low-grade gliomas on different pathological trajectories, the heightened ratio of phosphocholine to glycerophosphocholine uniformly characterized several forms of glioblastoma multiforme, and the onco-metabolite D-2-hydroxyglutarate was shown to help distinguish secondary from primary grade IV glioma, as well as grade II and III from grade IV glioma. These data provide evidence that metabolite levels are of interest in the assessment of both intra-grade and intra-lesional malignancy. Such information could be used to enhance the diagnostic specificity of in vivo spectroscopy and to aid in the selection of the most appropriate therapy for individual patients. PMID:24596146

  13. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Krishna, R.; Jones, A. N.; McDermott, L.; Marsden, B. J.

    2015-12-01

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated 'D'peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of 'G' and 'D' in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure.

  14. AEGIS: An Astrophysics Experiment for Grating and Imaging Spectroscopy---a Soft X-ray, High-resolution Spectrometer

    NASA Astrophysics Data System (ADS)

    Huenemoerder, David; Bautz, M. W.; Davis, J. E.; Heilmann, R. K.; Houck, J. C.; Marshall, H. L.; Neilsen, J.; Nicastro, F.; Nowak, M. A.; Schattenburg, M. L.; Schulz, N. S.; Smith, R. K.; Wolk, S.; AEGIS Team

    2012-01-01

    AEGIS is a concept for a high-resolution soft X-ray spectroscopic observatory developed in response to NASA's request for definitions of the next X-ray astronomy mission. At a small fraction of the cost of the once-planned International X-ray Observatory (IXO), AEGIS has capabilities that surpass IXO grating spectrometer requirements, and which are far superior to those of existing soft X-ray spectrometers. AEGIS incorporates innovative technology in X-ray optics, diffraction gratings and detectors. The mirror uses high area-to-mass ratio segmented glass architecture developed for IXO, but with smaller aperture and larger graze angles optimized for high-throughput grating spectroscopy with low mass and cost. The unique Critical Angle Transmission gratings combine low mass and relaxed figure and alignment tolerances of Chandra transmission gratings but with high diffraction efficiency and resolving power of blazed reflection gratings. With more than an order of magnitude better performance over Chandra and XMM grating spectrometers, AEGIS can obtain high quality spectra of bright AGN in a few hours rather than 10 days. Such high resolving power allows detailed kinematic studies of galactic outflows, hot gas in galactic haloes, and stellar accretion flows. Absorption line spectroscopy will be used to study large scale structure, cosmic feedback, and growth of black holes in thousands of sources to great distances. AEGIS will enable powerful multi-wavelength investigations, for example with Hubble/COS in the UV to characterize the intergalactic medium. AEGIS will be the first observatory with sufficient resolution below 1 keV to resolve thermally-broadened lines in hot ( 10 MK) plasmas. Here we describe key science investigations enable by Aegis, its scientific payload and mission plan. Acknowledgements: Support was provided in part by: NASA SAO contract SV3-73016 to MIT for the Chandra X-ray Center and Science Instruments; NASA grant NNX08AI62G; and the MKI

  15. High resolution absorption spectroscopy of the ν1=2-6 acetylenic overtone bands of propyne: Spectroscopy and dynamics

    NASA Astrophysics Data System (ADS)

    Campargue, A.; Biennier, L.; Garnache, A.; Kachanov, A.; Romanini, D.; Herman, M.

    1999-11-01

    The rotationally resolved nν1 (n=2-6) overtone transitions of the CH acetylenic stretching of propyne (CH3-C≡C-H) have been recorded by using Fourier transform spectroscopy (n=2), various intracavity laser absorption spectrometers (n=3, 4, and 6) and cavity ring down spectroscopy (CRDS) (n=5). The 2ν1, 3ν1, and 6ν1 bands exhibit a well-resolved and mostly unperturbed J-rotational structure, whose analysis is reported. The 5ν1 band recorded by pulsed CRDS shows an unresolved rotational envelope. In the region of 12 700 cm-1, an anharmonic interaction is confirmed between 4ν1 and 3ν1+ν3+ν5. The band at a higher wave number in this dyad exhibits a partly resolved K-structure, whose analysis is reported. The mixing coefficient of the two interacting states is determined consistently using different procedures. The 1/35 anharmonic resonance evidenced in the 4ν1 manifold induces weaker intensity borrowing from the 2ν1 and 3ν1 levels to the ν1+ν3+ν5 and 2ν1+ν3+ν5 level, respectively, which have been predicted and identified. Several hot bands around the 2ν1, 3ν1, and 3ν1+ν3+ν5 bands arising from the ν9=1 and ν10=1 and 2 bending levels are identified and rotationally analyzed, also leading to determine x1,9 [-20.3(3) cm-1], x1,10 [-1.7975(75) cm-1], and x3,10 [-6.56 cm-1]. The J-clumps of the P and R branches in the 6ν1 band at 18 499 cm-1 show a Lorentzian homogeneous profile mostly J-independent with an average full width at half maximum (FWHM) of 0.17 cm-1, attributed to arising from the intramolecular vibrational energy redistribution towards the bath of vibrational states. A detailed comparative examination of the fine structure in all investigated nν1 (n=2 to 7) overtone bands and the similar behavior of the cold and hot bands arising from ν10=1 definitively suggests that a highly specific low-order anharmonic coupling, still unidentified, dominates the hierarchy of interaction mechanisms connecting the nν1 levels to the background

  16. Partial intensity approach for quantitative analysis of reflection-electron-energy-loss spectra

    NASA Astrophysics Data System (ADS)

    Calliari, L.; Filippi, M.; A. Varfolomeev

    2011-08-01

    We have considered a formalism, known as partial intensity approach (PIA), previously developed to quantitatively analyze reflection electron energy loss (REEL) spectra [1,2]. The aim of the approach is, in particular, to recover the single scattering distribution of energy losses and to separate it into bulk and surface contributions, respectively referred to as the differential inverse inelastic mean free path (DIIMFP) and the differential surface excitation parameter (DSEP). As compared to [1] and [2], we have implemented a modified approach, and we have applied it to the specific geometry of the cylindrical mirror analyzer (CMA), used to acquire the REEL spectra shown here. Silicon, a material with well-defined surface and bulk plasmons, is taken as a case study to investigate the approach as a function of electron energy over the energy range typical of REELS, i.e. from 250 eV to 2 keV. Our goal is, on the one hand, to examine possible limits for the applicability of the approach and, on the other hand, to test a basic assumption of the PIA, namely that a unique DIIMFP and a unique DSEP account for REEL spectra, whatever the acquisition conditions (i.e. electron energy or angle of surface crossing) are. We find that a minimum energy exists below which the PIA cannot be applied and that the assumption of REEL spectra accounted for by unique DIIMFP and DSEP is indeed an approximation.

  17. Compositions and chemical bonding in ceramics by quantitative electron energy-loss spectrometry

    SciTech Connect

    Bentley, J.; Horton, L.L.; McHargue, C.J.; McKernan, S.; Carter, C.B.; Revcolevschi, A.; Tanaka, S.; Davis, R.F.

    1993-12-31

    Quantitative electron energy-loss spectrometry was applied to a range of ceramic materials at a spatial resolution of <5 nm. Analysis of Fe L{sub 23} white lines indicated a low-spin state with a charge transfer of {approximately}1.5 electrons/atom onto the Fe atoms implanted into (amorphized) silicon carbide. Gradients of 2 to 5% in the Co:O stoichiometry were measured across 100-nm-thick Co{sub 3}O{sub 4} layers in an oxidized directionally solidified CoO-ZrO{sub 2} eutectic, with the highest O levels near the ZrO{sub 2}. The energy-loss near-edge structures were dramatically different for the two cobalt oxides; those for CO{sub 3}O{sub 4} have been incorrectly ascribed to CoO in the published literature. Kinetically stabilized solid solubility occurred in an AlN-SiC film grown by low-temperature molecular beam epitaxy (MBE) on {alpha}(6H)-SiC, and no detectable interdiffusion occurred in couples of MBE-grown AlN on SiC following annealing at up to 1750C. In diffusion couples of polycrystalline AlN on SiC, interfacial 8H sialon (aluminum oxy-nitride) and pockets of Si{sub 3}N{sub 4}-rich {beta}{prime} sialon in the SiC were detected.

  18. HIGH RESOLUTION X-RAY SPECTROSCOPY OF THE LOCAL HOT GAS ALONG THE 3C 273 SIGHTLINE

    SciTech Connect

    Fang, Taotao; Jiang, Xiaochuan

    2014-04-20

    X-ray observations of highly ionized metal absorption lines at z = 0 provide critical information on the hot gas distribution in and around the Milky Way. We present a study of more than 10 yr of Chandra and XMM-Newton observations of 3C 273, one of the brightest extragalactic X-ray sources. Compared with previous works, we obtain much tighter constraints on the physical properties of the X-ray absorber. We also find a large, non-thermal velocity at ∼100-150 km s{sup –1}, the main reason for the higher line equivalent width when compared with other sightlines. Using joint analysis with X-ray emission and ultraviolet observations, we derive a size of 5-15 kpc and a temperature of (1.5-1.8) × 10{sup 6} K for the X-ray absorber. The 3C 273 sightline passes through a number of Galactic structures, including radio loops I and IV, the North Polar Spur, and the neighborhood of the newly discovered ''Fermi bubbles''. We argue that the X-ray absorber is unlikely to be associated with the nearby radio loops I and IV; however, the non-thermal velocity can be naturally explained as the result of the expansion of the ''Fermi bubbles''. Our data imply a shock-expansion velocity of 200-300 km s{sup –1}. Our study indicates a likely complex environment for the production of the Galactic X-ray absorbers along different sightlines, and highlights the significance of probing galactic feedback with high resolution X-ray spectroscopy.

  19. Development of spatially resolved high resolution x-ray spectroscopy for fusion and light-source research

    NASA Astrophysics Data System (ADS)

    Lu, J.; Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Pablant, N. A.; Efthimion, P.; Beiersdorfer, P.; Chen, H.; Widmann, K.; Sanchez del Rio, M.

    2014-09-01

    One dimensional spatially resolved high resolution x-ray spectroscopy with spherically bent crystals and 2D pixelated detectors is an established technique on magnetic confinement fusion (MCF) experiments world wide for Doppler measurements of spatial profiles of plasma ion temperature and flow velocity. This technique is being further developed for diagnosis of High Energy Density Physics (HEDP) plasmas at laser-plasma facilities and synchrotron/x-ray free electron laser (XFEL) facilities. Useful spatial resolution (micron scale) of such small-scale plasma sources requires magnification, because of the finite pixel size of x-ray CCD detectors (13.5 μm). A von-Hamos like spectrometer using spherical crystals is capable of magnification, as well as uniform sagittal focusing across the full x-ray spectrum, and is being tested in laboratory experiments using a tungsten-target microfocus (5-10 μm) x-ray tube and 13-μm pixel x-ray CCD. A spatial resolution better than 10 μm has been demonstrated. Good spectral resolution is indicated by small differences (0.02 - 0.1 eV) of measured line widths with best available published natural line widths. Progress and status of HEDP measurements and the physics basis for these diagnostics are presented. A new type of x-ray crystal spectrometer with a convex spherically bent crystal is also reported. The status of testing of a 2D imaging microscope using matched pairs of spherical crystals with x rays will also be presented. The use of computational x-ray optics codes in development of these instrumental concepts is addressed.

  20. Application of High-Resolution Magic-Angle Spinning NMR Spectroscopy to Define the Cell Uptake of MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Calabi, Luisella; Alfieri, Goffredo; Biondi, Luca; De Miranda, Mario; Paleari, Lino; Ghelli, Stefano

    2002-06-01

    A new method, based on proton high-resolution magic-angle spinning ( 1H HR-MAS) NMR spectroscopy, has been employed to study the cell uptake of magnetic resonance imaging contrast agents (MRI-CAs). The method was tested on human red blood cells (HRBC) and white blood cells (HWBC) by using three gadolinium complexes, widely used in diagnostics, Gd-BOPTA, Gd-DTPA, and Gd-DOTA, and the analogous complexes obtained by replacing Gd(III) with Dy(III), Nd(III), and Tb(III) (i.e., complexes isostructural to the ones of gadolinium but acting as shift agents). The method is based on the evaluation of the magnetic effects, line broadening, or induced lanthanide shift (LIS) caused by these complexes on NMR signals of intra- and extracellular water. Since magnetic effects are directly linked to permeability, this method is direct. In all the tests, these magnetic effects were detected for the extracellular water signal only, providing a direct proof that these complexes are not able to cross the cell membrane. Line broadening effects (i.e., the use of gadolinium complexes) only allow qualitative evaluations. On the contrary, LIS effects can be measured with high precision and they can be related to the concentration of the paramagnetic species in the cellular compartments. This is possible because the HR-MAS technique provides the complete elimination of bulk magnetic susceptibility (BMS) shift and the differentiation of extra- and intracellular water signals. Thus with this method, the rapid quantification of the MRI-CA amount inside and outside the cells is actually feasible.