Science.gov

Sample records for high-resolution infrared study

  1. High resolution infrared measurements

    NASA Technical Reports Server (NTRS)

    Kessler, B.; Cawley, Robert

    1990-01-01

    Sample ground based cloud radiance data from a high resolution infrared sensor are shown and the sensor characteristics are presented in detail. The purpose of the Infrared Analysis Measurement and Modeling Program (IRAMMP) is to establish a deterministic radiometric data base of cloud, sea, and littoral terrain clutter to be used to advance the design and development of Infrared Search and Track (IRST) systems as well as other infrared devices. The sensor is a dual band radiometric sensor and its description, together with that of the Data Acquisition System (DAS), are given. A schematic diagram of the sensor optics is shown.

  2. High-Resolution Infrared and Electron-Diffraction Studies of Trimethylenecyclopropane ([3]-Radialene)

    SciTech Connect

    Wright, Corey; Holmes, Joshua; Nibler, Joseph W.; Hedberg, Kenneth; White, James D.; Hedberg, Lise; Weber, Alfons; Blake, Thomas A.

    2013-05-16

    Combined high-resolution spectroscopic, electron-diffraction, and quantum theoretical methods are particularly advantageous for small molecules of high symmetry and can yield accurate structures that reveal subtle effects of electron delocalization on molecular bonds. The smallest of the radialene compounds, trimethylenecyclopropane, [3]-radialene, has been synthesized and examined in the gas phase by these methods. The first high-resolution infrared spectra have been obtained for this molecule of D3h symmetry, leading to an accurate B0 rotational constant value of 0.1378629(8) cm-1, within 0.5% of the value obtained from electronic structure calculations (density functional theory (DFT) B3LYP/cc-pVTZ). This result is employed in an analysis of electron-diffraction data to obtain the rz bond lengths (in Å): C-H = 1.072 (17), C-C = 1.437 (4), and C=C = 1.330 (4). The analysis does not lead to an accurate value of the HCH angle; however, from comparisons of theoretical and experimental angles for similar compounds, the theoretical prediction of 117.5° is believed to be reliable to within 2°. The effect of electron delocalization in radialene is to reduce the single C-C bond length by 0.07 Å compared to that in cyclopropane.

  3. High-resolution infrared spectroscopy and ab initio studies of the cyclopropane-carbon dioxide interaction.

    PubMed

    Su, Zheng; Tam, Wai Shun; Xu, Yunjie

    2006-01-14

    A jet-cooled high-resolution infrared spectrum of the cyclopropane-carbon dioxide complex was detected for the first time, using a rapid scan infrared spectrometer with an astigmatic multipass sample cell. The spectrum was recorded in the vicinity of the CO2 asymmetric stretching band (nu3) and exhibits a b-dipole selection rule. Altogether, over 200 lines were observed, assigned, and fitted to Watson's S-reduction Hamiltonian. Rotational and quartic distortion constants were obtained. The band origin was located at 2347.6263(2) cm(-1), redshifted by 1.5230(2) cm(-1) from the corresponding frequency of the CO2 monomer. The experimentally determined structure shows that CO2 lies next to a C-C bond edge and is perpendicular to the C3 ring, indicating that the interaction is characterized by the bonding between the carbon atom of CO2 and the pseudo-pi system of cyclopropane. The intermolecular distance between the carbon atom of CO2 and the center of mass of cyclopropane was determined to be 3.667(2) A. Complete ab initio geometry optimizations and harmonic frequency calculations were carried out at the level of second-order Moller-Plesset perturbation theory with four different basis sets: cc-pVDZ, 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ. The lowest-energy structure identified with the three larger basis sets is in accord with the experimental finding. In addition, a transition state was identified and the tunneling barrier height was computed. PMID:16422587

  4. A high-resolution study of near-infrared diffuse interstellar bands

    SciTech Connect

    Rawlings, M. G.; Adamson, A. J.; Kerr, T. H. E-mail: aadamson@gemini.edu

    2014-11-20

    We present high-resolution echelle spectroscopic observations of the two near-infrared (NIR) diffuse interstellar bands (DIBs) at 13175 Å and 11797.5 Å. The DIBs have been observed in a number of diffuse interstellar medium sightlines that exhibit a wide range of visual extinctions. Band profiles are similar to those seen in narrow DIBs, clearly asymmetric and can be closely fitted in most cases using two simple Gaussian components. Gaussian fits were generally found to be more successful than fits based on a multiple-cloud model using a template DIB profile. For a sample of nine objects in which both bands are observed, the strength of both NIR DIBs generally increases with A(V), and we report a correlation between the two observed bands over a large A(V) range and widely separated lines of sight. The strength of the two bands is also compared against those of two visual DIBs and the diffuse ISM aliphatic dust absorption feature at 3.4 μm previously detected in the same sightlines. We find that the NIR DIBs do not exhibit notable (anti)correlations with either. Implications of these observations on possible DIB carrier species are discussed.

  5. An Infrared High Resolution Spectroscopic Abundance Study of the Metal-Poor Giant HD 122563

    NASA Astrophysics Data System (ADS)

    Sneden, Christopher; Afsar, Melike; Jaffe, Daniel Thomas; Kim, Hwiyun; Mace, Gregory

    2015-01-01

    A high resolution, high signal-to-noise spectrum of the very metal-poor giant star HD 122563 has been obtained with the newly commissioned IGRINS H- and K-band high resolution (R = 40,000) spectrograph on the McDonald Observatory 2.7m Smith telescope. With complete spectral coverage in the range 1.5-1.8 and 1.9-2.4 microns and high signal-to-noise (S/N > 200) in the reduced spectrum, we have so far detected about 50neutral-species transitions of elements Na, Mg, Al, Si, Ca, and Fe, as well as many transitions of OH and CO.Assuming atmosphere parameters from the literature of this well-studied bright giant (Teff~4600K, log(g)~1.3) we have derived a metallicity of [Fe/H] = -2.8, in agreement with past results. The alpha-elements are enhanced: [(Mg,Si,Ca)/Fe] = +0.3 to +0.4. The OH lines yield an O abundance in good accord with past claims from analyses of the [O I] lines in the visible part of the spectrum. Study of other features in the IGRINSspectrum is ongoing.Support for this research from the US National Science Foundation (AST-1211585) and the The Scientific and Technological Research Council of Turkey (TÜBITAK, project No. 112T929) are acknowledged with thanks.

  6. High-resolution Submillimeter and Near-infrared Studies of the Transition Disk around Sz 91

    NASA Astrophysics Data System (ADS)

    Tsukagoshi, Takashi; Momose, Munetake; Hashimoto, Jun; Kudo, Tomoyuki; Andrews, Sean; Saito, Masao; Kitamura, Yoshimi; Ohashi, Nagayoshi; Wilner, David; Kawabe, Ryohei; Abe, Lyu; Akiyama, Eiji; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph; Currie, Thayne; Egner, Sebastian E.; Goto, Miwa; Grady, Carol; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kusakabe, Nobuhiko; Kuzuhara, Masayuki; Kwon, Jungmi; McElwain, Mike; Matsuo, Taro; Mayama, Satoshi; Miyama, Shoken; Morino, Jun-ichi; Moro-Martín, Amaya; Nishimura, Tetsuro; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro; Takami, Hideki; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L.; Usuda, Tomonori; Watanabe, Makoto; Wisniewski, John P.; Yamada, Toru; Tamura, Motohide

    2014-03-01

    To reveal the structures of a transition disk around a young stellar object in Lupus, Sz 91 , we have performed aperture synthesis 345 GHz continuum and CO(3-2) observations with the Submillimeter Array (~1''-3'' resolution) and high-resolution imaging of polarized intensity at the Ks -band using the HiCIAO instrument on the Subaru Telescope (0.''25 resolution). Our observations successfully resolved the inner and outer radii of the dust disk to be 65 and 170 AU, respectively, which indicates that Sz 91 is a transition disk source with one of the largest known inner holes. The model fitting analysis of the spectral energy distribution reveals an H2 mass of 2.4 × 10-3 M ⊙ in the cold (T < 30 K) outer part at 65 AU 3 × 10-9 M ⊙) of hot (T ~ 180 K) dust possibly remains inside the inner hole of the disk. The structure of the hot component could be interpreted as either an unresolved self-luminous companion body (not directly detected in our observations) or a narrow ring inside the inner hole. Significant CO(3-2) emission with a velocity gradient along the major axis of the dust disk is concentrated on the Sz 91 position, suggesting a rotating gas disk with a radius of 420 AU. The Sz 91 disk is possibly a rare disk in an evolutionary stage immediately after the formation of protoplanets because of the large inner hole and the lower disk mass than other transition disks studied thus far.

  7. High-resolution submillimeter and near-infrared studies of the transition disk around Sz 91

    SciTech Connect

    Tsukagoshi, Takashi; Momose, Munetake; Hashimoto, Jun; Kudo, Tomoyuki; Saito, Masao; Ohashi, Nagayoshi; Kawabe, Ryohei; Akiyama, Eiji; Andrews, Sean; Wilner, David; Kitamura, Yoshimi; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph; Currie, Thayne; Egner, Sebastian E.; Guyon, Olivier; Goto, Miwa; Grady, Carol; and others

    2014-03-10

    To reveal the structures of a transition disk around a young stellar object in Lupus, Sz 91 , we have performed aperture synthesis 345 GHz continuum and CO(3-2) observations with the Submillimeter Array (∼1''-3'' resolution) and high-resolution imaging of polarized intensity at the K{sub s} -band using the HiCIAO instrument on the Subaru Telescope (0.''25 resolution). Our observations successfully resolved the inner and outer radii of the dust disk to be 65 and 170 AU, respectively, which indicates that Sz 91 is a transition disk source with one of the largest known inner holes. The model fitting analysis of the spectral energy distribution reveals an H{sub 2} mass of 2.4 × 10{sup –3} M {sub ☉} in the cold (T < 30 K) outer part at 65 AU 3 × 10{sup –9} M {sub ☉}) of hot (T ∼ 180 K) dust possibly remains inside the inner hole of the disk. The structure of the hot component could be interpreted as either an unresolved self-luminous companion body (not directly detected in our observations) or a narrow ring inside the inner hole. Significant CO(3-2) emission with a velocity gradient along the major axis of the dust disk is concentrated on the Sz 91 position, suggesting a rotating gas disk with a radius of 420 AU. The Sz 91 disk is possibly a rare disk in an evolutionary stage immediately after the formation of protoplanets because of the large inner hole and the lower disk mass than other transition disks studied thus far.

  8. High-Resolution Submillimeter and Near-Infrared Studies of the Transition Disk around Sz 91

    NASA Technical Reports Server (NTRS)

    Tsukagoshi, Takashi; Momose, Munetake; Hashimoto, Jun; Kudo, Tomoyuki; Andrews, Sean; Saito, Masao; Kitamura, Yoshimi; Ohashi, Nagayoshi; Wilner, David; Kawabe, Ryohei; Abe, Lyu; Akiyama, Eiji; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph; Currie, Thayne; Enger, Sebastian E.; Goto, Miwa; Grady, Carol A.; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kusakabe, Nobuhiko; Kuzuhara, Masayuki; Kwon, Jungmi; McElwain, Michael W.; Matsuo, Taro; Mayama, Satoshi

    2014-01-01

    To reveal the structures of a transition disk around a young stellar object in Lupus, Sz 91, we have performed aperture synthesis 345 GHz continuum and CO(32) observations with the Submillimeter Array ( 13 resolution), and high-resolution imaging of polarized intensity at the Ks-band by using the Hi-CIAO instrument on the Subaru Telescope (0.25 resolution). Our observations successfully resolved the inner and outer radii of the dust disk to be 65 and 170AU, respectively, which indicates that Sz 91 is a transition disk source with one of the largest known inner holes. The model fitting analysis of the spectral energy distribution reveals an H2 mass of 2.4 103 M in the cold (T 30 K) outer part at 65 r 170 AU by assuming a canonical gas-to-dust mass ratio of 100, although a small amount ( 3109 M) of hot (T 180 K) dust possibly remains inside the inner hole of the disk. The structure of the hot component could be interpreted as either an unresolved self-luminous companion body (not directly detected in our observations) or a narrow ring inside the inner hole. Significant CO(32) emission with a velocity gradient along the major axis of the dust disk is concentrated on the Sz 91 position, suggesting a rotating gas disk with a radius of 420 AU. The Sz 91 disk is possibly a rare disk in an evolutionary stage immediately after the formation of protoplanets because of the large inner hole and the lower disk mass than other transition disks studied thus far.

  9. High-Resolution Submillimeter and Near-Infrared Studies of the Transition Disk Around Sz 91

    NASA Technical Reports Server (NTRS)

    Tsukagoshi, Takashi; Momose, Munetake; Abe, Lyu; Akiyama, Eiji; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph; Currie, Thayne; Egner, Sebastian E.; Goto, Miwa; Grady, Carol; Guyon, Olivier; Hashimoto, Jun; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Kuzuhara, Masayuki; Kwon, Jungmi; McElwain, Mike; Matsuo, Taro; Mayama, Satoshi; Miyama, Shoken; Morino, Jun-ichi; Moro-Martin, Amaya; Nishimura, Tetsuro; Andrews, Sean; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro; Takami, Hideki; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Saito, Masao; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L.; Usuda, Tomonori; Watanabe, Makoto; Wisniewski, John P.; Yamada, Toru; Tamura, Motohide; Kitamura, Yoshimi; Ohashi, Nagayoshi; Wilner, David; Kawabe, Ryohei

    2014-01-01

    To reveal the structures of a transition disk around a young stellar object in Lupus, Sz 91, we have performed aperture synthesis 345 GHz continuum and CO(3--2) observations with the Submillimeter Array (approximately 1" - 3" resolution), and high-resolution imaging of polarized intensity at the K(sub s) -band by using the HiCIAO instrument on the Subaru Telescope (0.25" resolution). Our observations successfully resolved the inner and outer radii of the dust disk to be 65 AU and 170 AU, respectively, which indicates that Sz 91 is a transition disk source with one of the largest known inner holes. The model fitting analysis of the spectral energy distribution reveals an H 2 mass of 2.4×10(exp -3) M(solar mass) in the cold (T less than 30 K) outer part at 65 less than r less than 170 AU by assuming a canonical gas-to-dust mass ratio of 100, although a small amount (greater than 3×10(exp -9) M(solar mass)) of hot (T approximately 180 K) dust possibly remains inside the inner hole of the disk. The structure of the hot component could be interpreted as either an unresolved self-luminous companion body (not directly detected in our observations) or a narrow ring inside the inner hole. Significant CO(3--2) emission with a velocity gradient along the major axis of the dust disk is concentrated on the Sz 91 position, suggesting a rotating gas disk with a radius of 420 AU. The Sz 91 disk is possibly a rare disk in an evolutionary stage immediately after the formation of protoplanets because of the large inner hole and the lower disk mass than other transition disks studied thus far.

  10. High-resolution infrared studies of perdeutero-spiropentane, C5D8

    NASA Astrophysics Data System (ADS)

    Erickson, B. A.; Ju, X.; Nibler, J. W.; Beaudry, C. M.; Blake, T. A.

    2016-07-01

    Perdeutero-spiropentane (C5D8) has been synthesized, and infrared and Raman spectra are reported for the first time. Wavenumber assignments are made for most of the fundamental vibrational states. Gas phase infrared spectra were recorded at a resolution (0.002 cm-1) sufficient to resolve individual rovibrational lines and show evidence of strong Coriolis and/or Fermi resonance interactions for most bands. However a detailed rovibrational analysis of the fundamental ν15 (b2) parallel band proved possible, and a fit of more than 1600 lines yielded a band origin of 1053.84465(10) cm-1 and ground state constants (in units of cm-1): B0 = 0.1120700(9), DJ = 1.51(3) × 10-8, DJK = 3.42(15) × 10-8. We note that the B0 value is significantly less than a value of Ba = 0.1140 cm-1 calculated using structural parameters from an earlier electron diffraction (ED) study, whereas one expects Ba to be lower than B0 because of thermal averaging over higher vibrational levels. A similar discrepancy was noted in an earlier study of C5H8 (Price et al., 2011). The structural and spectroscopic results are in good accord with values computed at the anharmonic level using the B3LYP density functional method with a cc-pVTZ basis set.

  11. Collaborative Study of Analysis of High Resolution Infrared Atmospheric Spectra Between NASA Langley Research Center and the University of Denver

    NASA Technical Reports Server (NTRS)

    Goldman, Aaron

    1999-01-01

    The Langley-D.U. collaboration on the analysis of high resolution infrared atmospheric spectra covered a number of important studies of trace gases identification and quantification from field spectra, and spectral line parameters analysis. The collaborative work included: Quantification and monitoring of trace gases from ground-based spectra available from various locations and seasons and from balloon flights. Studies toward identification and quantification of isotopic species, mostly oxygen and Sulfur isotopes. Search for new species on the available spectra. Update of spectroscopic line parameters, by combining laboratory and atmospheric spectra with theoretical spectroscopy methods. Study of trends of atmosphere trace constituents. Algorithms developments, retrievals intercomparisons and automatization of the analysis of NDSC spectra, for both column amounts and vertical profiles.

  12. High Resolution Near Infrared Spectrometer to Study the Zodiacal Light Spectrum

    NASA Technical Reports Server (NTRS)

    Kutyrev, Alexander; Arendt, Richard G.; Dwek, Eli; Moseley, Samuel H.; Silverberg, Robert F.; Rapchun, David

    2008-01-01

    We are developing a near infrared spectrometer for measuring solar absorption lines in the zodiacal light in the near infrared region. R. Reynolds at el. (2004, ApJ 612, 1206) demonstrated that observing single Fraunhofer line can be a powerful tool for extracting zodiacal light parameters based on their measurements of the profile of the Mg I line at 5184 A. We are extending this technique to the near infrared with the primary goal of measuring the absolute intensity of the zodiacal light. This measurement will provide the crucial information needed to accurately subtract zodiacal emission from the DIRBE measurements to get a much higher quality measurement of the extragalactic IR background. The instrument design is based on a dual Fabry-Perot interferometer with a narrow band filter. Its double etalon design allows to achieve high spectral contrast to reject the bright out of band telluric OH emission. High spectral contrast is absolutely necessary to achieve detection limits needed to accurately measure the intensity of the absorption line. We present the design, estimated performance of the instrument with the expected results of the observing program.

  13. High-Resolution Microwave and Infrared Molecular-Beam Studies of the Conformers of 1,1,2,2-Tetrafluoroethane

    NASA Astrophysics Data System (ADS)

    Stone, Stephen C.; Philips, Laura A.; Fraser, G. T.; Lovas, F. J.; Xu, Li-Hong; Sharpe, S. W.

    1998-11-01

    High-resolution microwave and infrared molecular-beam spectra have been measured for 1,1,2,2-tetrafluoroethane (HFC134). For the higher energy, polar,C2symmetry,gaucheconformer, microwave spectra have been recorded for the normal and mono-13C isotopomers and analyzed to determine a C-C bond length of 1.512(4) Å, in good agreement with a recentab initiovalue (MP2/6-31G**) of 1.515 Å [S. Papasavva, K. H. Illinger, and J. E. Kenny,J. Phys. Chem.100, 10100-10110 (1996)]. A tunable microwave-sideband CO2laser and electric-resonance optothermal spectrometer have been used to measure the infrared spectrum of the ν6, C-C stretch of thegaucheconformer near 906 cm-1. Microwave-infrared double resonance and precise ground state combination differences provided by the microwave measurements guide the assignment of the spectrum. The observation of ac-type spectrum definitively establishes that the upper state vibration is ofAsymmetry in theC2point group. The spectrum is fit to a Watson asymmetric-top Hamiltonian to a standard deviation of 0.24 MHz. A weak perturbation shifts the line positions for transitions nearJ = Kc= 20 by as much as 12 MHz. The identity of the perturber is unknown. Pulsed slit-jet diode-laser spectra have been recorded for the ν16vibration of theanticonformer near 1127 cm-1. Ana- andc-type hybrid band is observed, consistent with aBusymmetry mode. Previous low-resolution studies have attributed the 1127-cm-1mode to either aBuor anAusymmetry vibration. A total of 522 nonblended transitions were assigned and fit to determine ground and excited state constants. The ground state constants ofA= 5134.952(65) MHz,B= 3148.277(27) MHz, andC= 2067.106(43) MHz are the first experimental determinations of the rotational constants for this conformer. Here, typeAstandard uncertainties are given in the parentheses.

  14. High-Resolution Microwave and Infrared Molecular Beam Studies of the Conformers of 1, 1, 2, 2-Tetrafluoroethane

    SciTech Connect

    Stone, Steven C.; Philips, Laura A.; Fraser, Gerry; Lovas, Fj; Xu, Li-Hong; Sharpe, Steven W.)

    1998-01-01

    High-resolution microwave and infrared molecular-beam spectra have been measure for 1,1,2,2-tetraflouroethane (HFC134). For the higher energy, polar, C2 symmetry, gauche conformer, microwave spectra have been recorded for the normal and mono-13C isotopomers and analyzed to determine a C-C bond length of 1.512(4)?, in good agreement with a recent ab initio value (MP2/6-31**) of 1.515?[S. Papasavva, K.H. Illinger, and J.E. Kenny, J. Phys. Chem 100 10100-10110(1996)]. A tunable microwave-sideband CO2 laser and electric-resonance optethermal spectrometer have been used to measure the infrared spectrum of the v6, C-C stretch of the gauche conformer near 906 cm-1. Microwave-infrared double resonance and precise ground state combination differences provided by the microwave measurements guide the assignment of the spectrum. The observation of a c-type spectrum definitively establishes that the upper state vibration is of A symmetry in the C2 point group. The spectrum is fit to a Watson asymmetric-top Hamiltonian to a standard deviation of 0.24 MHz. A weak perturbation shifts the line positions for transitions near J=Kc=20 by as much as 12 MHz. The identity of the perturber is unknown. Pulsed slit-jet diode-laser spectra have been recorded for the v16 vibration of the anti conformer near 1127 cm-1. An a- and c-type hybrid band is observed, consistent with a Bu symmetry mode. Previous low-resolution studies have attributed the 1127-cm-1 mode to either a Bu or an Au symmetry vibration. A total of 522 nonblended transitions were assigned and fit to determine ground and excited state constants. The ground state constants of A=52 5.952(65) MHz, B= 3148.277(27) MHz, and C= 2067.106(43) MHz are the first experimental determinations of the rotational constants for this conformer. Here, type A standard uncertainties are given in the parenthese.

  15. High-resolution microwave and infrared molecular-beam studies of the conformers of 1,1,2,2-tetrafluoroethane

    SciTech Connect

    Stone, S.C.; Philips, L.A.; Fraser, G.T.; Lovas, F.J.

    1996-12-31

    High-resolution microwave and infrared molecular-beam spectra have been measured for 1,1,2,2-tetrafluorethane (HFC134). For the higher-energy, polar, C{sub 1}-symmetry, gauche conformer, microwave spectra have been recorded for the normal and mono-{sup 13}C isotopomers and analyzed to determine a C-C bond length of 1.512(4) {Angstrom} and a CCF angle of 109.7(3){degrees}. A tunable microwave-sideband CO{sub 2} laser and electric-resonance optothermal spectrometer have been used to measure the infrared spectrum of the {nu}{sub 6}, C-C stretch of the gauche conformer near 906 cm{sup -1}. Microwave-infrared double resonance and precise ground-state combination-differences provided by the microwave measurements guide the assignment of the spectrum. A b- and c-type spectrum is observed and fit to a Watson asymmetric-top Hamiltonian to within the experimental uncertainty of 0.3 MHz. The high quality of the fit and the similarity of the centrifugal distortion constants to the ground-state values indicate that the band is effectively unperturbed. A number of strong unassigned lines are present in the spectrum. These transitions do not display any microwave-infrared double resonance effect. The attribution of these transitions to the nonpolar anti conformer is ruled out since the transition intensities are sensitive to the field strength of the inhomogeneous electric field used to focus the molecules. Pulsed slit-jet diode-laser spectra have been recorded for the {nu}{sub 16}, anti conformer near 1127 cm{sup -1}. An a- and c-type hybrid band is observed consistent with previous low-resolution assignments of this vibration to a B. mode. A total of 522 non-blended transitions were assigned and fit to determine ground- and excited-state constants. The ground-state constants of A = 5134.952(65), B = 3148.277(27), and C = 2067.106(43) MHz are the first experimental determination of rotational constants for this conformer.

  16. High Resolution Far Infrared Study of Antiferromagnetic Resonance Transitions in α-Fe2O3 (hematite)

    NASA Astrophysics Data System (ADS)

    Chou, Shin Grace; Plusquellic, David F.; Stutzman, Paul E.; Wang, Shuangzhen; Garboczi, Edward J.; Egelhoff, William F.

    2012-02-01

    In this study, we report high resolution optical measurements of the temperature dependence of the antiferromagnetic (AFM) transition in α-Fe2O3 (hematite) between (0.5 and 10) cm-1. The absorption peak position, over a large temperature range, is found to be in agreement with a modified spin-wave model at both the high and low temperature phases, where the temperature is above and below the Morin transition temperature, respectively. The high spectral resolution optical measurements as demonstrated in this study allow unprecedented zero-field spectral analysis of the zone center AFM magnon in a previously challenging spectral region, giving insights into the role of temperature and strain on the exchange and anisotropy interactions in the system. The results also suggest that the frequency-resolved measurement platform could be extended for room-temperature non-destructive examination and imaging applications for antiferromagnetic materials and devices.

  17. Metallicity determination of M dwarfs. High-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindgren, Sara; Heiter, Ulrike; Seifahrt, Andreas

    2016-02-01

    Context. Several new techniques to determine the metallicity of M dwarfs with better precision have been developed over the last decades. However, most of these studies were based on empirical methods. In order to enable detailed abundance analysis, standard methods established for warmer solar-like stars, i.e. model-dependent methods using fitting of synthetic spectra, still need to be used. Aims: In this work we continue the reliability confirmation and development of metallicity determinations of M dwarfs using high-resolution infrared spectra. The reliability was confirmed through analysis of M dwarfs in four binary systems with FGK dwarf companions and by comparison with previous optical studies of the FGK dwarfs. Methods: The metallicity determination was based on spectra taken in the J band (1.1-1.4 μm) with the CRIRES spectrograph. In this part of the infrared, the density of stellar molecular lines is limited, reducing the amount of blends with atomic lines enabling an accurate continuum placement. Lines of several atomic species were used to determine the stellar metallicity. Results: All binaries show excellent agreement between the derived metallicity of the M dwarf and its binary companion. Our results are also in good agreement with values found in the literature. Furthermore, we propose an alternative way to determine the effective temperature of M dwarfs of spectral types later than M2 through synthetic spectral fitting of the FeH lines in our observed spectra. Conclusions: We have confirmed that a reliable metallicity determination of M dwarfs can be achieved using high-resolution infrared spectroscopy. We also note that metallicites obtained with photometric metallicity calibrations available for M dwarfs only partly agree with the results we obtain from high-resolution spectroscopy. Based on data obtained at ESO-VLT, Paranal Observatory, Chile, Program ID 082.D-0838(A) and 084.D-1042(A).

  18. High Resolution Wavenumber Standards for the Infrared. (IUPAC Recommendations 1995)

    NASA Technical Reports Server (NTRS)

    Guelachvili, G.; Birk, M.; Borde, C. J.; Brault, J. W.; Brown, L. R.; Carli, B.; Cole, A. R. H.; Evenson, K. M.; Fayt, A.; Hausamann, D.; Johns, J. W. C.; Kauppinen, J.; Kou, Q.; Maki, A. G.; Rao, K. N.; Toth, R. A.; Urban, W.; Valentin, A.; Verges, J.; Wagner, G.; Wappelhorst, M. H.; Wells, J. S.; Winnewisser, B. P.; Winnewisser, M.

    1995-01-01

    The calibration of high resolution infrared spectra is generally more precise than accurate. This is the case even when they are recorded with Fourier transform interferometers. This presentation aims at improving the accuracy of wavenumber measurements in the infrared by recommending a selection of spectral lines as wavenumber standards for absolute calibration.

  19. High Resolution Infrared Spectra of Triacetylene

    NASA Astrophysics Data System (ADS)

    Doney, Kirstin D.; Zhao, Dongfeng; Linnartz, Harold

    2015-06-01

    Triacetylene, HC6H, is the longest poly-acetylene chain found in space, and is believed to be involved in the formation of longer chain molecules and polycyclic aromatic hydrocarbons (PAHs). However, abundances are expected to be low, and observational confirmation requires knowledge of the gas-phase spectra, which up to now has been incomplete with only the weak, low lying bending modes being known. We present new infrared (IR) spectra in the C-H stretch region obtained using ultra-sensitive and highly precise IR continuous wave cavity ring-down spectroscopy (cw-CRDS), combined with supersonic plasma expansions The talk reviews the accurate determination of the rotational constants of the asymmetric fundamental mode, νb{5}, including discussion on the perturber state, and associated hot bands. The determined molecular parameters are accurate enough to aid astronomical searches with such facilities as ALMA (Atacama Large Millimeter Array) or the upcoming JWST (James Webb Space Telecscope), which can now probe even trace molecules (abundances of ˜ 10-6 - 10-10 with respect to H2). D. Zhao, J. Guss, A. Walsh, H. Linnartz, Chem. Phys. Lett., 565, 132 (2013) K.D. Doney, D. Zhao, H. Linnartz, in preparation

  20. Design and implementation of spaceborne high resolution infrared touch screen

    NASA Astrophysics Data System (ADS)

    Li, Tai-guo; Li, Wen-xin; Dong, Yi-peng; Ma, Wen; Xia, Jia-gao

    2015-10-01

    For the consideration of the special application environment of the electronic products used in aerospace and to further more improve the human-computer interaction of the manned aerospace area. The research is based on the design and implementation way of the high resolution spaceborne infrared touch screen on the basis of FPGA and DSP frame structure. Beside the introduction of the whole structure for the high resolution spaceborne infrared touch screen system, this essay also gives the detail information about design of hardware for the high resolution spaceborne infrared touch screen system, FPGA design, GUI design and DSP algorithm design based on Lagrange interpolation. What is more, the easy makes a comprehensive research of the reliability design for the high resolution spaceborne infrared touch screen for the special purpose of it. Besides, the system test is done after installation of spaceborne infrared touch screen. The test result shows that the system is simple and reliable enough, which has a stable running environment and high resolution, which certainly can meet the special requirement of the manned aerospace instrument products.

  1. Collaborative Study for Analysis of High Resolution Infrared Atmospheric Spectra Between NASA Langley Research Center and the University of Denver

    NASA Technical Reports Server (NTRS)

    Goldman, A.

    2002-01-01

    The Langley-D.U. collaboration on the analysis of high resolultion infrared atmospheric spectra covered a number of important studies of trace gases identification and quantification from field spectra, and spectral line parameters analysis. The collaborative work included: 1) Quantification and monitoring of trace gases from ground-based spectra available from various locations and seasons and from balloon flights; 2) Identification and preliminary quantification of several isotopic species, including oxygen and Sulfur isotopes; 3) Search for new species on the available spectra, including the use of selective coadding of ground-based spectra for high signal to noise; 4) Update of spectroscopic line parameters, by combining laboratory and atmospheric spectra with theoretical spectroscopy methods; 5) Study of trends and correlations of atmosphere trace constituents; and 6) Algorithms developments, retrievals intercomparisons and automatization of the analysis of NDSC spectra, for both column amounts and vertical profiles.

  2. High Resolution Wavenumber Standards for the Infrared. (IUPAC Recommendations 1995)

    NASA Technical Reports Server (NTRS)

    Guelachvili, G.; Birk, M.; Bord, C.; Brault, J.; Brown, L.; Carli, B.; Cole, A.; Evenson, D.; Fayt, A.; Hausamann, D.; Johns, J.; Kauppinen, J.; Kou, Q.; Maki, A.; Narahari Rao, K.; Toth, R.; Urban, W.; Valentin, A.; Vergs, J.; Wagner, G.; Winnewisser, B.; Winnewisser, M.

    1995-01-01

    The calibration of high resolution infrared spectra is generally more precise than accurate even when they are recorded with Fourier interferometers. In order to improve the consistency of the spectral measurements, an IUPAC project has been undertaken. Its aim was to recommend a selection of spectral lines as wavenumber standards for absolute calibration in the infrared. This paper will report the final recommendations in the spectral range extending from about 4 to about 7000 cm(be).

  3. The infrared spectrum of isothiazole in the range 600-1500 cm-1, including a high-resolution study of the ν studies of the full spectrum

    NASA Astrophysics Data System (ADS)

    Hegelund, F.; Wugt Larsen, R.; Aitken, R. A.; Kraus, H.; Nicolaisen, F. M.; Palmer, M. H.

    The gas-phase high-resolution infrared spectrum of isothiazole in the range 600-1500 cm-1 has been recorded, and revised band centres obtained for a number of vibrations. An analysis of the ν11(A') band at 818 cm-1 and the ν16(A'') band at 727 cm-1 has been performed, using the Watson Hamiltonian, A-reduction, IIIr representation. These were combined with previous microwave spectral data to provide combined analyses for rotational constants and quartic centrifugal distortion constants ΔJ, ΔJK, ΔK, δJ and δK. These extend the knowledge derived from previous microwave and IR spectral studies. The equilibrium structures and the derived harmonic frequencies were calculated by ab initio methods, using a variety of basis sets with MP2, MP4 and CCSD(T) methods, and a comparison of these with experimental data is discussed. At a pragmatic level, the closest correlation of the rotational constants with experiment is not obtained with the most sophisticated methodology. Similarly, the vibration frequencies and intensities also vary strongly with the procedure. In particular, we found that the cc-pVTZ+MP2 results probably provide the best numerical comparison with experimental IR data for this molecule.

  4. Reinvestigation of the microwave and new high resolution far-infrared spectra of cis-methyl nitrite, CH 3ONO: Rotational study of the two first torsional states

    NASA Astrophysics Data System (ADS)

    Sironneau, V.; Chelin, P.; Tchana, F. Kwabia; Kleiner, I.; Pirali, O.; Roy, P.; Guillemin, J.-C.; Orphal, J.; Margulès, L.; Motiyenko, R. A.; Cooke, S. A.; Youngblood, W. J.; Agnew, A.; Dewberry, C. T.

    2011-05-01

    The first far-infrared high resolution absorption measurement of the cis-methyl nitrite molecule has been recorded in the range 15-400 cm -1 using the synchrotron AILES beamline radiation at SOLEIL with a resolution of 0.0011 cm -1. First assignments for the pure rotational transitions (15-65 cm -1) belonging to the ground ν t (= ν15) = 0 and first ν t = 1 excited torsional state are based on measurements from previous studies performed in the 13-40 GHz spectral range, as well as on new millimeter-wave measurements performed at Lille in the spectral range 75-465 GHz. A few measurements and remeasurements in the 1.8-13 GHz were also performed using the chirped FT-MW spectrometer located in North Texas. The pure rotational transitions in the far-infrared and in the microwave spectral range belonging to the two first torsional states have been globally fitted using the RAM ("Rho Axis Method") dealing with the rotation-torsion Hamiltonian and implemented in the BELGI code. A total of 708 and 713 microwave transitions (6 ⩽ J ⩽ 40, Kamax ⩽ 23) belonging to the ground torsional state ν t = 0 and 1 have been fitted with root-mean-square (rms) deviations of 37.4 kHz and 32.3 kHz respectively, and 3170 pure rotational transitions in the far-infrared range (12 ⩽ J max ⩽ 65, 0 ⩽ Kamax ⩽ 48) belonging to ν t = 0 and 1 have been fitted with a rms deviation of 0.00017 cm -1, using 35 parameters. Since in the far-infrared spectral range, the A-E internal rotor splittings have not been observed for the transitions belonging to the torsional ground ν t = 0 state of the cis-methyl nitrite species, another fit was performed on those lines, using a Watson type Hamiltonian for comparison.

  5. SPARTAN high resolution solar studies

    NASA Technical Reports Server (NTRS)

    Bruner, Marilyn E.

    1993-01-01

    This report summarizes the work performed on Contract NAS5-29739, a sub-orbital research program directed toward the study of the geometry of and physical conditions in matter found in the upper layers of the solar atmosphere. The report describes a new sounding rocket payload developed under the contract, presents a guide to the contents of semiannual reports submitted during the contract, discusses the results of the first flight of the payload and the progress on scientific analysis. A bibliography of papers and publications is included.

  6. High resolution infrared datasets useful for validating stratospheric models

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.

    1992-01-01

    An important objective of the High Speed Research Program (HSRP) is to support research in the atmospheric sciences that will improve the basic understanding of the circulation and chemistry of the stratosphere and lead to an interim assessment of the impact of a projected fleet of High Speed Civil Transports (HSCT's) on the stratosphere. As part of this work, critical comparisons between models and existing high quality measurements are planned. These comparisons will be used to test the reliability of current atmospheric chemistry models. Two suitable sets of high resolution infrared measurements are discussed.

  7. High resolution infrared studies of dynamics in low temperature matrics: Vibrational dephasing for SeF/sub 6/ in noble gas solids

    SciTech Connect

    Jones, L.H.; Swanson, B.I.

    1981-03-15

    High resolution infrared absorption spectra for the upsilon/sub 3/ mode of SeF/sub 6/ in low temperature noble gas matrices have been observed. A remarkable amount of structure is observed leading to the conclusion that multiple trapping sites as well as site symmetry splittings, similar to those observed previously for SF/sub 6/, are common. Temperature dependent studies give a rich display of dynamics arising from host--guest interactions. These give evidence for dynamic exchange among equivalent low symmetry sites within a given trapping cage. This exchange is evidence for a dephasing of the components of upsilon/sub 3/ by a local site phonon mode in resonance with part of the phonon bath. Unexpected matrix shifts and intensity changes with temperature have been observed. Accurate isotope shifts, especially in a neon matrix, are shown to be useful for calculation of potential constants. A discussion of host--guest interactions, dephasing, and dynamic site exchange in these matrices is given.

  8. High resolution infrared acquisitions droning over the LUSI mud eruption.

    NASA Astrophysics Data System (ADS)

    Di Felice, Fabio; Romeo, Giovanni; Di Stefano, Giuseppe; Mazzini, Adriano

    2016-04-01

    The use of low-cost hand-held infrared (IR) thermal cameras based on uncooled micro-bolometer detector arrays became more widespread during the recent years. Thermal cameras have the ability to estimate temperature values without contact and therefore can be used in circumstances where objects are difficult or dangerous to reach such as volcanic eruptions. Since May 2006 the Indonesian LUSI mud eruption continues to spew boiling mud, water, aqueous vapor, CO2, CH4 and covers a surface of nearly 7 km2. At this locality we performed surveys over the unreachable erupting crater. In the framework of the LUSI Lab project (ERC grant n° 308126), in 2014 and 2015, we acquired high resolution infrared images using a specifically equipped remote-controlled drone flying at an altitude of m 100. The drone is equipped with GPS and an autopilot system that allows pre-programming the flying path or designing grids. The mounted thermal camera has peak spectral sensitivity in LW wavelength (μm 10) that is characterized by low water vapor and CO2 absorption. The low distance (high resolution) acquisitions have a temperature detail every cm 40, therefore it is possible to detect and observe physical phenomena such as thermodynamic behavior, hot mud and fluids emissions locations and their time shifts. Despite the harsh logistics and the continuously varying gas concentrations we managed to collect thermal images to estimate the crater zone spatial thermal variations. We applied atmosphere corrections to calculate infrared absorption by high concentration of water vapor. Thousands of images have been stitched together to obtain a mosaic of the crater zone. Regular monitoring with heat variation measurements collected, e.g. every six months, could give important information about the volcano activity estimating its evolution. A future data base of infrared high resolution and visible images stored in a web server could be a useful monitoring tool. An interesting development will be

  9. Modeling Titan's thermal infrared spectrum for high-resolution space observations

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Encrenaz, Th.; Bezard, B.; Bjoraker, G.; Graner, G.; Dang-Nhu, M.; Arie, E.

    1993-04-01

    The observability of minor species in Titan's atmosphere in its infrared thermal range is systematically studied and modeled to generate synthetic spectra. The model results on methane, water vapor, benzene, allene, and other heavier trace molecules are used to illustrate the capabilities of instruments aboard the Infrared Space Observatory, in particular a high-resolution composite infrared spectrometer, to determine vertical distributions of the molecules in a few hours of integration time.

  10. IRAS high resolution studies and modeling of closely interacting galaxies. Galaxy collisions: Infrared observations and analysis of numerical models. UV spectroscopy of massive young stellar populations in interacting galaxies

    NASA Technical Reports Server (NTRS)

    Lamb, Susan A.

    1993-01-01

    The Final Technical Report covering the period from 15 Aug. 1989 to 14 Aug. 1991 is presented. Areas of research included Infrared Astronomy Satellite (IRAS) high resolution studies and modeling of closely interacting galaxies; galaxy collisions: infrared observations and analysis of numerical models; and UV spectroscopy of massive young stellar populations in interacting galaxies. Both observational studies and theoretical modelling of interacting galaxies are covered. As a consequence the report is divided into two parts, one on each aspect of the overall project.

  11. Infrared-Vacuum Ultraviolet Pulsed Field Ionization-Photoelectron Study of C₂H₄ + Using a High-Resolution Infrared Laser

    SciTech Connect

    Xing, Xi; Reed, Beth; Bahng, Mi-Kyung; Ng, Cheuk-Yiu

    2008-02-20

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The infrared (IR)-vacuum ultraviolet (VUV)-pulsed field ionization-photoelectron (IR-VUV-PFI-PE) spectrum for C₂H₄(X 1Ag, V11 = 1, N'Ka'Kc'=3₀₃) in the VUV range of 83 000-84 800 cm-1 obtained using a single mode infrared laser revealed 24 rotationally resolved vibrational bands for the ion C₂H₄ +(X 2B3u) ground state. The frequencies and symmetry of the vibrational bands thus determined, together with the anharmonic frequency predictions calculated at the CCSD(T)/aug-cc-pVQZ level, have allowed the unambiguous assignment of these vibrational bands. These bands are mostly combination bands. The measured frequencies of these bands yield the fundamental frequencies for V8 + ) 1103± ( 10 cm-1 and V10 + ) 813 ( 10 cm-1 of C₂H₄ +(X 2B3u), which have not been determined previously. The present IR-VUV-PFI-PE study also provides truly rovibrationally selected and resolved state-to-state cross sections for the photoionization transitions C₂H₄(X~1Ag; V11, N'Ka'Kc') → C₂H₄ +(X~ 2B3u; Vi +, N+ Ka +Kc +), where N'Ka'Kc' denotes the rotational level of C₂H₄(X~ 1Ag; V11), and Vi + and N+ Ka +Kc + represent the vibrational and rotational states of the cation.

  12. High-Resolution Infrared Spectroscopy with Synchrotron Sources

    SciTech Connect

    McKellar, A.

    2010-01-01

    Most applications of synchrotron radiation lie in the ultraviolet and X-ray region, but it also serves as a valuable continuum source of infrared (IR) light which is much brighter (i.e. more highly directional) than that from normal thermal sources. The synchrotron brightness advantage was originally exploited for high spatial resolution spectroscopy of condensed-phase samples. But it is also valuable for high spectral resolution of gas-phase samples, particularly in the difficult far-IR (terahertz) range (1/{lambda} {approx} 10-1000 cm{sup -1}). Essentially, the synchrotron replaces the usual thermal source in a Fourier transform IR spectrometer, giving a increase of up to two (or even more) orders of magnitude in signal at very high-resolution. Following up on pioneering work in Sweden (MAX-lab) and France (LURE), a number of new facilities have recently been constructed for high-resolution gas-phase IR spectroscopy. In the present paper, this new field is reviewed. The advantages and difficulties associated with synchrotron IR spectroscopy are outlined, current and new facilities are described, and past, present, and future spectroscopic results are summarized.

  13. High-Resolution Mars Camera Test Image of Moon (Infrared)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This crescent view of Earth's Moon in infrared wavelengths comes from a camera test by NASA's Mars Reconnaissance Orbiter spacecraft on its way to Mars. The mission's High Resolution Imaging Science Experiment camera took the image on Sept. 8, 2005, while at a distance of about 10 million kilometers (6 million miles) from the Moon. The dark feature on the right is Mare Crisium. From that distance, the Moon would appear as a star-like point of light to the unaided eye. The test verified the camera's focusing capability and provided an opportunity for calibration. The spacecraft's Context Camera and Optical Navigation Camera also performed as expected during the test.

    The Mars Reconnaissance Orbiter, launched on Aug. 12, 2005, is on course to reach Mars on March 10, 2006. After gradually adjusting the shape of its orbit for half a year, it will begin its primary science phase in November 2006. From the mission's planned science orbit about 300 kilometers (186 miles) above the surface of Mars, the high resolution camera will be able to discern features as small as one meter or yard across.

  14. The TIROS-N high resolution infrared radiation sounder

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1979-01-01

    The high-resolution infrared radiation sounder (HIRS/2) was developed and flown on the Television and Infrared Observation Satellite, N Series (TIROS-N) as one means of obtaining atmospheric vertical profile information. The HIRS/2 receives visible and infrared spectrum radiation through a single telescope and selects 20 narrow spectral channels by means of a rotating filter wheel. A passive radiant cooler provides an operating temperature of 106.7K for the HgCdTe and InSb detectors while the visible detector operates at instrument frame temperature. Low noise amplifiers and digital processing provide 13 bit data for spacecraft data multiplexing and transmission. The qualities of system performance that determine sounding capability are the dynamic range of data collection, the noise equivalent radiance of the system, the registration of the air columns sampled in each channel, and the ability to upgrade the calibration of the instrument to maintain the performance standard throughout life. The basic performance of the instrument in test is described. Early orbital information from the TIROS-N launched on October 13, 1978 are given and some observations on system quality are made.

  15. High-resolution near-infrared spectroscopy of water dimer

    NASA Technical Reports Server (NTRS)

    Huang, Z. S.; Miller, R. E.

    1989-01-01

    High-resolution near-infrared spectra are reported for all of the O-H stretch vibrational bands of the water dimer. The four O-H vibrations are characterized as essentially independent proton-donor or proton-acceptor motions. In addition to the rotational and vibrational information contained in these spectra, details are obtained concerning the internal tunneling dynamics in both the ground and excited vibrational states. These results show that, for tunneling motions which involve the interchange of the proton donor and acceptor molecules, the associated frequencies decrease substantially due to vibrational excitation. The predissociation lifetimes for the various states of the dimer are determined from linewidth measurements. These results clearly show that the predissociation dynamics is strongly dependent on the tunneling states, as well as the Ka quantum number, indicating that the internal tunneling dynamics plays an important role in determining the dissociation rate in this complex.

  16. Design of the WIYN High Resolution Infrared Camera (WHIRC)

    NASA Astrophysics Data System (ADS)

    Smee, S. A.; Barkhouser, R. H.; Scharfstein, G. A.; Meixner, M.; Orndorff, J. D.; Miller, T.

    2011-01-01

    The WIYN High Resolution Infrared Camera (WHIRC) is a high-resolution near-infrared imager (0.8-2.5 μm) designed to produce superb images over a moderate (3.3' × 3.4') field of view on the WIYN 3.5 m telescope at Kitt Peak National Observatory. It takes scientific advantage of the excellent image quality produced by the telescope and its image stabilization subsystem, the WIYN Tip-Tilt Module (WTTM), which is located on one of two Nasmyth ports. WHIRC mounts to WTTM and reimages the WTTM focal plane to a plate scale of 0.1'' pixel-1 at the WHIRC detector. Its straight-through optical path makes for a compact, very low mass, instrument—a necessity, given the stringent moment-loading requirement at the WTTM interface. The WHIRC optical path consists of a vacuum window, a five-element collimator, a dual filter wheel, a five-element achromatic camera, and a 2k2 Raytheon VIRGO mercury cadmium telluride (HgCdTe) detector. A novel all-aluminum lens cell design is used to achieve 13 μm lens centering tolerances between ambient and the 77 K operating temperature. A suite of 13 filters facilitates broadband (J, H, and Ks) imaging, as well as narrowband imaging tailored to a variety of astronomical investigations. The imaging performance of WHIRC is excellent. Irrespective of seeing, the telescope, and WTTM, WHIRC delivers 0.13'', 0.11'', and 0.08'' FWHM images in J, H, and Ks, respectively. On sky, the imaging is equally impressive yielding images as good as ~0.25 FWHM in Ks. In this article we describe the WHIRC design in detail and present the predicted and measured instrument performance.

  17. A Combined Synchrotron-Based High Resolution FTIR and Diode Laser Jet Infrared Spectroscopy Study of the Chiral Molecule CDBrClF

    NASA Astrophysics Data System (ADS)

    Albert, S.; Albert, K. Keppler; Quack, M.; Lerch, Ph.; Boudon, V.

    2013-06-01

    The experimental detection of molecular parity violation Δ_{PV}E is of great interest because of its importance in the understanding of fundamental aspects of molecular dynamics and symmetries. One possible method for this is measuring rovibrational or rotational frequency shifts in the infrared or microwave spectra of enantiomers. For that reason we have measured and analysed the rotationally resolved infrared spectrum of CDBrClF as a prototype spectrum for a chiral molecule using three different techniques. The spectrum has been recorded at room temperature with the Zurich Bruker IFS spectrometer ZP 2001 and with the Bruker interferometer 2009 connected to the Swiss synchrotron using a resolution of 0.0007 cm^{-1}. In addition, the IR spectrum of CDBrClF has been measured at low temperature with our diode laser jet setup in the ν_5 region. The spectra of the two major isotopomers CD^{81}Br^{35}ClF and CD^{79}Br^{35}ClF have been analysed within the ν_5 (CCl-stretch), ν_4 (CF-stretch) and ν_3 (CDF-bend) regions. A detailed rovibrational analysis of these bands is presented. The role for possible experiments in the experimental detection of molecular parity violation shall be discussed. M. Quack, Fundamental symmetries and symmetry violations in Handbook of High Resolution Spectroscopy, Vol. 1(Eds. M. Quack and F. Merkt), Wiley, Chichester, New York 2011, 659-722, M. Quack, J. Stohner and M. Willeke, Annu. Rev. Phys. Chem. 2008, 59, 741, A. Bakasov, T.K. Ha, and M. Quack, J. Chem. Phys. 1998, 109, 7263, R. Berger and M. Quack, J. Chem. Phys, 2000, 112, 3148. M. Quack and J. Stohner, Phys. Rev. Lett. 2000, 84, 3807, M. Quack and J. Stohner. J. Chem. Phys., 2003, 119, 11228. S. Albert, K. Keppler Albert and M. Quack, High Resolution Fourier Transform Infrared Spectroscopy in Handbook of High Resolution Spectroscopy, Vol. 2 (Eds. M. Quack and F. Merkt), Wiley, Chichester, New York 2011, 965-1019, S. Albert and M. Quack, ChemPhysChem, 2007, 8, 1271-1281. S. Albert

  18. High-resolution infrared study of AsH 2D: The stretching fundamental bands ν1/ ν5 and ν2

    NASA Astrophysics Data System (ADS)

    Ulenikov, O. N.; Bekhtereva, E. S.; Yukhnik, Yu. B.; Vershinina, O. G.; Jerzembeck, W.; Bürger, H.

    2008-11-01

    High-resolution (ca. 0.0025 cm -1) Fourier transform infrared spectra of AsH 2D were recorded in the regions of the As-H and As-D stretching fundamental bands ν1/ ν5 and ν2, respectively, and analyzed. Strong resonance interactions between the bands ν1 and ν5, and also between the band ν2 and the bending overtone band 2 ν4 were established. From transitions observed in the ν1 and ν5 bands ground state rotational energies for larger values of rotational quantum numbers than previously available could be determined. Thereof improved ground state rotational parameters were derived. More than 3200 assigned transitions corresponding to 1059 upper state energy levels which were almost equally distributed over the three stretching states were fitted with an rms-deviation of 0.00031 cm -1, which corresponds to experimental precision.

  19. Non-destructive testing for combined stresses using high-resolution thermal infrared remote sensing and ''three-temperature model'': A case study on mangrove plant Kandelia obovata

    NASA Astrophysics Data System (ADS)

    Shen, X.; LI, R.; Li, Y. H.; Chai, M. W.; Qiu, G. Y.

    2015-12-01

    Mangrove forests are currently facing serious heavy metal pollution and eutrophication problems. Remote sensing of vegetation is a non-invasive methodology to monitor physiological characteristics of plants. The potential of high-resolution thermal infrared remote sensing and the three-temperature model (3T model) for monitoring the effects of combined stresses on mangrove plant Kandelia obovata was assessed. The experiment consists of four levels of CdCl2 stress (0, 1, 5 and 10 mg·L-1) in each of four NH4Cl stress levels: 0, 10, 50 and 100 mg·L-1, respectively. The non-destructive testing indices, including plant transpiration transfer coefficient (hat) and estimated instant transpiration rate, were calculated from thermal images and the 3T model. The photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) were also tested to validate the results of non-destructive testing. The results showed that: (1) The plant transpiration transfer coefficients (hat) were changed from 0.246 to 0.928 and the estimated instant transpiration rates ranged from 0.590 to 6.119 mmol H2O m-2s-1 among different combined stresses. With increasing stress, there were significant decreases for estimated instant transpiration rate and increases for hat (P < 0.05). (2) The photosynthetic characteristics, including Pn, Gs and Tr, were significantly decreased with the increasing combined stresses (P < 0.05). (3) The effects of Cd, N, and their interaction on non-destructive indices and photosynthetic parameters were significant (P < 0.05). (4) The hat was significantly negatively correlated with photosynthetic parameters and the T-3T was significantly positively correlated with photosynthetic parameters (P < 0.05). Therefore, the transpiration transfer coefficient (hat) andestimated instant transpiration rate detecting by infrared thermography device could be indicators to reflect the stress conditions. Based on high-resolution thermal infrared remote sensing, we

  20. High-resolution Infrared Spectroscopy of Starspots on RS CVn Stars

    NASA Astrophysics Data System (ADS)

    O'Neal, D.; Neff, J. E.; Saar, S. H.

    1997-12-01

    We present results from a study of magnetically active stars using the PHOENIX infrared spectrograph at KPNO. We constrain starspot coverages on RS CVn stars using high-resolution observations of two temperature-sensitive OH lines near 1.563mu m (6397 cm(-1) ). The use of these features holds two advantages over the TiO bands that we have used previously: the OH lines are visible in spots up to ~ 4500 K; and spots are much brighter, relative to the unspotted photosphere, in the infrared than in the visible. These properties also make these OH lines excellent candidates for the first Doppler imaging study to use high-resolution observations of infrared spectral features. Using the OH lines, we also search for previously unknown secondary stars in ``single-lined'' RS CVn binary systems, including II Pegasi (HD 224085).

  1. High-Resolution Scintimammography: A Pilot Study

    SciTech Connect

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper; Stan Majewski; Steven Goodman; Cahid Civelek

    2002-07-01

    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.

  2. Trade-off study for high resolution spectroscopy in the near infrared with ELT telescopes: seeing-limited vs. diffraction limited instruments

    NASA Astrophysics Data System (ADS)

    Sanna, Nicoletta; Oliva, E.; Massi, Fabrizio; Cresci, G.; Origlia, L.

    2014-08-01

    HIRES, a high resolution spectrometer, is one of the first five instruments foreseen in the ESO roadmap for the E-ELT. This spectrograph should ideally provide full spectral coverage from the UV limit to 2.5 microns, with a resolving power from R˜10,000 to R˜100,000. At visual/blue wavelengths, where the adaptive optics (AO) cannot provide an efficient light-concentration, HIRES will necessarily be a bulky, seeing-limited instrument. The fundamental question, which we address in this paper, is whether the same approach should be adopted in the near-infrared range, or HIRES should only be equipped with compact infrared module(s) with a much smaller aperture, taking advantage of an AO-correction. The main drawbacks of a seeing-limited instrument at all wavelengths are: i) Lower sensitivities at wavelengths dominated by thermal background (red part of the K-band). ii) Much higher volumes and costs for the IR spectrograph module(s). The main drawbacks of using smaller, AO-fed IR module(s) are: i) Performances rapidly degrading towards shorter wavelengths (especially J e Y bands). ii) Different spatial sampling of extended objects (the optical module see a much larger area on the sky). In this paper we perform a trade-off analysis and quantify the various effects that contribute to improve or deteriorate the signal to noise ratio. In particular, we evaluate the position of the cross-over wavelength at which AO-fed instruments starts to outperform seeing-limited instruments. This parameter is of paramount importance for the design of the part of HIRES covering the K-band.

  3. High resolution infrared synchrotron study of CH2D81Br: ground state constants and analysis of the ν5, ν6 and ν9 fundamentals

    NASA Astrophysics Data System (ADS)

    Baldacci, A.; Stoppa, P.; Visinoni, R.; Wugt Larsen, R.

    2012-09-01

    The high resolution infrared absorption spectrum of CH2D81Br has been recorded by Fourier transform spectroscopy in the range 550-1075 cm-1, with an unapodized resolution of 0.0025 cm-1, employing a synchrotron radiation source. This spectral region is characterized by the ν6 (593.872 cm-1), ν5 (768.710 cm-1) and ν9 (930.295 cm-1) fundamental bands. The ground state constants up to sextic centrifugal distortion terms have been obtained for the first time by ground-state combination differences from the three bands and subsequently employed for the evaluation of the excited state parameters. Watson's A-reduced Hamiltonian in the Ir representation has been used in the calculations. The ν 6 = 1 level is essentially free from perturbation whereas the ν 5 = 1 and ν 9 = 1 states are mutually interacting through a-type Coriolis coupling. Accurate spectroscopic parameters of the three excited vibrational states and a high-order coupling constant which takes into account the interaction between ν5 and ν9 have been determined.

  4. High-resolution spectrometer for atmospheric studies

    NASA Astrophysics Data System (ADS)

    Di Carlo, Piero; Barone, Massimiliano; D'Altorio, Alfonso; Dari-Salisburgo, Cesare; Pietropaolo, Ermanno

    2009-08-01

    A high-resolution spectrometer (0.0014 nm at 313 nm) has been developed at the University of L'Aquila (Italy) for atmospheric spectroscopic studies. The layout, optics and software for the instrument control are described. Measurements of the mercury low-pressure lamp lines from 200 to 600 nm show the high performances of the spectrometer. Laboratory measurements of OH and NO2 spectrums demonstrate that the system could be used for cross-section measurements and to detect these species in the atmosphere. The first atmospheric application of the system was the observation of direct solar and sky spectrums that shows a filling-in of the sky lines due to rotational Raman scattering. The measurements have been done with clear and cloudy sky and in both there was a strong dependence of the filling-in from the solar zenith angle whereas no dependence from the wavelengths was evident at low solar zenith angles (less than 85°).

  5. High resolution solar X-ray studies

    NASA Technical Reports Server (NTRS)

    Blake, R. L.

    1974-01-01

    Two high resolution solar X-ray payloads and their launches on Aerobee rockets with pointing system are described. The payloads included 5 to 25A X-ray spectrometers, multiaperture X-ray cameras, and command box attitude control inflight by means of a television image radioed to ground. Spatial resolution ranged from five arc minutes to ten arc seconds and spectral resolution ranged from 500 to 3000. Several laboratory tasks were completed in order to achieve the desired resolution. These included (1) development of techniques to align grid collimators, (2) studies of the spectrometric properties of crystals, (3) measurements of the absorption coefficients of various materials used in X-ray spectrometers, (4) evaluation of the performance of multiaperture cameras, and (5) development of facilities.

  6. Determination of atmospheric moisture structure and infrared cooling rates from high resolution MAMS radiance data

    NASA Technical Reports Server (NTRS)

    Menzel, W. Paul; Moeller, Christopher C.; Smith, William L.

    1991-01-01

    This program has applied Multispectral Atmospheric Mapping Sensor (MAMS) high resolution data to the problem of monitoring atmospheric quantities of moisture and radiative flux at small spatial scales. MAMS, with 100-m horizontal resolution in its four infrared channels, was developed to study small scale atmospheric moisture and surface thermal variability, especially as related to the development of clouds, precipitation, and severe storms. High-resolution Interferometer Sounder (HIS) data has been used to develop a high spectral resolution retrieval algorithm for producing vertical profiles of atmospheric temperature and moisture. The results of this program are summarized and a list of publications resulting from this contract is presented. Selected publications are attached as an appendix.

  7. An infrared high resolution silicon immersion grating spectrometer for airborne and space missions

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Zhao, Bo; Powell, Scott; Jiang, Peng; Uzakbaiuly, Berik; Tanner, David

    2014-08-01

    Broad-band infrared (IR) spectroscopy, especially at high spectral resolution, is a largely unexplored area for the far IR (FIR) and submm wavelength region due to the lack of proper grating technology to produce high resolution within the very constrained volume and weight required for space mission instruments. High resolution FIR spectroscopy is an essential tool to resolve many atomic and molecular lines to measure physical and chemical conditions and processes in the environments where galaxy, star and planets form. A silicon immersion grating (SIG), due to its over three times high dispersion over a traditional reflective grating, offers a compact and low cost design of new generation IR high resolution spectrographs for space missions. A prototype SIG high resolution spectrograph, called Florida IR Silicon immersion grating spectromeTer (FIRST), has been developed at UF and was commissioned at a 2 meter robotic telescope at Fairborn Observatory in Arizona. The SIG with 54.74 degree blaze angle, 16.1 l/mm groove density, and 50x86 mm2 grating area has produced R=50,000 in FIRST. The 1.4-1.8 um wavelength region is completely covered in a single exposure with a 2kx2k H2RG IR array. The on-sky performance meets the science requirements for ground-based high resolution spectroscopy. Further studies show that this kind of SIG spectrometer with an airborne 2m class telescope such as SOFIA can offer highly sensitive spectroscopy with R~20,000-30,000 at 20 to 55 microns. Details about the on-sky measurement performance of the FIRST prototype SIG spectrometer and its predicted performance with the SOFIA 2.4m telescope are introduced.

  8. A high-resolution Fourier-transform infrared spectrometer.

    NASA Technical Reports Server (NTRS)

    Johnson, H. L.; Forbes, F. F.; Thompson, R. I.; Steinmetz , D. L.; Harris, O.

    1973-01-01

    We have developed a Fourier-transform infrared spectrometer having a resolution of 0.5/cm over the range of wavelength from 1 to 5.5 microns. It has been used to observe the sun over this wavelength range from a Lear Jet flying at an altitude of 14 km, and to observe a number of stars from the ground, using the 229-cm telescope of the Steward Observatory and the 152-cm aluminum-mirror telescope at the Observatorio Astronomico Nacional in the Sierra de San Pedro Martir, Baja California, Mexico. The solar spectrum is given here, while the ground-based spectra are being published separately.

  9. Synthesis, High-Resolution Infrared Spectroscopy, and Vibrational Structure of Cubane, C8H8.

    PubMed

    Boudon, V; Lamy, M; Dugue-Boyé, F; Pirali, O; Gruet, S; D'Accolti, L; Fusco, C; Annese, C; Alikhani, M E

    2016-06-30

    Carbon-cage molecules have generated a considerable interest from both experimental and theoretical points of view. We recently performed a high-resolution study of adamantane (C10H16), the smallest hydrocarbon cage belonging to the diamandoid family ( Pirali , O. ; et al. J. Chem. Phys. 2012 , 136 , 024310 ). There exist another family of hydrocarbon cages with additional interesting chemical properties: the so-called platonic hydrocarbons that comprise dodecahedrane (C20H20) and cubane (C8H8). Both possess C-C bond angles that deviate from the tetrahedral angle (109.8°) of the sp(3) hybridized form of carbon. This generates a considerable strain in the molecule. We report a new wide-range high-resolution study of the infrared spectrum of cubane. The sample was synthesized in Bari upon decarboxylation of 1,4-cubanedicarboxylic acid thanks to the improved synthesis of literature. Several spectra have been recorded at the AILES beamline of the SOLEIL synchrotron facility. They cover the 600-3200 cm(-1) region. Besides the three infrared-active fundamentals (ν10, ν11, and ν12), we could record many combination bands, all of them displaying a well-resolved octahedral rotational structure. We present here a preliminary analysis of some of the recorded bands, performed thanks the SPVIEW and XTDS software, based on the tensorial formalism developed in the Dijon group. A comparison with ab initio calculations, allowing to identify some combination bands, is also presented. PMID:27267150

  10. Intercomparison of three microwave/infrared high resolution line-by-line radiative transfer codes

    NASA Astrophysics Data System (ADS)

    Schreier, F.; Garcia, S. Gimeno; Milz, M.; Kottayil, A.; Höpfner, M.; von Clarmann, T.; Stiller, G.

    2013-05-01

    An intercomparison of three line-by-line (lbl) codes developed independently for atmospheric sounding - ARTS, GARLIC, and KOPRA - has been performed for a thermal infrared nadir sounding application assuming a HIRS-like (High resolution Infrared Radiation Sounder) setup. Radiances for the HIRS infrared channels and a set of 42 atmospheric profiles from the "Garand dataset" have been computed. Results of this intercomparison and a discussion of reasons of the observed differences are presented.

  11. High-Resolution Infrared Spectroscopy of the Formic Acid Dimer

    NASA Astrophysics Data System (ADS)

    Birer, Özgür; Havenith, Martina

    2009-05-01

    The formic acid dimer (HCOOH)2 (FAD), an eight-membered ring with double hydrogen bonds, has been a model complex for physical chemists. The acidic protons of the complex interchange between the oxygens of different units in a concerted tunneling motion. This proton tunneling can be described by a symmetric double-well potential. The double well results in a splitting of each rovibrational level. The magnitude of the splitting depends sensitively on the shape of the potential and the reduced mass along the tunneling path. Experimentally, one can determine the proton transfer tunneling splittings in the ground and vibrationally excited states separately. It is possible to work out the splitting of the energy levels, assign the correct symmetry, and obtain the sum and the difference of the tunneling splitting in the ground and vibrationally excited states independently using isotopically labeled molecules. Conversely, an accurate prediction of tunneling splitting even for this small prototype system still remains a challenge for theoretical chemistry because of the splitting's great sensitivity to the shape and barrier height of the potential surface. The FAD therefore has evolved into a prototype system to study theoretical methods for a description of proton transfer.

  12. HIGH-RESOLUTION NEAR-INFRARED IMAGING OF SUBMILLIMETER GALAXIES

    SciTech Connect

    Aguirre, Paula; Baker, Andrew J.; Menanteau, Felipe; Lutz, Dieter; Tacconi, Linda J. E-mail: ajbaker@physics.rutgers.edu E-mail: lutz@mpe.mpg.de

    2013-05-10

    We present F110W ({approx}J) and F160W ({approx}H) observations of 10 submillimeter galaxies (SMGs) obtained with the Hubble Space Telescope's (HST's) NICMOS camera. Our targets have optical redshifts in the range 2.20 {<=} z {<=} 2.81 confirmed by millimeter CO or mid-IR spectroscopy, guaranteeing that the two bands sample the rest-frame optical with the Balmer break falling between them. Eight of ten are detected in both bands, while two are detected in F160W only. We study their F160W morphologies, applying a maximum-deblending detection algorithm to distinguish multiple- from single-component configurations, leading to reassessments for several objects. Based on our NICMOS imaging and/or previous dynamical evidence we identify five SMGs as multiple sources, which we interpret as merging systems. Additionally, we calculate morphological parameter asymmetry (A) and the Gini coefficient (G); thanks to our sample's limited redshift range we recover the trend that multiple-component, merger-like morphologies are reflected in higher asymmetries. We analyze the stellar populations of nine objects with F110W/F160W photometry, using archival HST optical data when available. For multiple systems, we are able to model the individual components that build up an SMG. With the available data we cannot discriminate among star formation histories, but we constrain stellar masses and mass ratios for merger-like SMG systems, obtaining a mean log (M{sub *}/M{sub Sun }) = 10.9 {+-} 0.2 for our full sample, with individual values log (M{sub *}/M{sub Sun }) {approx} 9.6-11.8. The morphologies and mass ratios of the least and most massive systems match the predictions of the major-merger and cold accretion SMG formation scenarios, respectively, suggesting that both channels may have a role in the population's origin.

  13. High-resolution infrared and theoretical study of four fundamental bands of gaseous 1,3,4-oxadiazole between 800 and 1600 cm -1

    NASA Astrophysics Data System (ADS)

    Hegelund, F.; Larsen, R. Wugt; Aitken, R. A.; Aitken, K. M.; Palmer, M. H.

    2007-12-01

    The Fourier transform infrared spectrum of gaseous 1,3,4-oxadiazole, C 2H 2N 2O, has been recorded in the 800-1600 cm -1 wavenumber region with a resolution around 0.0030 cm -1. The four fundamental bands ν9(B 1; 852.5 cm -1), ν14(B 2; 1078.5 cm -1), ν4(A 1; 1092.6 cm -1), and ν2(A 1; 1534.9 cm -1) are analyzed by the standard Watson model. Ground state rotational and quartic centrifugal distortion constants are obtained from a simultaneous fit of ground state combination differences from three of these bands and previous microwave transitions. Upper state spectroscopic constants are obtained for all four bands from single band fits using the Watson model. The ν4 and ν14 bands form a c-Coriolis interacting dyad, and the two bands are analyzed simultaneously by a model including first and second order Coriolis resonance using the ab initio predicted Coriolis coupling constant ς14,4c. An extended local resonance in ν2 is explained as higher order b-Coriolis type resonance with ν6 + ν10, which is further perturbed globally by the ν15 + ν10 level. A fit of selected low- J transitions to a triad model including ν2(A 1), ν6 + ν10(B 1), and ν15 + ν10(A 2) using an ab initio calculated Coriolis coupling constant ς15,6c is performed. The rotational constants, ground state quartic centrifugal distortion constants, anharmonic frequencies, and vibration-rotational constants ( α-constants) predicted by quantum chemical calculations using a cc-pVTZ and TZ2P basis with B3LYP methodology, are compared with the present experimental data, where there is generally good agreement. A complete set of anharmonic frequencies and α-constants for all fundamental levels of the molecule is given.

  14. High Resolution Infrared Studies of the v2, v4 Bands of 34S16O3, Including Both Intensity and Wavenumber Perturbations

    SciTech Connect

    Barber, Jeffrey B.; Masiello, Tony; Chrysostom, Engelene; Nibler, Joseph W.; Maki, Arthur; Weber, Alfons; Blake, Thomas A.; Sams, Robert L.

    2003-06-15

    The infrared spectrum of the v2, v4 bending mode region of 34S-substituted sulfur trioxide, 34S16O3, has been recorded at a resolution of 0.0025 cm-1. The v2 and v4 levels are coupled by a Coriolis interaction, yielding significant spectral shifts that have been successfully analyzed to obtain rovibrational constants for the ground state and both fundamentals. Comparisons are made with 32S16O3 parameters and the Bo rotational constant is found to be 0.348 556 04(28) cm-1, only very slightly larger than the corresponding value of 0.348 543 33(5) cm-1 for 32S16O3. Coriolis and l-type resonance interactions between the v2 and v4 levels produce frequency shifts and strong intensity perturbations in the spectra that are considered for both 34S16O3 and 32S16O3. The resulting analysis yields an average value of+0.62(8) for the dipole derivative ratio (?x/?Q4x) (?z/?Q2) and a positive sign for the product of this ratio with the?y2,4 Coriolis constant, for which experiment gives+0.5940(15) . Ab initio calculations indicate that the signs of?x/?Q4x and?z/?Q2 are both positive and hence?y2,4 is also positive, in agreement with earlier calculations. These signs indicate that the effective charge movement in the xz plane has the same sense of rotation as Q2, Q4x atom motion in this plane that produces a py vibrational angular momentum component, correlated motion that is confirmed by ab initio calculations.

  15. HIGH RESOLUTION PHOTOEMISSION STUDIES OF COMPLEX MATERIALS.

    SciTech Connect

    JOHNSON,P.D.

    1999-10-13

    Recent instrumentation developments in photoemission are providing new insights into the physics of complex materials. With increased energy and momentum resolution, it has become possible to examine in detail different contributions to the self-energy or inverse lifetime of the photohole created in the photoexcitation process, Employing momentum distribution and energy distribution curves, a detailed study of the optimally doped cuprate, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub g+{delta}}, shows that the material behaves like a non-Fermi liquid with no evidence for the quasi-particles characteristic of a Fermi liquid.

  16. High Resolution Chemical Study of ALH84001

    NASA Technical Reports Server (NTRS)

    Conrad, Pamela G.; Douglas, Susanne; Kuhlman, Kimberly R.

    2001-01-01

    We have studied the chemistry of a sample of the SNC meteorite ALH84001 using an environmental scanning electron microscope (ESEM) with an energy dispersive chemical analytical detector and a focused ion beam secondary ion mass spectrometer (FIB-SIMS). Here we present the chemical data, both spectra and images, from two techniques that do not require sample preparation with a conductive coating, thus eliminating the possibility of preparation-induced textural artifacts. The FIB-SIMS instrument includes a column optimized for SEM with a quadrupole type mass spectrometer. Its spatial and spectral resolution are 20 nm and 0.4 AMU, respectively. The spatial resolution of the ESEM for chemical analysis is about 100 nm. Limits of detection for both instruments are mass dependent. Both the ESEM and the FIB-SIMS instrument revealed contrasting surficial features; crumbled, weathered appearance of the matrix in some regions as well as a rather ubiquitous presence of euhedral halite crystals, often associated with cracks or holes in the surface of the rock. Other halogen elements present in the vicinity of the NaCl crystals include K and Br. In this report, elemental inventories are shown as mass spectra and as X-ray maps.

  17. High Resolution Infrared Radiation Sounder (HIRS) for the Nimbus F Spacecraft

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1975-01-01

    Flown on Nimbus F in June 1975, the high resolution infrared radiation sounder (HIRS) scans with a geographical resolution of 23KM and samples radiance in seventeen selected spectral channels from visible (.7 micron) to far IR (15 micron). Vertical temperature profiles and atmospheric moisture content can be inferred from the output. System operation and test results are described.

  18. High-Resolution Infrared Spectroscopy of Cubane, C_8H_8

    NASA Astrophysics Data System (ADS)

    Boudon, Vincent; Pirali, Olivier; Gruet, Sébastien; D'accolti, Lucia; Fusco, Caterina; Annese, Cosimo

    2014-06-01

    Carbon-cage molecules have generated a considerable interest from both experimental and theoretical point of views. We recently performed a high-resolution study of adamantane (C10H16), the smallest hydrocarbon cage belonging to the diamandoid family. There exist another family of hydrocarbon cages with additional interesting chemical properties: the so-called Platonic hydrocarbons that comprise dodecahedrane (C20H20) and cubane (C_8H_8). Both possess C-C bond angles that deviate from the tetrahedral angle (109.8°) of the sp^3 hybridized form of carbon. This generates a considerable strain in the molecule. Cubane itself has the highest density of all hydrocarbons (1.29 g/cm^3). This makes it able to store larges amounts of energy, although the molecule is fully stable. Up to now, only one high-resolution study of cubane has been performed on a few bands [2]. We report here a new wide-range high-resolution study of the infrared spectrum of cubane. The sample was synthesized in Bari upon decarboxylation of 1,4-cubanedicarboxylic acid thanks to the improved synthesis of literature [3]; its {}1H and 13C NMR, FTIR, and mass spectrometry agreed with reported data [4]. Several spectra have been recorded at the AILES beamline of the SOLEIL French synchrotron facility. They cover the 800 to 3100 cm-1 region. Besides the three infrared-active fundamentals (ν10, ν11 and ν12), we could record many combination bands, all of them displaying a well-resolved octahedral rotational structure. We present here a preliminary analysis of some of the recorded bands, performed thanks the SPVIEW and XTDS software, based on the tensrorial formalism developed in the Dijon group [5]. [1] O. Pirali, V. Boudon, J. Oomens, M. Vervloet, J. Chem. Phys., 136, 024310 (2012). [2] A. S. Pine, A. G. Maki, A. G. Robiette, B. J. Krohn, J. K. G. Watson, Th. Urbanek, J. Am. Chem. Soc., 106, 891-897 (1984). [3] P. E. Eaton, N. Nordari, J. Tsanaktsidis, P. S. Upadhyaya, Synthesis, 1, 501, (1995). [4] E

  19. Optimal Extraction of High-Resolution Spectra From the Infrared Spectrograph on Spitzer

    NASA Astrophysics Data System (ADS)

    Sloan, Gregory

    We propose to develop optimal extraction for the high-resolution modules on the Infrared Spectrograph (IRS) aboard the Spitzer Space Telescope, apply it to the full archive of IRS data, and post the results on a publicly available website. The currently used extraction algorithm sums everything in the slit, both source and backgrond emission. The new scheme will separate the source from its background, making it possible to analyze spectra taken in complex fields and generally improving the signal/noise quality of the data by a factor of nearly two. Most of the currently available high-resolution spectra require further reduction before they can be analyzed. Our improvements to the data will open the science contained in the thousands of high-resolution IRS observations to the full astronomy community. We will test our algorithm on high-resolution IRS spectra of young stellar objects in the Large Magellanic Cloud, which will ensure both an immediate science return, a polished extraction algorithm, and a reliable archive of optimally extracted spectra from all of the high-resolution IRS observations available to the astronomical community. The result will build on the momentum of CASSIS, the Cornell Atlas of of Spitzer/IRS Sources, which curently contains over 12,000 optimally extracted low-resolution spectra from the IRS. It will be a valuable addition to the legacy of the IRS and Spitzer.

  20. Physical parameters of T dwarfs derived from high-resolution near-infrared spectra

    NASA Astrophysics Data System (ADS)

    Del Burgo, C.; Martín, E. L.; Zapatero Osorio, M. R.; Hauschildt, P. H.

    2009-07-01

    Aims: We determine the effective temperature, surface gravity and projected rotational velocity of nine T dwarfs from the comparison of high-resolution near-infrared spectra and synthetic models, and estimate the mass and age of the objects from state-of-the-art models. Methods: We use the AMES-COND cloudless solar metallicity models provided by the PHOENIX code to match the spectra of nine T-type field dwarfs observed with the near-infrared high-resolution spectrograph NIRSPEC using ten echelle orders to cover part of the J band from 1.147 to 1.347 μm with a resolving power R˜20 000. The projected rotational velocity, effective temperature and surface gravity of the objects are determined based on the minimum root mean square of the differences between the modelled and observed relative fluxes. Estimates of the mass and age of the objects are obtained from effective temperature-surface gravity diagrams, where our results are compared with existing solar metallicity models. Results: The modelled spectra reproduce quite well the observed features for most of the T dwarfs, with effective temperatures in the range of 922-1009 K, and surface gravities between 104.1 and 104.9 cm s-2. Our results support the assumption of a dust free atmosphere for T dwarfs later than T5, where dust grains form and then gravitationally sediment into the low atmosphere. The modelled spectra do not accurately mimic some individual very strong lines like the K i doublet at 1.2436 and 1.2525 μm. Our modelled spectra does not match well the observed spectra of the two T dwarfs with earlier spectral types, namely SDSSp J125453.90-012247.4 (T2) and 2MASS J05591914-1404488 (T4.5), which is likely due to the presence of condensate clouds that are not incorporated in the models used here. By comparing our results and their uncertainties to evolutionary models, we estimate masses in the interval ≈5-75~MJ for T dwarfs later than T5, which are in good agreement with those found in the literature

  1. TOWARD UNDERSTANDING THE ENVIRONMENT OF R MONOCEROTIS FROM HIGH-RESOLUTION NEAR-INFRARED POLARIMETRIC OBSERVATIONS

    SciTech Connect

    Jolin, M.-A.; Bastien, P.; Denni, F.; Lafreniere, D.; Doyon, R.; Voyer, P.

    2010-10-01

    High-resolution H-band imaging polarimetric observations of R Mon obtained at the Canada-France-Hawaii telescope are presented. These data show a centrosymmetric pattern with elongated intensity contours mostly due to the presence of the companion R Mon B. We also consider published R-band data, which show an extended right-angle conical reflection nebula with an offset in the optical peak. We study the circumstellar environment of R Mon with a radiative transfer Monte Carlo code. The best-fitting model obtained succeeds in reproducing the characteristics seen in the data in the two bands simultaneously. The model indicates the presence of relatively small astronomical silicate grains ranging from 0.04 {mu}m to 0.15 {mu}m distributed into three structures: a small disk, an inner envelope, and an outer envelope. The cavity is modeled by a conical structure with a constant low density and we include a 'throat' to produce the offset of the optical peak. Our model predicts a polarization reversal by 90{sup 0} between the R and H bands. Observations show that position angles parallel, perpendicular, and also at other angles to the disk can occur over time in the near-infrared.

  2. A modularized infrared light matrix system with high resolution for measuring animal behaviors.

    PubMed

    Young, M S; Li, Y C; Lin, M T

    1993-03-01

    The current study provides a new modularized infrared light matrix system (about $200 cost) which is designed to measure the horizontal gross or fine movements, vertical motion, clockwise or anticlockwise turnings, freezing time, and total distance traveled in rats. The system records the sequences of animal's activity in a computer-aided system with a resolution of 0.2 s in time or 1.6 cm in space, and permanently stores all the resulting data in file. The behavioral apparatus was tested for its sensitivity and usability by amphetamine-injected rats. It was found that intraperitoneal administration of amphetamine (1.25-2.50 mg/kg), but not normal saline, produced a dose-related increase in either the horizontal gross or fine movements, vertical motion, clockwise or anticlockwise turnings, or total distance traveled. However, amphetamine injections produced a dose-related decrease in freezing time. Apparently, most of the amphetamine-induced responses obtained by other detecting apparatus can be reproduced easily by the present apparatus. The current detection system possesses the following advantages: a) high resolution, b) high expansion potential, and c) precise and simplified algorithms for behavioral parameter analysis. PMID:8451322

  3. Analysis of High-Resolution Infrared and CARS Spectra of ³⁴S¹⁸O₃

    SciTech Connect

    Masiello, Tony; Vulpanovici, Nicolae; Barber, Jeffrey B.; Chrysostom, Engelene; Nibler, Joseph W.; Maki, Arthur; Blake, Thomas A.; Sams, Robert L.; Weber, Alfons

    2004-09-11

    As part of a series of investigations of isotopic forms of sulfur trioxide, high-resolution infrared and coherent anti-Stokes Raman spectroscopies were used to study the fundamental modes and several hot bands of 32S18O3. Hot bands originating from the v2 and v4 bending mode levels have been found to couple strongly to the IR-inactive v1 symmetric stretching mode through indirect Coriolis interactions and Fermi resonances. Coriolis coupling effects are particularly noticeable in 32S18O3 due to the close proximity of the v2 and v4 fundamental vibrations, whose deperturbed wavenumber values are 486.488 13(4) and 504.284 77(4) cm-1. The uncertainties in the last digits are shown in parentheses and are two standard deviations. From the infrared transitions, accurate rovibrational constants are deduced for all of the mixed states, leading to deperturbed values for v1, and of 1004.68(2), 0.000 713(2), and 0.000 348(2) cm-1, respectively. The Be value is found to be 0.310 820(2) cm-1, yielding an equilibrium bond length re of 141.7333(4) pm that is, within experimental error, identical to the value of 141.7339(3) pm reported previously for 34S18O3. With this work, precise and accurate spectroscopic constants have now been determined in a systematic and consistent manner for all the fundamental vibrational modes of the sulfur trioxide D3h isotopomeric forms 32S16O3, 34S16O3, 32S18O3, and 34S18O3.

  4. CASSIS: The Cornell Atlas of Spitzer/Infrared Spectrograph Sources. II. High-resolution Observations

    NASA Astrophysics Data System (ADS)

    Lebouteiller, V.; Barry, D. J.; Goes, C.; Sloan, G. C.; Spoon, H. W. W.; Weedman, D. W.; Bernard-Salas, J.; Houck, J. R.

    2015-06-01

    The Infrared Spectrograph (IRS) on board the Spitzer Space Telescope observed about 15,000 objects during the cryogenic mission lifetime. Observations provided low-resolution (R=λ /{Δ }λ ≈ 60-127) spectra over ≈ 5-38 μm and high-resolution (R≈ 600) spectra over 10-37 μm. The Cornell Atlas of Spitzer/IRS Sources (CASSIS) was created to provide publishable quality spectra to the community. Low-resolution spectra have been available in CASSIS since 2011, and here we present the addition of the high-resolution spectra. The high-resolution observations represent approximately one-third of all staring observations performed with the IRS instrument. While low-resolution observations are adapted to faint objects and/or broad spectral features (e.g., dust continuum, molecular bands), high-resolution observations allow more accurate measurements of narrow features (e.g., ionic emission lines) as well as a better sampling of the spectral profile of various features. Given the narrow aperture of the two high-resolution modules, cosmic ray hits and spurious features usually plague the spectra. Our pipeline is designed to minimize these effects through various improvements. A super-sampled point-spread function was created in order to enable the optimal extraction in addition to the full aperture extraction. The pipeline selects the best extraction method based on the spatial extent of the object. For unresolved sources, the optimal extraction provides a significant improvement in signal-to-noise ratio over a full aperture extraction. We have developed several techniques for optimal extraction, including a differential method that eliminates low-level rogue pixels (even when no dedicated background observation was performed). The updated CASSIS repository now includes all the spectra ever taken by the IRS, with the exception of mapping observations.

  5. High Resolution Observations of Magnetic Elements in the Visible and the Infrared

    NASA Astrophysics Data System (ADS)

    Rimmele, T.; Lin, H.

    1997-05-01

    High resolution observations of magnetic elements in the visible and infrared. We report on multi-wavelength observations of plage regions obtained at the Vacuum Tower Telescope at NSO/Sac-Peak . The data set includes high resolution images in the G-band (0.43 mu ), the visible (0.69 mu ) continuum and the infrared (1.6 mu ) continuum. In addition, deep integration full Stokes vector measurements in the FeI 1.56 mu lines, as well as, Ca-K slit jaw images were obtained. G-band bright points, which are observed mostly in supergranular lanes, are also visible as bright points in the visible continuum. Although the infrared observations are limited in spatial resolution to about 0."4 (the diffraction limit of the VTT/SP), the data indicates that G-band bright points are also bright in the infrared (1.6 mu ). We also discuss and compare properties of magnetic knots and small pores. Magnetic knots, which recently also have been referred to as azimuth centers (Lites et al. 1994), by definition show no darkening in individual continuum images. However, in the time-averaged imaging data, and in particular in the infrared, azimuth centers appear as dark features, which are clearly distinguishable from the quiet sun background. In the infrared most azimuth centers are visible as dark features even in individual snapshots. Many azimuth centers as well as some small pores are surrounded by a highly structured bright ring, which becomes more apparent with increasing height of formation. Results of the polarization analysis in the FeI 1.56 mu lines, including measurements of weak fields, are presented as well.

  6. High-resolution infrared detector and its electronic unit for space application

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Montmessin, F.; Korablev, O.; Trokhimovsky, A.; Poiet, G.; Bel, J.-B.

    2015-05-01

    High-resolution infrared detector is used extensively for military and civilian purposes. Military applications include target acquisition, surveillance, night vision, and tracking. Civilian applications include, among others, scientific observations. For our space systems, we want to use the products developed by SOFRADIR Company. Thus, we have developed a space electronic unit that is used to control the high-resolution SCORPIO-MW infrared detector, which has a format of 640×512 pixels with 15μm×15μm pixel pitch. The detector within microelectronics based on infrared mid-wave (MW) complementary metal oxide semiconductors (CMOS) uses a micro-cooler in order to keep its temperature around 100 K. The standard wavelength range (3 to 5μm) is adapted to the 2.2 to 4.3μm wavelength range thanks to adaptation of the optical interface of the detector and with an antireflection coating. With our electronic system, we can acquire 3 images per second. To increase the signal to noise ratio, we have the opportunity to make a summation of 15 frames per image. Through this article, we will describe the space electronic system that we have developed in order to achieve space observations (e.g. Atmospheric Chemistry Suite package for ExoMars Trace Gas Orbiter).

  7. High resolution studies of atoms and small molecules

    SciTech Connect

    Bushaw, B.A.; Tonkyn, R.G.; Miller, R.J.

    1992-10-01

    High resolution, continuous wave lasers have been utilized successfully in studies of small molecules. Examples of two-photon excitation schemes and of multiple resonance excitation sequences will be discussed within the framework of the spectroscopy and dynamics of selected Rydberg states of nitric oxide. Initial results on the circular dichroism of angular distributions in photoelectron spectra of individual hyperfine states of cesium will also be discussed, but no data given.

  8. Step-stare technique for airborne high-resolution infrared imaging

    NASA Astrophysics Data System (ADS)

    Lavigne, Valerie; Chevrette, Paul C.; Ricard, Benot; Zaccarin, Andre

    2004-08-01

    The Infrared Eye project was developed at DRDC Valcartier to improve the efficiency of airborne search and rescue operations. A high performance opto-mechanical pointing system was developed to allow fast positioning of a narrow field of view with high resolution, used for search and detection, over a wide field of view of lower resolution that optimizes area coverage. This system also enables the use of a step-stare technique, which rapidly builds a large area coverage image mosaic by step-staring a narrow field camera and properly tiling the resulting images. The resulting image mosaic covers the wide field of the current Infrared Eye, but with the high resolution of the narrow field. For the desired application, the camera will be fixed to an airborne platform using a stabilized mount and image positioning in the mosaic will be calculated using flight data provided by an altimeter, a GPS and an inertial unit. This paper presents a model of the complete system, a dynamic step-stare strategy that generates the image mosaic, a flight image taking simulator for strategy testing and some results obtained with this simulator.

  9. Understanding AGB evolution in Galactic bulge stars from high-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Uttenthaler, S.; Blommaert, J. A. D. L.; Wood, P. R.; Lebzelter, T.; Aringer, B.; Schultheis, M.; Ryde, N.

    2015-08-01

    An analysis of high-resolution near-infrared spectra of a sample of 45 asymptotic giant branch (AGB) stars towards the Galactic bulge is presented. The sample consists of two subsamples, a larger one in the inner and intermediate bulge, and a smaller one in the outer bulge. The data are analysed with the help of hydrostatic model atmospheres and spectral synthesis. We derive the radial velocity of all stars, and the atmospheric chemical mix ([Fe/H], C/O, 12C/13C, Al, Si, Ti, and Y) where possible. Our ability to model the spectra is mainly limited by the (in)completeness of atomic and molecular line lists, at least for temperatures down to Teff ≈ 3100 K. We find that the subsample in the inner and intermediate bulge is quite homogeneous, with a slightly subsolar mean metallicity and only few stars with supersolar metallicity, in agreement with previous studies of non-variable M-type giants in the bulge. All sample stars are oxygen-rich, C/O < 1.0. The C/O and carbon isotopic ratios suggest that third dredge-up (3DUP) is absent among the sample stars, except for two stars in the outer bulge that are known to contain technetium. These stars are also more metal-poor than the stars in the intermediate or inner bulge. Current stellar masses are determined from linear pulsation models. The masses, metallicities and 3DUP behaviour are compared to AGB evolutionary models. We conclude that these models are partly in conflict with our observations. Furthermore, we conclude that the stars in the inner and intermediate bulge belong to a more metal-rich population that follows bar-like kinematics, whereas the stars in the outer bulge belong to the metal-poor, spheroidal bulge population.

  10. High Resolution Far Infrared Fourier Transform Spectroscopy of the NH_2 Radical.

    NASA Astrophysics Data System (ADS)

    Martin-Drumel, M. A.; Pirali, O.; Balcon, D.; Vervloet, M.

    2011-06-01

    First identified toward Sgr B2, the NH_2 radical has recently been detected in the interstellar medium by the HIFI instrument on board of Herschel. Despite the fact that this radical has not been detected in brown dwarfs and exoplanets yet, it is already included in physical and chemical models of those environments (temperature higher than 2000 K expected in several objects). Its detection in those objects will depend on the existence of a reliable high temperature and high resolution spectroscopic database on the NH_2 radical.The absorption spectrum of NH_2 has been recorded between 15 and 700 Cm-1 at the highest resolution available using the Bruker IFS125HR Fourier transform interferometer connected to the far infrared AILES beamline at SOLEIL (R=0.001 Cm-1). The radical was produced by an electrical discharge (DC) through a continuous flow of NH_3 and He using the White-type discharge cell developped on the beamline (optical path: 24m). Thanks to the brilliance of the synchrotron radiation, more than 700 pure rotational transitions of NH_2 have been identified with high N values (NMax=25) in its fundamental and first excited vibrational modes. By comparison to the previous FT spectroscopic study on that radical in the FIR spectral range, asymmetric splitting as well as fine and hyperfine structure have been resolved for several transitions. E. F. Van Dishoeck, D. J. Jansen, P. Schilke, T. G. Phillips The Astrophysical Journal 416, L83-L86 (1993) C. M. Persson, J. H. Black, J. Cernicharo et al. Astronomy and Astrophysics 521, L45 (2010) K. Lodders and B. Fegley, Jr Icarus 155, 393-424 (2002) I. Morino and K. Kawaguchi Journal of Molecular Spectroscopy 182, 428-438 (1997)

  11. A High Resolution Microprobe Study of EETA79001 Lithology C

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.; Cohen, B. A.; Donovan, J. J.; Vicenzi, E. P.

    2010-01-01

    Antarctic meteorite EETA79001 has received substantial attention for possibly containing a component of Martian soil in its impact glass (Lithology C) [1]. The composition of Martian soil can illuminate near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Impact melts in meteorites represent our most direct samples of Martian regolith. We present the initial findings from a high-resolution electron microprobe study of Lithology C from Martian meteorite EETA79001. As this study develops we aim to extract details of a potential soil composition and to examine Martian surface processes using elemental ratios and correlations.

  12. CRIRES-POP. A library of high resolution spectra in the near-infrared

    NASA Astrophysics Data System (ADS)

    Lebzelter, T.; Seifahrt, A.; Uttenthaler, S.; Ramsay, S.; Hartman, H.; Nieva, M.-F.; Przybilla, N.; Smette, A.; Wahlgren, G. M.; Wolff, B.; Hussain, G. A. J.; Käufl, H. U.; Seemann, U.

    2012-03-01

    Context. New instrumental capabilities and the wealth of astrophysical information extractable from the near-infrared wavelength region have led to a growing interest in the field of high resolution spectroscopy at 1-5 μm. Aims: We aim to provide a library of observed high-resolution and high signal-to-noise-ratio near-infrared spectra of stars of various types throughout the Hertzsprung-Russell diagram. This is needed for the exploration of spectral features in this wavelength range and for comparison of reference targets with observations and models. Methods: High quality spectra were obtained using the CRIRES near-infrared spectrograph at ESO's VLT covering the range from 0.97 μm to 5.3 μm at high spectral resolution. Accurate wavelength calibration and correction for telluric lines were performed by fitting synthetic transmission spectra for the Earth's atmosphere to each spectrum individually. Results: We describe the observational strategy and the current status and content of the library which includes 13 objects. The first examples of finally reduced spectra are presented. This publication will serve as a reference paper to introduce the library to the community and explore the extensive amount of material. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (084.D-0912, 085.D-0161, 086.D-0066, and 087.D-0195).The spectra presented in Figs. 3 to 15 are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/539/A109

  13. High Resolution Optical/Near-Infrared Imaging of Cool Ultraluminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Surace, J.; Sanders, D.; Evans, A.

    1999-01-01

    We present here new multiwavelength observations with 1.5 and 4x the spatial resolution of previous ground-based observations at optical and near-infrared wavelengths; despite being ground-based, they allow us to isolate interesting features such as the star-forming knots detected in the warm ULIG sample.

  14. Fusing electro-optic and infrared signals for high resolution night images

    NASA Astrophysics Data System (ADS)

    Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor

    2012-03-01

    Electro-optic (EO) images exhibit the properties of high resolution and low noise level, while it is a challenge to distinguish objects at night through infrared (IR) images, especially for objects with a similar temperature. Therefore, we will propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which will result in high resolution IR images and help us distinguish objects at night. Superimposing the detected edge of the EO image onto the corresponding transformed IR image is our principal idea for the proposed framework. In this framework, we will adopt the theoretical point spread function (PSF) proposed by Russell C. Hardie et al. for our IR image system, which is contributed by the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we will design an inverse filter in terms of the proposed PSF to conduct the IR image transformation. The framework requires four main steps, which are inverse filter-based IR image transformation, EO image edge detection, registration and superimposing of the obtained image pair. Simulation results will show the superimposed IR images.

  15. Mitigating atmospheric effects in high-resolution infra-red surveillance imagery with bispectral speckle imaging

    SciTech Connect

    Carrano, C J

    2006-05-30

    Obtaining a high-resolution image of an object or scene from a long distance away can be very problematic, even with the best optical system. This is because atmospheric blurring and distortion will limit the resolution and contrast of high-resolution imaging systems with substantial sized apertures over horizontal and slant paths. Much of the horizontal and slant-path surveillance imagery we have previously collected and successfully enhanced has been collected at visible wavelengths where atmospheric effects are the strongest. Imaging at longer wavelengths has the benefit of seeing through obscurants or even at night, but even though the atmospheric effects are noticeably reduced, they are nevertheless present, especially near the ground. This paper will describe our recent work on enhanced infrared (IR) surveillance using bispectral speckle imaging. Bispectral speckle imaging in this context is an image postprocessing algorithm that aims to solve the atmospheric blurring and distortion problem of imaging through horizontal or slant path turbulence. A review of the algorithm as well as descriptions of the IR camera and optical systems used in our data collections will be given. Examples of horizontal and slant-path imagery before and after speckle processing will also be presented to demonstrate the resolution improvement gained by the processing. Comparisons of IR imagery to visible wavelength imagery of the same target under the same conditions will be shown to demonstrate the tradeoffs of going to longer wavelengths.

  16. New High Resolution Spectroscopy Studies of Methyl Nitrite CH_3ONO

    NASA Astrophysics Data System (ADS)

    Sironneau, V.; Chelin, P.; Tchana, F. Kwabia; Kleiner, I.; Orphal, J.; Pirali, O.; Guillemin, J.-C.; Margules, L.; Motiyenko, R.; Cooke, S.; Youngblood, W. J.; Agnew, A.; Dewberry, C. T.

    2010-06-01

    Methyl nitrite CH3ONO is an important species in atmospheric chemistry involved in photochemical oxidation of volatile organic compounds. The cis conformer (more stable by about 298 cm-1) has a high internal rotation potential barrier for the methyl group (731 cm-1) whereas for the trans conformer the barrier to internal rotation is extremely low (10 cm-1), leading to large internal rotation splittings. Only one high resolution infrared study was performed prior to this study. For the first time, high-resolution spectrum of CH3ONO was recorded in the far infrared region (30-500 cm-1) using the synchrotron SOLEIL far-infrared beamline (AILES) and a Fourier transform (FT) spectrometer. Some 987 lines were assigned for the cis isomer up to J=65 and combined with 66 previously recorded microwave lines. In addition, high-resolution spectrum of the ν9 band of the cis isomer around 627.9 cm-1 was also recorded using the FT spectrometer at LISA. New microwave data is currently recorded to improve the knowledge of both the cis and trans ground state parameters. P. N. Gosh, A. Bauder and Hs. H. Gunthard, Chem. Phys. 53, 39-60 (1980) P. H. Turner, M. J. Corkill, and A. P. Cox, J. Chem. Phys. 83, 1473-1482 1979) L. M. Goss, C. D. Mortensen and T. A. Blake, J. Mol. Spectrosc., 225, 182-188 (2004)

  17. High resolution infrared ``vision'' of dynamic electron processes in semiconductor devices (abstract)

    NASA Astrophysics Data System (ADS)

    Malyutenko, V. K.

    2003-01-01

    Infrared cameras have been traditionally used in semiconductor industry for noncontact measurements of printed circuit boards (PCBs) local overheating. While an effective way to prevent defective PCB application in a "find-problems-before-your-customer-do" manner, this conventional static (25-50 frames/s) and small spatial resolution (>100 μm) approach is incapable, in principle, of explaining the physical reason for the PCB failure. What follows in this report is the demonstration of an IR camera based new approach in high-resolution dynamic study of electron processes responsible for single device performance. More specifically, time resolved two-dimensional visualization of current carrier drift and diffusion processes across the device base that happen in microsecond scale is of prime concern in the work. Thus, contrary to the conventional visualization-through-heating measurements, objective is mapping of electron processes in a device base through negative and positive luminescence (provoked by band-to-band electron transitions) and nonequilibrium thermal emission (provoked by intraband electron transitions) studies inside the region in which current flows. Therefore, the parameters of interest are not only a device thermal mass and thermal conductance, but also free carrier lifetime, surface recombination velocity, diffusion length, and contact properties. The micro-mapping system developed consists of reflective type IR microscope coaxially attached to calibrated scanning IR thermal imaging cameras (3-5 and 8-12 μm spectral ranges, HgCdTe cooled photodetectors, scene spatial resolution of some 20 μm, minimum time resolved interval of 10 μs, and temperature resolution of about 0.5 °C at 30 °C). Data acquisition and image processing (emissivity equalization, noise reduction by image averaging, and external triggering) are computer controlled. Parallel video channel equipped with a CCD camera permits easy positioning and focusing of <1×1 mm2 object

  18. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries

    PubMed Central

    Savelyev, Alexander; Sugumaran, Ramanathan

    2008-01-01

    The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixel- to-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds.

  19. A near-infrared high-resolution spectroscopic survey of Galactic bulge stars . - JASMINE prestudy -

    NASA Astrophysics Data System (ADS)

    Tsujimoto, T.; Kobayashi, N.; Ikeda, Y.; Kondo, S.; Yasui, C.; Minami, A.; Motohara, K.; Gouda, N.

    We are developing a new near-infrared high-resolution (R_max= 100,000) and high-sensitive spectrograph WINERED, which is specifically customized for short NIR bands at 0.9-1.35 mu m. WINERED employs the novelty in the optical system; a portable design with a near-infrared immersion grating and warm optics without any cold stops. The planned astrometric space mission JASMINE will provide the exact positions, distances, and proper motions of the Galactic bulge stars. The missing components, the radial velocity and chemical compositions, will be measured by WINERED with high accuracies (delta V< 10km/s). These combined data brought by JASMINE and WINERED will certainly reveal the nature of the Galactic bulge. We plan to complete this instrument with a single slit by the end of 2008 and hope to attach it to various 4-10 m telescopes as a PI-type instrument. In succession, we plan to develop a similar spectrograph but with a simultaneous multi-object spectroscopic capability for full-fledged bulge survey.

  20. Performance of the HIRS/2 instrument on TIROS-N. [High Resolution Infrared Radiation Sounder

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1980-01-01

    The High Resolution Infrared Radiation Sounder (HIRS/2) was developed and flown on the TIROS-N satellite as one means of obtaining atmospheric vertical profile information. The HIRS/2 receives visible and infrared spectrum radiation through a single telescope and selects 20 narrow radiation channels by means of a rotating filter wheel. A passive radiant cooler provides an operating temperature of 106.7 K for the HgCdTe and InSb detectors while the visible detector operates at instrument frame temperature. Low noise amplifiers and digital processing provide 13 bit data for spacecraft data multiplexing and transmission. The qualities of system performance that determine sounding capability are the dynamic range of data collection, the noise equivalent radiance of the system, the registration of the air columns sampled in each channel and the ability to upgrade the calibration of the instrument to maintain the performance standard throughout life. The basic features, operating characteristics and performance of the instrument in test are described. Early orbital information from the TIROS-N launched on October 13, 1978 is given and some observations on system quality are made.

  1. High resolution surface wave dispersion studies in China

    SciTech Connect

    Jones, L.E.; Patton, H.J.

    1997-11-01

    The Los Alamos National Laboratory regional calibration project is actively assembling a database of surface-wave dispersion information for China and surrounding areas. As part of the effort to characterize surface wave dispersion in China, we integrate prior long period results from the University of Colorado with our shorter period dispersion measurements in a high resolution survey of key monitoring areas. Focusing on western China initially, we employ broadband data recorded on CDSN stations, and regional events (m{sub b} 4 and above). Our approach is twofold, employing path specific calibration of key stations and well-recorded reference events, and tomographic inference to provide group velocity curves for regions with sparse station distribution and little seismic activity. Initial dispersion studies at Chinese stations WMQ and LZH show substantial azimuthal variation in dispersion, reinforcing the need for careful determination of source regions for path-specific calibration.

  2. High resolution spectroscopic study of Be10Lambda;

    NASA Astrophysics Data System (ADS)

    Gogami, T.; Chen, C.; Kawama, D.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Baturin, P.; Badui, R.; Boeglin, W.; Bono, J.; Brash, E.; Carter, P.; Chiba, A.; Christy, E.; Danagoulian, S.; de Leo, R.; Doi, D.; Elaasar, M.; Ent, R.; Fujii, Y.; Fujita, M.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Han, Y.; Hashimoto, O.; Horn, T.; Hu, B.; Hungerford, Ed. V.; Jones, M.; Kanda, H.; Kaneta, M.; Kato, S.; Kawai, M.; Khanal, H.; Kohl, M.; Liyanage, A.; Luo, W.; Maeda, K.; Margaryan, A.; Markowitz, P.; Maruta, T.; Matsumura, A.; Maxwell, V.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman, Okayasu, Y.; Petkovic, T.; Pochodzalla, J.; Qiu, X.; Reinhold, J.; Rodriguez, V. M.; Samanta, C.; Sawatzky, B.; Seva, T.; Shichijo, A.; Tadevosyan, V.; Tang, L.; Taniya, N.; Tsukada, K.; Veilleux, M.; Vulcan, W.; Wesselmann, F. R.; Wood, S. A.; Yamamoto, T.; Ya, L.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.; Hksjlab E05-115 Collaboration

    2016-03-01

    Spectroscopy of a Be10Lambda; hypernucleus was carried out at JLab Hall C using the (e ,e'K+) reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of ˜0.78 MeV (FWHM). The well-calibrated spectrometer system of the present experiment using p (e ,e'K+)Λ ,Σ0 reactions allowed us to determine the energy levels; and the binding energy of the ground-state peak (mixture of 1- and 2- states) was found to be BΛ=8.55 ±0.07 (stat . ) ±0.11 (sys . ) MeV. The result indicates that the ground-state energy is shallower than that of an emulsion study by about 0.5 MeV which provides valuable experimental information on the charge symmetry breaking effect in the Λ N interaction.

  3. High-Resolution Tunable Mid-Infrared Spectrometer Based on Difference-Frequency Generation in AgGaS2

    NASA Astrophysics Data System (ADS)

    Vitcu, Adrian; Ciurylo, Richard; Wehr, Roman; Drummond, James R.; May, A. David

    2004-09-01

    We have built a high-resolution and high-signal-to-noise ratio spectrometer for line shape studies of greenhouse gases in the mid infrared. The infrared radiation is generated in a AgGaS2 nonlinear crystal by the well-known difference-frequency method. The choice of crystal is explained, and a brief literature review is presented. With two tunable dye lasers and a type I, 90° phase-matching geometry, the infrared is continuously tunable from 7 to 9 µm when Rhodamine 6G and Sulforhodamine 640 dyes are used. The total infrared power exceeds 30 nW and is limited by both the damage threshold and thermal loading of the crystal. Phase-sensitive detection allows us to reach signal-to-noise ratios in excess of 3500:1 while maintaining an instrumental linewidth of 1.5 MHz. However, we show that the spectrometer may be used to measure the positions of spectral lines within +/-400 kHz.

  4. HIGH-RESOLUTION, DIFFERENTIAL, NEAR-INFRARED TRANSMISSION SPECTROSCOPY OF GJ 1214b

    SciTech Connect

    Crossfield, I. J. M.; Hansen, Brad M. S.; Barman, Travis

    2011-08-01

    The nearby star GJ 1214 hosts a planet intermediate in radius and mass between Earth and Neptune, resulting in some uncertainty as to its nature. We have observed this planet, GJ 1214b, during transit with the high-resolution, near-infrared NIRSPEC spectrograph on the Keck II telescope, in order to characterize the planet's atmosphere. By cross-correlating the spectral changes through transit with a suite of theoretical atmosphere models, we search for variations associated with absorption in the planet atmosphere. Our observations are sufficient to rule out tested model atmospheres with wavelength-dependent transit depth variations {approx}> 5 x 10{sup -4} over the wavelength range 2.1-2.4 {mu}m. Our sensitivity is limited by variable slit loss and telluric transmission effects. We find no positive signatures but successfully rule out a number of plausible atmospheric models, including the default assumption of a gaseous, H-dominated atmosphere in chemical equilibrium. Such an atmosphere can be made consistent if the absorption due to methane is reduced. Clouds can also render such an atmosphere consistent with our observations, but only if they lie higher in the atmosphere than indicated by recent optical and infrared measurements. When taken in concert with other observational constraints, our results support a model in which the atmosphere of GJ 1214b contains significant H and He, but where CH{sub 4} is depleted. If this depletion is the result of photochemical processes, it may also produce a haze that suppresses spectral features in the optical.

  5. A near-infrared high-resolution spectroscopic survey of bulge stars - JASMINE prestudy

    NASA Astrophysics Data System (ADS)

    Tsujimoto, T.; Gouda, N.; Kobayashi, N.; Yasui, C.; Kondo, S.; Minami, A.; Motohara, K.; Ikeda, Y.

    2006-08-01

    We are developing a new near-infrared high-resolution (R[max]= 100,000) and high-sensitive spectrograph WINERED, which is specifically customized for short NIR bands at 0.9-1.35 μm. WINERED employs the novelty in the optical system; a potable design and a warm optics without any cold stops. The planned astrometric space mission JASMINE will provide the exact positions, distances, and proper motions of the bulge stars. The missing components, the radial velocity and chemical compositions will be measured by WINERED with high accuracies (δV< 1km/s). These combined data brought by JASMINE and WINERED will certainly reveal the nature of the Galactic bulge. We plan to complete this instrument for the observation of a single object by the end of 2008 and hope to attach it to various 4-10m telescopes as a PI-type instrument. In succession, we will develop it to the design for a simultaneous multi-object spectroscopy.

  6. Multi-sensor fusion of infrared and electro-optic signals for high resolution night images.

    PubMed

    Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor

    2012-01-01

    Electro-optic (EO) image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR) image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF) proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1) inverse filter-based IR image transformation; (2) EO image edge detection; (3) registration; and (4) blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available. PMID:23112602

  7. Improved fusing infrared and electro-optic signals for high-resolution night images

    NASA Astrophysics Data System (ADS)

    Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor

    2012-06-01

    Electro-optic (EO) images exhibit the properties of high resolution and low noise level, while it is a challenge to distinguish objects with infrared (IR), especially for objects with similar temperatures. In earlier work, we proposed a novel framework for IR image enhancement based on the information (e.g., edge) from EO images. Our framework superimposed the detected edges of the EO image with the corresponding transformed IR image. Obviously, this framework resulted in better resolution IR images that help distinguish objects at night. For our IR image system, we used the theoretical point spread function (PSF) proposed by Russell C. Hardie et al., which is composed of the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we designed an inverse filter based on the proposed PSF to transform the IR image. In this paper, blending the detected edge of the EO image with the corresponding transformed IR image and the original IR image is the principal idea for improving the previous framework. This improved framework requires four main steps: (1) inverse filter-based IR image transformation, (2) image edge detection, (3) images registration, and (4) blending of the corresponding images. Simulation results show that blended IR images have better quality over the superimposed images that were generated under the previous framework. Based on the same steps, the simulation result shows a blended IR image of better quality when only the original IR image is available.

  8. Estimation of Venus wind velocities from high-resolution infrared spectra. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.

    1978-01-01

    Zonal velocity profiles in the Venus atmosphere above the clouds were estimated from measured asymmetries of HCl and HF infrared absorption lines in high-resolution Fourier interferometer spectra of the planet. These asymmetries are caused by both pressure-induced shifts in the positions of the hydrogen-halide lines perturbed by CO2 and Doppler shifts due to atmospheric motions. Particularly in the case of the HCl 2-0 band, the effects of the two types of line shifts can be easily isolated, making it possible to estimate a profile of average Venus equatorial zonal velocity as a function of pressure in the region roughly 60 to 70 km above the surface of the planet. The mean profiles obtained show strong vertical shear in the Venus zonal winds near the cloud-top level, and both the magnitude and direction of winds at all levels in this region appear to vary greatly with longitude relative to the sub-solar point.

  9. Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images

    PubMed Central

    Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor

    2012-01-01

    Electro-optic (EO) image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR) image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF) proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1) inverse filter-based IR image transformation; (2) EO image edge detection; (3) registration; and (4) blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available. PMID:23112602

  10. Exploring the transition to planetary nebula using high-resolution techniques at infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Wendolyn Blanco Cárdenas, Mónica

    2015-08-01

    A planetary nebula (PN) is the ionised envelope surrounding a white dwarf, the final fate of low- and intermediate-mass stars. This stellar phase is also important for its contribution to the interstellar medium, when PNe drive out s-process elements, molecules as well as different dust species, the building blocks of life. One of the most discussed topics in the PNe research field is their huge variety of morphologies and how the more complex forms are sculpted. The theoretical models predict the existence of collimating agents such as disks (steady and/or rotating), jets, and binary systems to sculpt these perplexing morphologies. However, the observations able to detect these shaping engines are often quite difficult to accomplish. Furthermore, the transition to PN hides the clues of these process, that is, when the AGB, post-AGBs, proto-PN, and the circumstellar environments of young PNe are compact and embeded in dust. In this work, we present our results implementing observational techniques and different analysis to inspect and resolve these structures by means of high-resolution imaging, high- and low-resolution spectroscopy at infrared wavelengths and using two VLT instruments: CRIRES (near-IR) and VISIR (mid-IR).

  11. New design studies for TRIUMF's ARIEL High Resolution Separator

    NASA Astrophysics Data System (ADS)

    Maloney, J. A.; Baartman, R.; Marchetto, M.

    2016-06-01

    As part of its new Advanced Rare IsotopE Laboratory (ARIEL), TRIUMF is designing a novel High Resolution Separator (HRS) (Maloney et al., 2015) to separate rare isotopes. The HRS has a 180° bend, separated into two 90° magnetic dipoles, bend radius 1.2 m, with an electrostatic multipole corrector between them. Second order correction comes mainly from the dipole edge curvatures, but is intended to be fine-tuned with a sextupole component and a small octupole component in the multipole. This combination is designed to achieve 1:20,000 resolution for a 3 μm (horizontal) and 6 μm (vertical) emittance. A design for the HRS dipole magnets achieves both radial and integral flatness goals of <10-5. A review of the optical design for the HRS is presented, including the study of limiting factors affecting separation, matching and aberration correction. Field simulations from the OPERA-3D (OPERA) [2] models of the dipole magnets are used in COSY Infinity (COSY) (Berz and Makino, 2005) [3] to find and optimize the transfer maps to 3rd order and study residual nonlinearities to 8th order.

  12. High resolution spectroscopic study of BeΛ10

    DOE PAGESBeta

    Gogami, T.; Chen, C.; Kawama, D.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; et al

    2016-03-10

    Spectroscopy of amore » $$^{10}_{\\Lambda}$$Be hypernucleus was carried out at JLab Hall C using the $$(e,e^{\\prime}K^{+})$$ reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of 0.78 MeV (FWHM). The well-calibrated spectrometer system of the present experiment using the $$p(e,e^{\\prime}K^{+})\\Lambda,\\Sigma^{0}$$ reactions allowed us to determine the energy levels, and the binding energy of the ground state peak (mixture of 1$$^{-}$$ and 2$$^{-}$$ states) was obtained to be B$$_{\\Lambda}$$=8.55$$\\pm$$0.07(stat.)$$\\pm$$0.11(sys.) MeV. Furthermore, the result indicates that the ground state energy is shallower than that of an emulsion study by about 0.5 MeV which provides valuable experimental information on charge symmetry breaking effect in the $$\\Lambda N$$ interaction.« less

  13. Water ingress detection in honeycomb sandwich panels by passive infrared thermography using a high-resolution thermal imaging camera

    NASA Astrophysics Data System (ADS)

    Ibarra-Castanedo, C.; Brault, L.; Marcotte, F.; Genest, M.; Farley, V.; Maldague, X.

    2012-06-01

    Water ingress in honeycomb structures is of great concern for the civil and military aerospace industries. Pressure and temperature variations during take-off and landing produce considerable stress on aircraft structures, promoting moisture ingress (by diffusion through fibers or by direct ingress through voids, cracks or unsealed joints) into the core. The presence of water (or other fluids such as kerosene, hydraulic fluid and de-icing agents) in any of its forms (gas vapor, liquid or ice) promotes corrosion, cell breakage, and induce composite layer delaminations and skin disbonds. In this study, testing specimens were produced from unserviceable parts from military aircraft. In order to simulate atmospheric conditions during landing, selected core areas were filled with measured quantities of water and then frozen in a cold chamber. The specimens were then removed from the chamber and monitored for over 20 minutes as they warm up using a cooled high-resolution infrared camera. Results have shown that detection and quantification of water ingress on honeycomb sandwich structures by passive infrared thermography is possible using a HD mid-wave infrared cameras for volumes of water as low as 0.2 ml and from a distance as far as 20 m from the target.

  14. Far Infrared High Resolution Synchrotron FTIR Spectroscopy of the Low Frequency Bending Modes of Dmso

    NASA Astrophysics Data System (ADS)

    Cuisset, Arnaud; Smirnova, Irina; Bocquet, Robin; Hindle, Francis; Mouret, Gael; Sadovskii, Dmitrii A.; Pirali, Olivier; Roy, Pascale

    2010-06-01

    In addition to its importance for industrial and environmental studies, the monitoring of DiMethylSulfOxyde (DMSO, (CH_3)_2SO) concentrations is of considerable interest for civil protection. The existing high resolution gas phase spectroscopic data of DMSO only concerned the pure rotational transitions in the ground state. In the Far-IR domain, the low-frequency rovibrational transitions have never previously resolved. The high brightness of the AILES beamline of the synchrotron SOLEIL and the instrumental sensitivity provided by the multipass cell allowed to measure for the first time these transitions. 1581 A-type and C-type transitions in the ν11 band have been assigned and 25 molecular constants of Watson's s-form hamiltonian developed to degree 8 have been fitted within the experimental accuracy. The use of then synchrotron radiation has opened many possibilities for new spectroscopic studies. Together with several other recent studies, our successful measurement and analysis of DMSO convincingly demonstrates the potential of the AILES beamline for high resolution FIR spectroscopy. Thus our present work is just at the beginning of unraveling the rovibrational structure of low frequency bending and torsional vibrational states of DMSO and yielding important comprehensive structural and spectroscopic information on this molecule. L. Margules, R. A. Motienko, E. A. Alekseev, J. Demaison, J. Molec. Spectrosc., 260(23),2009 V. Typke, M. Dakkouri, J. Molec. Struct., 599(177),2001 A. Cuisset, L. Nanobashvili, I. Smirnova, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy, D. Sadovskii, Chem. Phys. Lett., accepted for publication

  15. Integrated geophysical techniques for high resolution archaeological studies

    NASA Astrophysics Data System (ADS)

    Pipan, M.; Forte, E.; Finetti, I.

    2003-04-01

    We exploit the integration of linear multi-fold Ground Penetrating Radar (GPR) techniques, magnetic gradiometry, resistivity measurements and seismic tomography for the high-resolution non-invasive study of archaeological sites. Tests of the proposed integrated procedure are shown from archaeological sites in Italy and Egypt. We perform in particular the integrated subsurface reconstruction of an Iron Age tumulus, the study of high contrast ruins in alluvial sediments, the identification of low contrast remains in a desert area. Multi-fold GPR datasets are processed using pre-stack wave equation based imaging, which effectively tackles the rapid lateral velocity variations that normally characterize archaeological sites. Further image enhancement is achieved by means of proprietary Wavelet Transform based algorithms to compute the instantaneous attributes of the radar trace. The subsurface models are further verified by means of comparison with numerical simulations by FDTD modelling algorithms. Test excavations finally validate all the results. The multi-fold datasets allow image enhancement and characterization of material properties not attainable by conventional GPR methods. In particular, the comparison of conventional and multi-fold data from the desert area gives evidence of the image enhancement attainable in hostile soil conditions. Velocity fields obtained from pre-stack velocity analysis provides further information on material properties. The subsurface model is further constrained by the results of seismic, resistivity and magnetic surveys. Joint interpretation of high resolution multi-fold GPR data, after pre-stack processing and imaging, and seismic tomography allows to constrain the subsurface model and classify the targets of potential archaeological interest in the case of the Iron Age Tumulus. Details of the inner structure are evidenced by the integrated interpretation of seismic and GPR data. In particular, location of the burial chamber and of

  16. Analysis of several high-resolution infrared bands of spiropentane, C5H8

    SciTech Connect

    Maki, Arthur G.; Price, Joseph E.; Harzan, J.; Nibler, Joseph W.; Weber, Alfons; Masiello, Tony; Blake, Thomas A.

    2015-06-01

    he high-resolution infrared absorption spectrum of spiropentane (C5H8) has been measured from 200 to 4000 cm 1, and a detailed analysis is presented for eight bands in the region from 700 to 2200 cm 1. Two fundamental perpendicular bands were analyzed, m22 and m24 near 1050 and 780 cm 1, respectively, along with two fundamental parallel bands, m14 and m16 near 1540 and 990 cm1, respectively. Two other fundamentals, m17 and m23, are seen as intense overlapping bands near 880 cm*1 and are Coriolis-coupled, producing a complex mixture in which only P-branch transitions could be tentatively assigned for m17. In addition, three binary combination bands were fit at about 1570, 2082, and 2098 cm*1 which are assigned as either 2m24 or m5 + m16 in the first case, m4 + m22 in the second case, and 2m22 in the latter case. The two l-type resonance constants, q+ and q*, were determined for each of the two perpendicular fundamentals m22 and m24. Those two constants were also responsible for splittings observed in the K = 3 levels of m24. For the ground state the order of the split K = 2 B1/B2 levels has been reversed from that reported previously, based on the measurements and assignments for the m24 band. Rovibrational parameters deduced from the analyses are compared with those obtained from density functional Gaussian calculations at the anharmonic level.

  17. High-resolution infrared studies of the ʋ10, ʋ11, ʋ14, and ʋ18 levels of [1.1.1]propellane

    SciTech Connect

    Kirkpatrick, Robynne W.; Masiello, Tony; Martin, Matthew A.; Nibler, Joseph W.; Maki, Arthur; Weber, Alfons; Blake, Thomas A.

    2012-11-15

    This paper is a continuation of earlier work for which the high resolution infrared spectrum of [1.1.1]propellane was measured and its k and l structure resolved for the first time. Here we present results from an analysis of more than 16,000 transitions involving three fundamental bands ʋ10 (E′-A1'), ʋ11 (E′-A1'), ʋ14 (A2″-A1') and two difference bands (ʋ10- ʋ18) (E'-E″) and (ʋ1118) (E'-E"). Additional information about ʋ18 was also obtained from the difference band (ʋ1518)-ʋ18 (E'-E") and the binary combination band (ʋ1518) (E'-A1'). Through the use of the ground state constants reported in an earlier paper [1], rovibrational constants have been determined for all the vibrational states involved in these bands. The rovibrational parameters for the ʋ18(E″) state were obtained from combination-differences and showed no need to include interactions with other states. The ʋ10(E′) state analysis was also straight-forward, with only a weak Coriolis interaction with the levels of the ʋ14(A2″) state. The latter levels are much more affected by a strong Coriolis interaction with the levels of the nearby ʋ11(E′) state and also by a small but significant interaction with another state, presumably the ʋ16(E″) state, that is not directly observed. Gaussian calculations (B3LYP/cc-pVTZ) computed at the anharmonic level aided the analyses by providing initial values for many of the parameters. These theoretical results generally compare favorably with the final parameter values deduced from the spectral analyses. Finally, evidence was obtained for several level crossings between the rotational levels of the ʋ11 and ʋ14 states and, using a weak coupling term corresponding to a Δk = ±5, Δl = ∓1 matrix element, it was possible to find

  18. High resolution studies of complex solar active regions

    NASA Astrophysics Data System (ADS)

    Deng, Na

    Flares and Coronal Mass Ejections (CMEs) are energetic events, which can even impact the near-Earth environment and are the principal source of space weather. Most of them originate in solar active regions. The most violent events are produced in sunspots with a complex magnetic field topology. Studying their morphology and dynamics is helpful in understanding the energy accumulation and release mechanisms for flares and CMEs, which are intriguing problems in solar physics. The study of complex active regions is based on high-resolution observations from space missions and new instruments at the Big Bear Solar Observatory (BBSO). Adaptive optics (AO) in combination with image restoration techniques (speckle masking imaging) can achieve improved image quality and a spatial resolution (about 100 km on the solar surface) close to the diffraction limit of BBSO's 65 cm vacuum telescope. Dopplergrams obtained with a two-dimensional imaging spectrometer combined with horizontal flow maps derived with Local Correlation Tracking (LCT) provide precise measurements of the three-dimensional velocity field in sunspots. Magnetic field measurements from ground- and space-based instruments complement these data. At the outset of this study, the evolution and morphology of a typical round sunspot are described in some detail. The sunspot was followed from disk center to the limb, thus providing some insight into the geometry of the magnetic flux system. Having established a benchmark for a stable sunspot, the attention is turned to changes of the sunspot structure associated with flares and CMEs. Rapid penumbral decay and the strengthening of sunspot umbrae are manifestations of photospheric magnetic field changes after a flare. These sudden intensity changes are interpreted as a result of magnetic reconnection during the flare, which causes the magnetic field lines to be turned from more inclined to more vertical. Strong photospheric shear flows along the flaring magnetic

  19. High-resolution studies of atmospheric IR emission spectra

    NASA Technical Reports Server (NTRS)

    Murcray, F. J.; Murcray, F. H.; Goldman, A.; Blatherwick, R. D.; Murcray, D. G.

    1991-01-01

    Atmospheric emission spectra obtained with two different spectrometer systems are presented. The first system (the BOMEM Michelson interferometer) is designed for emission work. Spectra were obtained under adverse conditions in the Antarctic, and are still of good absolute accuracy. The second system (a modified Bruker Instruments IFS120 very high spectral resolution interferometer) demonstrates the sensitivity that can be achieved even at higher spectral resolution. This system shows that mid-IR atmospheric emission spectra can be obtained with a good SNR in a reasonable length of time at a relatively high resolution. A properly designed high resolution system should achieve high accuracy, sensitivity, and resolution, thereby permitting measurements of many atmospheric constituents when solar spectra cannot be obtained.

  20. A Multiproxy High Resolution Paleoclimate Study of Lake Mirabad Iran

    NASA Astrophysics Data System (ADS)

    Lambert, N.; Stevens, L.; Holk, G. J.

    2010-12-01

    A Multiproxy High Resolution Paleoclimate Study of Lake Mirabad Iran Nolen Lambert, Lora Stevens, Gregory Holk, The upper 200 cm of a 7.2 m long sediment core from Lake Mirabad, Iran, was examined for oxygen and carbon isotopes in the lacustrine sediment, trace-element concentrations (Sr and Mg) in ostrocode carapaces and carbon/nitrogen ratios in order to create a climate record for the last 1500 years. The chronology (AD 566-1943) was established using AMS dating. From AD 566 through AD 1418 atmospheric vapor exchange or seasonality of precipitation was the primary forcing mechanism on the isotopic record with evaporative enrichment acting as a secondary mechanism. Temperatures and effective moisture increased during the Medieval Climate Anomaly accompanied by a larger role of evaporative enrichment as a forcing mechanism. The Spörer Minimum at the beginning of the Little Ice Age (LIA) brought lower temperatures and a decrease in effective moisture. Regional climate during the LIA resembled climatic conditions during the last glacial maximum. The lake was low and experienced an extended period of seasonal peripheral desiccation. The Maunder Minimum at the end of the LIA was accompanied by shifts in the seasonality of precipitation which became the primary forcing mechanism into the 19th century. Evaporative enrichment became the dominant forcing mechanism from AD 1850 onward as lake levels increased. Isotopic values were compared to values from Nar Gölü, Turkey (Jones et al., 2006). Unlike Lake Mirabad, the forcing mechanism at Nar Gölü was consistent with evaporative enrichment. This difference may derive from Mirabad’s more southerly location or it may suggest Nar Gölü was hydrologically unstable whereas Mirabad was stable. Trace element concentrations (Sr and Mg), used as a proxy for the amount of precipitation and water temperature, were consistent with the Dead Sea stands (Enzel et al., 2003). Finally, both the isotopic record and trace element

  1. High-Resolution Infrared Spectrum of the ν_3+ν_8 Combination Band of Jet-Cooled Propyne

    NASA Astrophysics Data System (ADS)

    Zhao, Dongfeng; Linnartz, Harold

    2014-06-01

    Propyne (CH3-C≡CH) is an important molecule in astrophysics and planetary atmospheres, and an important constituent of fuels. Spectroscopic investigation of propyne is also of fundamental interest in intramolecular vibrational redistribution (IVR) dynamics of hydrocarbons. Although extensive spectroscopic studies on this simple organic molecule have been performed, the ν_3+ν_8 band has not been reported before. In this presentation, the high-resolution infrared spectrum of the ν_3+ν_8 combination band of propyne is presented. Continuous-wave cavity ring-down spectroscopy is used to measure this weak infrared band in the 3175 cm-1 region using a supersonic free jet. The rotational analysis of the experimental spectrum results in accurate spectroscopic parameters for the ν_3+ν_8 combination vibrational state. Severe perturbations are found for K = 3 and 4 rotational levels, and are likely due to near-resonant or non-resonant interactions between the ν_3+ν_8 and other vibrational states. Moreover, three parallel-transition type subbands are observed and their analysis is presented as well. D. Zhao, H. Linnartz, Chem. Phys. Lett. (2014), DOI: 10.1016/j.cplett.2014.02.016.

  2. High-resolution satellite imagery for mesoscale meteorological studies

    NASA Technical Reports Server (NTRS)

    Johnson, David B.; Flament, Pierre; Bernstein, Robert L.

    1994-01-01

    In this article high-resolution satellite imagery from a variety of meteorological and environmental satellites is compared. Digital datasets from Geostationary Operational Environmental Satellite (GOES), National Oceanic and Atmospheric Administration (NOAA), Defense Meteorological Satellite Program (DMSP), Landsat, and Satellite Pour l'Observation de la Terre (SPOT) satellites were archived as part of the 1990 Hawaiian Rainband Project (HaRP) and form the basis of the comparisons. During HaRP, GOES geostationary satellite coverage was marginal, so the main emphasis is on the polar-orbiting satellites.

  3. High Resolution Spectroscopy in the Non-thermal Infrared: Use of an Existing Coude System

    NASA Astrophysics Data System (ADS)

    Basri, Gibor; Marcy, Geoffrey W.

    1993-05-01

    We describe a recent effort to use a NICMOS 3 chip as the detector on the 160" coude spectrograph camera at Lick Observatory. This new instrument (IRCS) has a useful spectral range of 1-2mu with spectral coverage in one exposure of about 25 Angstroms, and resolutions up to 75000. We have successfully obtained astronomical observations with essentially no modification of the (uncooled) spectrograph, using an existing grating blazed at 1.22mu , and a dewar without optics (but containing a filter) easily mounted at the position of the old photographic plates. The throughput of the system is very high. Its sensitivity is primarily limited by the background from the warm spectrograph. Using filters with 0.1mu bandwidth, the expected background is negligible below 1.5mu , but limits exposures to one minute near 2mu . With an optimized dewar, one can remain photon (rather than background) limited down to 10th magnitude even at 2mu . Our current system (using a test dewar and engineering grade chip) has been tested at 1.6mu . We have operated with and without an image slicer. We show spectra and discuss the current successes and problems. Our first application is to study the Zeeman--sensitive line at 1.56mu at high resolution. We expect to be able to achieve S/N of 200:1 in 10 minutes on 6th magnitude stars now, and eventually 100:1 in one hour on 10th magnitude stars using the 3-m telescope. This opens the possibility of measuring magnetic fields for large numbers of RS CVN and dM(e) stars (in addition to many G,K dwarfs), and even perhaps a few pre-main sequence stars. There is a lot of potential for science in the 1-2mu range at high resolution, which cannot be done as easily with any other type of instrument. This includes: (1) molecular lines in giants and winds, (2) lines from the ISM for abundances and kinematics, (3) detailed atmospheric analysis of embedded stars (and disks?).

  4. High Resolution Infrared Spectra of Jet-Cooled Formamide and Formamide Dimer in the C=O Stretch Region

    NASA Astrophysics Data System (ADS)

    Sunahori, Fumie X.; Xu, Yunjie

    2012-06-01

    Formamide (FA) is the simplest molecule with a peptide bond. It has attracted considerable theoretical and spectroscopic attention as a model peptide. The structure of the FA monomer in the ground state was determined to be planar by rotational spectral analyses of several isotopic species. Its high resolution FIR spectrum and IR spectrum in the symmetric N-H stretching region were reported previously. Both matrix isolation and jet-cooled FTIR studies of FA dimer reported spectral evidence for the cyclic C2h symmetric FA dimer bonded by two NH---O bonds, which was predicted to be the most stable structure by ab initio calculations. No high-resolution spectrum of FA dimer, however, has been recorded so far. Our aim in the present study is to study high-resolution IR absorption spectra of both FA and its dimer in the C=O stretching region in order to gain information about the peptide-peptide interactions. IR spectrum of the FA monomer was measured using a rapid scan infrared laser spectrometer equipped with an astigmatic multipass cell. While the monomer band centers at 1754 cm-1, the lines most likely belonging to FA dimer were observed around 1740 cm-1. The spectral assignment of the C=O stretching band of the monomer was made by the means of ground state combination differences. Further data collection and spectral analysis of FA dimer are currently underway. The results will be updated at the conference. E. Hirota, R. Sugisaki, C. J. Nielsen, G. O. Sørensen, J. Mol. Spectrosc. 49, 251, 1974. C. L. Brummel, M. Shen, K. B. Hewett, L. A. Philips, J. Opt. Soc. Am. B, 11, 176, 1994 D. McNaughton, C. J. Evans, S. Lane, C. J. Nielsen, J. Mol. Spectrosc., 193, 104, 1999. A. Mardyukov, E. Sanchez-Garcia, P. Rodziewicz, N. L. Doltsinis, W. Sander, J. Phys. Chem. A., 111, 10552, 2007. M. Albrecht, C. A. Rice, M. A. Suhm, J. Phys. Chem. A., 112, 7530, 2008.

  5. High-resolution infrared spectrum of triacetylene: The ν5 state revisited and new vibrational states

    NASA Astrophysics Data System (ADS)

    Doney, K. D.; Zhao, D.; Linnartz, H.

    2015-10-01

    New data are presented that follow from a high-resolution survey, from 3302 to 3352 cm-1, through expanding acetylene plasma, and covering the Csbnd H asymmetric (ν5) fundamental band of triacetylene (HC6H). Absorption signals are recorded using continuous wave cavity ring-down spectroscopy (cw-CRDS). A detailed analysis of the resulting spectra allows revisiting the molecular parameters of the ν5 fundamental band in terms of interactions with a perturbing state, which is observed for the first time. Moreover, four fully resolved hot bands (501 1011, 501 1111, 501 1311, and 101 801 1110), with band origins at 3328.5829(2), 3328.9994(2), 3328.2137(2) and 3310.8104(2) cm-1, respectively, are reported for the first time. These involve low lying bending vibrations that have been studied previously, which guarantees unambiguous identifications. Combining available data allows to derive accurate molecular parameters, both for the ground state as well as the excited states involved in the bands.

  6. Phase closure retrieval in an infrared-to-visible upconversion interferometer for high resolution astronomical imaging.

    PubMed

    Ceus, Damien; Tonello, Alessandro; Grossard, Ludovic; Delage, Laurent; Reynaud, François; Herrmann, Harald; Sohler, Wolfgang

    2011-04-25

    This paper demonstrates the use of a nonlinear upconversion process to observe an infrared source through a telescope array detecting the interferometric signal in the visible domain. We experimentally demonstrate the possibility to retrieve information on the phase of the object spectrum of an infrared source by using a three-arm upconversion interferometer. We focus our study on the acquisition of phase information of the complex visibility by means of the phase closure technique. In our experimental demonstration, a laboratory binary star with an adjustable photometric ratio is used as a test source. A real time comparison between a standard three-arm interferometer and our new concept using upconversion by sum-frequency generation demonstrates the preservation of phase information which is essential for image reconstruction. PMID:21643113

  7. Application of High-Resolution Thermal Infrared Remote Sensing and GIS to Assess the Urban Heat Island Effect

    NASA Technical Reports Server (NTRS)

    Lo, C. P.; Quattrochi, D. A.; Luvall, J. C.

    1997-01-01

    Day and night airborne thermal infrared image data at 5 m spatial resolution acquired with the 15-channel (0.45 micron - 12.2 micron) Advanced Thermal and Land Applications Sensor (ATLAS) over Alabama, Huntsville on 7 September, 1994 were used to study changes in the thermal signatures of urban land cover types between day and night. Thermal channel number 13 (9.6 micron - 10.2 micron) data with the best noise-equivalent temperature change (NEAT) of 0.25 C after atmospheric corrections and temperature calibration were selected for use in this analysis. This research also examined the relation between land cover irradiance and vegetation amount, using the Normalized Difference Vegetation Index (NDVI), obtained by ratioing the difference and the sum of the red (channel number 3: 0.60-0.63 micron) and reflected infrared (channel number 6: 0.76-0.90 micron) ATLAS data. Based on the mean radiance values, standard deviations, and NDVI extracted from 351 pairs of polygons of day and night channel number 13 images for the city of Huntsville, a spatial model of warming and cooling characteristics of commercial, residential, agricultural, vegetation, and water features was developed using a GIS approach. There is a strong negative correlation between NDVI and irradiance of residential, agricultural, and vacant/transitional land cover types, indicating that the irradiance of a land cover type is greatly influenced by the amount of vegetation present. The predominance of forests, agricultural, and residential uses associated with varying degrees of tree cover showed great contrasts with commercial and services land cover types in the center of the city, and favors the development of urban heat islands. The high-resolution thermal infrared images match the complexity of the urban environment, and are capable of characterizing accurately the urban land cover types for the spatial modeling of the urban heat island effect using a GIS approach.

  8. Study of CME Properties Using High Resolution Data

    NASA Astrophysics Data System (ADS)

    Egorov, Ya. I.; Fainshtein, V. G.

    The joint use of high-resolution data from SDO and PROBA2 satellites and LASCO/SOHO coronographs enabled us to examine early stages of initiation and propagation of six limb CMEs registered in June 2010 - June 2011. For five events under consideration, the CME initiation is marked by filament (prominence) eruption or by a loop-like structure having another nature. Subsequently, several loop-like structures having higher brightness and following each other at different velocities appear in the region of the CME initiation. The CME frontal structure is formed by these loop-like structures. The CME kinematics and such CME characteristics as angular size and longitudinal to latitudinal size ratio was found for considered all events. We have drawn a conclusion about the possible existence of two CME types dependent on the velocity profile.

  9. High Resolution Infrared Radiative Transfer of Earth-like planets Influenced by Multiple Clouds

    NASA Astrophysics Data System (ADS)

    Vasquez, Mayte; Schreier, Franz; Trautmann, Thomas; Rauer, Heike; Kitzmann, Daniel; Patzer, A. B. C.; Gimeno Garc&ía, Sebastián.

    2012-07-01

    Background:, The emission spectrum of the modern Earth around different types of stars has been modeled in order to study the effects of different incident stellar radiation in the atmosphere. The Earth-like planetary spectra have also been studied in the presence of clouds. Clouds have an impact on the radiative transfer in planetary atmospheres by changing the spectra (intensities and shapes) due to extinction events (scattering and absorption). Thereby, they can influence the atmospheric and surface temperatures and can also generate false-negative biomarker signatures. Methods:, The spectra of Earth-like have been modeled using a line-by-line radiative transfer model coupled with a multiple scattering solver. The atmospheres of these planets were calculated using a convective climate model taking as reference the atmospheric profile from the modern Earth. All main molecular bands found in the thermal region (H2O, CO2, N2O, CH4 and O3) were analyzed at high resolution in order to assess their detectability in the presence of low (water) and high-level (ice) clouds for different percent coverage. Results:, The resulting calculations indicate that the modern Earth spectrum for a cloud-free atmosphere changes in the presence of different stellar types. The pressure-temperature profile and the molecular concentrations of the Earth were altered. In the presence of clouds, the atmospheric temperatures were modified as well. The water cloud cooled down the surface and tropospheric temperatures of the planets while the ice cloud warmed them up. The presence of clouds also decreased the depth of the absorption bands and modified their shapes, consequently producing a false-negative detection of some of the bands. Keywords:, radiation, planets, atmospheres, clouds, aerosols, molecules, scattering, habitability, modeling.

  10. River pollution remediation monitored by optical and infrared high-resolution satellite images.

    PubMed

    Trivero, Paolo; Borasi, Maria; Biamino, Walter; Cavagnero, Marco; Rinaudo, Caterina; Bonansea, Matias; Lanfri, Sofia

    2013-09-01

    The Bormida River Basin, located in the northwestern region of Italy, has been strongly contaminated by the ACNA chemical factory. This factory was in operation from 1892 to 1998, and contamination from the factory has had deleterious consequences on the water quality, agriculture, natural ecosystems and human health. Attempts have been made to remediate the site. The aims of this study were to use high-resolution satellite images combined with a classical remote sensing methodology to monitor vegetation conditions along the Bormida River, both upstream and downstream of the ACNA chemical factory site, and to compare the results obtained at different times before and after the remediation process. The trends of the Normalised Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) along the riverbanks are used to assess the effect of water pollution on vegetation. NDVI and EVI values show that the contamination produced by the ACNA factory had less severe effects in the year 2007, when most of the remediation activities were concluded, than in 2006 and 2003. In 2007, the contamination effects were noticeable up to 6 km downstream of the factory, whereas in 2003 and 2006 the influence range was up to about 12 km downstream of the factory. The results of this study show the effectiveness of remediation activities that have been taking place in this area. In addition, the comparison between NDVI and EVI shows that the EVI is more suitable to characterise the vegetation health and can be considered an additional tool to assess vegetation health and to monitor restoration activities. PMID:23456221

  11. High resolution spectroscopy of six SOCl2 isotopologues from the microwave to the far-infrared

    NASA Astrophysics Data System (ADS)

    Martin-Drumel, M. A.; Roucou, A.; Brown, G. G.; Thorwirth, S.; Pirali, O.; Mouret, G.; Hindle, F.; McCarthy, M. C.; Cuisset, A.

    2016-02-01

    Despite its potential role as an atmospheric pollutant, thionyl chloride, SOCl2, remains poorly characterized in the gas phase. In this study, the pure rotational and ro-vibrational spectra of six isotopologues of this molecule, all detected in natural abundance, have been extensively studied from the cm-wave band to the far-infrared region by means of three complementary techniques: chirped-pulse Fourier transform microwave spectroscopy, sub-millimeter-wave spectroscopy using frequency multiplier chain, and synchrotron-based far-infrared spectroscopy. Owing to the complex line pattern which results from two nuclei with non-zero spins, new, high-level quantum-chemical calculations of the hyperfine structure played a crucial role in the spectroscopic analysis. From the combined experimental and theoretical work, an accurate semi-experimental equilibrium structure (reSE) of SOCl2 has been derived. With the present data, spectroscopy-based methods can now be applied with confidence to detect and monitor this species, either by remote sensing or in situ.

  12. High-Resolution Multiple Sulfur Isotope Studies of Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Mojzsis, S. J.

    2000-01-01

    Sensitive, high resolution measurements of S-32, S-31, and S-34 in individual pyrite grains in martian meteorite ALH84001 by an in situ ion microprobe multi-collection technique reveal mass-independent anomalies in Delta.S-33 (Delta.S-33 = delta.S-33 - 0.516delta.S-34) in addition to the lowest 634S found in an extraterrestrial material. Low delta.S-34 values in two pyrite grains intimately associated with carbonate in ALH84001 can be explained by the sensitivity of sulfur to fractionations in the geologic environment. Anomalies in Delta.S-33 recorded in ALH84001 pyrites probably formed by gas-phase reactions in the early martian atmosphere (>4 Ga). The discovery of clearly resolvable Delta-S33 anomalies in 2 of 12 ALH84001 pyrites analyzed in their petrographic context in thin section, is considered strong evidence for crust-atmosphere exchange and the global cycling of volatile sulfur species on early Mars. These results corroborate previous measurements by Farquhar and co-workers who used a different technique that measures that bulk Delta.S-33 values of martian meteorites. These independent techniques, and their results, suggest that sulfur affected by mass-independent fractionation is common on Mars.

  13. High resolution deuterium NMR studies of bacterial metabolism

    SciTech Connect

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  14. High resolution 1H solid state NMR studies of polyethyleneterephthalate

    NASA Astrophysics Data System (ADS)

    Cheung, T. T. P.; Gerstein, B. C.; Ryan, L. M.; Taylor, R. E.; Dybowski, D. R.

    1980-12-01

    Molecular motions and spatial properties of the solid polymer polyethyleneterephthalate have been investigated using high resolution 1H solid state NMR techniques. The longitudinal spin relaxation time T1ρ of protons (1H) in the rotating frame was measured for a spin locking field ranging from 5 to 20 G. The decay of the 1H magnetization indicated the existence of two distinct T1ρ's and their field dependence shows that they are associated with two mobile phases of the polymer. The 1H magnetization also relaxes under the dipolar narrowed Carr-Purcell (DNCP) multipulse sequence with two dintinct T1y relaxation times. The ratios T1y's and T1ρ's deviate significantly from the expected theoretical values. The combined experiment with magic angle spinning and the DNCP sequence followed by homonuclear dipolar decoupling reveals the individual T1y relaxation of the resolved methylene and aromatic protons. These two species of protons were found to relax with the same T1y's, thus implying that spin diffusion must have taken place under the homonuclear dipolar decoupling multipulse. The qualitative description of spin diffusion under homonuclear decoupling is given. The combined experiment with spin locking and the DNCP sequence yields the correspondence between the two T1ρ's and the two T1y's. The long T1ρ corresponds to the short T1y whereas the short T1ρ corresponds to the long T1y. Communication between the two spatial phases via spin diffusion was also observed in this experiment by monitoring the recovery of the 1H magnitization associated with the short T1ρ after it has been eliminated during the spin locking. The total 1H magnetization is allowed to equilibrate in the laboratory frame for a variable time much shorter than T1 after the spin locking field has been turned off. The spatial relationship between the two phases is discussed.

  15. New spectral features of stratospheric trace gases identified from high-resolution infrared balloon-borne and laboratory spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Kosters, J. J.; Murcray, F. H.; Murcray, D. G.; Rinsland, C. P.

    1989-01-01

    A new Michelson-type interferometer system operating in the infrared at very high resolution has been used to record numerous balloon-borne solar absorption spectra of the stratosphere, ground-based solar absorption spectra, and laboratory spectra of molecules of atmospheric interest. In the present work results obtained for several important stratospheric trace gases, HNO3, CIONO2, HO2NO2, NO2, and COF2, in the 8- to 12-micron spectral region are reported. Many new features of these gases have been identified in the stratospheric spectra. Comparison of the new spectra with line-by-line simulations shows that previous spectral line parameters are often inadequate and that new analysis of high-resolution laboratory and atmospheric spectra and improved theoretical calculations will be required for many bands. Preliminary versions of several sets of improved line parameters under development are discussed.

  16. High-Resolution Optical and Near-Infrared Imaging of Young Circumstellar Disks

    NASA Technical Reports Server (NTRS)

    McCaughrean, Mark; Stapelfeldt, Karl; Close, Laird

    2000-01-01

    In the past five years, observations at optical and near-infrared wavelengths obtained with the Hubble Space Telescope and ground-based adaptive optics have provided the first well-resolved images of young circumstellar disks which may form planetary systems. We review these two observational techniques and highlight their results by presenting prototype examples of disks imaged in the Taurus-Auriga and Orion star-forming regions. As appropriate, we discuss the disk parameters that may be typically derived from the observations, as well as the implications that the observations may have on our understanding of, for example, the role of the ambient environment in shaping the disk evolution. We end with a brief summary of the prospects for future improvements in space- and ground-based optical/IR imaging techniques, and how they may impact disk studies.

  17. High resolution infrared spectroscopy of planetary molecules using diode lasers and Fourier transform spectrometers

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.

    1990-01-01

    Modern observations of infrared molecular lines in planets are performed at spectral resolutions which are as high as those available in the laboratory. Analysis of such data requires laboratory measurements at the highest possible resolution, which also yield accurate line positions and intensities. For planetary purposes the spectrometer must be coupled to sample cells which can be reduced in temperature and varied in pressure. An approach which produces the full range of required molecular line parameters uses a combination of tunable diode lasers and Fourier transform spectrometers (FTS). The FTS provides board spectral coverage and good calibration accuracy, while the diode laser can be used to study those regions which are not resolved by the FTS.

  18. High resolution infrared astronomy satellite observations of a selected spiral galaxy

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. R.

    1991-01-01

    The H I, infrared, CO, H alpha and H beta band observations of M51, the prototypical grand-design spiral galaxy, are used to study the consequences of star formation for the distribution of H I and dust. Using the new Very Large Array (VLA) map of 21 cm emission, the Owens Valley Radio Observatory CO mosaic map, and an H alpha imate, new tests were performed with the idea of Tilanus and Allen that the H I is largely a photodissociation product in star-forming regions. It is confirmed that the H I spiral arms are generally coincident with the H II region arms, and offset downstream from the CO arms. The radial distributions of total gas, H alpha and H I surface density have a simple explanation in the dissociation picture. The distributions also demonstrate how the surface density of H I might be related to the star formation efficiency in molecule-rich galaxies. The large width of the H I regions along the arms compared to that of the giant H II regions can be understood in terms of a simple calculation of the expected size of an H I region associated with a typical giant H II region. The longer lifetime of the stars producing dissociating radiation vs. those producing ionizing radiation and the relatively long molecular formation timescale will also contribute to the greater width of the H I arms if stars are continuously forming on the arms. The lack of detailed coincidence of the H I and H II regions along the inner arms has a variety of possible explanations. Two simple tests were performed to probe the origins of the IRAS emission in M51. First, it was found that the infrared excess (IFE) of M51 is 24, suggesting that a substantial fraction of the infrared emission arises from dust heated by photons which do not originate in massive star-formaing regions. Second, radial cuts through the IRAS bands show that at 12, 25, and 60 microns, the arm-interarm contrast of the IRAS emission is substantially less than that of the H alpha emission, providing further

  19. A high-resolution far-infrared survey of the W31 region

    NASA Technical Reports Server (NTRS)

    Wright, E. L.; Fazio, G. G.; Low, F. J.

    1977-01-01

    A 1-m balloon-borne telescope was used to conduct a far-infrared survey of the W31 region at an effective wavelength of 69 microns with a resolution of 1 arcmin. Within this region seven far-infrared sources were observed. Five of these sources were associated with thermal radio emission. For each of these sources the infrared luminosity is much greater than the Ly-alpha luminosity, a situation requiring either dust absorption of Lyman-continuum photons or a large nonionizing stellar luminosity. Two faint infrared sources had no radio counterparts. Far-infrared radiation was not detected from two known radio sources and from one midinfrared source in this region.

  20. Analysis of High-Resolution Infrared and CARS Spectra of ³⁴S¹⁸O₃

    SciTech Connect

    Masiello, Tony; Barber, Jeffrey B.; Chrysostom, Engelene; Nibler, Joseph W.; Maki, Arthur; Weber, Alfons; Blake, Thomas A.; Sams, Robert L.

    2004-01-01

    Three fundamental modes and several hot bands of 34S18O3 have been investigated using both infrared spectroscopy and coherent anti-Stokes Raman scattering spectroscopy (CARS). Coriolis coupling effects are particularly noticeable in 34S18O3 due to the close proximity of the v2 and v4 fundamental vibrations, whose wavenumber values are 477.508 64(5) and 502.055 65(4) cm-1. The uncertainties in the last digits are shown in parentheses and are two standard deviations. Hot band transitions from v2, v4 levels give access to infrared inactive v2, v4 combination/overtone levels which interact strongly with levels of the Raman-active v1 symmetric stretching mode due to indirect Coriolis couplings, l-resonances, and Fermi resonances. The result is a complex v1 CARS Q- branch spectrum that is the most perturbed of the four SO3 isotopomers we have studied. The relative importance of these interaction terms on the v1 CARS spectrum is examined in some detail and accurate rovibrational constants are determined for all of the mixed states, leading to deperturbed values of 1004.662(24), 0.000 350 3(9), and 0.000 706 6(12) cm-1 for v1, α1B, and α1C, respectively. The B e value is found to be 0.310 817(12) cm-1, which gives an equilibrium bond length re of 141.7339(3) pm, in excellent agreement with values of 141.7340(1) and 141.7347(7) pm reported earlier for 32S16O3 and 34S16O3.

  1. High resolution TE&TM near infrared compact spectrometer based on waveguide grating structures

    NASA Astrophysics Data System (ADS)

    Martin, G.; Thomas, F.; Heidmann, S.; de Mengin, M.; Courjal, N.; Ulliac, G.; Morand, A.; Benech, P.; Kern, P.; Le Coarer, E...

    2015-05-01

    Integrated optics spectrometers can be essentially classified into two main families: based on Fourier transform or dispersed modes. In the first case, an interferogram generated inside an optical waveguide is sampled using nanodetectors, these scatter light into the detector that is in contact with the waveguide. A dedicated FFT processing is needed in order to recover the spectrum with high resolution but limited spectral range. Another way is to extract the optical signal confined in a waveguide using a surface grating and directly obtain the spectrum by means of a relay optics that generates the spectrum on the Fourier plane of the lens, where the detector is placed. Following this second approach, we present a high-resolution compact dispersive spectrometer (δλ =1.5nm at λ=1050nm) based on guided optics technology. The propagating signal is dispersed out of a waveguide thanks to a surface grating that lays along it. Focused Ion Beam technique is used to etch nano-grooves that act as individual scattering centers and constitute the surface grating along the waveguide. The waveguide is realized using X-cut, Ypropagating Lithium Niobate substrate, where the effective index for TE and TM guided modes is different. This results in a strong angular separation of TE and TM diffracted modes, allowing simultaneous detection of spectra for both polarizations. A simple relay optics, with limited optical aberrations, reimages the diffracted signal on the focal plane array, leading to a robust, easy to align instrument.

  2. Application of high-resolution thermal infrared sensors for geothermal exploration at the Salton Sea, California

    NASA Astrophysics Data System (ADS)

    Reath, K. A.; Ramsey, M.; Tratt, D. M.

    2010-12-01

    The Salton Sea geothermal field straddles the southeast margin of the Salton Sea in California, USA. This field includes approximately 20km2 of mud volcanoes and mud pots and centered on the Mullet Island thermal anomaly. The area has been previously exploited for geothermal power; there are currently seven power plants in the area that produce 1000 MW. The field itself is relatively un-vegetated, which provides for unfettered detection of the surface mineralogy, radiant heat, and emitted gases using air and spaceborne thermal infrared (TIR) sensors. On March 26, 2009, the airborne Spatially Enhanced Broadband Array Spectrograph System (SEBASS) sensor was flown over the Salton Sea-Mullet Island area. SEBASS has a spectral resolution of 128 bands in the 7.5-14.5 micron spectral region and a spatial resolution of 1m/pixel from the 3000-ft altitude flown for this study. A large portion of the Calipatria Fault, a NW/SE-trending geothermally active fault that bisects the Mullet Island thermal anomaly, was imaged during this flight and several thermal/mineralogical anomalies were noted. The orbital Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) has only 5 spectral bands at 90m/pixel resolution, but has acquired dozens of visible and TIR datasets over the geothermal field in the 10-year history of the instrument. The thermal-temporal trend of this dataset has been analyzed, and the November 2008 image studied in detail for comparison to SEBASS. The land-leaving TIR radiance data were separated into brightness temperature and surface emissivity. TIR emissivity data are unique to each mineral and a TIR mineral spectral library was used to determine their presence on the ground. Various mineral maps were created showing the distribution surrounding the most active geothermal features. The higher spectral/spatial resolution SEBASS data were used to validate the lower spectral/spatial resolution ASTER data (as well as the higher resolution laboratory TIR

  3. High-resolution subtyping of Staphylococcus aureus strains by means of Fourier-transform infrared spectroscopy.

    PubMed

    Johler, Sophia; Stephan, Roger; Althaus, Denise; Ehling-Schulz, Monika; Grunert, Tom

    2016-05-01

    Staphylococcus aureus causes a variety of serious illnesses in humans and animals. Subtyping of S. aureus isolates plays a crucial role in epidemiological investigations. Metabolic fingerprinting by Fourier-transform infrared (FTIR) spectroscopy is commonly used to identify microbes at species as well as subspecies level. In this study, we aimed to assess the suitability of FTIR spectroscopy as a tool for S. aureus subtyping. To this end, we compared the subtyping performance of FTIR spectroscopy to other subtyping methods such as pulsed field gel electrophoresis (PFGE) and spa typing in a blinded experimental setup and investigated the ability of FTIR spectroscopy for identifying S. aureus clonal complexes (CC). A total of 70 S. aureus strains from human, animal, and food sources were selected, for which clonal complexes and a unique virulence and resistance gene pattern had been determined by DNA microarray analysis. FTIR spectral analysis resulted in high discriminatory power similar as obtained by spa typing and PFGE. High directional concordance was found between FTIR spectroscopy based subtypes and capsular polysaccharide expression detected by FTIR spectroscopy and the cap specific locus, reflecting strain specific expression of capsular polysaccharides and/or other surface glycopolymers, such as wall teichoic acid, peptidoglycane, and lipoteichoic acid. Supervised chemometrics showed only limited possibilities for differentiation of S. aureus CC by FTIR spectroscopy with the exception of CC45 and CC705. In conclusion, FTIR spectroscopy represents a valuable tool for S. aureus subtyping, which complements current molecular and proteomic strain typing. PMID:27021524

  4. High resolution Michelson interferometer for airborne infrared astronomical observations. 2: System design.

    PubMed

    Langlet, A; Delage, C; Stefanovitch, D; Talureau, B; Tualy, J; Verveer, J; Fischer, W P; Gilles, J M; Scheper, R; Leblanc, J; Dambier, G

    1977-07-01

    A Michelson interferometer for high resolution (lambda/Deltalambda approximately 10(4)) spectroscopic observations of astronomical ir ionic line emission has been built and flown on the NASA 91-cm airborne ir telescope facility (G. P. Kuiper Airborne Observatory). In Part 1 of this paper the requirements for such a system were outlined, and the scientific basis for the choice of instrumental parameters and the rapid scan mode of operation were discussed. In this paper design details of the instrument are presented. These include the optics, control He-Ne laser interferometer, helium-cooled bolometer detector, and cooled passband filters. In addition, the on-line computer software which enables the operator to interact rapidly with the system to produce inflight spectra and control accordingly the observational parameters is described, as are elements of the electronics hardware developed specially for airborne observations. PMID:20168820

  5. High-resolution Fourier transform infrared synchrotron spectroscopy of the NO2 in-plane rock band of nitromethane

    NASA Astrophysics Data System (ADS)

    Dawadi, Mahesh B.; Twagirayezu, Sylvestre; Perry, David S.; Billinghurst, Brant E.

    2015-09-01

    The high-resolution rotationally resolved Fourier-transform infrared spectrum of the NO2 in-plane rock band (440-510 cm-1) of nitromethane (CH3NO2) has been recorded using the Far-Infrared Beamline at the Canadian Light Source, with a resolution of 0.00096 cm-1. About 1773 transitions reaching the upper state levels m‧ = 0; Ka‧ ⩽ 7;J‧ ⩽ 50 have been assigned using an automated ground-state combination difference program together with the traditional Loomis-Wood approach. These data from the lowest torsional state, m‧ = 0, were fit using the six-fold torsion-rotation program developed by Ilyushin et al. (2010). The analysis reveals that the rotational energy level structure in the upper vibrational state is similar to that of the ground vibrational state, but the sign and magnitude of high-order constants are significantly changed suggesting the presence of multiple perturbations.

  6. Design inputs for a high-performance high-resolution near-infrared spectrograph

    NASA Astrophysics Data System (ADS)

    Hinkle, Kenneth H.; Joyce, Richard R.; Najita, Joan R.

    2010-07-01

    The combination of immersion grating and infrared array detector technologies allows the construction of highresolution spectrographs in the near-infrared that have capabilities similar to those of optical spectrographs. It is possible, for instance, to design multi-object spectrographs with very large wavelength coverage and high throughput. We explored the science and functional drivers for these spectrograph designs. Several key inputs into the design are reviewed including risk, mechanical-optical trades, and operations. We discuss a design for a fixed configuration spectrograph with either 1.1 - 2.5 or 3 - 5 μm simultaneous wavelength coverage.

  7. Coriolis analysis of several high-resolution infrared bands of bicyclo[111]pentane-d0 and -d1

    SciTech Connect

    Perry, A.; Martin, M. A.; Nibler, J. W.; Maki, A.; Weber, A.; Blake, T. A.

    2012-06-01

    High resolution infrared absorption spectra have been analyzed for two bicyclo[1.1.1]pentane isotopologues, C5H8 (-d0) and C5H7D (-d1), where in the latter the D-atom replaces a hydrogen on the C3 symmetry axis such that the molecular symmetry is reduced from D3h to C3v. Two (a2") parallel bands, ν17 and ν18, of bicyclopentane-d0 were studied and the former was found to be profoundly affected by Coriolis coupling with the nearby (e') perpendicular band, ν11. Weaker coupling was observed between the ν18 band and the nearby ν13(e') band, for which fewer transitions could be assigned. For bicyclopentane-d1, the ν5 parallel band was also studied along with the nearby ν15(e') band to which it is coupled through a similar type of Coriolis resonance. For both isotopologues, quantum calculations (B3LYP/cc-pVTZ) done at the anharmonic level were very helpful in unraveling the complexities caused by the Coriolis interactions, provided that care is taken in identifying the effect of any Coriolis resonances in the theoretical values of aB and q rovibrational parameters. The ground state B0 constants were found to be 0.2399412(2) and 0.2267506(11) cm-1 for the -d0 and -d1 isotopologues. The difference yields an Rs substitution value of 2.0309(2) Å for the position of the axial H atom relative to the -d0 center of mass, a result in good accord with a corresponding Ra value of 2.044(6) Å from electron diffraction data. For both isotopologues, the theoretical results from the quantum calculations are in good agreement with all corresponding values determined from the spectra.

  8. High Resolution Infrared Spectroscopy of CH_3F-({ortho}-H_2){n} Cluster in Solid {para}-H_2

    NASA Astrophysics Data System (ADS)

    Kawasaki, Hiroyuki; Mizoguchi, Asao; Kanamori, Hideto

    2015-06-01

    The absorption spectrum of the ν3 (C-F stretching) mode of CH_3F in solid {para}-H_2 by FTIR showed a series of equal interval peaks. Their interpretation was that the {}-th peak of this series was due to CH_3F-({ortho}-H_2){n} clusters which were formed CH_3F and {n}'s {ortho}-H_2 in first nearest neighbor sites of the {para}-H_2 crystal with {hcp} structure. In order to understand this system in more detail, we have studied these peaks, especially {n} = 0 - 3 corresponding to 1037 - 1041 wn, by using high-resolution and high-sensitive infrared quantum cascade (QC) laser spectroscopy. Before now, we found many peaks around each {n}-th peak of the cluster, which we didn't know their origins. We observed photochromic phenomenon of these peaks by taking an advantage of the high brightness of the laser. In this study, we focus on satellite series consisting of six peaks which locate at the lower energy side of each main peak. All the peaks showed a common red shouldered line profile, which corresponds to partly resolved transitions of {ortho}- and {para}- CH_3F. The spectral pattern and time behavior of the peaks may suggest that these satellite series originate from a family of CH_3F clusters involving {ortho}-H_2 in second nearest neighbor sites. A model function assuming this idea is used to resolve the observed spectrum into each Lorentzian component, and then some common features of the satellite peaks are extracted and the physical meanings of them will be discussed. K. Yoshioka and D. T. Anderson, J. Chem. Phys. 119 (2003) 4731-4742 A. R. W. McKellar, A. Mizoguchi, and H. Kanamori, J. Chem. Phys. 135 (2011) 124511 A. R. W. McKellar, A. Mizoguchi, and H. Kanamori, Phys. Chem. Chem. Phys. 13 (2011) 11587-11589.

  9. The high-resolution infrared spectrum of thiophene between 600 and 1200 cm -1: A spectroscopic and theoretical study of the fundamental bands ν6, ν7, ν13, and the c-Coriolis interacting dyad ν5, ν19

    NASA Astrophysics Data System (ADS)

    Hegelund, F.; Wugt Larsen, R.; Palmer, M. H.

    2008-01-01

    The Fourier transform infrared spectrum of gaseous thiophene, C 4H 4S, has been recorded in the 600-1200 cm -1 spectral region with a resolution of ca. 0.0030 cm -1. Five fundamental bands ν13 ( B1, 712.1 cm -1), ν7 ( A1; 840.0 cm -1), ν6 ( A1; 1036.4 cm -1), ν5 ( A1; 1081.5 cm -1) and ν19 ( B2; 1084.0 cm -1) have been analysed by the standard Watson model (A-reduction). Ground state rotational and quartic centrifugal distortion constants have been obtained from a simultaneous fit of ground state combination differences from four of these bands and previous microwave transitions. Upper state spectroscopic constants have been obtained for all five bands from single band fits using the Watson model. A strong c-Coriolis resonance perturbs the close lying ν5 and ν19 bands. We have analysed this dyad system by a model including first and second order Coriolis resonance using the theoretically predicted Coriolis coupling constant ς19,5c. From this analysis we locate the previously unobserved ν19 band at 1083.969 cm -1. The rotational constants, ground state quartic centrifugal distortion constants, anharmonic frequencies, and vibration-rotational constants ( α-constants) predicted by quantum chemical calculations using a cc-pVTZ basis with B3LYP methodology, are compared with the present experimental data, where there is generally good agreement. A complete set of anharmonic frequencies and α-constants for all fundamental levels of the molecule is given.

  10. High-resolution solar spectral irradiance from extreme ultraviolet to far infrared

    NASA Astrophysics Data System (ADS)

    Fontenla, J. M.; Harder, J.; Livingston, W.; Snow, M.; Woods, T.

    2011-10-01

    This paper presents new extremely high-resolution solar spectral irradiance (SSI) calculations covering wavelengths from 0.12 nm to 100 micron obtained by the Solar Irradiance Physical Modeling (SRPM) system. Daily solar irradiance spectra were constructed for most of Solar Cycle 23 based on a set of physical models of the solar features and non-LTE calculations of their emitted spectra as function of viewing angle, and solar images specifying the distribution of features on the solar disk. Various observational tests are used to assess the quality of the spectra provided here. The present work emphasizes the effects on the SSI of the upper chromosphere and full-non-LTE radiative transfer calculation of level populations and ionizations that are essential for physically consistent results at UV wavelengths and for deep lines in the visible and IR. This paper also considers the photodissociation continuum opacity of molecular species, e.g., CH and OH, and proposes the consideration of NH photodissociation which can solve the puzzle of the missing near-UV opacity in the spectral range of the near-UV. Finally, this paper is based on physical models of the solar atmosphere and extends the previous lower-layer models into the upper-transition-region and coronal layers that are the dominant source of photons at wavelengths shorter than ˜50 nm (except for the He II 30.4 nm line, mainly formed in the lower-transition-region).

  11. A Spitzer High-resolution Mid-Infrared Spectral Atlas of Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Bernard-Salas, J.; Spoon, H. W. W.; Charmandaris, V.; Lebouteiller, V.; Farrah, D.; Devost, D.; Brandl, B. R.; Wu, Yanling; Armus, L.; Hao, L.; Sloan, G. C.; Weedman, D.; Houck, J. R.

    2009-10-01

    We present an atlas of Spitzer/IRS high-resolution (R ~ 600) 10-37 μm spectra for 24 well known starburst galaxies. The spectra are dominated by fine-structure lines, molecular hydrogen lines, and emission bands of polycyclic aromatic hydrocarbons (PAHs). Six out of the eight objects with a known active galactic nucleus (AGN) component show emission of the high excitation [Ne V] line. This line is also seen in one other object (NGC 4194) with, a priori, no known AGN component. In addition to strong PAH emission features in this wavelength range (11.3, 12.7, 16.4 μm), the spectra reveal other weak hydrocarbon features at 10.6, 13.5, 14.2 μm, and a previously unreported emission feature at 10.75 μm. An unidentified absorption feature at 13.7 μm is detected in many of the starbursts. We use the fine-structure lines to derive the abundance of neon and sulfur for 14 objects where the H I 7-6 line is detected. We further use the molecular hydrogen lines to sample the properties of the warm molecular gas. Several basic diagrams characterizing the properties of the sample are also shown. We have combined the spectra of all the pure starburst objects to create a high signal-to-noise ratio template, which is available to the community.

  12. A SPITZER HIGH-RESOLUTION MID-INFRARED SPECTRAL ATLAS OF STARBURST GALAXIES

    SciTech Connect

    Bernard-Salas, J.; Spoon, H. W. W.; Lebouteiller, V.; Farrah, D.; Wu, Yanling; Hao, L.; Sloan, G. C.; Weedman, D.; Houck, J. R.; Charmandaris, V.; Devost, D.; Brandl, B. R.; Armus, L.

    2009-10-01

    We present an atlas of Spitzer/IRS high-resolution (R {approx} 600) 10-37 {mu}m spectra for 24 well known starburst galaxies. The spectra are dominated by fine-structure lines, molecular hydrogen lines, and emission bands of polycyclic aromatic hydrocarbons (PAHs). Six out of the eight objects with a known active galactic nucleus (AGN) component show emission of the high excitation [Ne V] line. This line is also seen in one other object (NGC 4194) with, a priori, no known AGN component. In addition to strong PAH emission features in this wavelength range (11.3, 12.7, 16.4 {mu}m), the spectra reveal other weak hydrocarbon features at 10.6, 13.5, 14.2 {mu}m, and a previously unreported emission feature at 10.75 {mu}m. An unidentified absorption feature at 13.7 {mu}m is detected in many of the starbursts. We use the fine-structure lines to derive the abundance of neon and sulfur for 14 objects where the H I 7-6 line is detected. We further use the molecular hydrogen lines to sample the properties of the warm molecular gas. Several basic diagrams characterizing the properties of the sample are also shown. We have combined the spectra of all the pure starburst objects to create a high signal-to-noise ratio template, which is available to the community.

  13. High resolution infrared spectroscopy: Some new approaches and applications to planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.

    1978-01-01

    The principles of spectral line formation and of techniques for retrieval of atmospheric temperature and constituent profiles are discussed. Applications to the atmospheres of Earth, Mars, Venus, and Jupiter are illustrated by results obtained with Fourier transform and infrared heterodyne spectrometers at resolving powers (lambda/delta hyperon lambda of approximately 10,000 and approximately 10 to the seventh power), respectively, showing the high complementarity of spectroscopy at these two widely different resolving powers. The principles of heterodyne spectroscopy are presented and its applications to atmospheric probing and to laboratory spectroscopy are discussed. Direct absorption spectroscopy with tuneable semiconductor lasers is discussed in terms of precision frequency-and line strength-measurements, showing substantial advances in laboratory infrared spectroscopy.

  14. Study of radar pulse compression for high resolution satellite altimetry

    NASA Technical Reports Server (NTRS)

    Dooley, R. P.; Nathanson, F. E.; Brooks, L. W.

    1974-01-01

    Pulse compression techniques are studied which are applicable to a satellite altimeter having a topographic resolution of + 10 cm. A systematic design procedure is used to determine the system parameters. The performance of an optimum, maximum likelihood processor is analysed, which provides the basis for modifying the standard split-gate tracker to achieve improved performance. Bandwidth considerations lead to the recommendation of a full deramp STRETCH pulse compression technique followed by an analog filter bank to separate range returns. The implementation of the recommended technique is examined.

  15. New very high resolution radar studies of the Moon

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.; Campbell, Bruce

    1987-01-01

    As part of an effort to further understand the geologic utility of radar studies of the terrestrial planets, investigators at the Hawaii Institute of Geophysics are collaborating with NEROC Haystack Observatory, MIT and the Jet Propulsion Laboratory in the analysis of existing 3.8 and 70 cm radar images of the Moon, and in the acquisition of new data for selected lunar targets. The intent is to obtain multi-polarization radar images at resolutions approaching 75 meters (3.8 cm wavelength) and 400 meters (70 cm wavelength) for the Apollo landing sites (thereby exploiting available ground truth) or regions covered by the metric camera and geochemical experiments onboard the command modules of Apollos 15, 16 and 17. These data were collected in both like- and cross-polarizations, and, in the case of the 70 cm data, permit the phase records to be used to assess the scattering properties of the surface. The distribution of surface units on the Moon that show a mismatch between the surface implied by like- and cross-polarized scattering data is being analyzed, based on the scattering models of Evans and Hagfors.

  16. HIGH-RESOLUTION FOURIER TRANSFORM SPECTROSCOPY OF LANTHANUM IN Ar DISCHARGE IN THE NEAR-INFRARED

    SciTech Connect

    Güzelçimen, F.; Başar, Gö.; Tamanis, M.; Kruzins, A.; Ferber, R.; Windholz, L.; Kröger, S. E-mail: sophie.kroeger@htw-berlin.de

    2013-10-01

    A high-resolution spectrum of lanthanum has been recorded by a Fourier Transform spectrometer in the wavelength range from 833 nm to 1666 nm (6000 cm{sup –1} to 12,000 cm{sup –1}) using as light source a hollow cathode lamp operated with argon as the discharge carrier gas. In total, 2386 spectral lines were detected in this region, of which 555 lines could be classified as La I transitions and 10 lines as La II transitions. All La II transitions and 534 of these La I transitions were classified for the first time, and 6 of the La II transitions and 433 of the classified La I transitions appear to be new lines, which could not be found in the literature. The corresponding energy level data of classified lines are given. Additionally, 430 lines are assigned as Ar I lines and 394 as Ar II lines, of which 179 and 77, respectively, were classified for the first time. All 77 classified Ar II transitions as well as 159 of the classified Ar I transitions are new lines. Furthermore, the wavenumbers of 997 unclassified spectral lines were determined, 235 of which could be assigned as La lines, because of their hyperfine pattern. The remaining 762 lines may be either unclassified Ar lines or unresolved and unclassified La lines with only one symmetrical peak with an FWHM in the same order of magnitude as the Ar lines. The accuracy of the wavenumber for the classified lines with signal-to-noise-ratio higher than four is better than 0.006 cm{sup –1} which corresponds to an accuracy of 0.0004 nm at 830 nm and 0.0017 nm at 1660 nm, respectively.

  17. Vertical profiling of methane and carbon dioxide using high resolution near-infrared heterodyne spectroscopic observations

    NASA Astrophysics Data System (ADS)

    Rodin, Alexander; Klimchuk, Artem; Churbanov, Dmitry; Pereslavtseva, Anastasia; Spiridonov, Maxim; Nadezhdinskyi, Alexander

    2014-05-01

    We present new method of monitoring greenhouse gases using spectroscopic observations of solar radiation passed through the atmosphere with spectral resolution ΛvδΛ up to 108. Such a high resolution is achieved by heterodyne technique and allows to retrieve full information about spectral line shape which, in turn, is used to distinguish contribution of different atmospheric layers to the resulting absorption. Weak absorption line at 6056.5 cm-1 was selected for CO2 measurements and a quartet of lines centered at 6057 cm-1for CH4. The instrument setup includes Sun tracker with a microtelescope and chopper, diode DFB laser used as a local oscillator, a bundle of single mode optical fibers that provides medium for radiation transfer and beam coupling, reference cell with depressurized methane for LO frequency stabilization, and Fabry-Perot etalon for LO frequency calibration. A commercial p-i-n diode with squared detector replaces a mixer and IF spectrometer, providing measurement of heterodyne beating within a bandpass of few MHz, which determines the effective spectral resolution of the instrument. Spectral coverage within narrow range (about 1 cm-1) is provided by ramping the LO frequency based on feedback from the reference channel. Observations of Sun in the Moscow region have resulted for the first time in measurements of the atmospheric transmission near 1.65 μm with sub-Doppler spectral resolution. In order to retrieve vertical profiles of methane and carbon dioxide we developed the inversion algorithm implementing Tikhonov regularization approach. With measured transmission having S/N ratio of 100 or higher, the uncertainty of CH4 profile is about 10 ppb, with the uncertainty of CO2 profile at 1 ppm. This techniques is promising an affordable opportunity or widespread monitoring of greenhouse gases and may be implemented on existing ground-based stations. This work has been supported by the grant of Russian Ministry of education and science #11.G34.31.0074

  18. High resolution infrared spectrum of the CD2 wagging band of methanol-D2 (CHD2OH) for the lowest lying torsional vibrational state (e0)

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Indra

    2016-07-01

    This paper reports the analysis of the high resolution (0.0019 cm-1) Fourier transform infrared (FTIR) spectrum for asymmetrically deuterated methanol CHD2OH (methanol-D2) at a low temperature for the CD2 wagging band for the lowest lying trans-species (e0). In spite of the complexity and perturbation in the spectra, assignments were possible for the CD2 wagging band for a maximum K value of 10. In total, about 500 spectral lines have been assigned. Analysis of the spectral lines has been performed in terms of state dependent molecular parameters, Q-branch origins and asymmetry splitting. Assignments have been thoroughly confirmed using combination relations (see text). The catalogue of the assigned transition wavenumbers will help identification and prediction of far infrared (FIR) optically pumped CO2 lasers. The absorption lines close to the several 10R and 10P CO2 laser lines have also been identified. These should help experimentalists to optimize the power of the emission FIR laser lines and to predict new lines and should prove valuable as a laboratory support for interstellar detection in "Radio Astronomy". To our knowledge this is the first time such vibrational infrared (IR) high resolution study in CHD2OH is being performed.

  19. Packet based serial link realized in FPGA dedicated for high resolution infrared image transmission

    NASA Astrophysics Data System (ADS)

    Bieszczad, Grzegorz

    2015-05-01

    In article the external digital interface specially designed for thermographic camera built in Military University of Technology is described. The aim of article is to illustrate challenges encountered during design process of thermal vision camera especially related to infrared data processing and transmission. Article explains main requirements for interface to transfer Infra-Red or Video digital data and describes the solution which we elaborated based on Low Voltage Differential Signaling (LVDS) physical layer and signaling scheme. Elaborated link for image transmission is built using FPGA integrated circuit with built-in high speed serial transceivers achieving up to 2500Gbps throughput. Image transmission is realized using proprietary packet protocol. Transmission protocol engine was described in VHDL language and tested in FPGA hardware. The link is able to transmit 1280x1024@60Hz 24bit video data using one signal pair. Link was tested to transmit thermal-vision camera picture to remote monitor. Construction of dedicated video link allows to reduce power consumption compared to solutions with ASIC based encoders and decoders realizing video links like DVI or packed based Display Port, with simultaneous reduction of wires needed to establish link to one pair. Article describes functions of modules integrated in FPGA design realizing several functions like: synchronization to video source, video stream packeting, interfacing transceiver module and dynamic clock generation for video standard conversion.

  20. NGC 4102: HIGH-RESOLUTION INFRARED OBSERVATIONS OF A NUCLEAR STARBURST RING

    SciTech Connect

    Beck, Sara C.; Lacy, John H.; Turner, Jean L.

    2010-10-20

    The composite galaxy NGC 4102 hosts a LINER nucleus and a starburst. We mapped NGC 4102 in the 12.8 {mu}m line of [Ne II], using the echelon spectrometer TEXES on the NASA IRTF, to obtain a data cube with 1.''5 spatial, and 25 km s{sup -1} spectral, resolution. Combining near-infrared, radio, and the [Ne II] data shows that the extinction to the starburst is substantial, more than 2 mag at the K band, and that the neon abundance is less than half solar. We find that the star formation in the nuclear region is confined to a rotating ring or disk of 4.''3 ({approx}300 pc) diameter, inside the inner Lindblad resonance. This region is an intense concentration of mass, with a dynamical mass {approx}3 x 10{sup 9} M{sub sun}, and of star formation. The young stars in the ring produce the [Ne II] flux reported by Spitzer for the entire galaxy. The mysterious blue component of line emission detected in the near-infrared is also seen in [Ne II]; it is not a normal active galactic nucleus outflow.

  1. A high-resolution extraterrestrial solar spectrum and water vapour continuum at near infrared wavelengths from ground-based spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Menang, K. P.

    A high resolution extraterrestrial solar spectrum (CAVIAR solar spectrum) and water vapour continuum have been derived in near infrared windows from 2000-10000 cm-1 (105μm), by applying the Langley technique to calibrated ground-based high-resolution Fourier transform spectrometer measurements, made under clear-sky conditions. The effect of the choice of an extraterrestrial solar spectrum for radiative transfer calculations of clear-sky absorption and heating rates in the near infrared was also studied. There is a good agreement between the solar lines strengths and positions of the CAVIAR solar spectrum and those from both high-resolution satellite and ground-based measurements in their regions of spectral overlap. However, there are significant differences between the structure of the CAVIAR solar spectrum and spectra from models. Many of the detected lines are missing from widely-used modelled extraterrestrial solar spectrum. The absolute level and hence wavenumber-integrated solar irradiance of the CAVIAR solar spectrum was also found to be 8% lower than the satellite-based Thuillier et al spectra from 5200-10000 cm-1. Using different extraterrestrial solar spectra for radiative transfer calculations in the near infrared led to differences of up to about 11 W m-2 (8.2%) in the absorbed solar irradiance while the tropospheric and stratospheric heating rates could respectively differ by up to about 0.13K day-1 (8.1%) and 0.19 K day-1 (7.6%) for an overhead Sun and mid-latitude summer atmosphere. This work has shown that the widely-used empirically modelled continuum may be underestimating the strength of the water vapour continuum from 2000-10000 cm-1, with the derived continuum up to more than 2 orders of magnitude stronger at some wavenumbers in the windows. The derived continuum is also stronger than that implied by laboratory measurements, by a factor of up to 40 in some spectral regions.

  2. On-chip near-infrared spectroscopy of CO2 using high resolution plasmonic filter array

    NASA Astrophysics Data System (ADS)

    Chong, Xinyuan; Li, Erwen; Squire, Kenneth; Wang, Alan X.

    2016-05-01

    We report an ultra-compact, cost-effective on-chip near-infrared spectroscopy system for CO2 sensing using narrow-band optical filter array based on plasmonic gratings with a waveguide layer. By varying the periodicity of the gratings, the transmission spectra of the filters can be continuously tuned to cover the 2.0 μm sensing window with high spectral resolution around 10 nm. Our experimental results show that the on-chip spectroscopy system can resolve the two symmetric vibrational bands of CO2 at 2.0 μm wavelength, which proves its potential to replace the expensive commercial IR spectroscopy system for on-site gas sensing.

  3. High-Resolution Observations of the Infrared Spectrum of Neutral Neon

    PubMed Central

    Sansonetti, Craig J.; Blackwell, Marion M.; Saloman, E. B.

    2004-01-01

    We have observed the spectrum of neutral neon (Ne I) emitted by a microwave-excited electrodeless discharge lamp with the National Institute of Standards and Technology 2 m Fourier transform spectrometer. The spectra cover the regions 6929 Å to 11 000 Å with a resolution of 0.01 cm−1 and 11 000 Å to 47 589 Å with a resolution of 0.007 cm−1. We present a line list that includes more than 650 classified lines and provides an accurate and comprehensive description of the infrared spectrum. The response of the Fourier transform spectrometer was determined by using a radiometrically calibrated tungsten strip lamp, providing relative intensities that for moderate to strong lines are accurate to approximately 10 % over the entire range of the observations. The identities of many lines that were previously multiply classified are unambiguously resolved. PMID:27366619

  4. High-Resolution Infrared Spectra of Bicyclo[1.1.1]pentane

    SciTech Connect

    Martin, Matthew A.; Perry, Adam J.; Masiello, Tony; Schwartz, Keith D.; Nibler, Joseph W.; Weber, Alfons; Maki, Arthur; Blake, Thomas A.

    2010-07-01

    Infrared spectra of bicyclo[1.1.1]pentane (C5H8) have been recorded at a resolution (0.0015 cm-1) sufficient to resolve for the first time individual rovibrational lines. This initial report presents the ground state constants for this molecule determined from the detailed analysis of three of the ten infrared-allowed bands, v14(e′) at 540 cm-1, v17(a2″) at 1220 cm-1, v18(a2″) at 832 cm-1, and a partial analysis of the v11(e′) band at 1237 cm-1. The upper states of transitions involving the lowest frequency mode, v14(e′), show no evidence of rovibrational perturbations but those for the v17 and v18 (a2″) modes give clear indication of Coriolis coupling to nearby e′ levels. Accordingly, ground state constants were determined by use of the combination-difference method for all three bands. The assigned frequencies provided over 3300 consistent ground state difference values, yielding the following constants for the ground state (in units of cm-1): B0 = 0.2399412(2), DJ = 6.024(6) x 10-8, DJK = -1.930(21) x 10-8. For the unperturbed v14(e′) fundamental, more than 3500 transitions were analyzed and the band origin was found to be at 540.34225(2) cm-1. The numbers in parentheses are the uncertainties (two standard deviations) in the values of the constants. The results are compared with those obtained previously for [1.1.1]propellane and with those computed at the ab initio anharmonic level using the B3LYP density functional method with a cc-pVTZ basis set.

  5. High resolution infrared absorption spectra of various trace gases present in the upper atmosphere of the Earth

    NASA Technical Reports Server (NTRS)

    Hunt, Robert H.

    1988-01-01

    The objective of NASA Grant NsG 7473 was to obtain and analyze high resolution infrared absorption spectra of various trace gases present in the Earth's upper atmosphere. The goal of the spectral analysis was to obtain values of absorption line strengths, widths and frequencies of sufficient accuracy for use in upper atmosphere trace gas monitoring. During the early phase of the grant, high resolution spectra were obtained from two instruments. One was the 0.02/cm resolution vacuum grating spectrometer at the Florida State University and the other was the 0.01/cm resolution Fourier transform spectrometer at the McMath solar telescope at the Kitt Peak Observatory. Using these instruments, a considerable amount of spectra of methane and hydrogen peroxide were obtained and analyzed. During the latter years of the project, data taking was halted while efforts were devoted to building a new 0.0025/cm resolution vacuum Fourier transform spectrometer. Progress during this phase of the grant then became greatly slowed due to a lack of suitable graduate students in the program. However, the instrument was completed and brought to the point of producing interferograms.

  6. Development of a near-infrared high-resolution spectrograph (WINERED) for a survey of bulge stars

    NASA Astrophysics Data System (ADS)

    Tsujimoto, T.; Kobayashi, N.; Yasui, C.; Kondo, S.; Minami, A.; Motohara, K.; Ikeda, Y.; Gouda, N.

    2008-07-01

    We are developing a new near-infrared high-resolution (R[max] = 100,000) and high-sensitive spectrograph WINERED, which is specifically customized for short NIR bands at 0.9 1.35 μm. WINERED employs an innovative optical system; a portable design and a warm optics without any cold stops. The planned astrometric space mission JASMINE will provide precise positions, distances, and proper motions of the bulge stars. The missing components, the radial velocity and chemical composition will be measured by WINERED. These combined data brought by JASMINE and WINERED will certainly reveal the nature of the Galactic bulge. We plan to complete this instrument for observations of single objects by the end of 2008 and to attach it to various 4 10m telescopes as a PI-type instrument. We hope to upgrade WINERED with a multi-object feed in the future for efficient survey of the JASMINE bulge stars.

  7. High-resolution satellite and airborne thermal infrared imaging of precursory unrest and 2009 eruption of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Wessels, Rick L.; Vaughan, R. Greg; Patrick, Matthew R.; Coombs, Michelle L.

    2013-01-01

    A combination of satellite and airborne high-resolution visible and thermal infrared (TIR) image data detected and measured changes at Redoubt Volcano during the 2008–2009 unrest and eruption. The TIR sensors detected persistent elevated temperatures at summit ice-melt holes as seismicity and gas emissions increased in late 2008 to March 2009. A phreatic explosion on 15 March was followed by more than 19 magmatic explosive events from 23 March to 4 April that produced high-altitude ash clouds and large lahars. Two (or three) lava domes extruded and were destroyed between 23 March and 4 April. After 4 April, the eruption extruded a large lava dome that continued to grow until at least early July 2009.

  8. High-resolution satellite and airborne thermal infrared imaging of precursory unrest and 2009 eruption at Redoubt Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Wessels, Rick L.; Vaughan, R. Greg; Patrick, Matthew R.; Coombs, Michelle L.

    2013-06-01

    A combination of satellite and airborne high-resolution visible and thermal infrared (TIR) image data detected and measured changes at Redoubt Volcano during the 2008-2009 unrest and eruption. The TIR sensors detected persistent elevated temperatures at summit ice-melt holes as seismicity and gas emissions increased in late 2008 to March 2009. A phreatic explosion on 15 March was followed by more than 19 magmatic explosive events from 23 March to 4 April that produced high-altitude ash clouds and large lahars. Two (or three) lava domes extruded and were destroyed between 23 March and 4 April. After 4 April, the eruption extruded a large lava dome that continued to grow until at least early July 2009.

  9. The spectral and spatial distribution of radiation from Eta Carinae. II High-resolution infrared maps of the Homunculus

    NASA Technical Reports Server (NTRS)

    Hyland, A. R.; Robinson, G.; Mitchell, R. M.; Thomas, J. A.; Becklin, E. E.

    1979-01-01

    The spectral and spatial distribution of radiation from Eta Carinae II and high-resolution infrared maps of the Homunculus are presented. It is found that at the resolution of 1.1 arcsec the source is resolved into two intensity peaks at four wavelengths from 3.6 to 11.2 microns. The separation of the two peaks with wavelength is discussed, concluding that they are produced by an asymmetrical distribution of dust formed by extensive mass loss from the central source. The extension of the wings of the source at various wavelengths provide confirmatory evidence for an enrichment of a grain species such as corundum, relative to silicate material in the outer regions of the source.

  10. High-Resolution Infrared Spectra of Spiropentane, C5H8

    SciTech Connect

    Price, Joseph E.; Coulterpark, K. A.; Masiello, Tony; Nibler, Joseph W.; Weber, Alfons; Maki, Arthur G.; Blake, Thomas A.

    2011-09-01

    Infrared spectra of spiropentane (C{sub 5}H{sub 8}) have been recorded at a resolution (0.002 cm{sup -1}) sufficient to resolve for the first time individual rovibrational lines. This initial report presents the ground state constants for this molecule determined from the detailed analysis of the {nu}16 (b2) parallel band at 993 cm{sup -1}. In addition, the determination included more than 2000 ground state combination-differences deduced from partial analyses of four other infrared-allowed bands, the {nu}24(e) perpendicular band at 780 cm{sup -1} and three (b2) parallel bands at 1540 cm{sup -1} ({nu}14), 1568 cm{sup -1} ({nu}5+{nu}16), and 2098 cm{sup -1} ({nu}5+{nu}14). In each of the latter four cases, the spectra show complications; in the case of {nu}24, these complications are due to rotational l-type doublings, and in the case of the parallel bands, the spectral complexities are due to Fermi resonance and Coriolis interactions of the upper states with nearby levels. The unraveling of these is underway but the assignment of many of these transitions permit the confident use of the ground state differences in determining the following constants for the ground state (in units of cm{sup -1}): B0 = 0.1394736(2), DJ = 2.458(1) x 10{sup -8}, DJK = 8.28(3) x 10{sup -8}. For the unperturbed {nu}16 fundamental, more than 3000 transitions were fit and the band origin was found to be at 992.53793(2) cm{sup -1}. The numbers in parentheses are the uncertainties (two standard deviations) in the value of the last digit of the constants. Surprisingly, the very accurate B0 value measured here is lower than the value (0.1418 cm{sup -1}) calculated from an electron diffraction structure, instead of being higher, as expected. Where possible, the rovibrational results are compared with those computed at the anharmonic level using the B3LYP density functional method with a cc-pVTZ basis set. These too suggest that the electron diffraction results are in question.

  11. High-Resolution Infrared Imaging and Spectroscopy of the Pistol Nebula: Evidence for Ejection

    NASA Astrophysics Data System (ADS)

    Figer, Donald F.; Morris, Mark; Geballe, T. R.; Rich, R. Michael; Serabyn, Eugene; McLean, Ian S.; Puetter, R. C.; Yahil, Amos

    1999-11-01

    We present new infrared images, obtained with the Hubble Space Telescope (HST) Near-Infrared Camera and Multiobject Spectrometer (NICMOS), and Brα (4.05 μm) spectroscopy, obtained using CGS4 on UKIRT, of the Pistol Star and its associated nebula. We find strong evidence to support the hypothesis that the Pistol Nebula was ejected from the Pistol Star. The Paα (1.87 μm) NICMOS image shows that the nebula completely surrounds the Pistol Star, although the line intensity is much stronger on its northern and western edges. The Brα CGS4 spectra show the classical ringlike signature of quasi-spherical expansion. The blueshifted emission (Vmax~-60 km s-1) is much weaker than the redshifted emission (Vmax~+10 km s-1), where the velocities are with respect to the velocity of the Pistol Star; further, the redshifted emission spans a very narrow range of velocities, i.e., it appears ``flattened'' in the position-velocity diagram. These data suggest that the nebula was ejected from the star several thousand years ago, with a velocity between the current terminal velocity of the stellar wind (95 km s-1) and the present expansion velocity of gas in the outer shell of the nebula (60 km s-1). The Paα image reveals several emission-line stars in the region, including two newly identified emission-line stars north of the Pistol Star, both of which are likely to be the hottest known stars in the Galactic center with spectral types earlier than WC8 and Teff>50,000 K). The presence of these stars, the morphology of the Paα emission, and the velocity field in the gas suggest that the side of the nebula farthest from us is approaching, and being ionized by, the hot stars of the Quintuplet and that the highest velocity redshifted gas has been decelerated by winds from the Quintuplet stars. We also discuss the possibility that the nebular gas might be magnetically confined by the ambient magnetic field delineated by the nearby nonthermal filaments. Based on observations with the

  12. Spartan infrared camera: high-resolution imaging for the SOAR Telescope

    NASA Astrophysics Data System (ADS)

    Loh, Edwin D.; Biel, Jason D.; Chen, Jian-Jun; Davis, Michael; Laporte, Rene; Loh, Owen Y.

    2004-09-01

    The Spartan Infrared Camera provides tip-tilt corrected imaging for the SOAR Telescope in the 1-2.5μm spectral range with four 2048x2048 HAWAII2 detectors. The median image size is expected to be less than 0.25 arcsec (FWHM), and in the H and K bands a significant amount of the light is expected to be in a core having the diffraction-limited width. The camera has two plate scales: 0.04 arcsec/pixel (f/21) for diffraction-limited sampling in the H and K bands and 0.07 arcsec/pixel (f/12) to cover a 5×5 arcmin2 field, over which tip-tilt correction is substantial. Except for CaF2 field-flattening lenses, the optics is all reflective to achieve the large field size and achromaticity, and all aluminum to match thermally the aluminum cryogenic-optical box in which the optics mount. The Strehl ratio of the camera itself is 0.95-1.00 for the f/21 channel. The optics (including the off-axis aspherical mirrors) will be aligned with precise metrology rather than adjusted using interferometry.

  13. High-Resolution Near-Infrared Polarimetry of a Circumstellar Disk around UX Tau A

    NASA Technical Reports Server (NTRS)

    Serabyn, G.; Grady, C. A.; Currie, T.

    2012-01-01

    We present H-band polarimetric imagery of UX Tau A taken with HiCIAO/AO188 on the Subaru Telescope. UX Tau A has been classified as a pre-transitional disk object, with a gap structure separating its inner and outer disks. Our imagery taken with the 0.15" (21 AU) radius coronagraphic mask has revealed a strongly polarized circumstellar disk surrounding UX Tau A which extends to 120 AU, at a spatial resolution of 0.1" (14 AU). It is inclined by 46 degrees plus or minus 2 degrees as the west side is nearest. Although SED modeling and sub-millimeter imagery suggested the presence of a gap in the disk, with the inner edge of the outer disk estimated to be located at 25 - 30 AU, we detect no evidence of a gap at the limit of our inner working angle (23AU) at the near-infrared wavelength. We attribute the observed strong polarization (up to 66 %) to light scattering by dust grains in the disk. However, neither polarization models of the circumstellar disk based on Rayleigh scattering nor Mie scattering approximations were consistent with the observed azimuthal profile of the polarization degrees of the disk. Instead, a geometric optics model of the disk with nonspherical grains with the radii of 30 micrometers is consistent with the observed profile. We suggest that the dust grains have experienced frequent collisional coagulations and have grown in the circumstellar disk of UX Tau A.

  14. Retrieval of Precise Radial Velocities from High Resolution Near-Infrared Spectra of M Dwarfs

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Plavchan, Peter; Gagne, Jonathan; Furlan, Elise; Bottom, Michael; Anglada-Escudé, Guillem; White, Russel J.; Davison, Cassy; Mills, Sean; Beichman, Charles A.; Brinkworth, Carolyn; Johnson, John; Ciardi, David R.; Wallace, J. Kent; Mennesson, Bertrand; von Braun, Kaspar; Vasisht, Gautam; Prato, Lisa A.; Kane, Stephen R.; Tanner, Angelle M.; Walp, Bernie; Crawford, Sam; Lin, Sean

    2015-01-01

    We present a data analysis pipeline focused on obtaining precision radial velocities (RV) of M Dwarfs from spectra taken between 2.309 and 2.316 microns by the CSHELL spectrograph (R~46,000) at NASA's Infrared Telescope Facility with the aid of a methane isotopologue gas cell (see poster by Plavchan et al. at this meeting). The pipeline compares the observed spectra with a forward model defined by parameters that are optimized using a simplex amoeba algorithm. The stellar template is optimized simultaneously with the fit parameters in an iterative process. The pipeline accounts for temporal variations in the spectral wavelength solution, line spread function, and interference fringes due to instrumental effects. We apply our pipeline to the M Dwarfs GJ 15 A and GJ 876 and the M Giant SV Peg. For GJ 15 A, we are able to obtain 30 m/s RV precision. For the planet host GJ 876, the two most massive planets are easily retrievable from our RV curve. For SV Peg, the single night RV precision can be as low as 15 m/s, with < 5 m/s obtainable through data stacking.

  15. High resolution far-infrared observations of the evolved H II region M16

    SciTech Connect

    McBreen, B.; Fazio, G.G.; Jaffe, D.T.

    1982-03-01

    M16 is an evolved, extremely density bounded H II region, which now consists only of a series of ionization fronts at molecular cloud boundaries. The source of ionization is the OB star cluster (NGC 6611) which is about 5 x 10/sup 6/ years old. We used the CFA/UA 102 cm balloon-borne telescope to map this region and detected three far-infrared (far-IR) sources embedded in an extended ridge of emission. Source I is an unresolved far-IR source embedded in a molecular cloud near a sharp ionization front. An H/sub 2/O maser is associated with this source, but no radio continuum emission has been observed. The other two far-IR sources (II and III) are associated with ionized gas-molecular cloud interfaces, with the far-IR radiation arising from dust at the boundary heated by the OB cluster. Source II is located at the southern prominent neutral intrusion with its associated bright rims and dark ''elephant trunk'' globules that delineate the current progress of the ionization front into the neutral material, and Source III arises at the interface of the northern molecular cloud fragment.

  16. High-resolution atmospheric pressure infrared laser desorption/ionization mass spectrometry imaging of biological tissue.

    PubMed

    Römpp, Andreas; Schäfer, Karl Christian; Guenther, Sabine; Wang, Zheng; Köstler, Martin; Leisner, Arne; Paschke, Carmen; Schramm, Thorsten; Spengler, Bernhard

    2013-09-01

    An atmospheric pressure laser desorption/ionization mass spectrometry imaging ion source has been developed that combines high spatial resolution and high mass resolution for the in situ analysis of biological tissue. The system is based on an infrared laser system working at 2.94 to 3.10 μm wavelength, employing a Nd:YAG laser-pumped optical parametrical oscillator. A Raman-shifted Nd:YAG laser system was also tested as an alternative irradiation source. A dedicated optical setup was used to focus the laser beam, coaxially with the ion optical axis and normal to the sample surface, to a spot size of 30 μm in diameter. No additional matrix was needed for laser desorption/ionization. A cooling stage was developed to reduce evaporation of physiological cell water. Ions were formed under atmospheric pressure and transferred by an extended heated capillary into the atmospheric pressure inlet of an orbital trapping mass spectrometer. Various phospholipid compounds were detected, identified, and imaged at a pixel resolution of up to 25 μm from mouse brain tissue sections. Mass accuracies of better than 2 ppm and a mass resolution of 30,000 at m/z = 400 were achieved for these measurements. PMID:23877173

  17. High-Resolution Infrared Imaging of FSC 10214+4724: Evidence for Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Graham, James R.; Liu, Michael C.

    1995-08-01

    We present near-infrared observations of the ultraluminous high-redshift (z = 2.286) IRAS source FSC 10214+4724 obtained in 0."4 seeing at the W. M. Keck telescope. These observations show that FSC 10214+4724 consists of a highly symmetric circular arc centered on a second weaker source. The arc has an angular extent of about 140 deg and is probably unresolved in the transverse direction. This morphology constitutes compelling prima facie evidence for a gravitationally lensed system. Our images also contain evidence for the faint counterimage predicted by the lens hypothesis. The morphology of FSC 10214+4724 can be explained in terms of a gravitationally lensed background source if the object at the center of curvature of the arc is an L* galaxy at z ~ 0.7. If FSC 10214+4724 is lensed, then there is significant magnification and its luminosity has been overestimated by a large factor. Our results suggest that FSC 10214+4724 is not a uniquely luminous object but ranks among the most powerful quasars and ultraluminous IRAS galaxies.

  18. Mid-Infrared OPO for High Resolution Measurements of Trace Gases in the Mars Atmosphere

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Numata,Kenji; Riris, haris; Abshire, James B.; Allan, Graham; Sun, Xiaoli; Krainak, Michael A.

    2008-01-01

    The Martian atmosphere is composed primarily (>95%) of CO2 and N2 gas, with CO, O2, CH4, and inert gases such as argon comprising most of the remainder. It is surprisingly dynamic with various processes driving changes in the distribution of CO2, dust, haze, clouds and water vapor on global scales in the meteorology of Mars atmosphere [I]. The trace gases and isotopic ratios in the atmosphere offer important but subtle clues as to the origins of the planet's atmosphere, hydrology, geology, and potential for biology. In the search for life on Mars, an important process is the ability of bacteria to metabolize inorganic substrates (H2, CO2 and rock) to derive energy and produce methane as a by-product of anaerobic metabolism. Trace gases have been measured in the Mars atmosphere from Earth, Mars orbit, and from the Mars surface. The concentration of water vapor and various carbon-based trace gases are observed in variable concentrations. Within the past decade multiple groups have reported detection of CH4, with concentrations in the 10's of ppb, using spectroscopic observations from Earth [2]. Passive spectrometers in the mid-infrared (MIR) are restricted to the sunlit side of the planet, generally in the mid latitudes, and have limited spectral and spatial resolution. To accurately map the global distribution and to locate areas of possibly higher concentrations of these gases such as plumes or vents requires an instrument with high sensitivity and fine spatial resolution that also has global coverage and can measure during both day and night. Our development goal is a new MIR lidar capable of measuring, on global scales, with sensitivity, resolution and precision needed to characterize the trace gases and isotopic ratios of the Martian atmosphere. An optical parametric oscillator operating in the MIR is well suited for this instrument. The sufficient wavelength tuning range of the OPO can extend the measurements to other organic molecules, CO2, atmospheric water

  19. High resolution infrared spectroscopy from space: A preliminary report on the results of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment on Spacelab 3

    NASA Technical Reports Server (NTRS)

    Farmer, Crofton B.; Raper, Odell F.

    1987-01-01

    The ATMOS (Atmospheric Trace Molecule Spectroscopy) experiment has the broad purpose of investigating the physical structure, chemistry, and dynamics of the upper atmosphere through the study of the distributions of the neutral minor and trace constituents and their seasonal and long-term variations. The technique used is high-resolution infrared absorption spectroscopy using the Sun as the radiation source, observing the changes in the transmission of the atmosphere as the line-of-sight from the Sun to the spacecraft penetrates the atmosphere close to the Earth's limb at sunrise and sunset. During these periods, interferograms are generated at the rate of one each second which yield, when transformed, high resolution spectra covering the 2.2 to 16 micron region of the infrared. Twenty such occultations were recorded during the Spacelab 3 flight, which have produced concentration profiles for a large number of minor and trace upper atmospheric species in both the Northern and Southern Hemispheres. Several of these species have not previously been observed in spectroscopic data. The data reduction and analysis procedures used following the flight are discussed; a number of examples of the spectra obtained are shown, and a bar graph of the species detected thus far in the analysis is given which shows the altitude ranges for which concentration profiles were retrieved.

  20. A High Resolution, Unobscured View of the Active Regions in (Ultra) Luminous Infrared Galaxies from a VLA 33 GHz Survey

    NASA Astrophysics Data System (ADS)

    Barcos-Muñoz, L.; Leroy, A.; Evans, A.; et al.

    2016-06-01

    I will present a new survey of 33 GHz radio continuum emission from local U/LIRGs carried out using the Karl G. Jansky Very Large Array (VLA). This is the first such survey and it combines high resolution, good sensitivity, and multi-configuration observations that should have sensitivity to emission on all spatial scales. (Ultra) luminous infrared galaxies host some of the most extreme star-forming environments in the local universe, with large reservoirs of molecular gas and dust concentrated in the central few kpc. Our VLA observations allow us to see through the dust in these systems to resolve the sizes of their active regions, which is essential to understand the surface and volume densities of star formation and gas in these extreme systems. I will present the best size measurements to date of the active regions for our 22 targets. I will show what these sizes imply about gas volume and surface density and infrared luminosity surface densities. I will also lay out the physical implications of these values for the strength of star formation and feedback (especially radiative feedback) in extreme environments.

  1. Updating Object for GIS Database Information Using High Resolution Satellite Images: a Case Study Zonguldak

    NASA Astrophysics Data System (ADS)

    Alkan, M.; Arca, D.; Bayik, Ç.; Marangoz, A. M.

    2011-09-01

    Nowadays Geographic Information Systems (GIS) uses Remote Sensing (RS) data for a lot of applications. One of the application areas is the updating of the GIS database using high resolution imagery. In this context high resolution satellite imagery data is very important for many applications areas today's and future. And also, high resolution satellite imagery data will be used in many applications for different purposes. Information systems needs to high resolution imagery data for updating. Updating is very important component for the any of the GIS systems. One of this area will be updated and kept alive GIS database information. High resolution satellite imagery is used with different data base which serve map information via internet and different aims of information systems applications in future topographic and cartographic information systems will very important in our country in this sense use of the satellite images will be unavoidable. In this study explain to how is acquired to satellite images and how is use this images in information systems for object and roads. Firstly, pan-sharpened two of the IKONOS's images have been produced by fusion of high resolution PAN and MS images using PCI Geomatica v9.1 software package. Automatic object extraction has been made using eCognition v4.0.6. On the other hand, these objects have been manually digitized from high resolution images using ArcGIS v9.3. software package. Application section of in this study, satellite images data will be compared each other and GIS objects and road database. It is also determined which data is useful in Geographic Information Systems. Finally, this article explains that integration of remote sensing technology and GIS applications.

  2. A high-resolution near-infrared extraterrestrial solar spectrum derived from ground-based Fourier transform spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Menang, Kaah P.; Coleman, Marc D.; Gardiner, Tom D.; Ptashnik, Igor V.; Shine, Keith P.

    2013-06-01

    A detailed spectrally resolved extraterrestrial solar spectrum (ESS) is important for line-by-line radiative transfer modeling in the near-IR. Very few observationally based high-resolution ESS are available in this spectral region. Consequently, the theoretically calculated ESS by Kurucz has been widely adopted. We present the CAVIAR (Continuum Absorption at Visible and Infrared Wavelengths and its Atmospheric Relevance) ESS, which is derived using the Langley technique applied to calibrated observations using a ground-based high-resolution Fourier transform spectrometer (FTS) in atmospheric windows from 2000 to 10,000 cm-1 (1-5 µm). There is good agreement between the strengths and positions of solar lines between the CAVIAR and the satellite-based Atmospheric Chemistry Experiment-FTS ESS, in the spectral region where they overlap, and good agreement with other ground-based FTS measurements in two near-IR windows. However, there are significant differences in the structure between the CAVIAR ESS and spectra from semiempirical models. In addition, we found a difference of up to 8% in the absolute (and hence the wavelength-integrated) irradiance between the CAVIAR ESS and that of Thuillier et al., which was based on measurements from the Atmospheric Laboratory for Applications and Science satellite and other sources. In many spectral regions, this difference is significant, because the coverage factor k = 2 (or 95% confidence limit) uncertainties in the two sets of observations do not overlap. Because the total solar irradiance is relatively well constrained, if the CAVIAR ESS is correct, then this would indicate an integrated "loss" of solar irradiance of about 30 W m-2 in the near-IR that would have to be compensated by an increase at other wavelengths.

  3. First High-Resolution Infrared Spectroscopic Measurements of Comet 2P/Encke: Unusual Organic Composition and Low Rotational Temperatures

    NASA Astrophysics Data System (ADS)

    Radeva, Yana L.; Mumma, M. J.; Villanueva, G. L.; Bonev, B. P.; DiSanti, M. A.; A'Hearn, M. F.; Dello Russo, N.

    2012-10-01

    We present the first high-resolution infrared spectra of the ecliptic comet 2P/Encke, acquired on UT 4 - 6 Nov. 2003, with the Near Infrared Echelle Spectrograph (NIRSPEC) on the Keck II telescope. 2P/Encke is a dynamical end-member among comets. Its very short period of 3.3 years (with perihelion at 0.34 AU and aphelion at 4.09 AU) exposes the nucleus to unusually high insolation throughout its orbit, raising the prospect that native ices may have experienced significant fractionation over time. Here, we present flux-calibrated spectra, production rates, and mixing ratios for H2O, CH3OH, HCN, H2CO, C2H2, C2H6, CH4 and CO, and compare the abundance ratios with the “organics-normal” population. We also extracted very low rotational temperatures (20 - 30 K) for H2O, HCN, and CH3OH in the near-nucleus coma, which correlate with one of the lowest cometary gas production rates ( 1027 molecules s-1) measured thus far in the infrared. We determined that 2P/Encke is enriched in CH3OH, but depleted in C2H6, C2H2, HCN, CH4, H2CO and CO. We compared mixing ratios of these organic species measured on separate dates, and found no evidence of macroscopic chemical heterogeneity in this cometary nucleus, however, we are limited by sparse temporal sampling of our observations. The depleted abundances of most measured species but retention of the high temperature volatiles (H2O, CH3OH) are consistent with fractionation of 2P/Encke’s native ices by thermal processing while in its current orbit. 2P/Encke is unique in terms of its short period, unusual organic composition, low rotational temperatures and low production rates. The discovery of its unusual organic composition is an important contribution to the emerging chemical taxonomy of comets.

  4. High-resolution far-infrared observations of the extended W51 complex

    NASA Technical Reports Server (NTRS)

    Rengarajan, T. N.; Cheung, L. H.; Fazio, G. G.; Shivanandan, K.; Mcbreen, B.

    1984-01-01

    A far-IR map with 1 arcmin resolution was obtained of the W51 H II region molecular cloud complex. The 40-120 microns survey was performed to study embedded sources which excite the H II gas. The far-IR emission distribution overlapped radio emissions from the region, implying that the extended dust clouds were heated by the same sources as the H II regions. Four compact sources were characterized and associated with concentrations of luminosities that suggested a scarcity of low-mass stars. The brightest source, labeled W51-I, has a luminosity/mass ratio of 150, high enough to indicate a burst of massive O star formation. No triggering mechanism was identified for the burst of star formation.

  5. A Ground-based Search for Lunar Resources Using High-resolution Imaging in the Infrared

    NASA Technical Reports Server (NTRS)

    Coombs, C. R.; Mckechnie, T. S.

    1992-01-01

    When humans return to the Moon, lunar resources will play an important role in the successful deployment and maintenance of the lunar base. Previous studies have illustrated the abundance of resource materials available on the surface of the Moon, as well as their ready accessibility. Particularly worth considering are the lunar regional (2,000-30,000 sq km) pyroclastic deposits scattered about the lunar nearside. These 30-50-m-thick deposits are composed of fine-grained unconsolidated titanium- and iron-rich mafic glasses and may be used as bulk feedstock for the beneficiation of oxygen, iron, titanium, sulfur, and other solar wind gases, or simply used as is for construction and shielding purposes. A groundbased observing survey of the resource-rich regions on the lunar nearside using a new imaging technique designed to obtain much higher resolution images, and more precise compositional analyses than previously obtainable is proposed.

  6. High resolution Mid-Infrared Imaging of Dust Disks Structures around Herbig Ae Stars with VISIR

    NASA Astrophysics Data System (ADS)

    Doucet, C.; Lagage, P.; Pantin, E.

    We present a new mode of observations with VISIR, the mid-InfraRed (mid-IR) imager and spectrometer on the VLT (ESO, Chile): the so-called BURST mode. This mode allows to reach the diffraction limit of the telescope. To illustrate results obtained with this mode, we discuss observations of disks around Herbig Ae stars, believed to harbour circumstellar disks. The 10-20 micron atmospheric windows are well-suited to study the extended emission of these objects. With a 8 m class telescope, in fair seeing conditions, the observations are diffraction limited at 10 micron and the spatial resolution could reach the diffraction limit of 0.3 arcsec. As a result, it is possible to resolve disks with a typical size of 100 AU around objects at a distance of 100 pc. We present here a significant example, HD97048, for which a flared disk of 350 AU is resolved at 11.3 micron (PAH band).

  7. BRIEF COMMUNICATIONS: High-resolution infrared laser spectroscopy of supercooled hexafluorides of heavy elements

    NASA Astrophysics Data System (ADS)

    Baronov, G. S.; Britov, A. D.; Karavaev, S. M.; Karchevskiĭ, A. I.; Kulikov, S. Yu; Merzlyakov, A. V.; Sivachenko, S. D.; Shcherbina, Yu I.

    1981-07-01

    A tunable injection laser spectrometer was used to investigate the ν3 band of sulfur, tungsten, and uranium hexafluorides. In order to eliminate hot bands superimposed on the fundamental ν3 transitions, the gases were supercooled in a supersonic jet. The gas under study constituted 1% of a helium mixture. It was found that in a supersonic jet the rotational temperature of the molecules was reduced to 40 °K. The isotopic structure of the ν3 band of supercooled WF6 was resolved and four Q branches corresponding to the 186W, 184W, 183W, and 182W isotopes were observed. The isotope shift was 0.31 cm-1/amu. For uranium hexafluoride, Q branches of the ν3 band of uranium isotopes with atomic weights of 238 and 235 were obtained. The isotope shift was 0.650±0.005 cm-1. The fine structure of the Q branch was resolved, the position of the maximum for U238F6 being 627.680 cm-1.

  8. Analysis of Atmospheric Trace Constituents from High Resolution Infrared Balloon-Borne and Ground-Based Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Rinsland, C. P.; Blatherwick, R. D.; Murcray, F. H.; Murcray, D. G.

    1991-01-01

    Recent results and ongoing studies of high resolution solar absorption spectra will be presented. The analysis of these spectra is aimed at the identification and quantification of trace constituents important in atmospheric chemistry of the stratosphere and upper troposphere. Analysis of balloon-borne and ground-based spectra obtained at 0.0025/ cm covering the 700-2200/ cm interval will be presented. Results from ground-based 0.02/ cm solar spectra, from several locations such as Denver, South Pole, M. Loa, and New Zealand will also be shown. The 0.0025/ cm spectra show many new spectroscopic features. The analysis of these spectra, along with corresponding laboratory spectra, improves the spectral line parameters, and thus the accuracy of trace constituents quantification. The combination of the recent balloon flights, with earlier flights data since 1978 at 0.02/ cm resolution, provides trends analysis of several stratospheric trace species. Results for COF2, F22, SF6, and other species will be presented. Analysis of several ground-based solar spectra provides trends for HCl, HF and other species. The retrieval methods used for total column density and altitude distribution for both ground-based and balloon-borne spectra will be presented. These are extended for the analysis of the ground-based spectra to be obtained by the high resolution interferometers of the Network for Detection of Stratospheric Change (NDSC). Progress or the University of Denver studies for the NDSC will be presented. This will include intercomparison of solar spectra and trace gases retrievals obtained from simultaneous scans by the high resolution (0.0025/ cm) interferometers of BRUKER and BOMEM.

  9. Object-Based Greenhouse Classification from High Resolution Satellite Imagery: a Case Study Antalya-Turkey

    NASA Astrophysics Data System (ADS)

    Coslu, M.; Sonmez, N. K.; Koc-San, D.

    2016-06-01

    Pixel-based classification method is widely used with the purpose of detecting land use and land cover with remote sensing technology. Recently, object-based classification methods have begun to be used as well as pixel-based classification method on high resolution satellite imagery. In the studies conducted, it is indicated that object-based classification method has more successful results than other classification methods. While pixel-based classification method is performed according to the grey value of pixels, object-based classification process is executed by generating imagery segmentation and updatable rule sets. In this study, it was aimed to detect and map the greenhouses from object-based classification method by using high resolution satellite imagery. The study was carried out in the Antalya province which includes greenhouse intensively. The study consists of three main stages including segmentation, classification and accuracy assessment. At the first stage, which was segmentation, the most important part of the object-based imagery analysis; imagery segmentation was generated by using basic spectral bands of high resolution Worldview-2 satellite imagery. At the second stage, applying the nearest neighbour classifier to these generated segments classification process was executed, and a result map of the study area was generated. Finally, accuracy assessments were performed using land studies and digital data of the area. According to the research results, object-based greenhouse classification using high resolution satellite imagery had over 80% accuracy.

  10. An in-depth look at the lunar crater Copernicus: Exposed mineralogy by high-resolution near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Bugiolacchi, Roberto; Mall, Urs; Bhatt, Megha; McKenna-Lawlor, Susan; Banaszkiewicz, Marek; Brønstad, Kjell; Nathues, Andreas; Søraas, Finn; Ullaland, Kjetil; Pedersen, Rolf B.

    2011-05-01

    Newly acquired, sequentially spaced, high-resolution near-infrared spectra across the central section of crater Copernicus' interior have been analyzed using a range of complementary techniques and indexes. We have developed a new interpretative method based on a multiple stage normalization process that appears to both confirm and expand on previous mineralogical estimations and mapping. In broad terms, the interpreted distribution of the principle mafic species suggests an overall composition of surface materials dominated by calcium-poor pyroxenes and minor olivine but with notable exceptions: the southern rim displays strong ca-rich pyroxene absorption features and five other locations, the uppermost northern crater wall, opposite rim sections facing the crater floor, and the central peak Pk1 and at the foot of Pk3, show instead strong olivine signatures. We also propose impact glass an alternative interpretation to the source of the weak but widespread olivine-like spectral signature found in low-reflectance samples, since it probably represents a major regolith constituent and component in large craters such as Copernicus. The high quality and performance of the SIR-2 data allows for the detection of diagnostic key mineral species even when investigating spectral samples with very subdued absorption features, confirming the intrinsic high-quality value of the returned data.

  11. A high-resolution three-dimensional far-infrared thermal and true-color imaging system for medical applications.

    PubMed

    Cheng, Victor S; Bai, Jinfen; Chen, Yazhu

    2009-11-01

    As the needs for various kinds of body surface information are wide-ranging, we developed an imaging-sensor integrated system that can synchronously acquire high-resolution three-dimensional (3D) far-infrared (FIR) thermal and true-color images of the body surface. The proposed system integrates one FIR camera and one color camera with a 3D structured light binocular profilometer. To eliminate the emotion disturbance of the inspector caused by the intensive light projection directly into the eye from the LCD projector, we have developed a gray encoding strategy based on the optimum fringe projection layout. A self-heated checkerboard has been employed to perform the calibration of different types of cameras. Then, we have calibrated the structured light emitted by the LCD projector, which is based on the stereo-vision idea and the least-squares quadric surface-fitting algorithm. Afterwards, the precise 3D surface can fuse with undistorted thermal and color images. To enhance medical applications, the region-of-interest (ROI) in the temperature or color image representing the surface area of clinical interest can be located in the corresponding position in the other images through coordinate system transformation. System evaluation demonstrated a mapping error between FIR and visual images of three pixels or less. Experiments show that this work is significantly useful in certain disease diagnoses. PMID:19782632

  12. High Resolution Near-Infrared Spectroscopy of Comet C/2013 R1 (Lovejoy) using WINERED at Koyama Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Kawakita, Hideyo; Shinnaka, Yoshiharu; Ogawa, Sayuri; Kobayashi, Hitomi; Kondo, Sohei; Nakanishi, Kenshi; Kawanishi, Takafumi; Nakaoka, Tetsuya; Otsubo, Shogo; Kinoshita, Masaomi; Ikeda, Yuji; Yamamoto, Ryo; Izumi, Natsuko; Fukue, Kei; Hamano, Satoshi; Yasui, Chikako; Mito, Hiroyuki; Matsunaga, Noriyuki; Kobayashi, Naoto

    2014-11-01

    High resolution near-infrared spectroscopic observations of comet C/2013 R1 (Lovejoy) using the WINERED ( 3x10^4) spectrometer on the 1.3-m Araki telescope at Koyama Astronomical Observatory were carried out on UT 2013 November 30. The comet was at 0.91 AU from the Sun and 0.49 AU from the Earth at the observations. This comet was considered to originate in the Oort cloud and became bright in visible from October to December 2013. The newly developed instrument, WINERED, was a cross-dispersed Echelle spectrometer that can cover the wavelength range from 0.9 to 1.3 microns simultaneously. Many emission lines were recorded in the high signal-to-noise ratio spectra of comet Lovejoy. We report the line assignment of the detected emission lines and present our preliminary analysis for CN Red-band system.This research program is supported by the MEXT --- Supported Program for the Strategic Research Foundation at Private Universities, 2014 - 2018.

  13. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) high-resolution near-infrared multi-object fiber spectrograph

    NASA Astrophysics Data System (ADS)

    Wilson, John C.; Hearty, Fred; Skrutskie, Michael F.; Majewski, Steven; Schiavon, Ricardo; Eisenstein, Daniel; Gunn, Jim; Blank, Basil; Henderson, Chuck; Smee, Stephen; Barkhouser, Robert; Harding, Al; Fitzgerald, Greg; Stolberg, Todd; Arns, Jim; Nelson, Matt; Brunner, Sophia; Burton, Adam; Walker, Eric; Lam, Charles; Maseman, Paul; Barr, Jim; Leger, French; Carey, Larry; MacDonald, Nick; Horne, Todd; Young, Erick; Rieke, George; Rieke, Marcia; O'Brien, Tom; Hope, Steve; Krakula, John; Crane, Jeff; Zhao, Bo; Carr, Mike; Harrison, Craig; Stoll, Robert; Vernieri, Mary A.; Holtzman, Jon; Shetrone, Matt; Allende-Prieto, Carlos; Johnson, Jennifer; Frinchaboy, Peter; Zasowski, Gail; Bizyaev, Dmitry; Gillespie, Bruce; Weinberg, David

    2010-07-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) will use a dedicated 300-fiber, narrow-band (1.5-1.7 micron), high resolution (R~30,000), near-infrared spectrograph to survey approximately 100,000 giant stars across the Milky Way. This survey, conducted as part of the Sloan Digital Sky Survey III (SDSS III), will revolutionize our understanding of kinematical and chemical enrichment histories of all Galactic stellar populations. The instrument, currently in fabrication, will be housed in a separate building adjacent to the 2.5 m SDSS telescope and fed light via approximately 45-meter fiber runs from the telescope. The instrument design includes numerous technological challenges and innovations including a gang connector that allows simultaneous connection of all fibers with a single plug to a telescope cartridge that positions the fibers on the sky, numerous places in the fiber train in which focal ratio degradation must be minimized, a large (290 mm x 475 mm elliptically-shaped recorded area) mosaic-VPH, an f/1.4 sixelement refractive camera featuring silicon and fused silica elements with diameters as large as 393 mm, three near-within a custom, LN2-cooled, stainless steel vacuum cryostat with dimensions 1.4 m x 2.3 m x 1.3 m.

  14. HIGH-RESOLUTION MID-INFRARED SPECTROSCOPY OF NGC 7538 IRS 1: PROBING CHEMISTRY IN A MASSIVE YOUNG STELLAR OBJECT

    SciTech Connect

    Knez, Claudia; Lacy, John H.; Evans, Neal J.; Van Dishoeck, Ewine F.; Richter, Matthew J.

    2009-05-01

    We present high-resolution (R = 75,000-100,000) mid-infrared spectra of the high-mass embedded young star IRS 1 in the NGC 7538 star-forming region. Absorption lines from many rotational states of C{sub 2}H{sub 2}, {sup 13}C{sup 12}CH{sub 2}, CH{sub 3}, CH{sub 4}, NH{sub 3}, HCN, HNCO, and CS are seen. The gas temperature, column density, covering factor, line width, and Doppler shift for each molecule are derived. All molecules were fit with two velocity components between -54 and -63 km s{sup -1}. We find high column densities ({approx}10{sup 16} cm{sup -2}) for all the observed molecules compared to values previously reported and present new results for CH{sub 3} and HNCO. Several physical and chemical models are considered. The favored model involves a nearly edge-on disk around a massive star. Radiation from dust in the inner disk passes through the disk atmosphere, where large molecular column densities can produce the observed absorption line spectrum.

  15. Calibration of the Visible and Near-Infrared Channels of the Advanced Very High Resolution Radiometer (AVHRR) After Launch

    NASA Technical Reports Server (NTRS)

    Rao, C. R. Nagaraja; Chen, Jianhua

    1993-01-01

    The relative degradation in time of the visible(channel 1: approx.0.58-0.6 microns) and near-infrared(channel 2: approx. O.72-1.1 microns) channels of the Advanced Very High Resolution Radiometer(AVHRR), onboard the NOAA Polar-orbiting Operational Environmental Satellites(POES), has been determined, using the southeastern Libyan desert(21-23 deg N latitude; 28- 29 deg E longitude) as a time-invariant calibration target. A statistical procedure was used on the reflectance data for the two channels from the B3 data of the International Satellite Cloud Climatology Project(ISCCP) to obtain the degradation rates for the AVERRs on NOAA-7, -9, and -11 spacecraft. The degradation rates per year for channels 1 and 2 are respectively: 3.6% and 4.3%(NOAA-7); 5.9% and 3.5%(NOAA-9); and 1.2% and 2.0%(NOAA-11). The use of the degradation rates thus determined, in conjunction with 'absolute' calibrations obtained from congruent aircraft and satellite measurements, in the development of correction algorithms is illustrated with the AVHRR on the NOAA-9 spacecraft.

  16. High-Resolution Infrared Spectroscopic Measurements of Comet 2PlEncke: Unusual Organic Composition and Low Rotational Temperatures

    NASA Technical Reports Server (NTRS)

    Radeva, Yana L.; Mumma, Michael J.; Villanueva, Geronimo L.; Bonev, Boncho P.; DiSanti, Michael A.; A'Hearn, Michael F.; Dello Russo, Neil

    2013-01-01

    We present high-resolution infrared spectroscopic measurements of the ecliptic comet 2P/Encke, observed on 4-6 Nov. 2003 during its close approach to the Earth, using the Near Infrared Echelle Spectrograph on the Keck II telescope. We present flux-calibrated spectra, production rates, and mixing ratios for H2O, CH3OH, HCN, H2CO, C2H2, C2H6, CH4 and CO. Comet 2P/Encke is a dynamical end-member among comets because of its short period of 3.3 years. Relative to "organics-normal" comets, we determined that 2PlEncke is depleted in HCN, H2CO, C2H2, C2H6, CH4 and CO, but it is enriched in CH3OH. We compared mixing ratios of these organic species measured on separate dates, and we see no evidence of macroscopic chemical heterogeneity in the nucleus of 2P/Encke, however, this conclusion is limited by sparse temporal sampling. The depleted abundances of most measured species suggest that 2P/Encke may have formed closer to the young Sun, before its insertion to the Kuiper belt, compared with "organics-normal" comets - as was previously suggested for other depleted comets (e.g. C/1999 S4 (LINEAR)). We measured very low rotational temperatures of 20 - 30 K for H2O, CH3OH and HCN in the near nucleus region of 2P/Encke, which correlate with one of the lowest cometary gas production rates (approx. 2.6 x 10(exp 27) molecules/s) measured thus far in the infrared. This suggests that we are seeing the effects of more efficient radiative cooling, insufficient collisional excitation, and/or inefficient heating by fast H-atoms (and icy grains) in the observed region of the coma. Its extremely short orbital period, very low gas production rate, and classification as an ecliptic comet, make 2PlEncke an important addition to our growing database, and contribute significantly to the establishment of a chemical taxonomy of comets.

  17. High-resolution infrared spectrum of jet-cooled methyl acetate in the C=O stretching region: internal rotations of two inequivalent methyl tops.

    PubMed

    Sunahori, Fumie X; Borho, Nicole; Liu, Xunchen; Xu, Yunjie

    2011-12-21

    The jet-cooled high resolution infrared (IR) spectrum of methyl acetate (MA), CH(3)-C(=O)-O-CH(3), in the C=O fundamental band region was recorded by using a rapid scan IR laser spectrometer equipped with an astigmatic multipass cell. No high resolution IR analyses of the ro-vibrational transitions between the ground and non-torsionally excited vibrational states have hitherto been reported for molecules with two inequivalent methyl rotors. Because of the two chemically different methyl tops in MA, i.e., the acetyl -CH(3) and methoxy -CH(3), each rotational energy level is split into more than two torsional sublevels by internal rotations of these methyl groups. We were able to assign ro-vibrational transitions of four torsional species by using the ground state combination differences calculated from the molecular constants of the vibrational ground state recently determined by a global fit of the microwave and millimeter wave lines [M. Tudorie, I. Kleiner, J. T. Hougen, S. Melandri, L. W. Sutikdja, and W. Stahl, J. Mol. Spectrosc. 269, 211 (2011)]. The assigned lines were successfully fitted using the BELGI-Cs-IR program to an overall standard deviation which is comparable to the measurement accuracy. This study is also of interest in understanding the role of methyl rotors in the intramolecular vibrational-energy redistribution processes in mid-size organic molecules. PMID:22191878

  18. High-resolution infrared spectrum of jet-cooled methyl acetate in the C=O stretching region: Internal rotations of two inequivalent methyl tops

    NASA Astrophysics Data System (ADS)

    Sunahori, Fumie X.; Borho, Nicole; Liu, Xunchen; Xu, Yunjie

    2011-12-01

    The jet-cooled high resolution infrared (IR) spectrum of methyl acetate (MA), CH3-C(=O)-O-CH3, in the C=O fundamental band region was recorded by using a rapid scan IR laser spectrometer equipped with an astigmatic multipass cell. No high resolution IR analyses of the ro-vibrational transitions between the ground and non-torsionally excited vibrational states have hitherto been reported for molecules with two inequivalent methyl rotors. Because of the two chemically different methyl tops in MA, i.e., the acetyl -CH3 and methoxy -CH3, each rotational energy level is split into more than two torsional sublevels by internal rotations of these methyl groups. We were able to assign ro-vibrational transitions of four torsional species by using the ground state combination differences calculated from the molecular constants of the vibrational ground state recently determined by a global fit of the microwave and millimeter wave lines [M. Tudorie, I. Kleiner, J. T. Hougen, S. Melandri, L. W. Sutikdja, and W. Stahl, J. Mol. Spectrosc. 269, 211 (2011)]. The assigned lines were successfully fitted using the BELGI-Cs-IR program to an overall standard deviation which is comparable to the measurement accuracy. This study is also of interest in understanding the role of methyl rotors in the intramolecular vibrational-energy redistribution processes in mid-size organic molecules.

  19. High-resolution NWP for aviation - lessons from case studies and test products

    NASA Astrophysics Data System (ADS)

    Líf Kristinsdóttir, Birta; Ólafsson, Haraldur; Ágústsson, Hálfdán; Pálmason, Bolli; Nína Petersen, Guðrún; Freyr Hervarsson, Theodór

    2014-05-01

    In recent years, several studies have been made of weather conditions that have led to aircraft incidents. In this study, an overview of these studies is presented together with recommendations for weather forecasting for aviation. The most important result is the successful application of high-resolution simulations. Products of such simulations, showing vertical wind velocities and turbulence are now produced in real-time and disseminated as test-products.

  20. High Resolution Infrared Spectroscopy and Semi-Experimental Structures of Si2C3 and Ge2C3

    NASA Astrophysics Data System (ADS)

    Lutter, Volker; Giesen, Thomas; Gauss, Jürgen; Thorwirth, Sven

    2014-06-01

    Molecular species of group 14 elements e.g. carbon, silicon, and germanium are well suited to study cumulenic bond properties and to compare experimental results with high level quantum chemical calculations. In our recent investigation of SiC_3Si and GeC_3Ge, a high resolution laser spectrometer has been used to record rotationally resolved spectra of selected isotopologues at 5 μm. We derived semi-empirical values for Si-C and Ge-C bond distances based on spectroscopic data and corresponding zero-point vibrational corrections calculated at the CCSD(T)/cc-pVXZ level of theory (with X = T and Q). Comparison of semi-empirical structural parameters with those from quantum chemical calculations reveals very good agreement for both molecules. Relativistic effects are found negligible for SiC_3Si and small for GeC_3Ge.

  1. Study of fish response using particle image velocimetry and high-speed, high-resolution imaging

    SciTech Connect

    Deng, Z.; Richmond, M. C.; Mueller, R. P.; Gruensch, G. R.

    2004-10-01

    Fish swimming has fascinated both engineers and fish biologists for decades. Digital particle image velocimetry (DPIV) and high-speed, high-resolution digital imaging are recently developed analysis tools that can help engineers and biologists better understand how fish respond to turbulent environments. This report details studies to evaluate DPIV. The studies included a review of existing literature on DPIV, preliminary studies to test the feasibility of using DPIV conducted at our Flow Biology Laboratory in Richland, Washington September through December 2003, and applications of high-speed, high-resolution digital imaging with advanced motion analysis to investigations of fish injury mechanisms in turbulent shear flows and bead trajectories in laboratory physical models. Several conclusions were drawn based on these studies, which are summarized as recommendations for proposed research at the end of this report.

  2. Compact high-resolution gamma-ray computed tomography system for multiphase flow studies

    SciTech Connect

    Bieberle, A.; Nehring, H.; Berger, R.; Arlit, M.; Haerting, H.-U.; Schubert, M.; Hampel, U.

    2013-03-15

    In this paper, a compact high-resolution gamma-ray Computed Tomography (CompaCT) measurement system for multiphase flow studies and tomographic imaging of technical objects is presented. Its compact and robust design makes it particularly suitable for studies on industrial facilities and outdoor applications. Special care has been given to thermal ruggedness, shock resistance, and radiation protection. Main components of the system are a collimated {sup 137}Cs isotopic source, a thermally stabilised modular high-resolution gamma-ray detector arc with 112 scintillation detector elements, and a transportable rotary unit. The CompaCT allows full CT scans of objects with a diameter of up to 130 mm and can be operated with any tilting angle from 0 Degree-Sign (horizontal) to 90 Degree-Sign (vertical).

  3. Compact high-resolution gamma-ray computed tomography system for multiphase flow studies

    NASA Astrophysics Data System (ADS)

    Bieberle, A.; Nehring, H.; Berger, R.; Arlit, M.; Härting, H.-U.; Schubert, M.; Hampel, U.

    2013-03-01

    In this paper, a compact high-resolution gamma-ray Computed Tomography (CompaCT) measurement system for multiphase flow studies and tomographic imaging of technical objects is presented. Its compact and robust design makes it particularly suitable for studies on industrial facilities and outdoor applications. Special care has been given to thermal ruggedness, shock resistance, and radiation protection. Main components of the system are a collimated 137Cs isotopic source, a thermally stabilised modular high-resolution gamma-ray detector arc with 112 scintillation detector elements, and a transportable rotary unit. The CompaCT allows full CT scans of objects with a diameter of up to 130 mm and can be operated with any tilting angle from 0° (horizontal) to 90° (vertical).

  4. Compact high-resolution gamma-ray computed tomography system for multiphase flow studies.

    PubMed

    Bieberle, A; Nehring, H; Berger, R; Arlit, M; Härting, H-U; Schubert, M; Hampel, U

    2013-03-01

    In this paper, a compact high-resolution gamma-ray Computed Tomography (CompaCT) measurement system for multiphase flow studies and tomographic imaging of technical objects is presented. Its compact and robust design makes it particularly suitable for studies on industrial facilities and outdoor applications. Special care has been given to thermal ruggedness, shock resistance, and radiation protection. Main components of the system are a collimated (137)Cs isotopic source, a thermally stabilised modular high-resolution gamma-ray detector arc with 112 scintillation detector elements, and a transportable rotary unit. The CompaCT allows full CT scans of objects with a diameter of up to 130 mm and can be operated with any tilting angle from 0° (horizontal) to 90° (vertical). PMID:23556806

  5. High Resolution Imager (HRI) for the Roentgen Satellite (ROSAT) definition study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The design of the high resolution imager (HRI) on HEAO 2 was modified for use in the instrument complement of the Roentgen Satellite (ROSAT). Mechanical models of the front end assembly, central electronics assembly, and detector assembly were used to accurately represent the HRI envelope for both fit checks and focal plane configuration studies. The mechanical and electrical interfaces were defined and the requirements for electrical ground support equipment were established. A summary description of the ROSAT telescope and mission is included.

  6. Recent high-resolution seismic reflection studies of active faults in the Puget Lowland

    NASA Astrophysics Data System (ADS)

    Liberty, L. M.; Pratt, T. L.

    2005-12-01

    In the past four years, new high-resolution seismic surveys have filled in key gaps in our understanding of active structures beneath the Puget Lowland, western Washington State. Although extensive regional and high-resolution marine seismic surveys have been fundamental to understanding the tectonic framework of the area, these marine profiles lack coverage on land and in shallow or restricted waterways. The recent high-resolution seismic surveys have targeted key structures beneath water bodies that large ships cannot navigate, and beneath city streets underlain by late Pleistocene glacial deposits that are missing from the waterways. The surveys can therefore bridge the gap between paleoseismic and marine geophysical studies, and test key elements of models proposed by regional-scale geophysical studies. Results from these surveys have: 1) documented several meters of vertical displacement on at least two separate faults in the Olympia area; 2) clarified the relationship between the Catfish Lake scarp and the underlying kink band in the Tacoma fault zone; 3) provided a first look at the structures beneath the north portion of the western Tacoma fault zone, north of previous marine profiles; 4) documented that deformation along the Seattle fault extends well east of Lake Sammamish; 5) imaged the Seattle fault beneath the Vasa Park trench; and 6) documented multiple fault strands in and south of the Seattle fault zone south of Bellevue. The results better constrain interpretations of paleoseismic investigations of past earthquakes on these faults, and provide targets for future paleoseismic studies.

  7. High-Resolution Seismic Reflection Studies of Active Faults: a Case Study from Washington State

    NASA Astrophysics Data System (ADS)

    Liberty, L. M.; Pratt, T. L.

    2007-12-01

    In the past five years, new high-resolution seismic surveys have filled in gaps in our understanding of active structures beneath the Puget Lowland region of Washington State. The extensive forests have made recognition of active faults difficult, but new Light Distance and Ranging (LIDAR) detailed topographic data have made a major breakthrough in mapping active faults. Extensive regional and high-resolution marine seismic surveys have been fundamental to understanding the tectonic framework of the area. These marine profiles, however, lack coverage beneath water bodies that large ships cannot navigate and beneath city streets underlain by late Pleistocene glacial deposits that are missing from the waterways. Recent land surveys and profiles in restricted waterways can therefore bridge the gap between paleoseismic and marine geophysical studies, and test elements of models proposed by regional-scale geophysical studies. We have also been venturing into more congested areas to seismically image faults in key urban locations. Results from recent surveys have: 1) documented new faults that had long been suspected in the Olympia area; 2) clarified the relationship between the LIDAR scarps and observed structures across the Tacoma fault zone; 3) provided a window into structures beneath the north and eastern portions of the western Tacoma fault zone; 4) documented deformation along the Seattle fault near a paleoseismic trench; 5) mapped the eastern part the Seattle fault zone beyond its previously mapped limits; and 6) documented multiple fault strands in the Seattle fault zone in the cities of Bellevue and Seattle. The results better constrain interpretations of paleoseismic data collected on these faults, and provide targets for future paleoseismic studies.

  8. Advanced Ecosystem Mapping Techniques for Large Arctic Study Domains Using Calibrated High-Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Macander, M. J.; Frost, G. V., Jr.

    2015-12-01

    Regional-scale mapping of vegetation and other ecosystem properties has traditionally relied on medium-resolution remote sensing such as Landsat (30 m) and MODIS (250 m). Yet, the burgeoning availability of high-resolution (<=2 m) imagery and ongoing advances in computing power and analysis tools raises the prospect of performing ecosystem mapping at fine spatial scales over large study domains. Here we demonstrate cutting-edge mapping approaches over a ~35,000 km² study area on Alaska's North Slope using calibrated and atmospherically-corrected mosaics of high-resolution WorldView-2 and GeoEye-1 imagery: (1) an a priori spectral approach incorporating the Satellite Imagery Automatic Mapper (SIAM) algorithms; (2) image segmentation techniques; and (3) texture metrics. The SIAM spectral approach classifies radiometrically-calibrated imagery to general vegetation density categories and non-vegetated classes. The SIAM classes were developed globally and their applicability in arctic tundra environments has not been previously evaluated. Image segmentation, or object-based image analysis, automatically partitions high-resolution imagery into homogeneous image regions that can then be analyzed based on spectral, textural, and contextual information. We applied eCognition software to delineate waterbodies and vegetation classes, in combination with other techniques. Texture metrics were evaluated to determine the feasibility of using high-resolution imagery to algorithmically characterize periglacial surface forms (e.g., ice-wedge polygons), which are an important physical characteristic of permafrost-dominated regions but which cannot be distinguished by medium-resolution remote sensing. These advanced mapping techniques provide products which can provide essential information supporting a broad range of ecosystem science and land-use planning applications in northern Alaska and elsewhere in the circumpolar Arctic.

  9. Characterization of REE-Bearing Minerals and Synthetic Materials Using High Resolution Ultraviolet to Near-Infrared Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoefen, T. M.; Livo, K. E.; Giles, S. A.; Lowers, H. A.; Swayze, G. A.; Taylor, C. D.; Verplanck, P. L.; Emsbo, P.; Koenig, A.; Mccafferty, A. E.

    2014-12-01

    Diagnostic crystal field 4fn-4fn transition features in the ultraviolet (UV) to near-infrared (NIR) region of the electromagnetic spectrum have been observed in many common rare earth element (REE)-bearing minerals. The partial filling of the 4f electron shell combined with a shielding effect caused by the fully filled 5s25p6-electron shells, which weaken any effects from external magnetic or electric fields on the electrons, makes rare earth ions unique. The narrow absorption features occur as a result of parity forbidden transitions and crystal field splitting of the trivalent REEs, and since they are well shielded, only subtle wavelengths shifts are seen in their spectral features. Synthetic single REE phosphates, carbonates, oxides, hydroxides and glasses have been measured in the lab to help identify absorption band positions that are characteristic of each REE as they occur in different minerals. Because spectral resolution is critical to identifying shifts in the absorption band positions, these materials have been measured on several different high resolution spectrometers. Using a combination of Ocean Optics USB 2000+ UV-VIS, USB2000+ VIS-NIR and ASD FS 4 spectrometers we have characterized REE-bearing materials from 0.2 to 2.5 microns with a spectral resolution of ~2 nm between 0.2 and 1.0 microns and 11 to 12 nm between 1.0 and 2.5 microns. Results to date suggest that wavelength shifts and variations in the degree of crystal field splitting allow spectral differentiation between REE-bearing minerals. To support these results, a comprehensive suite of marine phosphates, paleo-beach placers, IOCG deposits, alkaline to peralkaline igneous complexes, pegmatites associated with alkaline magmas and carbonatite intrusives, have been measured and included in our database. Core, rock chips, billets, sediment samples and grab samples were manually scanned to identify the most intense or spectrally different REE features. While REE-bearing minerals have been

  10. Enhanced Urban Landcover Classification for Operational Change Detection Study Using Very High Resolution Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Jawak, S. D.; Panditrao, S. N.; Luis, A. J.

    2014-11-01

    This study presents an operational case of advancements in urban land cover classification and change detection by using very high resolution spatial and multispectral information from 4-band QuickBird (QB) and 8-band WorldView-2 (WV-2) image sequence. Our study accentuates quantitative, pixel based, image difference approach for operational change detection using very high resolution pansharpened QB and WV-2 images captured over San Francisco city, California, USA (37° 44" 30N', 122° 31" 30' W and 37° 41" 30° N ,122° 20" 30' W). In addition to standard QB image, we compiled three multiband images from eight pansharpened WV-2 bands: (1) multiband image from four traditional spectral bands, i.e., Blue, Green, Red and near-infrared 1 (NIR1) (henceforth referred as "QB equivalent WV-2"), (2) multiband image from four new spectral bands, i.e., Coastal, Yellow, Red Edge and NIR2 (henceforth referred as "new band WV-2"), and (3) multiband image consisting of four traditional and four new bands (henceforth referred as "standard WV-2"). All the four multiband images were classified using support vector machine (SVM) classifier into four most abundant land cover classes, viz, hard surface, vegetation, water and shadow. The assessment of classification accuracy was performed using random selection of 356 test points. Land cover classifications on "standard QB" image (kappa coeffiecient, κ = 0.93), "QB equivalent WV-2" image (κ = 0.97), and "new band WV-2" image (κ = 0.97) yielded overall accuracies of 96.31 %, 98.03 % and 98.31 %, respectively, while "standard WV-2" image (κ = 0.99) yielded an improved overall accuracy of 99.18 %. It is concluded that the addition of four new spectral bands to the existing four traditional bands improved the discrimination of land cover targets, due to increase in the spectral characteristics of WV-2 satellite. Consequently, to test the validity of improvement in classification process for implementation in operational change

  11. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Susskind, J.; Aumann, H. H.

    2015-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  12. High Resolution Infrared Spectra of Ar-Water and Ne-Water at 6 μm

    NASA Astrophysics Data System (ADS)

    Liu, X.; Xu, Y.

    2012-06-01

    Ar- and Ne-water are highly floppy van der Waals complexes where the water subunit experiences nearly free internal rotation. Their ro-vibrational energy levels are characterized by the internal rotor states of the water subunit within the complex and a pseudo-diatomic rotational energy Hamiltonian. Large amplitude motions of the complexes lead to strong perturbations, such as Coriolis coupling and angular-radial coupling among the internal rotor states and the van der Waals bending and stretching states. Mid-infrared spectra of Ar- and Ne-water were measured with a direct absorption spectrometer with an external cavity quantum cascade laser at 6 μm and a 366-pass astigmatic absorption cell. footnote{X. Liu, Y. Xu, Z. S., W. S. Tam, I. Leonov, {Appl. Phys. B}, \\underline{{102}}, 629, 2011} The scan-to-scan frequency instability of the laser was addressed with a ``on-the-fly'' calibration procedure. The infrared spectrum of Ar-water has been studied by Weida and Nesbitt, in which the Σ 110 and π 110 states have been identified. At least three new overlapping bands at 1630 cm-1 have been observed and two of them have been tentatively assigned to the n=1, Σ 101 gets π 110 and Σ 110 gets Σ 101 bands. The n=1, π 101 gets Σ 101 band that was missing in the previous study was found at 1639 cm-1. Four new bands in the 1645-1665 cm-1 region have been observed and assigned to the π 212 gets π 101, Σ 212 gets Σ 101, π 212 gets Σ 101, and n=1, Σ 111 gets Σ 000. A global fit of the microwave, far-infrared, near-infrared and mid-infrared data was performed with Pickett's SPFIT program to determine the spectroscopic constants of these levels. Infrared spectrum of Ne-water is analogous to that of Ar-water. The Ne-water PES is much shallower than that Ar-water. As a result, there are fewer number of internal rotor states supported by the surface. Indeed, only the π 110 gets Σ 101, Σ 110 gets π 101, n=1, Σ 000 gets Σ 000, and π 111 gets Σ 000 bands were

  13. Mini-Sosie high-resolution seismic method aids hazards studies

    USGS Publications Warehouse

    Stephenson, W.J.; Odum, J.; Shedlock, K.M.; Pratt, T.L.; Williams, R.A.

    1992-01-01

    The Mini-Sosie high-resolution seismic method has been effective in imaging shallow-structure and stratigraphic features that aid in seismic-hazard and neotectonic studies. The method is not an alternative to Vibroseis acquisition for large-scale studies. However, it has two major advantages over Vibroseis as it is being used by the USGS in its seismic-hazards program. First, the sources are extremely portable and can be used in both rural and urban environments. Second, the shifting-and-summation process during acquisition improves the signal-to-noise ratio and cancels out seismic noise sources such as cars and pedestrians. -from Authors

  14. Developmental and morphological studies in Japanese medaka with ultra-high resolution optical coherence tomography

    PubMed Central

    Gladys, Fanny Moses; Matsuda, Masaru; Lim, Yiheng; Jackin, Boaz Jessie; Imai, Takuto; Otani, Yukitoshi; Yatagai, Toyohiko; Cense, Barry

    2015-01-01

    We propose ultra-high resolution optical coherence tomography to study the morphological development of internal organs in medaka fish in the post-embryonic stages at micrometer resolution. Different stages of Japanese medaka were imaged after hatching in vivo with an axial resolution of 2.8 µm in tissue. Various morphological structures and organs identified in the OCT images were then compared with the histology. Due to the medaka’s close resemblance to vertebrates, including humans, these morphological features play an important role in morphogenesis and can be used to study diseases that also occur in humans. PMID:25780725

  15. Machine Learning Approaches for High-resolution Urban Land Cover Classification: A Comparative Study

    SciTech Connect

    Vatsavai, Raju; Chandola, Varun; Cheriyadat, Anil M; Bright, Eddie A; Bhaduri, Budhendra L; Graesser, Jordan B

    2011-01-01

    The proliferation of several machine learning approaches makes it difficult to identify a suitable classification technique for analyzing high-resolution remote sensing images. In this study, ten classification techniques were compared from five broad machine learning categories. Surprisingly, the performance of simple statistical classification schemes like maximum likelihood and Logistic regression over complex and recent techniques is very close. Given that these two classifiers require little input from the user, they should still be considered for most classification tasks. Multiple classifier systems is a good choice if the resources permit.

  16. Thermal signatures of urban land cover types: High-resolution thermal infrared remote sensing of urban heat island in Huntsville, AL

    NASA Technical Reports Server (NTRS)

    Lo, Chor Pang

    1996-01-01

    The main objective of this research is to apply airborne high-resolution thermal infrared imagery for urban heat island studies, using Huntsville, AL, a medium-sized American city, as the study area. The occurrence of urban heat islands represents human-induced urban/rural contrast, which is caused by deforestation and the replacement of the land surface by non-evaporating and non-porous materials such as asphalt and concrete. The result is reduced evapotranspiration and more rapid runoff of rain water. The urban landscape forms a canopy acting as a transitional zone between the atmosphere and the land surface. The composition and structure of this canopy have a significant impact on the thermal behavior of the urban environment. Research on the trends of surface temperature at rapidly growing urban sites in the United States during the last 30 to 50 years suggests that significant urban heat island effects have caused the temperatures at these sites to rise by 1 to 2 C. Urban heat islands have caused changes in urban precipitation and temperature that are at least similar to, if not greater than, those predicted to develop over the next 100 years by global change models. Satellite remote sensing, particularly NOAA AVHRR thermal data, has been used in the study of urban heat islands. Because of the low spatial resolution (1.1 km at nadir) of the AVHRR data, these studies can only examine and map the phenomenon at the macro-level. The present research provides the rare opportunity to utilize 5-meter thermal infrared data acquired from an airplane to characterize more accurately the thermal responses of different land cover types in the urban landscape as input to urban heat island studies.

  17. High Resolution Tsunami Vulnerability Assessment for Coastal Utilities; Case Studies in the Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Yalciner, A. C.; Aytore, B.; Cankaya, C.; Guler, H. G.; Suzen, L.; Zaytsev, A.; Arikawa, T.; Takashi, T.

    2014-12-01

    Resilience of coastal utilities against earthquakes and tsunamis have major importance for efficient and proper rescue and recovery operations soon after disasters. Istanbul as a mega city have long coastline and strongly interact with Marmara sea with its dense coastal utilization. Yenikapi region and Haydarpasa port are two of major coastal utilities. Haydarpasa port has critical components such as the main transportation hub at Asian side of megacity Istanbul, cargo and container stock areas, ro-ro handling operations and passenger terminals. Yenikapi area serves different coastal activities and marine passenger transportation in the Marmara sea. High resolution GIS database of the Istanbul Metropolitan Municipality (IMM) is analyzed and detaled bathymetry and topography database is developed considering vulnerability of the near shore structures and buildings. Two different tsunami numerical models i) NAMIDANCE code (2-Dimensional, depth averaged shallow water model with dispersion hybrid model) and ii) STOC-CADMAS System (Quasi 3-Dimensional in large domains and 3-Dimensional in small domains hybrid model) are used in nested domain in simulations. In this study the accurate vulnerability assessments of these coastal utilities are performed by utilizing high performance computing technology with high resolution bathymetry and topography data for Haydarpasa and Yenikapi regions based on accurate GIS data. The results of computed 2D and 3D numerical models and also the achievements by high performance Computing systems are evaluated. As the result, the computed tsunami parameters inside the coastal utilities are compared and discussed to clarify the benefits of using high resolution data and using the 2D and 3D numerical models.

  18. A Multi-Site Study Employing High Resolution HLA Genotyping by Next Generation Sequencing

    PubMed Central

    Holcomb, C. L.; Höglund, B.; Anderson, M. W.; Blake, L.A.; Böhme, I.; Egholm, M.; Ferriola, D.; Gabriel, C.; Gelber, S. E.; Goodridge, D.; Hawbecker, S.; Klein, R.; Ladner, M.; Lind, C.; Monos, D.; Pando, M. J.; Pröll, J.; Sayer, D. C.; Schmitz-Agheguian, G.; Simen, B. B.; Thiele, B.; Trachtenberg, E. A.; Tyan, D. B.; Wassmuth, R.; White, S.; Erlich, H. A.

    2014-01-01

    The high degree of polymorphism at HLA class I and class II loci makes high resolution HLA typing challenging. Current typing methods, including Sanger sequencing, yield ambiguous typing results due to incomplete genomic coverage and inability to set phase for HLA haplotype determination. The 454 Life Sciences GS FLX next generation sequencing system coupled with Conexio ATF software can provide very high resolution HLA genotyping. High throughput genotyping can be achieved by use of primers with multiplex identifier (MID) tags to allow pooling of the amplicons generated from different individuals prior to sequencing. We have conducted a double blind study in which eight laboratory sites performed amplicon sequencing using GS FLX standard chemistry and genotyped the same 20 samples for HLA-A, -B, -C, DPB1, DQA1, DQB1, DRB1, and DRB3, DRB4 and DRB5 (DRB3/4/5) in a single sequencing run. The average sequence read length was 250 base pairs (bp) and the average number of sequence reads per amplicon was 672, providing confidence in the allele assignments. Of the 1280 genotypes considered, assignment was possible in 95% of the cases. Failure to assign genotypes was the result of researcher procedural error or the presence of a novel allele rather than a failure of sequencing technology. Concordance with known genotypes, in cases where assignment was possible, ranged from 95.3% to 99.4% for the eight sites, with overall concordance of 97.2%. We conclude that clonal pyrosequencing using the GS FLX platform and Conexio ATF software allows reliable identification of HLA genotypes at high resolution. PMID:21299525

  19. Retrieving dust aerosols properties (optical depth and altitude) from very high resolution infrared sounders : from AIRS to IASI.

    NASA Astrophysics Data System (ADS)

    Peyridieu, S.; Chédin, A.; Capelle, V.; Pierangelo, C.; Lamquin, N.; Armante, R.

    2009-04-01

    Observation from space, being global and quasi-continuous, is a first importance tool for aerosol studies. Remote sensing in the visible domain has been widely used to obtain better characterization of these particles and their effect on solar radiation. On the opposite, remote sensing of aerosols in the thermal infrared domain still remains marginal. However, knowledge of the effect of aerosols on terrestrial radiation is needed for the evaluation of their total radiative forcing. Infrared remote sensing provides a way to retrieve other aerosol characteristics, including their mean altitude. Moreover, observations are possible at night and day, over ocean and over land. In this context, six years (2003-2008) of the 2nd generation vertical sounder AIRS observations have been processed over the tropical belt (30°N-30°S). Aerosol properties (10 µm infrared optical depth and mean layer altitude) are retrieved using a Look-Up Table (LUT) approach. The forward radiative transfer model 4A (Automatized Atmospheric Absorption Atlas) coupled with the DISORT algorithm accounting for atmospheric diffusion is used to feed the LUTs with simulations of the brightness temperatures of AIRS channels selected for their sensitivity to dust aerosols. LUTs degrees of freedom are : instrument viewing angle, surface pressure and surface emissivity, a parameter particularly important for dust retrieval over bright surfaces, such as deserts. AODs (resp. altitude) are sampled over the range 0.0-0.8 (resp. 0-5800 m). The retrieval algorithm follows two main steps : (i) retrieval of the atmospheric situation observed (temperature and water vapour profiles) ; (ii) retrieval of aerosol properties. Results have been compared to instruments commonly used in aerosol studies and also part of the Aqua Train : MODIS/Aqua and CALIOP/CALIPSO. The agreement obtained from these comparisons is quite satisfactory, demonstrating that our algorithm effectively allows the simultaneous retrieval of dust AOD

  20. High-resolution neutron crystallographic studies of the hydration of the coenzyme cob(II)alamin

    SciTech Connect

    Jogl, Gerwald; Wang, Xiaoping; Mason, Sax A.; Kovalevsky, Andrey; Mustyakimov, Marat; Fisher, Zöe; Hoffman, Christina; Kratky, Christoph; Langan, Paul

    2011-06-01

    High-resolution crystallographic studies of the hydration of the coenzyme cob(II)alamin have provided hydrogen-bond parameters of unprecedented accuracy for a biomacromolecule. The hydration of the coenzyme cob(II)alamin has been studied using high-resolution monochromatic neutron crystallographic data collected at room temperature to a resolution of 0.92 Å on the original D19 diffractometer with a prototype 4° × 64° detector at the high-flux reactor neutron source run by the Institute Laue–Langevin. The resulting structure provides hydrogen-bonding parameters for the hydration of biomacromolecules to unprecedented accuracy. These experimental parameters will be used to define more accurate force fields for biomacromolecular structure refinement. The presence of a hydrophobic bowl motif surrounded by flexible side chains with terminal functional groups may be significant for the efficient scavenging of ligands. The feasibility of extending the resolution of this structure to ultrahigh resolution was investigated by collecting time-of-flight neutron crystallographic data during commissioning of the TOPAZ diffractometer with a prototype array of 14 modular 2° × 21° detectors at the Spallation Neutron Source run by Oak Ridge National Laboratory.

  1. A digitally configurable measurement platform using audio cards for high-resolution electronic transport studies

    NASA Astrophysics Data System (ADS)

    Gopman, D. B.; Bedau, D.; Kent, A. D.

    2012-05-01

    We report on a software-defined digitally configurable measurement platform for determining electronic transport properties in nanostructures with small readout signals. By using a high-resolution audio analog-to-digital/digital-to-analog converter in a digitally compensated bridge configuration we significantly increase the measurement speed compared to established techniques and simultaneously acquire large and small signal characteristics. We characterize the performance (16 bit resolution, 100 dB dynamic range at 192 kS/s) and demonstrate the application of this measurement platform for studying the transport properties of spin-valve nanopillars, a two-terminal device that exhibits giant magnetoresistance and whose resistance can be switched between two levels by applied magnetic fields and by currents applied by the audio card. The high resolution and fast sampling capability permits rapid acquisition of deep statistics on the switching of a spin-valve nanopillar and reduces the time to acquire the basic properties of the device - a state-diagram showing the magnetic configurations as function of applied current and magnetic field - by orders of magnitude.

  2. High Resolution Studies of the Origins of Polyatomic Ions in Inductively Coupled Plasma-Mass Spectrometry

    SciTech Connect

    Jill Wisnewski Ferguson

    2006-08-09

    The inductively coupled plasma (ICP) is an atmospheric pressure ionization source. Traditionally, the plasma is sampled via a sampler cone. A supersonic jet develops behind the sampler, and this region is pumped down to a pressure of approximately one Torr. A skimmer cone is located inside this zone of silence to transmit ions into the mass spectrometer. The position of the sampler and skimmer cones relative to the initial radiation and normal analytical zones of the plasma is key to optimizing the useful analytical signal [1]. The ICP both atomizes and ionizes the sample. Polyatomic ions form through ion-molecule interactions either in the ICP or during ion extraction [l]. Common polyatomic ions that inhibit analysis include metal oxides (MO{sup +}), adducts with argon, the gas most commonly used to make up the plasma, and hydride species. While high resolution devices can separate many analytes from common interferences, this is done at great cost in ion transmission efficiency--a loss of 99% when using high versus low resolution on the same instrument [2]. Simple quadrupole devices, which make up the bulk of ICP-MS instruments in existence, do not present this option. Therefore, if the source of polyatomic interferences can be determined and then manipulated, this could potentially improve the figures of merit on all ICP-MS devices, not just the high resolution devices often utilized to study polyatomic interferences.

  3. Intensity and phase fields behind Phase Shifting Masks studied with High Resolution Interference Microscopy

    NASA Astrophysics Data System (ADS)

    Puthankovilakam, Krishnaparvathy; Scharf, Toralf; Herzig, Hans Peter; Weichelt, Tina; Zeitner, Uwe; Vogler, Uwe; Voelkel, Reinhard

    2015-03-01

    The proximity printing industry is in real need of high resolution results and it can be done using Phase Shift Mask (PSM) or by applying Optical Proximity Correction (OPC). In our research we are trying to find out details of how light fields behind the structures of photo masks develop in order to determine the best conditions and designs for proximity printing. We focus here on parameters that are used in real situation with gaps up to 50 μm and structure sizes down to 2 μm. The light field evolution behind the structures is studied and delivers insight in to precisions and tolerances that need to be respected. It is the first time that an experimental analysis of light propagation through mask is presented in detail, which includes information on intensity and phase. The instrument we use is known as High Resolution Interference Microscopy (HRIM). HRIM is a Mach-Zehnder interferometer which is capable of recording three dimensional distributions of intensity and phase with diffraction limited resolution. Our characterization technique allows plotting the evolution of the desired light field and therefore printable structure till the desired proximity gap. In this paper we discuss in detail the evolution of intensity and phase fields of elbow or corner structure at different position behind a phase mask and interpret the main parameters. Of particular interest are tolerances against proximity gap variation and the resolution in printed structures.

  4. a Detailed Study about Digital Surface Model Generation Using High Resolution Satellite Stereo Imagery

    NASA Astrophysics Data System (ADS)

    Gong, K.; Fritsch, D.

    2016-06-01

    Photogrammetry is currently in a process of renaissance, caused by the development of dense stereo matching algorithms to provide very dense Digital Surface Models (DSMs). Moreover, satellite sensors have improved to provide sub-meter or even better Ground Sampling Distances (GSD) in recent years. Therefore, the generation of DSM from spaceborne stereo imagery becomes a vivid research area. This paper presents a comprehensive study about the DSM generation of high resolution satellite data and proposes several methods to implement the approach. The bias-compensated Rational Polynomial Coefficients (RPCs) Bundle Block Adjustment is applied to image orientation and the rectification of stereo scenes is realized based on the Project-Trajectory-Based Epipolarity (PTE) Model. Very dense DSMs are generated from WorldView-2 satellite stereo imagery using the dense image matching module of the C/C++ library LibTsgm. We carry out various tests to evaluate the quality of generated DSMs regarding robustness and precision. The results have verified that the presented pipeline of DSM generation from high resolution satellite imagery is applicable, reliable and very promising.

  5. High resolution neutron crystallographic studies of the hydration of coenzyme cob(II)alamin

    SciTech Connect

    Jogl, Gerwald; Wang, Xiaoping; Mason, Sax; Kovalevsky, Andrey; Mustyakimov, Marat; Fisher, Zoe; Hoffmann, Christina; Kratky, Christoph; Langan, Paul

    2011-01-01

    The hydration of coenzyme cob(II)alamin has been studied using high resolution monochromatic neutron crystallographic data collected at room temperature to a resolution of surrounded by flexible side chains with terminal functional groups may be significant for 0.92 on the original diffractometer D19 with a prototype 4o x 64o detector at the high-flux reactor neutron source run by the Institute Laue Langevin. The resulting structure provides H bonding parameters for the hydration of biomacromolecules to unprecedented accuracy. These experimental parameters will be used to define more accurate force-fields for biomacromolecular structure refinement. The presence of a hydrophobic bowl motif efficient scavenging of ligands. The feasibility of extending the resolution of this structure to ultra high resolution was investigated by collecting time-of-flight neutron crystallographic data on diffractometer TOPAZ with a prototype array of 14 modular 21o x 21o detectors at the Spallation Neutron Source run by Oak Ridge National Laboratory.

  6. A digitally configurable measurement platform using audio cards for high-resolution electronic transport studies.

    PubMed

    Gopman, D B; Bedau, D; Kent, A D

    2012-05-01

    We report on a software-defined digitally configurable measurement platform for determining electronic transport properties in nanostructures with small readout signals. By using a high-resolution audio analog-to-digital/digital-to-analog converter in a digitally compensated bridge configuration we significantly increase the measurement speed compared to established techniques and simultaneously acquire large and small signal characteristics. We characterize the performance (16 bit resolution, 100 dB dynamic range at 192 kS/s) and demonstrate the application of this measurement platform for studying the transport properties of spin-valve nanopillars, a two-terminal device that exhibits giant magnetoresistance and whose resistance can be switched between two levels by applied magnetic fields and by currents applied by the audio card. The high resolution and fast sampling capability permits rapid acquisition of deep statistics on the switching of a spin-valve nanopillar and reduces the time to acquire the basic properties of the device - a state-diagram showing the magnetic configurations as function of applied current and magnetic field - by orders of magnitude. PMID:22667635

  7. High Resolution Infrared Study of the 2v9 and v4 Bands of 10BF2OH and 11BF2OH: Evidence of Large Amplitude Effects for the OH- Torsion and OH-Bending Modes in the 9(2) and 4(1) and Excited States

    SciTech Connect

    Perrin, Annette M.; Bertseva, E.; Flaud, Jean-marie; Collett, Derron R.; Burger, H.; Masiello, Tony; Blake, Thomas A.

    2007-07-21

    High resolution (2-3x10-3cm-1) Fourier transform infrared spectra of gas phase 10B and 11B enriched and natural samples of BF2OH (difluoroboric acid) were recorded at Wuppertal and Richland. Starting from the results of previous studies [A.Perrin, M.Carvajal-Zaera, Z.Dutkiewicz, J.-M.Flaud, D.Collet, H.Bürger, J.Demaison, F.Willaert, H.Mäder, and N.W.Larsen, Mol. Phys. 102 , 1641 (2004); J. Breidung, J. Demaison, J.-F. D’Eu, L. Margulès, D. Collet, E.B. Mkadmi, A. Perrin and W. Thiel, J. Mol. Spectrosc. 228, 7, (2004)], it was possible to perform the first rovibrational analysis of the 2ν9 (first overtone of ν9, the OH torsion) and ν4 (BOH bending) bands located at about 1043.9 and 961.7 cm-1 and 1042.9 and 961.5 cm-1 for the 10BF2OH and 11BF2OH isotopic species respectively. Numerous “classic” perturbations were observed in the analysis of the 2ν9 and ν4 bands. The energy levels of the 92 bright state are indeed involved in a B- type Coriolis resonance with those of the 6191 dark state. The 41 levels are perturbed by a B-type Coriolis resonance and by an anharmonic resonance with the levels of the 7191 and the 6171 dark states respectively. In addition large amplitude effects were observed for the 2ν9 and also, more surprisingly, the ν4 bands. This results in splittings of the energy levels of about 0.005 and 0.0035 cm-1 for the 92 and 41 states respectively which are easily observable in the P and R branches for both bands. The theoretical model used to reproduce the experimental levels accounts for the classic vibration –rotation resonances. Also the large amplitude torsional (or bending) effects are accounted for within the frame of the IAM (Internal Axis Method) -like approach. The Coriolis resonances between the two torsional (or bending) substates are taken into account by {Jx,Jz} non orthorhombic terms in the v-diagonal blocks. This means that the zquantification axis deviates from the a inertial axis by an axis switching effect of ~35

  8. A high resolution far-infrared survey of a section of the galactic plane. I - The nature of the sources

    NASA Technical Reports Server (NTRS)

    Jaffe, D. T.; Stier, M. T.; Fazio, G. G.

    1982-01-01

    Far-infrared, radio continuum and (C-12)O and (C-13)O line observations are presented of 42 far-infrared sources. The sources range in luminosity from 4000 to 3,000,000 solar luminosities. Most of them are associated with (C-12)O peaks. More than half the sources have associated H2O maser emission, and half possess associated radio continuum emission at a limit of 100 mJy. Eight have radio emission at weaker levels. In many cases, the far-infrared source is smaller than its associated radio source. The difference can be explained in the context of the 'blister' picture of H II regions. One group of sources emits many fewer Lyman continuum photons than expected, considering the far-infrared luminosities. A number of possible reasons for this are examined; the explanation holding that clusters of early type stars rather than single stars excite the far-infrared sources is considered the most reasonable.

  9. Soluble state high resolution atomic force microscopy study of Alzheimer’s β-amyloid oligomers

    PubMed Central

    Shekhawat, Gajendra S.; Lambert, Mary P.; Sharma, Saurabh; Velasco, Pauline T.; Viola, Kirsten L.; Klein, William L.; Dravid, Vinayak P.

    2009-01-01

    We report here the direct observation of high resolution structures of assemblies of Alzheimer β-amyloid oligomers and monomers using liquid atomic force microscopy (AFM). Visualization of nanoscale features of Aβ oligomers (also known as ADDLs) was carried out in tapping mode AFM in F12 solution. Our results indicate that ADDL preparations exist in solution primarily as a mixture of monomeric peptides and higher molecular mass oligomers. Our study clearly reveals that the size and shape of these oligomer aggregates exhibit a pronounced dependence on concentration. These studies show that wet AFM enables direct assessment of oligomers in physiological fluids and suggests that this method may be developed to visualize Aβ oligomers from human fluids. PMID:19997583

  10. Soluble state high resolution atomic force microscopy study of Alzheimer's β-amyloid oligomers

    NASA Astrophysics Data System (ADS)

    Shekhawat, Gajendra S.; Lambert, Mary P.; Sharma, Saurabh; Velasco, Pauline T.; Viola, Kirsten L.; Klein, William L.; Dravid, Vinayak P.

    2009-11-01

    We report here the direct observation of high resolution structures of assemblies of Alzheimer β-amyloid oligomers and monomers using liquid atomic force microscopy (AFM). Visualization of nanoscale features of Aβ oligomers (also known as ADDLs) was carried out in tapping mode AFM in F12 solution. Our results indicate that ADDL preparations exist in solution primarily as a mixture of monomeric peptides and higher molecular mass oligomers. Our study clearly reveals that the size and shape of these oligomer aggregates exhibit a pronounced dependence on concentration. These studies show that wet AFM enables direct assessment of oligomers in physiological fluids and suggests that this method may be developed to visualize Aβ oligomers from human fluids.

  11. Study of Ga incorporation in glassy arsenic selenides by high-resolution XPS and EXAFS

    SciTech Connect

    Golovchak, R.; Shpotyuk, Ya.; Nazabal, V.; Boussard-Pledel, C.; Bureau, B.; Cebulski, J.; Jain, H.

    2015-05-14

    Effect of Ga addition on the structure of vitreous As{sub 2}Se{sub 3} is studied using high-resolution X-ray photoelectron spectroscopy and extended X-ray absorption fine structure techniques. The “8-N” rule is shown to be violated for Ga atoms and, possibly, for certain number of As atoms. On the contrary, Se keeps its 2-fold coordination according to “8-N” rule in the amorphous phase throughout all the compositions. Crystalline inclusions appear in the amorphous structure of the investigated glasses at Ga concentrations greater than 3 at. %. These inclusions are presumably associated with Ga{sub 2}Se{sub 3} crystallites and transition phases/defects formed at the boundaries of these crystallites and host amorphous matrix. The existence of Ga–As and Se–Se bonds in the samples with higher Ga content is supported by present studies.

  12. Study of Ga incorporation in glassy arsenic selenides by high-resolution XPS and EXAFS.

    PubMed

    Golovchak, R; Shpotyuk, Ya; Nazabal, V; Boussard-Pledel, C; Bureau, B; Cebulski, J; Jain, H

    2015-05-14

    Effect of Ga addition on the structure of vitreous As2Se3 is studied using high-resolution X-ray photoelectron spectroscopy and extended X-ray absorption fine structure techniques. The "8-N" rule is shown to be violated for Ga atoms and, possibly, for certain number of As atoms. On the contrary, Se keeps its 2-fold coordination according to "8-N" rule in the amorphous phase throughout all the compositions. Crystalline inclusions appear in the amorphous structure of the investigated glasses at Ga concentrations greater than 3 at. %. These inclusions are presumably associated with Ga2Se3 crystallites and transition phases/defects formed at the boundaries of these crystallites and host amorphous matrix. The existence of Ga-As and Se-Se bonds in the samples with higher Ga content is supported by present studies. PMID:25978894

  13. HIGH-RESOLUTION INFRARED IMAGING AND SPECTROSCOPY OF THE Z CANIS MAJORIS SYSTEM DURING QUIESCENCE AND OUTBURST

    SciTech Connect

    Hinkley, Sasha; Hillenbrand, Lynne; Crepp, Justin R.; Oppenheimer, Ben R.; Zimmerman, Neil; Brenner, Douglas; Rice, Emily L.; Pueyo, Laurent; Vasisht, Gautam; Roberts, Jennifer E.; Roberts, Lewis C. Jr.; Burruss, Rick; Wallace, J. Kent; Cady, Eric; Zhai, Chengxing; Kraus, Adam L.; Ireland, Michael J.; Beichman, Charles; Dekany, Richard; Parry, Ian R.; and others

    2013-01-20

    We present adaptive optics photometry and spectra in the JHKL bands along with high spectral resolution K-band spectroscopy for each component of the Z Canis Majoris system. Our high angular resolution photometry of this very young ({approx}<1 Myr) binary, comprised of an FU Ori object and a Herbig Ae/Be star, was gathered shortly after the 2008 outburst while our high-resolution spectroscopy was gathered during a quiescent phase. Our photometry conclusively determines that the outburst was due solely to the embedded Herbig Ae/Be member, supporting results from earlier works, and that the optically visible FU Ori component decreased slightly ({approx}30%) in luminosity during the same period, consistent with previous works on the variability of FU Ori type systems. Further, our high-resolution K-band spectra definitively demonstrate that the 2.294 {mu}m CO absorption feature seen in composite spectra of the system is due solely to the FU Ori component, while a prominent CO emission feature at the same wavelength, long suspected to be associated with the innermost regions of a circumstellar accretion disk, can be assigned to the Herbig Ae/Be member. These findings clarify previous analyses of the origin of the CO emission in this complex system.

  14. A High-Resolution Study of Quasiperiodic Radio Emissions Observed by the Galileo Plasma Wave Instrument

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Christopher, I.; Granroth, L. J.

    2001-01-01

    We have conducted a study of quasiperiodic emission observed by the plasma wave instrument on board the Galileo spacecraft. These emissions appear as broadband bursts with dominant periods ranging from 10 min to over 40 min. For these emissions we have explicitly analyzed the high-resolution (waveform) data to determine the presence of impulsive, solitary signatures. Our investigations have indicated that the broadband bursts, as well as the background more narrowband continuum emission, are composed of a highly turbulent spectrum. Within the broadband burst, however, there are higher-frequency components present, but no impulsive electrostatic signatures. Also significantly, the broadband bursts show no low-frequency dispersion. We conclude that the bursts are consistent with a distant, electromagnetic source, probably in the near-Jupiter vicinity.

  15. Alkyl-terminated Si(111) surfaces: A high-resolution, core level photoelectron spectroscopy study

    SciTech Connect

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E.

    1999-01-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied with high-resolution core level photoelectron spectroscopy (PES). Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) Olefin insertion into the H{endash}Si bond of the H{endash}Si(111) surface, and (ii) replacement of Cl on the Cl{endash}Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, PES has revealed a C 1s component shifted to lower binding energy and a Si 2p component shifted to higher binding energy. Both components are attributed to the presence of a C{endash}Si bond at the interface. Along with photoelectron diffraction data [Appl. Phys. Lett. {bold 71}, 1056, (1997)], these data are used to show that these two synthetic methods can be used to functionalize the Si(111) surface. {copyright} {ital 1999 American Institute of Physics.}

  16. Design studies for a high-resolution, transportable neutron radiography/radioscopy system

    SciTech Connect

    Gillespie, G.H.; Micklich, B.J.; McMichael, G.E.

    1996-09-30

    A preliminary design has been developed for a high-resolution, transportable neutron radiology system (TNRS) concept. The primary system requirement is taken to be a thermal neutron flux of 10[sup 6] n/(cm[sup 2]-sec) with a L/D ratio of 100. The approach is to use an accelerator-driven neutron source, with a radiofrequency quadrupole (RFQ) as the primary accelerator component. Initial concepts for all of the major components of the system have been developed,and selected key parts have been examined further. An overview of the system design is presented, together with brief summaries of the concepts for the ion source, low energy beam transport (LEBT), RFQ, high energy beam transport (HEBT), target, moderator, collimator, image collection, power, cooling, vacuum, structure, robotics, control system, data analysis, transport vehicle, and site support. The use of trade studies for optimizing the TNRS concept are also described.

  17. Characterization Studies of Radioactive Waste Drums Using High Resolution Gamma Spectrometric Systems

    SciTech Connect

    Toma, M.; Cristache, C.; Done, L.; Dragolici, F.; Sima, O.

    2010-01-21

    The problem of radioactive waste has become a critical issue in the country and worldwide. The radioactive waste containers, containing different radioactive materials, have to be characterized before their final disposal. Destructive methods, although being the most precise, are also the most expensive and not the easiest ones from the radioprotection point of view. In this situation, high resolution gamma spectrometry proved to be a reliable method for the non destructive assay method. However, the non-homogenous composition of the radioactive waste inside the drum makes the quantitative characterization of the radioactive waste drum a difficult task. Experimental studies and computed results, combined with Monte Carlo simulations using GESPECOR, are presented in this paper as a possibility to achieve this task.

  18. Single cells get together: High-resolution approaches to study the dynamics of early mouse development.

    PubMed

    Saiz, Néstor; Plusa, Berenika; Hadjantonakis, Anna-Katerina

    2015-12-01

    Embryonic development is a complex and highly dynamic process during which individual cells interact with one another, adopt different identities and organize themselves in three-dimensional space to generate an entire organism. Recent technical developments in genomics and high-resolution quantitative imaging are making it possible to study cellular populations at single-cell resolution and begin to integrate different inputs, for example genetic, physical and chemical factors, that affect cell differentiation over spatial and temporal scales. The preimplantation mouse embryo allows the analysis of cell fate decisions in vivo with high spatiotemporal resolution. In this review we highlight how the application of live imaging and single-cell resolution analysis pipelines is providing an unprecedented level of insight on the processes that shape the earliest stages of mammalian development. PMID:26183190

  19. High resolution digital holographic microscopy for the study of aggregated natural cellulose nanowhisker fibers

    NASA Astrophysics Data System (ADS)

    Wahba, H. H.; Sjödahl, M.; Gren, P.; Olsson, E.

    2015-10-01

    In this paper, digital holographic (DH) microscopy demonstrates its ability to perform a full characterization of nanofibers. The high resolution and magnification of the presented method to study the nanofibers are tested using standard MIL-STD-150A 1951 USAF resolution test target. In this investigation, aggregated natural cellulose nanowhisker fibers are positioned in the front of the microscopic objective using a 3D translation stage in the object arm of DH setup. The recorded off-axis holograms are refocused using the angular spectrum method. The reconstructed complex field is used to calculate optical phase and intensity distributions of the object at different reconstruction depths. A simple algorithm is used to define the focused image with suitable accuracy. The dimensions and orientation of the fibers can be evaluated from the optical field at different depths. Then, the shape and textures along the aggregated natural cellulose nanowhisker fiber can be presented in a 3D space.

  20. Oxidation of diamond films by atomic oxygen: High resolution electron energy loss spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Shpilman, Z.; Gouzman, I.; Grossman, E.; Akhvlediani, R.; Hoffman, A.

    2007-12-01

    Diamond surface oxidation by atomic oxygen, annealing up to ˜700°C, and in situ exposure to thermally activated hydrogen were studied by high resolution electron energy loss spectroscopy (HREELS). After atomic oxygen (AO) exposure, HREELS revealed peaks associated with CHx groups, carbonyl, ether, and peroxide-type species and strong quenching of the diamond optical phonon and its overtones. Upon annealing of the oxidized surfaces, the diamond optical phonon overtones at 300 and 450meV emerge and carbonyl and peroxide species gradually desorb. The diamond surface was not completely regenerated after annealing to ˜700°C and in situ exposure to thermally activated hydrogen, probably due to the irreversible deterioration of the surface by AO.

  1. A Cryogenic, Insulating Suspension System for the High Resolution Airborne Wideband Camera (HAWC)and Submillemeter And Far Infrared Experiment (SAFIRE) Adiabatic Demagnetization Refrigerators (ADRs)

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.; Jackson, Michael L.; Shirron, Peter J.; Tuttle, James G.

    2002-01-01

    The High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter And Far Infrared Experiment (SAFIRE) will use identical Adiabatic Demagnetization Refrigerators (ADR) to cool their detectors to 200mK and 100mK, respectively. In order to minimize thermal loads on the salt pill, a Kevlar suspension system is used to hold it in place. An innovative, kinematic suspension system is presented. The suspension system is unique in that it consists of two parts that can be assembled and tensioned offline, and later bolted onto the salt pill.

  2. Study of stent deployment mechanics using a high-resolution x-ray imaging detector

    NASA Astrophysics Data System (ADS)

    Wang, Weiyuan; Ionita, Ciprian N.; Bednarek, Daniel R.; Rudin, Stephen

    2011-03-01

    To treat or prevent some of the 795,000 annual strokes in the U.S., self-expanding endo-vascular stents deployed under fluoroscopic image guidance are often used. Neuro-interventionalists need to know the deployment behavior of each stent in order to place them in the correct position. Using the Micro-Angiographic Fluoroscope (MAF) which has about 3 times higher resolution than commercially available flat panel detectors (FPD) we studied the deployment mechanics of two of the most important commercially available nitinol stents: the Pipeline embolization device (EV3), and the Enterprise stent (Codman). The Pipeline stent's length extends to about 3 times that of its deployed length when it is contained inside a catheter. From the high-resolution images with the MAF we found that upon the sudden release of the distal end of the Pipeline from a helical wire cap, the stent expands radially but retracts to about 30% (larger than for patient deployments) of its length. When released from the catheter proximally, it retracts additionally about 50% contributing to large uncertainty in the final deployed location. In contrast, the MAF images clearly show that the Enterprise stent self expands with minimal length retraction during deployment from its catheter and can be retrieved and repositioned until the proximal markers are released from clasping structures on its guide-wire thus enabling more accurate placement at the center of an aneurysm or stenosis. The high-resolution imaging demonstrated in this study should help neurointerventionalists understand and control endovascular stent deployment mechanisms and hence perform more precise treatments.

  3. A high resolution study of a hurricane storm surge and inundation in Veracruz, Mexico

    NASA Astrophysics Data System (ADS)

    Díaz García, Ovel; Zavala Hidalgo, Jorge; Douillet, Pascal

    2014-05-01

    Veracruz is the most populated city along the Mexican shoreline of the Gulf of Mexico and also is the country's largest commercial port. In recent years the city has been affected by hurricanes of medium intensity that have provoked human casualties, property damaged and economic loss. Two of the most recent events were hurricane Karl (2010), which caused a storm surge and severe flooding, and hurricane Ernesto (2012). The purpose of this work is to study, based on high-resolution numerical simulations, scenarios of storm surge flooding using state-of-the-art open source numerical models: the Weather, Research and Forecasting (WRF), and the coupled models ADvanced CIRCulation (ADCIRC) and Simulating WAves Nearshore (SWAN) for weather and storm surge hindcast, respectively. We also use topography high resolution data from LIDAR and bathymetry from GEBCO 30", the Mexican Navy and nautical charts from Electrical Federal Commission. We present the validation of the models evaluating several statistical parameters against measurements from Acoustic Data Current Profilers, pressure sensors, tide gauge and meteorological stations for these events. In the case of hurricane Karl, it made landfall 15 km north of Veracruz City, reducing the maximum surge along the city shoreline. The hurricane Ernesto made landfall 200 km southeast of the city, too far to have a significant impact. We did some numerical experiments slightly changing the trajectory, reported by the best track data, for these two hurricanes with the purpose of evaluating storm surge scenarios. The results shows that the worst storm surge cases were when the tracks of this hurricanes made landfall south of the city in the range of 30 to 60 km.

  4. Using High Resolution Vegetation Images to study Ecogeomorphologic Thresholds in Semiarid Australia

    NASA Astrophysics Data System (ADS)

    Azadi, Samira; Saco, Patricia; Moreno-de las Heras, Mariano; Willgoose, Garry

    2016-04-01

    Arid and Semiarid sites are very sensitive to climatic or anthropogenic pressures. Several previous studies argue that ecosystem function in these areas tends to display critical degradation thresholds which make rehabilitation efforts considerably difficult. This threshold behaviour is linked to coevolving eco-geomorphic processes triggered by climatic or anthropogenic disturbances. A common trigger is the removal of vegetation (by grazing or harvesting activities) which increases landscape hydrological connectivity and can induce a substantial loss of water and soil affecting ecosystem function (e.g. decreasing the rainfall-use efficiency of the landscape). Here we present results exploring the impact of degradation processes induced by grazing pressure on rainfall-use efficiency along a precipitation gradient (250 mm to 490 mm annual average rainfall). The sites were carefully selected in the mulga lands bioregion (New South Wales, Queensland) and in sites of the Northern Territory in Australia, and display similar vegetation characteristics and good quality rainfall information. Vegetation patterns and percentage cover are derived from high resolution remote sensing images (IKONOS, QuickBird and complement this information with high resolution images obtained from Google Earth). We compute rainfall use efficiency and precipitation marginal response using local precipitation data and MODIS vegetation indices. The analysis of the NDVI MODIS data shows the presence of a clear critical degradation threshold, associated with loss of vegetation cover in the drier sites. Below this threshold we found what we call "functional landscapes" with high vegetation cover that display high rainfall use efficiency. Above this threshold, we found "dysfunctional landscapes" with much lower rainfall use efficiency. We compare the different behaviours for several sites along the precipitation gradient, and find that the wetter sites do not tend to display this threshold behaviour

  5. A High Resolution Geophysical Study of the Offshore Western Gulf of Corinth Rift

    NASA Astrophysics Data System (ADS)

    McNeill, L.; Cotterill, C.; Stefatos, A.; Henstock, T.; Bull, J.; Collier, R.; Papatheodorou, G.; Georgiopoulou, A.; Ferentinos, G.

    2003-12-01

    The western Gulf of Corinth has generated recent debate in terms of distribution of extensional strain, interactions between active faults and fault geometry. Onshore data suggest that faults do not accommodate extensional strain of the magnitude suggested by geodetic measurements. Recently acquired high resolution geophysical data in the western Gulf of Corinth, including Reson Seabat 8160 50 kHz multibeam bathymetry (with sidescan collected simultaneously) and sparker and boomer seismic profiles, will allow a detailed study of faulting relationships, fault propagation history and associated sedimentological processes. Multibeam data indicate the complex axial and tributary channel pattern of the gulf as well as revealing the surface expression of active faults on both margins and within the basin centre. Several fault tips are evident, including the Aigion fault which has been surveyed in great detail with boomer lines spaced between 25-100 m. The fault tip is complex with multiple synthetic and antithetic splays. The post-lowstand transgressive surface is clearly imaged and therefore fault growth rates can be established. Gas-related features are common, including pockmarks and mud volcanoes. To the east, displacement on the eastern tip of the Eliki fault decreases rapidly offshore and a splay of the Derveni fault is observed. A major S-dipping antithetic fault opposite the Eastern Eliki fault has clear bathymetric expression and is locally associated with a prominent basement ridge. This fault may make a significant contribution to extensional strain in this part of the rift. In the centre of the basin, sediments are deformed by multiple minor faults with seafloor displacement. Ultimately, high resolution offshore interpretations can be integrated with regional datasets and existing data (e.g., geomorphic, paleoseismological and sedimentological) onshore and used to better assess rift deformation models, rift evolution and local seismic hazards.

  6. Application of high-resolution transmission electron microscopy to the study of aragonite crystallography and diagenesis

    SciTech Connect

    Haywick, D.W. . Geology Dept.); Ness, S.E. . Instrumentation Centre)

    1993-03-01

    High-resolution transmission electron microscopy (HRTEM) is a valuable technique by which to study the ultrastructure of various organic and inorganic compounds. Some biogeological minerals, including skeletal aragonite, have proven to be relatively unstable under an electron beam. Nevertheless, these compounds can be examined by HRTEM provided that minimal exposure techniques are employed. The authors have successfully applied HRTEM to examine diagenetically altered Plio-Pleistocene aragonitic faunas from New Zealand. To date, they have obtained high-resolution images of lattice-fringes with a spacing of 3.7 [angstrom] using a defocused, low-intensity electron beam. At least two of the samples imaged revealed clusters of lattice planes which together, form an interlocking mosaic of variably oriented micro-domains between 5 and 100 nm across. These micro-domains suggest that at least some of the aragonite is heterogeneous at a nm-scale; however, the individual micro-domains, when averaged together, generate single crystal electron diffraction patterns typical of well-ordered aragonite. The origin of the micro-domains is presently unclear. They may be an artifact of diagenetic alteration of an ultrastructurally homogeneous crystal. It is more likely, however, that the micro-domains were produced during aragonite precipitation. If this scenario is correct, it could have major implications for carbonate diagenesis, particularly if micro-domains prove to be ubiquitous within biogenic carbonate minerals. Inter-domains boundaries would be zones of comparative weakness and may provide nucleation points for diagenetic alteration. The intent now is to apply HRTEM in conjunction with other analytical techniques (e.g. x-ray diffraction, electron microprobe, stable isotope geochemistry) to characterize crystallographic changes during progressive diagenesis of aragonite, especially the aragonite-calcite transformation.

  7. Mid-infrared high-resolution absorption spectroscopy by use of a semimonolithic entangled-cavity optical parametric oscillator.

    PubMed

    Desormeaux, A; Lefebvre, M; Rosencher, E; Huignard, J P

    2004-12-15

    By recording low-pressure absorption lines of N2O around 3.9 microm, we fully qualify a pulsed entangled-cavity doubly resonant optical parametric oscillator as a power tool for high-resolution spectroscopy. This compact source runs at a high repetition rate (>10 kHz) with a low threshold of oscillation (<8 microJ), is mode-hop-free tunable over 5 cm(-1), and displays single-frequency Fourier-transformed-limited operation (linewidth <0.005 cm(-1)). A high potential for nonlinear spectroscopy is also expected given the high peak power (70 W) and the good quality (M2 < 2) of the output beam. PMID:15645813

  8. Effects of atmosphere and view and illumination geometry on visible and near infrared radiance data from the advanced very high resolution radiometer (AVHR)

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Fraser, R. S.

    1984-01-01

    The use of Dave's models to evaluate satellite off-nadir remote sensing of green vegetation cover types by simulating the visible and near-infrared advanced very high resolution radiometer (AVHRR) NOAA-6 and NOAA-7 radiances for three green-leaf biomass levels and bare soil. Ground measurements of surface reflectances were used. The simulations were done along a scan line at 30 deg latitude during the summer solstice, equinox, and winter solstice. The simulation models are described and the effect of atmosphere over moderately vegetated surfaces is discussed. The results show that sensor response to atmospheric path length can be substantial for the AVHRR visible and near-infrared channels and normalized difference values, but they can be minimized by high sun and clear atmospheric viewing. The results indicate that AVHRR data would be most useful for monitoring low green leaf biomas canopies.

  9. HIGH-RESOLUTION FOURIER TRANSFORM INFRARED SPECTRUM OF THE ν2 + ν12 BAND OF ETHYLENE (12C2H4)

    NASA Astrophysics Data System (ADS)

    Lebron, G. B.; Tan, T. L.

    2013-09-01

    The high-resolution Fourier transform infrared absorption spectrum of the ν2 + ν12 combination band of normal ethylene (12C2H4) in the 3050-3105 cm-1 region was recorded at a resolution of 0.0063 cm-1 and at an ambient temperature of 296 K. Upper state rovibrational analysis was carried out using a standard Watson's Hamiltonian in asymmetric reduction in Ir representation. The band center, rotational constants and centrifugal distortion constants up to quartic terms of the upper ν2 + ν12 = 1 state were determined from the final fit that included 102 infrared transitions. The root-mean-square deviation of the fit was 0.000729 cm-1.

  10. A high-resolution mid-infrared spectral survey of H2O in the circumstellar envelope of VY CMa with EXES on SOFIA

    NASA Astrophysics Data System (ADS)

    DeWitt, Curtis N.; Richter, Matthew; Fonfría, José; Cernicharo, Jose; Neufeld, David A.; Boogert, Adwin

    2015-08-01

    During March 2015 commissioning observations, the EXES instrument on the Stratospheric Observatory for Infrared Astronomy (SOFIA), observed the O-rich evolved star VY Cyg in the range of 5.57 to 6.67 μm with a resolution (R=λ/Δλ) approaching 100,000.We detect many H2O vapor lines with P Cygni structure- blueshifted absorption with redshifted emission, as expected from outflowing material in this system. The analysis and identification of other chemical species within this rich data set are ongoing.The wavelength region of these observations is impossible to observe from ground-based observatories due to atmospheric absorption; past space-based missions such as ISO/SWS were limited to R~1000. EXES on SOFIA opens a new frontier for high-resolution spectroscopy at difficult-to-access mid-infrared wavelengths.

  11. A high resolution study of the Martian water cycle with a global climate model

    NASA Astrophysics Data System (ADS)

    Pottier, A.; Montmessin, F.; Forget, F.; Navarro, T.; Millour, E.; Madeleine, J.-B.; Spiga, A.

    2015-10-01

    The martian water cycle's main source is the northern polar cap. Running high resolution models, up to 360° per 180°, help better resolve this ice cap, and better mimic the gradual retreat of the seasonal cap. Atmospheric circulation is also better resolved. Water vapor advection and the subsequent formation of clouds quite differ when we compare these brand new high resolution simulations and the usual lower resolution ones at 64 per 48 grid points.

  12. Close infrared thermography using an intensified CCD camera: application in nondestructive high resolution evaluation of electrothermally actuated MEMS

    NASA Astrophysics Data System (ADS)

    Serio, B.; Hunsinger, J. J.; Conseil, F.; Derderian, P.; Collard, D.; Buchaillot, L.; Ravat, M. F.

    2005-06-01

    This communication proposes the description of an optical method for thermal characterization of MEMS devices. The method is based on the use of an intensified CCD camera to record the thermal radiation emitted by the studied device in the spectral domain from 600 nm to about 850 nm. The camera consists of an intensifier associated to a CCD sensor. The intensification allows for very low signal levels to be amplified and detected. We used a standard optical microscope to image the device with sub-micron resolution. Since, in close infrared, at very small scale and low temperature, typically 250°C for thermal MEMS (Micro-Electro-Mechanical Systems), the thermal radiation is very weak, we used image integration in order to increase the signal to noise ratio. Knowing the imaged materials emissivity, the temperature is given by using Planck"s law. In order to evaluate the system performances we have made micro-thermographies of a micro-relay thermal actuator. This device is an "U-shape" Al/SiO2 bimorph cantilever micro-relay with a gold-to-gold electrical contact, designed for secured harsh environment applications. The initial beam curvature resulting from residual stresses ensures a large gap between the contacts of the micro-relay. The current flow through the metallic layer heats the bimorph by Joule effect, and the differential expansion provides the vertical displacement for contact. The experimental results are confronted to FEM and analytical simulations. A good agreement was obtained between experimental results and simulations.

  13. HIGH-RESOLUTION MID-INFRARED IMAGING OF THE CIRCUMSTELLAR DISKS OF HERBIG Ae/Be STARS

    SciTech Connect

    Marinas, N.; Telesco, C. M.; Packham, C.; Fisher, R. S.

    2011-08-20

    We have imaged the circumstellar environments of 17 Herbig Ae/Be stars at 12 and 18 {mu}m using MICHELLE on Gemini North and T-ReCS on Gemini South. Our sample contained eight Group I sources, those having large rising near- to far-infrared (IR) fluxes, and nine Group II sources, those having more modest mid-IR fluxes relative to their near-IR flux (in the classification of Meeus et al.). We have resolved extended emission from all Group I sources in our target list. The majority of these sources have radially symmetric mid-IR emission extending from a radius of 10 AU to hundreds of AU. Only one of the nine Group II sources is resolved at the FWHM level, with another two Group II sources resolved at fainter levels. Models by Dullemond et al. explain the observed spectral energy distribution of Group II sources using self-shadowed cold disks. If this is the case for all the Group II sources, we do not expect to detect extended emission with this study, since the IR emission measured should arise from a region only a few AU in size, which is smaller than our resolution. The fact that we do resolve some of the Group II sources implies that their disks are not completely flat, and might represent an intermediate stage. We also find that none of the more massive (>3 M{sub sun}) Herbig Ae/Be stars in our sample belongs to Group I, which may point to a relationship between stellar mass and circumstellar dust evolution. Disks around more massive stars might evolve faster so that stars are surrounded by a more evolved flat disk by the time they become optically visible, or they might follow a different evolutionary path altogether.

  14. High-Resolution Infrared Spectroscopy Slit-Jet Cooled Hydroxymethyl Radical (CH_2OH): CH Symmetric Stretching Mode

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Chang, Chih-Hsuan; Nesbitt, David

    2014-06-01

    Hydroxymethyl radical (CH_2OH) plays an important role in combustion and environmental chemistry as a reactive intermediate. Reisler's group published the first rotationally resolved spectroscopy of CH_2OH with determined band origins for fundamental CH symmetric stretch state, CH asymmetric stretch state and OH stretch state, respectively. Here CH_2OH was first studied via sub-Doppler infrared spectroscopy in a slit-jet supersonic discharge expansion source. Rotationally resolved direct absorption spectra in the CH symmetric stretching mode were recorded. As a result of the low rotational temperature and sub-Doppler linewidths, the tunneling splittings due to the large amplitude of COH torsion slightly complicate the spectra. Each of the ground vibration state and the CH symmetric stretch state includes two levels. One level, with a 3:1 nuclear spin statistic ratio for Ka=0+/Ka=1+, is labeled as ``+". The other tunneling level, labeled as ``-", has Ka=0-/Ka=1- states with 1:3 nuclear spin statistics. Except for the Ka=0+ ← 0+ band published before, more bands (Ka=1+ ← 1+, Ka=0- ← 0- and Ka=1- ← 1-) were identified. The assigned transitions were fit to a Watson A-reduced symmetric top Hamiltonian to improve the accuracy of the band origin of CH symmetric state. The rotational parameters for both ground and CH symmetric stretch state were well determined. L. Feng, J. Wei and H. Reisler, J. Phys. Chem. A, Vol. 108. M. A. Roberts, E. N. Sharp-Williams and D. J. Nesbitt, J. Phys. Chem. A 2013, 117, 7042-7049

  15. Analysis of the high-resolution infrared spectrum of the ν2 bending mode of HOCl at 1238 cm -1

    NASA Astrophysics Data System (ADS)

    Sams, R. L.; Olson, W. B.

    1980-11-01

    The infrared spectrum of hypochlorous acid (HOCl) is investigated in the 1238-cm -1 ( ν2) region with a recently completed 3.81-m Ebert Spectrometer. A description of this instrument is included. Spectroscopic constants for ν2 are obtained.

  16. Quantification of HCl from high-resolution, ground-based, infrared solar spectra in the 3000 per cm region

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Murcray, D. G.

    1986-01-01

    Recent ground-based infrared solar spectra at 0.02 per cm resolution in the 3000 per cm region have been analyzed for the atmospheric content of HCl. Nonlinear spectral least-squares fitting applied to spectra obtained at several zenith angles shows little sensitivity of the results to tropospheric HCl but provides an accurate measurement of the total column amount.

  17. Optimizing the swallow protocol of clinical high resolution esophageal manometry studies

    PubMed Central

    Xiao, Yinglian; Nicodème, Frédéric; Kahrilas, Peter J.; Roman, Sabine; Lin, Zhiyue; Pandolfino, John E.

    2013-01-01

    Background The Chicago Classification of Esophageal Motility Disorders (CC) is based on 10 water swallows performed in the supine position. The aim of the study was to assess whether upright and provocative swallows provided important information beyond that obtained from the standard supine manometric protocol. Methods Two independent investigators reviewed high resolution manometry (HRM) studies of 148 patients with both supine and upright liquid swallows and additional studies from patients with provocative swallows (increased volume, viscosity, and a marshmallow) for a resultant change in CC diagnoses. Significant diagnostic changes were defined as a change from normal or borderline motor function to abnormal motor function, EGJ outflow obstruction or achalasia. Discordant diagnoses were reviewed and the Kappa test was used to evaluate the agreement between diagnoses in the different protocols. Key Results The overall agreement in diagnosis between the 5 supine swallows and the 5 upright swallows was good (k=0.583). Changing to the upright position elicited a significant diagnostic change in 10.1% (15/148) of cases. The provocative swallows suggested an alternative diagnosis from the supine position in 14 of 75 studies (18.7%); 11 of these changed to EGJ obstruction during viscous or solid bolus challenges. Conclusion Changing position in HRM elicited a significant change in diagnosis in about 10% of studies while provocative bolus challenges with viscous liquid and marshmallows increased the detection of EGJ outflow obstruction. Performing manometric evaluations in both positions with provocative swallows may increase the yield of standard HRM technique. PMID:22863083

  18. The High Resolution Infrared Spectrum of CH 3D in the Region 900-1700 cm -1

    NASA Astrophysics Data System (ADS)

    Nikitin, A.; Champion, J. P.; Tyuterev, Vl. G.; Brown, L. R.

    1997-07-01

    The high resolution absorption spectrum of CH3D in the region 900-1700 cm-1has been reexamined on the basis of new long path experimental data recorded with the Fourier transform spectrometer at Kitt Peak. A theoretical model used previously for spherical rotors has been adapted for symmetric top molecules in order to analyze the vibrational polyads of CH3D simultaneously. Both triad and nonad-triad band systems have been investigated. The hot band intensities were estimated through direct extrapolation of the triad dipole moments. Six hundred lines from the hot bands have been assigned and combined with other data for the triad. The main hot bands contributions are due to 2ν6- ν6, 2ν3- ν3, ν3+ ν6- ν3and ν3+ ν6- ν6bands. The standard deviation achieved for 3377 line positions of the triad was 0.56 10-3cm-1, representing an improvement of one order of magnitude with respect to the most recent analysis.

  19. A high-resolution infrared spectrum of IRC +10216. [carbon star immersed in expanding gas/dust shell

    NASA Technical Reports Server (NTRS)

    Barnes, T. G.; Hinkle, K. H.; Lambert, D. L.; Beer, R.

    1977-01-01

    The IR-emitting core and shell of IRC +10216 are investigated using a high-resolution spectrum covering the wavelength interval between 3 and 5 microns. Line identifications made or confirmed include those due to (C-12)(O-16), (C-13)(O-16), (C-12)(O-17), and (C-12)(O-18). A mean heliocentric velocity of about -32 km/s is obtained from the 42 least blended (C-12)O and (C-13)O lines, and the following isotopic abundance ratios are derived by comparing equivalent widths of the observed lines: C-12/C-13, C-12/C-14, O-16/O-17, and O-17/O-18. The structure of the expanding gas shell is examined, an explanation is offered for the lack of P Cygni profiles in the spectrum, and an unsuccessful search for other molecules is briefly discussed. It is concluded that a low C-12/C-13 ratio is not necessarily a signature of a carbon star.

  20. High-resolution pulsed-field ionization photoelectron study of O{sub 2}

    SciTech Connect

    Hsu, C.W.; Evans, M.; Stimson, S.

    1997-04-01

    There have been numerous photoionization studies of O{sub 2} over the past 10 years. Using the pulsed field ionization (PFI) photoelectron spectroscopy (PES) technique, the electronic ground state of O{sub 2}{sup +} (X{sup 2}{Pi}{sub g}{sup {minus}}) has been well studied on the rotationally resolved level by several groups. However, due to the difficulty of producing photon energies above 18 eV using the tunable lasers, the electronic excited states of O{sub 2}{sup +} have been mostly studied on the vibrationally resolved level using the threshold photoelectron spectroscopy (TPES) and the synchrotron radiation. Recently, the authors developed a new technique for performing the PFI-PE experiments using multi-bunch synchrotron radiation at the Chemical Dynamics Beamline of the Advanced Light Source (ALS). Using the high resolution VUV light from the ALS, they have obtained the PFI-PE spectra of O{sub 2} between 12 and 24 eV. In this abstract, the authors report for the first time the rotationally resolved spectra of O{sub 2}{sup +} (b{sup 4}{Sigma}{sub g}{sup {minus}}, v{sup +}=0).

  1. A feasibility study of PETiPIX: an ultra high resolution small animal PET scanner

    NASA Astrophysics Data System (ADS)

    Li, K.; Safavi-Naeini, M.; Franklin, D. R.; Petasecca, M.; Guatelli, S.; Rosenfeld, A. B.; Hutton, B. F.; Lerch, M. L. F.

    2013-12-01

    PETiPIX is an ultra high spatial resolution positron emission tomography (PET) scanner designed for imaging mice brains. Four Timepix pixellated silicon detector modules are placed in an edge-on configuration to form a scanner with a field of view (FoV) 15 mm in diameter. Each detector module consists of 256 × 256 pixels with dimensions of 55 × 55 × 300 μm3. Monte Carlo simulations using GEANT4 Application for Tomographic Emission (GATE) were performed to evaluate the feasibility of the PETiPIX design, including estimation of system sensitivity, angular dependence, spatial resolution (point source, hot and cold phantom studies) and evaluation of potential detector shield designs. Initial experimental work also established that scattered photons and recoil electrons could be detected using a single edge-on Timepix detector with a positron source. Simulation results estimate a spatial resolution of 0.26 mm full width at half maximum (FWHM) at the centre of FoV and 0.29 mm FWHM overall spatial resolution with sensitivity of 0.01%, and indicate that a 1.5 mm thick tungsten shield parallel to the detectors will absorb the majority of non-coplanar annihilation photons, significantly reducing the rates of randoms. Results from the simulated phantom studies demonstrate that PETiPIX is a promising design for studies demanding high resolution images of mice brains.

  2. High-resolution computed tomographic study of the retrotympanum. Anatomic correlations.

    PubMed

    Parlier-Cuau, C; Champsaur, P; Perrin, E; Rabischong, P; Lassau, J P

    1998-01-01

    The aim of this study was to define the imaging of the retrotympanum precisely by means of high-resolution CT. Based on 66 scans of petrous bones performed in 49 patients observed in an otologic department, several retrotympanic structures were studied: the pyramidal eminence, ponticulus, subiculum, chordal ridge, tympanic sinus of Proctor, sinus tympani and recess of the facial n. The variations in morphology and depth were noted as well as the relationship between the pyramid and the facial canal. In a second phase the same anatomic structures were studied in 24 temporal bones removed from embalmed cadavers and investigated with the same radiologic technique. Anatomic correlations were made for six temporal bones to confirm the general applicability of our radiologic hypotheses. In CT the pyramidal eminence was visualised in 100% of cases, the chordal ridge in 52%, the ponticulus in 63% and the subiculum in 57%. As regards the different recesses, the sinus tympani was visualised in 95% of cases, the posterior tympanic sinus of Proctor in 38%, the fossula of Grivot in 47% and the facial recess in 80%. The mean depth of the sinus tympani was 2.7 mm and that of the tympanic sinus of Proctor was 1.65 mm; the fossula of Grivot was assessed as 2.1 mm and the facial recess as 2.2 mm. A better knowledge of these sinuses and their variations will aid the surgeon, particularly in a posterior tympanotomy or a retro-facial approach. PMID:9706682

  3. Near-Field Scanning Optical Microscopy for High-Resolution Membrane Studies

    PubMed Central

    Huckabay, Heath A.; Armendariz, Kevin P.; Newhart, William H.; Wildgen, Sarah M.; Dunn, Robert C.

    2012-01-01

    The desire to directly probe biological structures on the length scales that they exist has driven the steady development of various high-resolution microscopy techniques. Among these, optical microscopy and, in particular, fluorescence-based approaches continue to occupy dominant roles in biological studies given their favorable attributes. Fluorescence microscopy is both sensitive and specific, is generally noninvasive toward biological samples, has excellent temporal resolution for dynamic studies, and is relatively inexpensive. Light-based microscopies can also exploit a myriad of contrast mechanisms based on spectroscopic signatures, energy transfer, polarization, and lifetimes to further enhance the specificity or information content of a measurement. Historically, however, spatial resolution has been limited to approximately half the wavelength due to the diffraction of light. Near-field scanning optical microscopy (NSOM) is one of several optical approaches currently being developed that combines the favorable attributes of fluorescence microscopy with superior spatial resolution. NSOM is particularly well suited for studies of both model and biological membranes and application to these systems is discussed. PMID:23086886

  4. Variability of SO2 and HDO at the cloudtop of Venus from high-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Encrenaz, T.; Greathouse, T.; Richter, M.; DeWitt, C.; Lacy, J.; Widemann, T.; Bézard, B.; Fouchet, T.; Atreya, S.; Sagawa, H.

    2015-10-01

    Since January 2012, we have mapped the SO2 and HDO mixing ratios at the cloudtop of Venus using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the Infrared Telescope Fac ility (IRTF). The HDO maps appear homogeneous over the Venus disk. In contrast, the SO2 maps show strong variations over the disk and within a time scale of two hours. Both molecules show longterm variations with no apparent correlation between the two species.

  5. High-resolution Mid-infrared Imaging of the Circumstellar Disks of Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Mariñas, N.; Telesco, C. M.; Fisher, R. S.; Packham, C.

    2011-08-01

    We have imaged the circumstellar environments of 17 Herbig Ae/Be stars at 12 and 18 μm using MICHELLE on Gemini North and T-ReCS on Gemini South. Our sample contained eight Group I sources, those having large rising near- to far-infrared (IR) fluxes, and nine Group II sources, those having more modest mid-IR fluxes relative to their near-IR flux (in the classification of Meeus et al.). We have resolved extended emission from all Group I sources in our target list. The majority of these sources have radially symmetric mid-IR emission extending from a radius of 10 AU to hundreds of AU. Only one of the nine Group II sources is resolved at the FWHM level, with another two Group II sources resolved at fainter levels. Models by Dullemond et al. explain the observed spectral energy distribution of Group II sources using self-shadowed cold disks. If this is the case for all the Group II sources, we do not expect to detect extended emission with this study, since the IR emission measured should arise from a region only a few AU in size, which is smaller than our resolution. The fact that we do resolve some of the Group II sources implies that their disks are not completely flat, and might represent an intermediate stage. We also find that none of the more massive (>3 M sun) Herbig Ae/Be stars in our sample belongs to Group I, which may point to a relationship between stellar mass and circumstellar dust evolution. Disks around more massive stars might evolve faster so that stars are surrounded by a more evolved flat disk by the time they become optically visible, or they might follow a different evolutionary path altogether. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National

  6. High Resolution Tsunami Modeling and Assessment of Harbor Resilience; Case Study in Istanbul

    NASA Astrophysics Data System (ADS)

    Cevdet Yalciner, Ahmet; Aytore, Betul; Gokhan Guler, Hasan; Kanoglu, Utku; Duzgun, Sebnem; Zaytsev, Andrey; Arikawa, Taro; Tomita, Takashi; Ozer Sozdinler, Ceren; Necmioglu, Ocal; Meral Ozel, Nurcan

    2014-05-01

    Ports and harbors are the major vulnerable coastal structures under tsunami attack. Resilient harbors against tsunami impacts are essential for proper, efficient and successful rescue operations and reduction of the loss of life and property by tsunami disasters. There are several critical coastal structures as such in the Marmara Sea. Haydarpasa and Yenikapi ports are located in the Marmara Sea coast of Istanbul. These two ports are selected as the sites of numerical experiments to test their resilience under tsunami impact. Cargo, container and ro-ro handlings, and short/long distance passenger transfers are the common services in both ports. Haydarpasa port has two breakwaters with the length of three kilometers in total. Yenikapi port has one kilometer long breakwater. The accurate resilience analysis needs high resolution tsunami modeling and careful assessment of the site. Therefore, building data with accurate coordinates of their foot prints and elevations are obtained. The high resolution bathymetry and topography database with less than 5m grid size is developed for modeling. The metadata of the several types of structures and infrastructure of the ports and environs are processed. Different resistances for the structures/buildings/infrastructures are controlled by assigning different friction coefficients in a friction matrix. Two different tsunami conditions - high expected and moderate expected - are selected for numerical modeling. The hybrid tsunami simulation and visualization codes NAMI DANCE, STOC-CADMAS System are utilized to solve all necessary tsunami parameters and obtain the spatial and temporal distributions of flow depth, current velocity, inundation distance and maximum water level in the study domain. Finally, the computed critical values of tsunami parameters are evaluated and structural performance of the port components are discussed in regard to a better resilience. ACKNOWLEDGEMENTS: Support by EU 603839 ASTARTE Project, UDAP-Ç-12

  7. Cassini UVIS Solar Zenith Angle Studies of Titan Dayglow Based on N2 High Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ajello, Joseph; West, Robert; Holsclaw, Greg; Royer, Emilie; Heays, Alan; Bradley, Todd; Stevens, Michael

    2014-11-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan’s day and night limb-airglow on multiple occasions, including during an eclipse observation. On one occasion the UVIS made a Solar Zenith Angle (SZA) study of the Titan limb dayglow (2011 DOY 171) from about 70 to 95 degrees SZA. The UV intensity variation observations of the N2 photoelectron excited spectral features from the EUV (563-118.2 nm) and FUV (111.5-191.2nm) sub-systems followed a Chapman function. For other observations at night on the limb, the emission features are much weaker in intensity. Beyond 120 deg SZA, when the upper atmosphere of Titan below 1200 km is in total XUV darkness, there is an indication of weak and sporadic night side UV airglow emission excited by magnetosphere plasma collisions with ambient thermosphere gas, with similar N2 excited features as above in the daylight or twilight glow over an extended altitude range. We have analyzed the UVIS airglow spectra with models based on high resolution laboratory electron impact induced fluorescence spectra. We have measured high-resolution (FWHM = 0.2 Å) extreme-ultraviolet (EUV, 800-1350 Å) laboratory emission spectra of molecular nitrogen excited by electron impact at 20 and 100 eV. Molecular emission was observed to vibrationally-excited ground state levels as high as v''=17, from the a 1Πg , b 1Πu, and b‧ 1Σu+ excited valence states and the Rydberg series c‧n+1 1Σu+, cn 1Πu and o 1Πu for n between 3 and 9. A total of 491 emission features were observed from N2 electronic-vibrational transitions and atomic N I and N II multiplets. Their emission cross sections were measured.The blended molecular emission bands were disentangled with the aid of a model which solves the coupled-Schroedinger equation

  8. SPOT 4 VEGETATION system: association with high resolution data for multiscale studies

    NASA Astrophysics Data System (ADS)

    Saint, G.

    The SPOT 4 VEGETATION system is a joint program of the European Commission, France, Sweden, Belgium and Italy, to be launched in 1997. It will provide global and frequent measurements adapted to biosphere studies, especially for monitoring of the biophysical processes of the vegetation canopies. Information derived from its measurements will allow operational and long term studies related either to the production of agricultural areas or to the functioning of ecosystems, to their interaction with the atmosphere and climatic changes. The design of the entire system, from the instrument to the ground segment, was aimed at providing direct capability for multitemporal analysis of surface reflectance measurements at medium spatial resolution as well as for association with high spatial resolution data sets available from the SPOT High Resolution instrument or from other systems. Nature and quality of products delivered by the system were especially tailored taking into account the development of research done on previous systems and the needs for characterizing the temporal dynamic aspects of biosphere processes and relating regional or ecosystems' parameters to local parameters less affected by spatial heterogeneity.

  9. Monitoring Disease Trends using Hospital Traffic Data from High Resolution Satellite Imagery: A Feasibility Study

    PubMed Central

    Nsoesie, Elaine O.; Butler, Patrick; Ramakrishnan, Naren; Mekaru, Sumiko R.; Brownstein, John S.

    2015-01-01

    Challenges with alternative data sources for disease surveillance include differentiating the signal from the noise, and obtaining information from data constrained settings. For the latter, events such as increases in hospital traffic could serve as early indicators of social disruption resulting from disease. In this study, we evaluate the feasibility of using hospital parking lot traffic data extracted from high-resolution satellite imagery to augment public health disease surveillance in Chile, Argentina and Mexico. We used archived satellite imagery collected from January 2010 to May 2013 and data on the incidence of respiratory virus illnesses from the Pan American Health Organization as a reference. We developed dynamical Elastic Net multivariable linear regression models to estimate the incidence of respiratory virus illnesses using hospital traffic and assessed how to minimize the effects of noise on the models. We noted that predictions based on models fitted using a sample of observations were better. The results were consistent across countries with selected models having reasonably low normalized root-mean-squared errors and high correlations for both the fits and predictions. The observations from this study suggest that if properly procured and combined with other information, this data source could be useful for monitoring disease trends. PMID:25765943

  10. Internal pressure gradient errors in σ-coordinate ocean models in high resolution fjord studies

    NASA Astrophysics Data System (ADS)

    Berntsen, Jarle; Thiem, Øyvind; Avlesen, Helge

    2015-08-01

    Terrain following ocean models are today applied in coastal areas and fjords where the topography may be very steep. Recent advances in high performance computing facilitate model studies with very high spatial resolution. In general, numerical discretization errors tend to zero with the grid size. However, in fjords and near the coast the slopes may be very steep, and the internal pressure gradient errors associated with σ-models may be significant even in high resolution studies. The internal pressure gradient errors are due to errors when estimating the density gradients in σ-models, and these errors are investigated for two idealized test cases and for the Hardanger fjord in Norway. The methods considered are the standard second order method and a recently proposed method that is balanced such that the density gradients are zero for the case ρ = ρ(z) where ρ is the density and z is the vertical coordinate. The results show that by using the balanced method, the errors may be reduced considerably also for slope parameters larger than the maximum suggested value of 0.2. For the Hardanger fjord case initialized with ρ = ρ(z) , the errors in the results produced with the balanced method are orders of magnitude smaller than the corresponding errors in the results produced with the second order method.

  11. Regional climate change predictions from the Goddard Institute for Space Studies high resolution GCM

    NASA Technical Reports Server (NTRS)

    Crane, Robert G.; Hewitson, Bruce

    1990-01-01

    Model simulations of global climate change are seen as an essential component of any program aimed at understanding human impact on the global environment. A major weakness of current general circulation models (GCMs), however, is their inability to predict reliably the regional consequences of a global scale change, and it is these regional scale predictions that are necessary for studies of human/environmental response. This research is directed toward the development of a methodology for the validation of the synoptic scale climatology of GCMs. This is developed with regard to the Goddard Institute for Space Studies (GISS) GCM Model 2, with the specific objective of using the synoptic circulation form a doubles CO2 simulation to estimate regional climate change over North America, south of Hudson Bay. This progress report is specifically concerned with validating the synoptic climatology of the GISS GCM, and developing the transfer function to derive grid-point temperatures from the synoptic circulation. Principal Components Analysis is used to characterize the primary modes of the spatial and temporal variability in the observed and simulated climate, and the model validation is based on correlations between component loadings, and power spectral analysis of the component scores. The results show that the high resolution GISS model does an excellent job of simulating the synoptic circulation over the U.S., and that grid-point temperatures can be predicted with reasonable accuracy from the circulation patterns.

  12. High-resolution core-level photoemission study of dense Pb overlayers on Si(111)

    NASA Astrophysics Data System (ADS)

    Choi, Won Hoon; Kim, Keun Su; Yeom, Han Woong

    2008-11-01

    Structure and bonding configuration of dense Pb overlayers on the Si(111) surface have been studied by low-energy-electron diffraction and high-resolution photoelectron spectroscopy using synchrotron radiation. Several representative phases in its devil’s staircase phase diagram have been systematically investigated by varying the Pb coverage at 200-300 K. Pb5d photoelectron spectra indicate that there exist two distinct bonding configurations of Pb, which are interpreted as the hollow and on-top (T1) sites of the structure models proposed earlier. In case of surface Si atoms, mainly two different bonding environments are revealed by surface Si2p components for the low-density 7×3 phase. These can be assigned to T1 and modified on-top (T1') sites surrounding hollow-site adatoms. As the coverage increases, the minority site T1 converts to T1' making the topmost Si layer have a unique bonding configuration. This behavior is also consistent with the structure models. The temperature-dependent study reveals that the 7×3 phase undergoes a reversible phase transition into a 1×1 phase. This phase transition induces no significant change in Pb core levels but a marginal increase in the Si2p component for the T1' sites. We suggest a plausible scenario of the phase transition based on the structure model with 1.2 monolayer Pb and the active diffusion of hollow-site adatoms.

  13. High resolution model studies of transport of sedimentary material in the south-western Baltic

    NASA Astrophysics Data System (ADS)

    Seifert, Torsten; Fennel, Wolfgang; Kuhrts, Christiane

    2009-02-01

    The paper presents high resolution model simulations of transport, deposition and resuspension of sedimentary material in the south-western Baltic, based on an upgrade of the sediment transport model described in the work of Kuhrts et al. [Kuhrts, C., Fennel, W., Seifert, T., 2004. Model studies of transport of sedimentary material in the Western Baltic. Journal of Marine Systems 52, 167.]. In the western Baltic, a grid spacing of at least 1 nautical mile is required to resolve the shallow and narrow bathymetry and the associated current patterns. A series of experimental model simulations is carried out with forcing data for the year 1993, which include a sequence of storms in January. Compared to earlier model versions, a more detailed description of potential deposition areas can be provided. The study quantifies the influence of enhanced bottom roughness caused by biological structures, like mussels and worm holes, provides estimates of the regional erosion risks for fine grained sediments, and analyses scenarios of the settling and spreading of material at dumping sites. Although the effects of changed bottom roughness, as derived from more detailed, re-classified sea floor data, are relatively small, the sediment transport and deposition patterns are clearly affected by the variation of the sea bed properties.

  14. High-resolution x-ray absorption spectroscopy studies of metal compounds in neurodegenerative brain tissue

    SciTech Connect

    Collingwood, J.F.; Mikhaylova, A.; Davidson, M.R.; Batich, C.; Streit, W.J.; Eskin, T.; Terry, J.; Barrea, R.; Underhill, R.S.; Dobson, J.

    2008-06-16

    Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (< 5 microns). Recent progress in developing the technique is reviewed. Synchrotron X-rays are used to map tissue sections for metals of interest, and XANES and XAFS are used to characterize anomalous concentrations of the metals in-situ so that they can be correlated with tissue structures and disease pathology. Iron anomalies associated with biogenic magnetite, ferritin and haemoglobin are located and identified in an avian tissue model with a pixel resolution {approx} 5 microns. Subsequent studies include brain tissue sections from transgenic Huntington's mice, and the first high-resolution mapping and identification of iron biominerals in human Alzheimer's and control autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.

  15. High-resolution TEM study of Mg-doped Aluminum Nitride Epilayers

    NASA Astrophysics Data System (ADS)

    Cai, Bo; Nakarmi, Mim

    2013-03-01

    Transmission electron microscopy (TEM) has been employed to study the threading dislocations in Mg-doped Aluminum Nitride (AlN) epilayers grown by metal-organic chemical vapor deposition. The Mg-doped AlN epilayer samples were grown on high quality AlN/Sapphire template of AlN thickness ~ 1 μm. Atomic Force Microscopy and X-ray Diffraction were employed to characterize the surface morphology and the crystalline properties respectively. In the AlN template layers, TEM revealed that the dominant threading dislocation is the edge type dislocation with the average dislocation density of screw and edge dislocation in the order of 107 and 109 cm-2 respectively. In this study, we present our investigation of the threading dislocations associated with Mg-doping in AlN by analyzing the plan-view and cross-section view of TEM images taken under two-beam conditions. We will also use high-resolution dark field and bright field TEM images to investigate the origin and nature of the threading dislocations. Implementation of our finding to improve the quality of Mg-doped AlN epilayers will also be discussed. This work was supported by Student Technology Fee funds of CUNY Graduate Center.

  16. High Resolution STEM-EELS Study of Silver Nanoparticles Exposed to Light and Humic Substances.

    PubMed

    Römer, Isabella; Wang, Zhi Wei; Merrifield, Ruth C; Palmer, Richard E; Lead, Jamie

    2016-03-01

    Nanoparticles (NPs) are defined as particles with at least one dimension between 1 and 100 nm or with properties that differ from their bulk material, which possess unique properties. The extensive use of NPs means that discharge to the environment is likely increasing, but fate, behavior, and effects under environmentally relevant conditions are insufficiently studied. This paper focuses on the transformations of silver nanoparticles (AgNPs) under simulated but realistic environmental conditions. High resolution aberration-corrected scanning transmission electron microscopy (HAADF STEM) coupled with electron energy loss spectroscopy (EELS) and UV-vis were used within a multimethod approach to study morphology, surface chemistry transformations, and corona formation. Although loss, most likely by dissolution, was observed, there was no direct evidence of oxidation from the STEM-EELS. However, in the presence of fulvic acid (FA), a 1.3 nm oxygen-containing corona was observed around the AgNPs in water; modeled data based on the HAADF signal at near atomic resolution suggest this was an FA corona was formed and was not silver oxide, which was coherent (i.e., fully coated in FA), where observed. The corona further colloidally stabilized the NPs for periods of weeks to months, dependent on the solution conditions. PMID:26792384

  17. High-resolution Z-contrast imaging and EELS study of functional oxide materials.

    PubMed

    Klie, Robert F; Zhao, Yuan; Yang, Guang; Zhu, Yimei

    2008-08-01

    Functional complex-oxide materials show a wide variety of properties and behaviors that cannot be found in any other class of materials, including high-temperature superconductivity and colossal magneto resistance. Consequently, this group of oxide materials has become the focus of many experimental as well as theoretical studies, aiming at understanding the fundamental mechanisms and properties that govern these complex structures. Here, we will review our high-resolution Z-contrast imaging and electron energy-loss studies of two complex-oxide materials systems, more specifically low-angle tilt grain-boundaries in YBa(2)Cu(3)O(7) (YBCO), and the spin-state transition in LaCoO(3). It will be shown that the O K-edge pre-peak can be used to quantify the hole-concentration in the vicinity of the dislocation core in YBCO, as well as to determine the Co(3+) spin-state in LaCoO(3). PMID:18082411

  18. Modelling high resolution Echelle spectrographs for calibrations: Hanle Echelle spectrograph, a case study

    NASA Astrophysics Data System (ADS)

    Chanumolu, Anantha; Jones, Damien; Thirupathi, Sivarani

    2015-06-01

    We present a modelling scheme that predicts the centroids of spectral line features for a high resolution Echelle spectrograph to a high accuracy. Towards this, a computing scheme is used, whereby any astronomical spectrograph can be modelled and controlled without recourse to a ray tracing program. The computations are based on paraxial ray trace and exact corrections added for certain surface types and Buchdahl aberration coefficients for complex modules. The resultant chain of paraxial ray traces and corrections for all relevant components is used to calculate the location of any spectral line on the detector under all normal operating conditions with a high degree of certainty. This will allow a semi-autonomous control using simple in-house, programming modules. The scheme is simple enough to be implemented even in a spreadsheet or in any scripting language. Such a model along with an optimization routine can represent the real time behaviour of the instrument. We present here a case study for Hanle Echelle Spectrograph. We show that our results match well with a popular commercial ray tracing software. The model is further optimized using Thorium Argon calibration lamp exposures taken during the preliminary alignment of the instrument. The model predictions matched the calibration frames at a level of 0.08 pixel. Monte Carlo simulations were performed to show the photon noise effect on the model predictions.

  19. High-resolution He-scattering apparatus for gas-surface interaction studies

    NASA Astrophysics Data System (ADS)

    David, Rudolf; Kern, Klaus; Zeppenfeld, Peter; Comsa, George

    1986-11-01

    A high-resolution apparatus designed for the study of elastic and inelastic scattering of thermal helium atoms from crystal surfaces is presented. The highly expanded He nozzle beam has an energy spread ΔE/E of about 1.4% and is collimated to 0.2°. The angle subtended by the detector opening as seen from the sample is also 0.2°. Beam intensities as low as 10-6 of the specular beam intensity from a low-temperature clean Pt(111) surface are detectable. Pseudorandom chopping with a resolution of 2.5 μs (flight path 790 mm) is used for time-of-flight (TOF) analysis of the scattered helium. The base pressure in the sample chamber is in the low 10-11 mbar. The capabilities of the apparatus are demonstrated for physisorbed Xe adlayers on Pt(111). The results presented are obtained by using He scattering in various modes: coherent inelastic, coherent elastic, and incoherent (diffuse) elastic. This technique allows for a nondestructive nearly exhaustive characterization of the thermodynamics, structure, and dynamics of physisorbed adlayers on arbitrary substrates.

  20. Hunting the parent of the Orphan stream. II. The first high-resolution spectroscopic study

    SciTech Connect

    Casey, Andrew R.; Keller, Stefan C.; Da Costa, Gary; Maunder, Elizabeth; Frebel, Anna

    2014-03-20

    We present the first high-resolution spectroscopic study on the Orphan stream for five stream candidates, observed with the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Clay telescope. The targets were selected from the low-resolution catalog of Casey et al.: three high-probability members, one medium, and one low-probability stream candidate were observed. Our analysis indicates that the low- and medium-probability targets are metal-rich field stars. The remaining three high-probability targets range over ∼1 dex in metallicity, and are chemically distinct compared to the other two targets and all standard stars: low [α/Fe] abundance ratios are observed, and lower limits are ascertained for [Ba/Y], which sit well above the Milky Way trend. These chemical signatures demonstrate that the undiscovered parent system is unequivocally a dwarf spheroidal galaxy, consistent with dynamical constraints inferred from the stream width and arc. As such, we firmly exclude the proposed association between NGC 2419 and the Orphan stream. A wide range in metallicities adds to the similarities between the Orphan stream and Segue 1, although the low [α/Fe] abundance ratios in the Orphan stream are in tension with the high [α/Fe] values observed in Segue 1. Open questions remain before Segue 1 could possibly be claimed as the 'parent' of the Orphan stream. The parent system could well remain undiscovered in the southern sky.

  1. Cisplatin encapsulation within a ferritin nanocage: a high-resolution crystallographic study.

    PubMed

    Pontillo, Nicola; Pane, Francesca; Messori, Luigi; Amoresano, Angela; Merlino, Antonello

    2016-03-18

    Cisplatin (CDDP) can be encapsulated within the central cavity of reconstituted (apo)ferritin, (A)Ft, to form a drug-loaded protein of potential great interest for targeted cancer treatments. In this study, the interactions occurring between cisplatin and native horse spleen Ft in CDDP-encapsulated AFt are investigated by high-resolution X-ray crystallography. A protein bound Pt center is unambiguously identified in AFt subunits by comparative analysis of difference Fourier electron density maps and of anomalous dispersion data. Indeed, a [Pt(NH3)2H2O](2+) fragment is found coordinated to the His132 residue located on the inner surface of the large AFt spherical cage. Remarkably, Pt binding does not alter the overall physicochemical features (shape, volume, polarity/hydrophobicity and electrostatic potential) of the outer surface of the AFt nanocage. CDDP-encapsulated AFt appears to be an ideal nanocarrier for CDDP delivery to target sites, as it possesses high biocompatibility and can be internalized by receptor mediated endocytosis, thus carrying the drug to tumor tissue with higher selectivity than free CDDP. PMID:26888424

  2. High resolution infrared spectroscopy of [1.1.1]propellane: the region of the v9 band

    SciTech Connect

    Maki, Arthur; Weber, Alfons; Nibler, Joseph W.; Masiello, Tony; Blake, Thomas A.; Kirkpatrick, Robynne W.

    2010-11-01

    The region of the infrared-active ν9 CH2 bending band of [1.1.1] propellane has been recorded at resolution (0.0025 cm-1) sufficient to distinguish individual rovibrational lines. This region includes the partially overlapping bands ν9 (e′) = 1459 cm-1, 2ν18 (l = 2, E′) = 1430 cm-1, ν6 + ν12 (E′) = 1489 cm-1, and ν4 + ν15 (A2″) = 1518 cm-1. In addition, the difference band ν4 - ν15 (A2″) was observed in the far infrared near 295 cm-1 and analyzed to give good constants for the upper ν4 state. The close proximities of the four bands in the ν9 region suggest that Coriolis and Fermi resonance couplings could be significant and theoretical band parameters obtained from Gaussian ab initio calculations were helpful in guiding the band analyses. The analyses of all four bands were accomplished, based on our earlier report of ground state constants determined from combination differences involving more than 4000 pairs of transitions from five fundamental and four combination bands. This paper presents the analyses and the determination of the upper state constants of all four bands in the region of the ν9 band. Complications were most evident in the 2ν18 (l = 2, E′) band, which showed significant perturbations due to mixing with the nearby 2ν18 (l = 0, A1′) and ν6+ν12 (E') levels which are either infrared inactive as transitions from the ground state, or, in the latter case, too weak to observe. These complications are discussed and a comparison of all molecular constants with those available from the ab initio calculations at the anharmonic level is presented. 2

  3. MID-INFRARED PROPERTIES OF OH MEGAMASER HOST GALAXIES. I. SPITZER IRS LOW- AND HIGH-RESOLUTION SPECTROSCOPY

    SciTech Connect

    Willett, Kyle W.; Darling, Jeremy; Spoon, Henrik W. W.; Charmandaris, Vassilis; Armus, Lee

    2011-03-15

    We present mid-infrared spectra and photometry from the Infrared Spectrograph on the Spitzer Space Telescope for 51 OH megamasers (OHMs), along with 15 galaxies confirmed to have no megamaser emission above L {sub OH} = 10{sup 2.3} L {sub sun}. The majority of galaxies display moderate-to-deep 9.7 {mu}m amorphous silicate absorption, with OHM galaxies showing stronger average absorption and steeper 20-30 {mu}m continuum emission than non-masing galaxies. Emission from multiple polycyclic aromatic hydrocarbons (PAHs), especially at 6.2, 7.7, and 11.3 {mu}m, is detected in almost all systems. Fine-structure atomic emission (including [Ne II], [Ne III], [S III], and [S IV]) and multiple H{sub 2} rotational transitions are observed in more than 90% of the sample. A subset of galaxies show emission from rarer atomic lines, such as [Ne V], [O IV], and [Fe II]. Fifty percent of the OHMs show absorption from water ice and hydrogenated amorphous carbon grains, while absorption features from CO{sub 2}, HCN, C{sub 2}H{sub 2}, and crystalline silicates are also seen in several OHMs. Column densities of OH derived from 34.6 {mu}m OH absorption are similar to those derived from 1667 MHz OH absorption in non-masing galaxies, indicating that the abundance of masing molecules is similar for both samples. This data paper presents full mid-infrared spectra for each galaxy, along with measurements of line fluxes and equivalent widths, absorption feature depths, and spectral indices.

  4. A high resolution x-ray fluorescence spectrometer for near edge absorption studies

    SciTech Connect

    Stojanoff, V.; Hamalainen, K.; Siddons, D.P.; Hastings, J.B.; Berman, L.E.; Cramer, S.; Smith, G.

    1991-01-01

    A high resolution fluorescence spectrometer using a Johann geometry in a back scattering arrangement was developed. The spectrometer, with a resolution of 0.3 eV at 6.5 keV, combined with an incident beam, with a resolution of 0.7 eV, form the basis of a high resolution instrument for measuring x-ray absorption spectra. The advantages of the instrument are illustrated with the near edge absorption spectrum of dysprosium nitrate. 10 refs., 4 figs.

  5. A high resolution x-ray fluorescence spectrometer for near edge absorption studies

    SciTech Connect

    Stojanoff, V.; Hamalainen, K.; Siddons, D.P.; Hastings, J.B.; Berman, L.E.; Cramer, S.; Smith, G.

    1991-12-31

    A high resolution fluorescence spectrometer using a Johann geometry in a back scattering arrangement was developed. The spectrometer, with a resolution of 0.3 eV at 6.5 keV, combined with an incident beam, with a resolution of 0.7 eV, form the basis of a high resolution instrument for measuring x-ray absorption spectra. The advantages of the instrument are illustrated with the near edge absorption spectrum of dysprosium nitrate. 10 refs., 4 figs.

  6. A high-resolution numerical study at the Canary Islands off Northwest Africa

    NASA Astrophysics Data System (ADS)

    Mason, Evan; Colas, Francois; Molemaker, Jeroen; Sangrà, Pablo; Pascual, Ananda; McWilliams, James

    2015-04-01

    The Canary Island archipelago lies partially within the upwelling region off the northwest coast of Africa where it perturbs the southwestward flowing Canary Current. The circulation around the islands is complex, as has been revealed in studies based on satellite imagery and from in situ data. Cyclonic and anticyclonic eddies are shed by the islands. Filaments of cold upwelling water extend from the African coast and interact with the island eddies. However, our understanding of these mesoscale features and their interactions is still limited by the sparsity of data available. Few modelling studies have been done for the Canary Island region, and none has yet specifically addressed the dynamics of the island and coastal circulation. A high-resolution regional ocean model (ROMS) configuration has been developed to study the dynamics in this region. We take an offline-nesting approach: A large domain that covers the Canary Basin at 7.5-km resolution feeds two successively finer domains of 3 and 1 km. The 1 km grid is focused on the Canary Islands and nearby African coast. The surface and boundary forcings are climatological. Results at the basin scale have shown a good agreement with the observed regional seasonal cycle. Here, we present preliminary results from the nested solutions where eddies, fronts and filaments are found in abundance. Model eddy conversion terms confirm the observed seasonal cycle of eddy generation, and point to both baroclinic and barotropic processes as sources of instability. Submesocale activity exhibits a pronounced seasonal cycle which is consistent with previous studies in other regions. Time series of drag and lift forces at the island of Gran Canaria are discussed that show the high variability of the incident Canary Current and the associated eddy generation process.

  7. Old high resolution satellite images for landscape archaeology: case studies from Turkey and Iraq

    NASA Astrophysics Data System (ADS)

    Scardozzi, Giuseppe

    2008-10-01

    The paper concerns the contribution for Landscape Archaeology from satellite images of 1960s and 1970s, very useful when old aerial photographs are scarce. Particularly, the study concerns the panchromatic photos taken by USA reconnaissance satellites from 1963 to 1972, declassified for civil use in 1995 and 2002, that in the last years are very used in the archaeological research; in fact, a lot of these images have an high geometric resolution, about between 2.74 and 1.83 m (Corona KH-4A and KH-4B), and some have a ground resolution about between 1.20 and 0.60 m (Gambit KH-7). These satellite images allow to examine very in detail ancient urban areas and territories that later are changed or partially destroyed; so, it is possible to detect and examine ancient structures, palaeo-environmental elements and archaeological traces of buried features now not visible. The paper presents some exemplificative cases study in Turkey and Iraq, in which the analysis of these images has made a fundamental contribution to the archaeological researches: particularly, for the reconstruction of the urban layout of the ancient city of Hierapolis of Phrygia and for the surveys in its territory, and for the study of the ancient topography of some archaeological sites of Iraq. In this second case, the research is gained in the context of the Iraq Virtual Museum Project; the comparison with recent high resolution satellite images (Ikonos-2, QuickBird-2, WorldView-1) also provide a fundamental tool for monitoring archaeological areas and for an evaluation of the situation after the first and the second Gulf War.

  8. Fire Weather Index : from high resolution climatology to Climate change impact study

    NASA Astrophysics Data System (ADS)

    Cloppet, E.; Regimbeau, M.

    2010-09-01

    Fire meteo indices provide efficient guidance tools for the prevention, early warning and surveillance of forest fires. These indices are only based on meteorological input data. Fire meteorological danger is estimated by Météo-France at national level through the use of Fire Weather Index. This study deals with the impact of climate change on fire danger in France. It has been motivated by the numerous forest fires during the 2003 drought and it aims at finding whether such events will be more frequent in the future. The first step of this project was to produce a high resolution FWI climatology. Safran model has been used to derive a 50-year hydrometeorological reanalysis, running from 1958 to 2008, on a 8 km regular grid. This reanalysis has been used in order to assess a long-term trend (a statistically significant increase in FWI for France). Then climate change potential impact on forest fire risk has been studied with climate change scenarios (ARPEGE V4 model with 3 emissions scenarios : A1B, A2 and B1) with special focus on downscaling and correction methods. Quantile-quantile normalization approach has been applied in order to calculate daily FWI from 2030 to 2100. Observed climatology (1958-2008 reanalysis on a 8km grid) has been compared to model climatology. Correction method has been applied for each statistical threshold. This method allowed us to produce downscaled FWI data and to study climate change impact at 8 km resolution. Trends are very clear for FWI and in terms of total number of daily FWI above a threshold. We can expect a huge increase in forest fire risk by 2060. All the French territory could face an average fire risk currently observed on Mediterranean area only. According to A2 and A1B scenarios, the year 2003 could become in France the standard in terms of fire risk by 2060.

  9. High resolution Fourier transform infrared spectra and analysis of the ν14, ν15 and ν16 bands of azetidine

    NASA Astrophysics Data System (ADS)

    Zaporozan, Taras; Chen, Ziqiu; van Wijngaarden, Jennifer

    2010-12-01

    Rotationally resolved vibrational spectra of the three lowest frequency bands of the four-membered heterocycle azetidine (c-C 3H 6NH) have been collected with a resolution of 0.00096 cm -1 using the far infrared beamline at the Canadian Light Source synchrotron. The modes observed correspond principally to motions best described as: β-CH 2 rock ( ν14) at 736.701310(7) cm -1, ring deformation ( ν15) at 648.116041(8) cm -1, and the ring puckering mode ( ν16) at 207.727053(9) cm -1. A global fit of 14 276 rovibrational transitions from the three bands provided an accurate set of ground state spectroscopic constants as well as excited state parameters for each of the three vibrational modes. The ground state structure was determined to be that of the puckered conformer having the NH bond in an equatorial arrangement.

  10. High-resolution spectroscopic studies of ultra metal-poor stars found in the LAMOST survey

    NASA Astrophysics Data System (ADS)

    Li, Haining; Aoki, Wako; Zhao, Gang; Honda, Satoshi; Christlieb, Norbert; Suda, Takuma

    2015-10-01

    We report on the observations of two ultra metal-poor (UMP) stars with [Fe/H] ˜ -4.0, including one new discovery. The two stars are studied in the on-going and quite efficient project to search for extremely metal-poor (EMP) stars with LAMOST and Subaru. Detailed abundances or upper limits of abundances have been derived for 15 elements from Li to Eu based on high-resolution spectra obtained with the High Dispersion Spectrograph (HDS) mounted in the Subaru Telescope. The abundance patterns of both UMP stars are consistent with the "normal population" among the low-metallicity stars. Both of the two program stars show carbon-enhancement without any excess of heavy neutron-capture elements, indicating that they belong to the subclass of (carbon-enhanced metal-poor) CEMP-no stars, as is the case of most UMP stars previously studied. The [Sr/Ba] ratios of both CEMP-no UMP stars are above [Sr/Ba] ˜ -0.4, suggesting the origin of the carbon-excess is not compatible with the mass transfer from an asymptotic giant branch companion where the s-process has operated. Lithium abundance is measured in the newly discovered UMP star LAMOST J125346.09+075343.1, making it the second UMP turnoff star with Li detection. The Li abundance of LAMOST J125346.09+075343.1 is slightly lower than the values obtained for less metal-poor stars with similar temperatures, and provides a unique data point at [Fe/H] ˜ -4.2 to support the "meltdown" of the Li Spite plateau at extremely low metallicity. Comparison with the other two UMP and HMP (hyper metal-poor, with [Fe/H] < -5.0) turnoff stars suggests that the difference in lighter elements such as CNO and Na might cause notable difference in lithium abundances among CEMP-no stars.

  11. Seasonal differences of urban organic aerosol composition - an ultra-high resolution mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Rincon, A. G.; Calvo, A. I.; Dietzel, M.; Kalberer, M.

    2012-04-01

    The understanding of the chemical composition of atmospheric aerosols, their properties and reactivity are important for assessing aerosol effects upon both global climate change and human health. The composition of organic aerosols is poorly understood mainly due to their highly complex chemical composition with several thousand compounds. In the present study the water-soluble organic fraction of ambient particles collected at an urban site in Cambridge, UK, during different seasons were analysed with ultra-high resolution mass spectrometry. For several thousand peaks in the mass specta (between 3000-6000) an elemental composition could be assigned and summer samples generally contained more components than winter samples. Up to 80% of the peaks in the mass spectra contain nitrogen and/or sulphur functional groups and only about 20% of the compounds contain only C, H and O atoms. In summer the fraction of compounds with oxidized nitrogen and sulphur groups increases compared to winter indicating a photo-chemical formation route of these multifunctional compounds. In addition to oxidized nitrogen compounds a large number of highly unsaturated reduced nitrogen-containing compounds were detected, corresponding likely to cyclic amines. A significant number of oxidized PAHs have been detected in summer samples, which were not present in winter, indicating again photo-chemical aging processes. Both, amines and long-chain aliphatic acids (also frequently observed in these urban samples) are likely signatures of biomass burning and primary biological sources. Potential biomass burning markers are discussed. Particle-phase oligomerisation reactions have only been observed to a very limited degree. Compounds larger than m/z 350 almost exclusively contained N and/or S functional groups indicating that the high molecular weight compounds in these organic aerosol extracts might be mainly due to particle-phase heterogeneous reactions of organic compounds with inorganic

  12. Using High-Resolution Airborne Remote Sensing to Study Aerosol Near Clouds

    NASA Technical Reports Server (NTRS)

    Levy, Robert; Munchak, Leigh; Mattoo, Shana; Marshak, Alexander; Wilcox, Eric; Gao, Lan; Yorks, John; Platnick, Steven

    2016-01-01

    The horizontal space in between clear and cloudy air is very complex. This so-called twilight zone includes activated aerosols that are not quite clouds, thin cloud fragments that are not easily observable, and dying clouds that have not quite disappeared. This is a huge challenge for satellite remote sensing, specifically for retrieval of aerosol properties. Identifying what is cloud versus what is not cloud is critically important for attributing radiative effects and forcings to aerosols. At the same time, the radiative interactions between clouds and the surrounding media (molecules, surface and aerosols themselves) will contaminate retrieval of aerosol properties, even in clear skies. Most studies on aerosol cloud interactions are relevant to moderate resolution imagery (e.g. 500 m) from sensors such as MODIS. Since standard aerosol retrieval algorithms tend to keep a distance (e.g. 1 km) from the nearest detected cloud, it is impossible to evaluate what happens closer to the cloud. During Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS), the NASA ER-2 flew with the enhanced MODIS Airborne Simulator (eMAS), providing MODIS-like spectral observations at high (50 m) spatial resolution. We have applied MODIS-like aerosol retrieval for the eMAS data, providing new detail to characterization of aerosol near clouds. Interpretation and evaluation of these eMAS aerosol retrievals is aided by independent MODIS-like cloud retrievals, as well as profiles from the co-flying Cloud Physics Lidar (CPL). Understanding aerosolcloud retrieval at high resolution will lead to better characterization and interpretation of long-term, global products from lower resolution (e.g.MODIS) satellite retrievals.

  13. A high-resolution geochronological and geochemical study on Aegean carbonate deposits, SW Turkey

    NASA Astrophysics Data System (ADS)

    Ünal-İmer, Ezgi; Uysal, I. Tonguç; Işık, Veysel; Zhao, Jian-Xin; Shulmeister, James

    2014-05-01

    Vein and breccia carbonates precipitated in highly fractured/faulted carbonate bedrock were investigated using high-resolution U-series geochronology, as well as through microstructural and geochemical studies including Sr-O-C isotope and REE element analyses. The study area (Kumlubük and Amos vein systems), located south of the town of Marmaris in SW Turkey, is a part of an active large-scale extensional system. Field studies show that the calcite veins generally occur sub-vertically and strike mostly NW and EW, in agreement with the regional N-S extensional stress regime. Microscopic observations indicate that the calcite veins formed through crack-seal mechanism, typically accompanied/initiated by intensive hydraulic fracturing of wall-rock evidenced by the presence of widespread breccia deposits. Vein textures are dominated by elongated, fibrous, and blocky calcites. Successive fracturing and layering of calcite with sharp contacts are traceable along the fluid inclusion bands occurring parallel to the wall rock boundary. In particular, inclusion trails aligned perpendicular to the wall-rock and calcite crystal elongation give information about the vein dilation (crack opening) vector and growth direction. High-resolution U-series dating (11-272 ka BP) and geochemical compositions of the vein and breccia samples were used to investigate the long-term behaviour as well as the general identity of the CO2-bearing fluids within deformed crust. The seismic nature of calcite veining is further assessed by stable isotopic ratio (δ18O and δ13C) plots against vein depths (distance from the wall-rock). The average δ18OPDBvalue for Kumlubük veins is -3.79o, while Amos has an average value of -4.05o. Similarly, average carbon isotope ratio (-8.30o) of the Kumlubük veins is slightly higher than that is observed for the Amos veins (-9.66o). Isotopic compositions are interpreted to reflect cyclic (or episodic) CO2 variations. This suggests the presence of several fluid

  14. HIRS-AMTS satellite sounding system test - Theoretical and empirical vertical resolving power. [High resolution Infrared Radiation Sounder - Advanced Moisture and Temperature Sounder

    NASA Technical Reports Server (NTRS)

    Thompson, O. E.

    1982-01-01

    The present investigation is concerned with the vertical resolving power of satellite-borne temperature sounding instruments. Information is presented on the capabilities of the High Resolution Infrared Radiation Sounder (HIRS) and a proposed sounding instrument called the Advanced Moisture and Temperature Sounder (AMTS). Two quite different methods for assessing the vertical resolving power of satellite sounders are discussed. The first is the theoretical method of Conrath (1972) which was patterned after the work of Backus and Gilbert (1968) The Backus-Gilbert-Conrath (BGC) approach includes a formalism for deriving a retrieval algorithm for optimizing the vertical resolving power. However, a retrieval algorithm constructed in the BGC optimal fashion is not necessarily optimal as far as actual temperature retrievals are concerned. Thus, an independent criterion for vertical resolving power is discussed. The criterion is based on actual retrievals of signal structure in the temperature field.

  15. Simulation of Urban Climate with High-Resolution WRF Model: A Case Study in Nanjing, China

    SciTech Connect

    Yang, Ben; Zhang, Yaocun; Qian, Yun

    2012-08-05

    In this study, urban climate in Nanjing of eastern China is simulated using 1-km resolution Weather Research and Forecasting (WRF) model coupled with a single-layer Urban Canopy Model. Based on the 10-summer simulation results from 2000 to 2009 we find that the WRF model is capable of capturing the high-resolution features of urban climate over Nanjing area. Although WRF underestimates the total precipitation amount, the model performs well in simulating the surface air temperature, relative humidity, and precipitation frequency, diurnal cycle and inter-annual variability. We find that extremely hot events occur most frequently in urban area, with daily maximum (minimum) temperature exceeding 36ºC (28ºC) in around 40% (32%) of days. Urban Heat Island (UHI) effect at surface is more evident during nighttime than daytime, with 20% of cases the UHI intensity above 2.5ºC at night. However, The UHI affects the vertical structure of Planet Boundary Layer (PBL) more deeply during daytime than nighttime. Net gain for latent heat and net radiation is larger over urban than rural surface during daytime. Correspondingly, net loss of sensible heat and ground heat are larger over urban surface resulting from warmer urban skin. Because of different diurnal characteristics of urban-rural differences in the latent heat, ground heat and other energy fluxes, the near surface UHI intensity exhibits a very complex diurnal feature. UHI effect is stronger in days with less cloud or lower wind speed. Model results reveal a larger precipitation frequency over urban area, mainly contributed by the light rain events (<10 mm day-1). Consistent with satellite dataset, around 10-20% more precipitation occurs in urban than rural area at afternoon induced by more unstable urban PBL, which induces a strong vertical atmospheric mixing and upward moisture transport. A significant enhancement of precipitation is found in the downwind region of urban in our simulations in the afternoon.

  16. High-resolution ultrastructural study of the rat glomerular basement membrane in aminonucleoside nephrosis.

    PubMed

    Inoue, S; Bendayan, M

    1996-01-01

    In the initial stages of aminonucleoside nephrosis, functional alterations in the glomerular basement membrane occur, as evidenced by the development of proteinuria. However, it has not been possible to observe important ultrastructural modifications at the level of the basement membrane, probably because the changes are taking place at the molecular level. In this study, by the use of high-resolution electron microscopy, an attempt was made to evaluate such changes in rat glomerular basement membrane during acute aminonucleoside nephrosis. As previously reported, in control animals the glomerular basement membrane is composed of a network of 4-nm-wide irregular anastomosing strands, referred to as "cords," which are known to contain a core filament of type IV collagen surrounded by a "sheath" of other components, such as laminin and heparan sulfate proteoglycan (HSPG). The most conspicuous ultrastructural alteration of the nephrotic glomerular basement membrane, recognizable only at high magnification, is that the cords were denuded leaving only the core filament through the loss of the sheath material. Thus, the cord network was transformed, with the progress of pathological conditions, into a network of fine filaments. On the other hand, abundance and distribution of HSPG molecules known to be present in the form of 4.5- to 5-nm-wide ribbon-like "double tracks," were found to be similar in control and nephrotic tissues. Since HSPG is one of the charge proteins of the basement membrane, the little changes observed for HSPG are difficult to interpret in view of reported decreases in basement membrane anionic sites in nephrosis. In conclusion, the glomerular basement membrane in aminonucleoside nephrosis loses its cord network components and replaces them with a more perforated network, which could be a cause for the increased permeability of this basement membrane. PMID:8883324

  17. A High Resolution Magnetohydrodynamic Simulation Study of Kronian Field-Aligned Currents and Aurora

    NASA Astrophysics Data System (ADS)

    Fukazawa, K.; Ogino, T.; Walker, R. J.

    2011-12-01

    Magnetohydrodynamic simulations of the interaction of Saturn's magnetosphere with the solar wind indicate that Kelvin-Helmholtz (K-H) waves can form on the dayside magnetopause when the interplanetary magnetic field (IMF) is northward. Dayside magnetic reconnection occurs at Saturn for northward IMF. The combination of K-H waves and reconnection caused enhanced vorticity in Saturn's magnetosphere. We have used a very high resolution version (grid interval is 0.1 RS) of our simulation code to study the consequences of the vortices and reconnection for the generation of field aligned currents (FAC) and aurorae in Saturn's ionosphere. We found three bands of alternating FAC toward and away from the dawn side of the ionosphere and two sets on the dusk side. The K-H waves generated a series of toward and away currents along the dayside side magnetopause. In the ionosphere they appear as a series of spots of up and down current. The K-H field aligned currents are adjacent to nearly continuous currents located from 1600 LT around past midnight to about 0700 LT The largest currents (jpara> 5×10-8 A /m-2) are found are at the highest latitudes. They map to the magnetopause and to the near-Earth tail region. In analogy with the Earth's ionosphere the field aligned currents away from Saturn can serve as a proxy for discrete aurorae. We used the away current density and the Knight relationship to estimate the energy flux from discrete aurorae and obtained ~1 mW /m-2 in the region with the strongest currents. Similar energy fluxes were found in the K-H related aurorae. This gave approximately 70 GW for the auroral power. We also investigated diffuse aurorae by using the energy flux in the absence of the field aligned currents. We found a region of enhanced thermal energy flux in the region where cusp aurorae are observed.

  18. A High-Resolution Spectrophotometric Study of the WR Binary System V444 Cygni

    NASA Astrophysics Data System (ADS)

    Underhill, Anne B.

    1984-07-01

    The binary system V444 Cygni (P = 4.212424 day) is an important object for determining the sizes and masses of 0 and WR stars. However, no spectrographic studies of its orbit have been made since 1950. The orbital elements given by Munch (1950) require confirmation, especially the elements describing the motion of the WR star. Spectrophotometric observations from the ground by Kuhi (1968) indicate that the system is enveloped in high-temperature gas which may be streaming between the stars. Review of the four (3 SWP, I LWR) high-resolution spectrograms of this system taken previously by others indicates that absorption lines attributable to the O star occur in the wavelength range from 1700 to 1900A, and that rather sharp absorption components associated with the C II resonance lines and with N IV 1718 occur on some of the spectrograms, but not on others. It is planned to follow V444 Cygni through one orbital cycle obtaining spectra throughout both eclipses and at the elongations. Observations will be made with the SWP camera using the spectrograph in the highresolution mode and with the large aperture. The resulting series of spectra will permit us to confirm and improve the orbital elements of Munch, and to track what, if any, streams of gas occur in the system. Improved orbital elements will allow us to deduce improved sizes and masses for the two stars. Analysis of the blended spectra and comparisons with the spectra of single stars having equivalent spectral types to those of the components of V444 Cygni will allow us to infer information about the physical state of the atmosphere of each star. Appropriate comparison spectra of single stars exist in NSSDC. The P.I. has copies of some of them.

  19. High-Resolution Spectroscopic Studies of Complexes Formed by Medium-Size Organic Molecules.

    PubMed

    Becucci, Maurizio; Melandri, Sonia

    2016-05-11

    A wealth of structural and dynamical information has been obtained in the last 30 years from the study of high-resolution spectra of molecular clusters generated in a cold supersonic expansion by means of highly resolved spectroscopic methods. The data obtained, generally lead to determination of the structures of stable conformations. In addition, in the case of weakly bound molecular complexes, it is usual to observe the effects of internal motions due to the shallowness of the potential energy surfaces involved and the flexibility of the systems. In the case of electronic excitation experiments, also the effect of electronic distribution changes on both equilibrium structures and internal motions becomes accessible. The structural and dynamical information that can be obtained by applying suitable theoretical models to the analysis of these unusually complex spectra allows the determination and understanding of the driving forces involved in formation of the molecular complex. In this way, many types of non-covalent interactions have been characterized, from pure van der Waals interactions in complexes of rare gases to moderate-strength and weak hydrogen bonds and to the most recent halogen bonds and n-π interactions. The aim of this review is to underline how the different experimental and theoretical methods converge in giving a detailed picture of weak interactions in small molecular adducts involving medium-size molecules. The conclusions regarding geometries and energies can contribute to understanding of the different driving forces involved in the dynamics of the processes and can be exploited in all fields of chemistry and biochemistry, from design of new materials with novel properties to rational design of drugs. PMID:26986455

  20. The Spectrum of Achalasia: Lessons From Studies of Pathophysiology and High-Resolution Manometry

    PubMed Central

    Kahrilas, Peter J.; Boeckxstaens, Guy

    2013-01-01

    High-resolution manometry and recently described analysis algorithms, summarized in the Chicago Classification, have increased the recognition of achalasia. It has become apparent that the cardinal feature of achalasia, impaired lower esophageal sphincter relaxation, can occur in several disease phenotypes: without peristalsis, with premature (spastic) distal esophageal contractions, with panesophageal pressurization, or with peristalsis. Any of these phenotypes could indicate achalasia; however, without a disease-specific biomarker, no manometric pattern is absolutely specific. Laboratory studies indicate that achalasia is an autoimmune disease in which esophageal myenteric neurons are attacked in a cell-mediated and antibody-mediated immune response against an uncertain antigen. This autoimmune response could be related to infection of genetically predisposed subjects with herpes simplex virus 1, although there is substantial heterogeneity among patients. At one end of the spectrum is complete aganglionosis in patients with end-stage or fulminant disease. At the opposite extreme is type III (spastic) achalasia, which has no demonstrated neuronal loss but only impaired inhibitory postganglionic neuron function; it is often associated with accentuated contractility and could be mediated by cytokine-induced alterations in gene expression. Distinct from these extremes is progressive plexopathy, which likely arises from achalasia with preserved peristalsis and then develops into type II achalasia and then type I achalasia. Variations in its extent and rate of progression are likely related to the intensity of the cytotoxic T-cell assault on the myenteric plexus. Moving forward, we need to integrate the knowledge we have gained into treatment paradigms that are specific for individual phenotypes of achalasia and away from the one-size-fits-all approach. PMID:23973923

  1. Hunting the Parent of the Orphan Stream. II. The First High-resolution Spectroscopic Study

    NASA Astrophysics Data System (ADS)

    Casey, Andrew R.; Keller, Stefan C.; Da Costa, Gary; Frebel, Anna; Maunder, Elizabeth

    2014-03-01

    We present the first high-resolution spectroscopic study on the Orphan stream for five stream candidates, observed with the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Clay telescope. The targets were selected from the low-resolution catalog of Casey et al.: three high-probability members, one medium, and one low-probability stream candidate were observed. Our analysis indicates that the low- and medium-probability targets are metal-rich field stars. The remaining three high-probability targets range over ~1 dex in metallicity, and are chemically distinct compared to the other two targets and all standard stars: low [α/Fe] abundance ratios are observed, and lower limits are ascertained for [Ba/Y], which sit well above the Milky Way trend. These chemical signatures demonstrate that the undiscovered parent system is unequivocally a dwarf spheroidal galaxy, consistent with dynamical constraints inferred from the stream width and arc. As such, we firmly exclude the proposed association between NGC 2419 and the Orphan stream. A wide range in metallicities adds to the similarities between the Orphan stream and Segue 1, although the low [α/Fe] abundance ratios in the Orphan stream are in tension with the high [α/Fe] values observed in Segue 1. Open questions remain before Segue 1 could possibly be claimed as the "parent" of the Orphan stream. The parent system could well remain undiscovered in the southern sky. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  2. Quantifying Heterogeneity in Emphysema from High Resolution Computed Tomography: A Lung Tissue Research Consortium Study

    PubMed Central

    Yilmaz, Cuneyt; Dane, Dan M.; Patel, Nova C.; Hsia, Connie C.W.

    2012-01-01

    Rationale and Objective To quantify spatial distribution of emphysema using high-resolution computed tomography (HRCT), we applied semi-automated analysis with internal attenuation calibration to measure regional air volume, tissue volume, and fractional tissue volume (FTV=tissue/[air+tissue] volume) in well-characterized patients studied by the Lung Tissue Research Consortium (LTRC). Methods HRCT was obtained at supine end-inspiration and end-expiration, and prone end-inspiration from 31 patients with mild, moderate, severe, or very severe emphysema (stages II–V, FEV1>75%, 51–75%, 21–50% and ≤20% predicted, respectively). Control data were from 20 healthy non-smokers (stage I). Each lobe was analyzed separately. Heterogeneity of FTV was assessed from coefficients of variation (CV) within and among lobes, and the kurtosis and skewness of FTV histograms. Results In emphysema, lobar air volume increased up to 177% except in the right middle lobe. Lobar tissue volume increased up to 107% in mild-moderate stages then normalized in advanced stages. Normally, FTV was up to 82% higher in lower than upper lobes. In mild-moderate emphysema, lobar FTV increased by up to 74% above normal at supine inspiration. In severe emphysema FTV declined below normal in all lobes and positions in correlation with pulmonary function (p<0.05). Markers of FTV heterogeneity increased steadily with disease stage in correlation with pulmonary function (p<0.05); the pattern is distinct from that seen in interstitial lung disease (ILD). Conclusion CT-derived biomarkers differentiate the spatial patterns of emphysema distribution and heterogeneity from that in ILD. Early emphysema is associated with elevated tissue volume and FTV, consistent with hyperemia, inflammation or atelectasis. PMID:23122057

  3. Dynamical Studies of the Middle Atmosphere Using High Resolution Doppler Imager Observations

    NASA Technical Reports Server (NTRS)

    Skinner, Wilbert

    2002-01-01

    This report summarizes the activities of NASA grant NAG5-11068, "Dynamicai Studies of the Middle Atmosphere Using High Resolution Doppler Imager Observations." The High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) has been providing direct measurements of the Earth's horizontal wind field in the stratosphere, mesosphere and lower thermosphere. Mesospheric temperatures, ozone, and O((sup 1) D) densities, and stratospheric aerosol extinctions coefficients, are also retrieved. The goal of HRDI is to measure the vector winds in the stratosphere (10-40 km), mesosphere, and lower thermosphere (approximately 50-120 km) during the day, and the lower thermosphere at night (approximately 95 km) to an accuracy of 5 m/s. The horizontal wind vector is measured by observing the Doppler shift of rotational lines of molecular oxygen along two lines of sight. In addition to winds, temperatures and volume emission rates are determined in the mesosphere and lower thermosphere, from which ozone and O((sup 1) D) concentrations can be derived, and aerosol scattering coefficients are determined in the stratosphere. UARS was launched on September 12, 1991, into a 585-km circular orbit inclined 57 degrees to the equator HRDI was activated September 28, 1991 and following a period of checkout and adjustment of the instrument parameters, scientific observations began November 2, 199 1. HRDI operated nearly continuously from launch until April 1995. At that time the UARS solar array drive failed, forcing the instruments to time-share the available power. From July 1995 to July 1996 HRDI operated approximately 50% of the time. At that point, one of the three spacecraft batteries failed and from then until September 1998 the duty cycle was less than 20% per month, At that time it was determined that HRDI could operate during each daytime pass, which increased the daytime duty cycle to close to l00%, while nighttime operations were limited to about a week

  4. High-resolution mid-infrared spectra of Co II, Ni I, and Fe II in SN 1987A

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Boyle, R. J.; Wiedemann, G. R.; Moseley, S. H.

    1993-01-01

    Ground-based infrared observations of SN 1987A on day 612 after the explosion have yielded resolved line profiles of Co II, Ni I, Fe II at 10.52, 11.31, and 17.94 micron, respectively. The spectra were taken at a resolving power of about 1000 with an array grating spectrometer on the 4 m telescope of Cerro Tololo Inter-American Observatory. Based on the observed line intensities we have estimated the minimum mass of each ion: M(Co II) = (6.0 +/- 1.8) x 10 exp -5 solar mass; M(Ni I) = (1.1 +/- 0.1) x 10 exp -3 solar mass; and M(Fe II) = (8.0 +/- 1.5) x 10 exp -3 solar mass. From these we infer total masses for cobalt, nickel, and iron in the ejecta. The nickel and iron line profiles are markedly asymmetric. We interpret these as arising from two components, one centered on the stellar rest velocity with an approximately 3250 km/s full width, and the second at about +1200 km/s with an approximately 1100 km/s full width. The asymmetry may represent a large-scale fracturing of the ejecta by Rayleigh-Taylor instabilities.

  5. W.M. Keck Telescope High Resolution Near-Infrared Imaging of FSC 10214+4724: Evidence for Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Liu, Michael C.; Graham, James R.

    1995-05-01

    We present near--infrared observations of the ultraluminous high--redshift (z=2.286) IRAS source FSC 10214+4724 obtained in 0.''4 seeing at the W. M. Keck Telescope. These new observations show that FSC 10214+4724 consists of a highly symmetric circular arc centered on a second weaker source. The arc has an angular extent of about 140(deg) and is probably unresolved in the transverse direction. This morphology constitutes compelling prima facie evidence for a gravitationally lensed system. Our images also contain evidence for the faint counter image predicted by the lens hypothesis. The morphology of FSC 10214+4724 can be explained in terms of a gravitationally lensed background source if the object located close to the center of the arc is an L(*) galaxy located at z~ 0.4 . The origin of the luminosity of FSC 10214+4724 is unclear -- it may be a protogalaxy undergoing its initial burst of star formation or a highly obscured quasar. If FSC 10214+4724 is lensed then there is significant magnification and its luminosity has been overestimated by a large factor. Our results suggest FSC 10214+4724 is not a uniquely luminous object but ranks among the most powerful quasars and ultraluminous IRAS galaxies.

  6. High-Resolution Synchrotron Infrared Spectroscopy of Thiophosgene: the νb{1}, νb{5}, 2νb{4}, and νb{2} + 2νb{6} bands

    NASA Astrophysics Data System (ADS)

    McKellar, Bob; Billinghurst, Brant E.

    2015-06-01

    Thiophosgene (Cl_2CS) is a favorite model system for studies of photophysics, vibrational dynamics, and intersystem interactions. But at high resolution its infrared spectrum is very congested due to hot bands and multiple isotopic species. Previously, we reported the first high resolution IR study of this molecule, analyzing the νb{2} (504 wn) and νb{4} (471 wn) fundamental bands. Here we continue, with analysis of the νb{1} (1139 wn) and νb{5} (820 wn) fundamentals for the two most abundant isotopologues, 35Cl2CS and 35Cl37ClCS, based on spectra with a resolution of about 0.001 wn obtained at the Canadian Light Source far-infrared beamline using synchrotron radiation and a Bruker IFS125 Fourier transform spectrometer. The νb{2} + νb{4} (942 wn) and νb{2} + 2νb{6} (1104 wn) bands are also studied here. But so far the νb{2} + νb{6} combination band (795 wn) resists analysis, as do the weak νb{3} (292.9 wn) and νb{6} (≈300? wn) fundamentals. A.R.W. McKellar, B.E.Billinghurst, J. Mol. Spectrosc. 260, 66 (2010).

  7. High Resolution Spectrometer in studies of e/sup +/e/sup -/ annihilation at. sqrt. s = 29 GeV

    SciTech Connect

    Derrick, M.

    1985-05-03

    The High Resolution Spectrometer is a general-purpose spectrometer which measures both charged particles and electromagnetic energy over 90% of the solid angle. The detection elements are in a 1.62-T magnetic field. The detector elements consist of a central drift chamber, an outer drift-chamber system, a barrel shower counter, and an end-cap shower-counter system. The goals of the program of research with the High Resolution Spectrometer include measurements of the electroweak coupling of the quarks and leptons, studies of the strong interactions of the quarks, and search for qualitatively new phenomena. 20 refs., 35 figs. (LEW)

  8. Development of Fiber Fabry-Perot Interferometers as Stable Near-infrared Calibration Sources for High Resolution Spectrographs

    NASA Astrophysics Data System (ADS)

    Halverson, Samuel; Mahadevan, Suvrath; Ramsey, Lawrence; Hearty, Fred; Wilson, John; Holtzman, Jon; Redman, Stephen; Nave, Gillian; Nidever, David; Nelson, Matt; Venditti, Nick; Bizyaev, Dmitry; Fleming, Scott

    2014-05-01

    We discuss the ongoing development of single-mode fiber Fabry-Perot (FFP) Interferometers as precise astrophotonic calibration sources for high precision radial velocity (RV) spectrographs. FFPs are simple, inexpensive, monolithic units that can yield a stable and repeatable output spectrum. An FFP is a unique alternative to a traditional etalon, as the interferometric cavity is made of single-mode fiber rather than an air-gap spacer. This design allows for excellent collimation, high spectral finesse, rigid mechanical stability, insensitivity to vibrations, and no need for vacuum operation. The device we have tested is a commercially available product from Micron Optics.10 Our development path is targeted toward a calibration source for the Habitable-Zone Planet Finder (HPF), a near-infrared spectrograph designed to detect terrestrial-mass planets around low-mass stars, but this reference could also be used in many existing and planned fiber-fed spectrographs as we illustrate using the Apache Point Observatory Galactic Evolution Experiment (APOGEE) instrument. With precise temperature control of the fiber etalon, we achieve a thermal stability of 100 μK and associated velocity uncertainty of 22 cm s-1. We achieve a precision of ≈2 m s-1 in a single APOGEE fiber over 12 hr using this new photonic reference after removal of systematic correlations. This high precision (close to the expected photon-limited floor) is a testament to both the excellent intrinsic wavelength stability of the fiber interferometer and the stability of the APOGEE instrument design. Overall instrument velocity precision is 80 cm s-1 over 12 hr when averaged over all 300 APOGEE fibers and after removal of known trends and pressure correlations, implying the fiber etalon is intrinsically stable to significantly higher precision.

  9. Line Identifications and Preliminary Synthesis of High-resolution Infrared Spectra of CP and Herbig Ae Stars

    NASA Astrophysics Data System (ADS)

    Cowley, Charles R.; Castelli, F.; Hubrig, S.; Wolff, B.; Elkin, V.

    2012-01-01

    We report on surveys of infrared spectra of chemically peculiar and Herbig Ae stars based on CRIRES (Kaufl, et al. SPIE, 5492, 1218 2004). We discuss the magnetic CP stars Gamma Equ and HD 154708, and multiple-phase observations of the Herbig Ae star HD 101412. The Be star HR 4537 and HgMn HR 6620 were also examined. The primary emphasis of the present work is on line identifications primarily in four regions, 1065-1091, 1084-1109,1550-1587, and 2276-2313nm (with order gaps). Observations were reduced with recipes available from the ESO CRIRES data reduction pipeline. Wavelength calibration is determined from daytime ThAr arc lamp exposures. Generally speaking, this is not rich in atomic lines. The strongest features are the Paschen line P6 (1093.81nm), and He I (108.30nm). The latter shows phase variations indicative of a more complex magnetic field than that of a pure dipole. No individual molecular lines were found in these early stars, though CO emission from circumstellar material is likely present in HR 4537 and HD 101412. We used atomic line lists from Kurucz's site (kurucz.harvard.edu) and VALD (http://vald.astro.univie.ac.at/ cf. Kupka et al. 1999, A&AS, 138, 119), supplemented by Outred (J. Phys. Chem. Ref. Data 7, 1, 1978). The following spectra were identified in Gamma Equ: C I, Si I, Ca I, Mg I, II, Cr I, Fe I, Sr II, and Ce III (1584.75nm). The Ap star spectra show broad Zeeman patterns compatible with published models and field strengths. Synthetic calculations used SYNTHE and SYNTHMAG (Piskunov N. E., 1999, in Astrophys. Space Sci. Library Vol. 243, Solar polarization. Kluwer, p 515). The γ Equ model is from Heiter et al. (2002, A&A, 392, 619). and the line list from VALD.

  10. TESTING THE HYPOTHESIS THAT METHANOL MASER RINGS TRACE CIRCUMSTELLAR DISKS: HIGH-RESOLUTION NEAR-INFRARED AND MID-INFRARED IMAGING

    SciTech Connect

    De Buizer, James M.; Bartkiewicz, Anna; Szymczak, Marian

    2012-08-01

    Milliarcsecond very long baseline interferometry maps of regions containing 6.7 GHz methanol maser emission have lead to the recent discovery of ring-like distributions of maser spots and the plausible hypothesis that they may be tracing circumstellar disks around forming high-mass stars. We aimed to test this hypothesis by imaging these regions in the near- and mid-infrared at high spatial resolution and compare the observed emission to the expected infrared morphologies as inferred from the geometries of the maser rings. In the near-infrared we used the Gemini North adaptive optics system of ALTAIR/NIRI, while in the mid-infrared we used the combination of the Gemini South instrument T-ReCS and super-resolution techniques. Resultant images had a resolution of {approx}150 mas in both the near-infrared and mid-infrared. We discuss the expected distribution of circumstellar material around young and massive accreting (proto)stars and what infrared emission geometries would be expected for the different maser ring orientations under the assumption that the masers are coming from within circumstellar disks. Based upon the observed infrared emission geometries for the four targets in our sample and the results of spectral energy distribution modeling of the massive young stellar objects associated with the maser rings, we do not find compelling evidence in support of the hypothesis that methanol masers rings reside in circumstellar disks.

  11. Archaeomagnetic study of ancient slag mounds in Cyprus: continuous paleointensity curves in high resolution

    NASA Astrophysics Data System (ADS)

    Shaar, R.; Tauxe, L.; Ben-Yosef, E.; Levy, T. E.; Kassianidou, V.; Lorentzen, B. E.

    2012-12-01

    One of the main challenges in paleointensity research is obtaining continuous high-resolution records that describe the behavior of the geomagnetic field on short time scales. One difficulty in obtaining such records is the problem of precise dating of suitable samples. Another fundamental difficulty is the assessment of the uncertainty involved in the interpretation of paleointensity experiments. Here we present an archaeomagnetic study of ancient slag mounds, which is designed to minimize these difficulties. We study two archaeological slag mounds in the Troodos foothills of Cyprus; one from the massive Roman mines at Skouriotissa, and another pre Roman near Mitsero Kokkinoyia. The mounds consist of industrial layers of copper slag intermixed with charcoal, which were deposited during times of intense copper smelting activity. The slag mound at Skouriotissa represents one of the largest copper production sites in the ancient world, including a 25 m high section and more than 40 archaeological layers. The mound at Mitsero is ca. 10 m high and contains about 32 layers. Hundreds of slag samples and associated charcoals from both mounds were collected, from which more than 600 slag specimens from more than 150 individual samples were analyzed for paleointensity. In addition,19 charcoals were radiocarbon dated. To minimize the uncertainty in the radiocarbon dating we applied a Bayesian model for each mound, which takes into account the relative stratigraphy of the layers. To reduce the uncertainty involved in the subjective interpretation of the paleointensity experiments (conventionally done by manually selecting temperature bounds in the Arai plot of each specimen) we designed new optimization software. The optimization software uses the assumption that paleointensity estimates from samples that were collected from the same level, should be similar. The optimization algorithm finds the selecting criteria that yields minimum scatter within each level, assigns

  12. Aerosol Composition in the Los Angeles Basin Studied by High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hayes, P. L.; Ortega, A. M.; Cubison, M.; Hu, W.; Toohey, D. W.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; Alvarez, S. L.; Rappenglueck, B.; Allan, J. D.; Taylor, J.; Holloway, J. S.; Gilman, J. B.; Kuster, W. C.; De Gouw, J. A.; Massoli, P.; Zhang, X.; Weber, R.; Zhao, Y.; Cliff, S. S.; Wexler, A. S.; Isaacman, G. A.; Worton, D. R.; Kreisberg, N. M.; Hering, S. V.; Goldstein, A. H.; Jimenez, J. L.

    2011-12-01

    Atmospheric aerosols impact climate and health, but their sources and composition are poorly understood. To address this knowledge gap, a high-resolution aerosol mass spectrometer (AMS) and complementary instrumentation were deployed during the 2010 CalNex campaign to characterize aerosol composition in the Los Angeles (LA) area. Total mass concentrations as well as the species concentrations measured by the AMS compare well with most other instruments. Nitrate dominates in the mornings, but its concentration is reduced in the afternoon when organic aerosols (OA) increase and dominate. The diurnal variations in concentrations are strongly influenced by emission transport from the source-rich western basin. The average OA to enhanced CO ratio increases with photochemical age from 25 to 80 μg m-3 ppm-1, which indicates significant secondary OA (SOA) production and that a large majority of OA is secondary in aged air. The ratio values are similar to those from Mexico City as well as New England and the Mid-Atlantic States. Positive matrix factorization (PMF) is used to assess the concentrations of different OA components. The major OA classes are oxygenated OA (OOA, a surrogate for total SOA), and hydrocarbon-like OA (HOA, a surrogate for primary combustion OA). Several subclasses of OA are identified as well including diesel-influenced HOA (DI-HOA) and non-diesel HOA. DI-HOA exhibits low concentrations on Sundays consistent with the well-known weekday/weekend effect in LA. PMF analysis finds that OOA is 67% of the total OA concentration. A strong correlation between OOA and Ox (O3 + NO2) concentrations is observed with a slope of 0.15 that suggests the production of fresh SOA in Pasadena. Plotting the OA elemental ratios in a Van Krevelen diagram (H:C vs. O:C) yields a slope of -0.6, which is less steep than that observed in Riverside during the SOAR-2005 campaign. The difference in slopes may be attributed to the highly oxidized HOA present in Pasadena that is

  13. High-Resolution Study of New Terrestrial Nightglow Features - Beyond OH

    NASA Astrophysics Data System (ADS)

    Slanger, T. G.; Cosby, P. C.; Huestis, D. L.; Osterbrock, D. E.; Fulbright, J. P.

    1998-05-01

    High-Resolution Study of New Terrestrial Nightglow Features - Beyond OH T. G. Slanger, P. C. Cosby, and D. L. Huestis, Aeronomy Group, Molecular Physics Laboratory, SRI International, Menlo Park, CA 94025 and D. E. Osterbrock and J. P. Fulbright, University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 Sky spectra taken with the HIRES echelle spectrometer on the Keck I telescope on Mauna Kea have led to the discovery of an impressive array of new spectral nightglow features, belonging to the O2(b(1) Sigma_ {g}(+) - X(3}/Sigmag({-)) ) Atmospheric Band system. The previous record for rotationally-resolved spectroscopy in this system has long been held by Babcock and Herzberg (1948), who detected the b(1) Sigma_ {g}(+) state up to v = 3 in solar absorption spectra. Recently, Osterbrock et al. (1996) have published 0.2- Angstroms resolution sky spectra showing levels up to v = 4, and these same data have been further analyzed to reveal that levels up to v = 10 could be seen. With a more recent data set in which signals have been accumulated for up to 120 hours, we are now able to measure levels up to v = 15, which encompasses 3/4 of the b(1) Sigma_ {g}(+) state potential. The discovery of these new spectral features in the O2 terrestrial nightglow has an impact on our understanding of other planets. The b(1) Sigma_ {g}(+) state, along with the lower-lying a(1) Delta_ {g} state, produces emission which should be discernible in the CO2 atmospheres of Mars and Venus, as a result of the oxygen-atom recombination which is recognized to be as important a process in those environments as in the terrestrial atmosphere. The a(1) Delta_ {g} state emission, from the v = 0 level, is a well-known though puzzling feature of the Venus atmosphere, both on the day and night sides. From the HIRES observations, and our laboratory program to determine the temperature-dependent effects of atmospheric quenching of vibrationally-excited levels

  14. Improved dosimetry in prostate brachytherapy using high resolution contrast enhanced magnetic resonance imaging: a feasibility study

    PubMed Central

    Morancy, Tye; Kaplan, Irving; Qureshi, Muhammad M.; Hirsch, Ariel E.; Rofksy, Neil M.; Holupka, Edward; Oismueller, Renee; Hawliczek, Robert; Helbich, Thomas H.; Bloch, B. Nicolas

    2014-01-01

    Purpose To assess detailed dosimetry data for prostate and clinical relevant intra- and peri-prostatic structures including neurovascular bundles (NVB), urethra, and penile bulb (PB) from postbrachytherapy computed tomography (CT) versus high resolution contrast enhanced magnetic resonance imaging (HR-CEMRI). Material and methods Eleven postbrachytherapy prostate cancer patients underwent HR-CEMRI and CT imaging. Computed tomography and HR-CEMRI images were randomized and 2 independent expert readers created contours of prostate, intra- and peri-prostatic structures on each CT and HR-CEMRI scan for all 11 patients. Dosimetry data including V100, D90, and D100 was calculated from these contours. Results Mean V100 values from CT and HR-CEMRI contours were as follows: prostate (98.5% and 96.2%, p = 0.003), urethra (81.0% and 88.7%, p = 0.027), anterior rectal wall (ARW) (8.9% and 2.8%, p < 0.001), left NVB (77.9% and 51.5%, p = 0.002), right NVB (69.2% and 43.1%, p = 0.001), and PB (0.09% and 11.4%, p = 0.005). Mean D90 (Gy) derived from CT and HR-CEMRI contours were: prostate (167.6 and 150.3, p = 0.012), urethra (81.6 and 109.4, p = 0.041), ARW (2.5 and 0.11, p = 0.003), left NVB (98.2 and 58.6, p = 0.001), right NVB (87.5 and 55.5, p = 0.001), and PB (11.2 and 12.4, p = 0.554). Conclusions Findings of this study suggest that HR-CEMRI facilitates accurate and meaningful dosimetric assessment of prostate and clinically relevant structures, which is not possible with CT. Significant differences were seen between CT and HR-CEMRI, with volume overestimation of CT derived contours compared to HR-CEMRI. PMID:25834576

  15. Quantitative study of the deformation at Southern Explorer Ridge using high-resolution bathymetric data

    NASA Astrophysics Data System (ADS)

    Deschamps, Anne; Tivey, Maurice; Embley, Robert W.; Chadwick, William W.

    2007-07-01

    We present preliminary results of a morphological study of the summit of the Southern Explorer Ridge (SER). The SER is an inflated intermediate-rate spreading center located in the northeast Pacific off the West coast of Canada, that hosts a large hydrothermal vent complex known as "Magic Mountain". A quantitative assessment of faulting on the axial summit graben floor close to the ridge summit is accomplished through the analysis of high-resolution, near-bottom, bathymetric data. These data were acquired using a multibeam system mounted on an autonomous underwater vehicle operated a few tens meters above the seafloor. Structural mapping reveals numerous subvertical fissures and normal faults that nucleated from tension fissures. The ratio between the length and the maximum scarp height of normal faults is not constant contrary to what is generally observed on subaerial faults, highlighting the probable importance of fault segment linkage and fault growth processes within the relatively thin brittle layer. Populations of small faults exhibit an exponential size-frequency distribution that reflects the importance of linkage in the fault growth history and the relatively large amount of tectonic strain (3.7 to 18.4%) accommodated by the normal faults. We propose that the 500 to 600-m wide and ˜ 60-m deep asymmetric axial summit graben of the SER formed due to magma chamber deflation as well as normal faulting that initiated on the present eastern border of the graben. We find a well-defined geographic distribution in the types of lava flows, which indicates a general decrease of the eruption rate through time. We also find that the "Magic Mountain" hydrothermal field is located in the vicinity of the large eastern axial summit graben bounding fault whose dimensions suggest it may reach to the brittle ductile-transition depth. This fault likely has provided an efficient physical pathway for fluids from the subsurface to the seafloor for a significant period of time

  16. High Resolution Environmental Magnetic Study of a Holocene Sedimentary Record from Zaca Lake, Ca

    NASA Astrophysics Data System (ADS)

    Platzman, E. S.; Lund, S.; Kirby, M. E.; Feakins, S. J.

    2012-12-01

    Magnetic studies of Holocene lake sediments recovered from Zaca lake have yielded a 3000-year high resolution record of environmental variability and paleolimnology. Zaca lake is a small oligomictic lake ~12m deep situated 730 m above sea level in the steep canyons of the San Rafael mountains, NW of Santa Barbara. Throughout much of the year Zaca lake is anaerobic below 7m. Hydrogen sulfide, fed into the lake via runoff and local sulphur springs, is present throughout the hypolimnion with concentrations sometime exceeding 30 mg/ l. During the summer months when the lake is stratified, light colored carbonate rich microlaminae are formed; and often during the winter months when the lake overturns, killing the anaerobic bacteria, black microlamina rich in iron sulfide are deposited on the lake floor, creating a stratigraphy reflecting patterns of environmental variability on annual to millennial scales. Samples for magnetic analysis were obtained from 8.5 m of core recovered from the central region of Zaca lake. Ages, constrained using radiocarbon chronostratigraphy, yielded sedimentation rates of 2-10 mm/yr with an average rate of 3 mm per yr over the 3000 yr interval. Parameters reflecting decadal scale variability in magnetic concentration (susceptibility, ARM, SIRM) and grainsize (ARM/Chi) were measured every 2 cm. Additional rock magnetic tests, including thermal demagnetization of three component IRM, were applied at selected intervals to constrain the magnetic mineralogy. These data were combined with analyses of clastic grain size, % calcium carbonate and % organics to create a multiproxy record of environmental variability. Results show that Zaca lake has had a complex depositional history. Anthropogenic effects associated with European colonization are present in the upper meters. Most notable, however, is a dramatic shift in the magnetic parameters and mineralogy between the upper and lower half of the core (circa 1300 ybp) indicating a shift in regime

  17. First far-infrared high resolution analysis of the ν3 band of phosgene 35Cl2CO and 35Cl37ClCO

    NASA Astrophysics Data System (ADS)

    Ndao, M.; Perrin, A.; Kwabia Tchana, F.; Manceron, L.; Flaud, J. M.

    2016-08-01

    The high-resolution absorption spectra of phosgene (Cl2CO) has been recorded at 0.001 cm-1 resolution in the 250-350 cm-1 region by Fourier transform spectroscopy at synchrotron SOLEIL. To reduce the spectral congestion, the spectra have been recorded at low temperature (197 K) using a 93.14 m optical path length cryogenic cell. This enables the first detailed infrared analysis of the ν3 bands of the 35Cl2CO and 35Cl37ClCO isotopologues of phosgene. Using a Watson-type Hamiltonian, it was possible to reproduce the upper state rovibrational infrared energy levels, together with, for 35Cl2CO, the available microwave data in the 31 excited state (Yamamoto et al. 1984) to within their experimental accuracy. In this way, accurate rotational and centrifugal distortion constants together with the following band centers: ν0(ν3, 35Cl2CO) = 301.545622(17) cm-1 and ν0(ν3, 35Cl37ClCO) = 298.199194(81) cm-1, were derived for the ν3 bands of 35Cl2CO and 35Cl37ClCO.

  18. A high-resolution atlas of the infrared spectrum of the Sun and the Earth atmosphere from space. Volume 3: Key to identification of solar features

    NASA Technical Reports Server (NTRS)

    Geller, Murray

    1992-01-01

    During the period April 29 through May 2, 1985, the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment was operated as part of the Spacelab-3 (SL-3) payload on the shuttle Challenger. The instrument, a Fourier transform spectrometer, recorded over 2000 infrared solar spectra from an altitude of 360 km. Although the majority of the spectra were taken through the limb of the Earth's atmosphere in order to better understand its composition, several hundred of the 'high-sun' spectra were completely free from telluric absorption. These high-sun spectra recorded from space are, at the present time, the only high-resolution infrared spectra ever taken of the Sun free from absorptions due to constituents in the Earth's atmosphere. Volumes 1 and 2 of this series provide a compilation of these spectra arranged in a format suitable for quick-look reference purposes and are the first record of the continuous high-resolution infrared spectrum of the Sun and the Earth's atmosphere from space. In the Table of Identifications, which constitutes the main body of this volume, each block of eight wavenumbers is given a separate heading and corresponds to a page of two panels in Volume 1 of this series. In addition, three separate blocks of data available from ATMOS from 622-630 cm(exp -1), 630-638 cm(exp -1) and 638-646 cm(exp -1), excluded from Volume 1 because of the low signal-to-noise ratio, have been included due to the certain identification of several OH and NH transitions. In the first column of the table, the corrected frequency is given. The second column identifies the molecular species. The third and fourth columns represent the assigned transition. The fifth column gives the depth of the molecular line in millimeters. Also included in this column is a notation to indicate whether the line is a blend or lies on the shoulder(s) of another line(s). The final column repeats a question mark if the line is unidentified.

  19. Applications of very high-resolution imagery in the study and conservation of large predators in the Southern Ocean.

    PubMed

    Larue, Michelle A; Knight, Joseph

    2014-12-01

    The Southern Ocean is one of the most rapidly changing ecosystems on the planet due to the effects of climate change and commercial fishing for ecologically important krill and fish. Because sea ice loss is expected to be accompanied by declines in krill and fish predators, decoupling the effects of climate and anthropogenic changes on these predator populations is crucial for ecosystem-based management of the Southern Ocean. We reviewed research published from 2007 to 2014 that incorporated very high-resolution satellite imagery to assess distribution, abundance, and effects of climate and other anthropogenic changes on populations of predators in polar regions. Very high-resolution imagery has been used to study 7 species of polar animals in 13 papers, many of which provide methods through which further research can be conducted. Use of very high-resolution imagery in the Southern Ocean can provide a broader understanding of climate and anthropogenic forces on populations and inform management and conservation recommendations. We recommend that conservation biologists continue to integrate high-resolution remote sensing into broad-scale biodiversity and population studies in remote areas, where it can provide much needed detail. PMID:25103277

  20. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    DOE R&D Accomplishments Database

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  1. High-resolution PET (positron emission tomography) for medical science studies

    SciTech Connect

    Budinger, T.F.; Derenzo, S.E.; Huesman, R.H.; Jagust, W.J.; Valk, P.E. )

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging. 6 refs., 21 figs.

  2. Nitrosyl iodide, INO: A combined ab initio and high-resolution spectroscopic study

    NASA Astrophysics Data System (ADS)

    Bailleux, S.; Duflot, D.; Aiba, S.; Nakahama, S.; Ozeki, H.

    2016-04-01

    In the nitrosyl halides series (XNO, where X = F, Cl, Br, I), INO is the only chemical species whose rotational spectrum has not been reported. Nitrosyl iodide, together with the nitryl (INO2), nitrite (IONO) and nitrate (IONO2) iodides, is believed to impact tropospheric ozone levels. Guided by our quantum chemical calculations, we report the detection of INO in the gas phase by high-resolution spectroscopy for the first time. INO was generated by mixing continuously I2 and NO. The measurement and least-squares analysis of 173 a-type rotational transitions resulted in the accurate determination of molecular parameters.

  3. Design studies of two possible detector blocks for high resolution positron emission tomography of the brain

    SciTech Connect

    Eriksson, L.; Bohm, C.; Kesselberg, M.; Holte, S.; Bergstrom, M.; Litton, J.

    1987-02-01

    Two possible detector designs for high resolution positron camera systems have been investigated. The goal is to achieve an instrument that can measure the whole brain with a spatial resolution of 5 mm FWHM in all directions. For both detectors BGO crystals are used, with the dimension 4.5 x 9.5 x 25 mm. One detector scheme utilizes the Anger principle for crystal identification with 16 crystals mounted on two dual PMT:s via a 3 mm light guide. The other detector scheme utilizes position sensitive PMT:s. The figures of merit for these two configurations are discussed in terms of high count rate capabilities and identification reliability.

  4. Studying Axonal Regeneration by Laser Microsurgery and High-Resolution Videomicroscopy.

    PubMed

    Xiao, Yan; López-Schier, Hernán

    2016-01-01

    Heterogeneous and unpredictable environmental insult, disease, or trauma can affect the integrity and function of neuronal circuits, leading to irreversible neural dysfunction. The peripheral nervous system can robustly regenerate axons after damage to recover the capacity to transmit sensory information to the brain. The mechanisms that allow axonal repair remain incompletely understood. Here we present a preparation in zebrafish that combines laser microsurgery of sensory axons and videomicroscopy of neurons in multicolor transgenic specimens. This simple protocol allows controlled damage of axons and dynamic high-resolution visualization and quantification of repair. PMID:27464814

  5. Application of high-resolution single-channel recording to functional studies of cystic fibrosis mutants.

    PubMed

    Cai, Zhiwei; Sohma, Yoshiro; Bompadre, Silvia G; Sheppard, David N; Hwang, Tzyh-Chang

    2011-01-01

    The patch-clamp technique is a powerful and versatile method to investigate the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel, its malfunction in disease and modulation by small molecules. Here, we discuss how the molecular behaviour of CFTR is investigated using high-resolution single-channel recording and kinetic analyses of channel gating. We review methods used to quantify how cystic fibrosis (CF) mutants perturb the biophysical properties and regulation of CFTR. By explaining the relationship between macroscopic and single-channel currents, we demonstrate how single-channel data provide molecular explanations for changes in CFTR-mediated transepithelial ion transport elicited by CF mutants. PMID:21594800

  6. Application of High-Resolution Single-Channel Recording to Functional Studies of Cystic Fibrosis Mutants

    PubMed Central

    Cai, Zhiwei; Sohma, Yoshiro; Bompadre, Silvia G.; Sheppard, David N.; Hwang, Tzyh-Chang

    2016-01-01

    The patch-clamp technique is a powerful and versatile method to investigate the cystic fibrosis transmem-brane conductance regulator (CFTR) Cl− channel, its malfunction in disease and modulation by small molecules. Here, we discuss how the molecular behaviour of CFTR is investigated using high-resolution single-channel recording and kinetic analyses of channel gating. We review methods used to quantify how cystic fibrosis (CF) mutants perturb the biophysical properties and regulation of CFTR. By explaining the relationship between macroscopic and single-channel currents, we demonstrate how single-channel data provide molecular explanations for changes in CFTR-mediated transepithelial ion transport elicited by CF mutants. PMID:21594800

  7. TRAGALDABAS: A new high resolution detector for the regular study of cosmic rays

    NASA Astrophysics Data System (ADS)

    Alvarez-Pol, H.; Blanco, A.; Blanco, J. J.; Collazo, J.; Fonte, P.; Garzón, J. A.; Gómez, A.; Kornakov, G.; Kurtukian, T.; Lopes, L.; Morales, M.; Morozova, A.; Pais, M. A.; Palka, M.; Pérez Muñuzuri, V.; Rey, P.; Ribeiro, P.; Seco, M.; Taboada, J.

    2015-08-01

    Research on cosmic rays is of big interest either for getting a better understanding about their origin and properties or because they offer very valuable information about the galactic, the solar and the Earth's environment. In order to improve our knowledge of all those fields, a high resolution cosmic ray tracking detector, TRAGALDABAS, is being commissioned at the Faculty of Physics of the Univ. of Santiago de Compostela (Spain). In this article we make overview of the main performances of the detector and we present some very preliminary results showing that the detector is taking good data, and that we are gathering a valuable sample of events, ready to be analyzed.

  8. Deriving the Extinction to Young Stellar Objects using [Fe II] Near-infrared Emission Lines: Prescriptions from GIANO High-resolution Spectra

    NASA Astrophysics Data System (ADS)

    Pecchioli, T.; Sanna, N.; Massi, F.; Oliva, E.

    2016-07-01

    The near-infrared (NIR) emission lines of Fe+ at 1.257, 1.321, and 1.644 μm share the same upper level; their ratios can then be exploited to derive the extinction to a line emitting region once the relevant spontaneous emission coefficients are known. This is commonly done, normally from low-resolution spectra, in observations of shocked gas from jets driven by Young Stellar Objects. In this paper we review this method, provide the relevant equations, and test it by analyzing high-resolution (R ∼ 50,000) NIR spectra of two young stars, namely the Herbig Be star HD 200775 and the Be star V1478 Cyg, which exhibit intense emission lines. The spectra were obtained with the new GIANO echelle spectrograph at the Telescopio Nazionale Galileo. Notably, the high-resolution spectra allowed checking the effects of overlapping telluric absorption lines. A set of various determinations of the Einstein coefficients are compared to show how much the available computations affect extinction derivation. The most recently obtained values are probably good enough to allow reddening determination within 1 visual mag of accuracy. Furthermore, we show that [Fe ii] line ratios from low-resolution pure emission-line spectra in general are likely to be in error due to the impossibility to properly account for telluric absorption lines. If low-resolution spectra are used for reddening determinations, we advice that the ratio 1.644/1.257, rather than 1.644/1.321, should be used, being less affected by the effects of telluric absorption lines.

  9. Very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Aronson, A. I.

    1974-01-01

    A primary sensor used in environmental and earth-resource observation, the Very High Resolution Radiometer (VHRR) was designed for use on the ITOS D series spacecraft. The VHRR provides a 0.47 mile resolution made possible with a mercury-cadmium-telluride detector cooled to approximately 105 K by a passive radiator cooler. The components of this system are described. The optical subsystem of the VHRR consists of a scanning mirror, a Dall-Kirkham telescope, a dichroic beam splitter, relay lenses, spectral filters, and an IR detector. Signal electronics amplify and condition the signals from the infrared and visible light detector. Sync generator electronics provides the necessary time signals. Scan-drive electronics is used for commutation of the motor winding, velocity, and phase control. A table lists the performance parameters of the VHRR.

  10. Measurement of HO2 and other trace gases in the stratosphere using a high resolution far-infrared spectrometer

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.; Chance, Kelly V.; Johnson, David G.; Jucks, Kenneth W.; Salawitch, Ross J.; Xue, Jim Changqin; Ciarpallini, Paola

    1995-01-01

    This report covers the time period 1 January 1994 to 31 December 1994. During this reporting period we had our fourth Upper Atmosphere Research Satellite (UARS) correlative balloon flight; the data from this flight have been reduced and submitted to the UARS CDHF. We have spent most of the past year analyzing data from this and past flights. For example, using data from our September 1989 balloon flight we have demonstrated for the first time ever that the rates of production and loss of ozone are in balance in the upper stratosphere. As part of this analysis, we have completed the most detailed study to date of radical partitioning throughout the stratosphere. We have also produced the first measurement of HBr and HOBr mixing ratio profiles over a full diurnal cycle.

  11. Testing models of low-mass star formation - High-resolution far-infrared observations of L1551 IRS 5

    NASA Technical Reports Server (NTRS)

    Butner, Harold M.; Evans, Neal J., II; Lester, Daniel F.; Levreault, Russell M.; Strom, Stephen E.

    1991-01-01

    A 50 and 100 micron wavelength study of L151 IRS 5 has yielded data consistent with the Adams et al. (1987) theoretical model prediction. It has proven possible to constrain a range of possible density gradients through source-emission modeling on the basis of the spherically-symmetric radiative transfer program of Egan et al. (1988) and a comparison of the observed scans at 50 and 100 microns. Attention is given to the effects of varying the dust grain properties of the spherical energy distribution of the source; the amount of mid-IR emission is highly sensitive to dust opacity and, because of poorly understood dust properties, is not a sensitive test for the presence of disks.

  12. High-resolution synchrotron infrared spectroscopy of acrolein: The vibrational levels between 850 and 1020 cm-1

    NASA Astrophysics Data System (ADS)

    McKellar, A. R. W.; Billinghurst, B. E.; Xu, Li-Hong; Lees, R. M.

    2015-11-01

    Using spectra obtained at the Canadian Light Source synchrotron radiation facility, a previously unobserved out-of-plane vibration of trans-acrolein (propenal) is reliably assigned for the first time. Its origin is at 1002.01 cm-1, which is about 20 cm-1 higher than usually quoted in the past. This mode is thus labelled as v14, leaving the label v15 for the known vibration at 992.66 cm-1. Weak combination bands 171182 ← 182, 171131 ← 131, 121182 ← 181, and 171182 ← 181 are studied for the first time, and assignments in the known v11, v16, and v15 fundamental bands are also extended. The seven excited vibrations involved in these bands are analyzed, together with five more unobserved vibrations in the same region (850-1020 cm-1), in a large 12-state simultaneous fit which accounts for most of the many observed perturbations in the spectra.

  13. Suomi NPP/JPSS Cross-track Infrared Sounder (CrIS): Calibration Validation With The Aircraft Based Scanning High-resolution Interferometer Sounder (S-HIS)

    NASA Astrophysics Data System (ADS)

    Taylor, J. K.; Revercomb, H. E.; Tobin, D.; Knuteson, R. O.; Best, F. A.; Adler, D. A.; Pettersen, C.; Garcia, R. K.; Gero, P.

    2013-12-01

    To better accommodate climate change monitoring and improved weather forecasting, there is an established need for higher accuracy and more refined error characterization of radiance measurements from space and the corresponding geophysical products. This need has led to emphasizing direct tests of on-orbit performance, referred to as validation. Currently, validation typically involves (1) collecting high quality reference data from airborne and/or ground-based instruments during the satellite overpass, and (2) a detailed comparison between the satellite-based radiance measurements and the corresponding high quality reference data. Additionally, for future missions technology advancements at the University of Wisconsin Space Science and Engineering Center (UW-SSEC) have led to the development of an on-orbit absolute radiance reference utilizing miniature phase change cells to provide direct on-orbit traceability to International Standards (SI). The detailed comparison between the satellite-based radiance measurements and the corresponding measurements made from a high-altitude aircraft must account for instrument noise and scene variations, as well as differences in instrument observation altitudes, view angles, spatial footprints, and spectral response. Most importantly, for the calibration validation process to be both accurate and repeatable the reference data instrument must be extremely well characterized and understood, carefully maintained, and accurately calibrated, with traceability to absolute standards. The Scanning High-resolution Interferometer Sounder (S-HIS) meets and exceeds these requirements and has proven to do so on multiple airborne platforms, each with significantly different instrument operating environments. The Cross-track Infrared Sounder (CrIS) on Suomi NPP, launched 28 October 2011, is designed to give scientists more refined information about Earth's atmosphere and improve weather forecasts and our understanding of climate. CrIS is an

  14. High-resolution multiphoton optical tomography of tissues: an in vitro and in vivo study

    NASA Astrophysics Data System (ADS)

    Riemann, Iris; Schenke-Layland, Katja; Ehlers, Alexander; Dimitrow, Enrico; Kaatz, Martin; Elsner, Peter; Martin, Sven; König, Karsten

    2006-03-01

    Multiphoton optical tomography based on NIR (near-infrared) femtosecond laser pulses provides non-invasive optical sectioning of skin with high spatial intracellular resolution and high tissue penetration. The imaging system DermaInspect was used to perform this technology in clinical studies in vivo on patients with suspicious melanoma. Pigmented cell clusters based on non-linear luminescence were clearly distinguished from non-pigmented cells in the epidermis using the autofluorescence of endogenous fluorophores like NAD(P)H, flavins, keratin, elastin, collagen and melanin. Some of the investigated tissues showed differences in the structure of the epidermal layers and the presence of dendritic cells compared to normal skin. Multiphoton laser microscopy was used to visualize extracellular matrix (ECM) structures of native and tissueengineered heart valves. The quality of the resulting 3-D images allowed an exact differentiation between collagenous and elastic fibers. The analysis of heart valve tissues of patients with cardiomyopathy revealed a dramatic loss of its capability to generate SH (second harmonic), indicating a structural deformation of the collagenous fibers, which was virtually impossible to obtain by routine histological or immunohistological staining. These results indicate that NIR femtosecond laser scanning systems can be employed as novel non-invasive optical technology for 3-D resolved ECM component imaging and in vitro and in vivo tissue diagnosis.

  15. High-resolution study of (222, 113) three-beam diffraction in Ge

    PubMed Central

    Kazimirov, A.; Kohn, V. G.

    2011-01-01

    The results of high-resolution analysis of the (222, >113) three-beam diffraction in Ge are presented. For monochromatization and angular collimation of the incident synchrotron beam a multi-crystal arrangement in a dispersive setup in both vertical and horizontal planes was used in an attempt to experimentally approach plane-wave incident conditions. Using this setup, for various azimuthal angles the polar angular curves which are very close to theoretical computer simulations for the plane monochromatic wave were measured. The effect of the strong two-beam 222 diffraction was observed for the first time with the maximum reflectivity close to 60% even though the total reflection of the incident beam into a forbidden reflection was not achieved owing to absorption. The structure factor of the 222 reflection in Ge was experimentally determined. PMID:21694480

  16. Improving the Altimeter Derived Geostrophic Currents Using High Resolution Sea Surface Temperature Images: A Feasibility Study

    NASA Astrophysics Data System (ADS)

    Rio, M.-H.; Santoleri, R.; Giffa, A.; Piterbarg, L.

    2015-12-01

    Accurate knowledge of spatial and temporal ocean surface currents at high resolution is essential for a variety of applications. The altimeter observing system, by providing global and repetitive measurements of the Sea Surface Height, has been by far the most exploited system to estimate ocean surface currents in the past 20 years. However it does not allow observing currents departing from the geostrophic equilibrium, nor is capable to resolve the shortest spatial scales of the currents. In order to go beyond these limits, we investigate how the high spatial and temporal resolution information from Sea Surface Temperature (SST) images can improve the altimeter currents by adapting a method first proposed by [1]. It consists in inverting the SST evolution equation for the velocity by prescribing the source and sink terms and by using the altimeter currents as background. The method feasibility is tested using simulated data based on the Mercator-Ocean system.

  17. High Resolution Angle Resolved Photoemission Studies on Quasi-Particle Dynamics in Graphite

    SciTech Connect

    Leem, C.S.

    2010-06-02

    We obtained the spectral function of the graphite H point using high resolution angle resolved photoelectron spectroscopy (ARPES). The extracted width of the spectral function (inverse of the photo-hole lifetime) near the H point is approximately proportional to the energy as expected from the linearly increasing density of states (DOS) near the Fermi energy. This is well accounted by our electron-phonon coupling theory considering the peculiar electronic DOS near the Fermi level. And we also investigated the temperature dependence of the peak widths both experimentally and theoretically. The upper bound for the electron-phonon coupling parameter is 0.23, nearly the same value as previously reported at the K point. Our analysis of temperature dependent ARPES data at K shows that the energy of phonon mode of graphite has much higher energy scale than 125K which is dominant in electron-phonon coupling.

  18. A high resolution spectroscopic study of the oxygen molecule. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Ritter, K. J.

    1984-01-01

    A high resolution spectrometer which incorporates a narrow line width tunable dye laser was used to make absorption profiles of 57 spectral lines in the Oxygen A-Band at pressures up to one atmosphere in pure O2. The observed line profiles are compared to the Voigt, and a collisionally narrowed, profile using a least squares fitting procedure. The collisionally narrowed profile compares more favorable to the observed profiles. Values of the line strengths and self broadening coeffiencients, determined from the least square fitting process, are presented in tabular form. It is found that the experssion by Watson are in closest agreement with the experimentally determined strengths. The self broadening coefficients are compared with the measurements of several other investigators.

  19. Mapping bare soil in South West Wales, UK, using high resolution colour infra-red aerial photography for water quality and flood risk management applications

    NASA Astrophysics Data System (ADS)

    Sykes, Helena; Neale, Simon; Coe, Sarah

    2016-04-01

    Natural Resources Wales is a UK government body responsible for environmental regulation, among other areas. River walks in Water Framework Directive (WFD) priority catchments in South West Wales, UK, identified soil entering water courses due to poaching and bank erosion, leading to deterioration in the water quality and jeopardising the water quality meeting legal minimum standards. Bare soil has also been shown to cause quicker and higher hydrograph peaks in rural catchments than if those areas were vegetated, which can lead to flooding of domestic properties during peak storm flows. The aim was to target farm visits by operational staff to advise on practices likely to improve water quality and to identify areas where soft engineering solutions such as revegetation could alleviate flood risk in rural areas. High resolution colour-infrared aerial photography, 25cm in the three colour bands and 50cm in the near infrared band, was used to map bare soil in seven catchments using supervised classification of a five band stack including the Normalised Difference Vegetation Index (NDVI). Mapping was combined with agricultural land use and field boundary data to filter out arable fields, which are supposed to bare soil for part of their cycle, and was very successful when compared to ground truthing, with the exception of silage fields which contained sparse, no or unproductive vegetation at the time the imagery was acquired leading to spectral similarity to bare soil. A raindrop trace model was used to show the path sediment from bare soil areas would take when moving through the catchment to a watercourse, with hedgerows inserted as barriers following our observations from ground truthing. The findings have been used to help farmers gain funding for improvements such as fencing to keep animals away from vulnerable river banks. These efficient and automated methods can be rolled out to more catchments in Wales and updated using aerial imagery acquired more recently to

  20. Performance of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) high-resolution near-infrared multi-object fiber spectrograph

    NASA Astrophysics Data System (ADS)

    Wilson, John C.; Hearty, F.; Skrutskie, M. F.; Majewski, S. R.; Schiavon, R.; Eisenstein, D.; Gunn, J.; Holtzman, J.; Nidever, D.; Gillespie, B.; Weinberg, D.; Blank, B.; Henderson, C.; Smee, S.; Barkhouser, R.; Harding, A.; Hope, S.; Fitzgerald, G.; Stolberg, T.; Arns, J.; Nelson, M.; Brunner, S.; Burton, A.; Walker, E.; Lam, C.; Maseman, P.; Barr, J.; Leger, F.; Carey, L.; MacDonald, N.; Ebelke, G.; Beland, S.; Horne, T.; Young, E.; Rieke, G.; Rieke, M.; O'Brien, T.; Crane, J.; Carr, M.; Harrison, C.; Stoll, R.; Vernieri, M.; Shetrone, M.; Allende-Prieto, C.; Johnson, J.; Frinchaboy, P.; Zasowski, G.; Garcia Perez, A.; Bizyaev, D.; Cunha, K.; Smith, V. V.; Meszaros, Sz.; Zhao, B.; Hayden, M.; Chojnowski, S. D.; Andrews, B.; Loomis, C.; Owen, R.; Klaene, M.; Brinkmann, J.; Stauffer, F.; Long, D.; Jordan, W.; Holder, D.; Cope, F.; Naugle, T.; Pfaffenberger, B.; Schlegel, D.; Blanton, M.; Muna, D.; Weaver, B.; Snedden, S.; Pan, K.; Brewington, H.; Malanushenko, E.; Malanushenko, V.; Simmons, A.; Oravetz, D.; Mahadevan, S.; Halverson, S.

    2012-09-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) uses a dedicated 300-fiber, narrow-band near-infrared (1.51-1.7 μm), high resolution (R~22,500) spectrograph to survey approximately 100,000 giant stars across the Milky Way. This three-year survey, in operation since late-summer 2011 as part of the Sloan Digital Sky Survey III (SDSS III), will revolutionize our understanding of the kinematical and chemical enrichment histories of all Galactic stellar populations. We present the performance of the instrument from its first year in operation. The instrument is housed in a separate building adjacent to the 2.5-m SDSS telescope and fed light via approximately 45-meter fiber runs from the telescope. The instrument design includes numerous innovations including a gang connector that allows simultaneous connection of all fibers with a single plug to a telescope cartridge that positions the fibers on the sky, numerous places in the fiber train in which focal ratio degradation had to be minimized, a large mosaic-VPH (290 mm x 475 mm elliptically-shaped recorded area), an f/1.4 six-element refractive camera featuring silicon and fused silica elements with diameters as large as 393 mm, three near-infrared detectors mounted in a 1 x 3 mosaic with sub-pixel translation capability, and all of these components housed within a custom, LN2-cooled, stainless steel vacuum cryostat with dimensions 1.4-m x 2.3-m x 1.3-m.

  1. On the Assessment and Uncertainty of Atmospheric Trace Gas Burden Measurements with High Resolution Infrared Solar Occultation Spectra from Space by the ATMOS Experiment

    NASA Technical Reports Server (NTRS)

    Abrams, M. C.; Chang, A. Y.; Gunson, M. R.; Abbas, M. M.; Goldman, A.; Irion, F. W.; Michelsen, H. A.; Newchurch, M. J.; Rinsland, C. P.; Stiller, G. P.; Zander, R.

    1996-01-01

    The Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument is a high resolution Fourier transform spectrometer that measures atmospheric composition from low Earth orbit with infrared solar occultation sounding in the limb geometry. Following an initial flight in 1985, ATMOS participated in the Atmospheric Laboratory for Applications and Science (ATLAS) 1, 2, and 3 Space Shuttle missions in 1992, 1993, and 1994 yielding a total of 440 occultation measurements over a nine year period. The suite of more than thirty atmospheric trace gases profiled includes CO2, O3, N2O, CH4, H2O, NO, NO2, HNO3, HCl, HF, ClONO2, CCl3F, CCl2F2, CHF2Cl, and N2O5. The analysis method has been revised throughout the mission years culminating in the 'version 2' data set. The spectroscopic error analysis is described in the context of supporting the precision estimates reported with the profiles; in addition, systematic uncertainties assessed from the quality of the spectroscopic database are described and tabulated for comparisons with other experiments.

  2. Rotational Analysis of Bands in the High-Resolution Infrared Spectra of cis,cis- and trans,trans-1,4-difluorobutadiene-2-d1

    SciTech Connect

    Craig, Norman C.; Easterday, Clay C.; Nemchick, Deacon J.; Williamson, Drew; Sams, Robert L.

    2012-02-01

    Pure samples of cis,cis- and trans,trans-1,4-difluorobutadiene-2-d1 have been synthesized, and high-resolution (0.0015 cm-1) infrared spectra have been recorded for these nonpolar molecules in the gas phase. For the cis,cis isomer, the rotational structure in two C-type bands at 775 and 666 cm-1 and one A-type band at 866 cm-1 has been analyzed to yield a combined set of 2020 ground state combination differences (GSCDs). Ground state rotational constants fit to these GSCDs are A0 = 0.4195790(4), B0 = 0.0536508(8), and C0 = 0.0475802(9) cm-1. For the trans,trans isomer, three Ctype bands at 856, 839, and 709 cm-1 have been investigated to give a combined set of 1624 GSCDs. Resulting ground state rotational constants for this isomer are A0 = 0.9390117(8), B0 = 0.0389225(4), and C0 = 0.0373778(3) cm-1. Small inertial defects confirm the planarity of both isomers in the ground state. Upper state rotational constants have been determined for most of the transitions. The ground state rotational constants for the two isotopologues will contribute to the data set needed for determining semiexperimental equilibrium structures for the nonpolar isomers of 1,4- difluorobutadiene.

  3. An abundance study of IC 418 using high-resolution, signal-to-noise emission spectra

    NASA Astrophysics Data System (ADS)

    Sharpee, Brian David

    2003-11-01

    An on-going problem in astrophysics involves the large and varying disagreement between abundances measurements made in planetary nebulae (PNe), determined from the strengths of emission lines arising from the same source ion, but excited by differing mechanisms (recombination and collisional excitation) in planetary nebulae (PNe). We investigate the extent of this problem in IC 418, a PN chosen for its great surface brightness and perceived visually uncomplicated geometry, through the use of high resolution (R ≈ 30000 = 10 km sec-1 at 6500Å) echelle emission spectroscopy in the optical regime (3500 9850Å). These observations allow us to construct the most detailed list of atomic emission lines ever compiled for IC 418, and among the most detailed from among all PNe. Ionic abundances are calculated from the fluxes of numerous weak (1 × 10-5 Hβ) atomic emission lines from the ions of C,N,O, and Ne, using the most recent and accurate atomic transition information presently available. The high resolution of these spectra provides well-defined line profiles, which, coupled with the perceived simplicity of the object's expansion velocity distribution, allows us to better determine where in the nebula lines are formed, and where the ions that produce them are concentrated. Evidence for “non-conventional” line excitation mechanisms, such as continuum fluorescence from the ground state or enhanced dielectronic recombination, is sought in the profile morphologies and relative line strengths. Non-conventional excitation processes may influence the strengths of lines enough to significantly alter abundances calculated from them. Our calculations show that recombination line-derived abundances exceed those derived from collisionally excited lines, for those ions for which we observed lines of both types: O+, O+2, and Ne +2 by real and varying amounts. We find that both continuum fluorescence and dielectronic recombination excites numerous lines in IC 418, but that

  4. Improving surface-subsurface water budgeting for Brownfield study sites using high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Dujardin, J.; Boel, S.; Anibas, C.; Batelaan, O.; Canters, F.

    2009-04-01

    Countries around the world have problems with contaminated brownfield sites as resulting from a relatively anarchic economical and industrial development during the 19th and 20th centuries. Since a few decades policy makers and stakeholders have become more aware of the risk posed by these sites because some of these sites present direct public hazards. Water is often the main vector of the mobility of contaminants. In order to propose remediation measures for the contaminated sites, it is required to describe and to quantify as accurately as possible the surface and subsurface water fluxes in the polluted site. In this research a modelling approach with integrated remote sensing analysis has been developed for accurately calculating water and contaminant fluxes on the polluted sites. Groundwater pollution in urban environments is linked to patterns of land use, so to identify the sources of contamination with great accuracy in urban environments it is essential to characterize the land cover in a detailed way. The use of high resolution spatial information is required because of the complexity of the urban land use. An object-oriented classification approach applied on high resolution satellite data has been adopted. Cluster separability analysis and visual interpretation of the image objects belonging to each cluster resulted in the selection of 8 land-cover categories (water, bare soil, meadow, mixed forest, grey urban surfaces, red roofs, bright roofs and shadow).To assign the image objects to one of the 8 selected classes a multiple layer perceptron (MLP) approach was adopted, using the NeuralWorks Predict software. After a post-classification shadow removal and a rule-based classification enhancement a kappa-value of 0.86 was obtained. Once the land cover was characterized, the groundwater recharge has been simulated using the spatially distributed WetSpass model and the subsurface water flow was simulated with GMS 6.0 in order to identify and budget the

  5. The active tropical cyclone season of 2005 2006 over Northwest Australia: Operational model performance and high resolution case studies

    NASA Astrophysics Data System (ADS)

    Buckley, B. W.; Leslie, L. M.; Leplastrier, M.; Qi, L.

    2007-08-01

    There are three main aims of this study. First, the main features of the active 2005 2006 Australian region tropical cyclone (TC) season are summarized, with particular emphasis on the northwest Australian region. Second, an assessment is made of the skill of the available operational global and regional numerical weather prediction (NWP) models for three of the most significant TCs (TCs Clare, Glenda and Hubert), each of which made landfall on the northwest coast of Australia. Third, high-resolution numerical modelling simulations of these same three TCs are described in detail. The numerical weather prediction (NWP) model used here was developed at the University of Oklahoma, and in this study it utilises initial and boundary conditions obtained from archived analyses and forecasts provided by the Australian Bureau of Meteorology, as well as a 4D-Var data assimilation scheme to ingest all available satellite data. The high-resolution numerical model is multiply two-way nested, with the innermost domain having a resolution of 5 km. It was found that unlike the operational models, which were restricted by relatively low resolution and less data, the high resolution model was able to capture most of the major features of all three TC lifecycles including development from initial tropical depressions, intensification, and their tracks, landfall, and associated rainfall and wind fields.

  6. High-resolution electron microscopy study of mesoporous dichalcogenides and their hydrogen storage properties

    NASA Astrophysics Data System (ADS)

    She, Lan; Li, Jing; Gu, Dong; Shi, Yifeng; Che, Renchao; Zhao, Dongyuan

    2011-02-01

    In this work, we report a detailed investigation on the surface topology of ordered mesoporous WS2 nanoarrays nanocast from the silica SBA-15 template. Using a high-resolution scanning electron microscopy (HRSEM) technique, we acquire distinguishably clear images of the WS2 surface. A large number of small nanorods are found to be evenly distributed among the nanowire arrays, supporting their ordered mesostructures. Based on these observations, tunnel-like connecting pores are proposed to have a similar distribution in the mother mesoporous silica SBA-15 template. Interestingly, we observe the atomic crystal lattices of the layered WS2 on the HRSEM image. To the best of our knowledge, this is the first time that atomic crystal lattices have been directly observed using a SEM technique. In addition, both materials show good adsorption-desorption capabilities with hydrogen, and the maximum amount of hydrogen that can be taken up is 0.34 wt% for mesoporous WS2 and 0.52 wt% for mesoporous MoS2 at a pressure of 10 bar, indicating that both are potential hydrogen storage materials.

  7. Luminescence studies using high-resolution intensified digital imaging: preliminary results

    NASA Astrophysics Data System (ADS)

    Castracane, James; Conerty, Michelle; Clow, Lawrence P.; Casscells, S. W.; Engler, David

    1997-06-01

    The use of bio-chemiluminescence immunoassay (BL/CLI) technology for molecular and cellular characterization is rapidly evolving. The excellent selectivity of this method can be exploited to identify the presence and distribution of specific cells. Current work involves the advancement of the required methods and technologies for application to the analysis of vascular wall surfaces. In this effort, various enzyme-linked antibodies are being explored which can be directed to cell surface antigens producing a luminogenic reaction. To aid in the analysis of this light emission, a custom high resolution digital imaging system which couples a multi-megapixel CCD with a specially designed image intensifier is under development. This intensifier system has high spatial resolution and excellent sensitivity in the wavelength region of the candidate BL/CL emissions. The application of this imaging system to BL/CLI requires unique performance characteristics and specialized optical design. Component level electro-optical tests of the imaging system will be presented along with design considerations for an eventual catheter based instrument. Initial in vitro experiments focused on the performance limits of the optical system in discriminating candidate luminogenic reactions. The main objective of these tests is the identification of suitable enzyme catalyzed systems for ultimate application to in vivo vascular tissue and cell diagnosis.

  8. Advances in high-resolution mass spectrometry based on metabolomics studies for food--a review.

    PubMed

    Rubert, Josep; Zachariasova, Milena; Hajslova, Jana

    2015-01-01

    Food authenticity becomes a necessity for global food policies, since food placed in the market without fail has to be authentic. It has always been a challenge, since in the past minor components, called also markers, have been mainly monitored by chromatographic methods in order to authenticate the food. Nevertheless, nowadays, advanced analytical methods have allowed food fingerprints to be achieved. At the same time they have been also combined with chemometrics, which uses statistical methods in order to verify food and to provide maximum information by analysing chemical data. These sophisticated methods based on different separation techniques or stand alone have been recently coupled to high-resolution mass spectrometry (HRMS) in order to verify the authenticity of food. The new generation of HRMS detectors have experienced significant advances in resolving power, sensitivity, robustness, extended dynamic range, easier mass calibration and tandem mass capabilities, making HRMS more attractive and useful to the food metabolomics community, therefore becoming a reliable tool for food authenticity. The purpose of this review is to summarise and describe the most recent metabolomics approaches in the area of food metabolomics, and to discuss the strengths and drawbacks of the HRMS analytical platforms combined with chemometrics. PMID:26365870

  9. High resolution seismic study of the Holocene infill of the Elkhorn Slough, central California

    NASA Astrophysics Data System (ADS)

    García-García, Ana; Levey, Matthew D.; Watson, Elizabeth B.

    2013-03-01

    The seismic analysis of the sedimentary infill of the Elkhorn Slough, central California, reveals a succession of three main seismic units: U1, U2, U3, with their correspondent discontinuities d2, d3. These units are deposited over a paleorelief representing the channel location at least 8k years ago. The location of that paleochannel has not changed with time, but the geometry of the infilling sedimentary packages has done so through the years. Discontinuities d2 and d3 show a relic island or relative high in the center of the Slough that separated the sedimentation into two main small basins at least 3k years ago. There is evidence of erosion in the last two sedimentary units showing that the present erosive pattern began decades ago at minimum. We have correlated radiocarbon data of selected cores with the high resolution chirp profiles and reconstructed the infill for the Elkhorn Slough. In the most recent unit, the occurrence of numerous lateral accretion surfaces on both ends of the main channel is discussed within their environmental setting, tidal currents and the net ebb flux of the area. We have interpreted the presence of gas in the sediments of the slough, with a gas front located at the tops of units 2 and 3, which are discontinuities that reflect an effective seal for the gas. Our data shows no obvious evidence for seepage, although the shallow presence of some of the fronts points out the fragility of the environment in the present erosive conditions.

  10. Surface circulation at the Strait of Gibraltar: A combined HF radar and high resolution model study

    NASA Astrophysics Data System (ADS)

    Soto-Navarro, Javier; Lorente, Pablo; Álvarez Fanjul, Enrique; Carlos Sánchez-Garrido, Jose; García-Lafuente, Jesús

    2016-03-01

    Observations from a high frequency radar system and outputs from a high resolution operational ocean model working at the Strait of Gibraltar have been analyzed and compared during the period February 2013 to September 2014 in order to evaluate their capability to resolve the surface circulation of the region. The description of the mean circulation patterns has been statistically assessed, showing good agreement, particularly in the central region of the strait corresponding with the Atlantic Jet (AJ) stream, although some short scale features are not reproduced by the model. In the frequency domain very high concordance is observed. Tidal maps of diurnal and semidiurnal constituents are in good agreement with previous observations. The analysis of the model and radar response to the wind forcing reveals that the low resolution of the model wind-forcing field and its deeper superficial level smoothes the wind effect on the simulated currents. The first three EOF modes account for the 86% of model and radar variances. The coincidence between the observed and simulated patterns is very significant for the first two modes, which account for the mean velocity field and the latitudinal shifting of the AJ consequence of the flow-topography interaction. The third mode captures the wind-induced circulation, and greater discrepancies are found in this case. Results underline the complementary character of both systems: radar observations improve the model description, resolving short scale processes, while the model completes the radar information when the time or spatial coverage is poorer.

  11. High Resolution Integrated Hydrologic Modeling for Water Resource Management: Tahoe Basin Case Study

    NASA Astrophysics Data System (ADS)

    Rajagopal, S.; Niswonger, R. G.; Huntington, J. L.; Gardner, M.; Morton, C.; Maples, S.; Reeves, D. M.; Pohll, G.

    2014-12-01

    Water resources in the high altitude, snow-dominated Tahoe basin are susceptible to long-term climate change and extreme climatic events due to large inter-annual climate variations. Lake Tahoe and its contributing watersheds exhibit high climatic (precipitation, temperature) and hydrologic (streamflow, evaporation) variation that exert significant control over regional water supply on annual and sub-annual timescales. To adequately quantify these controls, a high resolution (300m) physically based integrated surface and groundwater model, GSFLOW, of the Tahoe basin has been developed to identify key hydrologic mechanisms that explain recent changes in water resources of the region. The model is parameterized using geographical datasets and maintains a balance between (a) accurate representation of spatial (e.g., geology, streams, and topography) and hydrologic (groundwater, stream, lake, and wetland flows and storages) features, and (b) computational efficiency, which is a necessity for exploring critical vulnerabilities of water-supplies in the region. The calibrated model reproduces multiple observations of streamflow, snow water equivalent, satellite derived snow covered area, lake stage, and groundwater head. Climate input uncertainty was significantly decreased in the model through incorporating additional precipitation station data and helped improve model simulations of observed fluxes more than adjusting model parameters alone. The model simulates fluxes at the outlet of the watershed, but is also consistent at simulating streamflow at internal nodes. This integrated modeling framework helped assess both surface and groundwater resources in a coupled manner in the Tahoe basin.

  12. Microstructure of massively transformed {gamma}-TiAl phase studied by high-resolution electron microscopy

    SciTech Connect

    Abe, E.; Kumagai, T.; Kajiwara, S.; Nakamura, M.

    1997-12-31

    A microstructure of the massively transformed {gamma}-TiAl ({gamma}{sub m}) phase in a Ti-48at.%Al alloy, which was heat treated in the high-temperature {alpha}-Ti (disordered hcp) single phase field (1,683 K), followed by ice water quenching, has been examined using high-resolution electron microscopy. The characteristic features of the microstructure originated from the {alpha}{yields}{gamma} massive transformation have been clarified in detail, which are as follows. (1) Extremely thin hcp plates (about 0.8--2nm in thickness), which are considered to be a retained {alpha} phase, are found to exist in the {gamma}{sub m} phase. (2) Twin boundaries are found to be not flat interfaces, that is, twin interfaces are not on the exact (111) mirror plane. This situation is attributed to the existence of a number of partial dislocations at the twin boundaries. (3) Antiphase relationship between the regions either side of the thin rotated domain wall is confirmed. The validity of this situation is explained by assuming that the thin rotated domain wall has been grown from a simple antiphase domain boundary. On the basis of these facts, mechanism of the {alpha}{yields}{gamma} massive transformation has been discussed.

  13. Intensity and phase fields behind phase-shifting masks studied with high-resolution interference microscopy

    NASA Astrophysics Data System (ADS)

    Puthankovilakam, Krishnaparvathy; Scharf, Toralf; Kim, Myun Sik; Naqavi, Ali; Herzig, Hans Peter; Weichelt, Tina; Zeitner, Uwe; Vogler, Uwe; Voelkel, Reinhard

    2016-04-01

    We try to find out the details of how light fields behind the structures of photomasks develop in order to determine the best conditions and designs for proximity printing. The parameters that we use approach real situations like structure printing at proximity gaps of 20 to 50 μm and structure sizes down to 2 μm. This is the first time that an experimental analysis of light propagation through a mask is presented in detail, which includes information on intensity and phase. We use high-resolution interference microscopy (HRIM) for the measurement. HRIM is a Mach-Zehnder interferometer, which is capable of recording three-dimensional distributions of intensity and phase with diffraction-limited resolution. Our characterization technique allows plotting the evolution of the desired light field, usually called the aerial image, and therefore gives access to the printable structure until the desired proximity gap. Here, we discuss in detail the evolution of intensity and phase fields of elbow or corner structures at different positions behind a phase mask and interpret the main parameters. Of particular interest are tolerances against proximity gap variation and the theoretical explanation of the resolution in printed structures.

  14. A high-resolution coherent transition radiation diagnostic for laser-produced electron transport studies (invited)

    SciTech Connect

    Storm, M.; Begishev, I. A.; Brown, R. J.; Mileham, C.; Myatt, J. F.; Nilson, P. M.; Sangster, T. C.; Stoeckl, C.; Theobald, W.; Zuegel, J. D.; Guo, C.; Meyerhofer, D. D.

    2008-10-15

    High-resolution images of the rear-surface optical emission from high-intensity (I{approx}10{sup 19} W/cm{sup 2}) laser illuminated metal foils have been recorded using coherent transition radiation (CTR). CTR is generated as relativistic electrons, generated in high-intensity laser-plasma interactions, exit the target's rear surface and move into vacuum. A transition radiation diagnostic (TRD) records time-integrated images in a 24 nm bandwidth window around {lambda}=529 nm. The optical transmission at {lambda}=1053 nm, the laser wavelength, is 15 orders of magnitude lower than the transmission at the wavelength of interest, {lambda}=527 nm. The detector is a scientific grade charge-coupled device (CCD) camera that operates with a signal-to-noise ratio of 10{sup 3} and has a dynamic range of 10{sup 4}. The TRD has demonstrated a spatial resolution of 1.4 {mu}m over a 1 mm field of view, limited only by the CCD pixel size.

  15. High-resolution electron microscopy study of synthetic carbonate and aluminum containing apatites.

    PubMed

    Layani, J D; Cuisinier, F J; Steuer, P; Cohen, H; Voegel, J C; Mayer, I

    2000-05-01

    Aluminum (Al)-containing calcium-deficient carbonated hydroxyapatites were produced by a precipitation method from aqueous solution with carbonate (0-6.1%) and aluminum (0.1-0.5%) concentrations close to those found in biological materials. Two series of apatites were prepared: one at pH 7.0 and another at pH 9. 0. High-resolution electron microscopy has shown that many of them possess structural defects such as screw dislocations, grain boundaries, and central defects. Samples with high carbonate content and high water and high Al(3+) content had a high amount of structural defects. Accordingly, a sample (7Al1) with a relatively high carbonate content (6.1%) and a sample (7Al6) without carbonate but with a relatively high water (2.0 mol) and Al(3+) content (0. 39%) presented the highest amount of structural defects, 54% and 47%, respectively. A sample (7Al13) with a low level of crystalline water (1 mol) and low carbonate (2.5%) showed a small amount of defects. The presence of water associated with Al(3+) induced a high number of crystals having a central defect with a great similarity to the so-called water layer of octacalcium phosphate (OCP). Observed images of all these crystals have shown good correspondence with the computer-simulated image based on the crystal structure of hydroxyapatite, indicating that the addition of Al(3+) and carbonate does not perturb the apatitic structure. PMID:10679685

  16. High resolution transmission electron microscopy study of diamond films grown from fullerene precursors

    SciTech Connect

    Luo, J.S.; Gruen, D.M.; Krauss, A.R.

    1995-07-01

    High-resolution transmission electron microscopy (HRTEM) has been used to investigate the microstructure of diamond films grown by plasma-assisted chemical vapor deposition using fullerene precursors. HRTEM observations of as-grown films revealed an array of larger crystals (>200 nm) within a polycrystalline matrix of much smaller crystallites (<20 nm). The randomly oriented small crystallites were nearly free of structural imperfections such as stacking faults or twins, while the larger ones had preferred <110> orientations with respect to the Si (100) substrate and showed evidence of structural defects on the periphery of the crystals. The most common defects were V-shaped {Sigma}9 twin boundaries, which are generally believed to serve as re-entrant sites for diamond nucleation and growth. The observation of growth steps on both (111) and (110) surfaces seems to support a reaction model in which fragments of C{sub 60}, including C{sub 2}, are considered the growth species. In particular, the nanocrystallinity of the films is most likely due to a high carbon cluster density from C{sub 60} fragmentation at or near the diamond surface, which can serve as nucleation sites for the growth of new crystallites.

  17. High-resolution modeling study of the Kuroshio path variations south of Japan

    NASA Astrophysics Data System (ADS)

    Li, Rui; Zhang, Zuowei; Wu, Lixin

    2014-09-01

    A high-resolution ocean general circulation model (OGCM) is used to investigate the Kuroshio path variations south of Japan. The model reproduces many important features of the Kuroshio system including its interannual bimodal variability south of Japan. A decreasing trend of the spatial averaged relative vorticity is detected when the Kuroshio takes the non-large meander (NLM) path, and during the transition period from the NLM to the large meander (LM), a sudden release of velocity shear corresponds well to the weakening of the Shikoku recirculation gyre (SRG), which plays a key role in modulating the Kuroshio path variations. Analysis of eddy energetics indicates that baroclinic instability is mainly responsible for the formation of the LM. In addition, further analysis shows that the strength of the SRG could be largely influenced by the baroclinic Rossby wave adjustment process, forced by the wind stress curl anomalies in the North Pacific basin, based on the model investigation. It is suggested that the cyclonic disturbances might account for the weakening of the SRG, and act as a remote trigger for the baroclinic instability of the Kuroshio south of Japan.

  18. High-resolution gel dosimetry of a HDR brachytherapy source using normoxic polymer gel dosimeters: Preliminary study

    NASA Astrophysics Data System (ADS)

    Hurley, C.; McLucas, C.; Pedrazzini, G.; Baldock, C.

    2006-09-01

    Polymer gel dosimetry has been shown to be an effective tool in the analysis of radiotherapy treatments in cancer therapy, being used to map the dose distribution around an irradiation pattern of a polymer gel dosimeter. Combined with high-resolution magnetic resonance imaging (MRI), polymer gel dosimetry can be an effective dosimetry tool to map dose distributions with high spatial resolution (˜100 μm). Previously polyacrylamide polymer gel dosimetry required a strict hypoxic environment to protect the gel from oxygen infiltration as oxygen inhibits the polymerization reaction used to correlate to absorbed dose. However, with the advent of normoxic polymer gels, a strict hypoxic environment is not required. Normoxic polymer gel dosimeters can be manufactured under normal atmospheric conditions. This study assessed the use of a MAGIC normoxic polymer gel dosimeter to accurately map the dose distribution of a single-line irradiation and a point source irradiation from a brachytherapy radiation source administered through a nylon catheter inserted into the gel dosimeter. The phantoms were irradiated to a dose of 10 Gy at 2 mm from the source center and imaged using high-resolution MRI with an in-plane pixel size of 0.1055 mm/pixel. Good agreement was found between the dose points predicted by the computer treatment-planning system and the measured normalized dose profiles in the gel dosimeter. The use of normoxic polymer gel dosimeters with high-resolution MRI evaluation shows promise as an effective tool in applications requiring accurate dose distributions in high resolution, such as intravascular brachytherapy.

  19. Detecting metastasis of gastric carcinoma using high-resolution micro-CT system: in vivo small animal study

    NASA Astrophysics Data System (ADS)

    Liu, Junting; Tian, Jie; Liang, Jimin; Li, Xiangsi; Yang, Xiang; Chen, Xiaofeng; Chen, Yi; Zhou, Yuanfang; Wang, Xiaorui

    2011-03-01

    Immunocytochemical and immunofluorescence staining are used for identifying the characteristics of metastasis in traditional ways. Micro-computed tomography (micro-CT) is a useful tool for monitoring and longitudinal imaging of tumor in small animal in vivo. In present study, we evaluated the feasibility of the detection for metastasis of gastric carcinoma by high-resolution micro-CT system with omnipaque accumulative enhancement method in the organs. Firstly, a high-resolution micro-CT ZKKS-MCT-sharp micro-CT was developed by our research group and Guangzhou Zhongke Kaisheng Medical Technology Co., Ltd. Secondly, several gastric carcinoma models were established through inoculating 2x106 BGC-823 gastric carcinoma cells subcutaneously. Thirdly, micro-CT scanning was performed after accumulative enhancement method of intraperitoneal injection of omnipaque contrast agent containing 360 mg iodine with a concentration of 350 mg I/ml. Finally, we obtained high-resolution anatomical information of the metastasis in vivo in a BALB/c NuNu nude mouse, the 3D tumor architecture is revealed in exquisite detail at about 35 μm spatial resolution. In addition, the accurate shape and volume of the micrometastasis as small as 0.78 mm3 can be calculated with our software. Overall, our data suggest that this imaging approach and system could be used to enhance the understanding of tumor proliferation, metastasis and could be the basis for evaluating anti-tumor therapies.

  20. A comparison study of tropical Pacific ocean state estimation: Low-resolution assimilation vs. high-resolution simulation.

    NASA Astrophysics Data System (ADS)

    Fu, Weiwei; Zhu, Jiang; Zhou, Guangqing; Wang, Huijun

    2005-03-01

    A comparison study is performed to contrast the improvements in the tropical Pacific oceanic state of a low-resolution model respectively via data assimilation and by an increase in horizontal resolution. A low resolution model (LR) (1°lat by 2°lon) and a high-resolution model (HR) (0.5°lat by 0.5°lon) are employed for the comparison. The authors perform 20-yr numerical experiments and analyze the annual mean fields of temperature and salinity. The results indicate that the low-resolution model with data assimilation behaves better than the high-resolution model in the estimation of ocean large-scale features. From 1990 to 2000, the average of HR’s RMSE (root-mean-square error) relative to independent Tropical Atmosphere Ocean project (TAO) mooring data at randomly selected points is 0.97°C compared to a RMSE of 0.56°C for LR with temperature assimilation. Moreover, the LR with data assimilation is more frugal in computation. Although there is room to improve the high-resolution model, the low-resolution model with data assimilation may be an advisable choice in achieving a more realistic large-scale state of the ocean at the limited level of information provided by the current observational system.

  1. A high resolution far-infrared survey of a section of the galactic plane. II - Far-infrared, CO, and radio continuum results

    NASA Technical Reports Server (NTRS)

    Stier, M. T.; Fazio, G. G.; Roberge, W. G.; Thum, C.; Wilson, T. L.; Jaffe, D. T.

    1982-01-01

    An area of 7.5 sq deg of the galactic plane at 70 microns have been surveyed with a 1-arcmin beam. The region lies between lII equals 10 deg and lII equals 16 deg and includes the M17 and W33 complexes. The weakest of the 42 sources detected had a flux density of 350 Jy at 70 microns. Detailed far-infrared, (C-12)O, (C-13)O, and radio continuum observations of the sources are presented. The derivation of the important physical parameters of the sources and their surrounding molecular clouds are discussed. The properties of the individual regions are also discussed and maps of selected sources are presented.

  2. High resolution far-infrared survey of a section of the galactic plane. II. Far-infrared, CO, and radio continuum results

    SciTech Connect

    Stier, M.T.; Jaffe, D.T.; Fazio, G.G.; Roberge, W.G.; Thum, C.; Wilson, T.L.

    1982-01-01

    We have surveyed 7.5 deg/sup 2/ of the galactic plane at 70 ..mu..m with a approx.1' beam (Jaffe, Stier, and Fazio). The region lies between l/sup i/I = 10/sup 0/ and l/sup i/I = 16/sup 0/ and includes the M17 and W33 complexes. The weakest of the 42 sources detected had a flux density of 350 Jy at 70 ..mu..m. We present detailed far-infrared, /sup 12/CO, /sup 13/CO, and radio continuum observations of these sources. We discuss the derivation of the important physical parameters of the sources and their surrounding molecular clouds. We also discuss the properties of the individual regions and present maps of selected sources.

  3. A study of a high resolution IUE spectrum of AM Canum Venaticorum

    NASA Technical Reports Server (NTRS)

    Solheim, J.-E.; Sion, E. M.

    1994-01-01

    We have obtained the first high resolution IUE spectrum of the helium-rich, cataclysmic variable star AM CVn. The spectrum is greatly underexposed, but we can still detect both wide and narrow line profiles. We report broad, shortward-shifted, P-Cygni-like absorption and in some cases emission lines in the far UV high ionization resonance lines of C, N, O, and Si, but the profiles are considerably disk/boundary layer outflows, absorption disk continuum light in H-rich CVs. The highest ionizations show evidence of a narrow jet or conical flow. For other, lower ionized lines, we find some evidence of a stellar origin. The broad He II (lambda 1640 A) absorption profile with blue shifted emission core has a remarkably similar overall structure to the He II (lambda 1640 A) broad absorption trough in the IUE spectrum of the prototypical cool DO white dwarf HZ 21. The sharp absorption lines seem most convincingly in the resonance doublets of N V (lambda 1238 A, lambda 1242 A) and C IV (lambda 1548 A, lambda 1550 A) and in He II (lambda 1640 A) exhibit a precise velocity coincidence. These sharp features are almost certainly due to circumbinary matter because they are obviously unaffected by the rapid orbital motion (or rapid stellar rotation) in this short period system during the long (9.3 hour) IUE echelle exposure. Our observations support an evolution through shell episodes of a close binary system which ends up with an expanding envelope as seen for HZ 21, and suggests one possible evolutionary channel for production of DOs (DBs).

  4. High-Resolution Magnetic Analyzer MAVR for the Study of Exotic Weakly-Bound Nuclei

    NASA Astrophysics Data System (ADS)

    Maslov, V. A.; Kazacha, V. I.; Kolesov, I. V.; Lukyanov, S. M.; Melnikov, V. N.; Osipov, N. F.; Penionzhkevich, Yu. E.; Skobelev, N. K.; Sobolev, Yu. G.; Voskoboinik, E. I.

    2015-11-01

    A project of the high-resolution magnetic analyzer MAVR is proposed. The analyzer will comprise new magnetic optical and detecting systems for separation and identification of reaction products in a wide range of masses (5-150) and charges (1-60). The magnetic optical system consists of the MSP-144 magnet and a doublet of quadrupole lenses. This will allow the solid angle of the spectrometer to be increased by an order of magnitude up to 30 msr. The magnetic analyzer will have a high momentum resolution (10-4) and high focal-plane dispersion (1.9 m). It will allow products of nuclear reactions at energies up to 30 MeV/nucleon to be detected with the charge resolution ~1/60. Implementation of the project is divided into two stages: conversion of the magnetic analyzer proper and construction of the nuclear reaction products identification system. The MULTI detecting system is being developed for the MAVR magnetic analyzer to allow detection of nuclear reaction products and their identification by charge Q, atomic number Z, and mass A with a high absolute accuracy. The identification will be performed by measuring the energy loss (ΔE), time of flight (TOF), and total kinetic energy (TKE) of reaction products. The particle trajectories in the analyzer will also be determined using the drift chamber developed jointly with GANIL. The MAVR analyzer will operate in both primary beams of heavy ions and beams of radioactive nuclei produced by the U400-U400M acceleration complex. It will also be used for measuring energy spectra of nuclear reaction products and as an energy monochromator.

  5. Atmospheric Chemical Transport Based on High Resolution Model- Derived Winds: A Case Study

    NASA Technical Reports Server (NTRS)

    Hannan, John R.; Fuelberg, Henry E.; Thompson, Anne M.; Bieberbach, George, Jr.; Knabb, Richard D.; Kondo, Yutaka; Anderson, Bruce E.; Browell, Edward V.; Gregory, Gerald L.; Sachse, Glen; Singh, Hanwant B.

    1999-01-01

    Flight 10 of NASA's Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX) extended southwest of Lajes, Azores. A variety of chemical signatures were encountered. These signatures are examined in detail, relating them to meteorological data from a high resolution numerical model having horizontal grid spacing of 30 and 90 km and 26 vertical levels. The meteorological output at hourly intervals is used to create backward trajectories from the locations of the chemical signatures. Four major categories of chemical signatures are discussed-stratospheric, lightning, continental pollution, and a transition layer. The strong stratospheric signal is encountered just south of the Azores in a region of depressed tropopause height. Three chemical signatures at different altitudes in the upper troposphere are attributed to lightning. Backward trajectories arriving at locations of these signatures are related to locations of cloud-to-ground lightning. Results show that the trajectories pass through regions of lightning 1-2 days earlier over the eastern Gulf of Mexico and off the southeast coast of the United States. The lowest leg of the flight exhibits a chemical signature consistent with continental pollution. Trajectories arriving at this signature are found to pass over the highly populated Northeast Corridor of the United States. Surface based pollution apparently is lofted to the altitudes of the trajectories by convective clouds along the East Coast that did not contain lightning. Finally, a chemical transition layer is described. Its chemical signature is intermediate to those of lightning and continental pollution. Trajectories arriving in this layer pass between the trajectories of the lightning and pollution signatures. Thus, they probably are impacted by both sources.

  6. Atmospheric Oxidation of Squalene: Molecular Study Using COBRA Modeling and High-Resolution Mass Spectrometry

    SciTech Connect

    Fooshee, David R.; Aiona, Paige K.; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey; Baldi, Pierre

    2015-10-22

    Squalene is a major component of skin and plant surface lipids, and is known to be present at high concentrations in indoor dust. Its high reactivity toward ozone makes it an important ozone sink and a natural protectant against atmospheric oxidizing agents. While the volatile products of squalene ozonolysis are known, the condensed-phase products have not been characterized. We present an analysis of condensed-phase products resulting from an extensive oxidation of squalene by ozone probed by electrospray ionization (ESI) high-resolution mass spectrometry (HR-MS). A complex distribution of nearly 1,300 peaks assignable to molecular formulas is observed in direct infusion positive ion mode ESI mass spectra. The distribution of peaks in the mass spectra suggests that there are extensive cross-coupling reactions between hydroxy-carbonyl products of squalene ozonolysis. To get additional insights into the mechanism, we apply a Computational Brewing Application (COBRA) to simulate the oxidation of squalene in the presence of ozone, and compare predicted results with those observed by the HR-MS experiments. The system predicts over one billion molecular structures between 0-1450 Da, which correspond to about 27,000 distinct elemental formulas. Over 83% of the squalene oxidation products inferred from the mass spectrometry data are matched by the simulation. Simulation indicates a prevalence of peroxy groups, with hydroxyl and ether groups being the second-most important O-containing functional groups formed during squalene oxidation. These highly oxidized products of squalene ozonolysis may accumulate on indoor dust and surfaces, and contribute to their redox capacity.

  7. Atmospheric Oxidation of Squalene: Molecular Study Using COBRA Modeling and High-Resolution Mass Spectrometry.

    PubMed

    Fooshee, David R; Aiona, Paige K; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A; Baldi, Pierre F

    2015-11-17

    Squalene is a major component of skin and plant surface lipids and is known to be present at high concentrations in indoor dust. Its high reactivity toward ozone makes it an important ozone sink and a natural protectant against atmospheric oxidizing agents. While the volatile products of squalene ozonolysis are known, the condensed-phase products have not been characterized. We present an analysis of condensed-phase products resulting from an extensive oxidation of squalene by ozone probed by electrospray ionization (ESI) high-resolution mass spectrometry (HR-MS). A complex distribution of nearly 1300 peaks assignable to molecular formulas is observed in direct infusion positive ion mode ESI mass spectra. The distribution of peaks in the mass spectra suggests that there are extensive cross-coupling reactions between hydroxy-carbonyl products of squalene ozonolysis. To get additional insights into the mechanism, we apply a Computational Brewing Application (COBRA) to simulate the oxidation of squalene in the presence of ozone, and compare predicted results with those observed by the HR-MS experiments. The system predicts over one billion molecular structures between 0 and 1450 Da, which correspond to about 27 000 distinct elemental formulas. Over 83% of the squalene oxidation products inferred from the mass spectrometry data are matched by the simulation. The simulation indicates a prevalence of peroxy groups, with hydroxyl and ether groups being the second-most important O-containing functional groups formed during squalene oxidation. These highly oxidized products of squalene ozonolysis may accumulate on indoor dust and surfaces and contribute to their redox capacity. PMID:26492333

  8. High-resolution Earth-based lunar radar studies: Applications to lunar resource assessment

    NASA Technical Reports Server (NTRS)

    Stacy, N. J. S.; Campbell, D. B.

    1992-01-01

    The lunar regolith will most likely be a primary raw material for lunar base construction and resource extraction. High-resolution radar observations of the Moon provide maps of radar backscatter that have intensity variations generally controlled by the local slope, material, and structural properties of the regolith. The properties that can be measured by the radar system include the dielectric constant, density, loss tangent, and wavelength scale roughness. The radar systems currently in operation at several astronomical observatories provide the ability to image the lunar surface at spatial resolutions approaching 30 m at 3.8 cm and 12.6 cm wavelengths and approximately 500 m at 70 cm wavelength. The radar signal penetrates the lunar regolith to a depth of 10-20 wavelengths so the measured backscatter contains contributions from the vacuum-regolith interface and from wavelength-scale heterogeneities in the electrical properties of the subsurface material. The three wavelengths, which are sensitive to different scale structures and scattering volumes, provide complementary information on the regolith properties. Aims of the previous and future observations include (1) analysis of the scattering properties associated with fresh impact craters, impact crater rays, and mantled deposits; (2) analysis of high-incidence-angle observations of the lunar mare to investigate measurement of the regolith dielectric constant and hence porosity; (3) investigation of interferometric techniques using two time-delayed observations of the same site, observations that require a difference in viewing geometry less than 0.05 deg and, hence, fortuitous alignment of the Earth-Moon system when visible from Arecibo Observatory.

  9. High-Resolution Vibrational Spectra of Furazan IV. The Aj Fundamental v2 at ~ 1418 cm-1 from Fourier-Transform Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stiefvater, Otto L.; Klee, Stefan

    1993-06-01

    The band origin of the A1 mode v2 , which represents the symmetrical stretching vibration of the two C = N bonds of furazan, has been determined from the high-resolution FT-IR band as v20 = 1418.4724± 0.0001 cm-1. The rotational parameters of this excited state, as determined in a preceding DRM microwave study, have been confirmed and their precision was raised through the combined fit of microwave data and of some 2500 rovibrational transitions. The use of conjugate low-J Q-branch lines for the determination of the origin of a B-type IR band of an asymmetric rotor is illustrated.

  10. Rotational Analysis of Bands in the High-Resolution Infrared Spectra of trans,trans- and cis,cis-1,4-DIFLUOROBUTADIENE-2-d1

    NASA Astrophysics Data System (ADS)

    Craig, Norman C.; Nemchick, Deacon J.; Easterday, Clay C.; Glor, Ethan C.; Williamson, Drew F. K.; Blake, Thomas A.; Sams, Robert L.

    2010-06-01

    Ground state rotational constants for a series of isotopomers are being sought for use in determining the semi-experimental equilibrium structures of the isomers of 1,4-difluorobutadiene. Because fluorine substitution has a large influence on CC bond lengths in C3 and C4 rings, we asked how fluorine substitution affects butadiene. trans,trans- and cis,cis-1,4-Difluorobutadiene-2-d1 have been synthesized, and high-resolution (0.0013 cm-1) infrared spectra have been recorded for these nonpolar species. Analysis of the rotational structure in several bands is reported. For the trans,trans isomer, the C-type band at 709.0 cm-1 for ν 21(a^") has been fully analyzed, and the C-type band at 914.3 cm-1 for ν 18(a^") has been partially analyzed. Interfering with the analysis of the second band is overlap of its R branch with the P branch of the A/B-type band for ν 13(a^') at 933 cm-1. For the cis,cis isomer, as much as possible of the C-type band (K_a^' = 10 to 34) for ν 20(a^") at 775.4 cm-1 has been analyzed. An A-type band for ν 13(a^') at 865.8 cm-1 has also been analyzed into the band center. Small inertial defects confirm that these molecules are planar. Ground state rotational constants are reported for both isomers in comparison with those for the normal species. N. C. Craig, M. C. Moore, C. F. Neese, D. C. Oertel, L. Pedraza, and T. Masiello, J. Mol. Spectrosc. 254, 39-46 (2009).

  11. High Resolution Infrared Spectra of the v2, v3, v4 and 2v3 Bands of 32S16O3

    SciTech Connect

    Maki, Arthur G.; Blake, Thomas A.; Sams, Robert L.; Vulpanovici, Nicolae; Barber, Jeffrey B.; Chrysostom, Engelene; Masiello, Tony; Nibler, Joseph W.; Weber, Alfons

    2001-09-14

    New measurements are reported for the infrared spectrum of sulfur trioxide, 32S16O3, with resolutions ranging from 0.0015 cm-1 to 0.0025 cm-1. New rovibrational constants have been measured for the fundamentals v2, v3, and v4, and the overtone band 2v3. Comparisons are made with the earlier high resolution measurements on SO3 and the high correlation among some of the constants related to the Coriolis coupling of the v2 and v4 levels is duscussed in order to understand the areas of disagreement with the arlier work. Splittings of some of the levels are observed and hte splitting constant for K = 3 of the ground state is determined for the first time. Other observed splittings include the K = 1 levels of 2v3 (I = 2), the K = 2 levels of the v3 and v4 states and the K = 3 levels of v2. This analysis shows that there are level corssings between the I = 0 and I = 2 states of 2v3 that allow one to determine the separation of the sub-band centers for those two states even thoug the I = o state is a dark state. This is a generalized phenomenon that should be found for many other molecules with the same symmetry. The I-type resonance constant that couples the I = 0 and 2 states is roughly the same as q3 which causes the splitting of the I = 1 levels of the v3 fundamental.

  12. Neural basis for brain responses to TV commercials: a high-resolution EEG study.

    PubMed

    Astolfi, Laura; De Vico Fallani, F; Cincotti, F; Mattia, D; Bianchi, L; Marciani, M G; Salinari, S; Colosimo, A; Tocci, A; Soranzo, R; Babiloni, F

    2008-12-01

    We investigated brain activity during the observation of TV commercials by tracking the cortical activity and the functional connectivity changes in normal subjects. The aim was to elucidate if the TV commercials that were remembered by the subjects several days after their first observation elicited particular brain activity and connectivity compared with those generated during the observation of TV commercials that were quickly forgotten. High-resolution electroencephalogram (EEG) recordings were performed in a group of healthy subjects and the cortical activity during the observation of TV commercials was evaluated in several regions of interest coincident with the Brodmann areas (BAs). The patterns of cortical connectivity were obtained in the four principal frequency bands, Theta (3-7 Hz), Alpha (8-12 Hz), Beta (13-30 Hz), Gamma (30-40 Hz) and the directed influences between any given pair of the estimated cortical signals were evaluated by use of a multivariate spectral technique known as partial directed coherence. The topology of the cortical networks has been identified with tools derived from graph theory. Results suggest that the cortical activity and connectivity elicited by the viewing of the TV commercials that were remembered by the experimental subjects are markedly different from the brain activity elicited during the observation of the TV commercials that were forgotten. In particular, during the observation of the TV commercials that were remembered, the amount of cortical spectral activity from the frontal areas (BA 8 and 9) and from the parietal areas (BA 5, 7, and 40) is higher compared with the activity elicited by the observation of TV commercials that were forgotten. In addition, network analysis suggests a clear role of the parietal areas as a target of the incoming flow of information from all the other parts of the cortex during the observation of TV commercials that have been remembered. The techniques presented here shed new light on

  13. Emerging trends and a comet taxonomy based on the volatile chemistry measured in thirty comets with high-resolution infrared spectroscopy between 1997 and 2013

    NASA Astrophysics Data System (ADS)

    Dello Russo, Neil; Kawakita, Hideyo; Vervack, Ronald J.; Weaver, Harold A.

    2016-11-01

    A systematic analysis of the mixing ratios with respect to H2O for eight species (CH3OH, HCN, NH3, H2CO, C2H2, C2H6, CH4, and CO) measured with high-resolution infrared spectroscopy in thirty comets between 1997 and 2013 is presented. Some trends are beginning to emerge when mixing ratios in individual comets are compared to average mixing ratios obtained for all species within the population. The variation in mixing ratios for all measured species is at least an order of magnitude. Overall, Jupiter-family comets are depleted in volatile species with respect to H2O compared to long-period Oort cloud comets, with the most volatile species showing the greatest relative depletion. There is a high positive correlation between the mixing ratios of HCN, C2H6, and CH4, whereas NH3, H2CO, and C2H2 are moderately correlated with each other but generally uncorrelated or show only weak correlation with other species. CO is generally uncorrelated with the other measured species possibly because it has the highest volatility and is therefore more susceptible to thermal evolutionary effects. Most of these correlations appear to be independent of dynamical class with a few possible exceptions. Molecular mixing ratios for CH3OH, HCN, C2H6, and CH4 show an expected behavior with heliocentric distance suggesting a dominant ice source, whereas there is emerging evidence that the mixing ratios of NH3, H2CO, C2H2, NH2, and CN may increase at small heliocentric distances, suggesting the possibility of additional sources related to the thermal decomposition of organic dust. Although this provides information on the composition of the most volatile grains in comets, it presents an additional difficulty in classifying comet chemistry because most comets within this dataset were only observed over a limited range of heliocentric distance. Although there is remarkable compositional diversity resulting in a unique chemical fingerprint for each comet, a hierarchical tree cluster analysis is

  14. Use of High Resolution 3D Diffusion Tensor Imaging to Study Brain White Matter Development in Live Neonatal Rats

    PubMed Central

    Cai, Yu; McMurray, Matthew S.; Oguz, Ipek; Yuan, Hong; Styner, Martin A.; Lin, Weili; Johns, Josephine M.; An, Hongyu

    2011-01-01

    High resolution diffusion tensor imaging (DTI) can provide important information on brain development, yet it is challenging in live neonatal rats due to the small size of neonatal brain and motion-sensitive nature of DTI. Imaging in live neonatal rats has clear advantages over fixed brain scans, as longitudinal and functional studies would be feasible to understand neuro-developmental abnormalities. In this study, we developed imaging strategies that can be used to obtain high resolution 3D DTI images in live neonatal rats at postnatal day 5 (PND5) and PND14, using only 3 h of imaging acquisition time. An optimized 3D DTI pulse sequence and appropriate animal setup to minimize physiological motion artifacts are the keys to successful high resolution 3D DTI imaging. Thus, a 3D rapid acquisition relaxation enhancement DTI sequence with twin navigator echoes was implemented to accelerate imaging acquisition time and minimize motion artifacts. It has been suggested that neonatal mammals possess a unique ability to tolerate mild-to-moderate hypothermia and hypoxia without long term impact. Thus, we additionally utilized this ability to minimize motion artifacts in magnetic resonance images by carefully suppressing the respiratory rate to around 15/min for PND5 and 30/min for PND14 using mild-to-moderate hypothermia. These imaging strategies have been successfully implemented to study how the effect of cocaine exposure in dams might affect brain development in their rat pups. Image quality resulting from this in vivo DTI study was comparable to ex vivo scans. fractional anisotropy values were also similar between the live and fixed brain scans. The capability of acquiring high quality in vivo DTI imaging offers a valuable opportunity to study many neurological disorders in brain development in an authentic living environment. PMID:22013426

  15. High resolution study of MGeH4 (M=76, 74) in the dyad region

    NASA Astrophysics Data System (ADS)

    Ulenikov, O. N.; Gromova, O. V.; Bekhtereva, E. S.; Raspopova, N. I.; Sennikov, P. G.; Koshelev, M. A.; Velmuzhova, I. A.; Velmuzhov, A. P.; Bulanov, A. D.

    2014-09-01

    The infrared spectrum of GeH4 (88.1% of 76GeH4, 11.5% of 74GeH4, and minor amounts of three other stable isotopic species in the sample) was measured in the 700-1080 cm-1 region with a Bruker IFS 125HR Fourier transform interferometer (Nizhny Novgorod, Russia) and analyzed. 1922 transitions with J=26 were assigned to the ν4 and ν2 bands of 76GeH4 (ν2 is a symmetry forbidden absorption band, and its transitions appear in the spectrum only because of strong Coriolis interaction with the ν4 band). Rotational, centrifugal distortion, tetrahedral splitting, and interaction parameters for the ground, (0100) and (0001) vibrational states were determined from the fit of experimental line positions. The obtained set of parameters reproduces the initial experimental data with an accuracy close to experimental uncertainties. The result of analogous analysis of the 74GeH4 isotopologue (the number of assigned transitions is 788) is also presented.

  16. High-Resolution Distance Dependence Study of Surface-Enhanced Raman Scattering Enabled by Atomic Layer Deposition.

    PubMed

    Masango, Sicelo S; Hackler, Ryan A; Large, Nicolas; Henry, Anne-Isabelle; McAnally, Michael O; Schatz, George C; Stair, Peter C; Van Duyne, Richard P

    2016-07-13

    We present a high-resolution distance dependence study of surface-enhanced Raman scattering (SERS) enabled by atomic layer deposition (ALD) at 55 and 100 °C. ALD is used to deposit monolayers of Al2O3 on bare silver film over nanospheres (AgFONs) and AgFONs functionalized with self-assembled monolayers. Operando SERS is used to measure the intensities of the Al-CH3 and C-H stretches from trimethylaluminum (TMA) as a function of distance from the AgFON surface. This study clearly demonstrates that SERS on AgFON substrates displays both a short- and long-range nanometer scale distance dependence. Excellent agreement is obtained between these experiments and theory that incorporates both short-range and long-range terms. This is a high-resolution operando SERS distance dependence study performed in one integrated experiment using ALD Al2O3 as the spacer layer and Raman label simultaneously. The long-range SERS distance dependence should make it possible to detect chemisorbed surface species located as far as ∼3 nm from the AgFON substrate and will provide new insight into the surface chemistry of ALD and catalytic reactions. PMID:27243108

  17. Study of the high resolution spectrum of 32S16O18O: The ν1 and ν3 bands

    NASA Astrophysics Data System (ADS)

    Ulenikov, O. N.; Bekhtereva, E. S.; Krivchikova, Yu. V.; Zamotaeva, V. A.; Buttersack, T.; Sydow, C.; Bauerecker, S.

    2016-01-01

    The high resolution infrared spectrum of the 32S16O18O molecule was recorded for the first time with a Bruker IFS 120 HR Fourier transform interferometer in the region of 930-1580 cm-1 where the bands ν1 and ν3 are located. More than 3000 and about 2400 transitions were assigned in the experimental spectrum with the maximum values of quantum numbers Jmax. /Kamax. equal to 58/23 and 68/23 to the bands ν1 and ν3, respectively. The further weighted fit of experimentally assigned transitions was made with the Hamiltonian model which takes into account Coriolis resonance interaction between the vibrational states (100) and (001). The 81 microwave transitions of the states (100) and (001) known from the literature also were taken into account. As the result, a set of 26 fitted parameters was obtained which reproduces the experiment-based 2690 ro-vibrational energy values of the two bands with the drms = 1.8 ×10-4 cm-1. Microwave transitions are also reproduced with the accuracy close to experimental uncertainty.

  18. High-resolution synchrotron infrared spectroscopy of thiophosgene: The ν1, ν5, 2ν4, and ν2 + 2ν6 bands

    NASA Astrophysics Data System (ADS)

    McKellar, A. R. W.; Billinghurst, B. E.

    2015-09-01

    Thiophosgene (Cl2CS) is a favorite model system for studies of photophysics, vibrational dynamics, and intersystem interactions. But its infrared spectra tend to be very congested due to hot bands and multiple isotopic species. This paper reports the first detailed study of the ν1 (∼1139 cm-1) and ν5 (∼820 cm-1) fundamental bands for the two most abundant isotopologues, 35Cl2CS and 35Cl37ClCS, based on spectra with a resolution of about 0.001 cm-1 obtained at the Canadian Light Source far-infrared beamline using synchrotron radiation and a Bruker IFS125 Fourier transform spectrometer. The 2ν4 (∼942 cm-1) and ν2 + 2ν6 (∼1104 cm-1) bands are also studied here, but the ν2 + ν6 band (∼795 cm-1) resisted full analysis.

  19. Laboratory infrared studies of molecules of atmospheric and astrophysical interest

    NASA Technical Reports Server (NTRS)

    Rao, N. N.

    1982-01-01

    Nineteen reprints on the molecular species are compiled. Much of the work was done by using the Doppler-limited resolution provided by diode lasers. The diode laser was used as a source to a grating spectrometer which has been used earlier for high resolution studies. This technique provided many advantages. Wherever possible, the studies have been directed to intensity determinations of infrared bands.

  20. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2003-01-01

    Spectroscopic parameters (such as line position, intensity, broadening and shifting coefficients and their temperature dependences, line mixing coefficients etc.) for various molecular species of atmospheric interest are determined. In order to achieve these results, infrared spectra of several molecular bands are obtained using high-resolution recording instruments such as tunable diode laser spectrometer and Fourier transform spectrometers. Using sophisticated analysis routines (Multispectrum nonlinear least squares technique) these high-resolution infrared spectra are processed to determine the various spectral line parameters that are cited above. Spectra were taken using the McMath-Pierce Fourier transform spectrometer (FTS) at the National Solar Observatory on Kitt Peak, Arizona as well as the Bruker FTS at the Pacific Northwest National Laboratory (PNNL) at Richland, Washington. Most of the spectra are acquired not only at room temperature, but also at several different cold temperatures. This procedure is necessary to study the variation of the spectral line parameters as a function of temperature in order to simulate the Earth's and other planetary atmospheric environments. Depending upon the strength or weakness of the various bands recorded and analyzed, the length(s) of the absorption cells in which the gas samples under study are kept varied from a few centimeters up to several meters and the sample temperatures varied from approximately +30 C to -63 C. Research on several infrared bands of various molecular species and their isotopomers are undertaken. Those studies are briefly described.

  1. Infrared-infrared double resonance study of methyl alcohol

    NASA Astrophysics Data System (ADS)

    Goulding, R. R. J.; Mukhopadhyay, I.; Lees, R. M.

    1992-09-01

    In this work we carried out an infrared-infrared (IR-IR) double resonance (DR) study of methyl alcohol using a CO 2 laser and a lead salt diode laser, in order to confirm previously proposed far-infrared (FIR) laser assignments for the 9P(34) and 9P(16) CO 2 laser lines. For the 9P(34) CO 2 laser line it is confirmed that the pump radiation excites the torsionally excited Q(125, 9) transition of methyl alcohol in agreement with the assignments proposed earlier. From the study it was noticed that due to the pump radiation, transitions which are not connected by dipole selection rules either to the lower or upper pumped level were also affected. Thus it appears that four-level IR-IR DR experiments are unlikely to provide useful information for transition assignments. The diode laser study was coupled with a recent spectroscopic study using a high resolution Fourier transform spectrometer to detect and identify hot band and perturbation allowed transitions in CH 3OH.

  2. Developing a semi/automated protocol to post-process large volume, High-resolution airborne thermal infrared (TIR) imagery for urban waste heat mapping

    NASA Astrophysics Data System (ADS)

    Rahman, Mir Mustafizur

    In collaboration with The City of Calgary 2011 Sustainability Direction and as part of the HEAT (Heat Energy Assessment Technologies) project, the focus of this research is to develop a semi/automated 'protocol' to post-process large volumes of high-resolution (H-res) airborne thermal infrared (TIR) imagery to enable accurate urban waste heat mapping. HEAT is a free GeoWeb service, designed to help Calgary residents improve their home energy efficiency by visualizing the amount and location of waste heat leaving their homes and communities, as easily as clicking on their house in Google Maps. HEAT metrics are derived from 43 flight lines of TABI-1800 (Thermal Airborne Broadband Imager) data acquired on May 13--14, 2012 at night (11:00 pm--5:00 am) over The City of Calgary, Alberta (˜825 km 2) at a 50 cm spatial resolution and 0.05°C thermal resolution. At present, the only way to generate a large area, high-spatial resolution TIR scene is to acquire separate airborne flight lines and mosaic them together. However, the ambient sensed temperature within, and between flight lines naturally changes during acquisition (due to varying atmospheric and local micro-climate conditions), resulting in mosaicked images with different temperatures for the same scene components (e.g. roads, buildings), and mosaic join-lines arbitrarily bisect many thousands of homes. In combination these effects result in reduced utility and classification accuracy including, poorly defined HEAT Metrics, inaccurate hotspot detection and raw imagery that are difficult to interpret. In an effort to minimize these effects, three new semi/automated post-processing algorithms (the protocol) are described, which are then used to generate a 43 flight line mosaic of TABI-1800 data from which accurate Calgary waste heat maps and HEAT metrics can be generated. These algorithms (presented as four peer-reviewed papers)---are: (a) Thermal Urban Road Normalization (TURN)---used to mitigate the microclimatic

  3. High-resolution study of 0{sup +} states in {sup 170}Yb

    SciTech Connect

    Bettermann, L.; Heinze, S.; Jolie, J.; Muecher, D.; Moeller, O.; Scholl, C.; Casten, R. F.; Meyer, D.; Graw, G.; Hertenberger, R.; Wirth, H.-F.; Bucurescu, D.

    2009-10-15

    Recently, 0{sup +} excitations, especially in the rare-earth region, were studied extensively. We extend this work by studying the excited 0{sup +} states in {sup 170}Yb using the {sup 172}Yb(p,t){sup 170}Yb reaction. Eighteen excited 0{sup +} states, 14 of which are new, are observed up to an energy of 3.5 MeV. The results are analyzed using the sd and spdf interacting boson models.

  4. High-resolution imaging with a real-time synthetic aperture ultrasound system: a phantom study

    NASA Astrophysics Data System (ADS)

    Huang, Lianjie; Labyed, Yassin; Simonetti, Francesco; Williamson, Michael; Rosenberg, Robert; Heintz, Philip; Sandoval, Daniel

    2011-03-01

    It is difficult for ultrasound to image small targets such as breast microcalcifications. Synthetic aperture ultrasound imaging has recently developed as a promising tool to improve the capabilities of medical ultrasound. We use two different tissueequivalent phantoms to study the imaging capabilities of a real-time synthetic aperture ultrasound system for imaging small targets. The InnerVision ultrasound system DAS009 is an investigational system for real-time synthetic aperture ultrasound imaging. We use the system to image the two phantoms, and compare the images with those obtained from clinical scanners Acuson Sequoia 512 and Siemens S2000. Our results show that synthetic aperture ultrasound imaging produces images with higher resolution and less image artifacts than Acuson Sequoia 512 and Siemens S2000. In addition, we study the effects of sound speed on synthetic aperture ultrasound imaging and demonstrate that an accurate sound speed is very important for imaging small targets.

  5. High Resolution RANS NLH Study of Stage 67 Tip Injection Physics

    SciTech Connect

    Matheson, Michael A

    2014-01-01

    Numerical prediction of the Stage 67 transonic fan stage employing wall jet tip injection flow control and study of the physical mechanisms leading to stall suppression and stability enhancement afforded by endwall recirculation/injection is the focus of this paper. Reynolds averaged Navier-Stokes computations were used to perform detailed analysis of the Stage 67 configuration experimentally tested at NASA s Glenn Research Center in 2004. Time varying prediction of the stage plus recirculation and injection flowpath were performed utilizing the Nonlinear Harmonic approach. Significantly higher grid resolution per passage was achieved than what has been generally employed in prior reported numerical studies of spike stall phenomena in transonic compressors. This paper focuses on characterizing the physics of spike stall embryonic stage phenomena and the impact of tip injection, resulting in experimentally and numerically demonstrated stall suppression

  6. High resolution photoemission study of CdSe and CdSe/ZnS core-shell nanocrystals

    NASA Astrophysics Data System (ADS)

    Borchert, H.; Talapin, D. V.; McGinley, C.; Adam, S.; Lobo, A.; de Castro, A. R. B.; Möller, T.; Weller, H.

    2003-07-01

    Colloidally prepared CdSe and CdSe/ZnS core-shell nanocrystals passivated with trioctylphosphine/trioctylphosphine oxide and hexadecylamine have been studied by photoelectron spectroscopy with tuneable synchrotron radiation. High-resolution spectra of the Se 3d level in CdSe nanocrystals indicate the bonding of organic ligands not only to surface Cd but also to surface Se atoms. The investigation of the CdSe/ZnS core-shell nanocrystals allows us to determine the average thickness of the ZnS shell and to study the interface between the two semiconductor nanomaterials. The photoemission spectra indicate a rather well ordered interface. No evidence for interfacial bonds other than Cd-S and Se-Zn is found.

  7. Multilocus Sequence Typing (MLST) for Lineage Assignment and High Resolution Diversity Studies in Trypanosoma cruzi

    PubMed Central

    Yeo, Matthew; Mauricio, Isabel L.; Messenger, Louisa A.; Lewis, Michael D.; Llewellyn, Martin S.; Acosta, Nidia; Bhattacharyya, Tapan; Diosque, Patricio; Carrasco, Hernan J.; Miles, Michael A.

    2011-01-01

    Background Multilocus sequence typing (MLST) is a powerful and highly discriminatory method for analysing pathogen population structure and epidemiology. Trypanosoma cruzi, the protozoan agent of American trypanosomiasis (Chagas disease), has remarkable genetic and ecological diversity. A standardised MLST protocol that is suitable for assignment of T. cruzi isolates to genetic lineage and for higher resolution diversity studies has not been developed. Methodology/Principal Findings We have sequenced and diplotyped nine single copy housekeeping genes and assessed their value as part of a systematic MLST scheme for T. cruzi. A minimum panel of four MLST targets (Met-III, RB19, TcGPXII, and DHFR-TS) was shown to provide unambiguous assignment of isolates to the six known T. cruzi lineages (Discrete Typing Units, DTUs TcI-TcVI). In addition, we recommend six MLST targets (Met-II, Met-III, RB19, TcMPX, DHFR-TS, and TR) for more in depth diversity studies on the basis that diploid sequence typing (DST) with this expanded panel distinguished 38 out of 39 reference isolates. Phylogenetic analysis implies a subdivision between North and South American TcIV isolates. Single Nucleotide Polymorphism (SNP) data revealed high levels of heterozygosity among DTUs TcI, TcIII, TcIV and, for three targets, putative corresponding homozygous and heterozygous loci within DTUs TcI and TcIII. Furthermore, individual gene trees gave incongruent topologies at inter- and intra-DTU levels, inconsistent with a model of strict clonality. Conclusions/Significance We demonstrate the value of systematic MLST diplotyping for describing inter-DTU relationships and for higher resolution diversity studies of T. cruzi, including presence of recombination events. The high levels of heterozygosity will facilitate future population genetics analysis based on MLST haplotypes. PMID:21713026

  8. High resolution taxonomic study of the late Eocene (~34 Ma) Florissant palynoflora, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Bouchal, J. M.

    2012-04-01

    The Florissant Fossil Beds National Monument is located in Teller County in central Colorado, at approximate latitude 38°54'N and longitude 105°13'. The lithologies of the Florissant Formation consist of coarse-grained arkosic and volcanoclastic sandstones and conglomerates, finer shale, and tuffaceus mudstone and siltstone. It is divided into six units, mostly of lacustrine and fluvial origin with volcanic sediments interfingering and topping the strata. Volcanic units have been dated using the 40Ar/39Ar single-crystal method, giving an absolute age of ca. 34 Ma for the upper fossiliferous sedimentary unit. This pinpoints the formation of the Florissant sediments at the end of the Eocene, providing fruitful insight into the changing palaeoecosystem of the region at the dawn of the Oligocene. The formation is very well known for its rich fossil insect fauna and well preserved plant macrofossils found in the shale units, and the silicified tree stumps occurring in the lower mudstone unit. The sample used for this study originates from the upper shale unit, the fifth unit from the base of the formation. Previous studies on the plant macrofossils, mesofossils and the palynoflora have shown that during the late Eocene the surroundings of Florissant palaeo-lake were covered by diverse mixed broad-leaved evergreen/deciduous and needle-leafed forests. Until now pollen from the Florissant Formation has mostly been described according to conventional morphological nomenclature, using light microscopy (LM) only. In this study the same individual pollen grains are investigated using both LM and scanning electron microscopy (SEM), by means of single grain technique. This provides best exploitable results concerning a more detailed resolution regarding taxonomy and more accurate identifications. The main goal of this study is to compile a well resolved taxonomic species list based on the palynoflora, to clarify the generic and species diversity of selected families (e

  9. A high resolution streamer chamber for use in heavy quark studies

    SciTech Connect

    Majka, R.D.; Disco, A.A.; Hissong, J.G.; Rotondo, F.S.; Sandweiss, J.; Slaughter, A.J.; Wolin, E.J.

    1989-02-01

    For several years the authors have been developing the diffusion suppressed streamer chamber for use as a triggerable vertex detector in heavy quark studies. This streamer chamber makes use of a novel technique the author's have developed to substantially improve the resolution of a high pressure streamer chamber. Conventional streamer chambers which operate at one atmosphere have streamers with 1 - 2mm diameters. This size can be reduced by operating the chamber at high pressure. The streamer diameter will be reduced by about 1/p (p = pressure in atm.).

  10. High-Resolution Electrochemical Scanning Tunneling Microscopy (EC-STM) Flow-Cell Studies.

    PubMed

    Lay, Marcus D; Sorenson, Thomas A; Stickney, John L

    2003-09-25

    Atomic-level studies involving an electrochemical scanning tunneling microscope (EC-STM) flow-cell are presented. Multiple electrochemical atomic layer epitaxy (EC-ALE) cycles of CdTe formation were observed. For a binary compound (i.e., CdTe), an EC-ALE cycle involves exposure of the substrate to a solution of the first precursor (CdSO4), followed by exposure to the second precursor (TeO2), while maintaining potential control. Interleaving blank rinses may also be used, but were omitted in the present studies. To allow the exchange of solutions, the EC-STM cell was modified to allow solution exchange via a single peristaltic pump. A selection valve was used to choose the solution to be introduced into the cell. There is evidence that the growth of the initial layer of CdTe on Au(111), the (√7 × √7)-CdTe monolayer, can be improved in homogeneity and morphology by repeatedly depositing and stripping the Cd atomic layer. Therefore, a new starting cycle, which should improve the quality of deposits formed via EC-ALE, has been developed. PMID:26317446

  11. A high-resolution study of ultra-heavy cosmic-ray nuclei (A0178)

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Oceallaigh, C.; Domingo, V.; Wenzel, K. P.

    1984-01-01

    The main objective of the experiment is a detailed study of the charge spectra of ultraheavy cosmic-ray nuclei from zinc (Z = 30) to uranium (Z = 92) and beyond using solid-state track detectors. Special emphasis will be placed on the relative abundances in the region Z or - 65, which is thought to be dominated by r-process nucleosynthesis. Subsidiary objectives include the study of the cosmic-ray transiron spectrum a search for the postulated long-lived superheavy (SH) nuclei (Z or = 110), such as (110) SH294, in the contemporary cosmic radiation. The motivation behind the search for super-heavy nuclei is based on predicted half-lives that are short compared to the age of the Earth but long compared to the age of cosmic rays. The detection of such nuclei would have far-reaching consequences for nuclear structure theory. The sample of ultraheavy nuclei obtained in this experiment will provide unique opportunities for many tests concerning element nucleosynthesis, cosmic-ray acceleration, and cosmic-ray propagation.

  12. Global change impacts on river ecosystems: A high-resolution watershed study of Ebro river metabolism.

    PubMed

    Val, Jonatan; Chinarro, David; Pino, María Rosa; Navarro, Enrique

    2016-11-01

    Global change is transforming freshwater ecosystems, mainly through changes in basin flow dynamics. This study assessed how the combination of climate change and human management of river flow impacts metabolism of the Ebro River (the largest river basin in Spain, 86,100km(2)), assessed as gross primary production-GPP-and ecosystem respiration-ER. In order to investigate the influence of global change on freshwater ecosystems, an analysis of trends and frequencies from 25 sampling sites of the Ebro river basin was conducted. For this purpose, we examined the effect of anthropogenic flow control on river metabolism with a Granger causality study; simultaneously, took into account the effects of climate change, a period of extraordinary drought (largest in past 140years). We identified periods of sudden flow changes resulting from both human management and global climate effects. From 1998 to 2012, the Ebro River basin was trending toward a more autotrophic condition indicated by P/R ratio. Particularly, the results show that floods that occurred after long periods of low flows had a dramatic impact on the respiration (i.e., mineralization) capacity of the river. This approach allowed for a detailed characterization of the relationships between river metabolism and drought impacts at the watershed level. These findings may allow for a better understanding of the ecological impacts provoked by flow management, thus contributing to maintain the health of freshwater communities and ecosystem services that rely on their integrity. PMID:27392332

  13. Investigation of different apple cultivars by high resolution magic angle spinning NMR. A feasibility study.

    PubMed

    Vermathen, Martina; Marzorati, Mattia; Baumgartner, Daniel; Good, Claudia; Vermathen, Peter

    2011-12-28

    (1)H HR-MAS NMR spectroscopy was applied to apple tissue samples deriving from 3 different cultivars. The NMR data were statistically evaluated by analysis of variance (ANOVA), principal component analysis (PCA), and partial least-squares-discriminant analysis (PLS-DA). The intra-apple variability of the compounds was found to be significantly lower than the inter-apple variability within one cultivar. A clear separation of the three different apple cultivars could be obtained by multivariate analysis. Direct comparison of the NMR spectra obtained from apple tissue (with HR-MAS) and juice (with liquid-state HR NMR) showed distinct differences in some metabolites, which are probably due to changes induced by juice preparation. This preliminary study demonstrates the feasibility of (1)H HR-MAS NMR in combination with multivariate analysis as a tool for future chemometric studies applied to intact fruit tissues, e.g. for investigating compositional changes due to physiological disorders, specific growth or storage conditions. PMID:22084979

  14. Magnetic dynamics studied by high-resolution electron spectroscopy and time-resolved electron microscopy

    NASA Astrophysics Data System (ADS)

    Jayaraman, Rajeswari

    Future information technology requires an increased magnetically encoded data density and novel electromagnetic modes of data transfer. While to date magnetic properties are observed and characterized mostly statically, the need emerges to monitor and capture their fast dynamics. In this talk, I will focus on the spin dynamics i.e. spin wave excitations and the dynamics of a new topological distribution of spins termed ``skyrmions''. Wave packets of spin waves offer the unique capability to transport a quantum bit, the spin, without the transport of charge or mass. Here, large wave-vector spin waves are of particular interest as they admit spin localization within a few nanometers. By using our recently developed electron energy loss spectrometer, we could study such spin waves in ultrathin films with an unprecedented energy resolution of 4 meV. By virtue of the finite penetration depth of low energy electrons, spin waves localized at interfaces between a substrate and a thin capping layer can be been studied yielding information about the exchange coupling between atoms at the interface. The quantization of spin waves with wave vectors perpendicular to the film gives rise to standing modes to which EELS has likewise access. Such studies when carried out as function of the film thickness again yield information on the layer dependence of the exchange coupling. Magnetic skyrmions are promising candidates as information carriers in logic or storage devices. Currently, little is known about the influence of disorder, defects, or external stimuli on the spatial distribution and temporal evolution of the skyrmion lattice. In this talk, I will describe the dynamical role of disorder in a large and flat thin film of Cu2OSeO3, exhibiting a skyrmion phase in an insulating material. We image up to 70,000 skyrmions by means of cryo-Lorentz Transmission Electron Microscopy as a function of the applied magnetic field. In the skyrmion phase, dislocations are shown to cause the

  15. Study of Fish Response Using Particle Image Velocimetry and High-Speed, High-Resolution Imaging

    SciTech Connect

    Deng, Zhiqun; Richmond, Marshall C.; Guensch, Gregory R.; Mueller, Robert P.

    2004-10-23

    Existing literature of previous particle image velocimetry (PIV) studies of fish swimming has been reviewed. Historically, most of the studies focused on the performance evaluation of freely swimming fish. Technological advances over the last decade, especially the development of digital particle image velocimetry (DPIV) technique, make possible more accurate, quantitative descriptions of the flow patterns adjacent to the fish and in the wake behind the fins and tail, which are imperative to decode the mechanisms of drag reduction and propulsive efficiency. For flows generated by different organisms, the related scales and flow regimes vary significantly. For small Reynolds numbers, viscosity dominates; for very high Reynolds numbers, inertia dominates, and three-dimensional complexity occurs. The majority of previous investigations dealt with the lower end of Reynolds number range. The fish of our interest, such as rainbow trout and spring and fall chinook salmon, fall into the middle range, in which neither viscosity nor inertia is negligible, and three-dimensionality has yet to dominate. Feasibility tests have proven the applicability of PIV to flows around fish. These tests have shown unsteady vortex shedding in the wake, high vorticity region and high stress region, with the highest in the pectoral area. This evident supports the observations by Nietzel et al. (2000) and Deng et al. (2004) that the operculum are most vulnerable to damage from the turbulent shear flow, because they are easily pried open, and the large vorticity and shear stress can lift and tear off scales, rupture or dislodge eyes, and damage gills. In addition, the unsteady behavior of the vortex shedding in the wake implies that injury to fish by the instantaneous flow structures would likely be much higher than the injury level estimated using the average values of the dynamics parameters. Based on existing literature, our technological capability, and relevance and practicability to

  16. High-resolution studies of the HF ionospheric modification interaction region

    NASA Technical Reports Server (NTRS)

    Duncan, L. M.; Sheerin, J. P.

    1985-01-01

    The use of the pulse edge analysis technique to explain ionospheric modifications caused by high-power HF radio waves is discussed. The technique, implemented at the Arecibo Observatory, uses long radar pulses and very rapid data sampling. A comparison of the pulse leading and trailing edge characteristics is obtained and the comparison is used to estimate the relative changes in the interaction region height and layer width; an example utilizing this technique is provided. Main plasma line overshoot and miniovershoot were studied from the pulse edge observations; the observations at various HF pulsings and radar resolutions are graphically presented. From the pulse edge data the development and the occurrence of main plasma line overshoot and miniovershoot are explained. The theories of soliton formation and collapse, wave ducting, profile modification, and parametric instabilities are examined as a means of explaining main plasma line overshoots and miniovershoots.

  17. Study of hydrogen in coals, polymers, oxides, and muscle water by nuclear magnetic resonance; extension of solid-state high-resolution techniques. [Hydrogen molybdenum bronze

    SciTech Connect

    Ryan, L.M.

    1981-10-01

    Nuclear magnetic resonance (NMR) spectroscopy has been an important analytical and physical research tool for several decades. One area of NMR which has undergone considerable development in recent years is high resolution NMR of solids. In particular, high resolution solid state /sup 13/C NMR spectra exhibiting features similar to those observed in liquids are currently achievable using sophisticated pulse techniques. The work described in this thesis develops analogous methods for high resolution /sup 1/H NMR of rigid solids. Applications include characterization of hydrogen aromaticities in fossil fuels, and studies of hydrogen in oxides and bound water in muscle.

  18. High Resolution In Vivo Bioluminescent Imaging for the Study of Bacterial Tumour Targeting

    PubMed Central

    Cronin, Michelle; Akin, Ali R.; Collins, Sara A.; Meganck, Jeff; Kim, Jae-Beom; Baban, Chwanrow K.; Joyce, Susan A.; van Dam, Gooitzen M.; Zhang, Ning; van Sinderen, Douwe; O'Sullivan, Gerald C.; Kasahara, Noriyuki; Gahan, Cormac G.; Francis, Kevin P.; Tangney, Mark

    2012-01-01

    The ability to track microbes in real time in vivo is of enormous value for preclinical investigations in infectious disease or gene therapy research. Bacteria present an attractive class of vector for cancer therapy, possessing a natural ability to grow preferentially within tumours following systemic administration. Bioluminescent Imaging (BLI) represents a powerful tool for use with bacteria engineered to express reporter genes such as lux. BLI is traditionally used as a 2D modality resulting in images that are limited in their ability to anatomically locate cell populations. Use of 3D diffuse optical tomography can localize the signals but still need to be combined with an anatomical imaging modality like micro-Computed Tomography (μCT) for interpretation. In this study, the non-pathogenic commensal bacteria E.coli K-12 MG1655 and Bifidobacterium breve UCC2003, or Salmonella Typhimurium SL7207 each expressing the luxABCDE operon were intravenously (IV) administered to mice bearing subcutaneous (s.c) FLuc-expressing xenograft tumours. Bacterial lux signal was detected specifically in tumours of mice post IV-administration and bioluminescence correlated with the numbers of bacteria recovered from tissue. Through whole body imaging for both lux and FLuc, bacteria and tumour cells were co-localised. 3D BLI and μCT image analysis revealed a pattern of multiple clusters of bacteria within tumours. Investigation of spatial resolution of 3D optical imaging was supported by ex vivo histological analyses. In vivo imaging of orally-administered commensal bacteria in the gastrointestinal tract (GIT) was also achieved using 3D BLI. This study demonstrates for the first time the potential to simultaneously image multiple BLI reporter genes three dimensionally in vivo using approaches that provide unique information on spatial locations. PMID:22295120

  19. High Resolution Aerosol Data from MODIS Satellite for Urban Air Quality Studies

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.; Lyapustin, A.; Wang, Y.; Tang, C.; Schwartz, J.; Koutrakis, P.

    2013-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not suitable for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM(sub 2.5) as measured by the 27 EPA ground monitoring stations was investigated. These results were also compared to conventional MODIS 10 km AOD retrievals (MOD04) for the same days and locations. The coefficients of determination for MOD04 and for MAIAC are R(exp 2) =0.45 and 0.50 respectively, suggested that AOD is a reasonably good proxy for PM(sub 2.5) ground concentrations. Finally, we studied the relationship between PM(sub 2.5) and AOD at the intra-urban scale (10 km) in Boston. The fine resolution results indicated spatial variability in particle concentration at a sub-10 kilometer scale. A local analysis for the Boston area showed that the AOD-PM(sub 2.5) relationship does not depend on relative humidity and air temperatures below approximately 7 C. The correlation improves for temperatures above 7 - 16 C. We found no dependence on the boundary layer height except when the former was in the range 250-500 m. Finally, we apply a mixed effects model approach to MAIAC aerosol optical depth (AOD) retrievals from MODIS to predict PM(sub 2.5) concentrations within the greater Boston area. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations (out-of-sample R(exp 2) of 0.86). Therefore, adjustment

  20. Case study of wave breaking with high-resolution turbulence measurements with LITOS and WRF simulations

    NASA Astrophysics Data System (ADS)

    Schneider, Andreas; Söder, Jens; Gerding, Michael; Wagner, Johannes; Lübken, Franz-Josef

    2016-04-01

    Gravity waves in their final stage produce turbulence and dissipation. In the stratosphere only few studies of this phenomenon exist because the observation is technically challenging. In order to precisely infer energy dissipation rates, the viscous subrange has to be covered, which in the stratosphere lies at scales of centimetres and below. With our balloon-borne instrument LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere), which has a vertical resolution below 1 mm, measurements were performed from Kiruna (68°N, 21°E) as well as from Kühlungsborn (54°N, 12°E). To characterise the atmospheric background conditions, WRF simulations driven by ECMWF reanalysis data were performed for the times of the flights. Averaged dissipation rates observed by LITOS are connected to wave signatures seen in the model. Particularly, larger dissipation rates correlate to larger amplitudes seen in the horizontal divergence or vertical winds in the model and vice versa. For one flight, a very pronounced maximum in dissipation is observed below the tropopause. It is connected to a wind reversal and dynamic instability. In the corresponding WRF simulation, turbulent kinetic energies (TKE) and amplitudes in horizontal divergence are enhanced in this region. For the other flights, no such pronounced maximum in dissipation but also no enhanced values of TKE outside of the boundary layer are observed. That means that low and moderate turbulence is not resolved in WRF, but is observed by LITOS throughout all altitudes.

  1. Resting state cortical rhythms in athletes: a high-resolution EEG study.

    PubMed

    Babiloni, Claudio; Marzano, Nicola; Iacoboni, Marco; Infarinato, Francesco; Aschieri, Pierluigi; Buffo, Paola; Cibelli, Giuseppe; Soricelli, Andrea; Eusebi, Fabrizio; Del Percio, Claudio

    2010-01-15

    The present electroencephalographic (EEG) study tested the working hypothesis that the amplitude of resting state cortical EEG rhythms (especially alpha, 8-12 Hz) was higher in elite athletes compared with amateur athletes and non-athletes, as a reflection of the efficiency of underlying back-ground neural synchronization mechanisms. Eyes closed resting state EEG data were recorded in 16 elite karate athletes, 20 amateur karate athletes, and 25 non-athletes. The EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), and beta 2 (20-30 Hz). EEG cortical sources were estimated by low-resolution brain electromagnetic tomography (LORETA). Statistical results showed that the amplitude of parietal and occipital alpha 1 sources was significantly higher in the elite karate athletes than in the non-athletes and karate amateur athletes. Similar results were observed in parietal and occipital delta sources as well as in occipital theta sources. Finally, a control confirmatory experiment showed that the amplitude of parietal and occipital delta and alpha 1 sources was stronger in 8 elite rhythmic gymnasts compared with 14 non-athletes. These results supported the hypothesis that cortical neural synchronization at the basis of eyes-closed resting state EEG rhythms is enhanced in elite athletes than in control subjects. PMID:19879337

  2. Biomass estimation with high resolution satellite images: A case study of Quercus rotundifolia

    NASA Astrophysics Data System (ADS)

    Sousa, Adélia M. O.; Gonçalves, Ana Cristina; Mesquita, Paulo; Marques da Silva, José R.

    2015-03-01

    Forest biomass has had a growing importance in the world economy as a global strategic reserve, due to applications in bioenergy, bioproduct development and issues related to reducing greenhouse gas emissions. Current techniques used for forest inventory are usually time consuming and expensive. Thus, there is an urgent need to develop reliable, low cost methods that can be used for forest biomass estimation and monitoring. This study uses new techniques to process high spatial resolution satellite images (0.70 m) in order to assess and monitor forest biomass. Multi-resolution segmentation method and object oriented classification are used to obtain the area of tree canopy horizontal projection for Quercus rotundifolia. Forest inventory allows for calculation of tree and canopy horizontal projection and biomass, the latter with allometric functions. The two data sets are used to develop linear functions to assess above ground biomass, with crown horizontal projection as an independent variable. The functions for the cumulative values, both for inventory and satellite data, for a prediction error equal or smaller than the Portuguese national forest inventory (7%), correspond to stand areas of 0.5 ha, which include most of the Q.rotundifolia stands.

  3. High resolution NH3 studies of nearby star-forming regions

    NASA Astrophysics Data System (ADS)

    Friesen, Rachel

    2014-07-01

    Stars form within dense molecular cores. These cores are often embedded within larger structures, such as clumps and filaments, particularly in clustered star-forming environments. Indeed, large-scale maps of the continuum emission from dust have revealed the ubiquity of filaments in star-forming regions. The condensation and fragmentation of cores within larger structures is therefore a critical step in the star formation process, but continuum data alone do not provide key information, such as the gas kinematics, needed to discern between evolutionary scenarios. I will present new results from large NH3 studies of nearby star-forming regions, including Taurus and Serpens South. While NH3 primarily traces high density gas, sensitive observations over Serpens South reveal extensive, low brightness emission between the prominent cores and filaments, and show directly the frequently (but not invariably) sharp transitions between turbulent and quiescent gas in the high density regions. I will discuss the hierarchical structure of the dense gas in Serpens South, with comparisons between two- and three-dimensional analysis, and analyze the importance of thermal fragmentation in the filaments and cores over a range of physical scales.

  4. Comparative study of high-resolution shock-capturing schemes for a real gas

    NASA Technical Reports Server (NTRS)

    Montagne, J.-L.; Yee, H. C.; Vinokur, M.

    1988-01-01

    Recently developed second-order explicit shock-capturing methods, in conjunction with generalized flux-vector splittings, and a generalized approximate Riemann solver for a real gas are studied. The comparisons are made on different one-dimensional Riemann (shock-tube) problems for equilibrium air with various ranges of Mach numbers, densities and pressures. Six different Riemann problems are considered. These tests provide a check on the validity of the generalized formulas, since theoretical prediction of their properties appears to be difficult because of the non-analytical form of the state equation. The numerical results in the supersonic and low-hypersonic regimes indicate that these produce good shock-capturing capability and that the shock resolution is only slightly affected by the state equation of equilibrium air. The difference in shock resolution between the various methods varies slightly from one Riemann problem to the other, but the overall accuracy is very similar. For the one-dimensional case, the relative efficiency in terms of operation count for the different methods is within 30 percent. The main difference between the methods lies in their versatility in being extended to multidimensional problems with efficient implicit solution procedures.

  5. Comparative study of high-resolution shock-capturing schemes for a real gas

    NASA Technical Reports Server (NTRS)

    Montagne, J.-L.; Yee, H. C.; Vinokur, M.

    1987-01-01

    Recently developed second-order explicit shock-capturing methods, in conjunction with generalized flux-vector splittings, and a generalized approximate Riemann solver for a real gas are studied. The comparisons are made on different one-dimensional Riemann (shock-tube) problems for equilibrium air with various ranges of Mach numbers, densities and pressures. Six different Riemann problems are considered. These tests provide a check on the validity of the generalized formulas, since theoretical prediction of their properties appears to be difficult because of the non-analytical form of the state equation. The numerical results in the supersonic and low-hypersonic regimes indicate that these produce good shock-capturing capability and that the shock resolution is only slightly affected by the state equation of equilibrium air. The difference in shock resolution between the various methods varies slightly from one Riemann problem to the other, but the overall accuracy is very similar. For the one-dimensional case, the relative efficiency in terms of operation count for the different methods is within 30%. The main difference between the methods lies in their versatility in being extended to multidimensional problems with efficient implicit solution procedures.

  6. Photoionization study of doubly-excited helium at ultra-high resolution

    SciTech Connect

    Kaindl, G.; Schulz, K.; Domke, M.

    1997-04-01

    Ever since the pioneering work of Madden & Codling and Cooper, Fano & Prats on doubly-excited helium in the early sixties, this system may be considered as prototypical for the study of electron-electron correlations. More detailed insight into these states could be reached only much later, when improved theoretical calculations of the optically-excited {sup 1}P{sup 0} double-excitation states became available and sufficiently high energy resolution ({delta}E=4.0 meV) was achieved. This allowed a systematic investigation of the double-excitation resonances of He up to excitation energies close to the double-ionization threshold, I{sub infinity}=79.003 eV, which stimulated renewed theoretical interest into these correlated electron states. The authors report here on striking progress in energy resolution in this grazing-incidence photon-energy range of grating monochromators and its application to hitherto unobservable states of doubly-excited He. By monitoring an extremely narrow double-excitation resonance of He, with a theoretical lifetime width of less than or equal to 5 {mu}eV, a resolution of {delta}E=1.0 meV (FWHM) at 64.1 eV could be achieved. This ultra-high spectral resolution, combined with high photon flux, allowed the investigation of new Rydberg resonances below the N=3 ionization threshold, I{sub 3}, as well as a detailed comparison with ab-initio calculations.

  7. Judgment of actions in experts: a high-resolution EEG study in elite athletes.

    PubMed

    Babiloni, Claudio; Del Percio, Claudio; Rossini, Paolo M; Marzano, Nicola; Iacoboni, Marco; Infarinato, Francesco; Lizio, Roberta; Piazza, Marina; Pirritano, Mirella; Berlutti, Giovanna; Cibelli, Giuseppe; Eusebi, Fabrizio

    2009-04-01

    The present study tested the two following hypotheses: (i) compared to non-athletes, elite athletes are characterized by a reduced cortical activation during the judgment of sporting observed actions; (ii) in elite athletes, a good judgment of observed sporting actions is related to a low cortical activation. To address these issues, electroencephalographic (EEG) data were recorded in 15 elite rhythmic gymnasts and 13 non-gymnasts. They observed a series of 120 rhythmic gymnastic videos. At the end of each video, the subjects had to judge the artistic/athletic level of the exercise by a scale from 0 to 10. The mismatch between their judgment and that of the coach indexed the degree of action judgment. The EEG cortical sources were estimated by sLORETA. With reference to a pre-stimulus period, the power decrease of alpha (8-12 Hz) rhythms during the videos indexed the cortical activation (event related desynchronization, ERD). Regarding the hypothesis (i), low- and high-frequency alpha ERD was lower in amplitude in the elite rhythmic gymnasts compared to the non-gymnasts in occipital and temporal areas (ventral pathway) and in dorsal pathway. Regarding the hypothesis (ii), in the elite rhythmic gymnasts high-frequency alpha ERD was higher in amplitude with the videos characterized by a high judgment error than those characterized by a low judgment error; this was true in inferior posterior parietal and ventral premotor areas ("mirror" pathway). These results globally suggest that the judgment of observed sporting actions is related to low amplitude of alpha ERD, as a possible index of spatially selective cortical activation ("neural efficiency"). PMID:19111623

  8. Impact of irrigations on simulated convective activity over Central Greece: A high resolution study

    NASA Astrophysics Data System (ADS)

    Kotsopoulos, S.; Tegoulias, I.; Pytharoulis, I.; Kartsios, S.; Bampzelis, D.; Karacostas, T.

    2014-12-01

    The aim of this research is to investigate the impact of irrigations in the characteristics of convective activity simulated by the non-hydrostatic Weather Research and Forecasting model with the Advanced Research dynamic solver (WRF-ARW, version 3.5.1), under different upper air synoptic conditions in central Greece. To this end, 42 cases equally distributed under the six most frequent upper air synoptic conditions, which are associated with convective activity in the region of interest, were utilized considering two different soil moisture scenarios. In the first scenario, the model was initialized with the surface soil moisture of the ECMWF analysis data that usually does not take into account the modification of soil moisture due to agricultural activity in the area of interest. In the second scenario, the soil moisture in the upper soil layers of the study area was modified to the field capacity for the irrigated cropland. Three model domains, covering Europe, the Mediterranean Sea and northern Africa (d01), the wider area of Greece (d02) and central Greece - Thessaly region (d03) are used at horizontal grid-spacings of 15km, 5km and 1km respectively. The model numerical results indicate a strong dependence of convective spatiotemporal characteristics from the soil moisture difference between the two scenarios. Acknowledgements: This research is co-financed by the European Union (European Regional Development Fund) and Greek national funds, through the action "COOPERATION 2011: Partnerships of Production and Research Institutions in Focused Research and Technology Sectors" (contract number 11SYN_8_1088 - DAPHNE) in the framework of the operational programme "Competitiveness and Entrepreneurship" and Regions in Transition (OPC II, NSRF 2007-2013).

  9. Cortical responses to the mirror box illusion: a high-resolution EEG study.

    PubMed

    Egsgaard, Line Lindhardt; Petrini, Laura; Christoffersen, Giselle; Arendt-Nielsen, Lars

    2011-12-01

    The mirror box illusion has proven a helpful therapy in pathologies such as phantom limb pain, and although the effect has been suggested to be a result of the interaction between pain, vision, touch, and proprioception, the mechanisms are still unknown. Multichannel (124) brain responses were investigated in healthy men (N = 11) and women (N = 14) during the mirror box illusion. Tactile somatosensory evoked potentials were recorded from the right thumb during two control conditions and two illusions: (control 1) no mirror: looking at the physical right thumb during stimulation, (control 2) no mirror: looking at the physical left thumb during stimulation, (illusion 1) mirror: the illusion that both thumbs were stimulated, and (illusion 2) mirror: the illusion that none of the thumbs were stimulated. In men, a significant medial shift in the y coordinate of the N70 dipole in illusion 2 (P = 0.021) was found when compared with illusion 1. No dipole shift was found for women. Additionally, men showed higher prevalence of P180 cingulate cortex activation during illusion 2 when compared with control 1 and 2 (P = 0.002). During illusion 2, the degree of conformity with the statement "The hand in the mirror feels like my other hand" was negatively correlated with the N70 x coordinate for men and positively correlated with the N70 z coordinate for women. In conclusion, short-term cortical plasticity can be induced by a mismatch between visual input and location of tactile stimulation in men. The present study suggests that gender differences exist in the perception of the mirror box illusion. PMID:22038713

  10. A High-Resolution Hubble Space Telescope Study of Apparent Lyman Continuum Leakers at z~3

    NASA Astrophysics Data System (ADS)

    Mostardi, R. E.; Shapley, A. E.; Steidel, C. C.; Trainor, R. F.; Reddy, N. A.; Siana, B.

    2015-09-01

    We present U336V606J125H160 follow-up Hubble Space Telescope (HST) observations of 16 z ˜ 3 candidate Lyman continuum (LyC) emitters in the HS1549+1919 field. With these data, we obtain high spatial-resolution photometric redshifts of all sub-arcsecond components of the LyC candidates in order to eliminate foreground contamination and identify robust candidates for leaking LyC emission. Of the 16 candidates, we find one object with a robust LyC detection that is not due to foreground contamination. This object (MD5) resolves into two components; we refer to the LyC-emitting component as MD5b. MD5b has an observed 1500 Å to 900 Å flux-density ratio of {({F}{UV}/{F}{LyC})}{obs}=4.0+/- 2.0, compatible with predictions from stellar population synthesis models. Assuming minimal IGM absorption, this ratio corresponds to a relative (absolute) escape fraction of {f}{esc,{rel}}{MD5{{b}}} = 75%-100% ({f}{esc,{abs}}{MD5{{b}}} = 14%-19%). The stellar population fit to MD5b indicates an age of ≲50 Myr, which is in the youngest 10% of the HST sample and the youngest third of typical z ˜ 3 Lyman break galaxies, and may be a contributing factor to its LyC detection. We obtain a revised, contamination-free estimate for the comoving specific ionizing emissivity at z = 2.85, indicating (with large uncertainties) that star-forming galaxies provide roughly the same contribution as QSOs to the ionizing background at this redshift. Our results show that foreground contamination prevents ground-based LyC studies from obtaining a full understanding of LyC emission from z ˜ 3 star-forming galaxies. Future progress in direct LyC searches is contingent upon the elimination of foreground contaminants through high spatial-resolution observations, and upon acquisition of sufficiently deep LyC imaging to probe ionizing radiation in high-redshift galaxies.

  11. African Easterly Waves in 30-day High-Resolution Global Simulations: A Case Study During the 2006 NAMMA Period

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen; Tao, Wei-Kuo; Wu, Man-Li C.

    2010-01-01

    In this study, extended -range (30 -day) high-resolution simulations with the NASA global mesoscale model are conducted to simulate the initiation and propagation of six consecutive African easterly waves (AEWs) from late August to September 2006 and their association with hurricane formation. It is shown that the statistical characteristics of individual AEWs are realistically simulated with larger errors in the 5th and 6th AEWs. Remarkable simulations of a mean African easterly jet (AEJ) are also obtained. Nine additional 30 -day experiments suggest that although land surface processes might contribute to the predictability of the AEJ and AEWs, the initiation and detailed evolution of AEWs still depend on the accurate representation of dynamic and land surface initial conditions and their time -varying nonlinear interactions. Of interest is the potential to extend the lead time for predicting hurricane formation (e.g., a lead time of up to 22 days) as the 4th AEW is realistically simulated.

  12. Development of high-resolution real-time sub-ppb ethane spectroscopy and some pilot studies in life science.

    PubMed

    Skeldon, Kenneth D; Gibson, Graham M; Wyse, Cathy A; McMillan, Lesley C; Monk, Steve D; Longbottom, Chris; Padgett, Miles J

    2005-08-01

    We describe a high-resolution real-time spectroscopy system targeted to ethane gas with sensitivity > or = 70 ppt and response time from > or = 0.7 s. The measurement technique is based on a mid-IR lead-salt laser passing through a Herriott cell through which a gas sample flows. We compare wavelength scanning and locked configurations and discuss their relative merits. The technology has been motivated by clinical breath testing applications, ethane being widely regarded as the most important breath biomarker for cell damage via free-radical-mediated oxidative attack. We discuss preliminary human and animal studies in which ultrasensitive real-time ethane detection offers new diagnostic and monitoring potential. PMID:16075884

  13. High-resolution forest mapping for behavioural studies in the Nature Reserve ‘Les Nouragues’, French Guiana

    PubMed Central

    Ringler, Max; Mangione, Rosanna; Pašukonis, Andrius; Rainer, Gerhard; Gyimesi, Kristin; Felling, Julia; Kronaus, Hannes; Réjou-Méchain, Maxime; Chave, Jérôme; Reiter, Karl; Ringler, Eva

    2015-01-01

    For animals with spatially complex behaviours at relatively small scales, the resolution of a global positioning system (GPS) receiver location is often below the resolution needed to correctly map animals’ spatial behaviour. Natural conditions such as canopy cover, canyons or clouds can further degrade GPS receiver reception. Here we present a detailed, high-resolution map of a 4.6 ha Neotropical river island and a 8.3 ha mainland plot with the location of every tree >5 cm DBH and all structures on the forest floor, which are relevant to our study species, the territorial frog Allobates femoralis (Dendrobatidae). The map was derived using distance- and compass-based survey techniques, rooted on dGPS reference points, and incorporates altitudinal information based on a LiDAR survey of the area. PMID:27053943

  14. High-Resolution Rotational Spectroscopy Study of the Smallest Sugar Dimer: Interplay of Hydrogen Bonds in the Glycolaldehyde Dimer.

    PubMed

    Zinn, Sabrina; Medcraft, Chris; Betz, Thomas; Schnell, Melanie

    2016-05-10

    Molecular recognition of carbohydrates plays an important role in nature. The aggregation of the smallest sugar, glycolaldehyde, was studied in a conformer-selective manner using high-resolution rotational spectroscopy. Two different dimer structures were observed. The most stable conformer reveals C2 -symmetry by forming two intermolecular hydrogen bonds, giving up the strong intramolecular hydrogen bonds of the monomers and thus showing high hydrogen bond selectivity. By analyzing the spectra of the (13) C and (18) O isotopologues of the dimer in natural abundance, we could precisely determine the heavy backbone structure of the dimer. Comparison to the monomer structure and the complex with water provides insight into intermolecular interactions. Despite hydrogen bonding being the dominant interaction, precise predictions from quantum-chemical calculations highly rely on the consideration of dispersion. PMID:27060475

  15. Real-time, high-resolution study of nanocrystallization and fatigue cracking in a cyclically strained metallic glass.

    PubMed

    Wang, Cheng-Cai; Mao, Yun-Wei; Shan, Zhi-Wei; Dao, Ming; Li, Ju; Sun, Jun; Ma, Evan; Suresh, Subra

    2013-12-01

    Metallic glasses (MGs) exhibit greater elastic limit and stronger resistance to plastic deformation than their crystalline metal counterparts. Their capacity to withstand plastic straining is further enhanced at submicrometer length scales. For a range of microelectromechanical applications, the resistance of MGs to damage and cracking from thermal and mechanical stress or strain cycling under partial or complete constraint is of considerable scientific and technological interest. However, to our knowledge, no real-time, high-resolution transmission electron microscopy observations are available of crystallization, damage, and failure from the controlled imposition of cyclic strains or displacements in any metallic glass. Here we present the results of a unique in situ study, inside a high-resolution transmission electron microscope, of glass-to-crystal formation and fatigue of an Al-based MG. We demonstrate that cyclic straining progressively leads to nanoscale surface roughening in the highly deformed region of the starter notch, causing crack nucleation and formation of nanocrystals. The growth of these nanograins during cyclic straining impedes subsequent crack growth by bridging the crack. In distinct contrast to this fatigue behavior, only distributed nucleation of smaller nanocrystals is observed with no surface roughening under monotonic deformation. We further show through molecular dynamics simulation that these findings can be rationalized by the accumulation of strain-induced nonaffine atomic rearrangements that effectively enhances diffusion through random walk during repeated strain cycling. The present results thus provide unique insights into fundamental mechanisms of fatigue of MGs that would help shape strategies for material design and engineering applications. PMID:24255113

  16. Real-time, high-resolution study of nanocrystallization and fatigue cracking in a cyclically strained metallic glass

    PubMed Central

    Wang, Cheng-Cai; Mao, Yun-Wei; Shan, Zhi-Wei; Dao, Ming; Li, Ju; Sun, Jun; Ma, Evan; Suresh, Subra

    2013-01-01

    Metallic glasses (MGs) exhibit greater elastic limit and stronger resistance to plastic deformation than their crystalline metal counterparts. Their capacity to withstand plastic straining is further enhanced at submicrometer length scales. For a range of microelectromechanical applications, the resistance of MGs to damage and cracking from thermal and mechanical stress or strain cycling under partial or complete constraint is of considerable scientific and technological interest. However, to our knowledge, no real-time, high-resolution transmission electron microscopy observations are available of crystallization, damage, and failure from the controlled imposition of cyclic strains or displacements in any metallic glass. Here we present the results of a unique in situ study, inside a high-resolution transmission electron microscope, of glass-to-crystal formation and fatigue of an Al-based MG. We demonstrate that cyclic straining progressively leads to nanoscale surface roughening in the highly deformed region of the starter notch, causing crack nucleation and formation of nanocrystals. The growth of these nanograins during cyclic straining impedes subsequent crack growth by bridging the crack. In distinct contrast to this fatigue behavior, only distributed nucleation of smaller nanocrystals is observed with no surface roughening under monotonic deformation. We further show through molecular dynamics simulation that these findings can be rationalized by the accumulation of strain-induced nonaffine atomic rearrangements that effectively enhances diffusion through random walk during repeated strain cycling. The present results thus provide unique insights into fundamental mechanisms of fatigue of MGs that would help shape strategies for material design and engineering applications. PMID:24255113

  17. High-Resolution Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff; Goetz, Alexander F. H.

    1990-01-01

    Earth resources observed in greater detail. High-Resolution Imaging Spectrometer, undergoing development for use in NASA's Earth Observing System, measures reflectance of Earth's surface in visible and near-infrared wavelengths. From an orbit around Earth, instrument scans surface of Earth in 200 wavelength bands simultaneously. Produces images enabling identification of minerals in rocks and soils, important algal pigments in oceans and inland waters, changes in spectra associated with biochemistry of plant canopies, compositions of atmospheric aerosols, sizes of grains in snow, and contamination of snow by impurities that absorb visible light.

  18. High Resolution Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brünken, S.; Schlemmer, S.

    2016-05-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limitations of conventional absorption spectroscopy. Throughout this review examples demonstrating the strong interplay between laboratory and observational studies will be given.

  19. High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.

    1999-01-01

    This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.

  20. Use of high-resolution measurements for the retrieval of temperature and gas-concentration profiles from outgoing infrared spectra in the presence of cirrus clouds.

    PubMed

    Huang, Xianglei L; Yung, Yuk L; Margolis, Jack S

    2003-04-20

    We explore ways in which high-spectral-resolution measurements can aid in the retrieval of atmospheric temperature and gas-concentration profiles from outgoing infrared spectra when optically thin cirrus clouds are present. Simulated outgoing spectra that contain cirrus are fitted with spectra that do not contain cirrus, and the residuals are examined. For those lines with weighting functions that peak near the same altitude as the thin cirrus, unique features are observed in the residuals. These unique features are highly sensitive to the resolution of the instrumental line shape. For thin cirrus these residual features are narrow (< or = 0.1 cm(-1)), so high spectral resolution is required for unambiguous observation. The magnitudes of these unique features are larger than the noise of modern instruments. The sensitivities of these features to cloud height and cloud optical depth are also discussed. Our sensitivity studies show that, when the errors in the estimation of temperature profiles are not large, the dominant contribution to the residuals is the misinterpretation of cirrus. An analysis that focuses on information content is also presented. An understanding of the magnitude of the effect and of its dependence on spectral resolution as well as on spectral region is important for retrieving spacecraft data and for the design of future infrared instruments for forecasting weather and monitoring greenhouse gases. PMID:12716157

  1. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  2. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon-and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  3. High Resolution Camera for Mapping Titan Surface

    NASA Technical Reports Server (NTRS)

    Reinhardt, Bianca

    2011-01-01

    Titan, Saturn's largest moon, has a dense atmosphere and is the only object besides Earth to have stable liquids at its surface. The Cassini/Huygens mission has revealed the extraordinary breadth of geological processes shaping its surface. Further study requires high resolution imaging of the surface, which is restrained by light absorption by methane and scattering from aerosols. The Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft has demonstrated that Titan's surface can be observed within several windows in the near infrared, allowing us to process several regions in order to create a geological map and to determine the morphology. Specular reflections monitored on the lakes of the North Pole show little scattering at 5 microns, which, combined with the present study of Titan's northern pole area, refutes the paradigm that only radar can achieve high resolution mapping of the surface. The present data allowed us to monitor the evolution of lakes, to identify additional lakes at the Northern Pole, to examine Titan's hypothesis of non-synchronous rotation and to analyze the albedo of the North Pole surface. Future missions to Titan could carry a camera with 5 micron detectors and a carbon fiber radiator for weight reduction.

  4. On the Nature of Tintinnid Loricae (Ciliophora: Spirotricha: Tintinnina): a Histochemical, Enzymatic, EDX, and High-resolution TEM Study

    PubMed Central

    AGATHA, Sabine; SIMON, Paul

    2012-01-01

    Summary Tintinnids (Ciliophora: Spirotricha: Tintinnina) are occasionally the dominant ciliates in the marine plankton. The tintinnid loricae are minute artworks fascinating scientists for more than 230 years, but their chemical composition remained unclear, viz., chitinous or proteinaceous substances were discussed. Since sedimenting loricae contribute to the flux of elements and organic compounds in the oceans, knowledge about their nature is necessary in assessing their ecological role. Previous techniques and new methods, e.g. enzymatic digestion and high-resolution transmission electron microscopy, are applied in the present study. A chitinous nature of the loricae is rejected by the Van-Wisselingh test and failure of chitinase digestion. Only proteins might show a resistance against strong hot bases (KOH at 160°C for ~ 40 min. in tintinnid loricae) similar to that of chitin. Actually, the presence of nitrogen in the EDX analyses and the digestion of at least some loricae by proteinase K strongly indicate a proteinaceous nature. Furthermore, the crystal lattice revealed by high-resolution TEM in Eutintinnus loricae is similar to the proteinaceous surface layer (S-layer) of archaea, and the striation recognizable in transverse sections of Eutintinnus loricae has a periodicity resembling that of the crystalline proteins in the extruded trichocysts of Paramecium and Frontonia. The proteolytic resistance of some loricae does not reject the idea of a proteinaceous nature, as proteins in S-layers of some archaea and in most naturally occurring prions show comparable reactions. The data from the present study and the literature indicate proteins in the loricae of thirteen genera. Differences in the proteolytic resistance and staining properties between genera and congeners are probably due to deviations in the protein composition and the additional substances, e.g. lipids, carbohydrates. At the present state of knowledge, correlations between lorica structure, wall

  5. Hydrological and vegetational response to the Younger Dryas climatic oscillations: a high resolution case study from Quoyloo Meadow, Orkney, Scotland

    NASA Astrophysics Data System (ADS)

    Maas, David; Abrook, Ashley; Timms, Rhys; Matthews, Ian; Palmer, Adrian; Milner, Alice; Candy, Ian; Sachse, Dirk

    2016-04-01

    The Younger Dryas (Loch Lomond) Stadial is a well defined period of cold climate that in North West Europe punctuated the climatic amelioration during the Last Glacial - Interglacial Transition (LGIT ca. 16-8 ka). A palaeolake record from Quoyloo Meadow, Orkney Islands (N59.067, E-3.309) has been analysed for pollen and stable isotopes on biomarker lipids. n-Alkanes from terrestrial and aquatic sources are present throughout the core. The average chain length (ACL) is relatively low during the interstadial (~28.0) and shows a distinct increase during the Younger Dryas (to 29.0 +), attributed to an increase in grasses and drought resistant shrubs (e.g. Artemisia, Castañeda et al., 2009, Bunting, 1994). At the beginning of the Holocene, the ACL rapidly drops to 28.3 and from thereon gently increases again to ~29.0. There is a continued odd-over-even n-alkane predominance, although even n-alkanes are present in greater quantities in the interstadial, indicating an increasing terrestrial contribution in the Holocene. Ongoing deuterium isotope measurements of the n-alkanes will give independent evidence for palaeohydrological changes and can be compared to the other proxy evidence within the same core. Using a combination of nC29 and nC23 (terrestrial and aquatic end-members, respectively), a change in relative humidity (rH) can be qualified. This is based on the idea that terrestrial vegetation is affected by evapotranspiration processes, whereas aquatic vegetation is not (Rach et al., 2014). This data is supported by a high resolution palynological study; the contiguously sampled record demonstrates ecosystem/environmental responses to millennial-scale climatic change and allows for the possible detection of vegetation shifts at the sub-millennial scale. Vegetation aside, the pollen data can further aid in the interpretation of the recorded n-alkanes and isotopic analyses. This data is placed within a chronological framework derived from a high resolution crypto- and

  6. LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A04

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A04 EL-1994-00089 LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A04 The flight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The white paint dots on the center clamp blocks of the experiment trays left flange and lower flange appear to be discolored by a dark brown stain. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays upper flange is a copper coated pressure sensitive tape used to provide an electrical ground between the experiments thermal cover and the LDEF structure. The UHCRE thermal cover appears to be specular and

  7. LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray B05

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray B05 EL-1994-00088 LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray B05 The flight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The white paint dots on the center clamp block of the experiment trays lower flange appears to be discolored by a dark brown stain. The tray flanges also appear to be discolored but with a lighter stain. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays upper flange is a copper coated pressure sensitive tape used to provide an electrical ground between the experiments thermal cover and the LDEF

  8. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A04

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A04 EL-1994-00391 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A04 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in SAEF II at KSC prior to removal of the experiment tray from the LDEF. The paint dots on the experiment tray clamp blocks, originally white, appearsDE:to be discolored by a brown stain. The experiment tray flanges also appear to be coated but with a lighter colored stain. The UHCRE detectors were contained in 16 peripheral LDEF trays with at leastDE:one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical ground between the experiments thermal cover and the LDEF structure. The

  9. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D05

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D05 EL-1994-00311 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D05 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in SAEF II at KSC after removal of the experiment tray from the LDEF. The experiment tray flanges appear discolored by a brown stain. Outlines of experiment tray clamp blocks are clearly visible on the upper and lower tray flanges. The experiment tray holding fixture hardware covers the clamp block areas on the end flanges. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical ground between the

  10. LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C08

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C08 EL-1994-00661 LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C08 The flight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The white paint dots on the center clamp block of the experiment trays upper flange and the right end of the experiment trays lower flange appear to be slightly discolored. The tray flanges appear to be discolored by a light brown stain and the ground strap located in the center of the lower flange appears intact but a much darker copper color than in the prelaunch photograph. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored

  11. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray E02

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray E02 EL-1994-00385 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray E02 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in SAEF II at KSC prior to removal of the experiment tray from the LDEF. The white paint dot on the experiment tray clamp blocks located at the center of the trays lower and left flanges and at the right end of the trays upper flange appear to be discolored by a brown stain. The experiment tray flanges also appear to be coated but with a lighter colored stain. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an

  12. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A04

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A04 EL-1994-00272 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A04 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in SAEF II at KSC after the experiment tray was removed from the LDEF and the silvered TEFLON® thermal cover removed. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. A copper coated pressure sensitive tape was used to provide an electrical ground strap between the thermal cover and the LDEF structure. All experiment hardware appears to be in prelaunch condition and securely in place. The three cylindrical pressure vessels containing the experiment detectors are shown mounted in the experiment tray with the frame for mounting the

  13. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray B05

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray B05 EL-1994-00184 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray B05 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in SAEF II at KSC prior to removal of the experiment tray from the LDEF. The paint dots on the experiment tray clamp blocks, originally white, appears to be discolored by a brown stain. The experiment tray flanges also appear to be coated but with a lighter colored stain. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical ground between the experiments thermal cover and the LDEF structure. The UHCRE

  14. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray F04

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray F04 EL-1994-00171 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray F04 The postflight photograph was taken in the SAEF II at KSC after the experiment was removed from the LDEF. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical ground between the experiments thermal cover and the LDEF structure. The UHCRE thermal cover appears to be specular and intact. The circular damaged locations that appeared to to be impact points in the flight photograph are not as apparent in the reflections and is less taut cover. The wrinkled spots on the thermal cover are areas

  15. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C06

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C06 EL-1994-00206 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C06 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in SAEF II at KSC after removal of the experiment tray from the LDEF. The experiment tray flanges appear discolored by a light brown stain. Outlines of experiment tray clamp blocks are clearly visible on the lower tray flanges.The experiment tray holding fixture hardware covers the clamp block areas on the end flanges. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays upper flange is a copper coated pressure sensitive tape used to provide an electrical ground between the experiments

  16. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A02

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A02 EL-1994-00387 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A02 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in SAEF II at KSC prior to removal of the experiment tray from the LDEF. The white paint dot on the experiment tray clamp blocks located at the center of the trays upper and right flanges and at the left end of the trays lower flange appear to be discolored by a brown stain. The experiment tray flanges also appear to be coated but with a lighter colored stain. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar with a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an

  17. LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray E02

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray E02 EL-1994-00131 LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray E02 The flight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The white paint dots on the center clamp blocks of the experiment trays left flange and lower flange appear to be slightly discolored. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical ground between the experiments thermal cover and the LDEF structure. The UHCRE thermal cover appears to be intact with out visible

  18. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C05

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C05 EL-1994-00205 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C05 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in SAEF II at KSC after removal of the experiment tray from the LDEF. The experiment tray flanges appear discolored by a brown stain that provides outlines of the experiment tray clamp blocks that are clearly visible on the upper and lower tray flanges.The experiment tray holding fixture hardware covers the clamp block areas on the end flanges. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical ground

  19. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A10

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A10 EL-1994-00122 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A10 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in the Orbiter Processing Facility (OPF) at KSC during removal of the LDEF from the Orbiters cargo bay. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays upper flange is a copper coated pressure sensitive tape used to provide an electrical ground between the experiments thermal cover and the LDEF structure. The UHCRE thermal covers surface appears to have changed from specular to opaque (glossy white) with many black dots of various sizes that appear to be impact craters. An impact

  20. LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray E10

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray E10 EL-1994-00019 LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray E10 The flight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The white paint dots on the center clamp blocks of the experiment trays left flange and lower flange appear to be slightly discolored. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical ground between the experiments thermal cover and the LDEF structure. The UHCRE thermal covers surface appears to have changed from

  1. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray E10

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray E10 EL-1994-00162 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray E10 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in the Orbiter Processing Facility during removal of the LDEF from the Orbiter's payload bay. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical ground between the experiments thermal cover and the LDEF structure. The UHCRE thermal covers surface appears to have changed from specular to opaque with numerous black dots of various sizes that appear to be impact craters. Many of the craters appear to have

  2. Revisit: High resolution charge density study of α-rhombohedral boron using third-generation SR data at SPring-8

    NASA Astrophysics Data System (ADS)

    Nishibori, Eiji; Hyodo, Hiroshi; Kimura, Kaoru; Takata, Masaki

    2015-09-01

    Experimental charge density of α-rhombohedral boron (α-B12) by a Maximum entropy method (MEM) has been re-investigated using the high resolution powder diffraction data measured at third-generation synchrotron radiation (SR) source, SPring-8. The present MEM charge density has many discrepancies from the previous MEM charge densities reported by Fujimori et al. and Hosoi et al. The data-resolution dependence of the MEM charge density was investigated using the present data. We found that diffraction data with d > 0.4 Å resolution range were needed to reveal qualitative bonding nature of α-B12 at 100 K. The peculiar bonding natures, such as a bend B-B bond and a propeller-shaped bond, which were found in the previous studies have disappeared by using d > 0.4 Å data. The bonding nature of MEM charge density using the full data with d > 0.327 Å d-spacing range is well agreed with those of theoretical calculations. The present study suggests that resolution test is important for an accurate charge density study of boron related materials.

  3. High-resolution reflection seismics in pyroclastic sediments - a case study from the SESaR-project in Indonesia

    NASA Astrophysics Data System (ADS)

    Heinze, B.; Wiyono, W.; Polom, U.; Krawczyk, C. M.

    2012-04-01

    The sustainable use of geothermal resources for decentral electricity generation in Indonesia requires sophisticated pre-exploration, exploitation and monitoring due to the very complex geological conditions. High-resolution seismics for pre-exploration in areas with high geothermal gradients is an emerging new field of application. Therefore the development of new, site-specific methodical procedures of exploration is required to deal with the special lithologies and outer conditions. This is the background for the BMBF-financed SESaR (Seismic Exploration and Safety Risk study for decentral geothermal plants in Indonesia) project. Until now, we have investigated one site in Northern Sumatra and one in Western Java. Both of them are dominated by pyroclastic sediments. The high-resolution reflection seismic survey carried out in Tarutung/North Sumatra was shot with both P-wave and S-wave sources (the ELVIS microvibrator of LIAG) and partly also with vertical hammer blow. Using a 48-channel geophone array (10 Hz S-wave, 14 Hz P-wave) and a geophone interval of 5 m (P-wave) and 1 m (S-wave), respectively, fourteen reflection seismic profiles were acquired. The P-wave data give unexpected results. At almost all locations clear reflection events and also refractions are missing indicating indifferent wave propagation. This is in strong contrast to the S-wave seismic signals that enable a clear wave propagation and also correlate to some subsurface reflectors. A small discordance structure interpreted as fault was clearly recognised at 5 m depth, bounding a travertine body that crops out at the surface. Seismic measurements at Lembang/West Java, with same layout and equipment as described above, led to thirteen seismic profiles at four different locations. Additionally a hammer blow source was used at each location. The results are comparable to those of the Tarutung data. Most of the P-wave seismic data show poor signals. Only some single records contain weak reflectors

  4. SR instrumentation for optimized anomalous scattering and high resolution structure studies of proteins and nucleic acids (invited)

    NASA Astrophysics Data System (ADS)

    Deacon, A.; Habash, J.; Harrop, S. J.; Helliwell, J. R.; Hunter, W. N.; Leonard, G. A.; Peterson, M.; Hadener, A.; Kalb Gilboa, A. J.; Allinson, N. M.; Castelli, C.; Moon, K.; McSweeney, S.; Gonzalez, A.; Thompson, A. W.; Ealick, S.; Szebenyi, D. M.; Walter, R.

    1995-02-01

    Crystal structure solution by anomalous dispersion methods has been greatly facilitated using the rapidly tunable station 9.5 at the Daresbury SRS. Both SIROAS and MAD techniques, with IP data, have been used in the phasing of a brominated nucleotide and a seleno deaminase, respectively. The electron density maps in each case are interpretable. Throughput of projects could be improved upon with a better duty cycle detector. Another category of data collection is that at very high resolution. Detailed structure refinement pushes the limits of resolution and data quality. Station 9.5 has been used to collect high resolution (1.4 Å) native data for the protein concanavalin A. This utilized very short wavelengths (0.7 Å), the image plate, and crystal freezing. A total of 155 407 measurements from two crystals benefited from the on-line nature of the IP detector device, but a slow and quick pass are required to capture the full dynamic range of the data. There are data seen to 1.2 Å and beyond for a pure Mn substituted form of the protein, but a higher intensity still is required to actually record these data. By comparison, trials at CHESS, on a multipole wiggler (station A1) with a CCD (without image intensifier) system, yield native concanavalin A data to 0.98 Å and beyond. This demonstrates that the combination of yet higher intensity and the ease of use of a CCD offers worthwhile improvements; in this case an increase in the data by a factor of (1.4/0.98)3, thus at least doubling the data to parameter ratio for protein structure model refinement and potentially opening up direct structure determination of proteins of the size of concanavalin A (25 kDa). Finally, possibilities at ESRF and further detector developments, such as mosaic CCDs and scintillator coatings, offer further impetus for the field. These include more intense rapidly tunable beams for anomalous dispersion-based structure solution and ``ideal'' higher resolution data collection and reactivity

  5. Genesis of presolar diamonds: Comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nano-diamonds

    SciTech Connect

    Daulton, T.L. |; Eisenhour, D.D.; Buseck, P.R.

    1996-12-01

    Nano-diamonds isolated from acid dissolution residues of primitive carbonaceous meteorites (Allende and Murchison) were studied using high-resolution transmission electron microscopy. To discriminate among their most likely formation mechanisms, high-pressure shock-induced metamorphism or low-pressure vapor condensation. the microstructures of presolar diamond crystallites were compared to those of (terrestrial) synthesized nano-diamonds. The synthesized diamonds used for comparison in this study were produced by high-pressure shock waves generated in controlled detonations and by direct nucleation and homoepitaxial growth from the vapor phase in low-pressure chemical vapor deposition (CVD)-type processes. Microstructural features were identified that appear unique to shock metamorphism and to nucleation from the vapor phase, respectively. A comparison of these features to the microstructures found in presolar diamonds indicates that the predominant mechanism for presolar diamond formation is a vapor deposition process, suggesting a circumstellar condensation origin. A new presolar grain component has also been identified in the meteoritic residues, the (2H) hexagonal polytype of diamond (lonsdaleite). 93 refs., 17 figs., 1 tab.

  6. Estimating daily air temperature across the Southeastern United States using high-resolution satellite data: A statistical modeling study.

    PubMed

    Shi, Liuhua; Liu, Pengfei; Kloog, Itai; Lee, Mihye; Kosheleva, Anna; Schwartz, Joel

    2016-04-01

    Accurate estimates of spatio-temporal resolved near-surface air temperature (Ta) are crucial for environmental epidemiological studies. However, values of Ta are conventionally obtained from weather stations, which have limited spatial coverage. Satellite surface temperature (Ts) measurements offer the possibility of local exposure estimates across large domains. The Southeastern United States has different climatic conditions, more small water bodies and wetlands, and greater humidity in contrast to other regions, which add to the challenge of modeling air temperature. In this study, we incorporated satellite Ts to estimate high resolution (1km×1km) daily Ta across the southeastern USA for 2000-2014. We calibrated Ts-Ta measurements using mixed linear models, land use, and separate slopes for each day. A high out-of-sample cross-validated R(2) of 0.952 indicated excellent model performance. When satellite Ts were unavailable, linear regression on nearby monitors and spatio-temporal smoothing was used to estimate Ta. The daily Ta estimations were compared to the NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) model. A good agreement with an R(2) of 0.969 and a mean squared prediction error (RMSPE) of 1.376°C was achieved. Our results demonstrate that Ta can be reliably predicted using this Ts-based prediction model, even in a large geographical area with topography and weather patterns varying considerably. PMID:26717080

  7. An Elliptical Crystal Spectrometer Suitable for EXAFS Studies of Laser Compressed Materials and for High Resolution X-Ray Spectroscopy.

    PubMed

    Ridgeley, A; Goodman, D; Hall, T A

    1995-01-01

    Using an x-ray spectrometer with an elliptically curved crystal it is possible to study absorption spectra from a target placed at one focus of the ellipse using a backlighting source placed at the other focus. This principle has been used to develop a spectrometer for EXAFS studies of laser compressed materials. The backlighting source is placed at one focus of the ellipse and the laser compressed EXAFS sample at the other. Using this technique a small area of the EXAFS target can be probed, thereby minimizing any spatial variations in the compressed plasma due to nonuniformities in the laser beams. Also, the dispersive nature of the crystal ensures that it acts as a bandpass filter, so that the EXAFS sample is not probed by other x-ray wavelengths which may cause unwanted heating. Another advantage is that compressed and uncompressed EXAFS spectra can be compared on a single shot. The optical properties of the spectrometer are discussed analytically and using a computer ray-tracing program. The development and alignment of the elliptical spectrometer are discussed, and its performance using both x-ray film and a CCD detector is evaluated. The use of the elliptical spectrometer as a high-resolution x-ray instrument is presented. PMID:21307480

  8. XRD (x-ray diffraction) and HREM (high resolution electron microscopy) studies of nanocrystalline Cu and Pd

    SciTech Connect

    Nieman, G.W.; Weertman, J.R. . Dept. of Materials Science and Engineering); Siegel, R.W. )

    1990-12-01

    Consolidated powders of nanocrystalline Cu and Pd have been studied by x-ray diffraction (XRD) and high resolution electron microscopy (HREM) as part of an investigation of the mechanical behavior of nanocrystalline pure metals. XRD line broadening measurements were made to estimate grain size, qualitative grain size distribution and average long range strains in a number of samples. Mean grain sizes range from 4--60 nm and have qualitatively narrow grain size distributions. Long range lattice strains are of the order of 0.2--3% in consolidated samples. These strains apparently persist and even increase in Cu samples after annealing at 0.35 Tm (498K) for 2h, accompanied by an apparent increase in grain size of {ge}2x. Grain size, grain size distribution width and internal strains vary somewhat among samples produced under apparently identical processing conditions. HREM studies show that twins, stacking faults and low-index facets are abundant in as-consolidated nanocrystalline Cu samples. Methodology, results, and analysis of XRD and HREM experiments are presented. 17 refs., 2 figs., 2 tabs.

  9. Study of Grape Polyphenols by Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC/QTOF) and Suspect Screening Analysis

    PubMed Central

    Flamini, Riccardo; De Rosso, Mirko; Bavaresco, Luigi

    2015-01-01

    Suspect screening analysis is a targeted metabolomics method in which the identification of compounds relies on specific available information, such as their molecular formula and isotopic pattern. This method, coupled to liquid chromatography-high-resolution mass spectrometry, is effective in the study of grape metabolomics, in particular for characterization of flavonols, stilbene derivatives, and anthocyanins. For identification of compounds expected in the samples, a new database of putative compounds was expressly constructed by using the molecular information on potential metabolites of grape and wine from the literature and other electronic databases. Currently, this database contains around 1,100 compounds. The method allows identification of several hundred grape metabolites with two analyses (positive and negative ionization modes), and performing of data reprocessing using “untargeted” algorithms also provided the identification of some flavonols and resveratrol trimers and tetramers in grape for the first time. This approach can be potentially used in the study of metabolomics of varieties of other plant species. PMID:25734021

  10. High-resolution echocardiography

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1979-01-01

    High resolution computer aided ultrasound system provides two-and three-dimensional images of beating heart from many angles. System provides means for determining whether small blood vessels around the heart are blocked or if heart wall is moving normally without interference of dead and noncontracting muscle tissue.

  11. High-resolution headlamp

    NASA Astrophysics Data System (ADS)

    Gut, Carsten; Cristea, Iulia; Neumann, Cornelius

    2016-04-01

    The following article shall describe how human vision by night can be influenced. At first, front lighting systems that are already available on the market will be described, followed by their analysis with respect to the positive effects on traffic safety. Furthermore, how traffic safety by night can be increased since the introduction of high resolution headlamps shall be discussed.

  12. High-Resolution Vibrational Spectra of Furazan II. The B1 Fundamental ν 11 at ~ 1175 cm-1 from Fourier-Transform Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stiefvater, Otto L.

    1992-03-01

    The high-resolution FT-IR spectrum of the A-type fundamental ν11 of furazan ( C2H2N20) has been recorded and analysed against the background of rotational information from DRM microwave spectroscopy to yield the band origin as ν110= 1175.3377 + 0.0001 cm-1 . The combined use of microwave (MW) and FT-IR data gives this band origin with a statistical uncertainty of σ= 10-6cm-1 and leads to a refinement of the rotational constants of the state ν11 = 1 over those derivable from either MW or FT-IR data alone

  13. Exploring the Influence of Topographic Correction and SWIR Spectral Information Inclusion on Burnt Scars Detection From High Resolution EO Imagery: A Case Study Using ASTER imagery

    NASA Astrophysics Data System (ADS)

    Said, Yahia A.; Petropoulos, George; Srivastava, Prashant K.

    2014-05-01

    Information on burned area estimates is of key importance in environmental and ecological studies as well as in fire management including damage assessment and planning of post-fire recovery of affected areas. Earth Observation (EO) provides today the most efficient way in obtaining such information in a rapid, consistent and cost-effective manner. The present study aimed at exploring the effect of topographic correction to the burnt area delineation in conditions characteristic of a Mediterranean environment using ASTER high resolution multispectral remotely sensed imagery. A further objective was to investigate the potential added-value of the inclusion of the shortwave infrared (SWIR) bands in improving the retrievals of burned area cartography from the ASTER data. In particular the capability of the Maximum Likelihood (ML), the Support Vector Machines (SVMs) and Object-based Image Analysis (OBIA) classification techniques has been examined herein for the purposes of our study. As a case study is used a typical Mediterranean site on which a fire event occurred in Greece during the summer of 2007, for which post-fire ASTER imagery has been acquired. Our results indicated that the combination of topographic correction (ortho-rectification) with the inclusion of the SWIR bands returned the most accurate results in terms of burnt area mapping. In terms of image processing methods, OBIA showed the best results and found as the most promising approach for burned area mapping with least absolute difference from the validation polygon followed by SVM and ML. All in all, our study provides an important contribution to the understanding of the capability of high resolution imagery such as that from ASTER sensor and corroborates the usefulness particularly of the topographic correction as an image processing step when in delineating the burnt areas from such data. It also provides further evidence that use of EO technology can offer an effective practical tool for the

  14. Point-process high-resolution representations of heartbeat dynamics for multiscale analysis: A CHF survivor prediction study.

    PubMed

    Valenza, G; Wendt, H; Kiyono, K; Hayano, J; Watanabe, E; Yamamoto, Y; Abry, P; Barbieri, R

    2015-08-01

    Multiscale analysis of human heartbeat dynamics has been proved effective in characterizeing cardiovascular control physiology in health and disease. However, estimation of multiscale properties can be affected by the interpolation procedure used to preprocess the unevenly sampled R-R intervals derived from the ECG. To this extent, in this study we propose the estimation of wavelet coefficients and wavelet leaders on the output of inhomogeneous point process models of heartbeat dynamics. The RR interval series is modeled using probability density functions (pdfs) characterizing and predicting the time until the next heartbeat event occurs, as a linear function of the past history. Multiscale analysis is then applied to the pdfs' instantaneous first order moment. The proposed approach is tested on experimental data gathered from 57 congestive heart failure (CHF) patients by evaluating the recognition accuracy in predicting survivor and non-survivor patients, and by comparing performances from the informative point-process based interpolation and non-informative spline-based interpolation. Results demonstrate that multiscale analysis of point-process high-resolution representations achieves the highest prediction accuracy of 65.45%, proving our method as a promising tool to assess risk prediction in CHF patients. PMID:26736666

  15. High-resolution breast tomography at high energy: a feasibility study of phase contrast imaging on a whole breast

    NASA Astrophysics Data System (ADS)

    Sztrókay, A.; Diemoz, P. C.; Schlossbauer, T.; Brun, E.; Bamberg, F.; Mayr, D.; Reiser, M. F.; Bravin, A.; Coan, P.

    2012-05-01

    Previous studies on phase contrast imaging (PCI) mammography have demonstrated an enhancement of breast morphology and cancerous tissue visualization compared to conventional imaging. We show here the first results of the PCI analyser-based imaging (ABI) in computed tomography (CT) mode on whole and large (>12 cm) tumour-bearing breast tissues. We demonstrate in this work the capability of the technique of working at high x-ray energies and producing high-contrast images of large and complex specimens. One entire breast of an 80-year-old woman with invasive ductal cancer was imaged using ABI-CT with monochromatic 70 keV x-rays and an area detector of 92×92 µm2 pixel size. Sagittal slices were reconstructed from the acquired data, and compared to corresponding histological sections. Comparison with conventional absorption-based CT was also performed. Five blinded radiologists quantitatively evaluated the visual aspects of the ABI-CT images with respect to sharpness, soft tissue contrast, tissue boundaries and the discrimination of different structures/tissues. ABI-CT excellently depicted the entire 3D architecture of the breast volume by providing high-resolution and high-contrast images of the normal and cancerous breast tissues. These results are an important step in the evolution of PCI-CT towards its clinical implementation.

  16. Visualizing impact structures using high-resolution LiDAR-derived DEMs: A case study of two structures in Missouri

    USGS Publications Warehouse

    Finn, Michael P.; Krizanich, Gary W.; Evans, Kevin R.; Cox, Melissa R.; Yamamoto, Kristina H.

    2015-01-01

    Evidence suggests that a crypto-explosive hypothesis and a meteorite impact hypothesis may be partly correct in explaining several anomalous geological features in the middle of the United States. We used a primary geographic information science (GIScience) technique of creating a digital elevation model (DEM) of two of these features that occur in Missouri. The DEMs were derived from airborne light detection and ranging, or LiDAR. Using these DEMs, we characterized the Crooked Creek structure in southern Crawford County and the Weaubleau structure in southeastern St. Clair County, Missouri. The mensuration and study of exposed and buried impact craters implies that the craters may have intrinsic dimensions which could only be produced by collision. The results show elevations varying between 276 and 348 m for Crooked Creek and between 220 and 290 m for Weaubleau structure. These new high- resolution DEMs are accurate enough to allow for precise measurements and better interpretations of geological structures, particularly jointing in the carbonate rocks, and they show greater definition of the central uplift area in the Weaubleau structure than publicly available DEMs.

  17. Study of Explosive Electron Emission from a Pin Cathode Using High Resolution Point-Projection X-Ray Radiography

    NASA Astrophysics Data System (ADS)

    Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Parkevich, E. V.; Tilikin, I. N.; Mingaleev, A. R.; Agafonov, A. V.

    2015-11-01

    Most studies of Explosive Electron Emission (EEE) are based on the idea of cathode flares developing after explosion of metal whiskers (micron scale pins) on the cathode surface. The physical state of the pin material, the spatial structure of the explosion and its origin are still a matter of conjecture. In this work we used high-resolution point projection x-ray radiography to observe micron scale pin explosion in a high-current diode. Pin cathodes made from 10-25 micron Cu or Mo wires were placed in gaps in return current circuits of hybrid X-pinches on the XP and BIN pulsers. Pin lengths were varied over a range 1-4 mm and pin-anode gaps within 0.05-3 mm. The diode current and voltage were measured. In experiments with small pin-anode gap (0.1 - 1 mm) development of an expanded dense core of the pin was observed except the pin tip with length 100-200 microns indicating significant energy deposition in the wire material. In experiments with bigger gaps there was no visible wire core expansion within the spatial resolution of the experimental technique. Work at Cornell was supported by the National Nuclear Security Administration Stewardship Sciences Academic Programs under Department of Energy Cooperative Agreement No. DE-NA0001836 and at the Lebedev Institute by the RSF grant 142200273.

  18. Energetics, kinetics and dynamics of decaying metastable ions studied with a high-resolution three-sector field mass spectrometer

    NASA Astrophysics Data System (ADS)

    Matt-Leubner, S.; Feil, S.; Gluch, K.; Fedor, J.; Stamatovic, A.; Echt, O.; Scheier, P.; Becker, K.; Märk, T. D.

    2005-05-01

    Mass spectrometric analysis of metastable decay reactions is devoted to the measurements of the kinetic energy release distribution (KERD) for the decay of singly charged rare gas dimer ions Xe_{2}^{ + } and Kr_{2}^{ + } , the doubly charged acetylene parent ion C_{2}H_{2^{ 2+ }} and the singly and doubly charged SF6 fragment ions, like for example SF_{3}^{ + } , SF_{3}^{ 2 + } and SF_{4}^{ 2 + } . The KERDs are obtained either from high-resolution mass analysed ion kinetic energy spectra or the measurement of ion beam profiles using a specially improved mass spectrometric system. Due to the high energy resolution measurements and theoretical studies based on ab initio calculations of potential energy curves it is possible to assign the reaction products of the rare gas dimer decays to electronic transitions in the excited parent ion. The C_{2}H_{2^{ 2 + }} and also the SF_{4}^{ 2 + } ions are investigated because of obscurities in the production of their fragment ions. The unusual shape of the SF_{3}^{ + } ionization cross section indicates that at sufficiently high electron energies the fragmentation channel of doubly charged SF_{4}^{ 2 + } contributes significantly to the ion yield. Additional measurements of the corresponding appearance energies confirm the existence of this second production channel.

  19. Metabolomics in Lung Inflammation: A High Resolution 1H NMR Study of Mice Exposed to Silica Dust

    PubMed Central

    Hu, Jian Zhi; Rommereim, Donald N.; Minard, Kevin R.; Woodstock, Angie; Harrer, Bruce J.; Wind, Robert A.; Phipps, Richard P.; Sime, Patricia J.

    2010-01-01

    Here we report the first 1H NMR metabolomics studies on excised lungs and bronchoalveolar lavage fluid (BALF) from mice exposed to crystalline silica. High resolution 1H NMR metabolic profiling on intact excised lungs was performed using slow magic angle sample spinning (slow-MAS) 1H PASS (phase altered spinning sidebands) at a sample spinning rate of 80 Hz. Metabolic profiling on BALF was completed using fast magic angle spinning at 2kHz. Major findings are that the relative concentrations of choline, phosphocholine (PC) and glycerophosphocholine(GPC) were statistically significantly increased in silica-exposed mice compared to sham controls, indicating an altered membrane choline phospholipids metabolism (MCPM). The relative concentrations of glycogen/glucose, lactate and creatine were also statistically significantly increased in mice exposed to silica dust, suggesting that cellular energy pathways were affected by silica dust. Elevated levels of glycine, lysine, glutamate, proline and 4-hydroxyproline were also increased in exposed mice, suggesting the activation of a collagen pathway. Furthermore, metabolic profiles in mice exposed to silica dust were found to be spatially heterogeneous, in consistent with regional inflammation revealed by in vivo magnetic resonance imaging (MRI). PMID:20020862

  20. High-resolution x-ray diffraction study of the heavy-fermion compound YbBiPt

    NASA Astrophysics Data System (ADS)

    Ueland, B. G.; Saunders, S. M.; Bud'ko, S. L.; Schmiedeshoff, G. M.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.

    2015-11-01

    YbBiPt is a heavy-fermion compound possessing significant short-range antiferromagnetic correlations below a temperature of T*=0.7 K , fragile antiferromagnetic order below TN=0.4 K , a Kondo temperature of TK≈1 K , and crystalline-electric-field splitting on the order of E /kB=1 -10 K . Whereas the compound has a face-centered-cubic lattice at ambient temperature, certain experimental data, particularly those from studies aimed at determining its crystalline-electric-field scheme, suggest that the lattice distorts at lower temperature. Here, we present results from high-resolution, high-energy x-ray diffraction experiments which show that, within our experimental resolution of ≈6 -10 ×10-5Å , no structural phase transition occurs between T =1.5 and 50 K . In combination with results from dilatometry measurements, we further show that the compound's thermal expansion has a minimum at ≈18 K and a region of negative thermal expansion for 9 ≲T ≲18 K . Despite diffraction patterns taken at 1.6 K which indicate that the lattice is face-centered cubic and that the Yb resides on a crystallographic site with cubic point symmetry, we demonstrate that the linear thermal expansion may be modeled using crystalline-electric-field level schemes appropriate for Yb3 + residing on a site with either cubic or less than cubic point symmetry.

  1. The effect of substrate topology on smectic liquid crystal alignment: A high-resolution x-ray diffraction study

    SciTech Connect

    Smela, E.

    1992-01-01

    Surface topography is theoretically predicted to affect liquid crystal alignment through mechanical interactions: elastic deformations of the director are energetically unfavorable, causing the molecules to realign to minimize the distortion energy. Octylcyanobiphenyl (8CB), a bilayer smecticA liquid crystal at room temperature, was deposited on gratings, grids, and flat surfaces, and was studied using high resolution x-ray diffraction at shallow angles of incidence. One surface of the film was in contact with air and the other was in contact with a treated glass or silicon substrate. At the air interface, surface tension forces caused the liquid crystal molecules to align perpendicularly with respect to the plane of the substrate. Competing with the LC-air interface, which is a strong aligner, a grating at the LC-substrate interface produced distortions in the smectic layering which resulted in excess elastic energy and favored alignment parallel to the substrate and the grooves. The results show that in films less than approximately 30 [mu]m thick, the homeotropic orientation was maintained throughout the film due to the constraint of perpendicular alignment at the air interface. However, for thicker films on gratings, Bragg scattering from molecules lying parallel to the grooves was observed. The free air surface was thus the strongest aligning force, followed by the surface topology, while surface anchoring was not found to play a role.

  2. Formation, characterization, and stability of methaneselenolate monolayers on Au(111): an electrochemical high-resolution photoemission spectroscopy and DFT study.

    PubMed

    Cometto, F P; Calderón, C A; Morán, M; Ruano, G; Ascolani, H; Zampieri, G; Paredes-Olivera, P; Patrito, E M

    2014-04-01

    We investigated the mechanism of formation and stability of self-assembled monolayers (SAMs) of methaneselenolate on Au(111) prepared by the immersion method in ethanolic solutions of dimethyl diselenide (DMDSe). The adsorbed species were characterized by electrochemical measurements and high-resolution photoelectron spectroscopy (HR-XPS). The importance of the headgroup on formation mechanism and the stability of the SAMs was addressed by comparatively studying methaneselenolate (MSe) and methanethiolate (MT) monolayers. Density Functional Theory (DFT) calculations were performed to identify the elementary reaction steps in the mechanisms of formation and decomposition of the monolayers. Reductive desorption and HR-XPS measurements indicated that a MSe monolayer is formed at short immersion times by the cleavage of the Se-Se bond of DMDSe. However, the monolayer decomposes at long immersion times at room temperature, as evidenced by the appearance of atomic Se on the surface. The decomposition is more pronounced for MSe than for MT monolayers. The MSe monolayer stability can be greatly improved by two modifications in the preparation method: immersion at low temperatures (-20 °C) and the addition of a reducing agent to the forming solution. PMID:24645647

  3. Study of Regional Volcanic Impact on the Middle East and North Africa using high-resolution global and regional models

    NASA Astrophysics Data System (ADS)

    Osipov, Sergey; Dogar, Mohammad; Stenchikov, Georgiy

    2016-04-01

    High-latitude winter warming after strong equatorial volcanic eruptions caused by circulation changes associated with the anomalously positive phase of Arctic Oscillation is a subject of active research during recent decade. But severe winter cooling in the Middle East observed after the Mt. Pinatubo eruption of 1991, although recognized, was not thoroughly investigated. These severe regional climate perturbations in the Middle East cannot be explained by solely radiative volcanic cooling, which suggests that a contribution of forced circulation changes could be important and significant. To better understand the mechanisms of the Middle East climate response and evaluate the contributions of dynamic and radiative effects we conducted a comparative study using Geophysical Fluid Dynamics Laboratory global High Resolution Atmospheric Model (HiRAM) with the effectively "regional-model-resolution" of 25-km and the regional Weather Research and Forecasting (WRF) model focusing on the eruption of Mount Pinatubo on June 15, 1991 followed by a pronounced positive phase of the Arctic Oscillation. The WRF model has been configured over the Middle East and North Africa (MENA) region. The WRF code has been modified to interactively account for the radiative effect of volcanic aerosols. Both HiRAM and WRF capture the main features of the MENA climate response and show that in winter the dynamic effects in the Middle East prevail the direct radiative cooling from volcanic aerosols.

  4. High-resolution photoemission study of acetylene adsorption and reaction with the Si(100)-2x1 surface

    SciTech Connect

    Xu, S.H.; Yang, Y.; Keeffe, M.; Lapeyre, G.J.; Rotenberg, E.

    1999-02-09

    The adsorption and reaction of acetylene with the Si{approximately}100-231 surface has been studied using high-resolution photoemission by monitoring the Si 2p,C 1s, and valence-band (VB) spectra as a function of both acetylene coverage and post-adsorption annealing temperature. After the clean Si(100) surface is exposed to 0.5 monolayer (ML) acetylene, the surface state in the VB is absent. Meanwhile, the curve-fitting results show that there is only one interface component in the Si 2p core level. These results indicate that the asymmetric Si dimers may become symmetric dimers after acetylene adsorption, which can be explained well by the tetra-sigma model determined from our previous photoelectron holographic results. Significant changes in the electronic structure (Si 2p,C 1s, and VB) are found after subsequent annealing of the saturation overlayer. Annealing at lower temperature can induce some acetylene molecule desorption while most of the molecules decompose into C2Hx (x=1,0) and H species. After annealing above 660C, both of the reacted components of the Si 2p and C 1s lines show that the SiC species form clusterlike features. At the same time, the VB and Si 2p spectra indicate a restoration of a Si(100)-2x1 structure, and the asymmetric Si dimers reappear on the surface.

  5. High-resolution breast tomography at high energy: a feasibility study of phase contrast imaging on a whole breast.

    PubMed

    Sztrókay, A; Diemoz, P C; Schlossbauer, T; Brun, E; Bamberg, F; Mayr, D; Reiser, M F; Bravin, A; Coan, P

    2012-05-21

    Previous studies on phase contrast imaging (PCI) mammography have demonstrated an enhancement of breast morphology and cancerous tissue visualization compared to conventional imaging. We show here the first results of the PCI analyser-based imaging (ABI) in computed tomography (CT) mode on whole and large (>12 cm) tumour-bearing breast tissues. We demonstrate in this work the capability of the technique of working at high x-ray energies and producing high-contrast images of large and complex specimens. One entire breast of an 80-year-old woman with invasive ductal cancer was imaged using ABI-CT with monochromatic 70 keV x-rays and an area detector of 92×92 µm² pixel size. Sagittal slices were reconstructed from the acquired data, and compared to corresponding histological sections. Comparison with conventional absorption-based CT was also performed. Five blinded radiologists quantitatively evaluated the visual aspects of the ABI-CT images with respect to sharpness, soft tissue contrast, tissue boundaries and the discrimination of different structures/tissues. ABI-CT excellently depicted the entire 3D architecture of the breast volume by providing high-resolution and high-contrast images of the normal and cancerous breast tissues. These results are an important step in the evolution of PCI-CT towards its clinical implementation. PMID:22516937

  6. High-resolution NMR studies of structure and dynamics of human ERp27 indicate extensive interdomain flexibility

    PubMed Central

    Amin, Nader T.; Wallis, A. Katrine; Wells, Stephen A.; Rowe, Michelle L.; Williamson, Richard A.; Howard, Mark J.; Freedman, Robert B.

    2012-01-01

    ERp27 (endoplasmic reticulum protein 27.7 kDa) is a homologue of PDI (protein disulfide-isomerase) localized to the endoplasmic reticulum. ERp27 is predicted to consist of two thioredoxin-fold domains homologous with the non-catalytic b and b′ domains of PDI. The structure in solution of the N-terminal b-like domain of ERp27 was solved using high-resolution NMR data. The structure confirms that it has the thioredoxin fold and that ERp27 is a member of the PDI family. 15N-NMR relaxation data were obtained and ModelFree analysis highlighted limited exchange contributions and slow internal motions, and indicated that the domain has an average order parameter S2 of 0.79. Comparison of the single-domain structure determined in the present study with the equivalent domain within full-length ERp27, determined independently by X-ray diffraction, indicated very close agreement. The domain interface inferred from NMR data in solution was much more extensive than that observed in the X-ray structure, suggesting that the domains flex independently and that crystallization selects one specific interdomain orientation. This led us to apply a new rapid method to simulate the flexibility of the full-length protein, establishing that the domains show considerable freedom to flex (tilt and twist) about the interdomain linker, consistent with the NMR data. PMID:23234573

  7. High resolution 23Na-nuclear magnetic resonance study of stroke-prone spontaneously hypertensive rat erythrocytes.

    PubMed

    Kwan, C Y; Seo, Y; Ito, H; Murakami, M; Watari, H

    1987-06-01

    The intracellular Na+ content of washed erythrocytes from stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto normotensive rats (WKY) was measured by a high resolution 23Na-nuclear magnetic resonance (NMR) technique using a non-permeant aqueous shift reagent, dysprosium triethylenetetramine hexaacetic acid, Dy(TTHA)3-. The initial intracellular Na+ of freshly isolated and washed erythrocytes was very low (approximately 5 mmol/l) and increased progressively with prolonged incubation in isotonic salt solution at 37 degrees C. There was no significant difference in the erythrocyte Na+ concentration between SHRSP and WKY over the entire period of measurement, nor was any difference detected in their osmotic fragility or total cellular volume, although the osmotic fragility decreased with incubation time. The high energy phosphate metabolites were also studied in the same erythrocytes by 31P-NMR. The level of intracellular ATP decreased with incubation at 37 degrees C but showed no difference between the SHRSP and WKY samples. Inclusion of 1 mmol/l ouabain in the incubation medium substantially retarded the breakdown of intracellular ATP and resulted in a concomitant increase in intracellular Na+. However, neither the ouabain-sensitive nor the ouabain-insensitive component of Na+ influx altered in SHRSP erythrocytes compared with WKY erythrocytes in paired experiments. Our results do not support the hypothesis that altered Na+ transport, resulting in an increase in erythrocyte Na+ concentration, is associated with spontaneous hypertension. PMID:3611783

  8. Metabolic profile modifications in milk after enrofloxacin administration studied by liquid chromatography coupled with high resolution mass spectrometry.

    PubMed

    Junza, A; Saurina, J; Barrón, D; Minguillón, C

    2016-08-19

    High resolution accurate mass spectrometry (HRMS) operating in full scan MS mode was used in the search and identification of metabolites in raw milk from cows medicated with enrofloxacin. Data consisting of m/z features were taken throughout the entire chromatogram of milk samples from medicated animals and were compared with blank samples. Twenty six different compounds were identified. Some of them were attributed to structures related to enrofloxacin while others were dipeptides or tripeptides. Additionally, enrofloxacin was administered in a controlled treatment for three days. Milk was collected daily from the first day of treatment and until four days after in the search for the identified compounds. The obtained data were chemometrically treated by Principal Component Analysis. Samples were classified by this method into three different groups corresponding to days 1-2, day 3 and days 4-7 considering the different concentration profile evolution of metabolites during the days studied. Tentative metabolic pathways were designed to rationalize the presence of the newly identified compounds. PMID:27425761

  9. High-resolution precipitation mapping over Switzerland: A case study on the combination of radar and station data

    NASA Astrophysics Data System (ADS)

    Erdin, R.; Frei, C.; Stahel, W. A.

    2009-09-01

    Combining measurements from radar and in-situ rain gauges into a high-resolution precipitation analysis attempts to merge the relative merits of the two measurement plattforms, i.e. the quantitative accuracy of gauges with the high spatial resolution of radar. Several combination approaches based on geostatistics have been proposed in the literature, yet their suitability in areas of complex terrain is unclear. In this study we present a thorough evaluation and inter-comparison of two such methods for a heavy precipitation case in Switzerland (August 2005). The five study days encompass predominantly convective, stratiform and topographic precipitation phases offering distinct but moderately challenging conditions. The two combination methods examined are Universal Kriging and Ordinary Kriging of radar errors (OKRE). KED uses radar precipitation fields as external drift (KED) and a spatial random function for the residual field. OKRE models radar-gauge differences as a random function directly. The combination methods are compared to rainfall fields from rain-gauges only (Ordinary Kriging) and radar only. The dependence in the performance of these methods upon a range of factors was investigated formally in an Analysis of Variance using several cross-validation skill measures as target variables. Main results of the study are: Combination methods perform consistently better than the gauge-only analysis. The improvement is particularly large for those study days with more convective rainfall activity and for analyses conducted from the coarse real-time gauge network only. The added value from radar is almost similar like that from a high-density climatological gauge network. The combination has largely eliminated systematic errors in the radar fields. KED is generally superior to OKRE, except in the distinction of dry/wet conditions. Possibilities for further methodological developments and implications for an operational application in Switzerland will be discussed

  10. Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2012-01-01

    -reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using SPARKLE logic, which is described in Davis (2006). Each of the four-band images within each resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band's picture element based on the digital values of all picture elements within a specified radius that was usually 500 m. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area's local zone (either 41 or 42) and the WGS84 datum. Most final image mosaics were subdivided into overlapping tiles or quadrants because of the large size of the target areas. The image tiles (or quadrants) for each area of interest are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image. Approximately one-half of the study areas have at least one subarea designated for detailed field investigations

  11. Urban impact on air quality in RegCM/CAMx couple for MEGAPOLI project - high resolution sensitivity study

    NASA Astrophysics Data System (ADS)

    Halenka, T.; Huszar, P.; Belda, M.

    2010-09-01

    Recent studies show considerable effect of atmospheric chemistry and aerosols on climate on regional and local scale. For the purpose of qualifying and quantifying the magnitude of climate forcing due to atmospheric chemistry/aerosols on regional scale, the development of coupling of regional climate model and chemistry/aerosol model was started on the Department of Meteorology and Environmental Protection, Charles University, Prague, for the EC FP6 Project QUANTIFY and EC FP6 Project CECILIA. For this coupling, existing regional climate model and chemistry transport model have been used at very high resolution of 10km grid. Climate is calculated using RegCM while chemistry is solved by CAMx. The experiments with the couple have been prepared for EC FP7 project MEGAPOLI assessing the impact of the megacities and industrialized areas on climate. Meteorological fields generated by RCM drive CAMx transport, chemistry and a dry/wet deposition. A preprocessor utility was developed for transforming RegCM provided fields to CAMx input fields and format. New domain have been settled for MEGAPOLI purpose in 10km resolution including all the European "megacities" regions, i.e. London metropolitan area, Paris region, industrialized Ruhr area, Po valley etc. There is critical issue of the emission inventories available for 10km resolution including the urban hot-spots, TNO emissions are adopted for this sensitivity study in 10km resolution for comparison of the results with the simulation based on merged TNO emissions, i.e. basically original EMEP emissions at 50 km grid. The sensitivity test to switch on/off Paris area emissions is analysed as well. Preliminary results for year 2005 are presented and discussed to reveal whether the concept of effective emission indices could help to parameterize the urban plume effects in lower resolution models. Interactive coupling is compared to study the potential of possible impact of urban air-pollution to the urban area climate.

  12. High resolution data acquisition

    DOEpatents

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  13. High resolution data acquisition

    DOEpatents

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  14. High resolution infrared spectra of the ν1- ν4 bands of BiH 3, and ab initio calculations of the spectroscopic parameters

    NASA Astrophysics Data System (ADS)

    Jerzembeck, Wolfgang; Bürger, Hans; Breidung, Jürgen; Thiel, Walter

    2004-07-01

    The infrared spectrum of short-lived BiH 3 has been studied by Fourier transform technique. The BiH stretching bands ν1/ ν3 at 1733.2546/1734.4671 cm -1 and the bending fundamentals ν2/ ν4 at 726.6992/751.2385 cm -1 have been measured with a resolution of 5.5 and 6.6 × 10 -3 cm -1, respectively. The spectra were analyzed using different reductions of the rovibrational Hamiltonian accounting for the numerous resonance interactions in particular within the strongly Coriolis-coupled bending dyad. About 1150 and 980 transitions belonging to the ν1/ ν3 and ν2/ ν4 bands were fitted with an rms deviation of 0.62 and 0.53 × 10 -3 cm -1, respectively. High-level ab initio calculations at the coupled cluster CCSD(T) level with an energy-consistent small-core pseudopotential and large basis sets were carried out to determine the equilibrium structure, the anharmonic force field, and the associated spectroscopic constants of BiH 3. The theoretical results are in good agreement with the available experimental data.

  15. Ultra high resolution tomography

    SciTech Connect

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  16. High-Resolution Autoradiography

    NASA Technical Reports Server (NTRS)

    Towe, George C; Gomberg, Henry J; Freemen, J W

    1955-01-01

    This investigation was made to adapt wet-process autoradiography to metallurgical samples to obtain high resolution of segregated radioactive elements in microstructures. Results are confined to development of the technique, which was perfected to a resolution of less than 10 microns. The radioactive samples included carbon-14 carburized iron and steel, nickel-63 electroplated samples, a powder product containing nickel-63, and tungsten-185 in N-155 alloy.

  17. Heterozygous mapping strategy (HetMapps)for high resolution genotyping-by-sequencing markers: a case study in grapevine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genotyping by sequencing (GBS) provides opportunities to generate high-resolution genetic maps at a low per-sample genotyping cost, but missing data and under-calling of heterozygotes complicate the creation of GBS linkage maps for highly heterozygous species. To overcome these issues, we developed ...

  18. High-resolution Terrestrial Laser Scanning (TLS) on cushion peatlands - a case study from the Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Forbriger, M.; Höfle, B.; Siart, C.; Schittek, K.; Bubenzer, O.

    2012-04-01

    So-called cushion peatlands located in the high mountain areas of the Peruvian Andes are unique ecotopes, which are of major importance for both palaeoenvironmental reconstructions and permanent water supply of the valley oases in the presently hyperarid Peruvian desert. In this context, a case study was performed on the Cerro Llamoca peatland (southern Peru, province Lucanas, 14° S) in the uppermost reaches of the Rió Grande catchment area (4000-4450 m a.s.l.) within the framework of the BMBF-funded project 'Andean Transect - Climate Sensitivity of pre-Columbian Man-Environment-Systems' and serves as a basis for a long-term, multitemporal observation study. As small-scale geomorphologic investigations require high-resolution elevation data, which is still not available for this remote study site, and local microrelief is characterised by features not visible from aerial view (e.g. channel cuttings within the peatland), terrestrial laser scanning (TLS) was applied. Data acquisition was carried out with one of the latest 'time-of-flight'-scanners (Riegl VZ-400). A total of 46 positions was recorded to capture the whole area of interest leading to more 370 million single laser points within an area of approximately 1,8 km2. Registration of scan positions was performed by means of GPS measurements, coarse registration and the iterative closest point (ICP) algorithm provided by the plugin Multi-Station Adjustment within the RiSCAN PRO software (Riegl). The large amount of output data required the use of special LiDAR software for further processing and digital elevation raster generation (OPALS software). The defined target raster resolution was set to values between 0.1 and 2 m depending on the average point density. It is important to have access to the original point cloud including additional laser point attributes (e.g. signal amplitude and echo width) for digital terrain model generation (i.e. terrain point filtering) and geomorphologic mapping by means of

  19. High-resolution studies of double-layered ejecta craters: Morphology, inherent structure, and a phenomenological formation model

    NASA Astrophysics Data System (ADS)

    Wulf, Gerwin; Kenkmann, Thomas

    2015-02-01

    The ejecta blankets of impact craters in volatile-rich environments often possess characteristic layered ejecta morphologies. The so-called double-layered ejecta (DLE) craters are characterized by two ejecta layers with distinct morphologies. The analysis of high-resolution image data, especially HiRISE and CTX, provides new insights into the formation of DLE craters. A new phenomenological excavation and ejecta emplacement model for DLE craters is proposed based on a detailed case study of the Martian crater Steinheim—a well-preserved DLE crater—and studies of other DLE craters. The observations show that the outer ejecta layer is emplaced as medial and distal ejecta that propagate outwards in a debris avalanche or (if saturated with water) a debris flow mode after landing, overrunning previously formed secondary craters. In contrast, the inner ejecta layer is formed by a translational slide of the proximal ejecta deposits during the emplacement stage that overrun and superimpose parts of the outer ejecta layer. Based on our model, DLE craters on Mars are the result of an impact event into a rock/ice mixture that produces large amounts of shock-induced vaporization and melting of ground ice, leading to high ejection angles, proximal landing positions, and an ejecta curtain with relatively wet (in terms of water in liquid form) composition in the distal part versus dryer composition in the proximal part. As a consequence, basal melting of ice components in the ejecta at the transient crater rim, which is induced by frictional heating and the enhanced pressure at depth, initiates an outwards directed collapse of crater rim material in a translational slide mode. Our results indicate that similar processes may also be applicable for other planetary bodies with volatile-rich environments, such as Ganymede, Europa, and the Earth.

  20. Contribution of high resolution PLEIADES imagery to active faults analysis. Case study of the Longriba Fault System, eastern Tibet.

    NASA Astrophysics Data System (ADS)

    Ansberque, Claire; Bellier, Olivier; Godard, Vincent; Lasserre, Cécile; Wang, Mingming; Xu, Xiwei; Tan, Xibin

    2015-04-01

    High resolution imagery has largely developed during those two last decades allowing the possibility to observe and quantify geological and geomorphological features ranging from meter to few centimeters. Active tectonic and geomorphological studies have greatly benefited from the systematic use of such data. For that reason, we tested the contribution of PLEAIDES images to the analysis of an active strike-slip fault system in eastern Tibet. We used 50 cm resolution panchromatic PLEIADES images in order to map active fault segmentation, localize offsets of geomorphic markers and quantify vertical and horizontal displacements. We propose a preliminary study using PLEIADES images along the Longriba Fault System (LFS). The LFS, located at the eastern Tibetan Plateau margin, is constituted of two NW-SE dextral strike-slip and parallel fault zones: Longriqu and Maoergai, 80 and 120 km-long, respectively. It accommodates ~4 mm/yr dextral slip and very few vertical motion. We used stereo-pairs to build relative Digital Elevation Models (DEMs) (without ground control points) with a horizontal resolution ranging from 2 to 5 m, in order to understand the geometry of the system. We measured fault segments with lengths ranging from a hundred meters to several kilometers which are relatively close from each others, and several offsets of geomorphic markers (alluvial fans, ridges, rivers) ranging from a few meters to ~40 m. According to the segmentation deduced from those results we suggest that the fault has a high seismic potential (>Mw7.0) and that probably many surface rupturing earthquakes occurred along the LFS over the Holocene.

  1. High-resolution x-ray diffraction study of the heavy-fermion compound YbBiPt

    DOE PAGESBeta

    Ueland, B. G.; Iowa State Univ., Ames, IA; Saunders, S. M.; Iowa State Univ., Ames, IA; Bud'ko, S. L.; Iowa State Univ., Ames, IA; Schmiedeshoff, G. M.; Canfield, P. C.; Iowa State Univ., Ames, IA; Kreyssig, A.; et al

    2015-11-30

    In this study, YbBiPt is a heavy-fermion compound possessing significant short-range antiferromagnetic correlations below a temperature of T*=0.7K, fragile antiferromagnetic order below TN = 0.4K, a Kondo temperature of TK ≈ 1K, and crystalline-electric-field splitting on the order of E/kB = 1 – 10K. Whereas the compound has a face-centered-cubic lattice at ambient temperature, certain experimental data, particularly those from studies aimed at determining its crystalline-electric-field scheme, suggest that the lattice distorts at lower temperature. Here, we present results from high-resolution, high-energy x-ray diffraction experiments which show that, within our experimental resolution of ≈ 6 – 10 × 10–5 Å,more » no structural phase transition occurs between T = 1.5 and 50 K. In combination with results from dilatometry measurements, we further show that the compound's thermal expansion has a minimum at ≈ 18 K and a region of negative thermal expansion for 9 ≲ T ≲ 18 K. Despite diffraction patterns taken at 1.6 K which indicate that the lattice is face-centered cubic and that the Yb resides on a crystallographic site with cubic point symmetry, we demonstrate that the linear thermal expansion may be modeled using crystalline-electric-field level schemes appropriate for Yb3+ residing on a site with either cubic or less than cubic point symmetry.« less

  2. High-resolution x-ray diffraction study of the heavy-fermion compound YbBiPt

    SciTech Connect

    Ueland, B. G.; Saunders, S. M.; Bud'ko, S. L.; Schmiedeshoff, G. M.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.

    2015-11-30

    In this study, YbBiPt is a heavy-fermion compound possessing significant short-range antiferromagnetic correlations below a temperature of T*=0.7K, fragile antiferromagnetic order below TN = 0.4K, a Kondo temperature of TK ≈ 1K, and crystalline-electric-field splitting on the order of E/kB = 1 – 10K. Whereas the compound has a face-centered-cubic lattice at ambient temperature, certain experimental data, particularly those from studies aimed at determining its crystalline-electric-field scheme, suggest that the lattice distorts at lower temperature. Here, we present results from high-resolution, high-energy x-ray diffraction experiments which show that, within our experimental resolution of ≈ 6 – 10 × 10–5 Å, no structural phase transition occurs between T = 1.5 and 50 K. In combination with results from dilatometry measurements, we further show that the compound's thermal expansion has a minimum at ≈ 18 K and a region of negative thermal expansion for 9 ≲ T ≲ 18 K. Despite diffraction patterns taken at 1.6 K which indicate that the lattice is face-centered cubic and that the Yb resides on a crystallographic site with cubic point symmetry, we demonstrate that the linear thermal expansion may be modeled using crystalline-electric-field level schemes appropriate for Yb3+ residing on a site with either cubic or less than cubic point symmetry.

  3. In vivo diagnostic accuracy of high resolution microendoscopy in differentiating neoplastic from non-neoplastic colorectal polyps: a prospective study

    PubMed Central

    Parikh, Neil; Perl, Daniel; Lee, Michelle H.; Shah, Brijen; Young, Yuki; Chang, Shannon S.; Shukla, Richa; Polydorides, Alexandros D.; Moshier, Erin; Godbold, James; Zhou, Elinor; Mitchaml, Josephine; Richards-Kortum, Rebecca; Anandasabapathy, Sharmila

    2013-01-01

    High-resolution microendoscopy (HRME) is a low-cost, “optical biopsy” technology that allows for subcellular imaging. The purpose of this study was to determine the in vivo diagnostic accuracy of the HRME for the differentiation of neoplastic from non-neoplastic colorectal polyps and compare it to that of high-definition white-light endoscopy (WLE) with histopathology as the gold standard. Three endoscopists prospectively detected a total of 171 polyps from 94 patients that were then imaged by HRME and classified in real-time as neoplastic (adenomatous, cancer) or non-neoplastic (normal, hyperplastic, inflammatory). HRME had a significantly higher accuracy (94%), specificity (95%), and positive predictive value (87%) for the determination of neoplastic colorectal polyps compared to WLE (65%, 39%, and 55%, respectively). When looking at small colorectal polyps (less than 10 mm), HRME continued to significantly outperform WLE in terms of accuracy (95% vs. 64%), specificity (98% vs. 40%) and positive predictive value (92% vs. 55%). These trends continued when evaluating diminutive polyps (less than 5 mm) as HRME's accuracy (95%), specificity (98%), and positive predictive value (93%) were all significantly greater than their WLE counterparts (62%, 41%, and 53%, respectively). In conclusion, this in vivo study demonstrates that HRME can be a very effective modality in the differentiation of neoplastic and non-neoplastic colorectal polyps. A combination of standard white-light colonoscopy for polyp detection and HRME for polyp classification has the potential to truly allow the endoscopist to selectively determine which lesions can be left in situ, which lesions can simply be discarded, and which lesions need formal histopathologic analysis. PMID:24296752

  4. Fine-scale mapping of vector habitats using very high resolution satellite imagery: a liver fluke case-study.

    PubMed

    De Roeck, Els; Van Coillie, Frieke; De Wulf, Robert; Soenen, Karen; Charlier, Johannes; Vercruysse, Jozef; Hantson, Wouter; Ducheyne, Els; Hendrickx, Guy

    2014-01-01

    The visualization of vector occurrence in space and time is an important aspect of studying vector-borne diseases. Detailed maps of possible vector habitats provide valuable information for the prediction of infection risk zones but are currently lacking for most parts of the world. Nonetheless, monitoring vector habitats from the finest scales up to farm level is of key importance to refine currently existing broad-scale infection risk models. Using Fasciola hepatica, a parasite liver fluke, as a case in point, this study illustrates the potential of very high resolution (VHR) optical satellite imagery to efficiently and semi-automatically detect detailed vector habitats. A WorldView2 satellite image capable of <5m resolution was acquired in the spring of 2013 for the area around Bruges, Belgium, a region where dairy farms suffer from liver fluke infections transmitted by freshwater snails. The vector thrives in small water bodies (SWBs), such as ponds, ditches and other humid areas consisting of open water, aquatic vegetation and/or inundated grass. These water bodies can be as small as a few m2 and are most often not present on existing land cover maps because of their small size. We present a classification procedure based on object-based image analysis (OBIA) that proved valuable to detect SWBs at a fine scale in an operational and semi-automated way. The classification results were compared to field and other reference data such as existing broad-scale maps and expert knowledge. Overall, the SWB detection accuracy reached up to 87%. The resulting fine-scale SWB map can be used as input for spatial distribution modelling of the liver fluke snail vector to enable development of improved infection risk mapping and management advice adapted to specific, local farm situations. PMID:25599638

  5. High-resolution spatiotemporal distribution of precipitation in Iran: a comparative study with three global-precipitation datasets

    NASA Astrophysics Data System (ADS)

    Khalili, Ali; Rahimi, Jaber

    2014-10-01

    High-resolution precipitation datasets are used for numerous applications. However, depending on the procedures for obtaining these products, such as number of observations, quality checking, error-correction procedures, and interpolation techniques, they include many uncertainties. Therefore, the accuracy of these products needs to be evaluated over different regions. In this study, the Iranian National Dataset (INDS), a new 1 × 1 km precipitation dataset based on precipitation data of 1,441 quality-controlled stations for the climatic period from 1961 to 2005, was constructed using the digital elevation model, correlation method, and Kriging interpolation procedure. Iran's annual precipitation values at grids and stations were extracted from Climatic Research Unit (CRU) CL 2.0, CRU TS 3.10.01, and WorldClim datasets, and differences between corresponding values in each of the three datasets and INDS were calculated and analyzed. The coefficient of determination ( R 2) between the national network stations' data and the CRU CL 2.0, CRU TS 3.10.01, and WorldClim datasets were 0.50, 0.13, and 0.62, respectively. Moreover, R 2 values between the grids of each dataset and INDS were 0.51, 0.40, and 0.60, respectively. To determine the global datasets' efficiency for displaying temporal patterns of precipitation, the monthly values gathered from them at 11 stations (as representative of Iran's various precipitation regimes) were compared with the real values at these stations. The results showed that in term of temporal patterns, the concurrences among the three global datasets and the INDS was more acceptable, especially in the case of CRU CL 2.0. In general, it is concluded that the global datasets could be deployed for the primary assessment of the annual precipitation distribution; however, for more precise studies, use of local data is highly recommended.

  6. LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A10

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A10 EL-1994-00018 LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A10 The flight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The white paint dots on the clamp blocks located at the center of the experiment trays upper and right flanges appear to be in prelaunch condition while the one located at the left end of the trays lower flange appears slightly discolored. Note the dark brown stain on the LDEF structure adjacent to the edge of the black thermal cover. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays right flange is

  7. LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray B07

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray B07 EL-1994-00087 LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray B07 The flight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The white paint dots on the center clamp blocks of the experiment trays left flange and lower flange appear to be slightly discolored but the paint dot on the clamp block located at the right end of the upper flange appears to be stained less. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical ground between the

  8. LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D01

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D01 EL-1994-00134 LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D01 The flight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The paint dot , originally white, on the experiment tray clamp block located at the center of the trays lower flange appears to be discolored by a brown stain. The experiment trays lower flange also appears to be coated but with a much lighter stain. The paint dots on clamp blocks at each end of the trays upper flange appear to be discolored very little. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the

  9. LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D07

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D07 EL-1994-00062 LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D07 The flight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The white paint dot on the center clamp block of the experiment trays upper flange appears to be in prelaunch condition but the paint dot on the clamp block located at the right end of the lower flange appears to be slightly discolored. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical ground between the experiments

  10. LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D05

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D05 EL-1994-00038 LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D05 The flight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The white paint dots on the center clamp block of the experiment trays upper flange and on the tray clamp blocks at each end of the trays lower flange appear to be discolored by a brown stain. The experiment tray flanges also appear to be discolored by the stain. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical

  11. Fault Segmentation and Earthquake Behavior: A High Resolution Paleoseismic Study in The Southern San Jacinto Fault Zone

    NASA Astrophysics Data System (ADS)

    Ragona, D.; Rockwell, T. K.; Orgil, A.

    2001-12-01

    The southern San Jacinto fault zone consists of three main fault strands or segments: the Coyote Creek (CCF), Superstition Mountain (SMF) and Superstition Hills (SHF) faults. The CCF is divided into northern, central and southern segments, defined after its rupture in the 1968 Borrego Mountain earthquake. The boundaries of these segments are delineated by step-overs and/or fault bends. In contrast, the segment boundary between the southern segment of the CCF and the northern end of the SMF is defined only by a 10o bend or change in strike. However, the main reason that these two faults are considered separate is that the 1968 rupture terminated along the southern segment of the CCF. The only way to demonstrate how individual segments have behaved in the past and how segment boundaries work is to resolve their past rupture histories through high-resolution paleoseismic studies. We studied the earthquake history of the southern CCF and northern SMF to obtain a complete record of how and which boundaries have controlled past ruptures. We exposed faulted sediments of the regionally-correlative Lake Cahuilla at Carrizo Wash along the northernmost SMF, and correlated the stratigraphy and earthquake history to sites along the CCF using radiocarbon dates and sequence stratigraphy. We exposed a 5 m-thick section of very well stratified fluvial, deltaic and lacustrine sediments, part of which have been displaced by the fault. Four and probably five surface rupturing events are recorded in this section. The last two lake Cahuilla high-stand deposits are not faulted, indicating that the northern Superstition Mountain fault has not ruptured for at least 330 years and probably 500 years. Using high resolution 3D trenching techniques we obtained information of fault geometry and slip for the last two events. The last earthquake rupture consisted of en echelon faults with a minimum horizontal displacement of 6 to 9 cm of slip in each. Minimum total slip across the whole fault zone

  12. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D07

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D07 EL-1994-00207 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D07 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in SAEF II at KSC after removal of the experiment tray from the LDEF. The experiment tray flanges appear to be discolored by a light brown stain. An outline of experiment tray clamp block locations is clearly visible on the experiment trays upper flange and to a lesser extent on its lower flange. The holding fixture hardware covers the clamp block areas on the end flanges. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to