Science.gov

Sample records for high-resolution straw tube

  1. Mechanical support for straw tubes

    SciTech Connect

    Joestlein, H.

    1990-03-11

    A design is proposed for mounting a large number of straw tubes to form an SSC central tracking chamber. The assembly is precise and of very low mass. The fabrication is modular and can be carried out with a minimum of tooling and instrumentation. Testing of modules is possible prior to the final assembly. 4 figs.

  2. PANDA straw tube detectors and readout

    NASA Astrophysics Data System (ADS)

    Strzempek, P.

    2016-07-01

    PANDA is a detector under construction dedicated to studies of production and interaction of particles in the charmonium mass range using antiproton beams in the momentum range of 1.5 - 15 GeV/c at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt. PANDA consists of two spectrometers: a Target Spectrometer with a superconducting solenoid and a Forward Spectrometer using a large dipole magnet and covering the most forward angles (Θ < 10 °). In both spectrometers, the particle's trajectories in the magnetic field are measured using self-supporting straw tube detectors. The expected high count rates, reaching up to 1 MHz/straw, are one of the main challenges for the detectors and associated readout electronics. The paper presents the readout chain of the tracking system and the results of tests performed with realistic prototype setups. The readout chain consists of a newly developed ASIC chip (PASTTREC < PANDASTTReadoutChip >) with amplification, signal shaping, tail cancellation, discriminator stages and Time Readout Boards as digitizer boards.

  3. High-resolution microchannel plate image tube results

    NASA Astrophysics Data System (ADS)

    Johnson, C. Bruce; Patton, Stanley B.; Bender, E.

    1992-07-01

    The present 18-mm active diameter proximity-focused microchannel plate (MCP) image tube design has been modified to produce significantly higher limiting spatial resolution. A glass input window of the `bulls-eye' design with the blackened glass border, reduced cathode-to-MCP spacing, reduced channel center-to-center distance, reduced MCP-to-phosphor screen spacing, a brushed P20 phosphor screen, and a fiber optic output window were used to achieve a limiting resolution in excess of 50 lp/mm. Test results, showing limiting resolution versus applied potentials, are correlated with a simple physical model of performance. The low-light-level white-light sine-wave modulation transfer function, T(f), has been measured to be T(f) equals exp[-(f/21.5)1.46], where f is the spatial frequency in cycles per millimeter.

  4. Development and performance of resistive seamless straw-tube gas chambers

    NASA Astrophysics Data System (ADS)

    Takubo, Y.; Aoki, M.; Ishihara, A.; Ishii, J.; Kuno, Y.; Maeda, F.; Nakahara, K.; Nosaka, N.; Sakamoto, H.; Sato, A.; Terai, K.; Igarashi, Y.; Yokoi, T.

    2005-10-01

    A new straw-tube gas chamber which is made of seamless straw-tubes, instead of ordinary wound-type straw-tubes is developed. Seamless straw-tubes have various advantages over ordinary wound-type ones, in particular, in terms of mechanical strength and lesser wall thickness. Our seamless straw-tubes are fabricated to be resistive so that the hit positions along the straw axis can be read by cathode planes placed outside the straw-tube chambers, where the cathode strips run transverse to the straw axis. A beam test was carried out at KEK to study their performance. As a result of the beam test, the position resolution of the cathode strips of 220 μm is achieved, and an anode position resolution of 112 μm is also obtained.

  5. A Large Tracking Detector In Vacuum Consisting Of Self-Supporting Straw Tubes

    NASA Astrophysics Data System (ADS)

    Wintz, P.

    2004-02-01

    A novel technique to stretch the anode wire simply by the gas over-pressure inside straw drift tubes reduces the necessary straw weight to an absolute minimum. Our detector will consist of more than 3000 straws filling up a cylindrical tracking volume of 1m diameter and 30cm length. The projected spatial resolution is 200μm. The detector with a total mass of less than 15kg will be operated in vacuum, but will have an added wall thickness of 3mm mylar, only. The detector design, production experience and first results will be discussed.

  6. Modeling small diameter straw tubes in terms of their high frequency electrical characteristics

    SciTech Connect

    Ekenberg, T.; Newcomer, M. )

    1990-04-01

    As a part of the effort to design a prototype of a low mass tracking detector, the authors have developed an empirical model of the high frequency behavior of small diameter proportional straw tubes. The equivalent circuit is a distributed network of RLC-clusters, where the value of the discrete components is directly related to measurable characteristics of the em straws. The model is an approximation of the straw as a low loss transmission line, and yields very good agreement with measurements of transmission and reflection coefficients. Measurements and simulations of input impedance in frequency domain also agree well at frequencies below 120 MHz, when termination is close to Z{sub o}, the characteristic impedance.

  7. Overcoming x-ray tube small focal spot output limitations for high resolution region of interest imaging

    NASA Astrophysics Data System (ADS)

    Gupta, Sandesh K.; Jain, Amit; Bednarek, Daniel R.; Rudin, Stephen

    2012-03-01

    We investigate methods to increase x-ray tube output to enable improved quantum image quality with a higher generalized-NEQ (GNEQ) while maintaining a small focal-spot size for the new high-resolution Micro-angiographic Fluoroscope (MAF) Region of Interest (ROI) imaging system. Rather than using a larger focal spot to increase tubeloading capacity with degraded resolution, we evaluated separately or in combination three methods to increase tube output: 1) reducing the anode angle and lengthening the filament to maintain a constant effective small focal-spot size, 2) using the standard medium focal spot viewed from a direction on the anode side of the field and 3) increasing the frame rate (frames/second) in combination with temporal filter. The GNEQ was compared for the MAF for the small focal-spot at the central axis, and for the medium focal-spot with a higher output on the anode side as well as for the small focal spot with different temporal recursive filtering weights. A net output increase of about 4.0 times could be achieved with a 2-degree anode angle (without the added filtration) and a 4 times longer filament compared to that of the standard 8-degree target. The GNEQ was also increased for the medium focal-spot due to its higher output capacity and for the temporally filtered higher frame rate. Thus higher tube output, while maintaining a small effective focal-spot, should be achievable using one or more of the three methods described with only small modifications of standard x-ray tube geometry.

  8. High-resolution comparison of primary- and secondary-side intergranular degradation in alloy 600 steam generator tubing

    SciTech Connect

    Bruemmer, Stephen M.; Guertsman, Valery Y.; Thomas, Larry E.

    2000-01-01

    Abstract Intergranular (IG) attack and stress-corrosion cracks in alloy 600 tubing removed from the PWR steam generator #1 at Ringhals 2 have been characterized by analytical transmission electron microscopy (ATEM). Comparisons are made between environmentally induced cracks initiated on the primary-water ID surface versus those initiated on the secondary-water OD surface. General SCC crack morphologies were quite similar with branched IG cracking extending to approximately 50% through wall. Corrosion products in the open cracks were quite different with hydrated nickel phosphate seen filling the secondary-side crack, while the crack wall oxide in the primary-side crack was a Cr and Fe-rich spinel. Both samples revealed narrow (~10-nm wide), deeply penetrated, oxidized zones along most grain boundaries that intersect the open cracks. The local structures and chemistries in these corrosion-affected zones were examined by high-resolution TEM imaging, electron diffraction and fine-probe compositional analysis. These porous IG penetrations were nearly identical in appearance for both the primary- and secondary-side examples and contained Cr-rich oxides (Cr2O3 on the primary side and spinel plus Cr2O3 on the secondary side). Similarities between corrosion-induced structures for primary- and secondary-side cracking may indicate that the same degradation mechanism is operating in both cases. However, controlled experiments are needed where specific mechanisms can be properly distinguished.

  9. Real-time, high-resolution quantitative measurement of multiple soil gas emissions: selected ion flow tube mass spectrometry.

    PubMed

    Milligan, D B; Wilson, P F; Mautner, M N; Freeman, C G; McEwan, M J; Clough, T J; Sherlock, R R

    2002-01-01

    A new technique is presented for the rapid, high-resolution identification and quantification of multiple trace gases above soils, at concentrations down to 0.01 microL L(-1) (10 ppb). The technique, selected ion flow tube mass spectrometry (SIFT-MS), utilizes chemical ionization reagent ions that react with trace gases but not with the major air components (N2, O2, Ar, CO2). This allows the real-time measurement of multiple trace gases without the need for preconcentration, trapping, or chromatographic separation. The technique is demonstrated by monitoring the emission of ammonia and nitric oxide, and the search for volatile organics, above containerized soil samples treated with synthetic cattle urine. In this model system, NH3 emissions peaked after 24 h at 2000 nmol m(-2) s(-1) and integrated to approximately 7% of the urea N applied, while NO emissions peaked about 25 d after urine addition at approximately 140 nmol m(-2) s(-1) and integrated to approximately 10% of the applied urea N. The monitoring of organics along with NH3 and NO was demonstrated in soils treated with synthetic urine, pyridine, and dimethylamine. No emission of volatile nitrogen organics from the urine treatments was observed at levels >0.01% of the applied nitrogen. The SIFT method allows the simultaneous in situ measurement of multiple gas components with a high spatial resolution of < 10 cm and time resolution <20 s. These capabilities allow, for example, identification of emission hotspots, and measurement of localized and rapid variations above agricultural and contaminated soils, as well as integrated emissions over longer periods. PMID:11931442

  10. Development of a dedicated front-end electronics for straw tube trackers in the bar PANDA experiment

    NASA Astrophysics Data System (ADS)

    Przyborowski, D.; Fiutowski, T.; Idzik, M.; Kajetanowicz, M.; Korcyl, G.; Salabura, P.; Smyrski, J.; Strzempek, P.; Swientek, K.; Terlecki, P.; Tokarz, J.

    2016-08-01

    The design and tests of front-end electronics for straw tube trackers in the bar PANDA experiment at FAIR are presented. The challenges for the front-end electronics, comprising operation at high counting rate up to 1 MHz per straw tube, are discussed and the proposed architecture comprising a switched gain charge sensitive preamplifier (CSP), a pole-zero cancellation circuit (PZC), a second order variable peaking time shaper, a trimming ion tail cancellation circuit, and a baseline holder (BLH), is described. The front-end provides an analogue output and a discriminator with LVDS differential driver for the Time-of-Arrival (ToA) and Time-over-Threshold (ToT) measurements. A prototype readout ASIC featuring four channels was fabricated in 0.35 μm CMOS technology consuming 15.5 mW (analog part) and 12 mW (LVDS) per channel. The results of measurements of peaking time (25–67 ns), gain, noise (ENC 800–2500 el. for various gains), time walk and jitter are presented as well as the first results obtained with prototype straw tubes connected.

  11. Structure of a high-resolution crystal form of human triosephosphate isomerase: improvement of crystals using the gel-tube method

    SciTech Connect

    Kinoshita, Takayoshi Maruki, Riyo; Warizaya, Masaichi; Nakajima, Hidenori; Nishimura, Shintaro

    2005-04-01

    A high-resolution structure of human triosephosphate isomerase was obtained from crystals improved by means of the gel-tube method. Crystals of human triosephosphate isomerase with two crystal morphologies were obtained using the normal vapour-diffusion technique with identical crystallization conditions. One had a disordered plate shape and the crystals were hollow (crystal form 1). As a result, this form was very fragile, diffracted to 2.8 Å resolution and had similar crystallographic parameters to those of the structure 1hti in the Protein Data Bank. The other had a fine needle shape (crystal form 2) and was formed more abundantly than crystal form 1, but was unsuitable for structure analysis. Since the normal vapour-diffusion method could not control the crystal morphology, gel-tube methods, both on earth and under microgravity, were applied for crystallization in order to control and improve the crystal quality. Whereas crystal form 1 was only slightly improved using this method, crystal form 2 was greatly improved and diffracted to 2.2 Å resolution. Crystal form 2 contained a homodimer in the asymmetric unit, which was biologically essential. Its overall structure was similar to that of 1hti except for the flexible loop, which was located at the active centre Lys13.

  12. Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer.

    PubMed

    May, Jody C; Goodwin, Cody R; Lareau, Nichole M; Leaptrot, Katrina L; Morris, Caleb B; Kurulugama, Ruwan T; Mordehai, Alex; Klein, Christian; Barry, William; Darland, Ed; Overney, Gregor; Imatani, Kenneth; Stafford, George C; Fjeldsted, John C; McLean, John A

    2014-02-18

    Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid "omni-omic" characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field. PMID:24446877

  13. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer

    PubMed Central

    2014-01-01

    Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid “omni-omic” characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field. PMID:24446877

  14. Performance characterization of high quantum efficiency metal package photomultiplier tubes for time-of-flight and high-resolution PET applications

    SciTech Connect

    Ko, Guen Bae; Lee, Jae Sung

    2015-01-15

    Purpose: Metal package photomultiplier tubes (PMTs) with a metal channel dynode structure have several advanced features for devising such time-of-flight (TOF) and high spatial resolution positron emission tomography (PET) detectors, thanks to their high packing density, large effective area ratio, fast time response, and position encoding capability. Here, we report on an investigation of new metal package PMTs with high quantum efficiency (QE) for high-resolution PET and TOF PET detector modules. Methods: The latest metal package PMT, the Hamamatsu R11265 series, is served with two kinds of photocathodes that have higher quantum efficiency than normal bialkali (typical QE ≈ 25%), super bialkali (SBA; QE ≈ 35%), and ultra bialkali (UBA; QE ≈ 43%). In this study, the authors evaluated the performance of the new PMTs with SBA and UBA photocathodes as a PET detector by coupling various crystal arrays. They also investigated the performance improvements of high QE, focusing in particular on a block detector coupled with a lutetium-based scintillator. A single 4 × 4 × 10 mm{sup 3} LYSO, a 7 × 7 array of 3 × 3 × 20 mm{sup 3} LGSO, a 9 × 9 array of 1.2 × 1.2 × 10 mm{sup 3} LYSO, and a 6 × 6 array of 1.5 × 1.5 × 7 mm{sup 3} LuYAP were used for evaluation. All coincidence data were acquired with a DRS4 based fast digitizer. Results: This new PMT shows promising crystal positioning accuracy, energy and time discrimination performance for TOF, and high-resolution PET applications. The authors also found that a metal channel PMT with SBA was enough for both TOF and high-resolution application, although UBA gave a minor improvement to time resolution. However, significant performance improvement was observed in relative low light output crystals (LuYAP) coupled with UBA. Conclusions: The results of this study will be of value as a useful reference to select PMTs for high-performance PET detectors.

  15. Very high resolution long-baseline water-tube tiltmeter to record small signals from Earth free oscillations up to secular tilts

    NASA Astrophysics Data System (ADS)

    d'Oreye, Nicolas F.; Zürn, Walter

    2005-02-01

    A 43m long floatless water-tube tiltmeter has been in operation since 1997 at the Walferdange Underground Laboratory for Geodynamics in the Grand Duchy of Luxembourg. The absence of moving parts makes this instrument particularly simple but does not prevent it from measuring some very small geophysical signals such as the Earth tides with a very favorable signal-to-noise ratio or the successive passages of Love waves circling the globe after major Earthquakes. Its very low noise level and its high resolution up to the long-period seismic band (where for instance the resolution is better than 5×10-12rad) also allows the successful recording of rarely observed grave toroidal and spheroidal free oscillations of the Earth excited by major earthquakes. In the environmental conditions of its installation (in a gypsum mine at 100m depth), the instrument shows a high degree of reliability and a very low drift rate (<0.005microrad/month). The analytical tilt and horizontal displacement transfer functions computed for this instrument and its sensors can be used to calculate the best geometrical characteristics for the construction of prototypes which should respond to specific requirements for applications in geophysics or geotechnics.

  16. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    SciTech Connect

    Mertens, J.C.E. Williams, J.J. Chawla, Nikhilesh

    2014-06-01

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: • Custom built X-ray tomography system for microstructural characterization • Detector design for maximizing polychromatic X-ray detection efficiency • X-ray design offered for maximizing X-ray flux with respect to imaging resolution • Novel lab

  17. High-resolution echocardiography

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1979-01-01

    High resolution computer aided ultrasound system provides two-and three-dimensional images of beating heart from many angles. System provides means for determining whether small blood vessels around the heart are blocked or if heart wall is moving normally without interference of dead and noncontracting muscle tissue.

  18. High-resolution headlamp

    NASA Astrophysics Data System (ADS)

    Gut, Carsten; Cristea, Iulia; Neumann, Cornelius

    2016-04-01

    The following article shall describe how human vision by night can be influenced. At first, front lighting systems that are already available on the market will be described, followed by their analysis with respect to the positive effects on traffic safety. Furthermore, how traffic safety by night can be increased since the introduction of high resolution headlamps shall be discussed.

  19. High resolution data acquisition

    DOEpatents

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  20. High resolution data acquisition

    DOEpatents

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  1. Ultra high resolution tomography

    SciTech Connect

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  2. High-Resolution Autoradiography

    NASA Technical Reports Server (NTRS)

    Towe, George C; Gomberg, Henry J; Freemen, J W

    1955-01-01

    This investigation was made to adapt wet-process autoradiography to metallurgical samples to obtain high resolution of segregated radioactive elements in microstructures. Results are confined to development of the technique, which was perfected to a resolution of less than 10 microns. The radioactive samples included carbon-14 carburized iron and steel, nickel-63 electroplated samples, a powder product containing nickel-63, and tungsten-185 in N-155 alloy.

  3. High resolution infrared measurements

    NASA Technical Reports Server (NTRS)

    Kessler, B.; Cawley, Robert

    1990-01-01

    Sample ground based cloud radiance data from a high resolution infrared sensor are shown and the sensor characteristics are presented in detail. The purpose of the Infrared Analysis Measurement and Modeling Program (IRAMMP) is to establish a deterministic radiometric data base of cloud, sea, and littoral terrain clutter to be used to advance the design and development of Infrared Search and Track (IRST) systems as well as other infrared devices. The sensor is a dual band radiometric sensor and its description, together with that of the Data Acquisition System (DAS), are given. A schematic diagram of the sensor optics is shown.

  4. High resolution Doppler lidar

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Hays, Paul B.; Barnes, John E.

    1989-01-01

    A high resolution lidar system was implemented to measure winds in the lower atmosphere. The wind speed along the line of sight was determined by measuring the Doppler shift of the aerosol backscattered laser signal. The system in its present configuration is stable, and behaves as indicated by theoretical simulations. This system was built to demonstrate the capabilities of the detector system as a prototype for a spaceborne lidar. The detector system investigated consisted of a plane Fabry-Perot etalon, and a 12-ring anode detector. This system is generically similar to the Fabry-Perot interferometer developed for passive wind measurements on board the Dynamics Explorer satellite. That this detector system performs well in a lidar configuration was demonstrated.

  5. Very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Aronson, A. I.

    1974-01-01

    A primary sensor used in environmental and earth-resource observation, the Very High Resolution Radiometer (VHRR) was designed for use on the ITOS D series spacecraft. The VHRR provides a 0.47 mile resolution made possible with a mercury-cadmium-telluride detector cooled to approximately 105 K by a passive radiator cooler. The components of this system are described. The optical subsystem of the VHRR consists of a scanning mirror, a Dall-Kirkham telescope, a dichroic beam splitter, relay lenses, spectral filters, and an IR detector. Signal electronics amplify and condition the signals from the infrared and visible light detector. Sync generator electronics provides the necessary time signals. Scan-drive electronics is used for commutation of the motor winding, velocity, and phase control. A table lists the performance parameters of the VHRR.

  6. High resolution ultrasonic densitometer

    SciTech Connect

    Dress, W.B.

    1983-01-01

    The velocity of torsional stress pulses in an ultrasonic waveguide of non-circular cross section is affected by the temperature and density of the surrounding medium. Measurement of the transit times of acoustic echoes from the ends of a sensor section are interpreted as level, density, and temperature of the fluid environment surrounding that section. This paper examines methods of making these measurements to obtain high resolution, temperature-corrected absolute and relative density and level determinations of the fluid. Possible applications include on-line process monitoring, a hand-held density probe for battery charge state indication, and precise inventory control for such diverse fluids as uranium salt solutions in accountability storage and gasoline in service station storage tanks.

  7. High Resolution Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brünken, S.; Schlemmer, S.

    2016-05-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limitations of conventional absorption spectroscopy. Throughout this review examples demonstrating the strong interplay between laboratory and observational studies will be given.

  8. High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.

    1999-01-01

    This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.

  9. A compact, light weight, high resolution electron monochromator

    NASA Astrophysics Data System (ADS)

    Goembel, L.; Doering, J. P.

    1995-06-01

    A high resolution electron monochromator that incorporates Vespel polyimide plastic in its construction is described. A great saving in bulk can be realized by mounting the electron optical elements in Vespel tubes rather than mounting them by traditional means.

  10. High Resolution Formaldehyde Photochemistry

    NASA Astrophysics Data System (ADS)

    Ernest, C. T.; Bauer, D.; Hynes, A. J.

    2010-12-01

    Formaldehyde (HCHO) is the most abundant and most important organic carbonyl compound in the atmosphere. The sources of formaldehyde are the oxidation of methane, isoprene, acetone, and other volatile organic compounds (VOCs); fossil fuel combustion; and biomass burning. The dominant loss mechanism for formaldehyde is photolysis which occurs via two pathways: (R1) HCHO + hv → HCO + H (R2) HCHO + hv → H2 + CO The first pathway (R1) is referred to as the radical channel, while the second pathway (R2) is referred to as the molecular channel. The products of both pathways play a significant role in atmospheric chemistry. The CO that is produced in the molecular channel undergoes further oxidation to produce CO2. Under atmospheric conditions, the H atom and formyl radical that are produced in the radical channel undergo rapid reactions with O2 to produce the hydroperoxyl radical (HO2) via (R3) and (R4). (R3) HCO + O2 → HO2 + CO (R4) H + O2 → HO2 Thus, for every photon absorbed, the photolysis of formaldehyde can contribute one CO2 molecule to the global greenhouse budget or two HO2 radicals to the tropospheric HOx (OH + HO2) cycle. The HO2 radicals produced during formaldehyde photolysis have also been implicated in the formation of photochemical smog. The HO2 radicals act as radical chain carriers and convert NO to NO2, which ultimately results in the catalytic production of O3. Constraining the yield of HO2 produced via HCHO photolysis is essential for improving tropospheric chemistry models. In this study, both the absorption cross section and the quantum yield of the radical channel (R1) were measured at high resolution over the tropospherically relevant wavelength range 304-330 nm. For the cross section measurements a narrow linewidth Nd:YAG pumped dye laser was used with a multi-pass cell. Partial pressures of HCHO were kept below 0.3 torr. Simultaneous measurement of OH LIF in a flame allowed absolute calibration of the wavelength scale. Pressure

  11. High resolution time interval meter

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  12. ELECTRONICS UPGRADE OF HIGH RESOLUTION MASS SPECTROMETERS

    SciTech Connect

    Mcintosh, J; Joe Cordaro, J

    2008-03-10

    High resolution mass spectrometers are specialized systems that allow researchers to determine the exact mass of samples to four significant digits by using magnetic and electronic sector mass analyzers. Many of the systems in use today at research laboratories and universities were designed and built more than two decades ago. The manufacturers of these systems have abandoned the support for some of the mass spectrometers and parts to power and control them have become scarce or obsolete. The Savannah River National Laboratory has been involved in the upgrade of the electronics and software for these legacy machines. The Electronics Upgrade of High Resolution Mass Spectrometers consists of assembling high-end commercial instrumentation from reputable manufacturers with a minimal amount of customization to replace the electronics for the older systems. By taking advantage of advances in instrumentation, precise magnet control can be achieved using high resolution current sources and continuous feedback from a high resolution hall-effect probe. The custom equipment include a precision voltage divider/summing amplifier chassis, high voltage power supply chassis and a chassis for controlling the voltage emission for the mass spectrometer source tube. The upgrade package is versatile enough to interface with valve control, vacuum and other instrumentation. Instrument communication is via a combination of Ethernet and traditional IEEE-488 GPIB protocols. The system software upgrades include precision control, feedback and spectral waveform analysis tools.

  13. Advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The advanced very high resolution radiometer development program is considered. The program covered the design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical structural model, and a life test model. Special bench test and calibration equipment was also developed for use on the program.

  14. High resolution digital delay timer

    DOEpatents

    Martin, Albert D.

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  15. Note: Design and construction of a multi-scale, high-resolution, tube-generated X-Ray computed-tomography system for three-dimensional (3D) imaging

    SciTech Connect

    Mertens, J. C. E.; Williams, J. J.; Chawla, Nikhilesh

    2014-01-15

    The design and construction of a high resolution modular x-ray computed tomography (XCT) system is described. The approach for meeting a specified set of performance goals tailored toward experimental versatility is highlighted. The instrument is unique in its detector and x-ray source configuration, both of which enable elevated optimization of spatial and temporal resolution. The process for component selection is provided. The selected components are specified, the custom component design discussed, and the integration of both into a fully functional XCT instrument is outlined. The novelty of this design is a new lab-scale detector and imaging optimization through x-ray source and detector modularity.

  16. High Resolution Scanning Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Miranda, Felix A. (Inventor)

    2000-01-01

    The present invention provides a High Resolution Scanning Reflectarray Antenna (HRSRA) for the purpose of tracking ground terminals and space craft communication applications. The present invention provides an alternative to using gimbaled parabolic dish antennas and direct radiating phased arrays. When compared to a gimbaled parabolic dish, the HRSRA offers the advantages of vibration free steering without incurring appreciable cost or prime power penalties. In addition, it offers full beam steering at a fraction of the cost of direct radiating arrays and is more efficient.

  17. High-Resolution Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff; Goetz, Alexander F. H.

    1990-01-01

    Earth resources observed in greater detail. High-Resolution Imaging Spectrometer, undergoing development for use in NASA's Earth Observing System, measures reflectance of Earth's surface in visible and near-infrared wavelengths. From an orbit around Earth, instrument scans surface of Earth in 200 wavelength bands simultaneously. Produces images enabling identification of minerals in rocks and soils, important algal pigments in oceans and inland waters, changes in spectra associated with biochemistry of plant canopies, compositions of atmospheric aerosols, sizes of grains in snow, and contamination of snow by impurities that absorb visible light.

  18. The High Resolution Hurricane Test

    NASA Astrophysics Data System (ADS)

    Tripoli, G. J.

    2009-09-01

    It has been suggested that an answer to the hurricane intensity forecast problem is to use very high cloud-resolving resolution in operational forecast models. In consideration of this hypothesis, the United States National Atmospheric and Oceanic Administration commissioned a major study to take place over the past 1.5 years whereby the hypothesis would be tested with 6 different hurricane models featuring different dynamics cores and different physics. These models included the GFDL hurricane, Navy COAMPS, the WRF-ARW, WRF-AHW, WRF-NMM, and the UW-NMS. The experiment design was to choose and optimal mix of historic hurricanes where good observations of intensity at land fall existed and run 5 day model forecasts with 3 different resolutions of about 9-12 km (low resolution), 3-4 km (medium resolution) and 1-1.5 km (high resolution) and document how much the forecast improved in each case. The project focused on 10 storms over 2-12, 1-5 day forecast periods, for a total of 67 simulations. Not all groups completed all 67 simulations, but there were sufficient results to reach a stunning conclusion. The results of these tests suggested that little or no improvement in intensity prediction was achieved with high resolution.

  19. Enhanced High Resolution RBS System

    SciTech Connect

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 A ring TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron registered accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  20. Enhanced High Resolution RBS System

    NASA Astrophysics Data System (ADS)

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 Å TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron® accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  1. High Resolution Thermometry for EXACT

    NASA Technical Reports Server (NTRS)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  2. High Resolution Neutral Atom Microscope

    NASA Astrophysics Data System (ADS)

    Bucay, Igal; Castillo-Garza, Rodrigo; Stratis, Georgios; Raizen, Mark

    2015-03-01

    We are developing a high resolution neutral atom microscope based on metastable atom electron spectroscopy (MAES). When a metastable atom of a noble gas is near a solid, a surface electron will tunnel to an empty energy level of the metastable atom, thereby ejecting the excited electron from the atom. The emitted electrons carry information regarding the local topography and electronic, magnetic, and chemical structures of most hard materials. Furthermore, using a chromatic aberration corrected magnetic hexapole lens we expect to attain a spatial resolution below 10 nm. We will use this microscope to investigate how local phenomena can give rise to macroscopic effects in materials that cannot be probed using a scanning tunneling microscope, namely insulating transition metal oxides.

  3. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  4. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  5. HRSC: High resolution stereo camera

    USGS Publications Warehouse

    Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W., III; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.

    2009-01-01

    The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.

  6. High resolution tomographic instrument development

    NASA Astrophysics Data System (ADS)

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefitted greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  7. Mutation Scanning and Genotyping in Plants by High Resolution DNA Melting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-resolution melting analysis after PCR allows closed-tube mutation scanning and genotyping without processing, labeled probes, real-time monitoring or allele-specific amplification. PCR is performed in the presence of the saturating dye, LCGreen® Plus, with subsequent high-resolution melting ana...

  8. High resolution time interval counter

    DOEpatents

    Condreva, Kenneth J.

    1994-01-01

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured.

  9. High resolution time interval counter

    DOEpatents

    Condreva, K.J.

    1994-07-26

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured. 3 figs.

  10. High resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Loudin, Jim; Dinyari, Rostam; Huie, Phil; Butterwick, Alex; Peumans, Peter; Palanker, Daniel

    2009-02-01

    Electronic retinal prostheses seek to restore sight in patients with retinal degeneration by delivering pulsed electric currents to retinal neurons via an array of microelectrodes. Most implants use inductive or optical transmission of information and power to an intraocular receiver, with decoded signals subsequently distributed to retinal electrodes through an intraocular cable. Surgical complexity could be minimized by an "integrated" prosthesis, in which both power and data are delivered directly to the stimulating array without any discrete components or cables. We present here an integrated retinal prosthesis system based on a photodiode array implant. Video frames are processed and imaged onto the retinal implant by a video goggle projection system operating at near-infrared wavelengths (~ 900 nm). Photodiodes convert light into pulsed electric current, with charge injection maximized by specially optimized series photodiode circuits. Prostheses of three different pixel densities (16 pix/mm2, 64 pix/mm2, and 256 pix/mm2) have been designed, simulated, and prototyped. Retinal tissue response to subretinal implants made of various materials has been investigated in RCS rats. The resulting prosthesis can provide sufficient charge injection for high resolution retinal stimulation without the need for implantation of any bulky discrete elements such as coils or tethers. In addition, since every pixel functions independently, pixel arrays may be placed separately in the subretinal space, providing visual stimulation to a larger field of view.

  11. High resolution auditory perception system

    NASA Astrophysics Data System (ADS)

    Alam, Iftekhar; Ghatol, Ashok

    2005-04-01

    Blindness is a sensory disability which is difficult to treat but can to some extent be helped by artificial aids. The paper describes the design aspects of a high resolution auditory perception system, which is designed on the principle of air sonar with binaural perception. This system is a vision substitution aid for enabling blind persons. The blind person wears ultrasonic eyeglasses which has ultrasonic sensor array embedded on it. The system has been designed to operate in multiresolution modes. The ultrasonic sound from the transmitter array is reflected back by the objects, falling in the beam of the array and is received. The received signal is converted to a sound signal, which is presented stereophonically for auditory perception. A detailed study has been done as the background work required for the system implementation; the appropriate range analysis procedure, analysis of space-time signals, the acoustic sensors study, amplification methods and study of the removal of noise using filters. Finally the system implementation including both the hardware and the software part of it has been described. Experimental results on actual blind subjects and inferences obtained during the study have also been included.

  12. High-Resolution Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  13. High Resolution Ozone Mapper (HROM)

    NASA Technical Reports Server (NTRS)

    Kohr, J. R.; Decker, J.; Wegant, R.

    1976-01-01

    Using the backscatter ultraviolet instrument (BUV) aboard NIMBUS 4 as a baseline, point scanner mechanisms and spatial multiplex scanning systems were compared on the basis of sensitivity, field of view and simplicity. This comparison included both spectral and spatial scanning and multiplexing techniques. The selected system which optimally met the performance requirements for a shuttle based instrument was a pushbroom spatial scanner using a 15 element photomultiplier tube array and a Hadamard multiplex spectral scan. The selected system was conceptually designed. This design includes ray traces of the monochromator, mechanical layouts and the electronic block diagram.

  14. High-resolution slug testing.

    PubMed

    Zemansky, G M; McElwee, C D

    2005-01-01

    The hydraulic conductivity (K) variation has important ramifications for ground water flow and the transport of contaminants in ground water. The delineation of the nature of that variation can be critical to complete characterization of a site and the planning of effective and efficient remedial measures. Site-specific features (such as high-conductivity zones) need to be quantified. Our alluvial field site in the Kansas River valley exhibits spatial variability, very high conductivities, and nonlinear behavior for slug tests in the sand and gravel aquifer. High-resolution, multilevel slug tests have been performed in a number of wells that are fully screened. A general nonlinear model based on the Navier-Stokes equation, nonlinear frictional loss, non-Darcian flow, acceleration effects, radius changes in the wellbore, and a Hvorslev model for the aquifer has been used to analyze the data, employing an automated processing system that runs within the Excel spreadsheet program. It is concluded that slug tests can provide the necessary data to identify the nature of both horizontal and vertical K variation in an aquifer and that improved delineation or higher resolution of K structure is possible with shorter test intervals. The gradation into zones of higher conductivity is sharper than seen previously, and the maximum conductivity observed is greater than previously measured. However, data from this project indicate that well development, the presence of fines, and the antecedent history of the well are important interrelated factors in regard to slug-test response and can prevent obtaining consistent results in some cases. PMID:15819943

  15. Global high resolution climate reconstructions

    NASA Astrophysics Data System (ADS)

    Schubert-Frisius, Martina; Feser, Frauke; Zahn, Matthias; von Storch, Hans; Rast, Sebastian

    2014-05-01

    Long-term reanalysis products represent an important data source for numerous climate studies. However, their coarse spatial resolution for data sets spanning the last more than 50 years and well known inhomogeneities in space and time make it difficult to derive changes in meteorological variables over time. We therefore use spectral nudging technique to down-scale the global reanalysis data to a finer resolution with a general global circulation model. With this technique the new calculated higher resolved global model fields are attracted to the large-scale state of the coarse resolution reanalysis. Besides the conservation of large-scale atmospheric information and the resulting finer topography, a surplus in contents of information in meteorological phenomena of small spatial extensions is expected. Following this strategy a simulation with the global high-resolution atmospheric model ECHAM6 (T255L95), developed by MPI-M Hamburg, will be started by spectrally nudging NCEP1 reanalysis for the time period from 1948 until 2013. Selected wavelengths of more than 1000 km of vorticity, divergence, temperature and the logarithm of the surface pressure will be imposed onto the simulated GCM counterparts at levels above 750 hPa. SST and sea ice distribution are taken from the NCEP1 data set. These simulations enable the investigation of long-term changes in meteorological phenomena; the focus is put here on intense storms. Various horizontal wavelength selections and associated vertical profiles in the strength of nudging were tested. The temporarily best configuration resulted in large time correlations for 2m-temperature and 10m wind speed at several selected locations in Germany in comparison to observations. Correlations were highest for extra-tropical regions, while over the western part of the Pacific and Indian Ocean relative low time correlations were found. In a continuing study meteorological quantities at different levels and the influences of the nudging

  16. Practising high-resolution anoscopy.

    PubMed

    Palefsky, Joel M

    2012-12-01

    The incidence of anal cancer is increasing in the general population among both men and women. The incidence is particularly high among men who have sex with men and HIV-infected men and women. Anal cancer is similar to cervical cancer and is associated with human papillomavirus (HPV). Anal cancer is potentially preventable through primary prevention with HPV vaccination or secondary prevention. Secondary prevention is modelled after cervical cancer, where cytology is used as a screening tool to identify women who need colposcopy. Colposcopy includes magnification of the cervix, which, along with acetic acid and Lugol's solution, is used to visualise and biopsy potentially precancerous lesions, enabling treatment before progression to cervical cancer. Anal cancer is likely preceded by high-grade anal intraepithelial neoplasia (HGAIN), and a colposcope with acetic acid and Lugol's solution may similarly be used to visualise HGAIN to permit biopsy and treatment in an effort to prevent anal cancer. To distinguish it from cervical colposcopy, this technique is called high-resolution anoscopy (HRA). Many of the features that distinguish low-grade AIN from HGAIN are similar to those of the cervix, but HRA poses several additional challenges compared with cervical colposcopy. These include uneven topography; obscuring of lesions due to haemorrhoids, folds, stool or mucus; or lesions being located at the base of folds and anal glands. Consequently, a long learning curve is typically required before becoming fully competent in this technique. The technique of HRA, its uses and challenges in prevention of anal cancer are described in this article. PMID:23380236

  17. High Resolution Melting Applications for Clinical Laboratory Medicine

    PubMed Central

    Erali, Maria; Voelkerding, Karl V.; Wittwer, Carl T.

    2008-01-01

    Separation of the two strands of DNA with heat (melting) is a fundamental property of DNA that is conveniently monitored with fluorescence. Conventional melting is performed after PCR on any real-time instrument to monitor product purity (dsDNA dyes) and sequence (hybridization probes). Recent advances include high-resolution instruments and saturating DNA dyes that distinguish many different species. For example, mutation scanning (identifying heterozygotes) by melting is closed-tube and has similar or superior sensitivity and specificity compared to methods that require physical separation. With high resolution melting, SNPs can be genotyped without probes and more complex regions can be typed with unlabeled hybridization probes. Highly polymorphic HLA loci can be melted to establish sequence identity for transplantation matching. Simultaneous genotyping with one or more unlabeled probes and mutation scanning of the entire amplicon can be performed at the same time in the same tube, vastly decreasing or eliminating the need for re-sequencing in genetic analysis. High-resolution PCR product melting is homogeneous, closed-tube, rapid (1–5 min), non-destructive and does not require covalently-labeled fluorescent probes. In the clinical laboratory, it is an ideal format for in-house testing, with minimal cost and time requirements for new assay development. PMID:18502416

  18. High-Resolution Intravital Microscopy

    PubMed Central

    Andresen, Volker; Pollok, Karolin; Rinnenthal, Jan-Leo; Oehme, Laura; Günther, Robert; Spiecker, Heinrich; Radbruch, Helena; Gerhard, Jenny; Sporbert, Anje; Cseresnyes, Zoltan; Hauser, Anja E.; Niesner, Raluca

    2012-01-01

    Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy - the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning) while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs) of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and developmental biology

  19. High Resolution PDF Measurements on Ag Nanoparticles

    SciTech Connect

    Rocha, Tulio C. R.; Martin, Chris; Kycia, Stefan; Zanchet, Daniela

    2009-01-29

    The quantitative analysis of structural defects in Ag nanoparticles was addressed in this work. We performed atomic scale structural characterization by a combination of x-ray diffraction (XRD) using the Pair Distribution Function analysis (PDF) and High Resolution Transmission Electron Microscopy (HRTEM). The XRD measurements were performed using an innovative instrumentation setup to provide high resolution PDF patterns.

  20. High resolution scintillation detector with semiconductor readout

    DOEpatents

    Levin, Craig S.; Hoffman, Edward J.

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  1. Temperature-dependent high resolution absorption cross sections of propane

    NASA Astrophysics Data System (ADS)

    Beale, Christopher A.; Hargreaves, Robert J.; Bernath, Peter F.

    2016-10-01

    High resolution (0.005 cm-1) absorption cross sections have been measured for pure propane (C3H8). These cross sections cover the 2550-3500 cm-1 region at five temperatures (from 296 to 700 K) and were measured using a Fourier transform spectrometer and a quartz cell heated by a tube furnace. Calibrations were made by comparison to the integrated cross sections of propane from the Pacific Northwest National Laboratory. These are the first high resolution absorption cross sections of propane for the 3 μm region at elevated temperatures. The cross sections provided may be used to monitor propane in combustion environments and in astronomical sources such as the auroral regions of Jupiter, brown dwarfs and exoplanets.

  2. NOAA's Use of High-Resolution Imagery

    NASA Technical Reports Server (NTRS)

    Hund, Erik

    2007-01-01

    NOAA's use of high-resolution imagery consists of: a) Shoreline mapping and nautical chart revision; b) Coastal land cover mapping; c) Benthic habitat mapping; d) Disaster response; and e) Imagery collection and support for coastal programs.

  3. High-Resolution Plots of Trigonometric Functions.

    ERIC Educational Resources Information Center

    Stick, Marvin E.; Stick, Michael J.

    1985-01-01

    Provides computer programs (for Apple microcomputers) for drawing (in high resolution graphics) a three-leaved rose, concentric circles, circumscribed and inscribed astroids. Sample output and discussions of the mathematics involved in the programs are included. (JN)

  4. Vacuum straw tracker test beam run

    SciTech Connect

    Wah, Yau; /Chicago U.

    2005-08-01

    This memorandum of understanding requests beam time at Fermilab during the 2005 Meson Test Beam run to measure the detection inefficiency of vacuum straw tubes. One of the future kaon experiments at J-PARC has the goal to measure the branching ratio of the neutral kaon ''Golden Mode'' K{sub L} {yields} {pi}{sup 0} with a few hundred event sensitivity. This future J-PARC experiment is a follow up of a current KEK experiment, E391a which has been taking data since February 2004. E391a is a collaboration of five countries (Japan, United States, Russia, Korea, and Taiwan) with ten institutions (KEK, Saga U, Yamagata U, Osaka U, U of Chicago, Pusan U, JINR, NDA, Kyoto U, National Taiwan U, and RCNP). The branching ratio of K{sub L} {yields} {pi}{sup 0} {nu} {nu} is small, about 3 x 10{sup -11}. To first order, all kaon decays with final states with charged particles need to be vetoed, and those include K{sub e3}, K{sub {mu}3}, and K{sub {+-}0} (about 80% of all neutral kaon decay). The standard and typical veto power comes from sheet scintillator and may not be adequate. Vacuum straw tubes provides additional, independent and orthogonal veto power, but the detection inefficiency has not been known or measured in a detail way. The inefficiency of the straw has three sources, the electronics, the straw wall/wire, and the gas. We like to perform beam test to measure all three sources. There is much experience in straw detector technology, and some in vacuum straw technology (CKM R&D effort). The possible use of straws in the future K{sub L} {yields} {pi}{sup 0} {nu} {nu} experiment will allow absolute photon/electron energy calibration (via K{sub {+-}0} decays), possible measurement of photon inefficiencies (via K{sub 000} with {pi}{sup 0} Dalitz), and as mentioned, charged particle veto. The results of this proposed beam test will provide new knowledge on the absorption cross section and will direct us on design issues for future neutral kaon decay experiments. Regarding

  5. Progress on LAMOST High Resolution Spectrograph Project

    NASA Astrophysics Data System (ADS)

    Zhang, KaI

    2015-08-01

    To explore more science case, LAMOST doesn't only has strong power on celestial spectral survey but also reserves an access to high resolution spectrograph with a few optional fibers. This commissioned spectrograph gets high resolution of R=30,000 - 60,000 at a broad visible band from 370nm to 760nm. With the consideration about site seeing variation in future, single science fiber covers wider field on sky of 4.5arcsec instead of the present 3.3arcsec. An oversize Echelle R4 grating and a pre-slit image slicer are adopted to relieve the spectrograph resolution pressure. High resolution observation will parallel to the low resolution spectral survey at a small cost of losing a few fibers (10 - 20) on telescope focal plane. These science fibers will locate at the different sky areas for more approciate choice. The presentation will give the detailed design introduction and the current project status.

  6. A High-Resolution Stopwatch for Cents

    ERIC Educational Resources Information Center

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  7. High-resolution display system for mammograms

    NASA Astrophysics Data System (ADS)

    Moskowitz, Michael J.; Huang, H. K.; Wang, Jun; Allen, Jeffrey; Sickles, Edward A.; Giles, Anthony

    1995-04-01

    A high resolution mammographic display station is implemented for clinical diagnosis and for a digital teaching file. The display consists of a specially designed, high resolution mammographic station which contains a connection to a 50 micron (variable spot size) laser film digitizer, two 2 K X 2.5 K display monitors, an image processor, a host computer, and a disk array for high speed image transfer to the display monitors. After digitization on a separate host computer, the files are immediately transferred to the display station and post- processed for viewing. The algorithm for post-processing of the digitized image applies a non- linear LUT to mimic the original film characteristics while taking into account the luminosity of the display monitors in an attempt to produce the highest digital image quality possible. Image processing functions for enhancing calcification and soft tissue are also available to assist the human observer in classification of objects within the image. Windowing and level controls are seamlessly integrated for each monitor, as well as magnification capabilities. For an image display at its full resolution (e.g., digitized at 100 microns), the magnification is accomplished with a roaming window utilizing simple 2X pixel replication. This has been found to be acceptable in preliminary tests with clinicians. Measurements of features on the 2 k displays are possible, as well. The display format accurately simulates mammographic viewing arrangements with automatic side-by-side historical, current, left and right craniocaudal, mediolateral, etc., view comparisons. This high resolution mammographic display is found to be essential for fast and accurate display of high resolution digitized mammograms. A digital mammographic teaching file has been designed and tested using this display architecture. The teaching file presents the case questions on the host display monitor, and the related images for each question are presented on the high

  8. High resolution 3D nonlinear integrated inversion

    NASA Astrophysics Data System (ADS)

    Li, Yong; Wang, Xuben; Li, Zhirong; Li, Qiong; Li, Zhengwen

    2009-06-01

    The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the wells are input to a network with multiple inputs and outputs and are integratedly trained to obtain an adaptive weight function of the entire study area. Integrated nonlinear mapping relationships are built and updated by the lateral and vertical geologic variations of the reservoirs. Therefore, the inversion process and its inversion results can be constrained and controlled and a stable seismic inversion section with high resolution with velocity inversion, impedance inversion, and density inversion sections, can be gained. Good geologic effects have been obtained in model computation tests and real data processing, which verified that this method has high precision, good practicality, and can be used for quantitative reservoir analysis.

  9. High-resolution Visible Spectra of Titan

    NASA Astrophysics Data System (ADS)

    Sim, Chae Kyung; Kim, S.

    2006-09-01

    We have obtained high-resolution (R 30,000) spectra of Titan between 4,000 and 10,000 A on Feb. 23, 2005 (UT) using an optical echelle spectrograph (BOES) on the 1.8-m telescope at Bohyunsan Observatory, Korea. The raw Titan spectra contain telluric and solar absorption/emission lines. We used Kitt Peak solar atlases to remove the solar lines effectively. We also constructed synthetic spectra for the atmosphere of Titan including haze layers and utilizing laboratory spectra of CH4 available in literature. Preliminary results on the identifications of weak CH4 lines and on the derived opacities of the haze layers will be presented. Since the observations were carried out near the activities of Cassini observations of Titan, these high-resolution visible spectra are complementary to Cassini/VIMS imagery.

  10. Petrous apex mucocele: high resolution CT.

    PubMed

    Memis, A; Memis, A; Alper, H; Calli, C; Ozer, H; Ozdamar, N

    1994-11-01

    Mucocele of the petrous apex is very rare, only three cases having been reported. Since this area is inaccessible to direct examination, imaging, preferably high resolution computed tomography (HR CT) is essential. We report a case showing an eroding, non enhancing mass with sharp, lobulated contours, within the petrous apex. The presence of a large air cell on the opposite side suggested a mucocele. PMID:7862284

  11. High resolution schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Harten, A.

    1983-01-01

    A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurate scheme to an appropriately modified flux function. The so-derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme. Numerical experiments are presented to demonstrate the performance of these new schemes.

  12. Star formation seen with high resolution spectroscopy.

    NASA Astrophysics Data System (ADS)

    Winnewisser, G.

    1990-03-01

    More than 90 anorganic and organic molecules have been detected by high resolution spectroscopy in interstellar molecular clouds or in the envelopes of stars. The detected wavelengths of the lines - predominantly located in the millimeter- and submillimeter wavelength region - unequivocally identify the molecules and give precise knowledge of the physical and chemical conditions of molecular clouds from which the radiation emanates. The line intensities and line profiles contain information about the densities, temperatures and dynamics prevailing in molecular clouds.

  13. High resolution imaging of boron carbide microstructures

    SciTech Connect

    Mackinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1985-08-01

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B/sub 13/C/sub 2/ sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B/sub 4/C powder showed little evidence of stacking disorder in crystalline regions.

  14. High resolution imaging of boron carbide microstructures

    SciTech Connect

    MacKinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1986-04-15

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B/sub 13/C/sub 2/ sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B/sub 4/C powder showed little evidence of stacking disorder in crystalline regions.

  15. High-Resolution X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Brissenden, Roger J.; Davis, William; Elsner, Ronald F.; Elvis, Martin; Freeman, Mark; Gaetz, Terry; Gorenstein, Paul; Gubarev, Mikhail V.

    2010-01-01

    Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness. Programmatic issues are comparably challenging.

  16. Conversational high resolution mass spectrographic data reduction

    NASA Technical Reports Server (NTRS)

    Romiez, M. P.

    1973-01-01

    A FORTRAN 4 program is described which reduces the data obtained from a high resolution mass spectrograph. The program (1) calculates an accurate mass for each line on the photoplate, and (2) assigns elemental compositions to each accurate mass. The program is intended for use in a time-shared computing environment and makes use of the conversational aspects of time-sharing operating systems.

  17. High-Resolution US of Rheumatologic Diseases.

    PubMed

    Taljanovic, Mihra S; Melville, David M; Gimber, Lana H; Scalcione, Luke R; Miller, Margaret D; Kwoh, C Kent; Klauser, Andrea S

    2015-01-01

    For the past 15 years, high-resolution ultrasonography (US) is being routinely and increasingly used for initial evaluation and treatment follow-up of rheumatologic diseases. This imaging technique is performed by using high-frequency linear transducers and has proved to be a powerful diagnostic tool in evaluation of articular erosions, simple and complex joint and bursal effusions, tendon sheath effusions, and synovitis, with results comparable to those of magnetic resonance imaging, excluding detection of bone marrow edema. Crystal deposition diseases including gouty arthropathy and calcium pyrophosphate deposition disease (CPPD) have characteristic appearances at US, enabling differentiation between these two diseases and from inflammatory arthropathies. Enthesopathy, which frequently accompanies psoriatic and reactive arthritis, also has a characteristic appearance at high-resolution US, distinguishing these two entities from other inflammatory and metabolic arthropathies. The presence of Doppler signal in examined joints, bursae, and tendon sheaths indicates active synovitis. Microbubble echo contrast agents augment detection of tissue vascularity and may act in the future as a drug delivery vehicle. Frequently, joint, tendon sheath, and bursal fluid aspirations and therapeutic injections are performed under US guidance. The authors describe the high-resolution US technique including gray-scale, color or power Doppler, and contrast agent-enhanced US that is used in evaluation of rheumatologic diseases of the wrist and hand and the ankle and foot in their routine clinical practice. This article demonstrates imaging findings of normal joints, rheumatoid arthritis, gouty arthritis, CPPD, psoriatic and reactive arthritis, and osteoarthritis. PMID:26562235

  18. High-Resolution Traction Force Microscopy

    PubMed Central

    Plotnikov, Sergey V.; Sabass, Benedikt; Schwarz, Ulrich S.; Waterman, Clare M.

    2015-01-01

    Cellular forces generated by the actomyosin cytoskeleton and transmitted to the extracellular matrix (ECM) through discrete, integrin-based protein assemblies, that is, focal adhesions, are critical to developmental morphogenesis and tissue homeostasis, as well as disease progression in cancer. However, quantitative mapping of these forces has been difficult since there has been no experimental technique to visualize nanonewton forces at submicrometer spatial resolution. Here, we provide detailed protocols for measuring cellular forces exerted on two-dimensional elastic substrates with a high-resolution traction force microscopy (TFM) method. We describe fabrication of polyacrylamide substrates labeled with multiple colors of fiducial markers, functionalization of the substrates with ECM proteins, setting up the experiment, and imaging procedures. In addition, we provide the theoretical background of traction reconstruction and experimental considerations important to design a high-resolution TFM experiment. We describe the implementation of a new algorithm for processing of images of fiducial markers that are taken below the surface of the substrate, which significantly improves data quality. We demonstrate the application of the algorithm and explain how to choose a regularization parameter for suppression of the measurement error. A brief discussion of different ways to visualize and analyze the results serves to illustrate possible uses of high-resolution TFM in biomedical research. PMID:24974038

  19. High Resolution Diagnostics of a Linear Shaped Charge Jet

    SciTech Connect

    Chase, J.B.; Kuklo, R.M.; Shaw, L.L.; Carter, D.L.; Baum, D.W.

    1999-08-10

    The linear shaped charge is designed to produce a knife blade-like flat jet, which will perforate and sever one side of a modestly hard target from the other. This charge is approximately plane wave initiated and used a water pipe quality circular copper liner. To establish the quality of this jet we report about an experiment using several of the Lawrence Livermore National Laboratory high-resolution diagnostics previously published in this meeting [1]. Image converter tube camera stereo image pairs were obtained early in the jet formation process. Individual IC images were taken just after the perforation of a thin steel plate. These pictures are augmented with 70 mm format rotating mirror framing images, orthogonal 450 KeV flash radiograph pairs, and arrival time switches (velocity traps) positioned along the length of the jet edge. We have confirmed that linear shaped charges are subject to the same need for high quality copper as any other metal jetting device.

  20. High resolution SAR applications and instrument design

    NASA Technical Reports Server (NTRS)

    Dionisio, C.; Torre, A.

    1993-01-01

    The Synthetic Aperture Radar (SAR) has viewed, in the last two years, a huge increment of interest from many preset and potential users. The good spatial resolution associated to the all weather capability lead to considering SAR not only a scientific instrument but a tool for verifying and controlling the daily human relationships with the Earth Environment. New missions were identified for SAR as spatial resolution became lower than three meters: disasters, pollution, ships traffic, volcanic eruptions, earthquake effect are only a few of the possible objects which can be effectively detected, controlled and monitored by SAR mounted on satellites. High resolution radar design constraints and dimensioning are discussed.

  1. High resolution extremity CT for biomechanics modeling

    SciTech Connect

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  2. High Resolution Sapphire Bragg Backscattering Monochromator

    SciTech Connect

    Linden, P. van der; Wille, H.-C.; Shvyd'ko, Yu. V.

    2007-01-19

    We present a temperature stabilised high resolution sapphire backscattering monochromator. The device consists of a sapphire crystal inside a cold nitrogen gas cooled, temperature stabilised chamber with a passively temperature stabilised screen. The achieved temperature stability of {+-}2mK allows for an energy resolution of {delta}E/E {<=} 10-7 at energies in the range of 30-70 keV. The device was developed for nuclear resonant scattering above 30 keV, where appropriate solutions did not exist until now.

  3. A High Resolution Scale-of-four

    DOE R&D Accomplishments Database

    Fitch, V.

    1949-08-25

    A high resolution scale-of-four has been developed to be used in conjunction with the nuclear particle detection devices in applications where the counting rate is unusually high. Specifically, it is intended to precede the commercially available medium resolution scaling circuits and so decrease the resolving time of the counting system. The circuit will function reliably on continuously recurring pulses separated by less than 0.1 microseconds. It will resolve two pulses (occurring at a moderate repetition rate) which are spaced at 0.04 microseconds. A five-volt input signal is sufficient to actuate the device.

  4. High-Resolution Manometry in Clinical Practice

    PubMed Central

    Pandolfino, John E.

    2015-01-01

    High-resolution manometry (HRM) is the primary method used to evaluate esophageal motor function. Displayed and interpreted by esophageal pressure topography (EPT), HRM/ EPT provides a detailed assessment of esophageal function that is useful in the evaluation of patients with nonobstructive dysphagia and before foregut surgery. Esophageal motility diagnoses are determined systematically by applying objective metrics of esophageal sphincter and peristaltic function to the Chicago Classification of esophageal motility disorders. This article discusses HRM study, EPT interpretation, and the translation of EPT findings into clinical practice. Examples are provided to illustrate several clinical challenges. PMID:27118931

  5. High resolution interferometry of cool stars

    NASA Technical Reports Server (NTRS)

    Lambert, D. L.

    1974-01-01

    A description is given of results obtained in a program of infrared high resolution spectroscopy of cool stars. The nature of infrared stellar spectra is considered along with questions regarding astrophysics and stellar infrared spectroscopy. An abundance analysis for alpha Ori (Betelgeuse) is conducted. The C-12/C-13 abundance ratio is examined and attention is given to the O-16/O-18 and O-16/O-17 abundance ratios. M stars and SiO vibration-rotation bands are discussed and questions regarding the characteristics of the molecular hydrogen quadrupole vibration-rotation lines are explored.

  6. A Portable, High Resolution, Surface Measurement Device

    NASA Technical Reports Server (NTRS)

    Ihlefeld, Curtis M.; Burns, Bradley M.; Youngquist, Robert C.

    2012-01-01

    A high resolution, portable, surface measurement device has been demonstrated to provide micron-resolution topographical plots. This device was specifically developed to allow in-situ measurements of defects on the Space Shuttle Orbiter windows, but is versatile enough to be used on a wide variety of surfaces. This paper discusses the choice of an optical sensor and then the decisions required to convert a lab bench optical measurement device into an ergonomic portable system. The necessary trade-offs between performance and portability are presented along with a description of the device developed to measure Orbiter window defects.

  7. High-resolution color photographic reproductions

    NASA Astrophysics Data System (ADS)

    McCann, John J.

    1997-04-01

    This paper will describe a fine-art reproduction process that: captures painting information with high-resolution color photographs; scans the information into a 300 megabyte digital file; performs a 3D color calibration in a dedicated hardware color-transform circuit; makes a master positive color transparency and makes a reproduction on polaroid color print film. The master transparency can be used to expose a large number of images. This combines the efficiency of instant photography with the color fidelity of digital color transforms.

  8. High-resolution scanning hall probe microscopy

    NASA Astrophysics Data System (ADS)

    Hicks, Clifford; Luan, Lan; Hendrik Bluhm, J.; Moler, Kathryn; Guikema, Janice; Zeldov, Eli; Shtrikman, Hadas

    2006-03-01

    Scanning hall sensors can be used to directly image magnetic fields at surfaces. They offer high resolution, high sensitivity, operability over a broad temperature range, and linearity. We have fabricated hall sensors on GaAs / Al0.35Ga0.65As and GaAs / Al0.3Ga0.7As heterostructures containing 2D electron gases 40, 39 and 140nm beneath the surface. The sensitive areas of our probes range from microns to 85nm on a side. We report on the field sensitivities of probes of various sizes and their spatial resolution in a scanning configuration.

  9. Common high-resolution MMW scene generator

    NASA Astrophysics Data System (ADS)

    Saylor, Annie V.; McPherson, Dwight A.; Satterfield, H. DeWayne; Sholes, William J.; Mobley, Scott B.

    2001-08-01

    The development of a modularized millimeter wave (MMW) target and background high resolution scene generator is reported. The scene generator's underlying algorithms are applicable to both digital and real-time hardware-in-the-loop (HWIL) simulations. The scene generator will be configurable for a variety of MMW and multi-mode sensors employing state of the art signal processing techniques. At present, digital simulations for MMW and multi-mode sensor development and testing are custom-designed by the seeker vendor and are verified, validated, and operated by both the vendor and government in simulation-based acquisition. A typical competition may involve several vendors, each requiring high resolution target and background models for proper exercise of seeker algorithms. There is a need and desire by both the government and sensor vendors to eliminate costly re-design and re-development of digital simulations. Additional efficiencies are realized by assuring commonality between digital and HWIL simulation MMW scene generators, eliminating duplication of verification and validation efforts.

  10. High Resolution Acoustoelastic Measurements of Materials

    NASA Astrophysics Data System (ADS)

    McKenna, Mark; Guy, Samuel; Heyman, Joseph

    2006-11-01

    As materials become more complex, there is an increasing need for high resolution measurements to characterize strength and damage in the materials. Typically, the criterion for rejecting a part is based on the detection of a flaw of a specific size in a critical location. Interestingly, if a low stress field exists at the flaw site, the flaw may not grow over time. Similarly, in a part that shows no unacceptable indications, a high stress state may cause the flaw to quickly grow through the part leading to failure. In other cases, a controlled amount of stress (in a specific direction or type) is purposely added to the material to prevent flaw growth. Inspection time intervals are based knowing and controlling the stress environment to predict the flaw growth. Luna Innovations Incorporated has developed a high resolution ultrasonic instrument that can enhance the integrity of critical hardware by measuring changes in the stress state in a material. Knowledge of the stress state plus knowledge of crack sizes greatly improves structural engineers' capability of life prediction. System data will be shown for tests to stresses near holes in laboratory fabricated aircraft metal samples. Scans of the spatial distribution of stresses will be compared with finite element models of the structure.

  11. High-Resolution Shadowing of Transfer RNA

    PubMed Central

    Abermann, Reinhard J.; Yoshikami, Doju

    1972-01-01

    High-resolution shadowing with metals that melt at high temperatures was used to study macromolecules. Molecules of transfer RNA shadowed with tantalum-tungsten are readily visualized in an electron microscope. Mounting procedures for tRNA were perfected that reproducibly gave uniform distributions of both monomeric and dimeric tRNA particles, and allowed a statistical assessment of their gross shapes and sizes. Monomeric tRNA yielded a fairly homogeneous population of rod-shaped particles, with axial dimensions of about 40 × 85 Å. Dimers of yeast alanine tRNA held together by hydrogen bonds and dimers constructed by covalent linkage of the amino-acid acceptor (3′-) termini of monomers both gave slightly more heterogeneous populations of particles. Yet, their structures were also basically rod shaped, with their lengths ranging to about twice that of the monomer; this result indicates an end-to-end arrangement of the monomeric units within both dimers. These results suggest that the amino-acid acceptor terminus and the anticodon region are at the ends of the rod-shaped, dehydrated tRNA monomer visible by electron microscopy, consistent with the generally accepted view of tRNA structure in solution suggested by other workers using other methods. This study demonstrates that high-resolution shadowing with tantalum-tungsten provides a means to examine the three-dimensional structures of relatively small biological macromolecules. Images PMID:4504373

  12. Limiting liability via high resolution image processing

    SciTech Connect

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  13. High resolution guided wave pipe inspection

    NASA Astrophysics Data System (ADS)

    Velichko, Alexander; Wilcox, Paul D.

    2009-03-01

    Commercial guided wave inspection systems provide rapid screening of pipes, but limited sizing capability for small defects. However, accurate detection and sizing of small defects is essential for assessing the integrity of inaccessible pipe regions where guided waves provide the only possible inspection mechanism. In this paper an array-based approach is presented that allows guided waves to be focused on both transmission and reception to produce a high resolution image of a length of pipe. In the image, it is shown that a signal to coherent noise ratio of over 40 dB with respect to the reflected signal from a free end of pipe can be obtained, even taking into account typical levels of experimental uncertainty in terms of transducer positioning, wave velocity etc. The combination of an image with high resolution and a 40 dB dynamic range enables the detection of very small defects. It also allows the in-plane shape of defects over a certain size to be observed directly. Simulations are used to estimate the detection and sizing capability of the system for crack-like defects. Results are presented from a prototype system that uses EMATs to fully focus pipe guided wave modes on both transmission and reception in a 12 inch diameter stainless steel pipe. The 40 dB signal to coherent noise ratio is obtained experimentally and a 2 mm diameter (0.08 wavelengths) half-thickness hole is shown to be detectable.

  14. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2003-01-01

    Spectroscopic parameters (such as line position, intensity, broadening and shifting coefficients and their temperature dependences, line mixing coefficients etc.) for various molecular species of atmospheric interest are determined. In order to achieve these results, infrared spectra of several molecular bands are obtained using high-resolution recording instruments such as tunable diode laser spectrometer and Fourier transform spectrometers. Using sophisticated analysis routines (Multispectrum nonlinear least squares technique) these high-resolution infrared spectra are processed to determine the various spectral line parameters that are cited above. Spectra were taken using the McMath-Pierce Fourier transform spectrometer (FTS) at the National Solar Observatory on Kitt Peak, Arizona as well as the Bruker FTS at the Pacific Northwest National Laboratory (PNNL) at Richland, Washington. Most of the spectra are acquired not only at room temperature, but also at several different cold temperatures. This procedure is necessary to study the variation of the spectral line parameters as a function of temperature in order to simulate the Earth's and other planetary atmospheric environments. Depending upon the strength or weakness of the various bands recorded and analyzed, the length(s) of the absorption cells in which the gas samples under study are kept varied from a few centimeters up to several meters and the sample temperatures varied from approximately +30 C to -63 C. Research on several infrared bands of various molecular species and their isotopomers are undertaken. Those studies are briefly described.

  15. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  16. High-Resolution PET Detector. Final report

    SciTech Connect

    Karp, Joel

    2014-03-26

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface.

  17. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon-and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  18. High Resolution Camera for Mapping Titan Surface

    NASA Technical Reports Server (NTRS)

    Reinhardt, Bianca

    2011-01-01

    Titan, Saturn's largest moon, has a dense atmosphere and is the only object besides Earth to have stable liquids at its surface. The Cassini/Huygens mission has revealed the extraordinary breadth of geological processes shaping its surface. Further study requires high resolution imaging of the surface, which is restrained by light absorption by methane and scattering from aerosols. The Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft has demonstrated that Titan's surface can be observed within several windows in the near infrared, allowing us to process several regions in order to create a geological map and to determine the morphology. Specular reflections monitored on the lakes of the North Pole show little scattering at 5 microns, which, combined with the present study of Titan's northern pole area, refutes the paradigm that only radar can achieve high resolution mapping of the surface. The present data allowed us to monitor the evolution of lakes, to identify additional lakes at the Northern Pole, to examine Titan's hypothesis of non-synchronous rotation and to analyze the albedo of the North Pole surface. Future missions to Titan could carry a camera with 5 micron detectors and a carbon fiber radiator for weight reduction.

  19. High-Resolution Scintimammography: A Pilot Study

    SciTech Connect

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper; Stan Majewski; Steven Goodman; Cahid Civelek

    2002-07-01

    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.

  20. Chandra X-Ray Observatory High Resolution Mirror Assembly

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the mirrors of the High Resolution Mirror Assembly (HRMA) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being assembled in the Eastman Kodak Company in Rochester, New York. The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical 'telescope' portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  1. A GUINIER CAMERA FOR SR POWDER DIFFRACTION: HIGH RESOLUTION AND HIGH THROUGHPUT.

    SciTech Connect

    SIDDONS,D.P.; HULBERT, S.L.; STEPHENS, P.W.

    2006-05-28

    The paper describe a new powder diffraction instrument for synchrotron radiation sources which combines the high throughput of a position-sensitive detector system with the high resolution normally only provided by a crystal analyzer. It uses the Guinier geometry which is traditionally used with an x-ray tube source. This geometry adapts well to the synchrotron source, provided proper beam conditioning is applied. The high brightness of the SR source allows a high resolution to be achieved. When combined with a photon-counting silicon microstrip detector array, the system becomes a powerful instrument for radiation-sensitive samples or time-dependent phase transition studies.

  2. Clementine High Resolution Camera Mosaicking Project

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report constitutes the final report for NASA Contract NASW-5054. This project processed Clementine I high resolution images of the Moon, mosaicked these images together, and created a 22-disk set of compact disk read-only memory (CD-ROM) volumes. The mosaics were produced through semi-automated registration and calibration of the high resolution (HiRes) camera's data against the geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic produced by the US Geological Survey (USGS). The HiRes mosaics were compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution nadir-looking observations. The images were spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel for sub-polar mosaics (below 80 deg. latitude) and using the stereographic projection at a scale of 30 m/pixel for polar mosaics. Only images with emission angles less than approximately 50 were used. Images from non-mapping cross-track slews, which tended to have large SPICE errors, were generally omitted. The locations of the resulting image population were found to be offset from the UV/Vis basemap by up to 13 km (0.4 deg.). Geometric control was taken from the 100 m/pixel global and 150 m/pixel polar USGS Clementine Basemap Mosaics compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Radiometric calibration was achieved by removing the image nonuniformity dominated by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap, that approximately transform the 8-bit HiRes data to photometric units. The sub-polar mosaics are divided into tiles that cover approximately 1.75 deg. of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. Polar mosaics are tiled into squares 2250 pixels on a

  3. High Resolution Powder Diffraction and Structure Determination

    SciTech Connect

    Cox, D. E.

    1999-04-23

    It is clear that high-resolution synchrotrons X-ray powder diffraction is a very powerful and convenient tool for material characterization and structure determination. Most investigations to date have been carried out under ambient conditions and have focused on structure solution and refinement. The application of high-resolution techniques to increasingly complex structures will certainly represent an important part of future studies, and it has been seen how ab initio solution of structures with perhaps 100 atoms in the asymmetric unit is within the realms of possibility. However, the ease with which temperature-dependence measurements can be made combined with improvements in the technology of position-sensitive detectors will undoubtedly stimulate precise in situ structural studies of phase transitions and related phenomena. One challenge in this area will be to develop high-resolution techniques for ultra-high pressure investigations in diamond anvil cells. This will require highly focused beams and very precise collimation in front of the cell down to dimensions of 50 {micro}m or less. Anomalous scattering offers many interesting possibilities as well. As a means of enhancing scattering contrast it has applications not only to the determination of cation distribution in mixed systems such as the superconducting oxides discussed in Section 9.5.3, but also to the location of specific cations in partially occupied sites, such as the extra-framework positions in zeolites, for example. Another possible application is to provide phasing information for ab initio structure solution. Finally, the precise determination of f as a function of energy through an absorption edge can provide useful information about cation oxidation states, particularly in conjunction with XANES data. In contrast to many experiments at a synchrotron facility, powder diffraction is a relatively simple and user-friendly technique, and most of the procedures and software for data analysis

  4. Building a Straw Bridge

    ERIC Educational Resources Information Center

    Teaching Science, 2015

    2015-01-01

    This project is for a team of students (groups of two or three are ideal) to design and construct a model of a single-span bridge, using plastic drinking straws as the building material. All steps of the design, construction, testing and critiquing stages should be recorded by students in a journal. Students may like to include labelled diagrams,…

  5. High resolution electron crystallography of protein molecules

    SciTech Connect

    Glaeser, R.M. |; Downing, K.H.

    1993-06-01

    Electron diffraction data and high resolution images can now be used to obtain accurate, three-dimensional density maps of biological macromolecules. These density maps can be interpreted by building an atomic-resolution model of the structure into the experimental density. The Cowley-Moodie formalism of dynamical diffraction theory has been used to validate the use of kinematic diffraction theory, strictly the weak phase object approximation, in producing such 3-D density maps. Further improvements in the preparation of very flat specimens and in the retention of diffraction to a resolution of 0.2 nm or better could result in electron crystallography becoming as important a technique as x-ray crystallography currently is for the field of structural molecular biology.

  6. Computer synthesis of high resolution electron micrographs

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1976-01-01

    Specimen damage, spherical aberration, low contrast and noisy sensors combine to prevent direct atomic viewing in a conventional electron microscope. The paper describes two methods for obtaining ultra-high resolution in biological specimens under the electron microscope. The first method assumes the physical limits of the electron objective lens and uses a series of dark field images of biological crystals to obtain direct information on the phases of the Fourier diffraction maxima; this information is used in an appropriate computer to synthesize a large aperture lens for a 1-A resolution. The second method assumes there is sufficient amplitude scatter from images recorded in focus which can be utilized with a sensitive densitometer and computer contrast stretching to yield fine structure image details. Cancer virus characterization is discussed as an illustrative example. Numerous photographs supplement the text.

  7. High Resolution, High Frame Rate Video Technology

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers and working group summaries presented at the High Resolution, High Frame Rate Video (HHV) Workshop are compiled. HHV system is intended for future use on the Space Shuttle and Space Station Freedom. The Workshop was held for the dual purpose of: (1) allowing potential scientific users to assess the utility of the proposed system for monitoring microgravity science experiments; and (2) letting technical experts from industry recommend improvements to the proposed near-term HHV system. The following topics are covered: (1) State of the art in the video system performance; (2) Development plan for the HHV system; (3) Advanced technology for image gathering, coding, and processing; (4) Data compression applied to HHV; (5) Data transmission networks; and (6) Results of the users' requirements survey conducted by NASA.

  8. A simple, high efficiency, high resolution spectropolarimeter

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.

    2012-09-01

    A simple concept is described that uses volume phase holographic gratings as polarizing dispersers for a high efficiency, high resolution spectropolarimeter. Although the idea has previously been mentioned in the literature as possible, such a concept has not been explored in detail. Performance analysis is presented for a VPHG spectropolarimeter concept that could be utilized for both solar and night-time astronomy. Instrumental peak efficiency can approach 100% with spectral dispersions permitting R~200,000 spectral resolution with diffraction limited telescopes. The instrument has 3-channels: two dispersed image planes with orthogonal polarization and an undispersed image plane. The concept has a range of versatility where it could be configured (with appropriate half-wave plates) for slit-fed spectroscopy or without slits for snapshot/hyperspectral/tomographic spectroscopic imaging. Multiplex gratings could also be used for the simultaneous recording of two separate spectral bands or multiple instruments could be daisy chained with beam splitters for further spectral coverage.

  9. High-resolution spectrometer for atmospheric studies

    NASA Astrophysics Data System (ADS)

    Di Carlo, Piero; Barone, Massimiliano; D'Altorio, Alfonso; Dari-Salisburgo, Cesare; Pietropaolo, Ermanno

    2009-08-01

    A high-resolution spectrometer (0.0014 nm at 313 nm) has been developed at the University of L'Aquila (Italy) for atmospheric spectroscopic studies. The layout, optics and software for the instrument control are described. Measurements of the mercury low-pressure lamp lines from 200 to 600 nm show the high performances of the spectrometer. Laboratory measurements of OH and NO2 spectrums demonstrate that the system could be used for cross-section measurements and to detect these species in the atmosphere. The first atmospheric application of the system was the observation of direct solar and sky spectrums that shows a filling-in of the sky lines due to rotational Raman scattering. The measurements have been done with clear and cloudy sky and in both there was a strong dependence of the filling-in from the solar zenith angle whereas no dependence from the wavelengths was evident at low solar zenith angles (less than 85°).

  10. Characterization of a high resolution transmission grating

    NASA Astrophysics Data System (ADS)

    Desauté, P.; Merdji, H.; Greiner, V.; Missalla, T.; Chenais-Popovics, C.; Troussel, P.

    2000-01-01

    Three 5000 lines/mm gold transmission gratings have been tested with the radiation from the Super-ACO synchrotron in the range 250 eV< E<850 eV. Typical results for the spectral dependence of the grating efficiency at different diffraction orders are presented. This grating theoretically built to have no second order exhibits second order as high as 15-20% of first order. The very thin 5000 L/mm gratings are supported by a larger grid which perturbs the recorded data by separating each order in three peaks. Fraunhofer diffraction of the support grid has been modelled and can explain this effect. The high resolution gratings were used to measure the harmonics of the beamline monochromator grating (550 L/mm) and to measure the emission and absorption of laser-produced plasmas in the XUV range.

  11. Improved methods for high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C44H90 paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol.

  12. High resolution solar X-ray studies

    NASA Technical Reports Server (NTRS)

    Blake, R. L.

    1974-01-01

    Two high resolution solar X-ray payloads and their launches on Aerobee rockets with pointing system are described. The payloads included 5 to 25A X-ray spectrometers, multiaperture X-ray cameras, and command box attitude control inflight by means of a television image radioed to ground. Spatial resolution ranged from five arc minutes to ten arc seconds and spectral resolution ranged from 500 to 3000. Several laboratory tasks were completed in order to achieve the desired resolution. These included (1) development of techniques to align grid collimators, (2) studies of the spectrometric properties of crystals, (3) measurements of the absorption coefficients of various materials used in X-ray spectrometers, (4) evaluation of the performance of multiaperture cameras, and (5) development of facilities.

  13. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  14. High-resolution adaptive spiking sonar.

    PubMed

    Alvarez, Fernando J; Kuc, Roman

    2009-05-01

    A new sonar system based on the conventional 6500 ranging module is presented that generates a sequence of spikes whose temporal density is related to the strength of the received echo. This system notably improves the resolution of a previous system by shortening the discharge cycle of the integrator included in the module. The operation is controlled by a PIC18F452 device, which can adapt the duration of the discharge to changing features of the echo, providing the system with a novel adaptive behavior. The performance of the new sensor is characterized and compared with that of the previous system by performing rotational scans of simple objects with different reflecting strengths. Some applications are suggested that exploit the high resolution and adaptability of this sensor. PMID:19473919

  15. High resolution analysis of satellite gradiometry

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1989-01-01

    Satellite gravity gradiometry is a technique now under development which, by the middle of the next decade, may be used for the high resolution charting from space of the gravity field of the earth and, afterwards, of other planets. Some data analysis schemes are reviewed for getting detailed gravity maps from gradiometry on both a global and a local basis. It also presents estimates of the likely accuracies of such maps, in terms of normalized spherical harmonics expansions, both using gradiometry alone and in combination with data from a Global Positioning System (GPS) receiver carried on the same spacecraft. It compares these accuracies with those of current and future maps obtained from other data (conventional tracking, satellite-satellite tracking, etc.), and also with the spectra of various signals of geophysical interest.

  16. High-Resolution Broadband Spectral Interferometry

    SciTech Connect

    Erskine, D J; Edelstein, J

    2002-08-09

    We demonstrate solar spectra from a novel interferometric method for compact broadband high-resolution spectroscopy. The spectral interferometer (SI) is a hybrid instrument that uses a spectrometer to externally disperse the output of a fixed-delay interferometer. It also has been called an externally dispersed interferometer (EDI). The interferometer can be used with linear spectrometers for imaging spectroscopy or with echelle spectrometers for very broad-band coverage. EDI's heterodyning technique enhances the spectrometer's response to high spectral-density features, increasing the effective resolution by factors of several while retaining its bandwidth. The method is extremely robust to instrumental insults such as focal spot size or displacement. The EDI uses no moving parts, such as purely interferometric FTS spectrometers, and can cover a much wider simultaneous bandpass than other internally dispersed interferometers (e.g. HHS or SHS).

  17. Limits of simulation based high resolution EBSD.

    PubMed

    Alkorta, Jon

    2013-08-01

    High resolution electron backscattered diffraction (HREBSD) is a novel technique for a relative determination of both orientation and stress state in crystals through digital image correlation techniques. Recent works have tried to use simulated EBSD patterns as reference patterns to achieve the absolute orientation and stress state of crystals. However, a precise calibration of the pattern centre location is needed to avoid the occurrence of phantom stresses. A careful analysis of the projective transformation involved in the formation of EBSD patterns has permitted to understand these phantom stresses. This geometrical analysis has been confirmed by numerical simulations. The results indicate that certain combinations of crystal strain states and sample locations (pattern centre locations) lead to virtually identical EBSD patterns. This ambiguity makes the problem of solving the absolute stress state of a crystal unfeasible in a single-detector configuration. PMID:23676453

  18. Constructing a WISE High Resolution Galaxy Atlas

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; Eisenhardt, P.; Fowler, J.; Koribalski, B.; Lake, S.; Neill, James D.; Seibert, M.; Stanford, S.; Wright, E.

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  19. High-resolution scanning hall probe microscopy

    NASA Astrophysics Data System (ADS)

    Hicks, C. W.; Guikema, J. W.; Zeldov, E.

    2005-03-01

    Scanning hall sensors can be used to directly image magnetic fields at surfaces. They offer high resolution, high sensitivity, operability from cryogenic to room temperature, and linearity. We have fabricated hall sensors on GaAs / Al0.35Ga0.65As and GaAs / Al0.3Ga0.7As heterostructures, one containing a 2D electron gas 40 nanometers below the surface and another 140nm below the surface, as well as an In0.5Al0.5As / GaSb / AlSb / InAs heterostructure containing a 2DEG 21nm below the surface. The sensitive areas of our probes range from microns to 60nm on a side. We report on the field sensitivities of the probes and their spatial resolution in a scanning configuration.

  20. Improved methods for high resolution electron microscopy

    SciTech Connect

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  1. Information extraction from high resolution satellite images

    NASA Astrophysics Data System (ADS)

    Yang, Haiping; Luo, Jiancheng; Shen, Zhanfeng; Xia, Liegang

    2014-11-01

    Information extracted from high resolution satellite images, such as roads, buildings, water and vegetation, has a wide range of applications in disaster assessment and environmental monitoring. At present, object oriented supervised learning is usually used in the objects identification from the high spatial resolution satellite images. In classical ways, we have to label some regions of interests from every image to be classified at first, which is labor intensive. In this paper, we build a feature base for information extraction in order to reduce the labeling efforts. The features stored are regulated and labeled. The labeled samples for a new coming image can be selected from the feature base. And the experiments are taken on GF-1 and ZY-3 images. The results show the feasibility of the feature base for image interpretation.

  2. Pyramidal fractal dimension for high resolution images

    NASA Astrophysics Data System (ADS)

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024 ×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.

  3. High resolution multimodal clinical ophthalmic imaging system

    PubMed Central

    Mujat, Mircea; Ferguson, R. Daniel; Patel, Ankit H.; Iftimia, Nicusor; Lue, Niyom; Hammer, Daniel X.

    2010-01-01

    We developed a multimodal adaptive optics (AO) retinal imager which is the first to combine high performance AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. Such systems are becoming ever more essential to vision research and are expected to prove their clinical value for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa. The SSOCT channel operates at a wavelength of 1 µm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. This AO system is designed for use in clinical populations; a dual deformable mirror (DM) configuration allows simultaneous low- and high-order aberration correction over a large range of refractions and ocular media quality. The system also includes a wide field (33 deg.) line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation, an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of lateral eye motion, and a high-resolution LCD-based fixation target for presentation of visual cues. The system was tested in human subjects without retinal disease for performance optimization and validation. We were able to resolve and quantify cone photoreceptors across the macula to within ~0.5 deg (~100-150 µm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve features deep into the choroid. The prototype presented here is the first of a new class of powerful flexible imaging platforms that will provide clinicians and researchers with high-resolution, high performance adaptive optics imaging to help guide therapies, develop new drugs, and improve patient outcomes. PMID:20589021

  4. High-resolution simulation of field emission

    SciTech Connect

    Herrmannsfeldt, W.B. ); Becker, R. ); Brodie, I.; Rosengreen, A.; Spindt, C.A. )

    1990-03-01

    High-resolution simulations of field emission electron sources have been made using the electron optics program EGN2. Electron emission distributions are made using the Fowler-Nordheim equation. Mesh resolution in the range of 1-5 {angstrom} is required to adequately model surface details that can result in emission currents in the range found experimentally. A typical problem starts with mechanical details with dimensions of about 1{mu}. To achieve high resolution a new boundary is defined by the tip, a nearby equipotential line, and a pair of field lines. The field lines (one of which is normally the axis of symmetry) define Neumann boundaries. This new boundary is then used by the boundary preprocessor POLYGON to create an enlarged version of the problem, typically by a factor of ten. This process can be repeated until adequate resolution is obtained to simulate surface details, such as microprotusion, that could sufficiently enhance the surface electric fields and cause field emission. When simulating experimental conditions under which emission of several microamperes per tip were observed, it was found that both a locally reduced work function and a surface protrusion were needed to duplicate the experimental results. If only a local region of reduced work function is used, the area involved and the extent of the reduction both need to be very large to reproduce the emission. If only a surface protrusion is used, it is possible to get the observed emission current with a reasonable protrusion of length a few times radius, but then the resulting beam spreads over a very large solid angle due to the strong local radial electric fields. 8 refs., 14 figs., 1 tab.

  5. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2006-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as H2O (water vapor), O3 (ozone), HCN (hydrogen cyanide), CH4 (methane), NO2 (nitrogen dioxide) and CO (carbon monoxide). The data required for the analyses were obtained from two different Fourier Transform Spectrometers (FTS); one of which is located at the National Solar Observatory (NSO) on Kitt Peak, Arizona and the other instrument is located at the Pacific Northwest National Laboratories (PNNL) at Richland, Washington. The data were analyzed using a modified multispectrum nonlinear least squares fitting algorithm developed by Dr. D. Chris Benner of the College of William and Mary. The results from these studies made significant improvements in the line positons and intensities for these molecules. The measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced shift coefficients for hundreds of infrared transitions of HCN, CO3 CH4 and H2O were also performed during this period. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research Satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields. The research conducted during the period 2003-2006 has resulted in publications given in this paper. In addition to Journal publications, several oral and poster presentations were given at various Scientific conferences within the United States

  6. Pyramidal fractal dimension for high resolution images.

    PubMed

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images. PMID:27475069

  7. Ecological applications of high resolution spectrometry

    NASA Technical Reports Server (NTRS)

    Lawrence, William T.

    1989-01-01

    Future directions of NASA's space program plans include a significant effort at studying the Earth as a system of interrelated ecosystems. As part of NASA's Earth Observing System (Eos) Program a series of space platforms will be launched and operated to study the Earth with a variety of active and passive instruments. Several of the Eos instruments will be capable of imaging the planet's surface reflectance on a large number of very narrow portions of the solar spectrum. After the development of appropriate algorithms, this reflectance information will be used to determine key parameters about the structure and function of terrestrial and aquatic ecosystems and the pattern and processes of those systems across large areas of the globe. Algorithm development applicable to terrestrial systems will permit the inference of ecological processes from high resolution spectrometry data, similar to that to be forthcoming from the Eos mission. The first summer was spent working with tropical soils and relating their reflectance characteristics to particle size, iron content, and color. This summer the emphasis is on vegetation and work was begun with the Forest Ecosystems Dynamics Project in the Earth Resources Branch where both optical and radar characteristics of a mixed conifer/hardwood forest in Maine are being studied for use in a ecological modeling effort. A major series of aircraft overflights will take place throughout the summer. Laboratory and field spectrometers are used to measure the spectral reflectance of a hierarchy of vegetation from individual leaves to whole canopies for eventual modeling of their nutrient content using reflectance data. Key leaf/canopy parameters are being approximated including chlorophyll, nitrogen, phosphorus, water content, and leaf specific weight using high resolution spectrometry alone. Measurements are made of carbon exchange across the landscape for input to a spatial modeling effort to gauge production within the forest. A

  8. High-resolution computed tomography of the middle ear and mastoid. Part III. Surgically altered anatomy and pathology

    SciTech Connect

    Swartz, J.D.; Goodman, R.S.; Russell, K.B.; Ladenheim, S.F.; Wolfson, R.J.

    1983-08-01

    High-resolution computed tomography (CT) provides an excellent method for examination of the surgically altered middle ear and mastoid. Closed-cavity and open-cavity types of mastoidectomy are illustrated. Recurrent cholesteatoma in the mastoid bowl is easily diagnosed. Different types of tympanoplasty are discussed and illustrated, as are tympanostomy tubes and various ossicular reconstructive procedures. Baseline high-resolution CT of the postoperative middle ear and mastoid is recommended at approximately 3 months following the surgical procedure.

  9. High resolution x-ray microscope

    SciTech Connect

    Gary, C. K.; Park, H.; Lombardo, L. W.; Piestrup, M. A.; Cremer, J. T.; Pantell, R. H.; Dudchik, Y. I.

    2007-04-30

    The authors present x-ray images of grid meshes and biological material obtained using a microspot x-ray tube with a multilayer optic and a 92-element parabolic compound refractive lens (CRL) made of a plastic containing only hydrogen and carbon. Images obtained using this apparatus are compared with those using an area source with a spherical lens and a spherical lens with multilayer condenser. The authors found the best image quality using the multilayer condenser with a parabolic lens, compared to images with a spherical lens and without the multilayer optics. The resolution was measured using a 155-element parabolic CRL and a multilayer condenser with the microspot tube. The experiment demonstrates about 1.1 {mu}m resolution.

  10. Crusta: Visualizing High-resolution Global Data

    NASA Astrophysics Data System (ADS)

    Bernardin, T. S.; Kreylos, O.; Bowles, C. J.; Cowgill, E.; Hamann, B.; Kellogg, L. H.

    2009-12-01

    Virtual globes have become indispensable tools for visualizing, understanding and presenting data from Earth and other planetary bodies. The scientific community has invested much effort into exploiting existing globes to their fullest potential by refining and adapting their capabilities to better satisfy specific needs. For example, Google Earth provides users with the ability to view hillshade images derived from airborne LiDAR data such as the 2007 Northern California GeoEarthScope data. However, because most available globes were not designed with the specific needs of geoscientists in mind, shortcomings are becoming increasingly evident in geoscience applications such as terrain visualization. In particular, earth scientists struggle to visualize digital elevation models with both high spatial resolution (0.5 - 1 square meters per sample) and large extent (>2000 square kilometers), such as those obtained with airborne LiDAR. To address the specific earth science need of real-time terrain visualization of LiDAR data, we are developing Crusta as part of a close collaboration involving earth and computer scientists. Crusta is a new virtual globe that differs from widely used globes by both providing accurate global data representation and the ability to easily visualize custom topographic and image data. As a result, Crusta enables real-time, interactive visualization of high resolution digital elevation data spanning thousands of square kilometers, such as the complete 2007 Northern California GeoEarthScope airborne LiDAR data set. To implement an accurate data representation and avoid distortion of the display at the poles, where other projections have singularities, Crusta represents the globe as a thirty-sided polyhedron. Each side of this polyhedron can be subdivided to an arbitrarily fine grid on the surface of the globe, which allows Crusta to accommodate input data of arbitrary resolution ranging from global (e.g., Blue Marble) to local (e.g., a tripod

  11. Efficient Compression of High Resolution Climate Data

    NASA Astrophysics Data System (ADS)

    Yin, J.; Schuchardt, K. L.

    2011-12-01

    resolution climate data can be massive. Those data can consume a huge amount of disk space for storage, incur significant overhead for outputting data during simulation, introduce high latency for visualization and analysis, and may even make interactive visualization and analysis impossible given the limit of the data that a conventional cluster can handle. These problems can be alleviated by with effective and efficient data compression techniques. Even though HDF5 format supports compression, previous work has mainly focused on employ traditional general purpose compression schemes such as dictionary coder and block sorting based compression scheme. Those compression schemes mainly focus on encoding repeated byte sequences efficiently and are not well suitable for compressing climate data consist mainly of distinguished float point numbers. We plan to select and customize our compression schemes according to the characteristics of high-resolution climate data. One observation on high resolution climate data is that as the resolution become higher, values of various climate variables such as temperature and pressure, become closer in nearby cells. This provides excellent opportunities for predication-based compression schemes. We have performed a preliminary estimation of compression ratios of a very simple minded predication-based compression ratio in which we compute the difference between current float point number with previous float point number and then encoding the exponent and significance part of the float point number with entropy-based compression scheme. Our results show that we can achieve higher compression ratios between 2 and 3 in lossless compression, which is significantly higher than traditional compression algorithms. We have also developed lossy compression with our techniques. We can achive orders of magnitude data reduction while ensure error bounds. Moreover, our compression scheme is much more efficient and introduces much less overhead

  12. Superconducting High Resolution Fast-Neutron Spectrometers

    SciTech Connect

    Hau, I D

    2006-05-25

    Superconducting high resolution fast-neutron calorimetric spectrometers based on {sup 6}LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, {alpha}) reactions with fast neutrons in {sup 6}Li and {sup 10}B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies k{sub B}T on the order of {mu}eV that serve as signal carriers, resulting in an energy resolution {Delta}E {approx} (k{sub B}T{sup 2}C){sup 1/2}, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB{sub 2} absorber using thermal neutrons from a {sup 252}Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in {sup 7}Li. Fast-neutron spectra obtained with a {sup 6}Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the {sup 6}Li(n, {alpha}){sup 3}H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  13. High resolution spectrograph for the Space Telescope

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Boggess, A.; Heap, S. R.; Maran, S. P.; Smith, A. M.; Beaver, E. A.; Bottema, M.; Hutchings, J. B.; Jura, M. A.; Linsky, J. L.

    1979-01-01

    The high resolution spectrograph (HRS) for ultraviolet astronomy with the Space Telescope will provide a spectral resolution of approximately 120,000 over a nominal wavelength range of 110-320 nm, together with a spatial resolution of about 0.25 arc seconds. The two detectors will consist of 512-element Digicons with cesium telluride and cesium iodide photocathodes, respectively. Photoelectrons in transit between the photocathodes and the diodes within the Digicons can be deflected in two axes with 12-bit resolution. This feature facilitates a design that emphasizes reliability since (once a hermetic seal is opened in orbit), only two moving parts, a grating carrousel and a shutter, are required for regular operation of the HRS. The instrument will be controlled by a computer in the spacecraft. The scientific objectives of the HRS investigation relate to interstellar matter in our own and nearby galaxies, physical processes of stellar mass loss and mass transfer, chemical abundances, bright quasars and Seyfert galaxy nuclei, and solar system phenomena.

  14. High Resolution BPM for Linear Colliders

    NASA Astrophysics Data System (ADS)

    Simon, C.; Chel, S.; Luong, M.; Napoly, O.; Novo, J.; Roudier, D.; Baboi, N.; Noelle, D.; Mildner, N.; Zapfe, K.; Rouvière, N.

    2006-11-01

    A high resolution Beam Position Monitor (BPM) is necessary for the beam-based alignment systems of high energy and low emittance electron linacs. Such a monitor is developed in the framework of the European CARE/SRF programme, in a close collaboration between DESY and CEA/DSM/DAPNIA. This monitor is a radiofrequency re-entrant cavity, which can be used either at room or cryogenic temperature, in an environment where dust particle contamination has to be avoided, such as superconducting cavities in a cryomodule. A first prototype of a re-entrant BPM has already delivered measurements at 2K. inside the first cryomodule (ACC1) on the TESLA Test Facility 2 (TTF2). The performances of this BPM are analyzed both experimentally and theoretically, and the limitations of this existing system clearly identified. A new cavity and new electronics have been designed in order to improve the position resolution down to 1 μm and the damping time down to 10 ns.

  15. High-resolution microwave images of saturn.

    PubMed

    Grossman, A W; Muhleman, D O; Berge, G L

    1989-09-15

    An analysis of high-resolution microwave images of Saturn and Saturn's individual rings is presented. Radio interferometric observations of Saturn taken at the Very Large Array in New Mexico at wavelengths of 2 and 6 centimeters reveal interesting new features in both the atmosphere and rings. The resulting maps show an increase in brightness temperature of about 3 K from equator to pole at both wavelengths, while the 6-centimeter map shows a bright band at northern mid-latitudes. The data are consistent with a radiative transfer model of the atmosphere that constrains the well-mixed, fully saturated, NH(3) mixing ratio to be 1.2 x 10(-4) in a region just below the NH(3) clouds, while the observed bright band indicates a 25 percent relative decrease of NH(3) in northern mid-latitudes. Brightness temperatures for the classical rings are presented. Ring brightness shows a variation with azimuth and is linearly polarized at an average value of about 5 percent. The variations in ring polarization suggest that at least 20 percent of the ring brightness is the result of a single scattering process. PMID:17747882

  16. High-resolution x-ray telescopes

    NASA Astrophysics Data System (ADS)

    O'Dell, Stephen L.; Brissenden, Roger J.; Davis, William N.; Elsner, Ronald F.; Elvis, Martin S.; Freeman, Mark D.; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhail V.; Jerius, Diab; Juda, Michael; Kolodziejczak, Jeffery J.; Murray, Stephen S.; Petre, Robert; Podgorski, William; Ramsey, Brian D.; Reid, Paul B.; Saha, Timo; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Weisskopf, Martin C.; Wilke, Rudeger H. T.; Wolk, Scott; Zhang, William W.

    2010-08-01

    High-energy astrophysics is a relatively young scientific field, made possible by space-borne telescopes. During the half-century history of x-ray astronomy, the sensitivity of focusing x-ray telescopes-through finer angular resolution and increased effective area-has improved by a factor of a 100 million. This technological advance has enabled numerous exciting discoveries and increasingly detailed study of the high-energy universe-including accreting (stellarmass and super-massive) black holes, accreting and isolated neutron stars, pulsar-wind nebulae, shocked plasma in supernova remnants, and hot thermal plasma in clusters of galaxies. As the largest structures in the universe, galaxy clusters constitute a unique laboratory for measuring the gravitational effects of dark matter and of dark energy. Here, we review the history of high-resolution x-ray telescopes and highlight some of the scientific results enabled by these telescopes. Next, we describe the planned next-generation x-ray-astronomy facility-the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility-Generation X. The scientific objectives of such a mission will require very large areas (about 10000 m2) of highly-nested lightweight grazing-incidence mirrors with exceptional (about 0.1-arcsecond) angular resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  17. Future trends in high-resolution lithography

    NASA Astrophysics Data System (ADS)

    Lawes, R. A.

    2000-02-01

    A perennial question is "what is the future of high-resolution lithography, a key technology that drives the semiconductor industry"? The dominant technology over the last 30 years has been optical lithography, which by lowering wavelengths to 193 nm (ArF) and 157 nm (F 2) and by using optical "tricks" such as phase shift masks, off-axis illumination and phase filters, should be capable of 100 nm CMOS technology. So where does this leave the competition? The 100-nm lithography used to be the domain of electron beam lithography but only in research laboratories. Significant efforts are being made to increase throughput by electron projection (scattering with angular limitation projection electron beam lithography or SCALPEL). X-ray lithography remains a demonstrated R&D tool waiting to be commercially exploited but the initial expenditure to do so is very high. Ion beam lithography and extreme ultraviolet (EUV) ( λ<12 nm) have also received attention in recent years. This paper will concentrate on some of the key issues and speculate on how and when an alternative to optical lithography will be embraced by industry.

  18. High resolution quantum metrology via quantum interpolation

    NASA Astrophysics Data System (ADS)

    Ajoy, Ashok; Liu, Yixiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Cappellaro, Paola

    2016-05-01

    Nitrogen Vacancy (NV) centers in diamond are a promising platform for quantum metrology - in particular for nanoscale magnetic resonance imaging to determine high resolution structures of single molecules placed outside the diamond. The conventional technique for sensing of external nuclear spins involves monitoring the effects of the target nuclear spins on the NV center coherence under dynamical decoupling (the CPMG/XY8 pulse sequence). However, the nuclear spin affects the NV coherence only at precise free evolution times - and finite timing resolution set by hardware often severely limits the sensitivity and resolution of the method. In this work, we overcome this timing resolution barrier by developing a technique to supersample the metrology signal by effectively implementing a quantum interpolation of the spin system dynamics. This method will enable spin sensing at high magnetic fields and high repetition rate, allowing significant improvements in sensitivity and spectral resolution. We experimentally demonstrate a resolution boost by over a factor of 100 for spin sensing and AC magnetometry. The method is shown to be robust, versatile to sensing normal and spurious signal harmonics, and ultimately limited in resolution only by the number of pulses that can be applied.

  19. Holographic high-resolution endoscopic image recording

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.

    1991-03-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help

  20. High-resolution imaging using endoscopic holography

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.

    1990-08-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help to their control. 1.

  1. High resolution Fourier interferometer-spectrophotopolarimeter

    NASA Technical Reports Server (NTRS)

    Fymat, A. L. (Inventor)

    1976-01-01

    A high-resolution Fourier interferometer-spectrophotopolarimeter is provided using a single linear polarizer-analyzer the transmission axis azimuth of which is positioned successively in the three orientations of 0 deg, 45 deg, and 90 deg, in front of a detector; four flat mirrors, three of which are switchable to either of two positions to direct an incoming beam from an interferometer to the polarizer-analyzer around a sample cell transmitted through a medium in a cell and reflected by medium in the cell; and four fixed focussing lenses, all located in a sample chamber attached at the exit side of the interferometer. This arrangement can provide the distribution of energy and complete polarization state across the spectrum of the reference light entering from the interferometer; the same light after a fixed-angle reflection from the sample cell containing a medium to be analyzed; and the same light after direct transmission through the same sample cell, with the spectral resolution provided by the interferometer.

  2. Potential High Resolution Dosimeters For MRT

    NASA Astrophysics Data System (ADS)

    Bräuer-Krisch, E.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Brochard, T.; Kamlowski, A.; Cellere, G.; Paccagnella, A.; Siegbahn, E. A.; Prezado, Y.; Martinez-Rovira, I.; Bravin, A.; Dusseau, L.; Berkvens, P.

    2010-07-01

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow (˜25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 μm microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy/s, micron

  3. Large Scale, High Resolution, Mantle Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Geenen, T.; Berg, A. V.; Spakman, W.

    2007-12-01

    To model the geodynamic evolution of plate convergence, subduction and collision and to allow for a connection to various types of observational data, geophysical, geodetical and geological, we developed a 4D (space-time) numerical mantle convection code. The model is based on a spherical 3D Eulerian fem model, with quadratic elements, on top of which we constructed a 3D Lagrangian particle in cell(PIC) method. We use the PIC method to transport material properties and to incorporate a viscoelastic rheology. Since capturing small scale processes associated with localization phenomena require a high resolution, we spend a considerable effort on implementing solvers suitable to solve for models with over 100 million degrees of freedom. We implemented Additive Schwartz type ILU based methods in combination with a Krylov solver, GMRES. However we found that for problems with over 500 thousend degrees of freedom the convergence of the solver degraded severely. This observation is known from the literature [Saad, 2003] and results from the local character of the ILU preconditioner resulting in a poor approximation of the inverse of A for large A. The size of A for which ILU is no longer usable depends on the condition of A and on the amount of fill in allowed for the ILU preconditioner. We found that for our problems with over 5×105 degrees of freedom convergence became to slow to solve the system within an acceptable amount of walltime, one minute, even when allowing for considerable amount of fill in. We also implemented MUMPS and found good scaling results for problems up to 107 degrees of freedom for up to 32 CPU¡¯s. For problems with over 100 million degrees of freedom we implemented Algebraic Multigrid type methods (AMG) from the ML library [Sala, 2006]. Since multigrid methods are most effective for single parameter problems, we rebuild our model to use the SIMPLE method in the Stokes solver [Patankar, 1980]. We present scaling results from these solvers for 3D

  4. Wavefront metrology for high resolution optical systems

    NASA Astrophysics Data System (ADS)

    Miyakawa, Ryan H.

    Next generation extreme ultraviolet (EUV) optical systems are moving to higher resolution optics to accommodate smaller length scales targeted by the semiconductor industry. As the numerical apertures (NA) of the optics become larger, it becomes increasingly difficult to characterize aberrations due to experimental challenges associated with high-resolution spatial filters and geometrical effects caused by large incident angles of the test wavefront. This dissertation focuses on two methods of wavefront metrology for high resolution optical systems. The first method, lateral shearing interferometry (LSI), is a self-referencing interferometry where the test wavefront is incident on a low spatial frequency grating, and the resulting interference between the diffracted orders is used to reconstruct the wavefront aberrations. LSI has many advantages over other interferometric tests such as phase-shifting point diffraction interferometry (PS/PDI) due to its experimental simplicity, stability, relaxed coherence requirements, and its ability to scale to high numerical apertures. While LSI has historically been a qualitative test, this dissertation presents a novel quantitative investigation of the LSI interferogram. The analysis reveals the existence of systematic aberrations due to the nonlinear angular response from the diffraction grating that compromises the accuracy of LSI at medium to high NAs. In the medium NA regime (0.15 < NA < 0.35), a holographic model is presented that derives the systematic aberrations in closed form, which demonstrates an astigmatism term that scales as the square of the grating defocus. In the high NA regime (0.35 < NA), a geometrical model is introduced that describes the aberrations as a system of transcendental equations that can be solved numerically. The characterization and removal of these systematic errors is a necessary step that unlocks LSI as a viable candidate for high NA EUV optical testing. The second method is a novel image

  5. Potential High Resolution Dosimeters For MRT

    SciTech Connect

    Braeuer-Krisch, E.; Brochard, T.; Prezado, Y.; Bravin, A.; Berkvens, P.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Kamlowski, A.; Cellere, G.

    2010-07-23

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow ({approx}25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 {mu}m microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy

  6. High-Resolution Radar Imagery of Mars

    NASA Astrophysics Data System (ADS)

    Harmon, John K.; Nolan, M. C.

    2009-09-01

    We present high-resolution radar images of Mars obtained during the 2005 and 2007 oppositions. The images were constructed from long-code delay-Doppler observations made with the Arecibo S-band (13-cm) radar. The average image resolution of 3 km represented a better than order-of-magnitude improvement over pre-upgrade Arecibo imagery of the planet. Images of depolarized reflectivity (an indicator primarily of wavelength-scale surface roughness) show the same bright volcanic flow features seen in earlier imagery, but with much finer detail. A new image of the Elysium region shows fine detail in the radar-bright channels of Athabasca Vallis, Marte Vallis, and Grjota Vallis. The new images of Tharsis and Olympus Mons also show a complex array of radar-bright and radar-dark features. Southern Amazonis exhibits some of the most complex and puzzling radar-bright structure on the planet. Another curiosity is the Chryse/Xanthe/Channels region, where we find some radar-bright features in or adjacent to fluvial chaos structures. Chryse/Xanthe is also the only region of Mars showing radar-bright craters (which are rare on Mars but common on the Moon and Mercury). We also obtained the first delay-Doppler image showing the enhanced backscatter from the residual south polar ice cap. In addition to the depolarized imagery, we were able to make the first delay-Doppler images of the circular polarization ratio (an important diagnostic for surface roughness texture). We find that vast areas of the radar-bright volcanic regions have polarization ratios close to unity. Such high ratios are rare for terrestrial lava flows and only seen for extremely blocky surfaces giving high levels of multiple scattering.

  7. Decadal prediction with a high resolution model

    NASA Astrophysics Data System (ADS)

    Monerie, Paul-Arthur; Valcke, Sophie; Terray, Laurent; Moine, Marie-Pierre

    2016-04-01

    The ability of a high resolution coupled atmosphere-ocean general circulation model (with a horizontal resolution of the quarter degree in the ocean and of about 50 km in the atmosphere) to predict the annual means of temperature, precipitation, sea-ice volume and extent is assessed. Reasonable skill in predicting sea surface temperatures and surface air temperature is obtained, especially over the North Atlantic, the tropical Atlantic and the Indian Ocean. The skill in predicting precipitations is weaker and not significant. The Sea Ice Extent and volume are also reasonably predicted in winter (March) and summer (September). It is however argued that the skill is mainly due to the atmosphere feeding in well-mixed GHGs. The mid-90's subpolar gyre warming is assessed. The model simulates a warming of the North Atlantic Ocean, associated with an increase of the meridional heat transport, a strengthening of the North Atlantic current and a deepening of the mixed layer over the Labrador Sea. The atmosphere plays a role in the warming through a modulation of the North Atlantic Oscillation and a shrinking of the subpolar gyre. At the 3-8 years lead-time, a negative anomaly of pressure, located south of the subpolar gyre is associated with the wind speed decrease over the subpolar gyre. It prevents oceanic heat-loss and favors the northward move, from the subtropical to the subpolar gyre, of anomalously warm and salty water, leading to its warming. We finally argued that the subpolar gyre warming is triggered by the ocean dynamic but the atmosphere can contributes to its sustaining. This work is realised in the framework of the EU FP7 SPECS Project.

  8. Toward high-resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel; Huie, Philip; Vankov, Alexander; Asher, Alon; Baccus, Steven

    2005-04-01

    It has been already demonstrated that electrical stimulation of retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. Current retinal implants provide very low resolution (just a few electrodes), while several thousand pixels are required for functional restoration of sight. We present a design of the optoelectronic retinal prosthetic system that can activate a retinal stimulating array with pixel density up to 2,500 pix/mm2 (geometrically corresponding to a visual acuity of 20/80), and allows for natural eye scanning rather than scanning with a head-mounted camera. The system operates similarly to "virtual reality" imaging devices used in military and medical applications. An image from a video camera is projected by a goggle-mounted infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. Such a system provides a broad field of vision by allowing for natural eye scanning. The goggles are transparent to visible light, thus allowing for simultaneous utilization of remaining natural vision along with prosthetic stimulation. Optical control of the implant allows for simple adjustment of image processing algorithms and for learning. A major prerequisite for high resolution stimulation is the proximity of neural cells to the stimulation sites. This can be achieved with sub-retinal implants constructed in a manner that directs migration of retinal cells to target areas. Two basic implant geometries are described: perforated membranes and protruding electrode arrays. Possibility of the tactile neural stimulation is also examined.

  9. High Resolution Global View of Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Io, the most volcanic body in the solar system is seen in the highest resolution obtained to date by NASA's Galileo spacecraft. The smallest features that can be discerned are 2.5 kilometers in size. There are rugged mountains several kilometers high, layered materials forming plateaus, and many irregular depressions called volcanic calderas. Several of the dark, flow-like features correspond to hot spots, and may be active lava flows. There are no landforms resembling impact craters, as the volcanism covers the surface with new deposits much more rapidly than the flux of comets and asteroids can create large impact craters. The picture is centered on the side of Io that always faces away from Jupiter; north is to the top.

    Color images acquired on September 7, 1996 have been merged with higher resolution images acquired on November 6, 1996 by the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. The color is composed of data taken, at a range of 487,000 kilometers, in the near-infrared, green, and violet filters and has been enhanced to emphasize the extraordinary variations in color and brightness that characterize Io's face. The high resolution images were obtained at ranges which varied from 245,719 kilometers to 403,100 kilometers.

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  10. The NASA High Resolution Microwave Survey

    NASA Astrophysics Data System (ADS)

    Tarter, J. C.; Gulkis, S.

    1993-05-01

    The NASA High Resolution Microwave Survey (HRMS) began a decade of planned observations to search for signals of extraterrestrial intelligent origin with inaugural ceremonies at two sites on October 12, 1992. At Goldstone, California the Sky Survey began executing precisely controlled scanning patterns on the celestial sphere using a new beam waveguide 34m antenna operating at a frequency near 8500 MHz (X-band). At Arecibo, Puerto Rico the Targeted Search began tracking GL615.1A, one of 24 solar-type stars selected for these inaugural observations, using the NAIC 300m radio telescope operating in a band of frequencies centered at 1406 MHz. Since the initiation of the search, the Sky Survey has completed X-band observations of several dozen sky-frames measuring 30(deg) times 1.5(deg) . In addition, observations of selected areas of the galactic plane have been observed in several frequency bands (1400 MHz and 1600 MHz) using a 26m antenna located near the 34m antenna. The Targeted Search has completed the first 200 hours of observations at Arecibo covering some 300 MHz of bandwidth. This paper summarizes the results of the observations to date, including a synopsis of the interference observed at the Goldstone and Arecibo sites, and a discussion of techniques that will be used to improve future observations. The HRMS program is managed by the Ames Research Center in collaboration with the Jet Propulsion Laboratory. The results presented in this paper represent the efforts of a team of scientists and engineers at these two institutions as well as the SETI Institute, Silicon Engines Inc., John C. Reykjalin Inc., Sverdrup Technology, Sterling Federal Systems, Cornell University, the Harvard-Smithsonian Center for Astrophysics, the American Astronomical Society, Arecibo Observatory, UC Santa Cruz, the University of Washington, UC Berkeley, California Institute of Technology, Georgia Institute of Technology, Innovative Systems, and the Space Telescope Science Institute.

  11. High-resolution phylogenetic microbial community profiling

    SciTech Connect

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  12. A compact high resolution electrospray ionization ion mobility spectrometer.

    PubMed

    Reinecke, T; Kirk, A T; Ahrens, A; Raddatz, C-R; Thoben, C; Zimmermann, S

    2016-04-01

    Electrospray is a commonly used ionization method for the analysis of liquids. An electrospray is a dispersed nebular of charged droplets produced under the influence of a strong electrical field. Subsequently, ions are produced in a complex process initiated by evaporation of neutral solvent molecules from these droplets. We coupled an electrospray ionization source to our previously described high resolution ion mobility spectrometer with 75mm drift tube length and a drift voltage of 5kV. When using a tritium source for chemical gas phase ionization, a resolving power of R=100 was reported for this setup. We replaced the tritium source and the field switching shutter by an electrospray needle, a desolvation region with variable length and a three-grid shutter for injecting ions into the drift region. Preliminary measurements with tetraalkylammonium halides show that the current configuration with the electrospray ionization source maintains the resolving power of R=100. In this work, we present the characterization of our setup. One major advantage of our setup is that the desolvation region can be heated separately from the drift region so that the temperature in the drift region stays at room temperature even up to desolvation region temperatures of 100°C. We perform parametric studies for the investigation of the influence of temperature on solvent evaporation with different ratios of water and methanol in the solvent for different analyte substances. Furthermore, the setup is operated in negative mode and spectra of bentazon with different solvents are presented. PMID:26838374

  13. High Resolution Velocity Structure in Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Pasyanos, M. E.; Gok, R.; Zor, E.; Walter, W. R.

    2004-12-01

    We investigate the crust and upper mantle structure of eastern Turkey where the Anatolian, Arabian and Eurasian Plates meet, forming a complex tectonic regime. The Bitlis suture is a continental collision zone between the Anatolian plateau and the Arabian plate. Broadband data available through the Eastern Turkey Seismic Experiment (ETSE) provide a unique opportunity for studying the high resolution velocity structure of the region. Zor et al. (2003) found an average 46 km thick crust in the Anatolian plateau using a six-layered grid search inversion of the ETSE receiver functions. Receiver functions are sensitive to the velocity contrast of interfaces and the relative travel time of converted and reverberated waves between those interfaces. The interpretation of receiver functions alone, however, may result in an apparent depth-velocity trade-off [Ammon et al., 1990]. In order to improve upon this velocity model, we have combined the receiver functions with surface wave data using the joint inversion method of Julia et al. (2000). In this technique, the two sets of observations are combined into a single algebraic equation and each data set is weighted by an estimate of the uncertainty in the observations. The receiver functions are calculated using an iterative time-domain deconvolution technique. We also consider azimuthal changes in the receiver functions and have stacked them into different groups accordingly. We are improving our surface wave model by making Love and Rayleigh dispersion measurements at the ETSE stations and incorporating them into a regional group velocity model for periods between 10 and 100 seconds. Preliminary results indicate a strong trend in the long period group velocities toward the northeast, indicating slow upper mantle velocities in the area consistent with Pn, Sn and receiver function results. Starting models used for the joint inversions include both a 1-D model from a 12-ton dam shot recorded by ETSE [Gurbuz et al., 2004] and

  14. High Resolution Velocity Structure in Eastern Turkey

    SciTech Connect

    Pasyanos, M; Gok, R; Zor, E; Walter, W

    2004-09-03

    We investigate the crustal and upper mantle structure of eastern Turkey where the Anatolian, Arabian and Eurasian Plates meet and form a complex tectonic structure. The Bitlis suture is a continental collision zone between the Anatolian plateau and the Arabian plate. Broadband data available through the Eastern Turkey Seismic Experiment (ETSE) provided a unique opportunity for studying the high resolution velocity structure. Zor et al. found an average 46 km thick crust in Anatolian plateau using six-layered grid search inversion of the ETSE receiver functions. Receiver functions are sensitive to the velocity contrast of interfaces and the relative travel time of converted and reverberated waves between those interfaces. The interpretation of receiver function alone with many-layered parameterization may result in an apparent depth-velocity tradeoff. In order to improve previous velocity model, we employed the joint inversion method with many layered parameterization of Julia et al. (2000) to the ETSE receiver functions. In this technique, the receiver function and surface-wave observations are combined into a single algebraic equation and each data set is weighted by an estimate of the uncertainty in the observations. We consider azimuthal changes of receiver functions and have stacked them into different groups. We calculated the receiver functions using iterative time-domain deconvolution technique and surface wave group velocity dispersion curves between 10-100 sec. We are making surface wave dispersion measurements at the ETSE stations and have incorporated them into a regional group velocity model. Preliminary results indicate a strong trend in the long period group velocity in the northeast. This indicates slow upper mantle velocities in the region consistent with Pn, Sn and receiver function results. We started with both the 1-D model that is obtained with the 12 tones dam explosion shot data recorded by ETSE network and the existing receiver function

  15. High Resolution Airborne Shallow Water Mapping

    NASA Astrophysics Data System (ADS)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  16. The HFIP High Resolution Hurricane Forecast Test

    NASA Astrophysics Data System (ADS)

    Nance, L. B.; Bernardet, L.; Bao, S.; Brown, B.; Carson, L.; Fowler, T.; Halley Gotway, J.; Harrop, C.; Szoke, E.; Tollerud, E. I.; Wolff, J.; Yuan, H.

    2010-12-01

    Tropical cyclones are a serious concern for the nation, causing significant risk to life, property and economic vitality. The National Oceanic and Atmospheric Administration (NOAA) National Weather Service has a mission of issuing tropical cyclone forecasts and warnings, aimed at protecting life and property and enhancing the national economy. In the last 10 years, the errors in hurricane track forecasts have been reduced by about 50% through improved model guidance, enhanced observations, and forecaster expertise. However, little progress has been made during this period toward reducing forecasted intensity errors. To address this shortcoming, NOAA established the Hurricane Forecast Improvement Project (HFIP) in 2007. HFIP is a 10-year plan to improve one to five day tropical cyclone forecasts, with a focus on rapid intensity change. Recent research suggests that prediction models with grid spacing less than 1 km in the inner core of the hurricane may provide a substantial improvement in intensity forecasts. The 2008-09 staging of the High Resolution Hurricane (HRH) Test focused on quantifying the impact of increased horizontal resolution in numerical models on hurricane intensity forecasts. The primary goal of this test was an evaluation of the effect of increasing horizontal resolution within a given model across a variety of storms with different intensity, location and structure. The test focused on 69 retrospectives cases from the 2005 and 2007 hurricane seasons. Six modeling groups participated in the HRH test utilizing a variety of models, including three configurations of the Weather Research and Forecasting (WRF) model, the operational GFDL model, the Navy’s tropical cyclone model, and a model developed at the University of Wisconsin-Madison (UWM). The Development Testbed Center (DTC) was tasked with providing objective verification statistics for a variety of metrics. This presentation provides an overview of the HRH Test and a summary of the standard

  17. NO formation during agricultural straw combustion.

    PubMed

    Ren, Qiangqiang; Zhao, Changsui; Duan, Lunbo; Chen, Xiaoping

    2011-07-01

    NO formation during combustion of four typical kinds of straw (wheat straw, rice straw, cotton stalk and corn stalk) which belong to soft straw and hard straw was studied in a tubular quartz fixed bed reactor under conditions relevant to grate boiler combustion. Regarding the real situation in biomass fired power plants in China, NO formation from blended straw combustion was also investigated. Nitrogen transfer during blended straw pyrolysis was performed using a thermogravimetric analyzer (TGA) coupled with a Fourier transform infrared (FTIR) spectrometer. The results show that NO conversion for the four straws during combustion is distinctive. Over 70% fuel-N converts into NO for cotton stalk, while only 37% for wheat straw under the same condition. When wheat straw and cotton stalk were mixed, N-NO conversion increases. The limestone addition promotes NO emission during cotton stalk combustion. The presence of SO(2) in atmosphere suppresses NO formation from straw combustion. PMID:21592786

  18. A high resolution solar atlas for fluorescence calculations

    NASA Technical Reports Server (NTRS)

    Hearn, M. F.; Ohlmacher, J. T.; Schleicher, D. G.

    1983-01-01

    The characteristics required of a solar atlas to be used for studying the fluorescence process in comets are examined. Several sources of low resolution data were combined to provide an absolutely calibrated spectrum from 2250 A to 7000A. Three different sources of high resolution data were also used to cover this same spectral range. The low resolution data were then used to put each high resolution spectrum on an absolute scale. The three high resolution spectra were then combined in their overlap regions to produce a single, absolutely calibrated high resolution spectrum over the entire spectral range.

  19. High Resolution Simulation in the Eastern Amazonia

    NASA Astrophysics Data System (ADS)

    Cohen, J.; Sa, L.; Nogueira, D.; Gandu, A.

    2006-05-01

    produced by the BRAMS model shows that the numerical simulation reproduced both LLJs of November 13 and 14 at, 06 UTC. However, their magnitude was about 2 and 3 m/s lower and their height was higher than what was observed. In order to verify the origin of the LLJ, the variability of the wind at the jet level, during the numerical simulation in grid 1, was analyzed. In the afternoon, it was observed the increase in wind speed at the Atlantic Coast associated to sea breeze circulation. Nonetheless, at 00 UTC, this maximum speed center penetrated the continent and reached the region of Caxiuanã. Indeed, this circulation was under a canalization effect due to the rivers distribution. On November 13, the sea breeze formed again. However, the circulation on this day was relatively weak. The numerical simulations with this high resolution model indicated the occurrence of low level jets. Nevertheless, it did not reproduce in detail some of the observed characteristics of the flow. An important aspect revealed by the simulations with BRAMS was the origin of the jets, which is associated to a phenomenon of canalization of the flow above zones where there are some of the great rivers in the Northeast of Para.

  20. ALMA Debuts High-Resolution Results

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    through space as it orbits the Sun. The resolution of these images — enough to study the shape and even some surface features of the asteroid! — are unprecedented for this wavelength. HL Tau is a young star surrounded by a protoplanetary disk. ALMA's detailed observations of this region revealed remarkable structure within the disk: a series of light and dark concentric rings indicative of planets caught in the act of forming. Studying this system will help us understand how multi-planet solar systems like our own form and evolve. The star-forming galaxy SDP.81 — located so far away that the light we see was emitted when the Universe was only 15% of its current age — is gravitationally-lensed into a cosmic arc, due to the convenient placement of a nearby foreground galaxy. The combination of the lucky alignment and ALMA's high resolution grant us a spectacularly detailed view of this distant galaxy, allowing us to study its actual shape and the motion within it. The observations from ALMA's first test of its long baseline demonstrate that ALMA is capable of doing the transformational science it promised. As we gear up for the next cycle of observations, it's clear that exciting times are ahead! Citation: ALMA ship et al. 2015 ApJ 808 L1, L2, L3 and L4. Focus on the ALMA Long Baseline Campaign

  1. CHARACTERIZATION OF NON-DERIVATIZED PLANT CELL WALLS USING HIGH-RESOLUTION SOLUTION-STATE NMR SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recently described plant cell wall dissolution system has been logically modified to utilize perdeuterated solvents to allow direct in-nmr-tube dissolution and high-resolution solution-state NMR of the whole cell wall without derivatization. Finely ground cell wall material dissolves in a solvent ...

  2. Performance of high resolution decoding with Multi-Anode Microchannel Array detectors

    NASA Technical Reports Server (NTRS)

    Kasle, David B.; Horch, Elliott P.

    1993-01-01

    The Multi-Anode Microchannel Array (MAMA) is a microchannel plate based photon counting detector with applications in ground-based and space-based astronomy. The detector electronics decode the position of each photon event, and the decoding algorithm that associates a given event with the appropriate pixel is determined by the geometry of the anode array. The standard MAMA detector has a spatial resolution set by the anode array of 25 microns, but the MCP pore resolution exceeds this. The performance of a new algorithm that halves the pixel spacing and improves the pixel spatial resolution is described. The new algorithm does not degrade the pulse-pair resolution of the detector and does not require any modifications to the detector tube. Measurements of the detector's response demonstrate that high resolution decoding yields a 60 percent enhancement in spatial resolution. Measurements of the performance of the high resolution algorithm with a 14 micron MAMA detector are also described. The parameters that control high resolution performance are discussed. Results of the application of high resolution decoding to speckle interferometry are presented.

  3. Development of a high resolution gamma camera system using finely grooved GAGG scintillator

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Kataoka, Jun; Oshima, Tsubasa; Ogata, Yoshimune; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Hatazawa, Jun

    2016-06-01

    High resolution gamma cameras require small pixel scintillator blocks with high light output. However, manufacturing a small pixel scintillator block is difficult when the pixel size becomes small. To solve this limitation, we developed a high resolution gamma camera system using a finely grooved Ce-doped Gd3Al2Ga3O12 (GAGG) plate. Our gamma camera's detector consists of a 1-mm-thick finely grooved GAGG plate that is optically coupled to a 1-in. position sensitive photomultiplier tube (PSPMT). The grooved GAGG plate has 0.2×0.2 mm pixels with 0.05-mm wide slits (between the pixels) that were manufactured using a dicing saw. We used a Hamamatsu PSPMT with a 1-in. square high quantum efficiency (HQE) PSPMT (R8900-100-C12). The energy resolution for the Co-57 gamma photons (122 keV) was 18.5% FWHM. The intrinsic spatial resolution was estimated to be 0.7-mm FWHM. With a 0.5-mm diameter pinhole collimator mounted to its front, we achieved a high resolution, small field-of-view gamma camera. The system spatial resolution for the Co-57 gamma photons was 1.0-mm FWHM, and the sensitivity was 0.0025%, 10 mm from the collimator surface. The Tc-99m HMDP administered mouse images showed the fine structures of the mouse body's parts. Our developed high resolution small pixel GAGG gamma camera is promising for such small animal imaging.

  4. High resolution bragg focusing optics for synchrotron monochromators and analyzers

    SciTech Connect

    Knapp, G.S.; Beno, M.A.; Gofron, K.J.

    1997-07-01

    A number of different applications for high resolution Bragg Focusing Optics are reviewed. Applications include Sagittal Focusing, Energy Dispersive optics for x-ray absorption and diffraction, a curved analyzer-multichannel detector method for efficient acquisition of powder and small angle scattering data, the use of Backscattering Analyzers for very high resolution inelastic scattering, and curved crystals for high energy applications.

  5. FTIR free-jet set-up for the high resolution spectroscopic investigation of condensable species

    NASA Astrophysics Data System (ADS)

    Georges, R.; Bonnamy, A.; Benidar, A.; Decroi, M.; Boissoles, J.

    2002-05-01

    An existing experimental set-up combining Fourier transform infrared (FTIR) spectroscopy and free-jet cooling has been modified significantly to allow high resolution studies of the spectrum of monomer species which are liquid under standard conditions. Evaporation of the liquid samples is controlled by a condenser apparatus which is described. A supersonic planar expansion issuing from a narrow aperture is preferred for its very high cooling rate. Such an expansion, probed with a pitot tube, has a zone of limited temperature gradient close to the nozzle exit. The continuum isentropic model appears well suited to describing the thermodynamic properties of the flow up to a high number of nozzle diameters downstream. High resolution spectra of benzene and methanol have been recorded in the 3 µm wavelength range, and their analysis demonstrates a well defined rotational temperature in the 20-25 K range.

  6. High resolution airborne geophysics at hazardous waste disposal sites

    SciTech Connect

    Beard, L.P.; Nyquist, J.E.; Doll, W.E.; Chong Foo, M.; Gamey, T.J.

    1995-06-01

    In 1994, a high resolution helicopter geophysical survey was conducted over portions of the Oak Ridge Reservation, Tennessee. The 1800 line kilometer survey included multi-frequency electromagnetic and magnetic sensors. The areas covered by the high resolution portion of the survey were selected on the basis of their importance to the environmental restoration effort and on data obtained from the reconnaissance phase of the airborne survey in which electromagnetic, magnetic, and radiometric data were collected over the entire Oak Ridge Reservation in 1992--1993. The high resolution phase had lower sensor heights, more and higher EM frequencies, and tighter line spacings than did the reconnaissance survey. When flying over exceptionally clear areas, the high resolution bird came within a few meters of the ground surface. Unfortunately, even sparse trees and power or phone lines could prevent the bird from being towed safely at low altitude, and over such areas it was more usual for it to be flown at about the same altitude as the bird in the reconnaissance survey, about 30m. Even so, the magnetometers used in the high resolution phase were 20m closer to the ground than in the reconnaissance phase because they were mounted on the tail of the bird rather than on the tow cable above the bird. The EM frequencies used in the high resolution survey ranged from 7400Hz to 67000Hz. Only the horizontal coplanar loop configuration was used in the high resolution flyovers.

  7. Methodology of high-resolution photography for mural condition database

    NASA Astrophysics Data System (ADS)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  8. High Resolution CryoFESEM of Microbial Surfaces

    NASA Astrophysics Data System (ADS)

    Erlandsen, Stanley; Lei, Ming; Martin-Lacave, Ines; Dunny, Gary; Wells, Carol

    2003-08-01

    The outer surfaces of three microorganisms, Giardia lamblia, Enterococcus faecalis, and Proteus mirabilis, were investigated by cryo-immobilization followed by sublimation of extracellular ice and cryocoating with either Pt alone or Pt plus carbon. Cryocoated samples were examined at [minus sign]125°C in either an in-lens field emission SEM or a below-the-lens field emission SEM. Cryocoating with Pt alone was sufficient for low magnification observation, but attempts to do high-resolution imaging resulted in radiolysis and cracking of the specimen surface. Double coating with Pt and carbon, in combination with high resolution backscatter electron detectors, enabled high-resolution imaging of the glycocalyx of bacteria, revealing a sponge-like network over the surface. High resolution examination of bacterial flagella also revealed a periodic substructure. Common artifacts included radiolysis leading to “cracking” of the surface, and insufficient deposition of Pt resulting in the absence of detectable surface topography.

  9. Update on High-Resolution Geodetically Controlled LROC Polar Mosaics

    NASA Astrophysics Data System (ADS)

    Archinal, B.; Lee, E.; Weller, L.; Richie, J.; Edmundson, K.; Laura, J.; Robinson, M.; Speyerer, E.; Boyd, A.; Bowman-Cisneros, E.; Wagner, R.; Nefian, A.

    2015-10-01

    We describe progress on high-resolution (1 m/pixel) geodetically controlled LROC mosaics of the lunar poles, which can be used for locating illumination resources (for solar power or cold traps) or landing site and surface operations planning.

  10. High resolution difference schemes for compressible gas dynamics

    SciTech Connect

    Woodward, P.; Colella, P.

    1980-07-30

    The advantages and disadvantages of four new high-resolution difference schemes, namely the von Neumann-Richtmyer, Godunovs, MUSCL and Glimms, for mathematically representing physical conditions in compressible gas flows are compared. (LCL)

  11. The opto-mechanical design of the Colorado High-resolution Echelle Stellar Spectrograph (CHESS)

    NASA Astrophysics Data System (ADS)

    Kane, Robert; Beasley, Matthew; Green, James; Burgh, Eric; France, Kevin

    2011-09-01

    We present the Colorado High-resolution Echelle Stellar Spectrograph (CHESS) sounding rocket payload. The design uses a mechanical collimator made from a grid of square tubing, an objective echelle grating, a holographically-ruled cross-disperser, a new 40 mm MCP with a cross strip anode or a delta-doped 3.5k x 3.5k CCD detector. The optics are suspended using carbon fiber rods epoxied to titanium inserts to create a space frame structure. A preliminary design is presented.

  12. Characterization of fiber Bragg grating-based sensor array for high resolution manometry

    NASA Astrophysics Data System (ADS)

    Becker, Martin; Rothhardt, Manfred; Schröder, Kerstin; Voigt, Sebastian; Mehner, Jan; Teubner, Andreas; Lüpke, Thomas; Thieroff, Christoph; Krüger, Matthias; Chojetzki, Christoph; Bartelt, Hartmut

    2012-04-01

    The combination of fiber Bragg grating arrays integrated in a soft plastic tube is promising for high resolution manometry (HRM) where pressure measurements are done with high spatial resolution. The application as a medical device and in vivo experiments have to be anticipated by characterization with a measurement setup that simulates natural conditions. Good results are achieved with a pressure chamber which applies a well-defined pressure with a soft tubular membrane. It is shown that the proposed catheter design reaches accuracies down to 1 mbar and 1 cm.

  13. High-resolution absorption cross sections of C2H6 at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Hargreaves, Robert J.; Buzan, Eric; Dulick, Michael; Bernath, Peter F.

    2015-11-01

    Infrared absorption cross sections near 3.3 μm have been obtained for ethane, C2H6. These were acquired at elevated temperatures (up to 773 K) using a Fourier transform infrared spectrometer and tube furnace with a resolution of 0.005 cm-1. The integrated absorption was calibrated using composite infrared spectra taken from the Pacific Northwest National Laboratory (PNNL). These new measurements are the first high-resolution infrared C2H6 cross sections at elevated temperatures.

  14. AVHRR/1-FM Advanced Very High Resolution Radiometer

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The advanced very high resolution radiometer is discussed. The program covers design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical/structural model, and a life test model. Special bench test and calibration equipment was developed for use on the program. The flight model program objectives were to fabricate, assemble and test four of the advanced very high resolution radiometers along with a bench cooler and collimator.

  15. A method for generating high resolution satellite image time series

    NASA Astrophysics Data System (ADS)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  16. High Resolution Local Structure-Constrained Image Upsampling.

    PubMed

    Zhao, Yang; Wang, Ronggang; Wang, Wenmin; Gao, Wen

    2015-11-01

    With the development of ultra-high-resolution display devices, the visual perception of fine texture details is becoming more and more important. A method of high-quality image upsampling with a low cost is greatly needed. In this paper, we propose a fast and efficient image upsampling method that makes use of high-resolution local structure constraints. The average local difference is used to divide a bicubic-interpolated image into a sharp edge area and a texture area, and these two areas are reconstructed separately with specific constraints. For reconstruction of the sharp edge area, a high-resolution gradient map is estimated as an extra constraint for the recovery of sharp and natural edges; for the reconstruction of the texture area, a high-resolution local texture structure map is estimated as an extra constraint to recover fine texture details. These two reconstructed areas are then combined to obtain the final high-resolution image. The experimental results demonstrated that the proposed method recovered finer pixel-level texture details and obtained top-level objective performance with a low time cost compared with state-of-the-art methods. PMID:26186777

  17. Design and implementation of spaceborne high resolution infrared touch screen

    NASA Astrophysics Data System (ADS)

    Li, Tai-guo; Li, Wen-xin; Dong, Yi-peng; Ma, Wen; Xia, Jia-gao

    2015-10-01

    For the consideration of the special application environment of the electronic products used in aerospace and to further more improve the human-computer interaction of the manned aerospace area. The research is based on the design and implementation way of the high resolution spaceborne infrared touch screen on the basis of FPGA and DSP frame structure. Beside the introduction of the whole structure for the high resolution spaceborne infrared touch screen system, this essay also gives the detail information about design of hardware for the high resolution spaceborne infrared touch screen system, FPGA design, GUI design and DSP algorithm design based on Lagrange interpolation. What is more, the easy makes a comprehensive research of the reliability design for the high resolution spaceborne infrared touch screen for the special purpose of it. Besides, the system test is done after installation of spaceborne infrared touch screen. The test result shows that the system is simple and reliable enough, which has a stable running environment and high resolution, which certainly can meet the special requirement of the manned aerospace instrument products.

  18. A capacitively coupled temperature-jump arrangement for high-resolution biomolecular NMR.

    PubMed

    Gal, Maayan; Zibzener, Koby; Frydman, Lucio

    2010-11-01

    A simple design for performing rapid temperature jumps within a high-resolution nuclear magnetic resonance (NMR) setting is presented and exemplified. The design is based on mounting, around a conventional NMR glass tube, an inductive radiofrequency (RF) irradiation coil that is suitably tuned by a resonant circuit and is driven by one of the NMR's console high-power RF amplifiers. The electric fields generated by this coil's thin metal strips can lead to a fast and efficient heating of the sample, amounting to temperature jumps of ≈ 20 °C in well within a second-particularly in the presence of lossy dielectric media like those provided by physiological buffers. Moreover, when wound around a 4-mm NMR tube, the resulting device fits a conventional 5-mm inverse probe and is wholly compatible with the field homogeneities and sensitivities expected for high-resolution biomolecular NMR conditions. The performance characteristics of this new system were tested using saline solutions, as well as on a lyotropic liquid crystal capable of undergoing nematic → isotropic transitions in the neighborhood of ambient temperature. These settings were then incorporated into the performance of a new kind of single-scan 2D NMR spectroscopy acquisition, correlating the anisotropic and isotropic patterns elicited by solutes dissolved in such liquid-crystalline systems, before and after a sudden temperature jump occurring during an intervening mixing period. PMID:20818777

  19. High resolution single particle refinement in EMAN2.1.

    PubMed

    Bell, James M; Chen, Muyuan; Baldwin, Philip R; Ludtke, Steven J

    2016-05-01

    EMAN2.1 is a complete image processing suite for quantitative analysis of grayscale images, with a primary focus on transmission electron microscopy, with complete workflows for performing high resolution single particle reconstruction, 2-D and 3-D heterogeneity analysis, random conical tilt reconstruction and subtomogram averaging, among other tasks. In this manuscript we provide the first detailed description of the high resolution single particle analysis pipeline and the philosophy behind its approach to the reconstruction problem. High resolution refinement is a fully automated process, and involves an advanced set of heuristics to select optimal algorithms for each specific refinement task. A gold standard FSC is produced automatically as part of refinement, providing a robust resolution estimate for the final map, and this is used to optimally filter the final CTF phase and amplitude corrected structure. Additional methods are in-place to reduce model bias during refinement, and to permit cross-validation using other computational methods. PMID:26931650

  20. Single sensor processing to obtain high resolution color component signals

    NASA Technical Reports Server (NTRS)

    Glenn, William E. (Inventor)

    2010-01-01

    A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.

  1. A high-resolution vehicle emission inventory for China

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Zhang, Q.; He, K.; Huo, H.; Yao, Z.; Wang, X.

    2012-12-01

    Developing high resolution emission inventory is an essential task for air quality modeling and management. However, current vehicle emission inventories in China are usually developed at provincial level and then allocated to grids based on various spatial surrogates, which is difficult to get high spatial resolution. In this work, we developed a new approach to construct a high-resolution vehicle emission inventory for China. First, vehicle population at county level were estimated by using the relationship between per-capita GDP and vehicle ownership. Then the Weather Research and Forecasting (WRF) model were used to drive the International Vehicle Emission (IVE) model to get monthly emission factors for each county. Finally, vehicle emissions by county were allocated to grids with 5-km horizon resolution by using high-resolution road network data. This work provides a better understanding of spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.

  2. High-resolution signal synthesis for time-frequency distributions

    SciTech Connect

    Cunningham, G.S.; Williams, W.J.

    1993-03-01

    Bilinear time-frequency distributions (TFDs) offer improved resolution over linear nine-frequency representations (TFRs), but many TFDs are costly to evaluate and are not associated with signal synthesis algorithms. Recently, the spectrogram (SP) decomposition and weighted reversal correlator decomposition have been used to define low-cost, high-resolution TFDs. In this paper, we show that the vector-valued ``square-root`` of a TFD (VVTFR) provides a representational underpinning for the TFD. By synthesizing signals from modified VVTFRs, we define high-resolution signal synthesis algorithms associated with TFDs. The signal analysis and synthesis packages can be implemented as weighted sums of SP/short-time Fourier Transform signal analysis and synthesis packages, which are widely available, allowing the interested non-specialist easy access to high-resolution methods.

  3. High-resolution signal synthesis for time-frequency distributions

    SciTech Connect

    Cunningham, G.S. ); Williams, W.J. . Dept. of Electrical Engineering and Computer Science)

    1993-01-01

    Bilinear time-frequency distributions (TFDs) offer improved resolution over linear nine-frequency representations (TFRs), but many TFDs are costly to evaluate and are not associated with signal synthesis algorithms. Recently, the spectrogram (SP) decomposition and weighted reversal correlator decomposition have been used to define low-cost, high-resolution TFDs. In this paper, we show that the vector-valued square-root'' of a TFD (VVTFR) provides a representational underpinning for the TFD. By synthesizing signals from modified VVTFRs, we define high-resolution signal synthesis algorithms associated with TFDs. The signal analysis and synthesis packages can be implemented as weighted sums of SP/short-time Fourier Transform signal analysis and synthesis packages, which are widely available, allowing the interested non-specialist easy access to high-resolution methods.

  4. New vacuum solar telescope and observations with high resolution

    NASA Astrophysics Data System (ADS)

    Liu, Zhong; Xu, Jun; Gu, Bo-Zhong; Wang, Sen; You, Jian-Qi; Shen, Long-Xiang; Lu, Ru-Wei; Jin, Zhen-Yu; Chen, Lin-Fei; Lou, Ke; Li, Zhi; Liu, Guang-Qian; Xu, Zhi; Rao, Chang-Hui; Hu, Qi-Qian; Li, Ru-Feng; Fu, Hao-Wen; Wang, Feng; Bao, Men-Xian; Wu, Ming-Chan; Zhang, Bo-Rong

    2014-06-01

    The New Vacuum Solar Telescope (NVST) is a one meter vacuum solar telescope that aims to observe fine structures on the Sun. The main goals of NVST are high resolution imaging and spectral observations, including measurements of the solar magnetic field. NVST is the primary ground-based facility used by the Chinese solar research community in this solar cycle. It is located by Fuxian Lake in southwest China, where the seeing is good enough to perform high resolution observations. We first introduce the general conditions at the Fuxian Solar Observatory and the primary science cases of NVST. Then, the basic structures of this telescope and instruments are described in detail. Finally, some typical high resolution data of the solar photosphere and chromosphere are also shown.

  5. High-resolution Urban Image Classification Using Extended Features

    SciTech Connect

    Vatsavai, Raju

    2011-01-01

    High-resolution image classification poses several challenges because the typical object size is much larger than the pixel resolution. Any given pixel (spectral features at that location) by itself is not a good indicator of the object it belongs to without looking at the broader spatial footprint. Therefore most modern machine learning approaches that are based on per-pixel spectral features are not very effective in high- resolution urban image classification. One way to overcome this problem is to extract features that exploit spatial contextual information. In this study, we evaluated several features in- cluding edge density, texture, and morphology. Several machine learning schemes were tested on the features extracted from a very high-resolution remote sensing image and results were presented.

  6. HIRES: the high resolution spectrograph for the E-ELT

    NASA Astrophysics Data System (ADS)

    Zerbi, F. M.; Bouchy, F.; Fynbo, J.; Maiolino, R.; Piskunov, N.; Rebolo Lopez, R.; Santos, N.; Strassmeier, K.; Udry, S.; Vanzi, L.; Riva, M.; Basden, A.; Boisse, I.; Bonfils, X.; Buscher, D.; Cabral, A.; Dimarcantonio, P.; Di Varano, I.; Henry, D.; Monteiro, M.; Morris, T.; Murray, G.; Oliva, Ernesto; Parry, I.; Pepe, F.; Quirrenbach, A.; Rasilla, J. L.; Rees, P.; Stempels, E.; Valenziano, L.; Wells, M.; Wildi, F.; Origlia, L.; Allende Prieto, C.; Chiavassa, A.; Cristiani, S.; Figueira, P.; Gustafsson, B.; Hatzes, A.; Haehnelt, M.; Heng, K.; Israelian, G.; Kochukhov, O.; Lovis, C.; Marconi, A.; Martins, C. J. A. P.; Noterdaeme, P.; Petitjean, P.; Puzia, T.; Queloz, D.; Reiners, A.; Zoccali, M.

    2014-08-01

    The current instrumentation plan for the E-ELT foresees a High Resolution Spectrograph conventionally indicated as HIRES. Shaped on the study of extra-solar planet atmospheres, Pop-III stars and fundamental physical constants, HIRES is intended to embed observing modes at high-resolution (up to R=150000) and large spectral range (from the blue limit to the K band) useful for a large suite of science cases that can exclusively be tackled by the E-ELT. We present in this paper the solution for HIRES envisaged by the "HIRES initiative", the international collaboration established in 2013 to pursue a HIRES on E-ELT.

  7. Microbeam X-Ray Standing Wave and High Resolution Diffraction

    SciTech Connect

    Kazimirov, A.; Bilderback, D.H.; Huang, R.; Sirenko, A.

    2004-05-12

    Post-focusing collimating optics are introduced as a tool to condition X-ray microbeams for the use in high-resolution X-ray diffraction and scattering techniques. As an example, a one-bounce imaging capillary and miniature Si(004) channel-cut crystal were used to produce a microbeam with 10 {mu}m size and an ultimate angular resolution of 2.5 arc sec. This beam was used to measure the strain in semiconductor microstructures by using X-ray high resolution diffraction and standing wave techniques to {delta}d/d < 5x10-4.

  8. High resolution BPMS with integrated gain correction system

    SciTech Connect

    Wendt, M.; Briegel, C.; Eddy, N.; Fellenz, B.; Gianfelice, E.; Prieto, P.; Rechenmacher, R.; Voy, D.; Terunuma, N.; Urakawa, J.; /KEK, Tsukuba

    2009-08-01

    High resolution beam position monitors (BPM) are an essential tool to achieve and reproduce a low vertical beam emittance at the KEK Accelerator Test Facility (ATF) damping ring. The ATF damping ring (DR) BPMs are currently upgraded with new high resolution read-out electronics. Based on analog and digital down-conversion techniques, the upgrade includes an automatic gain calibration system to correct for slow drift effects and ensure high reproducible beam position readings. The concept and its technical realization, as well as preliminary results of beam studies are presented.

  9. Modified Noise Power Ratio testing of high resolution digitizers

    SciTech Connect

    McDonald, T.S.

    1994-05-01

    A broadband, full signal range, side-by-side (tandem) test method for estimating the internal noise performance of high resolution digitizers is described and illustrated. The technique involves a re-definition of the traditional Noise Power Ratio (NPR) test, a change that not only makes this test applicable to higher resolution systems than was previously practical, but also enhances its value and flexibility. Since coherence analysis is the basis of this new definition, and since the application of coherence procedures to high resolution data poses several problems, this report discusses these problems and their resolution.

  10. Theoretical Problems in High Resolution Solar Physics, 2

    NASA Technical Reports Server (NTRS)

    Athay, G. (Editor); Spicer, D. S. (Editor)

    1987-01-01

    The Science Working Group for the High Resolution Solar Observatory (HRSO) laid plans beginning in 1984 for a series of workshops designed to stimulate a broadbased input from the scientific community to the HRSO mission. These workshops have the dual objectives of encouraging an early start on the difficult theoretical problems in radiative transfer, magnetohydrodynamics, and plasma physics that will be posed by the HRSO data, and maintaining current discussions of results in high resolution solar studies. This workshop was the second in the series. The workshop format presented invited review papers during the formal sessions and contributed poster papers for discussions during open periods. Both are presented.

  11. ATS-6 - The Geosynchronous Very High Resolution Radiometer

    NASA Technical Reports Server (NTRS)

    Shenk, W. E.; Stephanides, C. C.; Sonnek, G. E.; Howell, L. D.

    1975-01-01

    The Geosynchronous Very High Resolution Radiometer (GVHRR), flown on the three-axis stabilized geosynchronous satellite, Applications Technology Satellite-6 (ATS-6), collected meteorological data for two months during the summer of 1974. Several hundred images were successfully taken. Data collection terminated when the instrument chopper motor failed. The instrument, its supporting ground equipment, and the data collected in orbit are described.

  12. Reproducible high-resolution multispectral image acquisition in dermatology

    NASA Astrophysics Data System (ADS)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  13. Evacuee Compliance Behavior Analysis using High Resolution Demographic Information

    SciTech Connect

    Lu, Wei; Han, Lee; Liu, Cheng; Tuttle, Mark A; Bhaduri, Budhendra L

    2014-01-01

    The purpose of this study is to examine whether evacuee compliance behavior with route assignments from different resolutions of demographic data would impact the evacuation performance. Most existing evacuation strategies assume that travelers will follow evacuation instructions, while in reality a certain percent of evacuees do not comply with prescribed instructions. In this paper, a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) were conducted for the detailed road network representing Alexandria, Virginia. A revised platform for evacuation modeling built on high resolution demographic data and activity-based microscopic traffic simulation is proposed. The results indicate that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it does not significantly compromise the efficiency with high resolution LPC assignment. The TAZ assignment also underestimates the real travel time during evacuation, especially for high compliance simulations. This suggests that conventional evacuation studies based on TAZ assignment might not be effective at providing efficient guidance to evacuees. From the high resolution data perspective, traveler compliance behavior is an important factor but it does not impact the system performance significantly. The highlight of evacuee compliance behavior analysis should be emphasized on individual evacuee level route/shelter assignments, rather than the whole system performance.

  14. High resolution data base for use with MAP

    SciTech Connect

    Tapley, W.C.; Harris, D.B.

    1987-05-05

    A high resolution cartographic data base of thw World is available from the CIA. We obtained this data, extracted portions of the data, and produced cartographic files of varying resolutions. The resulting data files are of the proper format for use with MAP (2), our in-house cartographic plotting program.

  15. Ultrastable reference pulser for high-resolution spectrometers

    NASA Technical Reports Server (NTRS)

    Brenner, R.; Lenkszus, F. R.; Sifter, L. L.; Strauss, M. G.

    1970-01-01

    Solid-state double-pulse generator for a high resolution semiconductor detector meets specific requirements for resolution /0.05 percent/, amplitude range /0.1-13 MeV/, and repetition rate /0.1-1000 pulses per second/. A tag pulse is generated in coincidence with each reference pulse.

  16. High-resolution TFT-LCD for spatial light modulator

    NASA Astrophysics Data System (ADS)

    Lee, JaeWon; Kim, Yong-Hae; Byun, Chun-Won; Pi, Jae-Eun; Oh, Himchan; Kim, GiHeon; Lee, Myung-Lae; Chu, Hye-Yong; Hwang, Chi-Sun

    2014-06-01

    SLM with very fine pixel pitch is needed for the holographic display system. Among various kinds of SLMs, commercially available high resolution LCoS has been widely used as a spatial light modulator. But the size of commercially available LCoS SLM is limited because the manufacturing technology of LCoS is based on the semiconductor process developed on small size Si wafer. Recently very high resolution flat panel display panel (~500ppi) was developed as a "retina display". Until now, the pixel pitch of flat panel display is several times larger than the pixel pitch of LCoS. But considering the possibility of shrink down the pixel pitch with advanced lithographic tools, the application of flat panel display will make it possible to build a SLM with high spatial bandwidth product. We simulated High resolution TFT-LCD panel on glass substrate using oxide semiconductor TFT with pixel pitch of 20um. And we considered phase modulation behavior of LC(ECB) mode. The TFT-LCD panel is reflective type with 4-metal structure with organic planarization layers. The technical challenge for high resolution large area SLM will be discussed with very fine pixel.

  17. High-Resolution Nuclear Magnetic Resonance of Solids.

    ERIC Educational Resources Information Center

    Maciel, Gary E.

    1984-01-01

    Examines recent developments in techniques for obtaining high-resolution nuclear magnetic resonance (NMR) spectra on solid samples, discussing the kinds of applications for which these techniques are well suited. Also discusses the characteristics of NMR of solids and generating magnetization for NMR in solids. (JN)

  18. Application of Classification Models to Pharyngeal High-Resolution Manometry

    ERIC Educational Resources Information Center

    Mielens, Jason D.; Hoffman, Matthew R.; Ciucci, Michelle R.; McCulloch, Timothy M.; Jiang, Jack J.

    2012-01-01

    Purpose: The authors present 3 methods of performing pattern recognition on spatiotemporal plots produced by pharyngeal high-resolution manometry (HRM). Method: Classification models, including the artificial neural networks (ANNs) multilayer perceptron (MLP) and learning vector quantization (LVQ), as well as support vector machines (SVM), were…

  19. High resolution bone mineral densitometry with a gamma camera

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Jhingran, S.; Johnson, P.

    1983-01-01

    A technique by which the regional distribution of bone mineral can be determined in bone samples from small animals is described. The technique employs an Anger camera interfaced to a medical computer. High resolution imaging is possible by producing magnified images of the bone samples. Regional densitometry of femurs from oophorectomised and bone mineral loss.

  20. Vehicle Detection and Classification from High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Abraham, L.; Sasikumar, M.

    2014-11-01

    In the past decades satellite imagery has been used successfully for weather forecasting, geographical and geological applications. Low resolution satellite images are sufficient for these sorts of applications. But the technological developments in the field of satellite imaging provide high resolution sensors which expands its field of application. Thus the High Resolution Satellite Imagery (HRSI) proved to be a suitable alternative to aerial photogrammetric data to provide a new data source for object detection. Since the traffic rates in developing countries are enormously increasing, vehicle detection from satellite data will be a better choice for automating such systems. In this work, a novel technique for vehicle detection from the images obtained from high resolution sensors is proposed. Though we are using high resolution images, vehicles are seen only as tiny spots, difficult to distinguish from the background. But we are able to obtain a detection rate not less than 0.9. Thereafter we classify the detected vehicles into cars and trucks and find the count of them.

  1. Using High Resolution SPOT 5 Multispectral Imagery for Crop Identification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High resolution satellite imagery offers new opportunities for crop monitoring and assessment. A SPOT 5 image with four spectral bands (green, red, near-infrared, and mid-infrared) and 10-m pixel size covering intensively cropped areas in south Texas was evaluated for crop identification. Two images...

  2. Mapping riparian and wetland weeds with high resolution satellite imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquatic and wetland weeds are a serious management problem in many freshwater ecosystems of the world. This paper presents an overview on the application of using high resolution QuickBird multi-spectral satellite imagery for detecting weeds in waterways and wetlands in Texas. Unsupervised image a...

  3. High Resolution Wavenumber Standards for the Infrared. (IUPAC Recommendations 1995)

    NASA Technical Reports Server (NTRS)

    Guelachvili, G.; Birk, M.; Borde, C. J.; Brault, J. W.; Brown, L. R.; Carli, B.; Cole, A. R. H.; Evenson, K. M.; Fayt, A.; Hausamann, D.; Johns, J. W. C.; Kauppinen, J.; Kou, Q.; Maki, A. G.; Rao, K. N.; Toth, R. A.; Urban, W.; Valentin, A.; Verges, J.; Wagner, G.; Wappelhorst, M. H.; Wells, J. S.; Winnewisser, B. P.; Winnewisser, M.

    1995-01-01

    The calibration of high resolution infrared spectra is generally more precise than accurate. This is the case even when they are recorded with Fourier transform interferometers. This presentation aims at improving the accuracy of wavenumber measurements in the infrared by recommending a selection of spectral lines as wavenumber standards for absolute calibration.

  4. High-Resolution Fluorometer for Mapping Microscale Phytoplankton Distributions

    PubMed Central

    Doubell, Mark J.; Seuront, Laurent; Seymour, Justin R.; Patten, Nicole L.; Mitchell, James G.

    2006-01-01

    A new high-resolution, in situ profiling fluorometer maps fluorescence distributions with a spatial resolution of 0.5 to 1.5 mm to a depth of 70 m in the open ocean. We report centimeter-scale patterns for phytoplankton distributions associated with gradients exhibiting 10- to 30-fold changes in fluorescence in contrasting marine ecosystems. PMID:16751572

  5. High-resolution fluorometer for mapping microscale phytoplankton distributions.

    PubMed

    Doubell, Mark J; Seuront, Laurent; Seymour, Justin R; Patten, Nicole L; Mitchell, James G

    2006-06-01

    A new high-resolution, in situ profiling fluorometer maps fluorescence distributions with a spatial resolution of 0.5 to 1.5 mm to a depth of 70 m in the open ocean. We report centimeter-scale patterns for phytoplankton distributions associated with gradients exhibiting 10- to 30-fold changes in fluorescence in contrasting marine ecosystems. PMID:16751572

  6. Workshop on high-resolution, large-acceptance spectrometers

    SciTech Connect

    Zeidman, B.

    1981-01-01

    The purpose of the Workshop on High-Resolution, Large-Acceptance Spectrometers was to provide a means for exchange of information among those actively engaged in the design and construction of these new spectrometers. Thirty-seven papers were prepared for the data base.

  7. Homology Groups of High-Resolution Temporal Rainfall

    NASA Astrophysics Data System (ADS)

    Fernández, Félix; Vásquez Aguilar, Raciel; Carsteanu, Alin-Andrei

    2016-04-01

    This study applies topological data analysis, by generating homology groups to uncover patterns in the data of high-resolution temporal rainfall intensities from Iowa City (IIHR, U of Iowa). The state-space representation of the data is being investigated for an appropiate embedding dimension, in order to subsequently study topological properties of resulting manifold.

  8. Evaluating high resolution SPOT 5 satellite imagery for crop identification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High resolution satellite imagery offers new opportunities for crop monitoring and assessment. A SPOT 5 image with four spectral bands (green, red, near-infrared, and mid-infrared) and 10-m pixel size covering intensively cropped areas in south Texas was evaluated for crop identification. Two images...

  9. A DVD Spectroscope: A Simple, High-Resolution Classroom Spectroscope

    ERIC Educational Resources Information Center

    Wakabayashi, Fumitaka; Hamada, Kiyohito

    2006-01-01

    Digital versatile disks (DVDs) have successfully made up an inexpensive but high-resolution spectroscope suitable for classroom experiments that can easily be made with common material and gives clear and fine spectra of various light sources and colored material. The observed spectra can be photographed with a digital camera, and such images can…

  10. HIGH RESOLUTION RESISTIVITY LEAK DETECTION DATA PROCESSING & EVALUATION MEHTODS & REQUIREMENTS

    SciTech Connect

    SCHOFIELD JS

    2007-10-04

    This document has two purposes: {sm_bullet} Describe how data generated by High Resolution REsistivity (HRR) leak detection (LD) systems deployed during single-shell tank (SST) waste retrieval operations are processed and evaluated. {sm_bullet} Provide the basic review requirements for HRR data when Hrr is deployed as a leak detection method during SST waste retrievals.

  11. High resolution X-ray spectroscopy using microcalorimeters

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Holt, S. S.; Madejski, G. M.; Moseley, S. H.; Schoelkopf, R. J.; Szymkowiak, A. E.

    1988-01-01

    The use of microcalorimeters for high-resolution, high quantum efficiency, nondispersive X-ray spectroscopy has been demonstrated over the past few years. In this paper, the principles of X-ray calorimetry are reviewed, and the results of ongoing X-ray tests using microcalorimetry are summarized. An approach to building an X-ray calorimeter spectrometer is discussed.

  12. Dual camera system for acquisition of high resolution images

    NASA Astrophysics Data System (ADS)

    Papon, Jeremie A.; Broussard, Randy P.; Ives, Robert W.

    2007-02-01

    Video surveillance is ubiquitous in modern society, but surveillance cameras are severely limited in utility by their low resolution. With this in mind, we have developed a system that can autonomously take high resolution still frame images of moving objects. In order to do this, we combine a low resolution video camera and a high resolution still frame camera mounted on a pan/tilt mount. In order to determine what should be photographed (objects of interest), we employ a hierarchical method which first separates foreground from background using a temporal-based median filtering technique. We then use a feed-forward neural network classifier on the foreground regions to determine whether the regions contain the objects of interest. This is done over several frames, and a motion vector is deduced for the object. The pan/tilt mount then focuses the high resolution camera on the next predicted location of the object, and an image is acquired. All components are controlled through a single MATLAB graphical user interface (GUI). The final system we present will be able to detect multiple moving objects simultaneously, track them, and acquire high resolution images of them. Results will demonstrate performance tracking and imaging varying numbers of objects moving at different speeds.

  13. Plant respirometer enables high resolution of oxygen consumption rates

    NASA Technical Reports Server (NTRS)

    Foster, D. L.

    1966-01-01

    Plant respirometer permits high resolution of relatively small changes in the rate of oxygen consumed by plant organisms undergoing oxidative metabolism in a nonphotosynthetic state. The two stage supply and monitoring system operates by a differential pressure transducer and provides a calibrated output by digital or analog signals.

  14. High Resolution Mass Spectra Analysis with a Programmable Calculator.

    ERIC Educational Resources Information Center

    Holdsworth, David K.

    1980-01-01

    Highlighted are characteristics of programs written for a pocket-sized programmable calculator to analyze mass spectra data (such as displaying high resolution masses for formulas, predicting whether formulas are stable molecules or molecular ions, determining formulas by isotopic abundance measurement) in a laboratory or classroom. (CS)

  15. Persistence Diagrams of High-Resolution Temporal Rainfall

    NASA Astrophysics Data System (ADS)

    Fernández Méndez, F.; Carsteanu, A. A.

    2015-12-01

    This study applies Topological Data Analysis (TDA), by generating persistence diagrams to uncover patterns in the data of high-resolution temporal rainfall intensities from Iowa City (IIHR, U of Iowa). Persistence diagrams are a way to identify essential cycles in state-space representations of the data.

  16. High Resolution Rapid Revisits Insar Monitoring of Surface Deformation

    NASA Astrophysics Data System (ADS)

    Singhroy, V.; Li, J.; Charbonneau, F.

    2014-12-01

    Monitoring surface deformation on strategic energy and transportation corridors requires high resolution spatial and temporal InSAR images for mitigation and safety purposes. High resolution air photos, lidar and other satellite images are very useful in areas where the landslides can be fatal. Recently, radar interferometry (InSAR) techniques using more rapid revisit images from several radar satellites are increasingly being used in active deformation monitoring. The Canadian RADARSAT Constellation (RCM) is a three-satellite mission that will provide rapid revisits of four days interferometric (InSAR) capabilities that will be very useful for complex deformation monitoring. For instance, the monitoring of surface deformation due to permafrost activity, complex rock slide motion and steam assisted oil extraction will benefit from this new rapid revisit capability. This paper provide examples of how the high resolution (1-3 m) rapid revisit InSAR capabilities will improve our monitoring of surface deformation and provide insights in understanding triggering mechanisms. We analysed over a hundred high resolution InSAR images over a two year period on three geologically different sites with various configurations of topography, geomorphology, and geology conditions. We show from our analysis that the more frequent InSAR acquisitions are providing more information in understanding the rates of movement and failure process of permafrost triggered retrogressive thaw flows; the complex motion of an asymmetrical wedge failure of an active rock slide and the identification of over pressure zones related to oil extraction using steam injection. Keywords: High resolution, InSAR, rapid revisits, triggering mechanisms, oil extraction.

  17. High resolution ion mobility measurements of peptides, proteins, and atomic clusters

    NASA Astrophysics Data System (ADS)

    Hudgins, Robert Ransone

    1999-12-01

    A novel high resolution ion mobility apparatus has been constructed and applied to the study of atomic clusters and biological molecules in the gas phase. The resolving power of the high resolution apparatus is over an order of magnitude higher than has been achieved using conventional injected-ion drift tube techniques. A number of advantages of the experimental configuration, in addition to the higher resolution, are described. High resolution ion mobility measurements have been performed on atomic clusters of various composition. Several isomers for carbon cluster anions have been resolved for the first time. By comparison to computationally derived structures, detailed structural information can be extracted from the measurements. For small carbon cluster anions, ``tadpole'' isomers, where a short carbon chain is attached to a carbon ring, have been identified. Mobility measurements for (NaCl)nCl- clusters have revealed multiple isomers with the same fcc packing but different j x k x l dimensions. Metastable (NaCl)nCl- geometries isomerize on the timescale of the mobility measurements (hundreds of milliseconds). Rate constants and activation energies for the isomerization processes are extracted directly from the mobility measurements; the activation energies are found to be remarkably low. Indium and silicon cluster mobilities are found to be sensitive to the degree of electron spillout from the surface of the cluster, as revealed in differences in the anionic and cationic cluster mobilities. Mobility measurements of solvent-free biological molecules reveal important information about their intramolecular forces. Due to the gentle ion sampling in the high resolution ion mobility apparatus electrospray interface, high resolution mobilities of gas-phase proteins are found to be sensitive to the nature of the electrosprayed solution. Although calculations have shown that neutral polyalanine in vacuo is mostly helical, gas- phase polyalanine ions, AnH+, are found

  18. Future prospects for high resolution X-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Canizares, C. R.

    1981-01-01

    Capabilities of the X-ray spectroscopy payloads were compared. Comparison of capabilities of AXAF in the context of the science to be achieved is reported. The Einstein demonstrated the tremendous scientific power of spectroscopy to probe deeply the astrophysics of all types of celestial X-ray source. However, it has limitations in sensitivity and resolution. Each of the straw man instruments has a sensitivity that is at least an order of magnitude better than that of the Einstein FPSC. The AXAF promises powerful spectral capability.

  19. High-resolution DEM Effects on Geophysical Flow Models

    NASA Astrophysics Data System (ADS)

    Williams, M. R.; Bursik, M. I.; Stefanescu, R. E. R.; Patra, A. K.

    2014-12-01

    Geophysical mass flow models are numerical models that approximate pyroclastic flow events and can be used to assess the volcanic hazards certain areas may face. One such model, TITAN2D, approximates granular-flow physics based on a depth-averaged analytical model using inputs of basal and internal friction, material volume at a coordinate point, and a GIS in the form of a digital elevation model (DEM). The volume of modeled material propagates over the DEM in a way that is governed by the slope and curvature of the DEM surface and the basal and internal friction angles. Results from TITAN2D are highly dependent upon the inputs to the model. Here we focus on a single input: the DEM, which can vary in resolution. High resolution DEMs are advantageous in that they contain more surface details than lower-resolution models, presumably allowing modeled flows to propagate in a way more true to the real surface. However, very high resolution DEMs can create undesirable artifacts in the slope and curvature that corrupt flow calculations. With high-resolution DEMs becoming more widely available and preferable for use, determining the point at which high resolution data is less advantageous compared to lower resolution data becomes important. We find that in cases of high resolution, integer-valued DEMs, very high-resolution is detrimental to good model outputs when moderate-to-low (<10-15°) slope angles are involved. At these slope angles, multiple adjacent DEM cell elevation values are equal due to the need for the DEM to approximate the low slope with a limited set of integer values for elevation. The first derivative of the elevation surface thus becomes zero. In these cases, flow propagation is inhibited by these spurious zero-slope conditions. Here we present evidence for this "terracing effect" from 1) a mathematically defined simulated elevation model, to demonstrate the terracing effects of integer valued data, and 2) a real-world DEM where terracing must be

  20. High-resolution climate simulation of the last glacial maximum

    SciTech Connect

    Erickson III, David J

    2008-01-01

    The climate of the last glacial maximum (LGM) is simulated with a high-resolution atmospheric general circulation model, the NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. The purpose of the study is to assess whether there are significant benefits from the higher resolution simulation compared to the lower resolution simulation associated with the role of topography. The LGM simulations were forced with modified CLIMAP sea ice distribution and sea surface temperatures (SST) reduced by 1 C, ice sheet topography, reduced CO{sub 2}, and 21,000 BP orbital parameters. The high-resolution model captures modern climate reasonably well, in particular the distribution of heavy precipitation in the tropical Pacific. For the ice age case, surface temperature simulated by the high-resolution model agrees better with those of proxy estimates than does the low-resolution model. Despite the fact that tropical SSTs were only 2.1 C less than the control run, there are many lowland tropical land areas 4-6 C colder than present. Comparison of T170 model results with the best constrained proxy temperature estimates (noble gas concentrations in groundwater) now yield no significant differences between model and observations. There are also significant upland temperature changes in the best resolved tropical mountain belt (the Andes). We provisionally attribute this result in part as resulting from decreased lateral mixing between ocean and land in a model with more model grid cells. A longstanding model-data discrepancy therefore appears to be resolved without invoking any unusual model physics. The response of the Asian summer monsoon can also be more clearly linked to local geography in the high-resolution model than in the low-resolution model; this distinction should enable more confident validation of climate proxy data with the high-resolution model. Elsewhere, an inferred salinity increase in the subtropical North Atlantic may have

  1. The first observation of titanate nanotubes by spherical aberration corrected high-resolution transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Miao, L.; Tanemura, S.; Jiang, T.; Tanemura, M.; Yoshida, K.; Tanaka, N.; Xu, G.

    2009-07-01

    Multi-wall titanate nanotubes (MW-TNNTs) with high aspect ratio, large surface area and good uniformity were produced by alkaline hydrothermal treatment of grounded TiO 2 aerogels and further by applying freeze-drying. Not only the crystal phase and diameter, but also morphology of the starting materials impact on the aspect ratio and transformation efficiency of the obtained nanotubes. Other parameters, such as pH value during neutralization process and drying method for the final products, are important to control length and dispersion of MW-TNNTs. By spherical aberration corrected high-resolution transmission-electron-microscopy (Cs-corrected HRTEM) with lateral space resolution of 0.14 nm at 200 kV accelerating voltage and electron energy loss spectrum (EELS), the detailed structural analysis of MW-TNNTs reveals that (1) diameters of inner and outer tubes are about 4-7 nm and 10 nm, respectively, (2) numbers of layers are different from part to part along the longitudinal tube axis, (3) the walls of the tubes have interlayer spacing of 0.70-0.80 nm and the lateral fringes which are vertical to the walls have spacing of 0.32 nm, (4) each layer of MW-TNNT is the nanosheet composed by the arrayed TiO 6 octahedrons, and respective octahedron being slightly strained, and (5) no chirality of MW-TNNT tubular structure is observed.

  2. Ring artifact correction for high-resolution micro CT.

    PubMed

    Kyriakou, Yiannis; Prell, Daniel; Kalender, Willi A

    2009-09-01

    In high-resolution micro CT using flat detectors (FD), imperfect or defect detector elements may cause concentric-ring artifacts due to their continuous over- or underestimation of attenuation values, which often disturb image quality. We here present a dedicated image-based ring artifact correction method for high-resolution micro CT, based on median filtering of the reconstructed image and working on a transformed version of the reconstructed images in polar coordinates. This post-processing method reduced ring artifacts in the reconstructed images and improved image quality for phantom and in in vivo scans. Noise and artifacts were reduced both in transversal and in multi-planar reformations along the longitudinal axis. PMID:19661571

  3. High Resolution Coherent 3d Spectroscopy of Bromine

    NASA Astrophysics Data System (ADS)

    Strangfeld, Benjamin R.; Wells, Thresa A.; House, Zuri R.; Chen, Peter C.

    2013-06-01

    The high resolution gas phase electronic spectrum of bromine is rather congested due to many overlapping vibrational and rotational transitions with similar transition frequencies, and also due to isotopomeric effects. Expansion into the second dimension will remove some of this congestion; however through the implementation of High Resolution Coherent 3D Spectroscopy, the density of peaks is further reduced by at least two orders of magnitude. This allows for the selective examination of a small number of spatially resolved multidimensional bands, separated by vibrational quantum number and by isotopomer, which facilitates the fitting of many rovibrational peaks in bromine. The ability to derive information about the molecular constants for the electronic states involved will be discussed.

  4. High Resolution Coherent Three-Dimensional Spectroscopy of Iodine

    NASA Astrophysics Data System (ADS)

    House, Zuri R.; Wells, Thresa A.; Chen, Peter C.; Strangfeld, Benjamin R.

    2013-06-01

    The heavy congestion found in many one-dimensional spectra can make it difficult to study many transitions. A new coherent three-dimensional spectroscopic technique has been developed to eliminate the kind of congestion commonly seen in high resolution electronic spectra. The molecule used for this test was Iodine. A well-characterized transition (X to B) was used to determine which four wave mixing process or processes were responsible for the peaks in the resulting multidimensional spectrum. The resolution of several peaks that overlap in a coherent 2D spectrum can be accomplished by using a higher dimensional (3D) spectroscopic method. This talk will discuss strategies for finding spectroscopic constants using this high resolution coherent 3D spectroscopic method.

  5. Strategies for Interpreting High Resolution Coherent Multidimensional Spectra

    NASA Astrophysics Data System (ADS)

    Wells, Thresa A.; House, Zuri R.; Chen, Peter C.; Strangfeld, Benjamin R.

    2013-06-01

    The electronic spectra of certain molecules can be very complex and consist of a high density of peaks. The high density of peaks results in severe spectral congestion, making conventional data analysis techniques extremely difficult to use. One solution to this problem is to use high resolution coherent 2D spectroscopy (HRC2DS), which can improve resolution and sort peaks into recognizable clusters. This technique requires new data analysis techniques to accurately assign peaks. Even though HRC2DS can improve spectral resolution, some regions of the spectra may still remain congested. The ability to solve this problem using even higher dimensional techniques (e.g., high resolution coherent 3D spectroscopy) with 3D pattern recognition and data analysis techniques will be discussed.

  6. An Introduction to High Resolution Coherent Multidimensional Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Wells, Thresa A.; House, Zuri R.; Strangfeld, Benjamin R.

    2013-06-01

    High resolution coherent multidimensional spectroscopy is a technique that can be used to analyze and assign peaks for molecules that have resisted spectral analysis. Molecules that yield heavily congested and seemingly patternless spectra using conventional methods can yield 2D spectra that have recognizable patterns. The off-diagonal region of the coherent 2D plot shows only cross-peaks that are related by rotational selection rules. The resulting patterns facilitate peak assignment if they are sufficiently resolved. For systems that are not well-resolved, coherent 3D spectra may be generated to further improve resolution and provide selectivity. This presentation will provide an introduction to high resolution coherent 2D and 3D spectroscopies.

  7. Fabricating High-Resolution X-Ray Collimators

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  8. Analysis of Complex Steel Microstructures by High-Resolution EBSD

    NASA Astrophysics Data System (ADS)

    Isasti, Nerea; Jorge-Badiola, Denis; Alkorta, Jon; Uranga, Pello

    2016-01-01

    High-resolution electron backscattered diffraction (HR-EBSD) is a powerful tool to describe microstructures at the sub-micrometric scale that achieves a higher degree of angular accuracy compared with conventional EBSD. However, such an EBSD technique is time-consuming and requires data-intensive computing to save and postprocess the results obtained after each scan. In the current work, a simple strategy to transform conventional results into high-resolution results is put forward in an averaging statistical layout. This makes it possible to measure the misorientations more precisely and, subsequently, the geometrically necessary dislocations by lowering the typical noise generated from Hough transformation-based conventional EBSD. Different steel microstructures are analyzed in light of this strategy. The calculated dislocation densities for those microstructures are used as input values for evaluating the initial dislocation density contribution to the yield strength in a newly developed mechanical model.

  9. High-resolution imaging of cellular processes in Caenorhabditis elegans.

    PubMed

    Maddox, Amy S; Maddox, Paul S

    2012-01-01

    Differential interference contrast (DIC) imaging of Caenorhabditis elegans embryogenesis led to a Nobel Prize in Physiology or Medicine (Sulston et al., 1983) as did the first use of green fluorescent protein (GFP) in a transgenic C. elegans (Chalfie et al., 1994). Given that C. elegans is free living, does not require exceptional environmental control, and is optically clear, live imaging is a powerful tool in for this model system. Combining genetics with high-resolution imaging has continued to make important contributions to many fields. In this chapter, we discuss how certain aspects of high-resolution microscopy are implemented. This is not an exhaustive review of microscopy; it is meant to be a helpful guide and point of reference for some basic concepts in imaging. While these concepts are largely true for all biological imaging, they are chosen as particularly important for C. elegans. PMID:22226519

  10. High resolution nitrogen dioxide observations: retrieval, evaluation, and interpretation

    NASA Astrophysics Data System (ADS)

    Lamsal, L. N.; Janz, S. J.; Krotkov, N. A.; Pickering, K. E.; Kowalewski, M. G.; Loughner, C.; Spurr, R. J. D.; Crawford, J. H.

    2015-12-01

    The Airborne Compact Atmospheric Mapper (ACAM) deployed during the DISCOVER-AQ Maryland field campaign made hyperspectral remote sensing measurements in the 304-910 nm range allowing observations of several tropospheric pollutants including nitrogen dioxide (NO2) at an unprecedented spatial resolution of 1.5x0.75 km2. We apply the DOAS method, include high resolution information for surface reflectivity and vertical distributions of NO2 and aerosols, and account for temporal variation in atmospheric NO2 to retrieve lower tropospheric NO2 column. We compare NO2 from ACAM with observations from in-situ aircraft, ground-based PANDORA, and space-based OMI, and NO2 simulation from air quality models. The high resolution ACAM measurements offer not only new insights into our understanding of atmospheric composition and chemistry through observation of sub-sampling variability in typical satellite and model resolutions, but also opportunities for algorithm improvements for upcoming geostationary air quality missions.

  11. High resolution reservoir geological modelling using outcrop information

    SciTech Connect

    Zhang Changmin; Lin Kexiang; Liu Huaibo

    1997-08-01

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  12. Airborne laser scanning for high-resolution mapping of Antarctica

    NASA Astrophysics Data System (ADS)

    Csatho, Bea; Schenk, Toni; Krabill, William; Wilson, Terry; Lyons, William; McKenzie, Garry; Hallam, Cheryl; Manizade, Serdar; Paulsen, Timothy

    In order to evaluate the potential of airborne laser scanning for topographic mapping in Antarctica and to establish calibration/validation sites for NASA's Ice, Cloud and land Elevation Satellite (ICESat) altimeter mission, NASA, the U.S. National Science Foundation (NSF), and the U.S. Geological Survey (USGS) joined forces to collect high-resolution airborne laser scanning data.In a two-week campaign during the 2001-2002 austral summer, NASA's Airborne Topographic Mapper (ATM) system was used to collect data over several sites in the McMurdo Sound area of Antarctica (Figure 1a). From the recorded signals, NASA computed laser points and The Ohio State University (OSU) completed the elaborate computation/verification of high-resolution Digital Elevation Models (DEMs) in 2003. This article reports about the DEM generation and some exemplary results from scientists using the geomorphologic information from the DEMs during the 2003-2004 field season.

  13. High-resolution ultrasound imaging of cutaneous lesions

    PubMed Central

    Mandava, Anitha; Ravuri, Prabhakar Rao; Konathan, Rajyalaxmi

    2013-01-01

    High-resolution variable frequency ultrasound imaging is increasingly being used in the noninvasive evaluation of various cutaneous diseases. It plays a complimentary role to physical examination in the assessment of cutaneous lesions. It is the only imaging modality useful in the evaluation of superficial cutaneous lesions that are too small to be evaluated on computed tomography (CT) or magnetic resonance imaging (MRI) and is helpful in reducing invasive procedures like biopsies and fine needle aspirations. In this article, we seek to describe the relevance and basic principles of cutaneous ultrasound, imaging findings of normal skin, current applications of high-resolution ultrasound in the diagnosis and management of various dermatological conditions, along with the features of some commonly encountered lesions. PMID:24347861

  14. Spaceborne laser instruments for high-resolution mapping

    NASA Astrophysics Data System (ADS)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Valett, Susan; Cavanaugh, John; Ramos-Izquierdo, Luis

    2010-02-01

    We discuss past, present and future spaceborne laser instruments for high-resolution mapping of Earth and planetary surfaces. Previous spaceborne-laser-altimeters projected and imaged a single laser spot for surface-height measurements. In contrast, the recent Lunar Orbiter Laser Altimeter (LOLA) instrument on the Lunar Reconnaissance Orbiter (LRO) uses a non-scanning multi-beam system for surface topography mapping. The multi-beam instrument facilitates surface slope measurement and reduces the time-to-completion for global high-resolution topographic mapping. We discuss our first-year progress on a three-year swath-mapping laser-altimetry Instrument Incubator Program (IIP) funded by the NASA Earth Science Technology Office (ESTO). Our IIP is a technology development program supporting the LIdar Surface Topography (LIST) space-flight mission that is a third-tier mission as recommended by the National Research Council (NRC) for NASA's Earth Science programs.

  15. Development of a high resolution and high dispersion Thomson parabola

    NASA Astrophysics Data System (ADS)

    Jung, D.; Hörlein, R.; Kiefer, D.; Letzring, S.; Gautier, D. C.; Schramm, U.; Hübsch, C.; Öhm, R.; Albright, B. J.; Fernandez, J. C.; Habs, D.; Hegelich, B. M.

    2011-01-01

    Here, we report on the development of a novel high resolution and high dispersion Thomson parabola for simultaneously resolving protons and low-Z ions of more than 100 MeV/nucleon necessary to explore novel laser ion acceleration schemes. High electric and magnetic fields enable energy resolutions of ΔE/E < 5% at 100 MeV/nucleon and impede premature merging of different ion species at low energies on the detector plane. First results from laser driven ion acceleration experiments performed at the Trident Laser Facility demonstrate high resolution and superior species and charge state separation of this novel Thomson parabola for ion energies of more than 30 MeV/nucleon.

  16. Development of a high resolution and high dispersion Thomson parabola.

    PubMed

    Jung, D; Hörlein, R; Kiefer, D; Letzring, S; Gautier, D C; Schramm, U; Hübsch, C; Öhm, R; Albright, B J; Fernandez, J C; Habs, D; Hegelich, B M

    2011-01-01

    Here, we report on the development of a novel high resolution and high dispersion Thomson parabola for simultaneously resolving protons and low-Z ions of more than 100 MeV/nucleon necessary to explore novel laser ion acceleration schemes. High electric and magnetic fields enable energy resolutions of ΔE∕E < 5% at 100 MeV/nucleon and impede premature merging of different ion species at low energies on the detector plane. First results from laser driven ion acceleration experiments performed at the Trident Laser Facility demonstrate high resolution and superior species and charge state separation of this novel Thomson parabola for ion energies of more than 30 MeV/nucleon. PMID:21280824

  17. High resolution computed tomography of advanced composite and ceramic materials

    NASA Technical Reports Server (NTRS)

    Yancey, R. N.; Klima, S. J.

    1991-01-01

    Advanced composite and ceramic materials are being developed for use in many new defense and commercial applications. In order to achieve the desired mechanical properties of these materials, the structural elements must be carefully analyzed and engineered. A study was conducted to evaluate the use of high resolution computed tomography (CT) as a macrostructural analysis tool for advanced composite and ceramic materials. Several samples were scanned using a laboratory high resolution CT scanner. Samples were also destructively analyzed at the locations of the scans and the nondestructive and destructive results were compared. The study provides useful information outlining the strengths and limitations of this technique and the prospects for further research in this area.

  18. Advances in DNA sequencing technologies for high resolution HLA typing.

    PubMed

    Cereb, Nezih; Kim, Hwa Ran; Ryu, Jaejun; Yang, Soo Young

    2015-12-01

    This communication describes our experience in large-scale G group-level high resolution HLA typing using three different DNA sequencing platforms - ABI 3730 xl, Illumina MiSeq and PacBio RS II. Recent advances in DNA sequencing technologies, so-called next generation sequencing (NGS), have brought breakthroughs in deciphering the genetic information in all living species at a large scale and at an affordable level. The NGS DNA indexing system allows sequencing multiple genes for large number of individuals in a single run. Our laboratory has adopted and used these technologies for HLA molecular testing services. We found that each sequencing technology has its own strengths and weaknesses, and their sequencing performances complement each other. HLA genes are highly complex and genotyping them is quite challenging. Using these three sequencing platforms, we were able to meet all requirements for G group-level high resolution and high volume HLA typing. PMID:26423536

  19. Protein-DNA binding in high-resolution

    PubMed Central

    Mahony, Shaun; Pugh, B. Franklin

    2015-01-01

    Recent advances in experimental and computational methodologies are enabling ultra-high resolution genome-wide profiles of protein-DNA binding events. For example, the ChIP-exo protocol precisely characterizes protein-DNA crosslinking patterns by combining chromatin immunoprecipitation (ChIP) with 5′ → 3′ exonuclease digestion. Similarly, deeply sequenced chromatin accessibility assays (e.g. DNase-seq and ATACseq) enable the detection of protected footprints at protein-DNA binding sites. With these techniques and others, we have the potential to characterize the individual nucleotides that interact with transcription factors, nucleosomes, RNA polymerases, and other regulatory proteins in a particular cellular context. In this review, we explain the experimental assays and computational analysis methods that enable high-resolution profiling of protein-DNA binding events. We discuss the challenges and opportunities associated with such approaches. PMID:26038153

  20. Scalable, flexible and high resolution patterning of CVD graphene.

    PubMed

    Hofmann, Mario; Hsieh, Ya-Ping; Hsu, Allen L; Kong, Jing

    2014-01-01

    The unique properties of graphene make it a promising material for interconnects in flexible and transparent electronics. To increase the commercial impact of graphene in those applications, a scalable and economical method for producing graphene patterns is required. The direct synthesis of graphene from an area-selectively passivated catalyst substrate can generate patterned graphene of high quality. We here present a solution-based method for producing patterned passivation layers. Various deposition methods such as ink-jet deposition and microcontact printing were explored, that can satisfy application demands for low cost, high resolution and scalable production of patterned graphene. The demonstrated high quality and nanometer precision of grown graphene establishes the potential of this synthesis approach for future commercial applications of graphene. Finally, the ability to transfer high resolution graphene patterns onto complex three-dimensional surfaces affords the vision of graphene-based interconnects in novel electronics. PMID:24189709

  1. High-resolution dot-matrix hologram generation

    NASA Astrophysics Data System (ADS)

    Zarkov, Boban; Grujić, Dušan; Pantelić, Dejan

    2012-05-01

    Holography is a technique that enables us to permanently record three-dimensional (3D) colour pictures. Owing to their sub-micron structure, holograms are remarkable safety devices that are very difficult to counterfeit. Dot-matrix technology, which is one of the commonly used methods, is a substantial obstacle to all types of fraudulent activities. This kind of hologram is mainly used for the purpose of protection against forgery of cheques, cards, passports, etc. Such a high-resolution technique also enables the engineering of 2D and 3D structures, potentially leading to the construction of metamaterials. In this paper, we describe high-resolution holographic structures obtained by dot-matrix devices of novel construction.

  2. Turbine component casting core with high resolution region

    DOEpatents

    Kamel, Ahmed; Merrill, Gary B.

    2014-08-26

    A hollow turbine engine component with complex internal features can include a first region and a second, high resolution region. The first region can be defined by a first ceramic core piece formed by any conventional process, such as by injection molding or transfer molding. The second region can be defined by a second ceramic core piece formed separately by a method effective to produce high resolution features, such as tomo lithographic molding. The first core piece and the second core piece can be joined by interlocking engagement that once subjected to an intermediate thermal heat treatment process thermally deform to form a three dimensional interlocking joint between the first and second core pieces by allowing thermal creep to irreversibly interlock the first and second core pieces together such that the joint becomes physically locked together providing joint stability through thermal processing.

  3. Effective Area of the AXAF High Resolution Camera (HRC)

    NASA Technical Reports Server (NTRS)

    Patnaude, Daniel; Pease, Deron; Donnelly, Hank; Juda, Mike; Jones, Christine; Murray, Steve; Zombeck, Martin; Kraft, Ralph; Kenter, Almus; Meehan, Gary; Meehan, Gary; Swartz, Doug; Elsner, Ron

    1998-01-01

    The AXAF High-Resolution Camera (HRC) was calibrated at NASA MSFC's X-Ray Calibration Facility (XRCF) during 1997 March and April. We have undertaken an analysis of the HRC effective area using all data presently available from the XRCF. We discuss our spectral fitting of the beam-normalization detectors (BNDs), our method of removing higher order contamination lines present in the spectra, and corrections for beam non-uniformities. We apply a model of photon absorption depth in order to fit a smooth curve to the quantum efficiency of the detector. This is then combined with the most recent model of the AXAF High-Resolution Mirror Assembly (HRMA) to determine the ensemble effective area versus energy for the HRC. We also address future goals and concerns.

  4. High-resolution adaptive optics test bed for vision science

    NASA Astrophysics Data System (ADS)

    Wilks, Scott C.; Thompson, Charles A.; Olivier, Scot S.; Bauman, Brian J.; Flath, Laurence M.; Silva, Dennis A.; Sawvel, Robert M.; Barnes, Thomas B.; Werner, John S.

    2002-02-01

    We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefront correction are done at different wavelengths. Issues associated with these techniques will be discussed.

  5. High resolution map of light pollution over Poland

    NASA Astrophysics Data System (ADS)

    Netzel, Henryka; Netzel, Paweł

    2016-09-01

    In 1976 Berry introduced a simple mathematical equation to calculate artificial night sky brightness at zenith. In the original model cities, considered as points with given population, are only sources of light emission. In contrary to Berry's model, we assumed that all terrain surface can be a source of light. Emission of light depends on percent of built up area in a given cell. We based on Berry's model. Using field measurements and high-resolution data we obtained the map of night sky brightness over Poland in 100-m resolution. High resolution input data, combined with a very simple model, makes it possible to obtain detailed structures of the night sky brightness without complicating the calculations.

  6. High-resolution dynamical modelling of the Antarctic stratospheric vortex

    NASA Technical Reports Server (NTRS)

    Haynes, P. H.

    1988-01-01

    Progress is reported on the high-resolution three-dimensional numerical simulation of flows characteristic of the Antarctic wintertime stratosphere. The numerical model is a modified version of the Reading University sigma-coordinate used previously for tropospheric studies. Physical parameterizations are kept to a minimum in order to concentrate as much computing power as possible on simulating details of the dynamical processes. The major question addressed is whether the features observed in recent high-resolution two-dimensional simulations - namely: (1) the formation of a sharp edge to the vortex (seen in the potential vorticity field), (2) the survival of the polar vortex in a material entity, and (3) the formation of small-scale eddies rough the break-up of tongues of high potential vorticity drawn out from the polar vortex - are realized in three-dimensional simulations.

  7. High-resolution studies of atmospheric IR emission spectra

    NASA Technical Reports Server (NTRS)

    Murcray, F. J.; Murcray, F. H.; Goldman, A.; Blatherwick, R. D.; Murcray, D. G.

    1991-01-01

    Atmospheric emission spectra obtained with two different spectrometer systems are presented. The first system (the BOMEM Michelson interferometer) is designed for emission work. Spectra were obtained under adverse conditions in the Antarctic, and are still of good absolute accuracy. The second system (a modified Bruker Instruments IFS120 very high spectral resolution interferometer) demonstrates the sensitivity that can be achieved even at higher spectral resolution. This system shows that mid-IR atmospheric emission spectra can be obtained with a good SNR in a reasonable length of time at a relatively high resolution. A properly designed high resolution system should achieve high accuracy, sensitivity, and resolution, thereby permitting measurements of many atmospheric constituents when solar spectra cannot be obtained.

  8. Dynamical downscaling inter-comparison for high resolution climate reconstruction

    NASA Astrophysics Data System (ADS)

    Ferreira, J.; Rocha, A.; Castanheira, J. M.; Carvalho, A. C.

    2012-04-01

    In the scope of the project: "High-resolution Rainfall EroSivity analysis and fORecasTing - RESORT", an evaluation of various methods of dynamic downscaling is presented. The methods evaluated range from the classic method of nesting a regional model results in a global model, in this case the ECMWF reanalysis, to more recently proposed methods, which consist in using Newtonian relaxation methods in order to nudge the results of the regional model to the reanalysis. The method with better results involves using a system of variational data assimilation to incorporate observational data with results from the regional model. The climatology of a simulation of 5 years using this method is tested against observations on mainland Portugal and the ocean in the area of the Portuguese Continental Shelf, which shows that the method developed is suitable for the reconstruction of high resolution climate over continental Portugal.

  9. Sparse Recovery Analysis of High-Resolution Climate Data

    NASA Astrophysics Data System (ADS)

    Archibald, R.

    2013-12-01

    The field of compressed sensing is vast and currently very active, with new results, methods, and algorithms appearing almost daily. The first notions of compressed sensing began with Prony's method, which was designed by the French mathematician Gaspard Riche de Prony to extract signal information from a limited number of measurements. Since then, sparsity has been used empirically in a variety of applications, including geology and geophysics, spectroscopy, signal processing, radio astronomy, and medical ultrasound. High-resolution climate studies performed on large scale high performance computing have been producing large amounts of data that can benefit from unique mathematical methods for analysis. This work demonstrates how sparse recovery and L1 regularization can be used effectively on large datasets from high-resolution climate studies.

  10. High Resolution Scanning Electron Microscopy of Cells Using Dielectrophoresis

    PubMed Central

    Tang, Shi-Yang; Zhang, Wei; Soffe, Rebecca; Nahavandi, Sofia; Shukla, Ravi; Khoshmanesh, Khashayar

    2014-01-01

    Ultrastructural analysis of cells can reveal valuable information about their morphological, physiological, and biochemical characteristics. Scanning electron microscopy (SEM) has been widely used to provide high-resolution images from the surface of biological samples. However, samples need to be dehydrated and coated with conductive materials for SEM imaging. Besides, immobilizing non-adherent cells during processing and analysis is challenging and requires complex fixation protocols. In this work, we developed a novel dielectrophoresis based microfluidic platform for interfacing non-adherent cells with high-resolution SEM at low vacuum mode. The system enables rapid immobilization and dehydration of samples without deposition of chemical residues over the cell surface. Moreover, it enables the on-chip chemical stimulation and fixation of immobilized cells with minimum dislodgement. These advantages were demonstrated for comparing the morphological changes of non-budding and budding yeast cells following Lyticase treatment. PMID:25089528

  11. High-resolution streaming video integrated with UGS systems

    NASA Astrophysics Data System (ADS)

    Rohrer, Matthew

    2010-04-01

    Imagery has proven to be a valuable complement to Unattended Ground Sensor (UGS) systems. It provides ultimate verification of the nature of detected targets. However, due to the power, bandwidth, and technological limitations inherent to UGS, sacrifices have been made to the imagery portion of such systems. The result is that these systems produce lower resolution images in small quantities. Currently, a high resolution, wireless imaging system is being developed to bring megapixel, streaming video to remote locations to operate in concert with UGS. This paper will provide an overview of how using Wifi radios, new image based Digital Signal Processors (DSP) running advanced target detection algorithms, and high resolution cameras gives the user an opportunity to take high-powered video imagers to areas where power conservation is a necessity.

  12. Single-sided sensor for high-resolution NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Perlo, J.; Casanova, F.; Blümich, B.

    2006-06-01

    The unavoidable spatial inhomogeneity of the static magnetic field generated by open sensors has precluded their use for high-resolution NMR spectroscopy. In fact, this application was deemed impossible because these field variations are usually orders of magnitude larger than those created by the microscopic structure of the molecules to be detected. Recently, chemical shift resolved NMR spectra were observed for the first time outside a portable single-sided magnet by implementing a method that exploits inhomogeneities in the rf field designed to reproduce variations of the static magnetic field [J. Perlo, V. Demas, F. Casanova, C.A. Meriles, J. Reimer, A. Pines, B. Blümich, High-resolution spectroscopy with a portable single-sided sensor, Science 308 (2005) 1279]. In this communication, we describe in detail the magnet system built from permanent magnets as well as the rf coil geometry used to compensate the static field variations.

  13. The theory and practice of high resolution scanning electron microscopy

    SciTech Connect

    Joy, D.C. Oak Ridge National Lab., TN )

    1990-01-01

    Recent advances in instrumentation have produced the first commercial examples of what can justifiably be called High Resolution Scanning Electron Microscopes. The key components of such instruments are a cold field emission gun, a small-gap immersion probe-forming lens, and a clean dry-pumped vacuum. The performance of these microscopes is characterized by several major features including a spatial resolution, in secondary electron mode on solid specimens, which can exceed 1nm on a routine basis; an incident probe current density of the order of 10{sup 6} amps/cm{sup 2}; and the ability to maintain these levels of performance over an accelerating voltage range of from 1 to 30keV. This combination of high resolution, high probe current, low contamination and flexible electron-optical conditions provides many new opportunitites for the application of the SEM to materials science, physics, and the life sciences. 27 refs., 14 figs.

  14. A high resolution cavity BPM for the CLIC Test Facility

    SciTech Connect

    Chritin, N.; Schmickler, H.; Soby, L.; Lunin, A.; Solyak, N.; Wendt, M.; Yakovlev, V.; /Fermilab

    2010-08-01

    In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

  15. The Goddard High Resolution Spectrograph: Instrument, goals, and science results

    NASA Astrophysics Data System (ADS)

    Brandt, J. C.; Heap, S. R.; Beaver, E. A.; Boggess, A.; Carpenter, K. G.; Ebbets, D. C.; Hutchings, J. B.; Jura, M.; Leckrone, D. S.; Linsky, J. L.; Maran, S. P.; Savage, B. D.; Smith, A. M.; Trafton, L. M.; Walter, F. M.; Weymann, R. J.; Ake, T. B.; Bruhweiler, F.; Cardelli, J. A.; Lindler, D. J.; Malumuth, E.; Randall, C. E.; Robinson, R.; Shore, S. N.; Wahlgren, G.

    1994-08-01

    The Goddard High Resolution Spectrograph (GHRS), currently in Earth orbit on the Hubble Space Telescope (HST), operates in the wavelength range 1150-3200 A with spectral resolutions (lambda/delta lambda) of approximately 2 x 103, 2 x 104, and 1 x 103. The instrument and its development from inception, its current status, the approach to operations, representative results in the major areas of the scientific goals, and prospects for the future are described.

  16. High-resolution, cryogenic, side-entry type specimen stage

    DOEpatents

    King, Wayne E.; Merkle, Karl L.

    1979-01-01

    A high-resolution, cryogenic side-entry type specimen stage includes a copper block within which a specimen can be positioned in the electron beam of an electron microscope, one end of the copper block constituting a specimen heat exchanger, means for directing a flow of helium at cryogenic temperature into the heat exchanger, and electrical leads running from the specimen to the exterior of the microscope for four point D.C. electrical resistivity measurements.

  17. Initial tests of a high resolution Scintillating Fibre (SCIFI) tracker

    NASA Astrophysics Data System (ADS)

    Atkinson, M.; Fent, J.; Fisher, C.; Freund, P.; Hughes, P.; Kirkby, J.; Osthoff, A.; Pretzl, K.

    1987-03-01

    We present our initial measurements of high resolution particle tracking in scintillating fibre (SCIFI) detectors. The scintillator under study is a glass, designated GS1, which is doped with the cerium (Ce 3+) emitter. We conclude from our measurements that present SCIFI detectors can be successfully used as small-volume "active" targets, but that further developments are necessary before this technique can be applied to high precision tracking in collider detectors.

  18. The Goddard High Resolution Spectrograph: Instrument, goals, and science results

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Heap, S. R.; Beaver, E. A.; Boggess, A.; Carpenter, K. G.; Ebbets, D. C.; Hutchings, J. B.; Jura, M.; Leckrone, D. S.; Linsky, J. L.

    1994-01-01

    The Goddard High Resolution Spectrograph (GHRS), currently in Earth orbit on the Hubble Space Telescope (HST), operates in the wavelength range 1150-3200 A with spectral resolutions (lambda/delta lambda) of approximately 2 x 10(exp 3), 2 x 10(exp 4), and 1 x 10(exp 3). The instrument and its development from inception, its current status, the approach to operations, representative results in the major areas of the scientific goals, and prospects for the future are described.

  19. Optical alignment of high resolution Fourier transform spectrometers

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Ocallaghan, F. G.; Cassie, A. G.

    1980-01-01

    Remote sensing, high resolution FTS instruments often contain three primary optical subsystems: Fore-Optics, Interferometer Optics, and Post, or Detector Optics. We discuss the alignment of a double-pass FTS containing a cat's-eye retro-reflector. Also, the alignment of fore-optics containing confocal paraboloids with a reflecting field stop which relays a field image onto a camera is discussed.

  20. High-speed segmentation-driven high-resolution matching

    NASA Astrophysics Data System (ADS)

    Ekstrand, Fredrik; Ahlberg, Carl; Ekström, Mikael; Spampinato, Giacomo

    2015-02-01

    This paper proposes a segmentation-based approach for matching of high-resolution stereo images in real time. The approach employs direct region matching in a raster scan fashion influenced by scanline approaches, but with pixel decoupling. To enable real-time performance it is implemented as a heterogeneous system of an FPGA and a sequential processor. Additionally, the approach is designed for low resource usage in order to qualify as part of unified image processing in an embedded system.

  1. HIS analyses of mesoscale phenomena. [High resolution Interferometer Sounder

    NASA Technical Reports Server (NTRS)

    Bradshaw, John T.; Fuelberg, Henry E.

    1990-01-01

    Results are presented from two sets of measurements made by the High-resolution Interferometer Sounder (HIS) during two aircraft flights over the Cooperative-Huntsville-Meteorological-Experiment region on June 15 and 19, 1986. It is shown that the temperature and the dew-point field retrieved from HIS spectra contain distinct mesoscale structures. The features in the HIS dew-point fields agreed well with the cloud and moisture structures observed in visible and 6.7 micron GOES imagery.

  2. High resolution microwave spectrometer sounder (HIMSS), volume 1, book 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) an instrument overview; (2) an instrument description; (3) the instrument's conceptual design; (4) technical risks and offsets; (5) instrument reliability; (6) commands and telemetry; (7) mass and power budgets; (8) integration and test program; (9) program implementation; and (10) phase CD schedule.

  3. LandScan 2013 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (ESTSC)

    2014-07-01

    The LandScan data set is a worldwide population database compiled on a 30"x30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on land cover, slope, road proximity, high-resolution imagery, and other data sets. The LandScan data set was developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient populations at risk.

  4. New Challenges in High-Resolution Modeling of Hurricanes

    NASA Astrophysics Data System (ADS)

    Chen, S. S.

    2006-12-01

    The extreme active Atlantic hurricane seasons in recent years have highlighted the urgent need for a better understanding of the factors that contribute to hurricane intensity and for development of the corresponding advanced hurricane prediction models to improve intensity forecasts. The lack of skill in present forecasts of hurricane structure and intensity may be attributed in part to deficiencies in the current prediction models: insufficient grid resolution, inadequate surface and boundary layer formulations, and the lack of full coupling to a dynamic ocean. The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in hurricanes push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. The recent modeling effort is to develop and test a fully coupled atmosphere-wave-ocean modeling system that is capable of resolving the eye and eyewall in a hurricane at ~1 km grid resolution. The new challenges for these very high resolution models are the corresponding physical representations at 1-km scale, including microphysics, sub-grid turbulence parameterization, atmospheric boundary layer, physical processes at the air-sea interface with surface waves among others. The lack of accurate initial conditions for high-resolution hurricane modeling presents another major challenge. Improvements in initial conditions rest on the use of more airborne and remotely sensed observations in high-resolution assimilation systems and on the application of advanced assimilation schemes to hurricanes. This study aimed to provide an overview of these new challenges using high-resolution model simulations of Hurricanes Isabel (2003), Frances (2004), Katrina and Rita (2005) that were observed extensively by two recent field programs, namely, the Coupled Boundary Layer Air-Sea Transfer (CBLAST)-Hurricane in 2003-2004 and the Hurricane Rainbands and Intensity Change Experiment (RAINEX) in 2005.

  5. Scalable, flexible and high resolution patterning of CVD graphene

    NASA Astrophysics Data System (ADS)

    Hofmann, Mario; Hsieh, Ya-Ping; Hsu, Allen L.; Kong, Jing

    2013-12-01

    The unique properties of graphene make it a promising material for interconnects in flexible and transparent electronics. To increase the commercial impact of graphene in those applications, a scalable and economical method for producing graphene patterns is required. The direct synthesis of graphene from an area-selectively passivated catalyst substrate can generate patterned graphene of high quality. We here present a solution-based method for producing patterned passivation layers. Various deposition methods such as ink-jet deposition and microcontact printing were explored, that can satisfy application demands for low cost, high resolution and scalable production of patterned graphene. The demonstrated high quality and nanometer precision of grown graphene establishes the potential of this synthesis approach for future commercial applications of graphene. Finally, the ability to transfer high resolution graphene patterns onto complex three-dimensional surfaces affords the vision of graphene-based interconnects in novel electronics.The unique properties of graphene make it a promising material for interconnects in flexible and transparent electronics. To increase the commercial impact of graphene in those applications, a scalable and economical method for producing graphene patterns is required. The direct synthesis of graphene from an area-selectively passivated catalyst substrate can generate patterned graphene of high quality. We here present a solution-based method for producing patterned passivation layers. Various deposition methods such as ink-jet deposition and microcontact printing were explored, that can satisfy application demands for low cost, high resolution and scalable production of patterned graphene. The demonstrated high quality and nanometer precision of grown graphene establishes the potential of this synthesis approach for future commercial applications of graphene. Finally, the ability to transfer high resolution graphene patterns onto

  6. High resolution studies of atoms and small molecules

    SciTech Connect

    Bushaw, B.A.; Tonkyn, R.G.; Miller, R.J.

    1992-10-01

    High resolution, continuous wave lasers have been utilized successfully in studies of small molecules. Examples of two-photon excitation schemes and of multiple resonance excitation sequences will be discussed within the framework of the spectroscopy and dynamics of selected Rydberg states of nitric oxide. Initial results on the circular dichroism of angular distributions in photoelectron spectra of individual hyperfine states of cesium will also be discussed, but no data given.

  7. On high-resolution finite volume shock capturing schemes

    NASA Astrophysics Data System (ADS)

    Causon, D. M.; Clarke, N.

    1990-07-01

    Conservative, shock capturing methods for the unsteady Euler equations are reviewed and it is shown that the concepts of entropy satisfaction and total variation diminution can be applied to well-known classical schemes. For an associated scheme to be efficient in applications, it is necessary that it be constructed with economy of implementation in mind, and that it be able to capture strong shock waves with high resolution. We describe a scheme which is efficient in both respects.

  8. On high resolution finite volume shock capturing schemes

    NASA Astrophysics Data System (ADS)

    Causon, D. M.; Clarke, N.

    Conservative shock-capturing methods for the unsteady Euler equations are reviewed, and it is shown that the concepts of entropy satisfaction and total variation diminution can be applied to well known classical schemes. For an associated scheme to be efficient in applications, it is necessary that it be constructed with economy of implementation in mind, and that it be able to capture strong shock waves with high resolution. A scheme which is efficient in both respects is described.

  9. High-Resolution Wind Measurements for Offshore Wind Energy Development

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Neumann, Gregory

    2011-01-01

    A mathematical transform, called the Rosette Transform, together with a new method, called the Dense Sampling Method, have been developed. The Rosette Transform is invented to apply to both the mean part and the fluctuating part of a targeted radar signature using the Dense Sampling Method to construct the data in a high-resolution grid at 1-km posting for wind measurements over water surfaces such as oceans or lakes.

  10. High-resolution schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Harten, A.

    1982-01-01

    A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurae scheme to an appropriately modified flux function. The so derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme.

  11. High Resolution Wavenumber Standards for the Infrared. (IUPAC Recommendations 1995)

    NASA Technical Reports Server (NTRS)

    Guelachvili, G.; Birk, M.; Bord, C.; Brault, J.; Brown, L.; Carli, B.; Cole, A.; Evenson, D.; Fayt, A.; Hausamann, D.; Johns, J.; Kauppinen, J.; Kou, Q.; Maki, A.; Narahari Rao, K.; Toth, R.; Urban, W.; Valentin, A.; Vergs, J.; Wagner, G.; Winnewisser, B.; Winnewisser, M.

    1995-01-01

    The calibration of high resolution infrared spectra is generally more precise than accurate even when they are recorded with Fourier interferometers. In order to improve the consistency of the spectral measurements, an IUPAC project has been undertaken. Its aim was to recommend a selection of spectral lines as wavenumber standards for absolute calibration in the infrared. This paper will report the final recommendations in the spectral range extending from about 4 to about 7000 cm(be).

  12. High-Resolution Imaging of Colliding and Merging Galaxies

    NASA Astrophysics Data System (ADS)

    Whitmore, Brad

    1991-07-01

    We propose to obtain high-resolution images, using the WF/PC, of two colliding and merging galaxies (i.e., NGC 4038/4039 = "The Antennae" and NGC 7252 ="Atoms-for-Peace Galaxy". Our goal is to use HST to make critical observations of each object in order to gain a better understanding of the various phases of the merger process. Our primary objective is to determine whether globular clusters are formed during mergers\\?

  13. A high resolution, adjustable, lockable laser mirror mount

    NASA Technical Reports Server (NTRS)

    Chadwick, C. H.

    1976-01-01

    A prototype high resolution, adjustable, lockable mirror mount is described, suitable for use as a resonator end mirror mount in fieldable lasers. The prototype was vibrated to 15g levels, 10-2000 Hz, and was shown to be stable to within 1 arc second and settable to an accuracy of 10 arc seconds. Improvements to be made to the prototype are outlined which will significantly improve the accuracy without sacrificing the other attributes of the prototype.

  14. High resolution microwave spectrometer sounder (HIMSS), volume 1, book 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) preliminary program plans; (2) contract end item (CEI) specification; and (3) the instrument interface description document. Under the preliminary program plans section, plans dealing with the following subject areas are discussed: spares, performance assurance, configuration management, software implementation, contamination, calibration management, and verification.

  15. High Resolution Measurements and Electronic Structure Calculations of a Diazanaphthalene

    NASA Astrophysics Data System (ADS)

    Gruet, Sébastien; Goubet, Manuel; Pirali, Olivier

    2014-06-01

    Polycyclic Aromatic Hydrocarbons (PAHs) have long been suspected to be the carriers of so called Unidentified Infrared Bands (UIBs). Most of the results published in the literature report rotationally unresolved spectra of pure carbon as well as heteroatom-containing PAHs species. To date for this class of molecules, the principal source of rotational informations is ruled by microwave (MW) spectroscopy while high resolution measurements reporting rotational structure of the infrared (IR) vibrational bands are very scarce. Recently, some high resolution techniques provided interesting new results to rotationally resolve the IR and far-IR bands of these large carbonated molecules of astrophysical interest. One of them is to use the bright synchrotron radiation as IR continuum source of a high resolution Fourier transform (FTIR) spectrometer. We report the very complementary analysis of the [1,6] naphthyridine (a N-bearing PAH) for which we recorded the microwave spectrum at the PhLAM laboratory (Lille) and the high resolution far-infrared spectrum on the AILES beamline at synchrotron facility SOLEIL. MW spectroscopy provided highly accurate rotational constants in the ground state to perform Ground State Combinations Differences (GSCD) allowing the analysis of the two most intense FT-FIR bands in the 50-900 wn range. Moreover, during this presentation the negative value of the inertial defect in the GS of the molecule will be discussed. A. Leger, J. L. Puget, Astron. Astrophys. 137, L5-L8 (1984) L. J. Allamandola et al. Astrophys. J. 290, L25-L28 (1985). Z. Kisiel et al. J. Mol. Spectrosc. 217, 115 (2003) S. Thorwirth et al. Astrophys. J. 662, 1309 (2007) D. McNaughton et al. J. Chem. Phys. 124, 154305 (2011). S. Albert et al. Faraday Discuss. 150, 71-99 (2011) B. E. Brumfield et al. Phys. Chem. Lett. 3, 1985-1988 (2012) O. Pirali et al. Phys. Chem. Chem. Phys. 15, 10141 (2013).

  16. Applications of high-resolution remote sensing image data

    NASA Technical Reports Server (NTRS)

    Strome, W. M.; Leckie, D.; Miller, J.; Buxton, R.

    1990-01-01

    There are many situations in which the image resolution of satellite data is insufficient to provide the detail required for resource management and environmental monitoring. This paper will focus on applications of high-resolution (0.4 to 10 m) airborne multispectral and imaging spectrometer data acquired in Canada using the MEIS II multispectral line imager and the PMI imaging spectrometer. Applications discussed will include forestry, mapping, and geobotany.

  17. Improved protocol for rapid identification of certain spa types using high resolution melting curve analysis.

    PubMed

    Mayerhofer, Benjamin; Stöger, Anna; Pietzka, Ariane T; Fernandez, Haizpea Lasa; Prewein, Bernhard; Sorschag, Sieglinde; Kunert, Renate; Allerberger, Franz; Ruppitsch, Werner

    2015-01-01

    Methicillin-resistant Staphylococcus aureus is one of the most significant pathogens associated with health care. For efficient surveillance, control and outbreak investigation, S. aureus typing is essential. A high resolution melting curve analysis was developed and evaluated for rapid identification of the most frequent spa types found in an Austrian hospital consortium covering 2,435 beds. Among 557 methicillin-resistant Staphylococcus aureus isolates 38 different spa types were identified by sequence analysis of the hypervariable region X of the protein A gene (spa). Identification of spa types through their characteristic high resolution melting curve profiles was considerably improved by double spiking with genomic DNA from spa type t030 and spa type t003 and allowed unambiguous and fast identification of the ten most frequent spa types t001 (58%), t003 (12%), t190 (9%), t041 (5%), t022 (2%), t032 (2%), t008 (2%), t002 (1%), t5712 (1%) and t2203 (1%), representing 93% of all isolates within this hospital consortium. The performance of the assay was evaluated by testing samples with unknown spa types from the daily routine and by testing three different high resolution melting curve analysis real-time PCR instruments. The ten most frequent spa types were identified from all samples and on all instruments with 100% specificity and 100% sensitivity. Compared to classical spa typing by sequence analysis, this gene scanning assay is faster, cheaper and can be performed in a single closed tube assay format. Therefore it is an optimal screening tool to detect the most frequent endemic spa types and to exclude non-endemic spa types within a hospital. PMID:25768007

  18. Improved Protocol for Rapid Identification of Certain Spa Types Using High Resolution Melting Curve Analysis

    PubMed Central

    Mayerhofer, Benjamin; Stöger, Anna; Pietzka, Ariane T.; Fernandez, Haizpea Lasa; Prewein, Bernhard; Sorschag, Sieglinde; Kunert, Renate; Allerberger, Franz; Ruppitsch, Werner

    2015-01-01

    Methicillin-resistant Staphylococcus aureus is one of the most significant pathogens associated with health care. For efficient surveillance, control and outbreak investigation, S. aureus typing is essential. A high resolution melting curve analysis was developed and evaluated for rapid identification of the most frequent spa types found in an Austrian hospital consortium covering 2,435 beds. Among 557 methicillin-resistant Staphylococcus aureus isolates 38 different spa types were identified by sequence analysis of the hypervariable region X of the protein A gene (spa). Identification of spa types through their characteristic high resolution melting curve profiles was considerably improved by double spiking with genomic DNA from spa type t030 and spa type t003 and allowed unambiguous and fast identification of the ten most frequent spa types t001 (58%), t003 (12%), t190 (9%), t041 (5%), t022 (2%), t032 (2%), t008 (2%), t002 (1%), t5712 (1%) and t2203 (1%), representing 93% of all isolates within this hospital consortium. The performance of the assay was evaluated by testing samples with unknown spa types from the daily routine and by testing three different high resolution melting curve analysis real-time PCR instruments. The ten most frequent spa types were identified from all samples and on all instruments with 100% specificity and 100% sensitivity. Compared to classical spa typing by sequence analysis, this gene scanning assay is faster, cheaper and can be performed in a single closed tube assay format. Therefore it is an optimal screening tool to detect the most frequent endemic spa types and to exclude non-endemic spa types within a hospital. PMID:25768007

  19. Progress in high-resolution x-ray holographic microscopy

    SciTech Connect

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  20. Machine Learning Based Road Detection from High Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Lv, Ye; Wang, Guofeng; Hu, Xiangyun

    2016-06-01

    At present, remote sensing technology is the best weapon to get information from the earth surface, and it is very useful in geo- information updating and related applications. Extracting road from remote sensing images is one of the biggest demand of rapid city development, therefore, it becomes a hot issue. Roads in high-resolution images are more complex, patterns of roads vary a lot, which becomes obstacles for road extraction. In this paper, a machine learning based strategy is presented. The strategy overall uses the geometry features, radiation features, topology features and texture features. In high resolution remote sensing images, the images cover a great scale of landscape, thus, the speed of extracting roads is slow. So, roads' ROIs are firstly detected by using Houghline detection and buffering method to narrow down the detecting area. As roads in high resolution images are normally in ribbon shape, mean-shift and watershed segmentation methods are used to extract road segments. Then, Real Adaboost supervised machine learning algorithm is used to pick out segments that contain roads' pattern. At last, geometric shape analysis and morphology methods are used to prune and restore the whole roads' area and to detect the centerline of roads.

  1. High-Resolution Angioscopic Imaging During Endovascular Neurosurgery

    PubMed Central

    McVeigh, Patrick Z.; Sacho, Raphael; Weersink, Robert A.; Pereira, Vitor M.; Kucharczyk, Walter; Seibel, Eric J.; Wilson, Brian C.

    2014-01-01

    BACKGROUND: Endoluminal optical imaging, or angioscopy, has not seen widespread application during neurointerventional procedures, largely as a result of the poor imaging resolution of existing angioscopes. Scanning fiber endoscopes (SFEs) are a novel endoscopic platform that allows high-resolution video imaging in an ultraminiature form factor that is compatible with currently used distal access endoluminal catheters. OBJECTIVE: To test the feasibility and potential utility of high-resolution angioscopy with an SFE during common endovascular neurosurgical procedures. METHODS: A 3.7-French SFE was used in a porcine model system to image endothelial disruption, ischemic stroke and mechanical thrombectomy, aneurysm coiling, and flow-diverting stent placement. RESULTS: High-resolution, video-rate imaging was shown to be possible during all of the common procedures tested and provided information that was complementary to standard fluoroscopic imaging. SFE angioscopy was able to assess novel factors such as aneurysm base coverage fraction and side branch patency, which have previously not been possible to determine with conventional angiography. CONCLUSION: Endovascular imaging with an SFE provides important information on factors that cannot be assessed fluoroscopically and is a novel platform on which future neurointerventional techniques may be based because it allows for periprocedural inspection of the integrity of the vascular system and the deployed devices. In addition, it may be of diagnostic use for inspecting the vascular wall and postprocedure device evaluation. ABBREVIATIONS: CFB, coherent fiber bundle F, French SFE, scanning fiber endoscope PMID:24762703

  2. Clinical imaging and high-resolution ultrasonography in melanocytoma management

    PubMed Central

    Gologorsky, Daniel; Schefler, Amy C; Ehlies, Fiona J; Raskauskas, Paul A; Pina, Yolanda; Williams, Basil K; Murray, Timothy G

    2010-01-01

    Purpose: To demonstrate the utility of high resolution 20 MHz ophthalmic ultrasound in serial follow-up of optic nerve head melanocytoma patients. Methods: This study is a retrospective review of 30 patients with melanocytoma of the optic nerve head studied with echography. All patients were evaluated with standard ophthalmic A-scan and B-scan ultrasonography and 10 (33%) underwent high-resolution ultrasound. Results: Sixty-two percent (62%) of patients had dome-shaped lesions on ultrasound, twenty-eight percent (28%) presented with mild elevations. The maximum elevation of any lesion was 2.6 mm. The vast majority (89%) of lesions had medium or high internal reflectivity and 89% demonstrated avascularity. Mean follow-up for all patients was nearly 7 years. High-resolution ultrasound enabled enhanced accuracy for detection of lesion dimensions and documentation of growth and possible malignant transformation. Conclusions: In this study, we demonstrate a new and important role for the use of ultrasound in this disease as a complementary tool in identifying and following patients with high-risk growth characteristics. These tumor characteristics can be accurately detected with 10 MHz ultrasound in conjunction with standardized A-scan and better differentiated with the 20 MHz technology. Use of these modalities can aid in distinguishing the melanocytomas that grow from choroidal melanomas and can prevent unnecessary treatments. PMID:20714362

  3. High-Resolution Projection Microstereolithography for Patterning of Neovasculature.

    PubMed

    Raman, Ritu; Bhaduri, Basanta; Mir, Mustafa; Shkumatov, Artem; Lee, Min Kyung; Popescu, Gabriel; Kong, Hyunjoon; Bashir, Rashid

    2016-03-01

    To gain a quantitative understanding of the way cells sense, process, and respond to dynamic environmental signals in real-time requires developing in vitro model systems that accurately replicate the 3D structure and function of native tissue. A high-resolution projection stereolithography apparatus (μSLA) capable of multimaterial and grayscale 3D patterning of cells and biomaterials at <5 μm resolution is presented. Murine cells (fibroblasts, myoblasts, endothelial, and bone marrow stromal cells) encapsulated within photosensitive hydrogels using the μSLA remain viable up to two weeks after fabrication. Harnessing the high-resolution fabrication capabilities of this machine, sub-millimeter scale angiogenic cell-encapsulating patches designed to promote targeted growth of neovasculature are printed, as assessed in vitro via enzyme-linked immunosorbent assay (ELISA) and in ovo via a chick chorioallantoic membrane assay (CAM). This application establishes the μSLA as an enabling technology that is widely adaptable to any application that requires high-resolution patterning of cells and cells signals. By providing an efficient and robust method of engineering microscale tissues with encapsulated cells, this apparatus has a range of applications including fundamental studies of extracellular matrix interactions, high throughput drug testing of physiologically relevant substitutes for native tissue, and programmable tissue engineering for applications in regenerative medicine. PMID:26696464

  4. High resolution, MRI-based, segmented, computerized head phantom

    SciTech Connect

    Zubal, I.G.; Harrell, C.R.; Smith, E.O.; Smith, A.L.; Krischlunas, P.

    1999-01-01

    The authors have created a high-resolution software phantom of the human brain which is applicable to voxel-based radiation transport calculations yielding nuclear medicine simulated images and/or internal dose estimates. A software head phantom was created from 124 transverse MRI images of a healthy normal individual. The transverse T2 slices, recorded in a 256x256 matrix from a GE Signa 2 scanner, have isotropic voxel dimensions of 1.5 mm and were manually segmented by the clinical staff. Each voxel of the phantom contains one of 62 index numbers designating anatomical, neurological, and taxonomical structures. The result is stored as a 256x256x128 byte array. Internal volumes compare favorably to those described in the ICRP Reference Man. The computerized array represents a high resolution model of a typical human brain and serves as a voxel-based anthropomorphic head phantom suitable for computer-based modeling and simulation calculations. It offers an improved realism over previous mathematically described software brain phantoms, and creates a reference standard for comparing results of newly emerging voxel-based computations. Such voxel-based computations lead the way to developing diagnostic and dosimetry calculations which can utilize patient-specific diagnostic images. However, such individualized approaches lack fast, automatic segmentation schemes for routine use; therefore, the high resolution, typical head geometry gives the most realistic patient model currently available.

  5. High resolution, large dynamic range field map estimation

    PubMed Central

    Dagher, Joseph; Reese, Timothy; Bilgin, Ali

    2013-01-01

    Purpose We present a theory and a corresponding method to compute high resolution field maps over a large dynamic range. Theory and Methods We derive a closed-form expression for the error in the field map value when computed from two echoes. We formulate an optimization problem to choose three echo times which result in a pair of maximally distinct error distributions. We use standard field mapping sequences at the prescribed echo times. We then design a corresponding estimation algorithm which takes advantage of the optimized echo times to disambiguate the field offset value. Results We validate our method using high resolution images of a phantom at 7T. The resulting field maps demonstrate robust mapping over both a large dynamic range, and in low SNR regions. We also present high resolution offset maps in vivo using both, GRE and MEGE sequences. Even though the proposed echo time spacings are larger than the well known phase aliasing cutoff, the resulting field maps exhibit a large dynamic range without the use of phase unwrapping or spatial regularization techniques. Conclusion We demonstrate a novel 3-echo field map estimation method which overcomes the traditional noise-dynamic range trade-off. PMID:23401245

  6. Historical high-resolution dynamic sea level variations

    NASA Astrophysics Data System (ADS)

    Brunnabend, Sandra-Esther; Dijkstra, Henk A.; Kliphuis, Michael; van Werkhoven, Ben; Bal, Henri E.; Maassen, Jason; van Meersbergen, Maarten; Seinstra, Frank

    2014-05-01

    To investigate future changes in the dynamics of the ocean and therefore in dynamic sea level, ocean models need to be able to adequately represent oceanic dynamical processes. Therefore, resolving ocean eddies and representing boundary currents is of major importance. In this study, we investigate historical variations in dynamical sea surface height using the strongly eddying global version of the Parallel Ocean Program (POP). First, differences in high and low-resolution ocean model results (0.1 vs. 1.0 degree) were analyzed using a climatological atmospheric forcing dataset. Second, we forced the high-resolution model by atmospheric conditions over the period from 1950 to 2000 that are derived from a simulation using the ECHAM5-OM1 model (within the ESSENCE project, see www.knmi.nl/~sterl/Essence/). In general, the large-scale ocean fields of the POP model simulation agree well with those of the low-resolution ocean model (MPI-OM) results. Variations occur due to the different models used and, especially, due to the capability of the high-resolution POP model to resolve eddies. A comparison of high-resolution ocean model results with in-situ measurements, such as dynamic topography provided by altimetry, and salinity and temperature provided by the WOA2013, also show good agreement.

  7. Characterization of high-resolution HafSOx inorganic resists

    NASA Astrophysics Data System (ADS)

    Oleksak, R. P.; Herman, G. S.

    2014-04-01

    Inorganic resists are of considerable interest for advanced lithography at the nanoscale due to the potential for high resolution, low line width roughness (LWR), and high sensitivity. Historically inorganic resists suffered from low sensitivity, however approaches have been identified to increase sensitivity while maintaining high contrast. An aqueous precursor of Hf(OH)4-2x-2y(O2)x(SO4)y·qH2O (HafSOx) has been demonstrated with excellent sensitivity to EUV and electrons, while still obtaining high resolution and low LWR. In this work, we characterize both HafSOx precursor solutions and spin-coated thin films using high-resolution transmission electron microscopy (HR-TEM) with energy-dispersive X-ray spectroscopy (EDS) elemental analysis. HR-TEM of precursor solutions drop cast onto TEM grids confirmed the presence of nanoscale particles. HR-TEM cross sectional images showed that spin-coated HafSOx films are initially uniform in appearance and composition for thin (12 nm) films, however thicker (30 nm) films display segregation of species leading to multilayer structures. Regardless of film thickness, extended exposure to the high energy TEM electron beam induces significant migration of oxygen species to the Si interface. These species result in the formation of SiOx layers that increase in thickness with an increase in TEM electron beam dose. Sulfate is also very mobile in the films and likely assists in the significant condensation exhibited in completely processed films.

  8. High Resolution Aerosol Modeling: Decadal Changes in Radiative Forcing

    SciTech Connect

    Bergmann, D J; Chuang, C C; Govindasamy, B; Cameron-Smith, P J; Rotman, D A

    2005-02-01

    The Atmospheric Science Division of LLNL has performed high-resolution calculations of direct sulfate forcing using a DOE-provided computer resource at NERSC. We integrated our global chemistry-aerosol model (IMPACT) with the LLNL high-resolution global climate model (horizontal resolution as high as 100 km) to examine the temporal evolution of sulfate forcing since 1950. We note that all previous assessments of sulfate forcing reported in IPCC (2001) were based on global models with coarse spatial resolutions ({approx} 300 km or even coarser). However, the short lifetime of aerosols ({approx} days) results in large spatial and temporal variations of radiative forcing by sulfate. As a result, global climate models with coarse resolutions do not accurately simulate sulfate forcing on regional scales. It requires much finer spatial resolutions in order to address the effects of regional anthropogenic SO{sub 2} emissions on the global atmosphere as well as the effects of long-range transport of sulfate aerosols on the regional climate forcing. By taking advantage of the tera-scale computer resources at NERSC, we simulated the historic direct sulfate forcing at much finer spatial resolutions than ever attempted before. Furthermore, we performed high-resolution chemistry simulations and saved monthly averaged oxidant fields, which will be used in subsequent simulations of sulfate aerosol formation and their radiative impact.

  9. Adaptive optics with pupil tracking for high resolution retinal imaging

    PubMed Central

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-01-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics. PMID:22312577

  10. High resolution surface plasmon microscopy for cell imaging

    NASA Astrophysics Data System (ADS)

    Argoul, F.; Monier, K.; Roland, T.; Elezgaray, J.; Berguiga, L.

    2010-04-01

    We introduce a new non-labeling high resolution microscopy method for cellular imaging. This method called SSPM (Scanning Surface Plasmon Microscopy) pushes down the resolution limit of surface plasmon resonance imaging (SPRi) to sub-micronic scales. High resolution SPRi is obtained by the surface plasmon lauching with a high numerical aperture objective lens. The advantages of SPPM compared to other high resolution SPRi's rely on three aspects; (i) the interferometric detection of the back reflected light after plasmon excitation, (ii) the twodimensional scanning of the sample for image reconstruction, (iii) the radial polarization of light, enhancing both resolution and sensitivity. This microscope can afford a lateral resolution of - 150 nm in liquid environment and - 200 nm in air. We present in this paper images of IMR90 fibroblasts obtained with SSPM in dried environment. Internal compartments such as nucleus, nucleolus, mitochondria, cellular and nuclear membrane can be recognized without labelling. We propose an interpretation of the ability of SSPM to reveal high index contrast zones by a local decomposition of the V (Z) function describing the response of the SSPM.

  11. High resolution seismic tomography of a Strombolian volcanic cone

    NASA Astrophysics Data System (ADS)

    Brenguier, F.; Coutant, O.; Baudon, H.; Doré, F.; Dietrich, M.

    2006-08-01

    We determine the 3D velocity structure of the Puy des Goules, a small, 1 km wide, Strombolian volcano that erupted 10 ky ago in central France, through a high resolution seismic survey. One major goal for this experiment was to develop methods to reach a high resolution focused on the plumbing system. This has raised different problems such as: mixing active sources (explosive, vibroseis) with different signal properties; inverting traveltime residuals of the order of 10 ms which requires the corresponding accuracy on the Digital Elevation Model (DEM), source and sensor locations (300 sites) and traveltime computations. The results of the traveltime tomography reveal three main bodies of high velocity embedded within scoria layers. These bodies can be interpreted as the central chimney and two complex feeding zones that compare quite well with the Puy de Lemptégy, a neighboring cone that was quarried and removed, showing its underlying feeding conduits and dykes. These results represent a first step toward our objective that is to determine geological structures related to natural hazards with a high resolution.

  12. Adaptive optics high resolution spectroscopy: present status and future direction

    SciTech Connect

    Alcock, C; Angel, R; Ciarlo, D; Fugate, R O; Ge, J; Kuzmenko, P; Lloyd-Hart, M; Macintosh, B; Najita, J; Woolf, N

    1999-07-27

    High resolution spectroscopy experiments with visible adaptive optics (AO) telescopes at Starfire Optical Range and Mt. Wilson have demonstrated that spectral resolution can be routinely improved by a factor of - 10 over the seeing-limited case with no extra light losses at visible wavelengths. With large CCDs now available, a very wide wavelength range can be covered in a single exposure. In the near future, most large ground-based telescopes will be equipped with powerful A0 systems. Most of these systems are aimed primarily at diffraction-limited operation in the near IR. An exciting new opportunity will thus open up for high resolution IR spectroscopy. Immersion echelle gratings with much coarser grooves being developed by us at LLNL will play a critical role in achieving high spectral resolution with a compact and low cost IR cryogenically cooled spectrograph and simultaneous large wavelength coverage on relatively small IR detectors. We have constructed a new A0 optimized spectrograph at Steward Observatory to provide R = 200,000 in the optical, which is being commissioned at the Starfire Optical Range 3.5m telescope. We have completed the optical design of the LLNL IR Immersion Spectrograph (LISPEC) to take advantage of improved silicon etching technology. Key words: adaptive optics, spectroscopy, high resolution, immersion gratings

  13. High resolution ultrasonic spectroscopy system for nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Chen, C. H.

    1991-01-01

    With increased demand for high resolution ultrasonic evaluation, computer based systems or work stations become essential. The ultrasonic spectroscopy method of nondestructive evaluation (NDE) was used to develop a high resolution ultrasonic inspection system supported by modern signal processing, pattern recognition, and neural network technologies. The basic system which was completed consists of a 386/20 MHz PC (IBM AT compatible), a pulser/receiver, a digital oscilloscope with serial and parallel communications to the computer, an immersion tank with motor control of X-Y axis movement, and the supporting software package, IUNDE, for interactive ultrasonic evaluation. Although the hardware components are commercially available, the software development is entirely original. By integrating signal processing, pattern recognition, maximum entropy spectral analysis, and artificial neural network functions into the system, many NDE tasks can be performed. The high resolution graphics capability provides visualization of complex NDE problems. The phase 3 efforts involve intensive marketing of the software package and collaborative work with industrial sectors.

  14. Modeling high-resolution broadband discourse in complex adaptive systems.

    PubMed

    Dooley, Kevin J; Corman, Steven R; McPhee, Robert D; Kuhn, Timothy

    2003-01-01

    Numerous researchers and practitioners have turned to complexity science to better understand human systems. Simulation can be used to observe how the microlevel actions of many human agents create emergent structures and novel behavior in complex adaptive systems. In such simulations, communication between human agents is often modeled simply as message passing, where a message or text may transfer data, trigger action, or inform context. Human communication involves more than the transmission of texts and messages, however. Such a perspective is likely to limit the effectiveness and insight that we can gain from simulations, and complexity science itself. In this paper, we propose a model of how close analysis of discursive processes between individuals (high-resolution), which occur simultaneously across a human system (broadband), dynamically evolve. We propose six different processes that describe how evolutionary variation can occur in texts-recontextualization, pruning, chunking, merging, appropriation, and mutation. These process models can facilitate the simulation of high-resolution, broadband discourse processes, and can aid in the analysis of data from such processes. Examples are used to illustrate each process. We make the tentative suggestion that discourse may evolve to the "edge of chaos." We conclude with a discussion concerning how high-resolution, broadband discourse data could actually be collected. PMID:12876447

  15. Quantification of Murine Pancreatic Tumors by High Resolution Ultrasound

    PubMed Central

    Sastra, Stephen A.; Olive, Kenneth P.

    2013-01-01

    Summary Ultrasonography is a powerful imaging modality that enables non-invasive, real time visualization of abdominal organs and tissues. This technology may be adapted for use in mice through the utilization of higher frequency transducers, allowing for extremely high resolution imaging of the mouse pancreas. This technique is particularly well-suited to pancreas imaging due to the ultrasonographic properties of the normal mouse pancreas, easily accessible imaging planes for the head and tail of the mouse pancreas, and the comparative difficulty in imaging the mouse pancreas with other technologies. A suite of measurements tools is available to characterize the normal and diseased states of tissues. Of particular utility for cancer applications is the ability to use tomography to construct a 3D tumor volume, enabling longitudinal imaging studies to track tumor development, or response to therapies. Here, we describe a detailed method for performing high resolution ultrasound to detect and measure pancreatic lesions in a genetically engineered mouse model of pancreatic ductal using the VisualSonics Vevo2100 High Resolution Ultrasound System. The method includes preparation of the animal for imaging, 2D and 3D image acquisition, and post-acquisition analysis of tumors volumes. The combined procedure has been utilized extensively by our group and others for the preclinical evaluation of novel therapeutic agents in the treatment of pancreatic ductal adenocarcinoma (1–4). PMID:23359158

  16. Design of high-resolution Fourier transform lens

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zhong, Xing; Jin, Guang

    2007-12-01

    With the development of optical information processing, high-resolution Fourier transform lens has often been used in holographic data storage system, spatial filtering and observation of particles. This paper studies the optical design method of high-resolution Fourier transform optical lenses system, which could be used in particles observation and holographic data storage system. According to Fourier transform relation between object and its frequency plane and the theory of geometrical optics, the system with working wavelength 532nm and resolution 3μm was designed based on ZEMAX. A multi-configuration method was adopted to optimize the system's lenses. In the optical system, a diaphragm was placed at the system's spectrum plane and the system demanded a low vacuum to cut down the influences of atmosphere and other particles. The result of finite element analysis indicated that the influences of vacuum pumping to optics spacing and mirror surface shape very minor, and the imaging quality not being affected. This system has many advantages, such as simple structure, good image quality and a high resolution of 3μm. So it has a wide application prospect and can be used both in holographic data storage system and particles observation.

  17. Tube support

    DOEpatents

    Mullinax, Jerry L.

    1988-01-01

    A tube support for supporting horizontal tubes from an inclined vertical support tube passing between the horizontal tubes. A support button is welded to the vertical support tube. Two clamping bars or plates, the lower edges of one bearing on the support button, are removably bolted to the inclined vertical tube. The clamping bars provide upper and lower surface support for the horizontal tubes.

  18. High-resolution time-lapse tomography of rat vertebrae during compressive loading: deformation response analysis

    NASA Astrophysics Data System (ADS)

    Fíla, T.; Kytýř, D.; Zlámal, P.; Kumpová, I.; Doktor, T.; Koudelka, P.; Jiroušek, O.

    2014-05-01

    This paper is focused on investigation of mechanical properties of rat vertebrae during compressive loading in the longitudinal direction of rat's spine. High-resolution time-lapse micro-tomography was used as a tool to create models of the inner structure and deformed shape in pre-defined deformation steps. First, peripheral areas of vertebra specimen were embedded in polymethyl methacrylate to obtain proper boundary conditions of contact between specimen and loading plattens. Experimental loading device designed for application in X-ray setups was utilized to compress the vertebrae in several deformation steps. High-resolution micro-tomography scanning was carried out at each deformation step. Specimen was irradiated in tomography device equipped with microfocus X-ray tube with 5μm focal spot size and large area flat panel detector. Spatial resolution of reconstructed three-dimensional images was approximately 10μm. Digital volume correlation algorithm was utilized in order to assess displacements in the microstructure in every loading increment. Finite element model of vertebra was created from volumetric data reconstructed from tomography of the undeformed specimen. Simulated compressive test of the developed finite element model was performed in order to compare stiffness and displacements obtained by digital volume correlation and finite element simulation.

  19. Focal spot deblurring for high resolution direct conversion x-ray detectors

    NASA Astrophysics Data System (ADS)

    Setlur Nagesh, S. V.; Rana, R.; Russ, M.; Ionita, Ciprian N.; Bednarek, D. R.; Rudin, S.

    2016-03-01

    Small pixel high resolution direct x-ray detectors have the advantage of higher spatial sampling and decreased blurring characteristic. The limiting factors for such systems becomes the degradation due to the focal spot size. One solution is a smaller focal spot; however, this can limit the output of the x-ray tube. Here a software solution of deconvolving with an estimated focal spot blur is presented. To simulate images from a direct detector affected with focal-spot blur, first a set of high-resolution stent images (FRED from Microvention, Inc., Tustin, CA) were acquired using a 75μm pixel size Dexela-Perkin-Elmer detector and frame averaged to reduce quantum noise. Then the averaged image was blurred with a known Gaussian blur. To add noise to the blurred image a flat-field image was multiplied with the blurred image. Both the ideal and the noisy-blurred images were then deconvolved with the known Gaussian function using either threshold-based inverse filtering or Weiner deconvolution. The blur in the ideal image was removed and the details were recovered successfully. However, the inverse filtering deconvolution process is extremely susceptible to noise. The Weiner deconvolution process was able to recover more of the details of the stent from the noisy-blurred image, but for noisier images, stent details are still lost in the recovery process.

  20. Phase contrast enhanced high resolution X-ray imaging and tomography of soft tissue

    NASA Astrophysics Data System (ADS)

    Jakubek, Jan; Granja, Carlos; Dammer, Jiri; Hanus, Robert; Holy, Tomas; Pospisil, Stanislav; Tykva, Richard; Uher, Josef; Vykydal, Zdenek

    2007-02-01

    A tabletop system for digital high resolution and high sensitivity X-ray micro-radiography has been developed for small-animal and soft-tissue imaging. The system is based on a micro-focus X-ray tube and the semiconductor hybrid position sensitive Medipix2 pixel detector. Transmission radiography imaging, conventionally based only on absorption, is enhanced by exploiting phase-shift effects induced in the X-ray beam traversing the sample. Phase contrast imaging is realized by object edge enhancement. DAQ is done by a novel fully integrated USB-based readout with online image generation. Improved signal reconstruction techniques make use of advanced statistical data analysis, enhanced beam hardening correction and direct thickness calibration of individual pixels. 2D and 3D micro-tomography images of several biological samples demonstrate the applicability of the system for biological and medical purposes including in-vivo and time dependent physiological studies in the life sciences.

  1. A High-Pressure, High-Resolution NMR Probe for Experiments at 500 MHz

    NASA Astrophysics Data System (ADS)

    Ballard, Lance; Yu, Aimee; Reiner, Carl; Jonas, Jiri

    1998-07-01

    A novel high-pressure, high-resolution NMR probe is described which operates at a frequency of 500 MHz. The design features an alternative RF coil (8 mm sample tube) for high frequency, sensitivity, probe power, and resolution (< 3.0 × 10-9). The probe is capable of pressures to at least 5 kbar over a temperature range of -30 to 80°C, and has a double-tuned1H/2H circuit which can tune at1H frequencies of either 300 or 500 MHz. The sensitivity of the 300-MHz circuit is over twice that of previous 10-mm high-pressure NMR probe designs, while at 500 MHz the sensitivity is nearly five times that of previous 300-MHz pressure probes. Potential biochemical applications are demonstrated by 2D NOESY spectra of a Troponin C mutant.

  2. High-resolution X-ray imaging by polycapillary optics and lithium fluoride detectors combination

    NASA Astrophysics Data System (ADS)

    Hampai, D.; Dabagov, S. B.; Della Ventura, G.; Bellatreccia, F.; Magi, M.; Bonfigli, F.; Montereali, R. M.

    2011-12-01

    Novel results on high-resolution X-ray imaging by a table-top laboratory system based on lithium fluoride (LiF) imaging radiation detectors and a X-ray tube combined with polycapillary optics are reported for the first time. In this paper, imaging experiments of reference objects, as well as thick geological samples, show some of the potentialities of this approach for the development of a compact laboratory X-ray microscopy apparatus. The high spatial resolution and dynamic range of versatile LiF imaging detectors, based on optical reading of photoluminescence from X-ray-induced color centers in LiF crystals and films, allow us to use very simple contact imaging techniques. Promising applications can be foreseen in the fields of bio-medical imaging diagnostics, characterization of X-ray sources and optical elements, material science and photonics.

  3. High resolution applications of the Osher upwind scheme for the Euler equations

    NASA Technical Reports Server (NTRS)

    Chakravarthy, S. R.; Osher, S.

    1983-01-01

    The 'Osher' scheme was introduced by Osher (1981). It represents an upwind finite-difference method for hyperbolic systems of conservation laws, including the Euler equations. In studies conducted by Osher (1981) and Osher and Solomon (1982), the method was applied to the nonisentropic form of the Euler equations in one dimension and the isentropically restricted form in two spatial dimensions, both in Cartesian coordinates. Chakravarthy and Osher (1982) have shown an approach for extending the Osher scheme to the Euler equations written for general geometries, taking into account the use of mappings to arbitrary curvilinear coordinate systems. The present investigation is concerned with the high resolution extension of the Osher scheme to second-order accuracy. Results are presented for several example problems, giving attention to quasi-one-dimensional Laval nozzle flow, a one-dimensional shock tube problem, and supersonic flow over a cylinder.

  4. High resolution simulations of ignition capsule designs for the National Ignition Facility

    SciTech Connect

    Clark, D S; Haan, S W; Cook, A W; Edwards, M J; Hammel, B A; Koning, J M; Marinak, M M

    2011-02-17

    Ignition capsule designs for the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)] have continued to evolve in light of improved physical data inputs, improving simulation techniques, and - most recently - experimental data from a growing number of NIF sub-ignition experiments. This paper summarizes a number of recent changes to the cryogenic capsule design and some of our latest techniques in simulating its performance. Specifically, recent experimental results indicated harder x-ray drive spectra in NIF hohlraums than were predicted and used in previous capsule optimization studies. To accommodate this harder drive spectrum, a series of high-resolution 2-D simulations, resolving Legendre mode numbers as high as two thousand, were run and the germanium dopant concentration and ablator shell thicknesses re-optimized accordingly. Simultaneously, the possibility of cooperative or nonlinear interaction between neighboring ablator surface defects has motivated a series of fully 3-D simulations run with the massively parallel HYDRA code. These last simulations include perturbations seeded on all capsule interfaces and can use actual measured shell surfaces as initial conditions. 3-D simulations resolving Legendre modes up to two hundred on large capsule sectors have run through ignition and burn, and higher resolution simulations resolving as high as mode twelve hundred have been run to benchmark high-resolution 2-D runs. Finally, highly resolved 3-D simulations have also been run of the jet-type perturbation caused by the fill tube fitted to the capsule. These 3-D simulations compare well with the more typical 2-D simulations used in assessing the fill tube's impact on ignition. Coupled with the latest experimental inputs from NIF, our improving simulation capability yields a fuller and more accurate picture of NIF ignition capsule performance.

  5. Plutonium Detection with Straw Neutron Detectors

    SciTech Connect

    Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul

    2014-03-27

    A kilogram of weapons grade plutonium gives off about 56,000 neutrons per second of which 55,000 neutrons come from spontaneous fission of 240Pu (~6% by weight of the total plutonium). Actually, all even numbered isotopes (238Pu, 240Pu, and 242Pu) produce copious spontaneous fission neutrons. These neutrons induce fission in the surrounding fissile 239Pu with an approximate multiplication of a factor of ~1.9. This multiplication depends on the shape of the fissile materials and the surrounding material. These neutrons (typically of energy 2 MeV and air scattering mean free path >100 meters) can be detected 100 meters away from the source by vehicle-portable neutron detectors. [1] In our current studies on neutron detection techniques, without using 3He gas proportional counters, we designed and developed a portable high-efficiency neutron multiplicity counter using 10B-coated thin tubes called straws. The detector was designed to perform like commercially available fission meters (manufactured by Ortec Corp.) except instead of using 3He gas as a neutron conversion material, we used a thin coating of 10B.

  6. Bioethanol production from rice straw residues.

    PubMed

    Belal, Elsayed B

    2013-01-01

    A rice straw - cellulose utilizing mold was isolated from rotted rice straw residues. The efficient rice straw degrading microorganism was identified as Trichoderma reesei. The results showed that different carbon sources in liquid culture such as rice straw, carboxymethyl cellulose, filter paper, sugar cane bagasse, cotton stalk and banana stalk induced T. reesei cellulase production whereas glucose or Potato Dextrose repressed the synthesis of cellulase. T. reesei cellulase was produced by the solid state culture on rice straw medium. The optimal pH and temperature for T. reesei cellulase production were 6 and 25 °C, respectively. Rice straw exhibited different susceptibilities towards cellulase to their conversion to reducing sugars. The present study showed also that, the general trend of rice straw bioconversion with cellulase was more than the general trend by T. reesei. This enzyme effectively led to enzymatic conversion of acid, alkali and ultrasonic pretreated cellulose from rice straw into glucose, followed by fermentation into ethanol. The combined method of acid pretreatment with ultrasound and subsequent enzyme treatment resulted the highest conversion of lignocellulose in rice straw to sugar and consequently, highest ethanol concentration after 7 days fermentation with S. cerevisae yeast. The ethanol yield in this study was about 10 and 11 g.L(-1). PMID:24159309

  7. Bioethanol production from rice straw residues

    PubMed Central

    Belal, Elsayed B.

    2013-01-01

    A rice straw - cellulose utilizing mold was isolated from rotted rice straw residues. The efficient rice straw degrading microorganism was identified as Trichoderma reesei. The results showed that different carbon sources in liquid culture such as rice straw, carboxymethyl cellulose, filter paper, sugar cane bagasse, cotton stalk and banana stalk induced T. reesei cellulase production whereas glucose or Potato Dextrose repressed the synthesis of cellulase. T. reesei cellulase was produced by the solid state culture on rice straw medium. The optimal pH and temperature for T. reesei cellulase production were 6 and 25 °C, respectively. Rice straw exhibited different susceptibilities towards cellulase to their conversion to reducing sugars. The present study showed also that, the general trend of rice straw bioconversion with cellulase was more than the general trend by T. reesei. This enzyme effectively led to enzymatic conversion of acid, alkali and ultrasonic pretreated cellulose from rice straw into glucose, followed by fermentation into ethanol. The combined method of acid pretreatment with ultrasound and subsequent enzyme treatment resulted the highest conversion of lignocellulose in rice straw to sugar and consequently, highest ethanol concentration after 7 days fermentation with S. cerevisae yeast. The ethanol yield in this study was about 10 and 11 g.L−1. PMID:24159309

  8. Feeding Tubes

    MedlinePlus

    ... administer the TPN. Tubes Used for Enteral Feeds NG (Nasogastric Tube) A flexible tube is placed via ... down through the esophagus into the stomach. The NG tube can be used to empty the stomach ...

  9. Ear Tubes

    MedlinePlus

    ... Meeting Calendar Find an ENT Doctor Near You Ear Tubes Ear Tubes Patient Health Information News media ... and throat specialist) may be considered. What are ear tubes? Ear tubes are tiny cylinders placed through ...

  10. Large, high resolution integrating TV sensor for astronomical appliations

    NASA Technical Reports Server (NTRS)

    Spitzer, L. J.

    1977-01-01

    A magnetically focused SEC tube developed for photometric applications is described. Efforts to design a 70 mm version of the tube which meets the ST f/24 camera requirements of the space telescope are discussed. The photometric accuracy of the 70 mm tube is executed to equal that of the previously developed 35 mm tube. The tube meets the criterion of 50 percent response at 20 cycles/mm in the central region of the format, and, with the removal of the remaining magnetic parts, this spatial frequency is expected over almost all of the format. Since the ST f/24 camera requires sensitivity in the red as well as the ultraviolet and visible spectra, attempts were made to develop tubes with this ability. It was found that it may be necessary to choose between red and u.v. sensitivity and tradeoff red sensitivity for low background. Results of environmental tests indicate no substantive problems in utilizing it in a flight camera system that will meet the space shuttle launch requirements.

  11. Proceedings of the workshop on high resolution computed microtomography (CMT)

    SciTech Connect

    1997-02-01

    The purpose of the workshop was to determine the status of the field, to define instrumental and computational requirements, and to establish minimum specifications required by possible users. The most important message sent by implementers was the remainder that CMT is a tool. It solves a wide spectrum of scientific problems and is complementary to other microscopy techniques, with certain important advantages that the other methods do not have. High-resolution CMT can be used non-invasively and non-destructively to study a variety of hierarchical three-dimensional microstructures, which in turn control body function. X-ray computed microtomography can also be used at the frontiers of physics, in the study of granular systems, for example. With high-resolution CMT, for example, three-dimensional pore geometries and topologies of soils and rocks can be obtained readily and implemented directly in transport models. In turn, these geometries can be used to calculate fundamental physical properties, such as permeability and electrical conductivity, from first principles. Clearly, use of the high-resolution CMT technique will contribute tremendously to the advancement of current R and D technologies in the production, transport, storage, and utilization of oil and natural gas. It can also be applied to problems related to environmental pollution, particularly to spilling and seepage of hazardous chemicals into the Earth's subsurface. Applications to energy and environmental problems will be far-ranging and may soon extend to disciplines such as materials science--where the method can be used in the manufacture of porous ceramics, filament-resin composites, and microelectronics components--and to biomedicine, where it could be used to design biocompatible materials such as artificial bones, contact lenses, or medication-releasing implants. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  12. High-resolution MR venography of cerebral arteriovenous malformations.

    PubMed

    Essig, M; Reichenbach, J R; Schad, L R; Schoenberg, S O; Debus, J; Kaiser, W A

    1999-12-01

    The purpose of this study was to evaluate the diagnostic potential of a high-resolution magnetic resonance (MR) venography technique in patients with cerebral arteriovenous malformations (AVMs). A high-resolution 3D gradient echo sequence was used with a long echo time TE to obtain venous information down to sub-pixel sized vessel diameters of several hundred microns. The method is based on the paramagnetic property of deoxyhemoglobin, and the resulting developing phase difference between veins and brain parenchyma at long echo times which leads to signal cancellation. The reconstructed venograms were compared with time-of-flight (TOF)-MR angiography using qualitative and quantitative criteria with the conventional digital subtraction angiography serving as the reference gold standard. In 17 patients with angiographically proven cerebral AVMs, the method indicates its potential in clinical applications. Venography was able to detect all AVMs whereas TOF-MRA failed in three patients. In the delineation of venous drainage patterns MR venography was superior to TOF-MRA, however, the method failed in the detection of about half of the main feeding arteries, as expected. Due to susceptibility artifacts at air/tissue boundaries and interference with paramagnetic hemosiderin, venography was limited with respect to the delineation of the exact nidus sizes and shapes in ten patients with AVMs located close to the skull base or having suffered from previous bleeding. Although the visualization of draining veins represents an important prerequisite in the surgical and radiosurgical treatment planning of cerebral AVMs, application of high resolution MR venography may be limited in the diagnostic work-up in some of these patients. On the other hand, it may be of special importance in the early detection and assessment of small AVMs that are difficult to diagnose with other MR methods. PMID:10609990

  13. High Resolution Thz and FIR Spectroscopy of SOCl_2

    NASA Astrophysics Data System (ADS)

    Martin-Drumel, M. A.; Cuisset, A.; Sadovskii, D. A.; Mouret, G.; Hindle, F.; Pirali, O.

    2013-06-01

    Thionyl chloride (SOCl_2) is an extremely powerful oxidant widely used in industrial processes and playing a role in the chemistry of the atmosphere. In addition, it has a molecular configuration similar to that of phosgene (COCl_2), and is therefore of particular interest for security and defense applications. Low resolution vibrational spectra of gas phase SOCl_2 as well as high resolution pure rotational transitions up to 25 GHz have previously been investigated. To date no high resolution data are reported at frequencies higher than 25 GHz. We have investigated the THz absorption spectrum of SOCl_2 in the spectral region 70-650 GHz using a frequency multiplier chain coupled to a 1 m long single path cell containing a pressure of about 15 μbar. At the time of the writing, about 8000 pure rotational transitions of SO^{35}Cl_2 with highest J and K_a values of 110 and 50 respectively have been assigned on the spectrum. We have also recorded the high resolution FIR spectra of SOCl_2 in the spectral range 50-700 wn using synchrotron radiation at the AILES beamline of SOLEIL facility. A White-type cell aligned with an absorption path length of 150 m has been used to record, at a resolution of 0.001 wn, two spectra at pressures of 5 and 56 μbar of SOCl_2. On these spectra all FIR modes of SOCl_2 are observed (ν_2 to ν_6) and present a resolved rotational structure. Their analysis is in progress. T. J. Johnson et al., J. Phys. Chem. A 107, 6183 (2003) D. E. Martz and R. T. Lagemann, J. Chem. Phys. 22,1193 (1954) H. S. P. Müller and M. C. L. Gerry, J. Chem. Soc. Faraday Trans. 90, 3473 (1994)

  14. Theoretical performance analysis for CMOS based high resolution detectors.

    PubMed

    Jain, Amit; Bednarek, Daniel R; Rudin, Stephen

    2013-03-01

    High resolution imaging capabilities are essential for accurately guiding successful endovascular interventional procedures. Present x-ray imaging detectors are not always adequate due to their inherent limitations. The newly-developed high-resolution micro-angiographic fluoroscope (MAF-CCD) detector has demonstrated excellent clinical image quality; however, further improvement in performance and physical design may be possible using CMOS sensors. We have thus calculated the theoretical performance of two proposed CMOS detectors which may be used as a successor to the MAF. The proposed detectors have a 300 μm thick HL-type CsI phosphor, a 50 μm-pixel CMOS sensor with and without a variable gain light image intensifier (LII), and are designated MAF-CMOS-LII and MAF-CMOS, respectively. For the performance evaluation, linear cascade modeling was used. The detector imaging chains were divided into individual stages characterized by one of the basic processes (quantum gain, binomial selection, stochastic and deterministic blurring, additive noise). Ranges of readout noise and exposure were used to calculate the detectors' MTF and DQE. The MAF-CMOS showed slightly better MTF than the MAF-CMOS-LII, but the MAF-CMOS-LII showed far better DQE, especially for lower exposures. The proposed detectors can have improved MTF and DQE compared with the present high resolution MAF detector. The performance of the MAF-CMOS is excellent for the angiography exposure range; however it is limited at fluoroscopic levels due to additive instrumentation noise. The MAF-CMOS-LII, having the advantage of the variable LII gain, can overcome the noise limitation and hence may perform exceptionally for the full range of required exposures; however, it is more complex and hence more expensive. PMID:24353390

  15. Metallicity determination of M dwarfs. High-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindgren, Sara; Heiter, Ulrike; Seifahrt, Andreas

    2016-02-01

    Context. Several new techniques to determine the metallicity of M dwarfs with better precision have been developed over the last decades. However, most of these studies were based on empirical methods. In order to enable detailed abundance analysis, standard methods established for warmer solar-like stars, i.e. model-dependent methods using fitting of synthetic spectra, still need to be used. Aims: In this work we continue the reliability confirmation and development of metallicity determinations of M dwarfs using high-resolution infrared spectra. The reliability was confirmed through analysis of M dwarfs in four binary systems with FGK dwarf companions and by comparison with previous optical studies of the FGK dwarfs. Methods: The metallicity determination was based on spectra taken in the J band (1.1-1.4 μm) with the CRIRES spectrograph. In this part of the infrared, the density of stellar molecular lines is limited, reducing the amount of blends with atomic lines enabling an accurate continuum placement. Lines of several atomic species were used to determine the stellar metallicity. Results: All binaries show excellent agreement between the derived metallicity of the M dwarf and its binary companion. Our results are also in good agreement with values found in the literature. Furthermore, we propose an alternative way to determine the effective temperature of M dwarfs of spectral types later than M2 through synthetic spectral fitting of the FeH lines in our observed spectra. Conclusions: We have confirmed that a reliable metallicity determination of M dwarfs can be achieved using high-resolution infrared spectroscopy. We also note that metallicites obtained with photometric metallicity calibrations available for M dwarfs only partly agree with the results we obtain from high-resolution spectroscopy. Based on data obtained at ESO-VLT, Paranal Observatory, Chile, Program ID 082.D-0838(A) and 084.D-1042(A).

  16. High-resolution extended source optical coherence tomography.

    PubMed

    Yu, Xiaojun; Liu, Xinyu; Chen, Si; Luo, Yuemei; Wang, Xianghong; Liu, Linbo

    2015-10-01

    High resolution optical coherence tomography (OCT) is capable of providing detailed tissue microstructures that are critical for disease diagnosis, yet its sensitivity is usually degraded since the system key components are typically not working at their respective center wavelengths. We developed a novel imaging system that achieves enhanced sensitivity without axial resolution degradation by the use of a spectrally encoded extended source (SEES) technique; it allows larger sample power without exceeding the maximum permissible exposure (MPE). In this study, we demonstrate a high-resolution extended source (HRES) OCT system, which is capable of providing a transverse resolution of 4.4 µm and an axial resolution of 2.1 µm in air with the SEES technique. We first theoretically show a sensitivity advantage of 6-dB of the HRES-OCT over that of its point source counterpart using numerical simulations, and then experimentally validate the applicability of the SEES technique to high-resolution OCT (HR-OCT) by comparing the HRES-OCT with an equivalent point-source system. In the HRES-OCT system, a dispersive prism was placed in the infinity space of the sample arm optics to spectrally extend the visual angle (angular subtense) of the light source to 10.3 mrad. This extended source allowed ~4 times larger MPE than its point source counterpart, which results in an enhancement of ~6 dB in sensitivity. Specifically, to solve the unbalanced dispersion between the sample and the reference arm optics, we proposed easy and efficient methods for system calibration and dispersion correction, respectively. With a maximum scanning speed reaching up to 60K A-lines/s, we further conducted imaging experiments with HRES-OCT using the human fingertip in vivo and the swine eye tissues ex vivo. Results demonstrate that the HRES-OCT is able to achieve significantly larger penetration depth than its conventional point source OCT counterpart. PMID:26480153

  17. High-resolution lensless Fourier transform holography for microstructure imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Wang, Dayong; Wang, Huaying; Xie, Jianjun

    2007-12-01

    Digital holography combines the advantages of the optical holography and the computers. It can implement an all-digital processing and has the quasi real-time property. With lensless Fourier transform recording architecture, the limited bandwidth of CCD camera can be utilized sufficiently, and the sampling theorem is satisfied easily. Therefore, high-resolution can be achieved. So it is preferred in the microstructure imaging. In the paper, based on the Fresnel diffraction theory and the off-axis lensless Fourier transform recording architecture, the experimental optimization and correspondingly the digital reconstruction was investigated. Also, the lateral resolution of the reconstructed image was analyzed and improved by the proposed techniques. When the USAF test target was imaged without any pre-magnification, the lateral resolution of 3.1μm was achieved, which matched the theoretical prediction very well. The key points to achieve high resolution image are to use the smaller object and to arrange the distance between the object and the CCD plane as short as possible. Meanwhile, properly overlapping the reconstructed image with the DC term was helpful to improve the resolution. The noise in the reconstructed image could be reduced greatly by choosing the optical elements precisely and adjusting the beam path finely. The experimental results demonstrated that it is possible for the digital holographic microscopy to produce the high resolution image without the objective pre-magnification. The results also showed that, with a high quality hologram, the special image processing during the reconstruction may be unnecessary to obtain a high quality image.

  18. Design of a High Resolution Hexapod Positioning Mechanism

    NASA Technical Reports Server (NTRS)

    Britt, Jamie

    2001-01-01

    This paper describes the development of a high resolution, six-degree of freedom positioning mechanism. This mechanism, based on the Stewart platform concept, was designed for use with the Developmental Comparative Active Optics Telescope Testbed (DCATT), a ground-based technology testbed for the Next Generation Space Telescope (NGST). The mechanism provides active control to the DCATT telescope's segmented primary mirror. Emphasis is on design decisions and technical challenges. Significant issues include undesirable motion properties of PZT-inchworm actuators, testing difficulties, dimensional stability, and use of advanced composite materials. Supporting test data from prototype mechanisms is presented.

  19. Simulation and fitting of high resolution Rutherford backscattering spectra

    NASA Astrophysics Data System (ADS)

    Borschel, Christian; Schnell, Martin; Ronning, Carsten; Hofsäss, Hans

    2009-05-01

    A computer program for the analysis of high resolution Rutherford backscattering spectra (HR-RBS), which can be recorded with an electrostatic energy analyzer (ESA) and a resolution of about 1 keV, has been developed. The use of an ESA results in various differences compared to conventional RBS spectra, motivating the development of a new algorithm for simulation for these spectra. We present a Monte Carlo based diffusion-like fit approach for evaluation of the HR-RBS spectra, which is in particular useful for fitting concentration gradients. Examples for the application of the algorithm are shown to demonstrate its functionality.

  20. Design of a High Resolution Hexapod Positioning Mechanism

    NASA Technical Reports Server (NTRS)

    Britt, Jamie; Brodeur, Stephen J. (Technical Monitor)

    2001-01-01

    This paper describes the development of a high resolution, six-degree of freedom positioning mechanism. This mechanism, based on the Stewart platform concept, was designed for use with the Developmental Comparative Active Optics Telescope Testbed (DCATT), a ground-based technology testbed for the Next Generation Space Telescope (NGST). The mechanism provides active control to the DCATT telescope's segmented primary mirror. Emphasis is on design decisions and technical challenges. Significant issues include undesirable motion properties of PZT-inchworm actuators, testing difficulties, dimensional stability and use of advanced composite materials. Supporting test data from prototype mechanisms is presented.

  1. High resolution fabrication of nanostructures using controlled proximity nanostencil lithography

    NASA Astrophysics Data System (ADS)

    Jain, T.; Aernecke, M.; Liberman, V.; Karnik, R.

    2014-02-01

    Nanostencil lithography has a number of distinct benefits that make it an attractive nanofabrication processes, but the inability to fabricate features with nanometer precision has significantly limited its utility. In this paper, we describe a nanostencil lithography process that provides sub-15 nm resolution even for 40-nm thick structures by using a sacrificial layer to control the proximity between the stencil and substrate, thereby enhancing the correspondence between nanostencil patterns and fabricated nanostructures. We anticipate that controlled proximity nanostencil lithography will provide an environmentally stable, clean, and positive-tone candidate for fabrication of nanostructures with high resolution.

  2. High-Resolution Spectroscopy of Some Very Inactive Southern Stars

    NASA Astrophysics Data System (ADS)

    Villarreal, A.; King, J. R.; Soderblom, D. R.; Henry, T. J.

    2001-12-01

    We have obtained high-resolution echelle spectra of a few dozen solar-type stars that an earlier low resolution Ca II H & K survey suggested have modest evels of chromospheric activity. We present Hα -based chromospheric activity measures, binarity information, and Li abundances of the sample. As expected, our spectra: confirm the low levels of chromospheric activity; suggest that these objects are apparently single; indicate the stars have small projected rotational velocities; and yield low photospheric abundances of Li. This work was supported by NSF grant AST-0086576 to JRK.

  3. Miniature high-resolution thermometer for low-temperature applications

    NASA Astrophysics Data System (ADS)

    Welander, Paul B.; Hahn, Inseob

    2001-09-01

    We report on a new miniature, high-resolution, susceptibility thermometer that employs LaxGd1-xCl3 as the paramagnetic material for temperature measurement below 4 K. The thermometer utilizes small permanent disk magnets to provide the required magnetic field, and has a total mass of only 2 g. The thermometer shows a resolution of 0.2 nK in a 1 Hz bandwidth and an absolute drift rate less than 50 fK/s at 2.2 K. In this article, we describe the thermometer design, assembly procedure, and experimental test results, including its thermal time constant and susceptibility to external magnetic fields.

  4. High-resolution Brillouin analysis of composite materials beams

    NASA Astrophysics Data System (ADS)

    London, Yosef; Antman, Yair; Silbiger, Maayan; Efraim, Liel; Froochzad, Avihay; Adler, Gadi; Levenberg, Eyal; Zadok, Avi

    2015-09-01

    High-resolution Brillouin optical correlation domain analysis of fibers embedded within beams of composite materials is performed with 4 cm resolution and 0.5 MHz sensitivity. Two new contributions are presented. First, analysis was carried out continuously over 30 hours following the production of a beam, observing heating during exothermal curing and buildup of residual strains. Second, the bending stiffness and Young's modulus of the composite beam were extracted based on distributed strain measurements, taken during a static three-point bending experiment. The calculated parameters were used to forecast the beam deflections. The latter were favorably compared against external displacement measurements.

  5. Clickstream data yields high-resolution maps of science

    SciTech Connect

    Bollen, Johan; Van De Sompel, Herbert; Hagberg, Aric; Bettencourt, Luis; Chute, Ryan; Rodriguez, Marko A; Balakireva, Lyudmila

    2009-01-01

    Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantagees of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science.

  6. High-resolution ultrasonography of the carpal tunnel.

    PubMed

    Buchberger, W; Schön, G; Strasser, K; Jungwirth, W

    1991-10-01

    Twenty-eight wrists of 25 patients with carpal tunnel syndrome (CTS) and 28 wrists of 14 normal control subjects were studied with high-frequency real-time ultrasonography. Three general findings could be observed in CTS, regardless of its cause: swelling of the median nerve at the entrance of the carpal tunnel; flattening of the median nerve in the distal carpal tunnel; and increased palmar flexion of the transverse carpal ligament. Quantitative analysis proved these findings to be significant. We conclude that high-resolution sonography is able to diagnose median nerve compression in the carpal tunnel syndrome and to detect some of its potential causes. PMID:1942218

  7. High-resolution continuum observations of the Sun

    NASA Technical Reports Server (NTRS)

    Zirin, Harold

    1987-01-01

    The aim of the PFI or photometric filtergraph instrument is to observe the Sun in the continuum with as high resolution as possible and utilizing the widest range of wavelengths. Because of financial and political problems the CCD was eliminated so that the highest photometric accuracy is only obtainable by comparison with the CFS images. Presently there is a limitation to wavelengths above 2200 A due to the lack of sensitivity of untreated film below 2200 A. Therefore the experiment at present consists of a film camera with 1000 feet of film and 12 filters. The PFI experiments are outlined using only two cameras. Some further problems of the experiment are addressed.

  8. Applied high resolution geophysical methods: Offshore geoengineering hazards

    SciTech Connect

    Trabant, P.K.

    1984-01-01

    This book is an examination of the purpose, methodology, equipment, and data interpretation of high-resolution geophysical methods, which are used to assess geological and manmade engineering hazards at offshore construction locations. It is a state-of-the-art review. Contents: 1. Introduction. 2. Maring geophysics, an overview. 3. Marine geotechnique, an overview. 4. Echo sounders. 5. Side scan sonar. 6. Subbottom profilers. 7. Seismic sources. 8. Single-channel seismic reflection systems. 9. Multifold acquisition and digital processing. 10. Marine magnetometers. 11. Marine geoengineering hazards. 12. Survey organization, navigation, and future developments. Appendix. Glossary. References. Index.

  9. Band Selection Procedure for Reduction of High Resolution Spectra

    NASA Astrophysics Data System (ADS)

    Pasztor, L.; Csillag, F.

    In this paper we present a technique for reduction of spectra based on the methods of multivariate statistical analysis. The procedure was developed for general processing of digital, high resolution spectra. The recursive band selection method can be applied in studies for weighting (original) spectral bands according their sensitivity to a predefined classification scheme. Additionally, definition of medium and broad band systems is possible, which can efficiently substitute the original spectrum. According to the characteristics of the method resulted from a remote sensing application (convergence, robustness), it is suggested for use in different (radio, UV, X-ray etc.) astronomical studies as well.

  10. High resolution upgrade of the ATF damping ring BPM system

    SciTech Connect

    Terunuma, N.; Urakawa, J.; Frisch, J.; May, J.; McCormick, D.; Nelson, J.; Seryi, A.; Smith, T.; Woodley, M.; Briegel, C.; Dysert, R.; /Fermilab

    2008-05-01

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished in its first stage, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital downconversion techniques, digital signal processing, and also tests a new automatic gain error correction schema. The technical concept and realization, as well as preliminary results of beam studies are presented.

  11. High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography

    PubMed Central

    Boutet, Sébastien; Lomb, Lukas; Williams, Garth J.; Barends, Thomas R. M.; Aquila, Andrew; Doak, R. Bruce; Weierstall, Uwe; DePonte, Daniel P.; Steinbrener, Jan; Shoeman, Robert L.; Messerschmidt, Marc; Barty, Anton; White, Thomas A.; Kassemeyer, Stephan; Kirian, Richard A.; Seibert, M. Marvin; Montanez, Paul A.; Kenney, Chris; Herbst, Ryan; Hart, Philip; Pines, Jack; Haller, Gunther; Gruner, Sol M.; Philipp, Hugh T.; Tate, Mark W.; Hromalik, Marianne; Koerner, Lucas J.; van Bakel, Niels; Morse, John; Ghonsalves, Wilfred; Arnlund, David; Bogan, Michael J.; Caleman, Carl; Fromme, Raimund; Hampton, Christina Y.; Hunter, Mark S.; Johansson, Linda C.; Katona, Gergely; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V.; Nass, Karol; Redecke, Lars; Stellato, Francesco; Timneanu, Nicusor; Wang, Dingjie; Zatsepin, Nadia A.; Schafer, Donald; Defever, James; Neutze, Richard; Fromme, Petra; Spence, John C. H.; Chapman, Henry N.; Schlichting, Ilme

    2013-01-01

    Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules. PMID:22653729

  12. High resolution collimator system for X-ray detector

    DOEpatents

    Eberhard, Jeffrey W.; Cain, Dallas E.

    1987-01-01

    High resolution in an X-ray computerized tomography (CT) inspection system is achieved by using a collimator/detector combination to limit the beam width of the X-ray beam incident on a detector element to the desired resolution width. In a detector such as a high pressure Xenon detector array, a narrow tapered collimator is provided above a wide detector element. The collimator slits have any desired width, as small as a few mils at the top, the slit width is easily controlled, and they are fabricated on standard machines. The slit length determines the slice thickness of the CT image.

  13. High-resolution satellite imagery for mesoscale meteorological studies

    NASA Technical Reports Server (NTRS)

    Johnson, David B.; Flament, Pierre; Bernstein, Robert L.

    1994-01-01

    In this article high-resolution satellite imagery from a variety of meteorological and environmental satellites is compared. Digital datasets from Geostationary Operational Environmental Satellite (GOES), National Oceanic and Atmospheric Administration (NOAA), Defense Meteorological Satellite Program (DMSP), Landsat, and Satellite Pour l'Observation de la Terre (SPOT) satellites were archived as part of the 1990 Hawaiian Rainband Project (HaRP) and form the basis of the comparisons. During HaRP, GOES geostationary satellite coverage was marginal, so the main emphasis is on the polar-orbiting satellites.

  14. High-Resolution NMR Probe for Experiments at High Pressures

    NASA Astrophysics Data System (ADS)

    Ballard, L.; Reiner, C.; Jonas, J.

    A 300 MHz high-resolution, high-pressure NMR probe which operates in the pressure range of 1 bar to 9 kbar at temperatures of -30 to 100°C is described. Specialized novel design features of the probe are discussed and test spectra showing resolution better than 1 Hz (<3.0 × 10 -9) for 8 mm samples are presented. Potential biochemical applications of this probe are illustrated by experiments dealing with the pressure-induced unfolding of hen egg white lysozyme.

  15. A High Resolution Microprobe Study of EETA79001 Lithology C

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.; Cohen, B. A.; Donovan, J. J.; Vicenzi, E. P.

    2010-01-01

    Antarctic meteorite EETA79001 has received substantial attention for possibly containing a component of Martian soil in its impact glass (Lithology C) [1]. The composition of Martian soil can illuminate near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Impact melts in meteorites represent our most direct samples of Martian regolith. We present the initial findings from a high-resolution electron microprobe study of Lithology C from Martian meteorite EETA79001. As this study develops we aim to extract details of a potential soil composition and to examine Martian surface processes using elemental ratios and correlations.

  16. POWERWALL: International Workshop on Interactive, Ultra-High-Resolution Displays

    SciTech Connect

    Rooney, Chris; Endert, Alexander; Fekete, Jean-Daniel; Hornbaek, Kasper; North, Chris

    2013-04-27

    Ultra-high-resolution (Powerwall) displays are becoming increasingly popular due to the ever decreasing cost of hardware. As a result they are appearing more frequently in research institutes, and making the jump out of the lab and into industry. Due to the amount of work in this research area that has been published in CHI over the last few years, we felt that this confernece would be the ideal host for the first opportunity for both academics and practitioners in this field to get together.

  17. High-resolution imaging of the supercritical antisolvent process

    NASA Astrophysics Data System (ADS)

    Bell, Philip W.; Stephens, Amendi P.; Roberts, Christopher B.; Duke, Steve R.

    2005-06-01

    A high-magnification and high-resolution imaging technique was developed for the supercritical fluid antisolvent (SAS) precipitation process. Visualizations of the jet injection, flow patterns, droplets, and particles were obtained in a high-pressure vessel for polylactic acid and budesonide precipitation in supercritical CO2. The results show two regimes for particle production: one where turbulent mixing occurs in gas-like plumes, and another where distinct droplets were observed in the injection. Images are presented to demonstrate the capabilities of the method for examining particle formation theories and for understanding the underlying fluid mechanics, thermodynamics, and mass transport in the SAS process.

  18. High resolution X-ray spectroscopy of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    1990-01-01

    After a brief review of the principal problems of AGN research, selected potential high-resolution observations are discussed with a view toward assessing their scientific value and the degree of resolution they will require. Two classes of observations pertaining directly to AGNs are discussed. Fe K-alpha spectroscopy relevant to the dynamical and thermal character of the emission line zones; and measurement of resonance line absorption by highly-ionized species in BL Lac objects, which should provide information about entrainment of interstellar material by relativistic jets. A third class of potentially important observations uses AGNs as background light sources in order to directly measure the distance to clusters of galaxies.

  19. High-Resolution, Wide-Field-of-View Scanning Telescope

    NASA Technical Reports Server (NTRS)

    Sepulveda, Cesar; Wilson, Robert; Seshadri, Suresh

    2007-01-01

    A proposed telescope would afford high resolution over a narrow field of view (<0.10 ) while scanning over a total field of view nominally 16 wide without need to slew the entire massive telescope structure. The telescope design enables resolution of a 1-m-wide object in a 50- km-wide area of the surface of the Earth as part of a 200-km-wide area field of view monitored from an orbit at an altitude of 700 km. The conceptual design of this telescope could also be adapted to other applications both terrestrial and extraterrestrial in which there are requirements for telescopes that afford both wide- and narrow-field capabilities. In the proposed telescope, the scanning would be effected according to a principle similar to that of the Arecibo radio telescope, in which the primary mirror is stationary with respect to the ground and a receiver is moved across the focal surface of the primary mirror. The proposed telescope would comprise (1) a large spherical primary mirror that would afford high resolution over a narrow field of view and (2) a small displaceable optical relay segment that would be pivoted about the center of an aperture stop to effect the required scanning (see figure). Taken together, both comprise a scanning narrow-angle telescope that does not require slewing the telescope structure. In normal operation, the massive telescope structure would stare at a fixed location on the ground. The inner moveable relay optic would be pivoted to scan the narrower field of view over the wider one, making it possible to retain a fixed telescope orientation, while obtaining high-resolution images over multiple target areas during an interval of 3 to 4 minutes in the intended orbit. The pivoting relay segment of the narrow-angle telescope would include refractive and reflective optical elements, including two aspherical mirrors, to counteract the spherical aberration of the primary mirror. Overall, the combination of the primary mirror and the smaller relay optic

  20. High resolution infrared datasets useful for validating stratospheric models

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.

    1992-01-01

    An important objective of the High Speed Research Program (HSRP) is to support research in the atmospheric sciences that will improve the basic understanding of the circulation and chemistry of the stratosphere and lead to an interim assessment of the impact of a projected fleet of High Speed Civil Transports (HSCT's) on the stratosphere. As part of this work, critical comparisons between models and existing high quality measurements are planned. These comparisons will be used to test the reliability of current atmospheric chemistry models. Two suitable sets of high resolution infrared measurements are discussed.

  1. Homology Groups of High-Resolution Temporal Rainfall

    NASA Astrophysics Data System (ADS)

    Vásquez Aguilar, R.; Carsteanu, A. A.

    2015-12-01

    Using high-resolution temporal rainfall intensities from Iowa City, IA (IIHR, U of Iowa), we perform an analysis of the homology groups generated by data connectivity in state space, and attempt a qualitative interpretation of the first and second homology groups. Let us note that homology groups are generated, in the context of topological data analysis (TDA), by representing the data in n-dimensional state space and building a connectivity diagram according to the respective distances between the data points. Subsequently, the topological invariants of the resulting connected structures are being analyzed.

  2. High resolution 3D fluorescence tomography using ballistic photons

    NASA Astrophysics Data System (ADS)

    Zheng, Jie; Nouizi, Farouk; Cho, Jaedu; Kwong, Jessica; Gulsen, Gultekin

    2015-03-01

    We are developing a ballistic-photon based approach for improving the spatial resolution of fluorescence tomography using time-domain measurements. This approach uses early photon information contained in measured time-of-fight distributions originating from fluorescence emission. The time point spread functions (TPSF) from both excitation light and emission light are acquired with gated single photon Avalanche detector (SPAD) and time-correlated single photon counting after a short laser pulse. To determine the ballistic photons for reconstruction, the lifetime of the fluorophore and the time gate from the excitation profiles will be used for calibration, and then the time gate of the fluorescence profile can be defined by a simple time convolution. By mimicking first generation CT data acquisition, the sourcedetector pair will translate across and also rotate around the subject. The measurement from each source-detector position will be reshaped into a histogram that can be used by a simple back-projection algorithm in order to reconstruct high resolution fluorescence images. Finally, from these 2D sectioning slides, a 3D inclusion can be reconstructed accurately. To validate the approach, simulation of light transport is performed for biological tissue-like media with embedded fluorescent inclusion by solving the diffusion equation with Finite Element Method using COMSOL Multiphysics simulation. The reconstruction results from simulation studies have confirmed that this approach drastically improves the spatial resolution of fluorescence tomography. Moreover, all the results have shown the feasibility of this technique for high resolution small animal imaging up to several centimeters.

  3. High-resolution electron microscopy of advanced materials

    SciTech Connect

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  4. Synthetic vision helicopter flights using high resolution LIDAR terrain data

    NASA Astrophysics Data System (ADS)

    Sindlinger, A.; Meuter, M.; Barraci, N.; Güttler, M.; Klingauf, U.; Schiefele, J.; Howland, D.

    2006-05-01

    Helicopters are widely used for operations close to terrain such as rescue missions; therefore all-weather capabilities are highly desired. To minimize or even avoid the risk of collision with terrain and obstacles, Synthetic Vision Systems (SVS) could be used to increase situational awareness. In order to demonstrate this, helicopter flights have been performed in the area of Zurich, Switzerland A major component of an SVS is the three-dimensional (3D) depiction of terrain data, usually presented on the primary flight display (PFD). The degree of usability in low level flight applications is a function of the terrain data quality. Today's most precise, large scale terrain data are derived from airborne laser scanning technologies such as LIDAR (light detection and ranging). A LIDAR dataset provided by Swissphoto AG, Zurich with a resolution of 1m was used. The depiction of high resolution terrain data consisting of 1 million elevation posts per square kilometer on a laptop in an appropriate area around the helicopter is challenging. To facilitate the depiction of the high resolution terrain data, it was triangulated applying a 1.5m error margin making it possible to depict an area of 5x5 square kilometer around the helicopter. To position the camera correctly in the virtual scene the SVS had to be supplied with accurate navigation data. Highly flexible and portable measurement equipment which easily could be used in most aircrafts was designed. Demonstration flights were successfully executed in September, October 2005 in the Swiss Alps departing from Zurich.

  5. Automated frame selection process for high-resolution microendoscopy

    NASA Astrophysics Data System (ADS)

    Ishijima, Ayumu; Schwarz, Richard A.; Shin, Dongsuk; Mondrik, Sharon; Vigneswaran, Nadarajah; Gillenwater, Ann M.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca

    2015-04-01

    We developed an automated frame selection algorithm for high-resolution microendoscopy video sequences. The algorithm rapidly selects a representative frame with minimal motion artifact from a short video sequence, enabling fully automated image analysis at the point-of-care. The algorithm was evaluated by quantitative comparison of diagnostically relevant image features and diagnostic classification results obtained using automated frame selection versus manual frame selection. A data set consisting of video sequences collected in vivo from 100 oral sites and 167 esophageal sites was used in the analysis. The area under the receiver operating characteristic curve was 0.78 (automated selection) versus 0.82 (manual selection) for oral sites, and 0.93 (automated selection) versus 0.92 (manual selection) for esophageal sites. The implementation of fully automated high-resolution microendoscopy at the point-of-care has the potential to reduce the number of biopsies needed for accurate diagnosis of precancer and cancer in low-resource settings where there may be limited infrastructure and personnel for standard histologic analysis.

  6. Providing Internet Access to High-Resolution Mars Images

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2008-01-01

    The OnMars server is a computer program that provides Internet access to high-resolution Mars images, maps, and elevation data, all suitable for use in geographical information system (GIS) software for generating images, maps, and computational models of Mars. The OnMars server is an implementation of the Open Geospatial Consortium (OGC) Web Map Service (WMS) server. Unlike other Mars Internet map servers that provide Martian data using an Earth coordinate system, the OnMars WMS server supports encoding of data in Mars-specific coordinate systems. The OnMars server offers access to most of the available high-resolution Martian image and elevation data, including an 8-meter-per-pixel uncontrolled mosaic of most of the Mars Global Surveyor (MGS) Mars Observer Camera Narrow Angle (MOCNA) image collection, which is not available elsewhere. This server can generate image and map files in the tagged image file format (TIFF), Joint Photographic Experts Group (JPEG), 8- or 16-bit Portable Network Graphics (PNG), or Keyhole Markup Language (KML) format. Image control is provided by use of the OGC Style Layer Descriptor (SLD) protocol. The OnMars server also implements tiled WMS protocol and super-overlay KML for high-performance client application programs.

  7. High-resolution time-frequency distributions for fall detection

    NASA Astrophysics Data System (ADS)

    Amin, Moeness G.; Zhang, Yimin D.; Boashash, Boualem

    2015-05-01

    In this paper, we examine the role of high-resolution time-frequency distributions (TFDs) of radar micro-Doppler signatures for fall detection. The work supports the recent and rising interest in using emerging radar technology for elderly care and assisted living. Spectrograms have been the de facto joint-variable signal representation, depicting the signal power in both time and frequency. Although there have been major advances in designing quadratic TFDs which are superior to spectrograms in terms of detailing the local signal behavior, the contributions of these distributions in the area of human motion classifications and their offerings in enhanced feature extractions have not yet been properly evaluated. The main purpose of this paper is to show the effect of using high-resolution TFD kernels, in lieu of spectrogram, on fall detection. We focus on the extended modified B-distribution (EMBD) and exploit the level of details it provides as compared with the coarse and smoothed time-frequency signatures offered by spectrograms.

  8. High-resolution ionization detector and array of such detectors

    DOEpatents

    McGregor, Douglas S.; Rojeski, Ronald A.

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  9. The High-Resolution Coronal Imager (Hi-C)

    NASA Astrophysics Data System (ADS)

    Kobayashi, Ken; Cirtain, Jonathan; Winebarger, Amy R.; Korreck, Kelly; Golub, Leon; Walsh, Robert W.; De Pontieu, Bart; DeForest, Craig; Title, Alan; Kuzin, Sergey; Savage, Sabrina; Beabout, Dyana; Beabout, Brent; Podgorski, William; Caldwell, David; McCracken, Kenneth; Ordway, Mark; Bergner, Henry; Gates, Richard; McKillop, Sean; Cheimets, Peter; Platt, Simon; Mitchell, Nick; Windt, David

    2014-11-01

    The High-Resolution Coronal Imager (Hi-C) was flown on a NASA sounding rocket on 11 July 2012. The goal of the Hi-C mission was to obtain high-resolution (≈ 0.3 - 0.4''), high-cadence (≈ 5 seconds) images of a solar active region to investigate the dynamics of solar coronal structures at small spatial scales. The instrument consists of a normal-incidence telescope with the optics coated with multilayers to reflect a narrow wavelength range around 19.3 nm (including the Fe xii 19.5-nm spectral line) and a 4096×4096 camera with a plate scale of 0.1'' pixel-1. The target of the Hi-C rocket flight was Active Region 11520. Hi-C obtained 37 full-frame images and 86 partial-frame images during the rocket flight. Analysis of the Hi-C data indicates the corona is structured on scales smaller than currently resolved by existing satellite missions.

  10. Coregistration of high-resolution Mars orbital images

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2015-04-01

    The systematic orbital imaging of the Martian surface started 4 decades ago from NASA's Viking Orbiter 1 & 2 missions, which were launched in August 1975, and acquired orbital images of the planet between 1976 and 1980. The result of this reconnaissance was the first medium-resolution (i.e. ≤ 300m/pixel) global map of Mars, as well as a variety of high-resolution images (reaching up to 8m/pixel) of special regions of interest. Over the last two decades NASA has sent 3 more spacecraft with onboard instruments for high-resolution orbital imaging: Mars Global Surveyor (MGS) having onboard the Mars Orbital Camera - Narrow Angle (MOC-NA), Mars Odyssey having onboard the Thermal Emission Imaging System - Visual (THEMIS-VIS) and the Mars Reconnaissance Orbiter (MRO) having on board two distinct high-resolution cameras, Context Camera (CTX) and High-Resolution Imaging Science Experiment (HiRISE). Moreover, ESA has the multispectral High resolution Stereo Camera (HRSC) onboard ESA's Mars Express with resolution up to 12.5m since 2004. Overall, this set of cameras have acquired more than 400,000 high-resolution images, i.e. with resolution better than 100m and as fine as 25 cm/pixel. Notwithstanding the high spatial resolution of the available NASA orbital products, their accuracy of areo-referencing is often very poor. As a matter of fact, due to pointing inconsistencies, usually form errors in roll attitude, the acquired products may actually image areas tens of kilometers far away from the point that they are supposed to be looking at. On the other hand, since 2004, the ESA Mars Express has been acquiring stereo images through the High Resolution Stereo Camera (HRSC), with resolution that is usually 12.5-25 metres per pixel. The achieved coverage is more than 64% for images with resolution finer than 20 m/pixel, while for ~40% of Mars, Digital Terrain Models (DTMs) have been produced with are co-registered with MOLA [Gwinner et al., 2010]. The HRSC images and DTMs

  11. High-resolution diffraction grating interferometric transducer of linear displacements

    NASA Astrophysics Data System (ADS)

    Shang, Ping; Xia, Haojie; Fei, Yetai

    2016-01-01

    A high-resolution transducer of linear displacements is presented. The system is based on semiconductor laser illumination and a diffraction grating applied as a length master. The theory of the optical method is formulated using Doppler description. The relationship model among the interference strips, measurement errors, grating deflection around the X, Y and Z axes and translation along the Z axis is built. The grating interference strips' direction and space is not changed with movement along the X (direction of grating movement), Y (direction of grating line), Z axis, and the direction and space has a great effect when rotating around the X axis. Moreover the space is little affected by deflection around the Z axis however the direction is changed dramatically. In addition, the strips' position shifted rightward or downwards respectively for deflection around the X or Y axis. Because the emitted beams are separated on the grating plane, the tilt around the X axis error of the stage during motion will lead to the optical path difference of the two beams resulting in phase shift. This study investigates the influence of the tilt around the X axis error. Experiments show that after yaw error compensation, the high-resolution diffraction grating interferometric transducer readings can be significantly improved. The error can be reduced from +/-80 nm to +/-30 nm in maximum.

  12. High-Resolution Infrared Spectroscopy with Synchrotron Sources

    SciTech Connect

    McKellar, A.

    2010-01-01

    Most applications of synchrotron radiation lie in the ultraviolet and X-ray region, but it also serves as a valuable continuum source of infrared (IR) light which is much brighter (i.e. more highly directional) than that from normal thermal sources. The synchrotron brightness advantage was originally exploited for high spatial resolution spectroscopy of condensed-phase samples. But it is also valuable for high spectral resolution of gas-phase samples, particularly in the difficult far-IR (terahertz) range (1/{lambda} {approx} 10-1000 cm{sup -1}). Essentially, the synchrotron replaces the usual thermal source in a Fourier transform IR spectrometer, giving a increase of up to two (or even more) orders of magnitude in signal at very high-resolution. Following up on pioneering work in Sweden (MAX-lab) and France (LURE), a number of new facilities have recently been constructed for high-resolution gas-phase IR spectroscopy. In the present paper, this new field is reviewed. The advantages and difficulties associated with synchrotron IR spectroscopy are outlined, current and new facilities are described, and past, present, and future spectroscopic results are summarized.

  13. Evaluation of a high resolution silicon PET insert module

    NASA Astrophysics Data System (ADS)

    Grkovski, Milan; Brzezinski, Karol; Cindro, Vladimir; Clinthorne, Neal H.; Kagan, Harris; Lacasta, Carlos; Mikuž, Marko; Solaz, Carles; Studen, Andrej; Weilhammer, Peter; Žontar, Dejan

    2015-07-01

    Conventional PET systems can be augmented with additional detectors placed in close proximity of the region of interest. We developed a high resolution PET insert module to evaluate the added benefit of such a combination. The insert module consists of two back-to-back 1 mm thick silicon sensors, each segmented into 1040 1 mm2 pads arranged in a 40 by 26 array. A set of 16 VATAGP7.1 ASICs and a custom assembled data acquisition board were used to read out the signal from the insert module. Data were acquired in slice (2D) geometry with a Jaszczak phantom (rod diameters of 1.2-4.8 mm) filled with 18F-FDG and the images were reconstructed with ML-EM method. Both data with full and limited angular coverage from the insert module were considered and three types of coincidence events were combined. The ratio of high-resolution data that substantially improves quality of the reconstructed image for the region near the surface of the insert module was estimated to be about 4%. Results from our previous studies suggest that such ratio could be achieved at a moderate technological expense by using an equivalent of two insert modules (an effective sensor thickness of 4 mm).

  14. Thin polymer etalon arrays for high-resolution photoacoustic imaging

    PubMed Central

    Hou, Yang; Huang, Sheng-Wen; Ashkenazi, Shai; Witte, Russell; O’Donnell, Matthew

    2009-01-01

    Thin polymer etalons are demonstrated as high-frequency ultrasound sensors for three-dimensional (3-D) high-resolution photoacoustic imaging. The etalon, a Fabry-Perot optical resonator, consists of a thin polymer slab sandwiched between two gold layers. It is probed with a scanning continuous-wave (CW) laser for ultrasound array detection. Detection bandwidth of a 20-μm-diam array element exceeds 50 MHz, and the ultrasound sensitivity is comparable to polyvinylidene fluoride (PVDF) equivalents of similar size. In a typical photoacoustic imaging setup, a pulsed laser beam illuminates the imaging target, where optical energy is absorbed and acoustic waves are generated through the thermoelastic effect. An ultrasound detection array is formed by scanning the probing laser beam on the etalon surface in either a 1-D or a 2-D configuration, which produces 2-D or 3-D images, respectively. Axial and lateral resolutions have been demonstrated to be better than 20 μm. Detailed characterizations of the optical and acoustical properties of the etalon, as well as photoacoustic imaging results, suggest that thin polymer etalon arrays can be used as ultrasound detectors for 3-D high-resolution photoacoustic imaging applications. PMID:19123679

  15. High resolution coherent three dimensional spectroscopy of NO2.

    PubMed

    Wells, Thresa A; Muthike, Angelar K; Robinson, Jessica E; Chen, Peter C

    2015-06-01

    Expansion from coherent 2D spectroscopy to coherent 3D spectroscopy can provide significant advantages when studying molecules that have heavily perturbed energy levels. This paper illustrates such advantages by demonstrating how high resolution coherent 3D (HRC3D) spectroscopy can be used to study a portion of the visible spectrum of nitrogen dioxide. High resolution coherent 2D spectra usually contain rotational and vibrational patterns that are easy to analyze, but severe congestion and complexity preclude its effective use for many parts of the NO2 spectrum. HRC3D spectroscopy appears to be much more effective; multidimensional rotational and vibrational patterns produced by this new technique are easy to identify even in the presence of strong perturbations. A method for assigning peaks, which is based upon analyzing the resulting multidimensional patterns, has been developed. The higher level of multidimensionality is useful for reducing uncertainty in peak assignments, improving spectral resolution, providing simultaneous information on multiple levels and states, and predicting, verifying, and categorizing peaks. PMID:26049446

  16. Wide-field, high-resolution Fourier ptychographic microscopy

    PubMed Central

    Zheng, Guoan; Horstmeyer, Roarke; Yang, Changhuei

    2014-01-01

    In this article, we report an imaging method, termed Fourier ptychographic microscopy (FPM), which iteratively stitches together a number of variably illuminated, low-resolution intensity images in Fourier space to produce a wide-field, high-resolution complex sample image. By adopting a wavefront correction strategy, the FPM method can also correct for aberrations and digitally extend a microscope’s depth-of-focus beyond the physical limitations of its optics. As a demonstration, we built a microscope prototype with a resolution of 0.78 μm, a field-of-view of ~120 mm2, and a resolution-invariant depth-of-focus of 0.3 mm (characterized at 632 nm). Gigapixel colour images of histology slides verify FPM’s successful operation. The reported imaging procedure transforms the general challenge of high-throughput, high-resolution microscopy from one that is coupled to the physical limitations of the system’s optics to one that is solvable through computation. PMID:25243016

  17. A miniature high-resolution accelerometer utilizing electron tunneling

    NASA Technical Reports Server (NTRS)

    Rockstad, Howard K.; Kenny, T. W.; Reynolds, J. K.; Kaiser, W. J.; Vanzandt, T. R.; Gabrielson, Thomas B.

    1992-01-01

    New methods have been developed to implement high-resolution position sensors based on electron tunneling. These methods allow miniaturization while utilizing the position sensitivity of electron tunneling to give high resolution. A single-element tunneling accelerometer giving a displacement resolution of 0.002 A/sq rt Hz at 10 Hz, corresponding to an acceleration resolution of 5 x 10 exp -8 g/sq rt Hz, is described. A new dual-element tunneling structure which overcomes the narrow bandwidth limitations of a single-element structure is described. A sensor with an operating range of 5 Hz to 10 kHz, which can have applications as an acoustic sensor, is discussed. Noise is analyzed for fundamental thermal vibration of the suspended masses and is compared to electronic noise. It is shown that miniature tunnel accelerometers can achieve resolution such that thermal noise in the suspended masses is the dominant cause of the resolution limit. With a proof mass of order 100 mg, noise analysis predicts limiting resolutions approaching 10 exp -9 g/sq rt Hz in a 300 Hz band and 10 exp -8 g/sq rt Hz at 1 kHz.

  18. High resolution coherence analysis between planetary and climate oscillations

    NASA Astrophysics Data System (ADS)

    Scafetta, Nicola

    2016-05-01

    This study investigates the existence of a multi-frequency spectral coherence between planetary and global surface temperature oscillations by using advanced techniques of coherence analysis and statistical significance tests. The performance of the standard Matlab mscohere algorithms is compared versus high resolution coherence analysis methodologies such as the canonical correlation analysis. The Matlab mscohere function highlights large coherence peaks at 20 and 60-year periods although, due to the shortness of the global surface temperature record (1850-2014), the statistical significance of the result depends on the specific window function adopted for pre-processing the data. In fact, window functions disrupt the low frequency component of the spectrum. On the contrary, using the canonical correlation analysis at least five coherent frequencies at the 95% significance level are found at the following periods: 6.6, 7.4, 14, 20 and 60 years. Thus, high resolution coherence analysis confirms that the climate system can be partially modulated by astronomical forces of gravitational, electromagnetic and solar origin. A possible chain of the physical causes explaining this coherence is briefly discussed.

  19. High-resolution Imaging Techniques for the Assessment of Osteoporosis

    PubMed Central

    Krug, Roland; Burghardt, Andrew J.; Majumdar, Sharmila; Link, Thomas M.

    2010-01-01

    Synopsis The importance of assessing the bone’s microarchitectural make-up in addition to its mineral density in the context of osteoporosis has been emphasized in a number of publications. The high spatial resolution required to resolve the bone’s microstructure in a clinically feasible scan time is challenging. Currently, the best suited modalities meeting these requirements in vivo are high-resolution peripheral quantitative imaging (HR-pQCT) and magnetic resonance imaging (MRI). Whereas HR-pQCT is limited to peripheral skeleton regions like the wrist and ankle, MRI can also image other sites like the proximal femur but usually with lower spatial resolution. In addition Multidetector-CT has been used for high-resolution imaging of trabecular bone structure, however, the radiation dose is a limiting factor. This article provides an overview of the different modalities, technical requirements and recent developments in this emerging field. Details regarding imaging protocols as well as image post-processing methods for bone structure quantification are discussed. PMID:20609895

  20. High-Resolution Cellulose Oxygen Isotope Records From Indonesian Trees

    NASA Astrophysics Data System (ADS)

    Poussart, P. F.; Schrag, D. P.; Evans, M. N.; D'Arrigo, R. D.

    2002-12-01

    Tropical paleoclimate records such as those derived from ice cores, lake sediments, and corals have yielded valuable insights into the Holocene history of the major modes of climate variability, in particular the El Niño/Southern Oscillation. However, because tropical trees generally lack visible, annual growth rings, their potential as recorders of climate variability has not been fully explored. To circumvent this difficulty, we made high-resolution oxygen isotopic measurements on cellulose extracted from tree samples from Indonesia. First, we examined teak samples, which are one of the rare tropical trees that display well-defined annual growth rings. The samples cover the period from 1800 to the present and show annual to bi-annual cycles, coherent with the visible rings. We use these samples to explore intra-site and intra-tree variability. Second, we measured δ18O time series from three suar wood samples with no visible rings. The oxygen isotopic values are compared to radiocarbon-based age models and show a positive correlation between estimated growth rates and amplitude of the 18O seasonal cycle, suggesting a common environmental forcing. Although the isotopic seasonal cycles are not always regular enough for perfect chronological control, they provide encouraging support for the use of high-resolution isotope records from tropical trees as proxies for multi-century reconstructions of climate variability.

  1. HEUVAC: A new high resolution solar EUV proxy model

    NASA Astrophysics Data System (ADS)

    Richards, Philip G.; Woods, Thomas N.; Peterson, William K.

    This paper presents a new high-resolution version of the solar EUV irradiance model for aeronomic calculations (HEUVAC) that is designed to facilitate comparisons with measured spectra and enable more accurate calculations of ionization rates, airglow emission rates, and photoelectron calculations. The HEUVAC model bins can range from 0.1 to 100 nm and extends the EUV model below 5 nm. The new solar EUV irradiance calculations with the high resolution irradiance model show good agreement with the most recent solar EUV irradiance measurements from the solar EUV experiment (SEE) instrument on the thermosphere, ionosphere, mesosphere, energetics, and dynamics satellite. Also, photoelectron fluxes calculated from both the SEE measured and EUVAC modeled solar EUV irradiances agree well with photoelectron flux measurements by the FAST satellite. The good agreement of the EUVAC and SEE derived photoelectron fluxes with the FAST measured fluxes at solar maximum lends support to an earlier finding that the previous reference solar EUV irradiances from the Atmosphere Explorer measurements need to be adjusted upward by a factor of 2 3 below 25 nm wavelength. This result is important for remote sensing of the ionosphere and thermosphere because, as this paper shows, the airglow emission rates calculated using the SEE and HEUVAC models are 50% higher than those based on earlier solar EUV irradiance models. The calculations also show that for solar maximum conditions on 21 April 2002, most of the degradation of the escaping photoelectron flux takes place below 1000 km altitude.

  2. Towards Ultra-High Resolution Models of Climate and Weather

    SciTech Connect

    Wehner, Michael; Oliker, Leonid; Shalf, John

    2007-01-01

    We present a speculative extrapolation of the performance aspects of an atmospheric general circulation model to ultra-high resolution and describe alternative technological paths to realize integration of such a model in the relatively near future. Due to a superlinear scaling of the computational burden dictated by stability criterion, the solution of the equations of motion dominate the calculation at ultra-high resolutions. From this extrapolation, it is estimated that a credible kilometer scale atmospheric model would require at least a sustained ten petaflop computer to provide scientifically useful climate simulations. Our design study portends an alternate strategy for practical power-efficient implementations of petaflop scale systems. Embedded processor technology could be exploited to tailor a custom machine designed to ultra-high climate model specifications at relatively affordable cost and power considerations. The major conceptual changes required by a kilometer scale climate model are certain to be difficult to implement. Although the hardware, software, and algorithms are all equally critical in conducting ultra-high climate resolution studies, it is likely that the necessary petaflop computing technology will be available in advance of a credible kilometer scale climate model.

  3. Photoswitchable Nanoparticles Enable High-Resolution Cell Imaging: PULSAR Microscopy

    SciTech Connect

    Hu, Dehong; Tian, Z.; Wu, Wuwei; Wan, Wei; Li, Alexander D.

    2008-10-22

    Fluorescence imaging has transformed biological sciences and opened a window to reveal biological mechanisms in real time despite Abbe’s diffraction limit restricts current microscope resolution to 300 nm?.HDH2 Recently, two high-resolution fluorescence microscopic techniques emerged: one uses a special photoactivatable green fluorescent proteinHDH3 and the other employs a pair of cy3/cy5 dyes.HDH4 Both avoid Abbe’s diffraction limit by photoswitching nearby fluorophores off. Thus, photoswitching fluorescence between a bright and a dark state promises to deliver a wealth of information regarding biological phenomena at the nanoscale. The ideal probe is a key-enabling single molecule that can be photoswitched on and off. Such wonderful properties, albeit implausible to imagine at first, were realized in spiropyran derivatives. While being photoswitched, one molecule alternates red-fluorescence on-and-off. Using such photo-actuated unimolecular logical switching attained reconstruction (PULSAR) microscopy, we achieved high-resolution fluorescence imaging down to 80 nm? in nanostructures and cellular organelles.

  4. High resolution multiplexed functional imaging in live embyros (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Peng, Leilei

    2016-03-01

    Optical projection tomography (OPT) creates isotropic 3D imaging of tissue. Two approaches exist today: Wide-field OPT illuminates the entire sample and acquires projection images with a camera; Scanning-laser optical tomography (SLOT) generates the projection with a moving laser beam and point detector. SLOT has superior light collecting efficiency than wide-field optical tomography, making it ideal for tissue fluorescence imaging. Regardless the approach, traditional OPT has to compromise between the resolution and the depth of view. In traditional SLOT, the focused Gaussian beam diverges quickly from the focused plane, making it impossible to achieve high resolution imaging through a large volume specimen. We report using Bessel beam instead of Gaussian beam to perform SLOT. By illuminating samples with a narrow Bessel beam throughout an extended depth, high-resolution projection images can be measured in large volume. Under Bessel illumination, the projection image contains signal from annular-rings of the Bessel beam. Traditional inverse Radon transform of these projections will result in ringing artifacts in reconstructed imaging. Thus a modified 3D filtered back projection algorithm is developed to perform tomography reconstructing of Bessel-illuminated projection images. The resulting 3D imaging is free of artifact and achieved cellular resolution in extended sample volume. The system is applied to in-vivo imaging of transgenic Zebrafish embryos. Results prove Bessel SLOT a promising imaging method in development biology research.

  5. Providing Internet Access to High-Resolution Lunar Images

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2008-01-01

    The OnMoon server is a computer program that provides Internet access to high-resolution Lunar images, maps, and elevation data, all suitable for use in geographical information system (GIS) software for generating images, maps, and computational models of the Moon. The OnMoon server implements the Open Geospatial Consortium (OGC) Web Map Service (WMS) server protocol and supports Moon-specific extensions. Unlike other Internet map servers that provide Lunar data using an Earth coordinate system, the OnMoon server supports encoding of data in Moon-specific coordinate systems. The OnMoon server offers access to most of the available high-resolution Lunar image and elevation data. This server can generate image and map files in the tagged image file format (TIFF) or the Joint Photographic Experts Group (JPEG), 8- or 16-bit Portable Network Graphics (PNG), or Keyhole Markup Language (KML) format. Image control is provided by use of the OGC Style Layer Descriptor (SLD) protocol. Full-precision spectral arithmetic processing is also available, by use of a custom SLD extension. This server can dynamically add shaded relief based on the Lunar elevation to any image layer. This server also implements tiled WMS protocol and super-overlay KML for high-performance client application programs.

  6. Live CLEM imaging to analyze nuclear structures at high resolution.

    PubMed

    Haraguchi, Tokuko; Osakada, Hiroko; Koujin, Takako

    2015-01-01

    Fluorescence microscopy (FM) and electron microscopy (EM) are powerful tools for observing molecular components in cells. FM can provide temporal information about cellular proteins and structures in living cells. EM provides nanometer resolution images of cellular structures in fixed cells. We have combined FM and EM to develop a new method of correlative light and electron microscopy (CLEM), called "Live CLEM." In this method, the dynamic behavior of specific molecules of interest is first observed in living cells using fluorescence microscopy (FM) and then cellular structures in the same cell are observed using electron microscopy (EM). Following image acquisition, FM and EM images are compared to enable the fluorescent images to be correlated with the high-resolution images of cellular structures obtained using EM. As this method enables analysis of dynamic events involving specific molecules of interest in the context of specific cellular structures at high resolution, it is useful for the study of nuclear structures including nuclear bodies. Here we describe Live CLEM that can be applied to the study of nuclear structures in mammalian cells. PMID:25555577

  7. Invariance Techniques And High-Resolution Null Steering

    NASA Astrophysics Data System (ADS)

    Roy, R.; Kailath, T.

    1988-02-01

    Over the past several decades, a significant amount of research has been performed in the area of high-resolution signal parameter estimation. It is a problem of significance in many signal processing applications including direction-of-arrival estimation in which the locations of multiple sources whose radiation is received by an array of sensors are sought. Much of the research has focussed on approaches based on the formation of optimal weight or copy vectors, procedures derived from the conventional practice of beamforming. This class of approached to parameter estimation problems has come to be known as high-resolution spectral analysis/beamforming since the introduction of the maximum entropy (MEM) method by Burg in 1967, and the maximum-likelihood (ML) method by Capon in 1969. These techniques provide increased resolution and accuracy over their predecessors (including conventional beamforming, but suffer from model mismatch. MUSIC and ESPRIT are recently developed geometric techniques that exploit the underlying model and thereby achieve significant improvements in performance. In this paper, these techniques are summarized. From basic physical principles, it is shown that ESPRIT is actually a multidimensional null steering algorithm, an interpretation with significant intuitive appeal. Finally, optimal signal copy vectors that naturally arise from the algorithm are presented, and their properties as beamforming vectors for this class of problems are discussed.

  8. [Extracting municipal solid waste dumps based on high resolution images].

    PubMed

    Zhang, Fang-Li; Du, Shi-Hong; Guo, Zhou

    2013-08-01

    The dramatically increasing informal MSW dumps are endangering the urban environment. Remote sensing (RS) technologies are more efficient to monitor and manage municipal solid wastes (MSW) than traditional survey-based methods. In high spatial resolution remotely sensed images, these irregularly distributed dumps have complex compositions and strong heterogeneities, thus it is still hard to extract them automatically no matter the pixel-or object-based image analysis method is used. Therefore, based on the analysis of MSW characteristics, the present study develops a multiresolution strategy to extract MSW dumps by combining image features at both high resolution and resampled low heterogeneity images, while the high resolution images can provide detailed information and the low resolution images can suppress the strong heterogeneities of informal MSW dumps. Taking the QuickBird image covering part of Beijing as an example, this multi-resolution strategy produced a high accuracy (75%), indicating that this multi-resolution strategy is quite effective for extracting the open-air informal MSW dumps. PMID:24159838

  9. High Resolution Laboratory Spectroscopy: Unraveling the Secrets of Interstellar Chemistry

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.

    2008-05-01

    At present, over 140 different chemical compounds have been identified in interstellar and circumstellar gas. Such observations have offered a unique avenue by which to probe the cold, dense regions in our Galaxy and in external galaxies. Because these molecules are primarily present in colder material, they are usually studied at high spectral resolutions (1 part in 106-107) via their pure rotational transitions, which typically occur at millimeter and sub-millimeter wavelengths. Such studies cannot be carried out, however, without the input of high resolution laboratory spectroscopy. Such measurements provide the "fingerprint” spectral pattern critical for accurate astronomical identifications. Because of the complexity of current interstellar spectra and the propensity of unidentified features, precise laboratory data are essential. Current methods employed in the laboratory for high resolution measurements include millimeter/sub-mm direct absorption, velocity modulation, and Fourier transform microwave spectroscopy (FTMW). Each of these experimental techniques has certain unique advantages, which will be discussed. Also of importance are the synthetic methods utilized to create the radicals, ions, and other transient species typically found in interstellar space. Such molecules are generated in DC and AC glow discharges, pulsed supersonic jet expansions, and using Broida-type ovens. In addition, spectral analyses can be quite complex, in particular if there are low lying excited torsional or electronic states, or if molecular inversion is present. Recent laboratory results for potential interstellar species will also be presented, in particular those for negative ions, phosphorus-bearing radicals, and organic "prebiotic” species.

  10. High-Resolution Mars Camera Test Image of Moon (Infrared)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This crescent view of Earth's Moon in infrared wavelengths comes from a camera test by NASA's Mars Reconnaissance Orbiter spacecraft on its way to Mars. The mission's High Resolution Imaging Science Experiment camera took the image on Sept. 8, 2005, while at a distance of about 10 million kilometers (6 million miles) from the Moon. The dark feature on the right is Mare Crisium. From that distance, the Moon would appear as a star-like point of light to the unaided eye. The test verified the camera's focusing capability and provided an opportunity for calibration. The spacecraft's Context Camera and Optical Navigation Camera also performed as expected during the test.

    The Mars Reconnaissance Orbiter, launched on Aug. 12, 2005, is on course to reach Mars on March 10, 2006. After gradually adjusting the shape of its orbit for half a year, it will begin its primary science phase in November 2006. From the mission's planned science orbit about 300 kilometers (186 miles) above the surface of Mars, the high resolution camera will be able to discern features as small as one meter or yard across.

  11. Mapping Crop Yield and Sow Date Using High Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Royal, K.

    2015-12-01

    Keitasha Royal, Meha Jain, Ph.D., David Lobell, Ph.D Mapping Crop Yield and Sow Date Using High Resolution ImageryThe use of satellite imagery in agriculture is becoming increasingly more significant and valuable. Due to the emergence of new satellites, such as Skybox, these satellites provide higher resolution imagery (e.g 1m) therefore improving the ability to map smallholder agriculture. For the smallholder farm dominated area of northern India, Skybox high-resolution satellite imagery can aid in understanding how to improve farm yields. In particular, we are interested in mapping winter wheat in India, as this region produces approximately 80% of the country's wheat crop, which is important given that wheat is a staple crop that provides approximately 20% of household calories. In northeast India, the combination of increased heat stress, limited irrigation access, and the difficulty for farmers to access advanced farming technologies results in farmers only producing about 50% of their potential crop yield. The use of satellite imagery can aid in understanding wheat yields through time and help identify ways to increase crop yields in the wheat belt of India. To translate Skybox satellite data into meaningful information about wheat fields, we examine vegetation indices, such as the normalized difference vegetation index (NDVI), to measure the "greenness" of plants to help determine the health of the crops. We test our ability to predict crop characteristics, like sow date and yield, using vegetation indices of 59 fields for which we have field data in Bihar, India.

  12. A compact high-resolution X-ray powder diffractometer.

    PubMed

    Fewster, Paul F; Trout, David R D

    2013-12-01

    A new powder diffractometer operating in transmission mode is described. It can work as a rapid very compact instrument or as a high-resolution instrument, and the sample preparation is simplified. The incident beam optics create pure Cu Kα1 radiation, giving rise to peak widths of ∼0.1° in 2θ in compact form with a sample-to-detector minimum radius of 55 mm, reducing to peak widths of <0.05° in high-resolution mode by increasing the detector radius to 240 mm. The resolution of the diffractometer is shown to be governed by a complex mixture of angular divergence, sample size, diffraction effects and the dimensions of the detector pixels. The data can be collected instantaneously, which combined with trivial sample preparation and no sample alignment, makes it a suitable method for very rapid phase identification. As the detector is moved further from the sample, the angular step from the pixel dimension is reduced and the resolution improves significantly for very detailed studies, including structure determination and analysis of the microstructure. The advantage of this geometry is that the resolution of the diffractometer can be calculated precisely and the instrumental artefacts can be analysed easily without a sample present. The performance is demonstrated with LaB6 and paracetamol, and a critical appraisal of the uncertainties in the measurements is presented. The instantaneous data collection offers possibilities in dynamic experiments. PMID:24282331

  13. Unsupervised Feature Learning for High-Resolution Satellite Image Classification

    SciTech Connect

    Cheriyadat, Anil M

    2013-01-01

    The rich data provided by high-resolution satellite imagery allow us to directly model geospatial neighborhoods by understanding their spatial and structural patterns. In this paper we explore an unsupervised feature learning approach to model geospatial neighborhoods for classification purposes. While pixel and object based classification approaches are widely used for satellite image analysis, often these approaches exploit the high-fidelity image data in a limited way. In this paper we extract low-level features to characterize the local neighborhood patterns. We exploit the unlabeled feature measurements in a novel way to learn a set of basis functions to derive new features. The derived sparse feature representation obtained by encoding the measured features in terms of the learned basis function set yields superior classification performance. We applied our technique on two challenging image datasets: ORNL dataset representing one-meter spatial resolution satellite imagery representing five land-use categories and, UCMERCED dataset consisting of 21 different categories representing sub-meter resolution overhead imagery. Our results are highly promising and, in the case of UCMERCED dataset we outperform the best results obtained for this dataset. We show that our feature extraction and learning methods are highly effective in developing a detection system that can be used to automatically scan large-scale high-resolution satellite imagery for detecting large-facility.

  14. High Resolution SPectrometer for HCT, Hanle: an update

    NASA Astrophysics Data System (ADS)

    Sunetra, Giridhar; Sivarani, T.; Anantha, Ch.; Jayashree, Roy; Anand, M. N.; Anupama, G. C.; Mahesh, P. K.; Parihar, P. S.; Prabhu, T. P.; Singhal, A. K.; Sriram, S.; Sundararajan, M. S.

    A high resolution spectrometer for the 2m Himalayan Chandra Telescope (HCT) at Indian Astronomical Observatory (IAO) Hanle, is being built to meet the observational requirement of many advanced areas in astronomy requiring high spectral resolution. This instrument is based upon a modern design using a white pupil concept which has been adopted in several contemporary high resolution spectrometers. This design is known to reduce light losses due to vignetting and also provides the full spectral coverage (350nm-1000nm) in a single CCD frame. This design also incorporates additional features like image-slicer which would result in very high light efficiency. A peak throughput of 20% in visual range and throughput of 8% is expected at extreme blue and red wavelengths. The spectrometer would give resolutions of 60,000 and 30,000 in two resolution modes. In this contribution we describe the instrument and its environment and give an update on its development and science programs we propose to undertake.

  15. Production of fuel ethanol from wheat straw

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat straw contains about 70% carbohydrates that can serve as a low cost feedstock for production of fuel ethanol. The pretreatment of wheat straw is essential prior to enzymatic hydrolysis. Research needs to be carried out to develop an efficient pretreatment method which can greatly help enzyme...

  16. Fuel Ethanol Production from Barley Straw

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley straw used in this study contained 34.1±0.6% cellulose, 22.6±0.4% hemicelluloses, and 13.3±0.2% lignin (moisture, 6.5±0.0%). Several pretreatments (dilute acid, lime, and alkaline peroxide) and enzymatic saccharification procedures were evaluated for the conversion of barley straw to monomer...

  17. A High-Resolution Endoscope of Small Diameter Using Electromagnetically Vibration of Single Fiber

    NASA Astrophysics Data System (ADS)

    Matsunaga, Tadao; Hino, Ryunosuke; Makishi, Wataru; Esashi, Masayoshi; Haga, Yoichi

    For high resolution visual inspection in the narrow space of the human body, small diameter endoscope has been developed which utilize electromagnetically vibration of single fiber. Thin endoscopes are effective for inspection in the narrow space of the human body, for example, in the blood vessel, lactiferous duct for detection infiltration of breast cancer, and periodontal gap between gingiva and tooth. This endoscope consists of single optical fiber and photofabricated driving coils. A collimator lens and a cylindrical permanent magnet are fixed on the optical fiber, and the tilted driving coils have been patterned on a 1.08 mm outer diameter thin tube. The fiber is positioned at the center of the tube which is patterned the coils. When an electrical alternating current at the resonance frequency is supplied to the coils, the permanent magnet which is fixed to the fiber is vibrated electromagnetically and scanned one or two dimensionally. This paper reports small diameter endoscope by using electromagnetically vibration of single fiber. Optical coherence tomography imaging has also been carried out with the fabricated endoscope and cross-section image of sub-surface skin of thumb was observed.

  18. High-Resolution Electronics: Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet (Adv. Mater. 31/2016).

    PubMed

    Liu, Xuying; Kanehara, Masayuki; Liu, Chuan; Sakamoto, Kenji; Yasuda, Takeshi; Takeya, Jun; Minari, Takeo

    2016-08-01

    On page 6568, T. Minari and co-workers describe spontaneous patterning based on the parallel vacuum ultraviolet (PVUV) technique, enabling the homogeneous integration of complex, high-resolution electronic circuits, even on large-scale, flexible, transparent substrates. Irradiation of PVUV to the hydrophobic polymer surface precisely renders the selected surface into highly wettable regions with sharply defined boundaries, which spontaneously guides a metal nanoparticle ink into a series of circuit lines and gaps with the widths down to a resolution of 1 μm. PMID:27511534

  19. Moisture in a straw bale wall

    SciTech Connect

    Brown, G.Z.; Fremouw, S.; Kline, J.; Northcutt, D.; Wang, Z.; Weiser, R.

    1999-07-01

    The objective of this project was to see if there was sufficient moisture to promote fungus growth within a straw bale wall. To determine the level of moisture, the walls in a straw bale building were instrumented to monitor relative humidity. The year-long monitoring began in August, 1997. During the monitoring period the building's interior relative humidity ranged from 22 to 71% and the exterior relative humidity ranged from 10 to 94%. The maximum straw bale relative humidity recorded was 85%, which occurred on February 21 on the south side of the building in a lower bale on the exterior side. The minimum straw bale relative humidity occurred on August 13 on the east side of the building in a lower bale on the exterior side and was 27%. In the 23 studies of mold growth in straw bales the authors reviewed, mold growth occurred between 70 and 91% relative humidity.

  20. Universal multifractal analysis of high-resolution snowfall data

    NASA Astrophysics Data System (ADS)

    Raupach, Timothy; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Berne, Alexis

    2016-04-01

    Universal multifractal analysis offers useful insights into the scaling properties of precipitation data. While much work has been done on the scaling properties of rainfall fields, less is known about the scaling properties of solid precipitation such as snowfall, especially at high resolution. We present results of a universal multifractal (UM) analysis of high-resolution solid precipitation data. The data were recorded using a 2D-video-disdrometer (2DVD) situated in the Swiss Alps. Analysis was performed on a one-hour period of snowfall, during which time the mean wind speed was zero, temperatures were low, and no hail was detected. The 2DVD recorded information on individual particles, from which we calculated snow mass. Three "cuts" of the spatio-temporal snowfall process were analysed using the UM framework. First, high-resolution timeseries of precipitation intensity at 100 ms temporal resolution were analysed. These results show two scaling regimes with a transition area between them. Second, we analysed reconstructed vertical columns of particle concentration and snow mass, assuming no horizontal wind and constant vertical velocity (equal to the one recorded on the ground). Strong scaling was observed in the particle concentration fields, with the influence of large (and therefore rare) snowflakes degrading the quality of the scaling observed for higher moments of the particle distribution. There was a clear difference between the measured fields and fields in which the vertical distribution of particles was made homogeneous, indicating that the measured snowfall fields contained non-homogeneous fields. Scaling behaviour was observed down to vertical scales of about 0.5 m, which is similar to published results using rain data. Finally, we used the UM framework to investigate the scaling properties of 2D maps of snow accumulation over a subset of the instrument collection area of 5.12 x 5.12 cm^2. As expected from the vertical column analysis, given that

  1. High resolution modelling of extreme precipitation events in urban areas

    NASA Astrophysics Data System (ADS)

    Siemerink, Martijn; Volp, Nicolette; Schuurmans, Wytze; Deckers, Dave

    2015-04-01

    The present day society needs to adjust to the effects of climate change. More extreme weather conditions are expected, which can lead to longer periods of drought, but also to more extreme precipitation events. Urban water systems are not designed for such extreme events. Most sewer systems are not able to drain the excessive storm water, causing urban flooding. This leads to high economic damage. In order to take appropriate measures against extreme urban storms, detailed knowledge about the behaviour of the urban water system above and below the streets is required. To investigate the behaviour of urban water systems during extreme precipitation events new assessment tools are necessary. These tools should provide a detailed and integral description of the flow in the full domain of overland runoff, sewer flow, surface water flow and groundwater flow. We developed a new assessment tool, called 3Di, which provides detailed insight in the urban water system. This tool is based on a new numerical methodology that can accurately deal with the interaction between overland runoff, sewer flow and surface water flow. A one-dimensional model for the sewer system and open channel flow is fully coupled to a two-dimensional depth-averaged model that simulates the overland flow. The tool uses a subgrid-based approach in order to take high resolution information of the sewer system and of the terrain into account [1, 2]. The combination of using the high resolution information and the subgrid based approach results in an accurate and efficient modelling tool. It is now possible to simulate entire urban water systems using extreme high resolution (0.5m x 0.5m) terrain data in combination with a detailed sewer and surface water network representation. The new tool has been tested in several Dutch cities, such as Rotterdam, Amsterdam and The Hague. We will present the results of an extreme precipitation event in the city of Schiedam (The Netherlands). This city deals with

  2. High resolution remote sensing of water surface patterns

    NASA Astrophysics Data System (ADS)

    Woodget, A.; Visser, F.; Maddock, I.; Carbonneau, P.

    2012-12-01

    The assessment of in-stream habitat availability within fluvial environments in the UK traditionally includes the mapping of patterns which appear on the surface of the water, known as 'surface flow types' (SFTs). The UK's River Habitat Survey identifies ten key SFTs, including categories such as rippled flow, upwelling, broken standing waves and smooth flow. SFTs result from the interaction between the underlying channel morphology, water depth and velocity and reflect the local flow hydraulics. It has been shown that SFTs can be both biologically and hydraulically distinct. SFT mapping is usually conducted from the river banks where estimates of spatial coverage are made by eye. This approach is affected by user subjectivity and inaccuracies in the spatial extent of mapped units. Remote sensing and specifically the recent developments in unmanned aerial systems (UAS) may now offer an alternative approach for SFT mapping, with the capability for rapid and repeatable collection of very high resolution imagery from low altitudes, under bespoke flight conditions. This PhD research is aimed at investigating the mapping of SFTs using high resolution optical imagery (less than 10cm) collected from a helicopter-based UAS flown at low altitudes (less than 100m). This paper presents the initial findings from a series of structured experiments on the River Arrow, a small lowland river in Warwickshire, UK. These experiments investigate the potential for mapping SFTs from still and video imagery of different spatial resolutions collected at different flying altitudes and from different viewing angles (i.e. vertical and oblique). Imagery is processed using 3D mosaicking software to create orthophotos and digital elevation models (DEM). The types of image analysis which are tested include a simple, manual visual assessment undertaken in a GIS environment, based on the high resolution optical imagery. In addition, an object-based image analysis approach which makes use of the

  3. Optical Histology: High-Resolution Visualization of Tissue Microvasculature

    NASA Astrophysics Data System (ADS)

    Moy, Austin Jing-Ming

    Mammalian tissue requires the delivery of nutrients, growth factors, and the exchange of oxygen and carbon dioxide gases to maintain normal function. These elements are delivered by the blood, which travels through the connected network of blood vessels, known as the vascular system. The vascular system consists of large feeder blood vessels (arteries and veins) that are connected to the small blood vessels (arterioles and venules), which in turn are connected to the capillaries that are directly connected to the tissue and facilitate gas exchange and nutrient delivery. These small blood vessels and capillaries make up an intricate but organized network of blood vessels that exist in all mammalian tissues known as the microvasculature and are very important in maintaining the health and proper function of mammalian tissue. Due to the importance of the microvasculature in tissue survival, disruption of the microvasculature typically leads to tissue dysfunction and tissue death. The most prevalent method to study the microvasculature is visualization. Immunohistochemistry (IHC) is the gold-standard method to visualize tissue microvasculature. IHC is very well-suited for highly detailed interrogation of the tissue microvasculature at the cellular level but is unwieldy and impractical for wide-field visualization of the tissue microvasculature. The objective my dissertation research was to develop a method to enable wide-field visualization of the microvasculature, while still retaining the high-resolution afforded by optical microscopy. My efforts led to the development of a technique dubbed "optical histology" that combines chemical and optical methods to enable high-resolution visualization of the microvasculature. The development of the technique first involved preliminary studies to quantify optical property changes in optically cleared tissues, followed by development and demonstration of the methodology. Using optical histology, I successfully obtained high

  4. High resolution infrared acquisitions droning over the LUSI mud eruption.

    NASA Astrophysics Data System (ADS)

    Di Felice, Fabio; Romeo, Giovanni; Di Stefano, Giuseppe; Mazzini, Adriano

    2016-04-01

    The use of low-cost hand-held infrared (IR) thermal cameras based on uncooled micro-bolometer detector arrays became more widespread during the recent years. Thermal cameras have the ability to estimate temperature values without contact and therefore can be used in circumstances where objects are difficult or dangerous to reach such as volcanic eruptions. Since May 2006 the Indonesian LUSI mud eruption continues to spew boiling mud, water, aqueous vapor, CO2, CH4 and covers a surface of nearly 7 km2. At this locality we performed surveys over the unreachable erupting crater. In the framework of the LUSI Lab project (ERC grant n° 308126), in 2014 and 2015, we acquired high resolution infrared images using a specifically equipped remote-controlled drone flying at an altitude of m 100. The drone is equipped with GPS and an autopilot system that allows pre-programming the flying path or designing grids. The mounted thermal camera has peak spectral sensitivity in LW wavelength (μm 10) that is characterized by low water vapor and CO2 absorption. The low distance (high resolution) acquisitions have a temperature detail every cm 40, therefore it is possible to detect and observe physical phenomena such as thermodynamic behavior, hot mud and fluids emissions locations and their time shifts. Despite the harsh logistics and the continuously varying gas concentrations we managed to collect thermal images to estimate the crater zone spatial thermal variations. We applied atmosphere corrections to calculate infrared absorption by high concentration of water vapor. Thousands of images have been stitched together to obtain a mosaic of the crater zone. Regular monitoring with heat variation measurements collected, e.g. every six months, could give important information about the volcano activity estimating its evolution. A future data base of infrared high resolution and visible images stored in a web server could be a useful monitoring tool. An interesting development will be

  5. Determination of phosphorus using high-resolution diphosphorus molecular absorption spectra produced in the graphite furnace

    NASA Astrophysics Data System (ADS)

    Huang, Mao Dong; Becker-Ross, Helmut; Okruss, Michael; Geisler, Sebastian; Florek, Stefan

    2016-01-01

    Molecular absorption of diphosphorus was produced in a graphite furnace and evaluated in view of its suitability for phosphorus determination. Measurements were performed with two different high-resolution continuum source absorption spectrometers. The first system is a newly in-house developed simultaneous broad-range spectrograph, which was mainly used for recording overview absorption spectra of P2 between 193 nm and 245 nm. The region covers the main part of the C 1Σu+ ← X 1Σg+ electronic transition and shows a complex structure with many vibrational bands, each consisting of a multitude of sharp rotational lines. With the help of molecular data available for P2, an assignment of the vibrational bands was possible and the rotational structure could be compared with simulated spectra. The second system is a commercial sequential continuum source spectrometer, which was used for the basic analytical measurements. The P2 rotational line at 204.205 nm was selected and systematically evaluated with regard to phosphorus determination. The conditions for P2 generation were optimized and it was found that the combination of a ZrC modified graphite tube and borate as a chemical modifier were essential for a good production of P2. Serious interferences were found in the case of nitrate and sulfuric acid, although the nitrate interference can be eliminated by a higher pyrolysis temperature. The reliability of the method was proved by analysis of certified samples. Using standard tubes, a characteristic mass of 10 ng and a limit of detection of 7 ng were found. The values could further be improved by a factor of ten using a miniaturized tube with an internal diameter of 2 mm. Compared to the conventional method based on the phosphorus absorption line at 213.618 nm, the advantages of using P2 are the gentle temperature conditions and the potential of performing a simultaneous multi-line evaluation to further improve the limit of detection.

  6. Broadband high resolution X-ray spectral analyzer

    DOEpatents

    Silver, Eric H.; Legros, Mark; Madden, Norm W.; Goulding, Fred; Landis, Don

    1998-01-01

    A broad bandwidth high resolution x-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces x-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available x-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for x-ray microanalysis or in research applications such as laboratory and astrophysical x-ray and particle spectroscopy.

  7. Broadband high resolution X-ray spectral analyzer

    DOEpatents

    Silver, E.H.; Legros, M.; Madden, N.W.; Goulding, F.; Landis, D.

    1998-07-07

    A broad bandwidth high resolution X-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces X-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available X-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for X-ray microanalysis or in research applications such as laboratory and astrophysical X-ray and particle spectroscopy. 6 figs.

  8. Automated electrostatic probe device of high resolution and accuracy

    NASA Astrophysics Data System (ADS)

    Aleiferis, S.; Svarnas, P.

    2014-12-01

    In this work, an automated apparatus for driving single electrostatic probes and acquiring the plasma-related data has been designed and fabricated. The voltage range of the present system is ±110 V with an adjustable voltage step as low as 3 mV. Voltage and current measurements are carried out with high resolution and high accuracy circuits, both based on 16 bit analog-to-digital converters. The code embedded in a micro-controller, schedules the operation of the device and transfers the experimental data to a personal computer. The modular design of the system makes possible its modification and thus increases its adaptability to different plasma setups. Finally, the reliable operation of the entire device is confirmed by tests in Electron Cyclotron Resonance plasma.

  9. Design, fabrication and characterization of miniaturized high resolution camera modules

    NASA Astrophysics Data System (ADS)

    Kuehn, M.; Goetz, M.; Mueller, C.; Reinecke, H.

    2014-05-01

    Camera systems become more and more important in everyday life. Some of those systems place special requirements concerning the environmental conditions they are exposed to especially in harsh environment. High temperature and humidity difficult to access areas require individual packaging and joining technologies for the setup of a camera module. Environmental conditions have an influence on optical design and tolerance calculation. In case of high temperatures the different thermal expansion coefficients of the used materials lead to stress in joints, lenses and their fittings. This, in turn, can lead to a loss of adjustment of the mechanical and optical components that have a direct influence on the optical performance of the camera module. The recent work shows the development of miniaturized high resolution camera modules designed for use in harsh environment applications.

  10. SPRED spectrograph upgrade: high resolution grating and improved absolute calibrations

    SciTech Connect

    Stratton, B.C.; Fonck, R.J.; Ida, K.; Jaehnig, K.P.; Ramsey, A.T.

    1986-05-01

    Two improvements to the SPRED multichannel VUV spectrographs used on the TFTR and PBX tokamaks have been made: (1) A new 2100-g/mm grating covering the 100 to 320 A region with 0.4 A resolution (FWHM) has been added to the existing 450 g/mm grating (100 to 1100 A with 2 A resolution), and (2) the TFTR SPRED has been absolutely calibrated using synchrotron radiation from the NBS SURF II facility, while the PBX system has been calibrated using conventional branching ratios along with line ratios from charge-exchange-recombination-excited lines. The availability of high resolution spectra in the 100 to 320 A range provides improved measurements of metallic ion emissions and, when the instrument views across a neutral beam as in PBX, allows carbon and oxygen densities to be measured via charge exchange recombination spectroscopy.

  11. High-resolution imaging of solar system objects

    NASA Technical Reports Server (NTRS)

    Goldberg, Bruce A.

    1988-01-01

    The strategy of this investigation has been to develop new high-resolution imaging capabilities and to apply them to extended observing programs. These programs have included Io's neutral sodium cloud and comets. The Io observing program was carried out at Table Mountain Observatory (1976 to 1981), providing a framework interpreting Voyager measurements of the Io torus, and serving as an important reference for studying asymmetries and time variabilities in the Jovian magnetosphere. Comet observations made with the 3.6 m Canada-France-Hawaii Telescope and 1.6 m AMOS telescope (1984 to 1987) provide basis for studying early coma development in Halley, the kinematics of its nucleus, and the internal and external structure of the nucleus. Images of GZ from the ICE encounter period form the basis for unique comparisons with in situ magnetic field and dust impact measurements to determine the ion tail and dust coma structure, respectively.

  12. High resolution ultrasound and photoacoustic imaging of single cells

    PubMed Central

    Strohm, Eric M.; Moore, Michael J.; Kolios, Michael C.

    2016-01-01

    High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level. PMID:27114911

  13. Quadrature phase interferometer for high resolution force spectroscopy

    NASA Astrophysics Data System (ADS)

    Paolino, Pierdomenico; Aguilar Sandoval, Felipe A.; Bellon, Ludovic

    2013-09-01

    In this article, we present a deflection measurement setup for Atomic Force Microscopy (AFM). It is based on a quadrature phase differential interferometer: we measure the optical path difference between a laser beam reflecting above the cantilever tip and a reference beam reflecting on the static base of the sensor. A design with very low environmental susceptibility and another allowing calibrated measurements on a wide spectral range are described. Both enable a very high resolution (down to 2.5 × 10^{-15} m/sqrtHz), illustrated by thermal noise measurements on AFM cantilevers. They present an excellent long-term stability and a constant sensitivity independent of the optical phase of the interferometer. A quick review shows that our precision is equaling or out-performing the best results reported in the literature, but for a much larger deflection range, up to a few μm.

  14. Recent Results in Quantum Chemical Kinetics from High Resolution Spectroscopy

    SciTech Connect

    Quack, Martin

    2007-12-26

    We outline the approach of our group to derive intramolecular kinetic primary processes from high resolution spectroscopy. We then review recent results on intramolecular vibrational redistribution (IVR) and on tunneling processes. Examples are the quantum dynamics of the C-H-chromophore in organic molecules, hydrogen bond dynamics in (HF){sub 2} and stereomutation dynamics in H{sub 2}O{sub 2} and related chiral molecules. We finally discuss the time scales for these and further processes which range from 10 fs to more than seconds in terms of successive symmetry breakings, leading to the question of nuclear spin symmetry and parity violation as well as the question of CPT symmetry.

  15. Multilayer Patterning of High Resolution Intrinsically Stretchable Electronics

    NASA Astrophysics Data System (ADS)

    Tybrandt, Klas; Stauffer, Flurin; Vörös, Janos

    2016-05-01

    Stretchable electronics can bridge the gap between hard planar electronic circuits and the curved, soft and elastic objects of nature. This has led to applications like conformal displays, electronic skin and soft neuroprosthetics. A remaining challenge, however, is to match the dimensions of the interfaced systems, as all require feature sizes well below 100 μm. Intrinsically stretchable nanocomposites are attractive in this context as the mechanical deformations occur on the nanoscale, although methods for patterning high performance materials have been lacking. Here we address these issues by reporting on a multilayer additive patterning approach for high resolution fabrication of stretchable electronic devices. The method yields highly conductive 30 μm tracks with similar performance to their macroscopic counterparts. Further, we demonstrate a three layer micropatterned stretchable electroluminescent display with pixel sizes down to 70 μm. These presented findings pave the way towards future developments of high definition displays, electronic skins and dense multielectrode arrays.

  16. High-resolution three-dimensional imaging radar

    NASA Technical Reports Server (NTRS)

    Cooper, Ken B. (Inventor); Chattopadhyay, Goutam (Inventor); Siegel, Peter H. (Inventor); Dengler, Robert J. (Inventor); Schlecht, Erich T. (Inventor); Mehdi, Imran (Inventor); Skalare, Anders J. (Inventor)

    2010-01-01

    A three-dimensional imaging radar operating at high frequency e.g., 670 GHz, is disclosed. The active target illumination inherent in radar solves the problem of low signal power and narrow-band detection by using submillimeter heterodyne mixer receivers. A submillimeter imaging radar may use low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform. Three-dimensional images are generated through range information derived for each pixel scanned over a target. A peak finding algorithm may be used in processing for each pixel to differentiate material layers of the target. Improved focusing is achieved through a compensation signal sampled from a point source calibration target and applied to received signals from active targets prior to FFT-based range compression to extract and display high-resolution target images. Such an imaging radar has particular application in detecting concealed weapons or contraband.

  17. High-resolution QWIP thermal imager for AFV upgrade

    NASA Astrophysics Data System (ADS)

    Dahlberg, Anders G. M.

    2004-08-01

    Following on the success of the BIRC clip on thermal imaging sight for the BILL Anti-Tank Missile System, which was in fact the world's first military QWIP based thermal imager, and which has been successfully delivered to the Swedish Army in serial quantities, several new QWIP-based products from FLIR Systems AB in Sweden are now under contract for defense customers worldwide. These include the new Forward Observation Systems for Norway and Sweden, Airborne Search & Rescue Systems, and a new clip on thermal imager for the Bofors RBS 70 Air Defense Missile System. The latest of these products is the development of a High Resolution QWIP Thermal Imager, LIRC, under contract for an upgrade of a number of Swedish CV9040C Armored Fighting Vehicles for Swedish Army International Operations. The paper will focus on the rationale behind the system selection, the development of the military qualified QWIP Thermal Imagers and the current status of the program.

  18. Results from the High Resolution Fly's Eye Experiment

    SciTech Connect

    Jui, C. C. H.

    2011-09-22

    The High Resolution Fly's Eye (HiRes) Experiment operated two fluorescence detector sites in the western Utah desert between 1997 and 2006. The HiRes results on the cosmic ray spectrum are consistent with the GZK Suppression predicted at 10{sup 19.8} eV and observe an ankle structure at 10{sup 18.5} eV. These spectral features are consistent with a proton-dominated composition for cosmic rays at the highest energies. The HiRes composition studies of both the mean and the variance of the shower maximum depth (X{sub max}) also give results that are completely consistent with a predominately protonic composition, and inconsistent with heavy nuclei such as iron. We also report on the result of anisotropy studies.

  19. High Resolution Seismic Reflection Survey for Coal Mine: fault detection

    NASA Astrophysics Data System (ADS)

    Khukhuudei, M.; Khukhuudei, U.

    2014-12-01

    High Resolution Seismic Reflection (HRSR) methods will become a more important tool to help unravel structures hosting mineral deposits at great depth for mine planning and exploration. Modern coal mining requires certainly about geological faults and structural features. This paper focuses on 2D Seismic section mapping results from an "Zeegt" lignite coal mine in the "Mongol Altai" coal basin, which required the establishment of major structure for faults and basement. HRSR method was able to detect subsurface faults associated with the major fault system. We have used numerical modeling in an ideal, noise free environment with homogenous layering to detect of faults. In a coal mining setting where the seismic velocity of the high ranges from 3000m/s to 3600m/s and the dominant seismic frequency is 100Hz, available to locate faults with a throw of 4-5m. Faults with displacements as seam thickness detected down to several hundred meter beneath the surface.

  20. High-resolution random-modulation cw lidar.

    PubMed

    Ai, Xiao; Nock, Richard; Rarity, John G; Dahnoun, Naim

    2011-08-01

    A high-resolution random-modulation continuous wave lidar for surface detection using a semiconductor laser diode is presented. The laser diode is intensity modulated with the pseudorandom binary sequence. Its enhanced resolution is achieved via interpolation and a novel front-end analog technique, lowering the requirement of the analog-to-digital converter sampling rate and the associated circuitry. Its mathematical model is presented, including the derivation of the signal-to-noise ratio and the distance standard deviation. Analytical and experimental results demonstrate its capability to achieve distance accuracy of less than 2 cm within 2.6 ms acquisition time, over distances ranging from 1 to 12 m. The laser diode emits 1.4 mW of optical power at a wavelength of 635 nm. PMID:21833124

  1. Portable electro-mechanically cooled high-resolution germanium detector

    NASA Astrophysics Data System (ADS)

    Neufeld, K. W.; Ruhter, W. D.

    1995-05-01

    We have integrated a small, highly-reliable, electro-mechanical cryo-cooler with a high-resolution germanium detector for portable/field applications. The system weighs 6.8 kg and requires 40 watts of power to operate once the detector is cooled to its operating temperature. The detector is a 500 mm(exp 2) by 20-mm thick low-energy configuration that gives a full-width at half maximum (FWHM) energy resolution of 523 eV at 122 keV, when cooled with liquid nitrogen. The energy resolution of the detector, when cooled with the electro-mechanical cooler, is 570 eV at 122 keV. We have field tested this system in measurements of plutonium and uranium for isotopic and enrichment information using the MGA and MGAU analysis programs without any noticeable effects on the results.

  2. High resolution beam profile monitors in the SLC

    SciTech Connect

    Ross, M.C.; Seeman, J.T.; Jobe, R.K.; Sheppard, J.C.; Stiening, R.F.

    1985-04-01

    In the SLC linac, low emittance beams with typical transverse dimensions less than 0.2 mm must be accelerated without effective emittance growth. In order to monitor this we have installed a high resolution beam profile monitor system which consists of an aluminum target covered with a fine-grained phosphor, a magnifying optical system, a television camera and video signal recording electronics. The image formed when the beam strikes the phosphor screen is viewed on a CRT monitor at the console and selected horizontal and vertical slices of the beam spot intensity are recorded. A 20 MHz transient waveform recorder is used to sample and digitize the raw video signal along the selected slice. The beam width is determined by fitting the background subtracted data to a Gaussian. Beam spots less than 6 x 3 mm can be viewed. Beam spot sizes sigma/sub x,y/ < 80 ..mu..m have been measured. 9 refs., 4 figs.

  3. High-resolution structure of viruses from random diffraction snapshots

    PubMed Central

    Hosseinizadeh, A.; Schwander, P.; Dashti, A.; Fung, R.; D'Souza, R. M.; Ourmazd, A.

    2014-01-01

    The advent of the X-ray free-electron laser (XFEL) has made it possible to record diffraction snapshots of biological entities injected into the X-ray beam before the onset of radiation damage. Algorithmic means must then be used to determine the snapshot orientations and thence the three-dimensional structure of the object. Existing Bayesian approaches are limited in reconstruction resolution typically to 1/10 of the object diameter, with the computational expense increasing as the eighth power of the ratio of diameter to resolution. We present an approach capable of exploiting object symmetries to recover three-dimensional structure to high resolution, and thus reconstruct the structure of the satellite tobacco necrosis virus to atomic level. Our approach offers the highest reconstruction resolution for XFEL snapshots to date and provides a potentially powerful alternative route for analysis of data from crystalline and nano-crystalline objects. PMID:24914154

  4. Study of CME Properties Using High Resolution Data

    NASA Astrophysics Data System (ADS)

    Egorov, Ya. I.; Fainshtein, V. G.

    The joint use of high-resolution data from SDO and PROBA2 satellites and LASCO/SOHO coronographs enabled us to examine early stages of initiation and propagation of six limb CMEs registered in June 2010 - June 2011. For five events under consideration, the CME initiation is marked by filament (prominence) eruption or by a loop-like structure having another nature. Subsequently, several loop-like structures having higher brightness and following each other at different velocities appear in the region of the CME initiation. The CME frontal structure is formed by these loop-like structures. The CME kinematics and such CME characteristics as angular size and longitudinal to latitudinal size ratio was found for considered all events. We have drawn a conclusion about the possible existence of two CME types dependent on the velocity profile.

  5. Detection of Barchan Dunes in High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Azzaoui, M. A.; Adnani, M.; El Belrhiti, H.; Chaouki, I. E.; Masmoudi, C.

    2016-06-01

    Barchan dunes are the fastest moving sand dunes in the desert. We developed a process to detect barchans dunes on High resolution satellite images. It consisted of three steps, we first enhanced the image using histogram equalization and noise reduction filters. Then, the second step proceeds to eliminate the parts of the image having a texture different from that of the barchans dunes. Using supervised learning, we tested a coarse to fine textural analysis based on Kolomogorov Smirnov test and Youden's J-statistic on co-occurrence matrix. As an output we obtained a mask that we used in the next step to reduce the search area. In the third step we used a gliding window on the mask and check SURF features with SVM to get barchans dunes candidates. Detected barchans dunes were considered as the fusion of overlapping candidates. The results of this approach were very satisfying in processing time and precision.

  6. Automatic Extraction of Building Outline from High Resolution Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Wang, Yandong

    2016-06-01

    In this paper, a new approach for automated extraction of building boundary from high resolution imagery is proposed. The proposed approach uses both geometric and spectral properties of a building to detect and locate buildings accurately. It consists of automatic generation of high quality point cloud from the imagery, building detection from point cloud, classification of building roof and generation of building outline. Point cloud is generated from the imagery automatically using semi-global image matching technology. Buildings are detected from the differential surface generated from the point cloud. Further classification of building roof is performed in order to generate accurate building outline. Finally classified building roof is converted into vector format. Numerous tests have been done on images in different locations and results are presented in the paper.

  7. High-resolution near-infrared spectroscopy of water dimer

    NASA Technical Reports Server (NTRS)

    Huang, Z. S.; Miller, R. E.

    1989-01-01

    High-resolution near-infrared spectra are reported for all of the O-H stretch vibrational bands of the water dimer. The four O-H vibrations are characterized as essentially independent proton-donor or proton-acceptor motions. In addition to the rotational and vibrational information contained in these spectra, details are obtained concerning the internal tunneling dynamics in both the ground and excited vibrational states. These results show that, for tunneling motions which involve the interchange of the proton donor and acceptor molecules, the associated frequencies decrease substantially due to vibrational excitation. The predissociation lifetimes for the various states of the dimer are determined from linewidth measurements. These results clearly show that the predissociation dynamics is strongly dependent on the tunneling states, as well as the Ka quantum number, indicating that the internal tunneling dynamics plays an important role in determining the dissociation rate in this complex.

  8. High-resolution workstations for primary and secondary radiology readings

    NASA Astrophysics Data System (ADS)

    Taira, Ricky K.; Simons, Margaret A.; Razavi, Mahmood; Kangarloo, Hooshang; Boechat, Maria I.; Hall, Theodore R.; Chuang, Keh-Shih; Huang, H. K.; Eldredge, Sandra L.

    1990-08-01

    We have implemented two high resolution workstations within our pediatric radiology PACS module: a two-monitor 2K x 2K station and a six-monitor 1K x 1K station. The 2K x 2K workstation is under evaluation for primary reading of pediatric radiographs from a computed radiography unit. System implementation and evaluation methods are described. Operational efficiency measures of both film and digital systems are reported. This study is our first attempt to integrate a primary viewing station into a busy clinical environment. The 1K x 1K workstation is available 24-hours a day, 7 days a week for fast reviews by referring physicians. Images from a compated radiography system are available at the workstation in about 8 minutes. A digital voice reporting system is being developed to communicate radiology reports from the 2K x 2K workstation to the 1K x 1K secondary review station.

  9. HIGH-RESOLUTION ATMOSPHERIC ENSEMBLE MODELING AT SRNL

    SciTech Connect

    Buckley, R.; Werth, D.; Chiswell, S.; Etherton, B.

    2011-05-10

    The High-Resolution Mid-Atlantic Forecasting Ensemble (HME) is a federated effort to improve operational forecasts related to precipitation, convection and boundary layer evolution, and fire weather utilizing data and computing resources from a diverse group of cooperating institutions in order to create a mesoscale ensemble from independent members. Collaborating organizations involved in the project include universities, National Weather Service offices, and national laboratories, including the Savannah River National Laboratory (SRNL). The ensemble system is produced from an overlapping numerical weather prediction model domain and parameter subsets provided by each contributing member. The coordination, synthesis, and dissemination of the ensemble information are performed by the Renaissance Computing Institute (RENCI) at the University of North Carolina-Chapel Hill. This paper discusses background related to the HME effort, SRNL participation, and example results available from the RENCI website.

  10. High-resolution dynamic speech imaging with deformation estimation.

    PubMed

    Maojing Fu; Barlaz, Marissa S; Shosted, Ryan K; Zhi-Pei Liang; Sutton, Bradley P

    2015-08-01

    Dynamic speech magnetic resonance imaging (DSMRI) is a promising technique for visualizing articulatory motion in real time. However, many existing applications of DSMRI have been limited by slow imaging speed and the lack of quantitative motion analysis. In this paper, we present a novel DS-MRI technique to simultaneously estimate dynamic image sequence of speech and the associated deformation field. Extending on our previous Partial Separability (PS) model-based methods, the proposed technique visualizes both speech motion and deformation with a spatial resolution of 2.2 × 2.2 mm(2) and a nominal frame rate of 100 fps. Also, the technique enables direct analysis of articulatory motion through the deformation fields. Effectiveness of the method is systematically examined via in vivo experiments. Utilizing the obtained high-resolution images and deformation fields, we also performed a phonetics study on Brazilian Portuguese to show the method's practical utility. PMID:26736572

  11. Bayesian Peptide Peak Detection for High Resolution TOF Mass Spectrometry

    PubMed Central

    Zhang, Jianqiu; Zhou, Xiaobo; Wang, Honghui; Suffredini, Anthony; Zhang, Lin; Huang, Yufei; Wong, Stephen

    2011-01-01

    In this paper, we address the issue of peptide ion peak detection for high resolution time-of-flight (TOF) mass spectrometry (MS) data. A novel Bayesian peptide ion peak detection method is proposed for TOF data with resolution of 10 000–15 000 full width at half-maximum (FWHW). MS spectra exhibit distinct characteristics at this resolution, which are captured in a novel parametric model. Based on the proposed parametric model, a Bayesian peak detection algorithm based on Markov chain Monte Carlo (MCMC) sampling is developed. The proposed algorithm is tested on both simulated and real datasets. The results show a significant improvement in detection performance over a commonly employed method. The results also agree with expert’s visual inspection. Moreover, better detection consistency is achieved across MS datasets from patients with identical pathological condition. PMID:21544266

  12. High resolution surface wave dispersion studies in China

    SciTech Connect

    Jones, L.E.; Patton, H.J.

    1997-11-01

    The Los Alamos National Laboratory regional calibration project is actively assembling a database of surface-wave dispersion information for China and surrounding areas. As part of the effort to characterize surface wave dispersion in China, we integrate prior long period results from the University of Colorado with our shorter period dispersion measurements in a high resolution survey of key monitoring areas. Focusing on western China initially, we employ broadband data recorded on CDSN stations, and regional events (m{sub b} 4 and above). Our approach is twofold, employing path specific calibration of key stations and well-recorded reference events, and tomographic inference to provide group velocity curves for regions with sparse station distribution and little seismic activity. Initial dispersion studies at Chinese stations WMQ and LZH show substantial azimuthal variation in dispersion, reinforcing the need for careful determination of source regions for path-specific calibration.

  13. High-Resolution, Single-Molecule Measurements of Biomolecular Motion

    PubMed Central

    Greenleaf, William J.; Woodside, Michael T.; Block, Steven M.

    2007-01-01

    Many biologically important macromolecules undergo motions that are essential to their function. Biophysical techniques can now resolve the motions of single molecules down to the nanometer scale or even below, providing new insights into the mechanisms that drive molecular movements. This review outlines the principal approaches that have been used for high-resolution measurements of single-molecule motion, including centroid tracking, fluorescence resonance energy transfer, magnetic tweezers, atomic force microscopy, and optical traps. For each technique, the principles of operation are outlined, the capabilities and typical applications are examined, and various practical issues for implementation are considered. Extensions to these methods are also discussed, with an eye toward future application to outstanding biological problems. PMID:17328679

  14. High-resolution computed tomography of the normal larynx

    SciTech Connect

    Silverman, P.M.; Korobkin, M.

    1983-05-01

    Computed tomography (CT) provides a unique method of evaluating abnormalities of the larynx by virture of its cross-sectional images. Several reports have demonstrated its utility in staging laryngeal carcinoma and defining the extent of injury in cases of laryngeal trauma. In order to appreciate subtle abnormalities of the larynx, a thorough understanding of the normal structures in this small anatomic area is crucial. Although previous studies have defined the normal CT anatomy of the larynx, many of the CT-anatomic correlations of the normal larynx used earlier-generation CT scanners with relatively poor resolution or were limited to transaxial images. High-resolution transaxial, coronal, and sagittal CT in vivo images are correlated with line drawings displaying normal laryngeal anatomy. The exquisite anatomic detail apparent in these images provides a sound basis for understanding subtle abnormalities in pathologic cases. (JMT)

  15. Automated electrostatic probe device of high resolution and accuracy

    SciTech Connect

    Aleiferis, S.

    2014-12-15

    In this work, an automated apparatus for driving single electrostatic probes and acquiring the plasma-related data has been designed and fabricated. The voltage range of the present system is ±110 V with an adjustable voltage step as low as 3 mV. Voltage and current measurements are carried out with high resolution and high accuracy circuits, both based on 16 bit analog-to-digital converters. The code embedded in a micro-controller, schedules the operation of the device and transfers the experimental data to a personal computer. The modular design of the system makes possible its modification and thus increases its adaptability to different plasma setups. Finally, the reliable operation of the entire device is confirmed by tests in Electron Cyclotron Resonance plasma.

  16. Quadrature phase interferometer for high resolution force spectroscopy

    SciTech Connect

    Paolino, Pierdomenico; Aguilar Sandoval, Felipe A.; Bellon, Ludovic

    2013-09-15

    In this article, we present a deflection measurement setup for Atomic Force Microscopy (AFM). It is based on a quadrature phase differential interferometer: we measure the optical path difference between a laser beam reflecting above the cantilever tip and a reference beam reflecting on the static base of the sensor. A design with very low environmental susceptibility and another allowing calibrated measurements on a wide spectral range are described. Both enable a very high resolution (down to 2.5×10{sup −15} m/√(Hz)), illustrated by thermal noise measurements on AFM cantilevers. They present an excellent long-term stability and a constant sensitivity independent of the optical phase of the interferometer. A quick review shows that our precision is equaling or out-performing the best results reported in the literature, but for a much larger deflection range, up to a few μm.

  17. High Resolution Absorption Spectroscopy using Externally Dispersed Interferometry

    SciTech Connect

    Edelstein, J; Erskine, D J

    2005-07-06

    We describe the use of Externally Dispersed Interferometry (EDI) for high-resolution absorption spectroscopy. By adding a small fixed-delay interferometer to a dispersive spectrograph, a precise fiducial grid in wavelength is created over the entire spectrograph bandwidth. The fiducial grid interacts with narrow spectral features in the input spectrum to create a moire pattern. EDI uses the moire pattern to obtain new information about the spectra that is otherwise unavailable, thereby improving spectrograph performance. We describe the theory and practice of EDI instruments and demonstrate improvements in the spectral resolution of conventional spectrographs by a factor of 2 to 6. The improvement of spectral resolution offered by EDI can benefit space instruments by reducing spectrograph size or increasing instantaneous bandwidth.

  18. Techniques in molecular spectroscopy: from broad bandwidth to high resolution

    NASA Astrophysics Data System (ADS)

    Cossel, Kevin C.

    This thesis presents a range of different experiments all seeking to extended the capabilities of molecular spectroscopy and enable new applications. The new technique of cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) provides a unique combination of broad bandwidth, high resolution, and high sensitivity that can be useful for a wide range of applications. Previous demonstrations of CE-DFCS were confined to the visible or near-infrared and operated over a limited bandwidth: for many applications it is desirable to increase the spectral coverage and to extend to the mid-infrared where strong, fundamental vibrational modes of molecules occur. There are several key requirements for CE-DFCS: a frequency comb source that provides broad bandwidth and high resolution, an optical cavity for high sensitivity, and a detection system capable of multiplex detection of the comb spectrum transmitted through the cavity. We first discuss comb sources with emphasis on the coherence properties of spectral broadening in nonlinear fiber and the development of a high-power frequency comb source in the mid-infrared based on an optical-parametric oscillator (OPO). To take advantage of this new mid-infrared comb source for spectroscopy, we also discuss the development of a rapid-scan Fourier-transform spectrometer (FTS). We then discuss the first demonstration of CE-DFCS with spectrally broadened light from a highly nonlinear fiber with the application to measurements of impurities in semiconductor manufacturing gases. We also cover our efforts towards extending CE-DFCS to the mid-infrared using the mid-infrared OPO and FTS to measure ppb levels of various gases important for breath analysis and atmospheric chemistry and highlight some future applications of this system. In addition to the study of neutral molecules, broad-bandwidth and high-resolution spectra of molecular ions are useful for astrochemistry where many of the observed molecules are ionic, for studying

  19. Compact and mobile high resolution PET brain imager

    DOEpatents

    Majewski, Stanislaw; Proffitt, James

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  20. Wide and high resolution tension measurement using FRET in embryo

    PubMed Central

    Yamashita, Satoshi; Tsuboi, Takashi; Ishinabe, Nanako; Kitaguchi, Tetsuya; Michiue, Tatsuo

    2016-01-01

    During embryonic development, physical force plays an important role in morphogenesis and differentiation. Stretch sensitive fluorescence resonance energy transfer (FRET) has the potential to provide non-invasive tension measurements inside living tissue. In this study, we introduced a FRET-based actinin tension sensor into Xenopus laevis embryos and demonstrated that this sensor captures variation of tension across differentiating ectoderm. The actinin tension sensor, containing mCherry and EGFP connected by spider silk protein, was validated in human embryonic kidney (HEK) cells and embryos. It co-localized with actin filaments and changed FRET efficiencies in response to actin filament destruction, myosin deactivation, and osmotic perturbation. Time-lapse FRET analysis showed that the prospective neural ectoderm bears higher tension than the epidermal ectoderm during gastrulation and neurulation, and cells morphogenetic behavior correlated with the tension difference. These data confirmed that the sensor enables us to measure tension across tissues concurrently and with high resolution. PMID:27335157

  1. Achieving High Resolution Timer Events in Virtualized Environment.

    PubMed

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events. PMID:26177366

  2. High resolution three-dimensional microwave imaging of antennas

    NASA Astrophysics Data System (ADS)

    Cook, Gregory G.; Anderson, Alan P.; Whitaker, Anthony J. T.; Bennett, John C.

    1989-06-01

    A procedure for imaging antenna currents that uses a relationship between the radiated far-field hemisphere and the Fourier transform domain of the source current density distribution is presented. The technique is applied to an array of two orthogonal waveguides, a slotted waveguide array, and a reflector antenna. In each case the radiated far-field hemisphere is inverted to produce a high-resolution volumetric image of the antenna currents. Polarization discrimination is demonstrated as is the ability of the technique to `see behind' blockages by defocusing the foreground. It is shown that accurate distribution is available from the reconstructed image. Selective editing of the Fourier domain of the current distribution is performed to suppress unwanted artifacts in the reconstruction.

  3. High resolution spectroscopic study of Be10Lambda;

    NASA Astrophysics Data System (ADS)

    Gogami, T.; Chen, C.; Kawama, D.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Baturin, P.; Badui, R.; Boeglin, W.; Bono, J.; Brash, E.; Carter, P.; Chiba, A.; Christy, E.; Danagoulian, S.; de Leo, R.; Doi, D.; Elaasar, M.; Ent, R.; Fujii, Y.; Fujita, M.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Han, Y.; Hashimoto, O.; Horn, T.; Hu, B.; Hungerford, Ed. V.; Jones, M.; Kanda, H.; Kaneta, M.; Kato, S.; Kawai, M.; Khanal, H.; Kohl, M.; Liyanage, A.; Luo, W.; Maeda, K.; Margaryan, A.; Markowitz, P.; Maruta, T.; Matsumura, A.; Maxwell, V.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman, Okayasu, Y.; Petkovic, T.; Pochodzalla, J.; Qiu, X.; Reinhold, J.; Rodriguez, V. M.; Samanta, C.; Sawatzky, B.; Seva, T.; Shichijo, A.; Tadevosyan, V.; Tang, L.; Taniya, N.; Tsukada, K.; Veilleux, M.; Vulcan, W.; Wesselmann, F. R.; Wood, S. A.; Yamamoto, T.; Ya, L.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.; Hksjlab E05-115 Collaboration

    2016-03-01

    Spectroscopy of a Be10Lambda; hypernucleus was carried out at JLab Hall C using the (e ,e'K+) reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of ˜0.78 MeV (FWHM). The well-calibrated spectrometer system of the present experiment using p (e ,e'K+)Λ ,Σ0 reactions allowed us to determine the energy levels; and the binding energy of the ground-state peak (mixture of 1- and 2- states) was found to be BΛ=8.55 ±0.07 (stat . ) ±0.11 (sys . ) MeV. The result indicates that the ground-state energy is shallower than that of an emulsion study by about 0.5 MeV which provides valuable experimental information on the charge symmetry breaking effect in the Λ N interaction.

  4. High Resolution K-Band Spectroscopy of Selected M Dwarfs

    NASA Astrophysics Data System (ADS)

    Nakajima, Tadashi

    2013-06-01

    We propose to obtain high-resolution K-band spectra of selected M dwarfs to study stellar properties such as effective temperature and metallicity. M dwarfs are under scrutiny as potential planet hosts. They have sufficiently low masses and small radii that exoplanets induce considerably larger reflex velocities and transit depths than an identical planet would around larger, more massive hosts. The low temperatures of M dwarfs imply short-period planets are in the habitable zone. However, due to the cool atmosphere, the characterization of M dwarfs at visible wavelengths has been rather difficult and the previously known stellar parameters have been rather crude. Recently a new method to use medium resolution K-band spectroscopy to determine the effective temperature and metallicity was devised. The purposes of this proposal is to examine the validity of the new method with a spectral resolution one order of magnitude higher and, if possible, to find a better method to determine the stellar properties.

  5. Ellerman bombs: Advances driven by high-resolution observations

    NASA Astrophysics Data System (ADS)

    Vissers, Gregal

    Ellerman bombs, transient brightenings that have traditionally been observed in the wings of the Balmer Halpha line, are a ubiquitous phenomenon in the lower atmosphere of active regions with considerable flux emergence. These explosive events display sub-arcsecond fine structure, fast dynamical evolution and their energies tend to fall in the nanoflare ballpark. Over the past decade and a half, several high-resolution ground-based and space-based telescopes have contributed greatly to further characterising Ellerman bombs, offering a view in spectral diagnostics ranging from the UV to the infrared. I will highlight some of the recent advances that have been made - both observationally and from a theoretical point of view - in determining their properties (quantitative morphology, energies, flows and proper motion, driving mechanism, etc.), and discuss the potential of observations from relatively new space-based telescopes, such as SDO and IRIS, to add to our understanding of this phenomenon.

  6. High-resolution Observation of the Smallest Ellerman Bombs

    NASA Astrophysics Data System (ADS)

    Fang, Cheng; Tang, Yu-hua; Li, Zhen; Xu, Zhi; Cao, Wenda; Guo, Yang

    By use of the high-resolution spectral data obtained with the largest solar telescope NST/BBSO in 2013 June, the characteristics of 3 well-observed smallest EBs have been analyzed. Their sizes are less than 0.5 are second and their durations are only 2-3 minutes. The most obvious characteristic of the EB spectra is the two emission bumps at the two wings of both Hα and CaII 8542 Å lines. They are located near the longitudinal magnetic polarity inversion lines and accompanied by mass motions. The semi-empirical atmospheric models for the EBs are computed. The common characteristic is the heating in the upper photosphere. The temperature enhancement is about 400-500 K. These imply that the EBs can probably be produced by the magnetic reconnection in the solar lower atmosphere. The radiative and kinetic energies of the EBs are estimated, and the possible mechanism of triggering the EBs is discussed.

  7. High resolution video monitoring of coating thickness during plasma spraying

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.

    1988-01-01

    A new approach to monitoring the thickness of plasma sprayed coatings during application is described. The method employs a high resolution video camera and width analyzer to accurately measure the dimensions of samples having simple geometries. This approach is best suited for cylindrical or flat substrates but it may also work for selected locations on more complex geometries. Measurement accuracy is a function of specimen dimensions and extent of magnification. Tolerances of plus or minus 0.5 mil (0.13 mm) on final coating thickness can be achieved. Additionally, the plot of cumulative coating thickess versus the number of passes has proven to be a useful diagnostic tool. While the ideal plot is linear, strong deviations from linearity - indicating the need for corrective action - may be observed.

  8. High-resolution microendoscope for the detection of cervical neoplasia.

    PubMed

    Grant, Benjamin D; Schwarz, Richard A; Quang, Timothy; Schmeler, Kathleen M; Richards-Kortum, Rebecca

    2015-01-01

    Cervical cancer causes 275,000 deaths each year with 85 % of these deaths occurring in the developing world. One of the primary reasons for the concentration of deaths in developing countries is a lack of effective screening methods suited for the infrastructure of these countries. In order to address this need, we have developed a high-resolution microendoscope (HRME). The HRME is a fiber-based fluorescence microscope with subcellular resolution. Using the vital stain proflavine, we are able to image cell nuclei in vivo and evaluate metrics such as nuclear-to-cytoplasmic ratio, critical to identifying precancerous epithelial regions. In this chapter, we detail the materials and methods necessary to build this system from commercially available parts. PMID:25626555

  9. Next generation high resolution adaptive optics fundus imager

    NASA Astrophysics Data System (ADS)

    Fournier, P.; Erry, G. R. G.; Otten, L. J.; Larichev, A.; Irochnikov, N.

    2005-12-01

    The spatial resolution of retinal images is limited by the presence of static and time-varying aberrations present within the eye. An updated High Resolution Adaptive Optics Fundus Imager (HRAOFI) has been built based on the development from the first prototype unit. This entirely new unit was designed and fabricated to increase opto-mechanical integration and ease-of-use through a new user interface. Improved camera systems for the Shack-Hartmann sensor and for the scene image were implemented to enhance the image quality and the frequency of the Adaptive Optics (AO) control loop. An optimized illumination system that uses specific wavelength bands was applied to increase the specificity of the images. Sample images of clinical trials of retinas, taken with and without the system, are shown. Data on the performance of this system will be presented, demonstrating the ability to calculate near diffraction-limited images.

  10. A high-resolution Fourier Transform Spectrometer for planetary spectroscopy

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Sinton, W. M.

    1973-01-01

    The employment of a high-resolution Fourier Transform Spectrometer (FTS) is described for planetary and other astronomical spectroscopy in conjunction with the 88-inch telescope at Mauna Kea Observatory. The FTS system is designed for a broad range of uses, including double-beam laboratory spectroscopy, infrared gas chromatography, and nuclear magnetic resonance spectroscopy. The data system is well-suited to astronomical applications because of its great speed in acquiring and transforming data, and because of the enormous storage capability of the magnetic tape unit supplied with the system. The basic instrument is outlined 2nd some of the initial results from the first attempted use on the Mauna Kea 88-inch telescope are reported.

  11. MAGELLAN: High resolution spectroscopy at FUV and EUV wavelengths

    NASA Technical Reports Server (NTRS)

    Grewing, M.; Alighieri, S. D.; Burton, W.; Coleman, C. I.; Hoekstra, R.; Jamar, C.; Labeque, A.; Laurent, C.; Vidal-Madjar, A.; Rafanelli, P.

    1982-01-01

    The aim of ESA's MAGELLAN mission is to provide high resolution spectra of celestial sources down to sixteenth magnitude over the extreme ultraviolet wavelength range (between 50 and 140 nm). This range extends from studies of interstellar matter in the disc and halo of this and other galaxies, to stellar envelopes, hot and evolved stars, clusters, intergalactic matter, nuclei of galaxies, quasars, and, finally, planets and satellites. The instrument has a nonconventional optical design using only one reflecting surface; a high groove density concave grating collects the star light, diffracts it and focuses its spectrum into a bidimensional windowless detector operated in a photon counting mode. The slitless configuration provides the spectra of all the sources (point like and extended) in the field of view of the grating. This field of view is limited by a grid collimator to reduce the diffuse background, the stray light and the probability of overlapping spectra in crowded fields.

  12. Evaluation of Esophageal Motor Function With High-resolution Manometry

    PubMed Central

    2013-01-01

    For several decades esophageal manometry has been the test of choice to evaluate disorders of esophageal motor function. The recent introduction of high-resolution manometry for the study of esophageal motor function simplified performance of esophageal manometry, and revealed previously unidentified patterns of normal and abnormal esophageal motor function. Presentation of pressure data as color contour plots or esophageal pressure topography led to the development of new tools for analyzing and classifying esophageal motor patterns. The current standard and still developing approach to do this is the Chicago classification. While this methodical approach is improving our diagnosis of esophageal motor disorders, it currently does not address all motor abnormalities. We will explore the Chicago classification and disorders that it does not address. PMID:23875094

  13. High Resolution Energetic X-ray Imager (HREXI)

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  14. High resolution spectroscopy from low altitude satellites. [gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Nakano, G. H.; Imhof, W. L.

    1978-01-01

    The P 78 1 satellite to be placed in a synchronous polar orbit at an altitude of 550-660 km will carry two identical high resolution spectrometers each consisting of a single (approximately 85 cc) intrinsic germanium IGE detector. The payload also includes a pair of phoswitch scintillators, an array of CdTe detectors and several particle detectors, all of which are mounted on the wheel of the satellite. The intrinsic high purity IGE detectors receive cooling from two Stirling cycle refrigerators and facilitate the assembly of large and complex detector arrays planned for the next generation of high sensitivity instruments such as those planned for the gamma ray observatory. The major subsystems of the spectrometer are discussed as well as its capabilities.

  15. High resolution imaging of tunnels by magnetic resonance neurography

    PubMed Central

    Wang, Kenneth C.; Thawait, Shrey K.; Williams, Eric H.; Hashemi, Shahreyar Shar; Machado, Antonio J.; Carrino, John A.; Chhabra, Avneesh

    2011-01-01

    Peripheral nerves often traverse confined fibro-osseous and fibro-muscular tunnels in the extremities, where they are particularly vulnerable to entrapment and compressive neuropathy. This gives rise to various tunnel syndromes, characterized by distinct patterns of muscular weakness and sensory deficits. This article focuses on several upper and lower extremity tunnels, in which direct visualization of the normal and abnormal nerve in question is possible with high resolution 3T MR neurography (MRN). MRN can also serve as a useful adjunct to clinical and electrophysiologic exams by discriminating adhesive lesions (perineural scar) from compressive lesions (such as tumor, ganglion, hypertrophic callous, or anomalous muscles) responsible for symptoms, thereby guiding appropriate treatment. PMID:21479520

  16. III-Nitride full-scale high-resolution microdisplays

    NASA Astrophysics Data System (ADS)

    Day, Jacob; Li, J.; Lie, D. Y. C.; Bradford, Charles; Lin, J. Y.; Jiang, H. X.

    2011-07-01

    We report the realization and properties of a high-resolution solid-state self-emissive microdisplay based on III-nitride semiconductor micro-size light emitting diodes (µLEDs) capable of delivering video graphics images. The luminance level of III-nitride microdisplays is several orders of magnitude higher than those of liquid crystal and organic-LED displays. The pixel emission intensity was almost constant over an operational temperature range from 100 to -100 °C. The outstanding performance is a direct attribute of III-nitride semiconductors. An energy efficient active drive scheme is accomplished by hybrid integration between µLED arrays and Si CMOS (complementary metal-oxide-semiconductor) active matrix integrated circuits. These integrated devices could play important roles in emerging fields such as biophotonics and optogenetics, as well as ultra-portable products such as next generation pico-projectors.

  17. Electron Gun Technologies for High Resolution Electron Microscopes

    NASA Astrophysics Data System (ADS)

    Fujita, Shin

    High-brightness electron gun technologies for high resolution electron microscopes are reviewed. High performance electron beam apparatuses today are equipped with either Schottky emission or field emission type cathodes, both of which have sharply etched tips for electric field enhancement that promotes electron emission. One of the key elements in these pointed cathodes is a proper control of the tip geometry. It substantially affects the emitter optics and performance. It is shown that the geometry is dictated by the faceting of the tip, which is in turn determined by the Equilibrium Crystal Shape (ECS). The ECS is the tip geometry that minimizes the surface free energy and dependent on the emitter operation environment. By proper choice of the tip field and temperature, one can control the degree of faceting and achieve optically desirable tip geometries.

  18. Quadrature phase interferometer for high resolution force spectroscopy.

    PubMed

    Paolino, Pierdomenico; Aguilar Sandoval, Felipe A; Bellon, Ludovic

    2013-09-01

    In this article, we present a deflection measurement setup for Atomic Force Microscopy (AFM). It is based on a quadrature phase differential interferometer: we measure the optical path difference between a laser beam reflecting above the cantilever tip and a reference beam reflecting on the static base of the sensor. A design with very low environmental susceptibility and another allowing calibrated measurements on a wide spectral range are described. Both enable a very high resolution (down to 2.5×10(-15) m/√Hz), illustrated by thermal noise measurements on AFM cantilevers. They present an excellent long-term stability and a constant sensitivity independent of the optical phase of the interferometer. A quick review shows that our precision is equaling or out-performing the best results reported in the literature, but for a much larger deflection range, up to a few μm. PMID:24089852

  19. High-Resolution MRI of Intracranial Atherosclerotic Disease

    PubMed Central

    Kwak, Hyo-Sung; Jahng, Geon-Ho; Lee, Han Na

    2014-01-01

    Intracranial atherosclerotic disease (ICAD) causes up to 10% of all ischemic strokes, and the rate of recurrent vascular ischemic events is very high. Important predictors of vulnerability in atherosclerotic plaques include the degree of stenosis and the underlying plaque morphology. Vascular wall MRI can provide information about wall structures and atherosclerotic plaque components. High-resolution (HR)-MRI in ICAD poses a greater challenge in the neurologic fields, because a high in-plane resolution and a high signal-to-noise ratio are required for vessel wall imaging of ICAD. Until now, plaque imaging of ICAD has focused on assessing the presence of a plaque and evaluating the plaque load. Going forward, evaluation of plaque vulnerability through analysis of imaging characteristics will be a critical area of research. This review introduces the acquisition protocol for HR-MRI in ICAD and the current issues associated with imaging. PMID:24644529

  20. High resolution modeling of direct ocean carbon sequestration

    SciTech Connect

    Michael Follows; John Marshall

    2004-04-22

    This work has followed two themes: (1) Developing and using the adjoint of the MIT ocean biogeochemistry model to examine the efficiency of carbon sequestration in a global configuration. We have demonstrated the power of the adjoint method for systematic ocean model sensitivity studies. We have shown that the relative efficiency of carbon sequestration in the Atlantic and Pacific basins changes with the period of interest. For decadal to centennial scales, the Pacific is more efficient. On longer timescales the Atlantic is more efficient . (2) We have developed and applied a high-resolution, North Atlantic circulation and tracer model to investigate the role of the mesoscale in controlling sequestration efficiency. We show that the mesoscale eddy field, and its explicit representation, significantly affects the estimated sequestration efficiency for local sources on the Eastern US seaboard.

  1. High-resolution phosphor screen beam profile monitor

    SciTech Connect

    Yencho, S.; Walz, D.R.

    1985-05-01

    A high-resolution luminescent screen beam profile monitor was developed to allow viewing of both conventional large diameter SLAC e/sup +//e/sup -/ beams, and also collider rf-bunches having small transverse spatial extent, with one instrument. The principal features of the monitor are described. They include the two-power magnification system offering magnifications of 12 and 78X, respectively; the reticle grid which is optically superimposed on the screen image by a cube beam splitter; selection of a suitable camera; and the Al/sub 2/O/sub 3/(Cr) phosphor screen. A simplified version of the monitor for viewing of only micron-sized beams for applications in the collider arcs and final focus regions and achieving a magnification of approx. 40X, coupled with a resolution of approx. 20..mu..m is also presented. 4 refs., 4 figs.

  2. High-Resolution Polarimetry of Supernova Remnant Kesteven 69

    NASA Astrophysics Data System (ADS)

    Wood, C. A.; Mufson, S. L.; Dickel, J. R.

    2008-06-01

    Reported here are high-resolution 6 cm measurements of the adolescent supernova remnant (SNR) Kesteven 69 made with the hybrid BnC configuration of the Very Large Array. Several three-field mosaics of the polarized and total intensity have been used to study this SNR. These investigations lead to a coherent picture of this region. The expanding shock defines an outer rim of high total intensity, suggesting the front is running into large dense clouds with random magnetic field directions. The SNR consists of predominantly of two types of regions, those with high total and relatively weak polarized emission and those with relatively weak total and strong polarized emission. This morphology can be generally explained by the number of clouds with organized magnetic field along the line of sight. Within this SNR there are regions where the field is varying from radial to tangential. As the SN shock encounters clouds, magnetic fields within clouds will strongly affect cloud dynamics.

  3. Demonstration of ultra high resolution soft x-ray tomography

    NASA Astrophysics Data System (ADS)

    Haddad, W. S.; McNulty, I.; Trebes, J. E.; Anderson, E. H.; Yang, L.; Brase, J. M.

    1995-05-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows which were separated by ˜ 5μm. Depth resolution comparable to the transverse resolution was achieved by recording nine 2-D images of the object at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image using an algebraic reconstruction technique (ART) algorithm. We observed a transverse resolution of ˜1000 Å. Artifacts in the reconstruction limited the overall depth resolution to ˜6000 Å, however some features were clearly reconstructed with a depth resolution of ˜1000 Å.

  4. High-resolution eye tracking using V1 neuron activity

    PubMed Central

    McFarland, James M.; Bondy, Adrian G.; Cumming, Bruce G.; Butts, Daniel A.

    2014-01-01

    Studies of high-acuity visual cortical processing have been limited by the inability to track eye position with sufficient accuracy to precisely reconstruct the visual stimulus on the retina. As a result, studies on primary visual cortex (V1) have been performed almost entirely on neurons outside the high-resolution central portion of the visual field (the fovea). Here we describe a procedure for inferring eye position using multi-electrode array recordings from V1 coupled with nonlinear stimulus processing models. We show that this method can be used to infer eye position with one arc-minute accuracy – significantly better than conventional techniques. This allows for analysis of foveal stimulus processing, and provides a means to correct for eye-movement induced biases present even outside the fovea. This method could thus reveal critical insights into the role of eye movements in cortical coding, as well as their contribution to measures of cortical variability. PMID:25197783

  5. Higher throughput high resolution multi-worm tracker

    NASA Astrophysics Data System (ADS)

    Javer, Avelino; Li, Kezhi; Gyenes, Bertalan; Brown, Andre; Behavioural Genomics Team

    2015-03-01

    We have developed a high throughput imaging system for tracking multiple nematode worms at high resolution. The tracker consists of 6 cameras mounted on a motorized gantry so that up to 48 plates (each with approximately 30 worms) can be imaged without user intervention. To deal with the high data rate of the cameras we use real time processing to find worms and only save the immediately surrounding pixels. The system is also equipped with automatic oxygen and carbon dioxide control for observing stimulus response behaviour. We will describe the design and performance of the new system, some of the challenges of truly high throughput behaviour recording, and report preliminary results on inter-individual variation in behaviour as well as a quantitative analysis of C. elegans response to hypoxia, oxygen reperfusion, and carbon dioxide. Funding provided by the Medical Research Council.

  6. High-resolution mapping of bifurcations in nonlinear biochemical circuits.

    PubMed

    Genot, A J; Baccouche, A; Sieskind, R; Aubert-Kato, N; Bredeche, N; Bartolo, J F; Taly, V; Fujii, T; Rondelez, Y

    2016-08-01

    Analog molecular circuits can exploit the nonlinear nature of biochemical reaction networks to compute low-precision outputs with fewer resources than digital circuits. This analog computation is similar to that employed by gene-regulation networks. Although digital systems have a tractable link between structure and function, the nonlinear and continuous nature of analog circuits yields an intricate functional landscape, which makes their design counter-intuitive, their characterization laborious and their analysis delicate. Here, using droplet-based microfluidics, we map with high resolution and dimensionality the bifurcation diagrams of two synthetic, out-of-equilibrium and nonlinear programs: a bistable DNA switch and a predator-prey DNA oscillator. The diagrams delineate where function is optimal, dynamics bifurcates and models fail. Inverse problem solving on these large-scale data sets indicates interference from enzymatic coupling. Additionally, data mining exposes the presence of rare, stochastically bursting oscillators near deterministic bifurcations. PMID:27442281

  7. a New Optimized Rfm of High-Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Li, C.; Liu, X. J.; Deng, T.

    2016-06-01

    Over-parameterization and over-correction are two of the major problems in the rational function model (RFM). A new approach of optimized RFM (ORFM) is proposed in this paper. By synthesizing stepwise selection, orthogonal distance regression, and residual systematic error correction model, the proposed ORFM can solve the ill-posed problem and over-correction problem caused by constant term. The least square, orthogonal distance, and the ORFM are evaluated with control and check grids generated from satellite observation Terre (SPOT-5) high-resolution satellite data. Experimental results show that the accuracy of the proposed ORFM, with 37 essential RFM parameters, is more accurate than the other two methods, which contain 78 parameters, in cross-track and along-track plane. Moreover, the over-parameterization and over-correction problems have been efficiently alleviated by the proposed ORFM, so the stability of the estimated RFM parameters and its accuracy have been significantly improved.

  8. Performance of a High Resolution Cavity Beam Position Monitor System

    SciTech Connect

    Walston, S; Boogert, S; Chung, C; Fitsos, P; Frisch, J; Gronberg, J; Hayano, H; Honda, Y; Kolomensky, Y; Lyapin, A; Malton, S; May, J; McCormick, D; Meller, R; Miller, D; Orimoto, T; Ross, M; Slater, M; Smith, S; Smith, T; Terunuma, N; Thomson, M; Urakawa, J; Vogel, V; Ward, D; White, G

    2006-12-18

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {micro}rad over a dynamic range of approximately {+-} 20 {micro}m.

  9. Performance of a High Resolution Cavity Beam Position Monitor System

    SciTech Connect

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Joe; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David John; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; /Fermilab /UC, Berkeley /LBL, Berkeley /Cambridge U. /Royal Holloway, U. of London /Cornell U., LNS /LLNL, Livermore /University Coll. London /SLAC /Caltech /KEK, Tsukuba

    2007-06-08

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {mu}rad over a dynamic range of approximately {+-} 20 {mu}m.

  10. Spontaneous Raman scattering as a high resolution XUV radiation source

    NASA Technical Reports Server (NTRS)

    Rothenberg, J. E.; Young, J. F.; Harris, S. E.

    1983-01-01

    A type of high resolution XUV radiation source is described which is based upon spontaneous anti-Stokes scattering of tunable incident laser radiation from atoms excited to metastable levels. The theory of the source is summarized and two sets of experiments using He (1s2s)(1)S atoms, produced in a cw hollow cathode and in a pulsed high power microwave discharge, are discussed. The radiation source is used to examine transitions originating from the 3p(6) shell of potassium. The observed features include four previously unreported absorption lines and several sharp interferences of closely spaced autoionizing lines. A source linewidth of about 1.9 cm(-1) at 185,000 cm(-1) is demonstrated.

  11. Porous silicon phantoms for high-resolution scintillation imaging

    NASA Astrophysics Data System (ADS)

    Di Francia, G.; Scafè, R.; De Vincentis, G.; La Ferrara, V.; Iurlaro, G.; Nasti, I.; Montani, L.; Pellegrini, R.; Betti, M.; Martucciello, N.; Pani, R.

    2006-12-01

    High resolution radionuclide imaging requires phantoms with precise geometries and known activities using either Anger cameras equipped with pinhole collimators or dedicated small animal devices. Porous silicon samples, having areas of different shape and size, can be made and loaded with a radioactive material, obtaining: (a) precise radio-emitting figures corresponding to the porous areas geometry, (b) a radioactivity of each figure depending on the pore's specifications, and (c) the same emission energy to be used in true exams. To this aim a sample with porous circular areas has been made and loaded with a 99mTcO 4- solution. Imaging has been obtained using both general purpose and pinhole collimators. This first sample shows some defects that are analyzed and discussed.

  12. High-resolution electron microscopy and its applications.

    PubMed

    Li, F H

    1987-12-01

    A review of research on high-resolution electron microscopy (HREM) carried out at the Institute of Physics, the Chinese Academy of Sciences, is presented. Apart from the direct observation of crystal and quasicrystal defects for some alloys, oxides, minerals, etc., and the structure determination for some minute crystals, an approximate image-contrast theory named pseudo-weak-phase object approximation (PWPOA), which shows the image contrast change with crystal thickness, is described. Within the framework of PWPOA, the image contrast of lithium ions in the crystal of R-Li2Ti3O7 has been observed. The usefulness of diffraction analysis techniques such as the direct method and Patterson method in HREM is discussed. Image deconvolution and resolution enhancement for weak-phase objects by use of the direct method are illustrated. In addition, preliminary results of image restoration for thick crystals are given. PMID:3505590

  13. Seabed AUV Offers New Platform for High-Resolution Imaging

    NASA Astrophysics Data System (ADS)

    Singh, Hanumant; Can, Ali; Eustice, Ryan; Lerner, Steve; McPhee, Neil; Pizarro, Oscar; Roman, Chris

    2004-08-01

    A number of marine biological, geological, and archaeological applications share the need for high-resolution optical and acoustic imaging of the sea floor. In particular, there is a compelling need to conduct studies in depths beyond those considered reasonable for divers (~50 m) down to depths at the shelf edge and continental slope (~1000-2000 m). Some of the constraints associated with such work include the requirement to work off of small coastal vessels or fishing boats of opportunity, and the requirement for the vehicle components to be air-shippable, to enable inexpensive deployments at far-flung oceanographic sites of interest. Over the last 2 and a half years, the Seabed Autonomous Underwater Vehicle (AUV) has been designed and deployed in the support of such tasks off of Puerto Rico, Bermuda, Stellwagen Bank off Massachusetts, and the U.S. Virgin Islands.

  14. Tuning and scanning control system for high resolution alexandrite lasers

    NASA Technical Reports Server (NTRS)

    Smith, James C.; Schwemmer, Geary K.

    1988-01-01

    An alexandrite laser is spectrally narrowed and tuned by the use of three optical elements. Each element provides a successively higher degree of spectral resolution. The digitally controlled tuning and scanning control servo system simultaneously positions all three optical elements to provide continuous high resolution laser spectral tuning. The user may select manual, single, or continuous modes of automated scanning of ranges up to 3.00/cm and at scan rates up to 3.85/cm/min. Scanning over an extended range of up to 9.999/cm may be achieved if the highest resolution optic is removed from the system. The control system is also capable of being remotely operated by another computer or controller via standard RS-232 serial data link.

  15. Very High Resolution Climate Modelling in Northern Russia

    NASA Astrophysics Data System (ADS)

    Stendel, M.; Christensen, J. H.

    2009-04-01

    Simulations with global climate models (GCMs) clearly indicate that major climate changes for the Arctic can be expected during the 21st century. Already now, there are substantial changes in sea-ice extent and thickness and a considerable increase in air temperature in several regions. Contemporary GCMs are unable to give a realistic representation of the climate and climate change in regions with steep orography, due to their coarse resolution. But even relatively high resolution regional climate models (RCMs) fail in this respect. We have therefore conducted a transient simulation with the newest version of the HIRHAM RCM, covering the period 1958-2001 over a region in northeast European Russia, including the Ural Mountains, with the unprecedented horizontal resolution of 4 km. For this simulation, a double downscaling procedure was applied. Average and extreme values will be discussed, and a comparison of subsurface temperatures to a set of observations from the region will be presented.

  16. Clinical applications of high-resolution ocular magnetic resonance imaging.

    PubMed

    Tanitame, Keizo; Sone, Takashi; Kiuchi, Yoshiaki; Awai, Kazuo

    2012-11-01

    Magnetic resonance imaging (MRI) using fast sequences with subjects staring at a target can provide motion-free ocular images, and small receiver surface coils make it possible to produce ocular images with high spatial resolution. MRI using half-Fourier single-shot rapid acquisition with a relaxation enhancement sequence as a fast T2-weighted imaging yields useful images for the morphologic diagnosis of ocular diseases, and MRI using a fast spoiled gradient-recalled-echo sequence as a T1-weighted imaging yields additional information by the administration of gadolinium-based contrast material for assessing the vascularity of intraocular tumors. These ocular imaging techniques are useful for the evaluation of patients with angle closure glaucoma, congenital abnormality of ocular globes, intraocular tumors and several types of detachments, as well as patients after ocular surgery. In this pictorial essay, we demonstrate the clinical applications of fast high-resolution ocular MRI with fixation of the subjects' visual foci. PMID:22923185

  17. High-resolution spectroscopy of a giant solar filament

    NASA Astrophysics Data System (ADS)

    Kuckein, Christoph; Denker, Carsten; Verma, Meetu

    2014-01-01

    High-resolution spectra of a giant solar quiescent filament were taken with the Echelle spectrograph at the Vacuum Tower Telescope (VTT; Tenerife, Spain). A mosaic of various spectroheliograms (Hα, Hα+/-0.5 Å and Na D2) were chosen to examine the filament at different heights in the solar atmosphere. In addition, full-disk images (He i 10830 Å and Ca ii K) of the Chromspheric Telescope and full-disk magnetograms of the Helioseismic and Magnetic Imager were used to complement the spectra. Preliminary results are shown of this filament, which had extremely large linear dimensions (~740'') and was observed in November 2011 while it traversed the northern solar hemisphere.

  18. Thermal design concept for a high resolution UV spectrometer

    NASA Technical Reports Server (NTRS)

    Caruso, P.; Stipandic, E.

    1979-01-01

    The thermal design concept described has been developed for the High Resolution UV Spectrometer/Polarimeter to be flown on the Solar Maximum Mission. Based on experience gained from a similar Orbiting Solar Observatory mission payload, it has been recognized that initial protection of the optical elements, contamination control, reduction of scattered light, tight bulk temperature, and gradient constraints are key elements that must be accommodated in any thermal control concept for this class of instrument. Salient features of the design include: (1) a telescope door providing contamination protection of an aplanatic Gregorian telescope; (2) a rastering system for the secondary mirror; (3) a unique solar heat absorbing device; (4) heat pipes and special radiators; (5) heaters for active temperature control and optics contamination protection; and (6) high precision platinum resistance thermometers. Viability of the design concept has been established by extensive thermal analysis and some subsystem testing. A summary of analytical and test results is included.

  19. High Resolution Magnetotail Simulations of Bursty Bulk Flows

    NASA Astrophysics Data System (ADS)

    Buzulukova, N.; Dorelli, J.; Glocer, A.; Fok, M. C. H.; Toth, G.

    2014-12-01

    We present the results of high resolution resistive MHD simulations of bursty bulk flows using the BATSRUS magnetosphere model. We performed a number of runs with three levels of constant resistivity. For each resistivity level, we studied the dependence on tail resolution and looked for solutions where numerical resistivity was small compared to the set physical resistivity. For constant solar wind driving (southward Bz IMF), we found the formation of bursty bulk flows (BBFs) and dipolarization fronts when the resistivity was below a critical value. We extracted virtual s/c data through dipolarization fronts and BBFs and compared with observed properties of BBFs. We also studied the ionospheric response to BBF formation. By switching on/off the ring current module (CRCM) in the BATSRUS, we examined relationship between BBFs and ring current injections.

  20. The Advanced X-ray Astrophysics Facility high resolution camera

    NASA Technical Reports Server (NTRS)

    Murray, Stephen S.; Chappell, Jon H.

    1986-01-01

    The HRC (High Resolution Camera) is a photon counting instrument to be flown on the Advanced X-Ray Astrophysics Facility (AXAF). It is a large field of view, high angular resolution, detector for the X-ray telescope. The HRC consists of a CsI coated microchannel plate (MCP) acting as a soft X-ray photocathode, followed by a second MCP for high electronic gain. The MCPs are readout by a crossed grid of resistively coupled wires to provide high spatial resolution along with timing and pulse height data. The instrument will be used in two modes, as a direct imaging detector with a limiting sensitivity of 10 to the -15th ergs/sq cm sec in a 10 to the 5th second exposure, and as a readout for an objective transmission grating providing spectral resolution of several hundreds to thousands.

  1. Wide and high resolution tension measurement using FRET in embryo.

    PubMed

    Yamashita, Satoshi; Tsuboi, Takashi; Ishinabe, Nanako; Kitaguchi, Tetsuya; Michiue, Tatsuo

    2016-01-01

    During embryonic development, physical force plays an important role in morphogenesis and differentiation. Stretch sensitive fluorescence resonance energy transfer (FRET) has the potential to provide non-invasive tension measurements inside living tissue. In this study, we introduced a FRET-based actinin tension sensor into Xenopus laevis embryos and demonstrated that this sensor captures variation of tension across differentiating ectoderm. The actinin tension sensor, containing mCherry and EGFP connected by spider silk protein, was validated in human embryonic kidney (HEK) cells and embryos. It co-localized with actin filaments and changed FRET efficiencies in response to actin filament destruction, myosin deactivation, and osmotic perturbation. Time-lapse FRET analysis showed that the prospective neural ectoderm bears higher tension than the epidermal ectoderm during gastrulation and neurulation, and cells morphogenetic behavior correlated with the tension difference. These data confirmed that the sensor enables us to measure tension across tissues concurrently and with high resolution. PMID:27335157

  2. High-resolution CT of temporal bone trauma

    SciTech Connect

    Holland, B.A.; Brant-Zawadzki, M.

    1984-08-01

    Computed tomographic (CT) finding in 18 patients with temporal bone trauma were reviewed. Eight patients suffered longitudinal fractures of the petrous bone, which were associated with ossicular dislocation in two patients. Transverse fractures were detected in six patients, with a contralateral mastoid fracture in one patient. In four patients, the fractures were restricted to the mastoid region. Of the 14 patients in whom adequate neurologic evaluation was available, seven had a permanent facial nerve or hearing deficit while five suffered at least a transient neurologic deficit related to the temporal bone trauma. Routine head CT (10 mm sections) demonstrated only eight of 19 petrous bone injuries. Evidence of brain trauma or extra-axial hemotoma was seen in 12 patients. In 13 cases, high-resolution CT was also performed, demonstrating temporal bone injuries in all. This latter technique allows rapid and detailed evaluation of temporal bone trauma.

  3. Precision Viticulture from Multitemporal, Multispectral Very High Resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Kandylakis, Z.; Karantzalos, K.

    2016-06-01

    In order to exploit efficiently very high resolution satellite multispectral data for precision agriculture applications, validated methodologies should be established which link the observed reflectance spectra with certain crop/plant/fruit biophysical and biochemical quality parameters. To this end, based on concurrent satellite and field campaigns during the veraison period, satellite and in-situ data were collected, along with several grape samples, at specific locations during the harvesting period. These data were collected for a period of three years in two viticultural areas in Northern Greece. After the required data pre-processing, canopy reflectance observations, through the combination of several vegetation indices were correlated with the quantitative results from the grape/must analysis of grape sampling. Results appear quite promising, indicating that certain key quality parameters (like brix levels, total phenolic content, brix to total acidity, anthocyanin levels) which describe the oenological potential, phenolic composition and chromatic characteristics can be efficiently estimated from the satellite data.

  4. In vivo high-resolution retinal imaging using adaptive optics.

    PubMed

    Seyedahmadi, Babak Jian; Vavvas, Demetrios

    2010-01-01

    Retinal imaging with conventional methods is only able to overcome the lowest order of aberration, defocus and astigmatism. The human eye is fraught with higher order of aberrations. Since we are forced to use the human optical system in retinal imaging, the images are degraded. In addition, all of these distortions are constantly changing due to head/eye movement and change in accommodation. Adaptive optics is a promising technology introduced in the field of ophthalmology to measure and compensate for these aberrations. High-resolution obtained by adaptive optics enables us to view and image the retinal photoreceptors, retina pigment epithelium, and identification of cone subclasses in vivo. In this review we will be discussing the basic technology of adaptive optics and hardware requirement in addition to clinical applications of such technology. PMID:21090998

  5. High-Resolution DNA Melting Analysis in Plant Research.

    PubMed

    Simko, Ivan

    2016-06-01

    Genetic and genomic studies provide valuable insight into the inheritance, structure, organization, and function of genes. The knowledge gained from the analysis of plant genes is beneficial to all aspects of plant research, including crop improvement. New methods and tools are continually being developed to facilitate rapid and accurate mapping, sequencing, and analyzing of genes. Here, I review the recent progress in the application of high-resolution melting (HRM) analysis of DNA, a method that allows detecting polymorphism in double-stranded DNA by comparing profiles of melting curves. Use of HRM has expanded considerably in the past few years as the method was successfully applied for high-throughput genotyping, mapping genes, testing food products and seeds, and other areas of plant research. PMID:26827247

  6. Achieving High Resolution Timer Events in Virtualized Environment

    PubMed Central

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs—Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events. PMID:26177366

  7. Temporomandibular joints: high-resolution computed tomographic evaluation

    SciTech Connect

    Thompson, J.R.; Christiansen, E.; Hasso, A.N.; Hinshaw, D.B. Jr.

    1984-01-01

    High-resolution computed tomography of the temporomandibular joint (TMJ) was performed in 43 patients. Exquisite detail of the face, skull base, and TMJs was obtained with CT using soft tissue and bone algorithms, narrow collimation, and multiplanar images. In 10 patients clinically suspected of joint derangement, CT results were in close agreement with surgical findings and arthrography in 13/15 joints. CT showed indirect signs of disc dislocation, and the dislocated disc itself in 81% of affected joints. In two patients, arthrography with CT proved to be more helpful than conventional arthrography alone. CT without intra-articular contrast material provided information not appreciated on conventional radiogaphs in 28 patients (65%) and was particularly helpful in evaluating patients with disc pathosis and trauma. Early experience with CT of the TMJ shows that it is an excellent method of evaluation at acceptable radiation exposure levels that adds essential information not seen on standard radiographs.

  8. High-resolution adaptive holographic interferometer for biomedical applications

    NASA Astrophysics Data System (ADS)

    Dovgalenko, George; Dagdanova, Ayuna

    2007-07-01

    We realized new adaptive holographic sensor and interferometer, which allows to visualize high-resolution 3D images of diffuse reflected objects in Continue Hologram Registration Regime- CHRR. The coupled laser wave nonlinear theory was applied for optimization of hologram recording in crystals symmetry 23 and optimized experimental set up. Experimentally demonstrated dynamical holographic image sensors on doped 23 symmetry photosensitive crystals, with resolution 7900-lines/mm at 632 nm and 11641 lines/mm at 440 nm for 15 mW CW HeNe and He-Cd lasers. The results are presented for holographic visualization of Cryogenic and Ultrasonic near field images of Surgical Medical Instrument. Application of CHRR interferometer for hologram registration of moving biological object in "vivo" is illustrated.

  9. Measuring Large-Scale Social Networks with High Resolution

    PubMed Central

    Stopczynski, Arkadiusz; Sekara, Vedran; Sapiezynski, Piotr; Cuttone, Andrea; Madsen, Mette My; Larsen, Jakob Eg; Lehmann, Sune

    2014-01-01

    This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of communication channels, with high temporal resolution and spanning multiple years—the Copenhagen Networks Study. Specifically, we collect data on face-to-face interactions, telecommunication, social networks, location, and background information (personality, demographics, health, politics) for a densely connected population of 1 000 individuals, using state-of-the-art smartphones as social sensors. Here we provide an overview of the related work and describe the motivation and research agenda driving the study. Additionally, the paper details the data-types measured, and the technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures. We document the participant privacy procedures and their underlying principles. The paper is concluded with early results from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection. PMID:24770359

  10. High resolution tunneling microscopies: from FEM to STS

    NASA Astrophysics Data System (ADS)

    Nishikawa, Osamu; Tomitori, Masahiko; Iwawaki, Fumikazu

    1992-04-01

    Field emission microscopy, field ion microscopy and scanning tunneling microscopy realized atomically high resolutions utilizing electron tunneling and confining a tunneling region into an atomically small spot. These microscopies have other unique features: the energy analyses of tunneling electrons by a field emission microscope (FEM) and a scanning tunneling microscope (STM), i.e., field emission electron spectroscopy (FEES) and scanning tunneling spectroscopy (STS), respectively, and the mass analysis of individual surface atoms by a combined instrument of a field ion microscope (FIM) and a mass spectrometer, the atom-probe (A-P). FEES and STS provide information on the electronic states of specimen surfaces and the A-P clarifies the surface composition in atomic dimensions. The present study suggests that the unification of A-P/FEES and STM/STS would lead to a new approach for reliable ultramicroscopic analysis of solid surfaces.

  11. High-Resolution Seismic Reflection to Monitor Change

    NASA Astrophysics Data System (ADS)

    Miller, R. D.; Raef, A. E.; Lambrecht, J. L.; Byrnes, A. P.

    2006-05-01

    High-resolution seismic reflection has proven a valuable tool detecting changes in fluid composition, rock petrophysical properties, and structures critical to reservoir production management and groundwater protection in Kansas. Surface seismic reflection is not a method that lends itself to direct detection and delineation of boundaries between different fluid compositions in porous media. However, time-lapse seismic does appear to have been successful identifying areas where calculated changes in seismic characteristics (specifically velocity) are greater than 10% at a miscible CO2 flood in Russell County, Kansas. Empirically a 10% change in seismic velocity has proven to be the minimum practical threshold where signal emerging from the noise can be interpreted with any degree of confidence. This change in velocity occurs when the saturation of injection CO2 exceeds 30% of the total pore fluid at this site. To evaluate the potential of high-resolution seismic reflection to monitor the injection in a miscible CO2 enhanced oil recovery pilot study in a 900 m deep 5 m thick oolitic carbonate petroleum reservoir, a 4-D seismic reflection program was undertaken that includes 12 different 3-D surveys over 6 years. The first 3 years (8 surveys) were designed to specifically address the potential application of this method to enhanced oil recovery. The last 3 years (3 surveys) are intended to evaluate the effective of seismic in providing the assurances necessary for CO2 sequestration. Collapse structures related to karst features and anthropogenic leaching resulting from faulty bore fluid containment have posed serious threats to the quality of groundwater above the Hutchinson Salt Member of the Permian Wellington Formation in central Kansas. High-resolution seismic reflection played a key role in characterizing the preferential growth of a sinkhole resulting from the dissolution of the Hutchinson Salt in Pawnee County, Kansas. Salt leaching was instigated by

  12. THz holography in reflection using a high resolution microbolometer array.

    PubMed

    Zolliker, Peter; Hack, Erwin

    2015-05-01

    We demonstrate a digital holographic setup for Terahertz imaging of surfaces in reflection. The set-up is based on a high-power continuous wave (CW) THz laser and a high-resolution (640 × 480 pixel) bolometer detector array. Wave propagation to non-parallel planes is used to reconstruct the object surface that is rotated relative to the detector plane. In addition we implement synthetic aperture methods for resolution enhancement and compare Fourier transform phase retrieval to phase stepping methods. A lateral resolution of 200 μm and a relative phase sensitivity of about 0.4 rad corresponding to a depth resolution of 6 μm are estimated from reconstructed images of two specially prepared test targets, respectively. We highlight the use of digital THz holography for surface profilometry as well as its potential for video-rate imaging. PMID:25969190

  13. High-resolution mapping of bifurcations in nonlinear biochemical circuits

    NASA Astrophysics Data System (ADS)

    Genot, A. J.; Baccouche, A.; Sieskind, R.; Aubert-Kato, N.; Bredeche, N.; Bartolo, J. F.; Taly, V.; Fujii, T.; Rondelez, Y.

    2016-08-01

    Analog molecular circuits can exploit the nonlinear nature of biochemical reaction networks to compute low-precision outputs with fewer resources than digital circuits. This analog computation is similar to that employed by gene-regulation networks. Although digital systems have a tractable link between structure and function, the nonlinear and continuous nature of analog circuits yields an intricate functional landscape, which makes their design counter-intuitive, their characterization laborious and their analysis delicate. Here, using droplet-based microfluidics, we map with high resolution and dimensionality the bifurcation diagrams of two synthetic, out-of-equilibrium and nonlinear programs: a bistable DNA switch and a predator–prey DNA oscillator. The diagrams delineate where function is optimal, dynamics bifurcates and models fail. Inverse problem solving on these large-scale data sets indicates interference from enzymatic coupling. Additionally, data mining exposes the presence of rare, stochastically bursting oscillators near deterministic bifurcations.

  14. High Resolution Melting (HRM) applied to wine authenticity.

    PubMed

    Pereira, Leonor; Gomes, Sónia; Castro, Cláudia; Eiras-Dias, José Eduardo; Brazão, João; Graça, António; Fernandes, José R; Martins-Lopes, Paula

    2017-02-01

    Wine authenticity methods are in increasing demand mainly in Denomination of Origin designations. The DNA-based methodologies are a reliable means of tracking food/wine varietal composition. The main aim of this work was the study of High Resolution Melting (HRM) application as a screening method for must and wine authenticity. Three sample types (leaf, must and wine) were used to validate the three developed HRM assays (Vv1-705bp; Vv2-375bp; and Vv3-119bp). The Vv1 HRM assay was only successful when applied to leaf and must samples. The Vv2 HRM assay successfully amplified all sample types, allowing genotype discrimination based on melting temperature values. The smallest amplicon, Vv3, produced a coincident melting curve shape in all sample types (leaf and wine) with corresponding genotypes. This study presents sensitive, rapid and efficient HRM assays applied for the first time to wine samples suitable for wine authenticity purposes. PMID:27596395

  15. CARMENES science preparation. High-resolution spectroscopy of M dwarfs

    NASA Astrophysics Data System (ADS)

    Montes, D.; Caballero, J. A.; Jeffers, S.; Alonso-Floriano, F. J.; Mundt, R.; CARMENES Consortium

    2015-05-01

    To ensure an efficient use of CARMENES observing time, and the highest chances of success, it is necessary first to select the most promising targets. To achieve this, we are observing 500 M dwarfs at high-resolution (R = 30,000-48,000), from which we determine the projected rotational velocity vsin{i} with an accuracy better than 0.5-0.2 km/s and radial-velocity stability better than 0.2-0.1 km/s. Our aim is to have at least two spectra at different epochs of the final 300 CARMENES targets. Our observations with FEROS at ESO/MPG 2.2 m La Silla, CAFE at 2.2 m Calar Alto and HRS at Hobby Eberly Telescope allow us to identify single- and double-line spectroscopic binaries and, especially, fast rotators, which should be discarded from the target list for exoplanet searches. Here we present preliminary results.

  16. High-Resolution Multiphoton Imaging of Tumors In Vivo

    PubMed Central

    Wyckoff, Jeffrey; Gligorijevic, Bojana; Entenberg, David; Segall, Jeffrey; Condeelis, John

    2014-01-01

    Analysis of the individual steps in metastasis is crucial if insights at the molecular level are to be linked to the cell biology of cancer. A technical hurdle to achieving the analysis of the individual steps of metastasis is the fact that, at the gross level, tumors are heterogeneous in both animal models and patients. Human primary tumors show extensive variation in all properties ranging from growth and morphology of the tumor through tumor-cell density in the blood and formation and growth of metastases. Methods capable of the direct visualization and analysis of tumor-cell behavior at single-cell resolution in vivo have become crucial in advancing the understanding of mechanisms of metastasis, the definition of microenvironment, and the markers related to both. This article discusses the use of high-resolution multiphoton imaging of tumors (specifically breast tumors in mice) in vivo. PMID:21969629

  17. Intact MicroRNA Analysis Using High Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kullolli, Majlinda; Knouf, Emily; Arampatzidou, Maria; Tewari, Muneesh; Pitteri, Sharon J.

    2014-01-01

    MicroRNAs (miRNAs) are small single-stranded non-coding RNAs that post-transcriptionally regulate gene expression, and play key roles in the regulation of a variety of cellular processes and in disease. New tools to analyze miRNAs will add understanding of the physiological origins and biological functions of this class of molecules. In this study, we investigate the utility of high resolution mass spectrometry for the analysis of miRNAs through proof-of-concept experiments. We demonstrate the ability of mass spectrometry to resolve and separate miRNAs and corresponding 3' variants in mixtures. The mass accuracy of the monoisotopic deprotonated peaks from various miRNAs is in the low ppm range. We compare fragmentation of miRNA by collision-induced dissociation (CID) and by higher-energy collisional dissociation (HCD) which yields similar sequence coverage from both methods but additional fragmentation by HCD versus CID. We measure the linear dynamic range, limit of detection, and limit of quantitation of miRNA loaded onto a C18 column. Lastly, we explore the use of data-dependent acquisition of MS/MS spectra of miRNA during online LC-MS and demonstrate that multiple charge states can be fragmented, yielding nearly full sequence coverage of miRNA on a chromatographic time scale. We conclude that high resolution mass spectrometry allows the separation and measurement of miRNAs in mixtures and a standard LC-MS setup can be adapted for online analysis of these molecules.

  18. All-Optical Ultrasound Transducers for High Resolution Imaging

    NASA Astrophysics Data System (ADS)

    Sheaff, Clay Smith

    High frequency ultrasound (HFUS) has increasingly been used within the past few decades to provide high resolution (< 200 mum) imaging in medical applications such as endoluminal imaging, intravascular imaging, ophthalmology, and dermatology. The optical detection and generation of HFUS using thin films offers numerous advantages over traditional piezoelectric technology. Circumvention of an electronic interface with the device head is one of the most significant given the RF noise, crosstalk, and reduced capacitance that encumbers small-scale electronic transducers. Thin film Fabry-Perot interferometers - also known as etalons - are well suited for HFUS receivers on account of their high sensitivity, wide bandwidth, and ease of fabrication. In addition, thin films can be used to generate HFUS when irradiated with optical pulses - a method referred to as Thermoelastic Ultrasound Generation (TUG). By integrating a polyimide (PI) film for TUG into an etalon receiver, we have created for the first time an all-optical ultrasound transducer that is both thermally stable and capable of forming fully sampled 2-D imaging arrays of arbitrary configuration. Here we report (1) the design and fabrication of PI-etalon transducers; (2) an evaluation of their optical and acoustic performance parameters; (3) the ability to conduct high-resolution imaging with synthetic 2-D arrays of PI-etalon elements; and (4) work towards a fiber optic PI-etalon for in vivo use. Successful development of a fiber optic imager would provide a unique field-of-view thereby exposing an abundance of prospects for minimally-invasive analysis, diagnosis, and treatment of disease.

  19. High-resolution seismic array imaging using teleseismic scattered waves

    NASA Astrophysics Data System (ADS)

    Tong, P.; Liu, Q.; Chen, C.; Basini, P.; Komatitsch, D.

    2013-12-01

    The advent of dense seismic networks, new modeling and imaging techniques, and increased HPC capacity makes it feasible to resolve subsurface interfaces and structural anomalies beneath seismic arrays at unprecedented details based on teleseismic scattered records. To accurately and efficiently simulate the full propagation of teleseismic waves beneath receiver arrays at the frequencies relevant to scattering imaging, we develop a hybrid method that interfaces a frequency-wavenumber (FK) calculation, which provides semi-analytical solutions to one-dimensional layered background models, with a 2D/3D spectral-element (SEM) numerical solver to calculate synthetic responses of local media to plane-wave incidence. This hybrid method accurately deals with local heterogeneities and discontinuity undulations, and represents an efficient tool for the forward modelling of teleseismic coda (including converted and scattered) waves. Meanwhile, adjoint tomography is a powerful tool for high-resolution imaging in heterogeneous media, which can resolve large velocity contrasts through the use of 2D/3D initial models and full numerical simulations for forward wavefields and sensitivity kernels. In the framework of adjont tomography and hybrid method, we compute sensitivity kernels for teleseismic coda waves, which provide the basis for mapping variations in subsurface discontinuities, density and velocity structures through nonlinear conjugate-gradient methods. Various 2D synthetic imaging examples show that inversion of teleseismic coda phases based on the 2D SEM-FK hybrid method and adjoint techniques is a promising tool for structural imaging beneath dense seismic arrays. 3D synthetic experiments will be performed to test the feasibility of seismic array imaging using adjoint method and 3D SEM-FK hybrid method. We will also apply this hybrid imaging techniques to realistic seismic data, such as the recorded SsPmP phases in central Tibet, to explore high-resolution subsurface

  20. High-resolution mechanical imaging of the kidney.

    PubMed

    Streitberger, Kaspar-Josche; Guo, Jing; Tzschätzsch, Heiko; Hirsch, Sebastian; Fischer, Thomas; Braun, Jürgen; Sack, Ingolf

    2014-02-01

    The objective of this study was to test the feasibility and reproducibility of in vivo high-resolution mechanical imaging of the asymptomatic human kidney. Hereby nine volunteers were examined at three different physiological states of urinary bladder filling (a normal state, urinary urgency, and immediately after urinary relief). Mechanical imaging was performed of the in vivo kidney using three-dimensional multifrequency magnetic resonance elastography combined with multifrequency dual elastovisco inversion. Other than in classical elastography, where the storage and loss shear moduli are evaluated, we analyzed the magnitude |G(⁎)| and the phase angle φ of the complex shear modulus reconstructed by simultaneous inversion of full wave field data corresponding to 7 harmonic drive frequencies from 30 to 60Hz and a resolution of 2.5mm cubic voxel size. Mechanical parameter maps were derived with a spatial resolution superior to that in previous work. The group-averaged values of |G(⁎)| were 2.67±0.52kPa in the renal medulla, 1.64±0.17kPa in the cortex, and 1.17±0.21kPa in the hilus. The phase angle φ (in radians) was 0.89±0.12 in the medulla, 0.83±0.09 in the cortex, and 0.72±0.06 in the hilus. All regional differences were significant (P<0.001), while no significant variation was found in relation to different stages of bladder filling. In summary our study provides first high-resolution maps of viscoelastic parameters of the three anatomical regions of the kidney. |G(⁎)| and φ provide novel information on the viscoelastic properties of the kidney, which is potentially useful for the detection of renal lesions or fibrosis. PMID:24355382

  1. High resolution 3D imaging of synchrotron generated microbeams

    SciTech Connect

    Gagliardi, Frank M.; Cornelius, Iwan; Blencowe, Anton; Franich, Rick D.; Geso, Moshi

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  2. Seamounts Identified By High-Resolution Imagery Offshore Kenya

    NASA Astrophysics Data System (ADS)

    Henderson, J. F.; Kagasi, J.; Gikuhi, M.; Njuguna, S.

    2008-12-01

    Multibeam bathymetry and 2-D seismic reflection surveys were carried out between 2007 and 2008 by the Government of Kenya for the purpose of delineating Kenya's extended continental shelf beyond the 200 nautical mile boundary, as allowed under Article 76 of the United Nations Convention on the Law of the Sea (UNCLOS). The unique dataset acquired includes areas surveyed for the first time and provides new information on the geological processes of the continental shelf, slope and abyssal plain along the Kenyan passive margin. High-resolution multibeam bathymetry of almost the entire Kenyan continental slope was acquired using two multibeam systems (Kongsberg Simrad EM120 and EM710) aboard the M/V L'Espoir in November/December 2007. A multi-channel seismic survey followed in April/May 2008 (R/V Akademik Alexander Karpinsky) and provided high-resolution seismic reflection profiles. During these surveys, three features interpreted to be seamounts were discovered along Kenya's continental slope at water depths between 2750 and 3500 m. The size of the features varies from 2.5 to 10 km in diameter and 570 to 1740 m in height. The Davie Fracture Zone, a north-south trending transform fault was also identified in the seismic reflection profiles. The ridge, possibly extending from 26°S off south Madagascar to as far north as 2°S, is thought to have been created by the separation and direction of motion of Madagascar from Africa that began in the middle Jurassic. The discovery of these features and the integration of both multibeam bathymetry and seismic reflection profiles provides new information in the study of seamount distribution and their relationship to nearby transform faults.

  3. Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry.

    PubMed

    Kelkar, Dhanashree S; Kumar, Dhirendra; Kumar, Praveen; Balakrishnan, Lavanya; Muthusamy, Babylakshmi; Yadav, Amit Kumar; Shrivastava, Priyanka; Marimuthu, Arivusudar; Anand, Sridhar; Sundaram, Hema; Kingsbury, Reena; Harsha, H C; Nair, Bipin; Prasad, T S Keshava; Chauhan, Devendra Singh; Katoch, Kiran; Katoch, Vishwa Mohan; Kumar, Prahlad; Chaerkady, Raghothama; Ramachandran, Srinivasan; Dash, Debasis; Pandey, Akhilesh

    2011-12-01

    The genome sequencing of H37Rv strain of Mycobacterium tuberculosis was completed in 1998 followed by the whole genome sequencing of a clinical isolate, CDC1551 in 2002. Since then, the genomic sequences of a number of other strains have become available making it one of the better studied pathogenic bacterial species at the genomic level. However, annotation of its genome remains challenging because of high GC content and dissimilarity to other model prokaryotes. To this end, we carried out an in-depth proteogenomic analysis of the M. tuberculosis H37Rv strain using Fourier transform mass spectrometry with high resolution at both MS and tandem MS levels. In all, we identified 3176 proteins from Mycobacterium tuberculosis representing ~80% of its total predicted gene count. In addition to protein database search, we carried out a genome database search, which led to identification of ~250 novel peptides. Based on these novel genome search-specific peptides, we discovered 41 novel protein coding genes in the H37Rv genome. Using peptide evidence and alternative gene prediction tools, we also corrected 79 gene models. Finally, mass spectrometric data from N terminus-derived peptides confirmed 727 existing annotations for translational start sites while correcting those for 33 proteins. We report creation of a high confidence set of protein coding regions in Mycobacterium tuberculosis genome obtained by high resolution tandem mass-spectrometry at both precursor and fragment detection steps for the first time. This proteogenomic approach should be generally applicable to other organisms whose genomes have already been sequenced for obtaining a more accurate catalogue of protein-coding genes. PMID:21969609

  4. Design of the WIYN High Resolution Infrared Camera (WHIRC)

    NASA Astrophysics Data System (ADS)

    Smee, S. A.; Barkhouser, R. H.; Scharfstein, G. A.; Meixner, M.; Orndorff, J. D.; Miller, T.

    2011-01-01

    The WIYN High Resolution Infrared Camera (WHIRC) is a high-resolution near-infrared imager (0.8-2.5 μm) designed to produce superb images over a moderate (3.3' × 3.4') field of view on the WIYN 3.5 m telescope at Kitt Peak National Observatory. It takes scientific advantage of the excellent image quality produced by the telescope and its image stabilization subsystem, the WIYN Tip-Tilt Module (WTTM), which is located on one of two Nasmyth ports. WHIRC mounts to WTTM and reimages the WTTM focal plane to a plate scale of 0.1'' pixel-1 at the WHIRC detector. Its straight-through optical path makes for a compact, very low mass, instrument—a necessity, given the stringent moment-loading requirement at the WTTM interface. The WHIRC optical path consists of a vacuum window, a five-element collimator, a dual filter wheel, a five-element achromatic camera, and a 2k2 Raytheon VIRGO mercury cadmium telluride (HgCdTe) detector. A novel all-aluminum lens cell design is used to achieve 13 μm lens centering tolerances between ambient and the 77 K operating temperature. A suite of 13 filters facilitates broadband (J, H, and Ks) imaging, as well as narrowband imaging tailored to a variety of astronomical investigations. The imaging performance of WHIRC is excellent. Irrespective of seeing, the telescope, and WTTM, WHIRC delivers 0.13'', 0.11'', and 0.08'' FWHM images in J, H, and Ks, respectively. On sky, the imaging is equally impressive yielding images as good as ~0.25 FWHM in Ks. In this article we describe the WHIRC design in detail and present the predicted and measured instrument performance.

  5. Advancing Cyberinfrastructure to support high resolution water resources modeling

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Ogden, F. L.; Jones, N.; Horsburgh, J. S.

    2012-12-01

    Addressing the problem of how the availability and quality of water resources at large scales are sensitive to climate variability, watershed alterations and management activities requires computational resources that combine data from multiple sources and support integrated modeling. Related cyberinfrastructure challenges include: 1) how can we best structure data and computer models to address this scientific problem through the use of high-performance and data-intensive computing, and 2) how can we do this in a way that discipline scientists without extensive computational and algorithmic knowledge and experience can take advantage of advances in cyberinfrastructure? This presentation will describe a new system called CI-WATER that is being developed to address these challenges and advance high resolution water resources modeling in the Western U.S. We are building on existing tools that enable collaboration to develop model and data interfaces that link integrated system models running within an HPC environment to multiple data sources. Our goal is to enhance the use of computational simulation and data-intensive modeling to better understand water resources. Addressing water resource problems in the Western U.S. requires simulation of natural and engineered systems, as well as representation of legal (water rights) and institutional constraints alongside the representation of physical processes. We are establishing data services to represent the engineered infrastructure and legal and institutional systems in a way that they can be used with high resolution multi-physics watershed modeling at high spatial resolution. These services will enable incorporation of location-specific information on water management infrastructure and systems into the assessment of regional water availability in the face of growing demands, uncertain future meteorological forcings, and existing prior-appropriations water rights. This presentation will discuss the informatics

  6. Comparative Assessment of Very High Resolution Satellite and Aerial Orthoimagery

    NASA Astrophysics Data System (ADS)

    Agrafiotis, P.; Georgopoulos, A.

    2015-03-01

    This paper aims to assess the accuracy and radiometric quality of orthorectified high resolution satellite imagery from Pleiades-1B satellites through a comparative evaluation of their quantitative and qualitative properties. A Pleiades-B1 stereopair of high resolution images taken in 2013, two adjacent GeoEye-1 stereopairs from 2011 and aerial orthomosaic (LSO) provided by NCMA S.A (Hellenic Cadastre) from 2007 have been used for the comparison tests. As control dataset orthomosaic from aerial imagery provided also by NCMA S.A (0.25m GSD) from 2012 was selected. The process for DSM and orthoimage production was performed using commercial digital photogrammetric workstations. The two resulting orthoimages and the aerial orthomosaic (LSO) were relatively and absolutely evaluated for their quantitative and qualitative properties. Test measurements were performed using the same check points in order to establish their accuracy both as far as the single point coordinates as well as their distances are concerned. Check points were distributed according to JRC Guidelines for Best Practice and Quality Checking of Ortho Imagery and NSSDA standards while areas with different terrain relief and land cover were also included. The tests performed were based also on JRC and NSSDA accuracy standards. Finally, tests were carried out in order to assess the radiometric quality of the orthoimagery. The results are presented with a statistical analysis and they are evaluated in order to present the merits and demerits of the imaging sensors involved for orthoimage production. The results also serve for a critical approach for the usability and cost efficiency of satellite imagery for the production of Large Scale Orthophotos.

  7. The Gaia FGK benchmark stars. High resolution spectral library

    NASA Astrophysics Data System (ADS)

    Blanco-Cuaresma, S.; Soubiran, C.; Jofré, P.; Heiter, U.

    2014-06-01

    Context. An increasing number of high-resolution stellar spectra is available today thanks to many past and ongoing spectroscopic surveys. Consequently, numerous methods have been developed to perform an automatic spectral analysis on a massive amount of data. When reviewing published results, biases arise and they need to be addressed and minimized. Aims: We are providing a homogeneous library with a common set of calibration stars (known as the Gaia FGK benchmark stars) that will allow us to assess stellar analysis methods and calibrate spectroscopic surveys. Methods: High-resolution and signal-to-noise spectra were compiled from different instruments. We developed an automatic process to homogenize the observed data and assess the quality of the resulting library. Results: We built a high-quality library that will facilitate the assessment of spectral analyses and the calibration of present and future spectroscopic surveys. The automation of the process minimizes the human subjectivity and ensures reproducibility. Additionally, it allows us to quickly adapt the library to specific needs that can arise from future spectroscopic analyses. Based on NARVAL and HARPS data obtained within the Gaia Data Processing and Analysis Consortium (DPAC) and coordinated by the GBOG (Ground-Based Observations for Gaia) working group, and on data retrieved from the ESO-ADP database.The library of spectra is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A98

  8. High resolution distributed hydrological modeling for river flood forecasting

    NASA Astrophysics Data System (ADS)

    Chen, Y.

    2014-12-01

    High resolution distributed hydrological model can finely describe the river basin hydrological processes, thus having the potential to improve the flood forecasting capabilities, and is regarded as the next generation flood forecast model. But there are great challenges in deploying it in real-time river flood forecasting, such as the awesome computation resources requirement, parameter determination, high resolution precipitation assimilation and uncertainty controls. Liuxihe Model is a physically-based distributed hydrological model proposed mainly for catchment flood forecasting, which is a process-based hydrological model. In this study, based on Liuxihe Model, a parallel computation algorithm for Liuxihe model flood forecasting is proposed, and a cloudy computation system is developed on a high performance computer, this largely improves the applicability of Liuxihe Model in large river. Without the parallel computation, the Liuxihe Model is computationally incapable in application to rivers with drainage area bigger than 10,000km2 at the grid size of 100m. With the parallel computation, the Liuxihe Model is used in a river with a drainage area of 60,000km2, and could be expended indefinitely. Based on this achievement, a model parameter calibration method by using Particle Swale Optimization is proposed and tested in several rivers in southern China with drainage areas ranging from several hundreds to tens thousands km2, and with the model parameter optimization, the model performance has been approved largely. The modeling approach is also tested for coupling radar-based precipitation estimation/prediction for small catchment flash forecasting and for coupling quantitative precipitation estimation/prediction from meteorological model for large river flood forecasting.

  9. The Astrophysical Plasmadynamic Explorer (APEX): A High Resolution Spectroscopic Observatory

    SciTech Connect

    Kowalski, M P; Cruddace, R G; Wood, K S; Yentis, D J; Gursky, H; Barbee, T W; Goldstein, W H; Kordas, J F; Fritz, G G; Hunter, W R; Barstow, M A; Bannister, N P; Culhane, J L; Lapington, J S

    2002-07-18

    EUVE and the ROSAT WFC have left a tremendous legacy in astrophysics at EUV wavelengths. More recently, Chandra and XMM-Newton have demonstrated at X-ray wavelengths the power of high-resolution astronomical spectroscopy, which allows the identification of weak emission lines, the measurement of Doppler shifts and line profiles, and the detection of narrow absorption features. This leads to a complete understanding of the density, temperature, abundance, magnetic, and dynamic structure of astrophysical plasmas. However, the termination of the EUVE mission has left a gaping hole in spectral coverage at crucial EUV wavelengths ({approx}100-300 {angstrom}), where hot (10{sup 5}-10{sup 8} K) plasmas radiate most strongly and produce critical spectral diagnostics. CHIPS will fill this hole only partially as it is optimized for diffuse emission and has only moderate resolution (R {approx} 150). For discrete sources, we have successfully flown a follow-on instrument to the EUVE spectrometer (A{sub eff} {approx} 1 cm{sup 2}, R {approx} 400), the high-resolution spectrometer J-PEX(A{sub eff} {approx} 3 cm{sup 2}, R {approx} 3000). Here we build on the J-PEX prototype and present a strawman design for an orbiting spectroscopic observatory, APEX, a SMEX-class instrument containing a suite of 8 spectrometers that together achieve both high effective area (A{sub eff} > 20 cm{sup 2}) and high spectral resolution (R {approx} 10,000) over the range 100-300 {angstrom}. We also discuss alternate configurations for shorter and longer wavelengths.

  10. [High resolution scanning electron microscopy of isolated outer hair cells].

    PubMed

    Koitschev, A; Müller, H

    1996-11-01

    Isolated hair cell preparations have gained wide acceptance as a model for studying physiological and molecular properties of the sensory cells involved in the hearing process. Ultrastructural details, such as stereocilia links, lateral membrane substructure or synaptic links are of crucial importance for normal sensory transduction. For this reason, we developed a high-resolution scanning electron microscopy (SEM) procedure to study the surface of isolated hair cells. Cells were mechanically and/or enzymatically separated, isolated and immobilized on cover slips by alcian blue and fixed by 2% glutardialdehyde or 1% OsO4. After dehydration, preparations were critical point-dried and sputter-coated with gold-palladium (2-4 nm). Up to 5 nm resolution was achieved. Optimal fixation kept the cells in their typical cylindrical forms. Preservation of the stereocilia and the apical plates of the outer hair cells depended strongly on the fixation process. Tip- and side-links were observed only sporadically because of the aggressive preparation procedure. The lateral plasma membranes of the cell bodies showed regular granular structures of 5-7 nm diameter at maximal magnification. The granular structure of the cell membrane seemed to correspond to putative transmembrane proteins believed to generate membrane-based motility. The remnants of the nerve endings and/or supporting cells usually covered the cell base. The preservation of the cells was better when enzymatic isolation was omitted. The technique used allowed for high resolution ultrastructural examination of isolated hair cells and, when combined with immunological labeling, may permit the identification of proteins at a molecular level. PMID:9064297

  11. Exploring for subtle traps with high-resolution paleogeographic maps

    SciTech Connect

    Bulling, T.B.; Breyer, J.A.

    1988-01-01

    High-resolution paleogeographic maps depicting the depositional history of the Reklaw 1 interval provide a basis for prospecting for subtle traps in the updip Reklaw trend in south Texas. The Reklaw 1 interval began with sand being carried southwest by longshore currents to form the barrier bar that forms the reservoir in Atkinson field. The hydrocarbons are trapped by the updip pinch-out of barrier-bar sand into lagoonal mud. Stratigraphic traps similar to Atkinson field could be present along depositional strike if the sand in the field were part of a more extensive-bar system. After the barrier bar formed, distributary-mouth bars prograded seaward depositing the bar-finger sands that are the reservoirs in Hysaw and Flax fields. Subtle structural traps could be present where small down-to-the-north faults associated with the Sample fault system cut the bar-finger sands downdip from the established production. Farther down paleoslope, the distributary channels began to bifurcate and the distributary-mouth bar coalesced to form a broad delt-front sheet sand. Burnell, Hondo Creek, and Runge West fields produce from this sheet sand near the unstable shelf margin. A rapid rise in relative sea level terminated deposition of the Reklaw 1 interval. Many of the oil and gas fields remaining to be discovered in the United States are in mature petroleum provinces where much of the remaining oil and gas probably resides in subtle traps. High-resolution paleogeographic maps may be a key to finding these subtle traps.

  12. Theme issue "High Resolution Earth Imaging for Geospatial Information"

    NASA Astrophysics Data System (ADS)

    Heipke, Christian; Soergel, Uwe; Rottensteiner, Franz; Jutzi, Boris

    2015-02-01

    Earth imaging from air and space has undergone major changes over the last decade. Examples of new and significant developments comprise the development and constant improvement of digital aerial cameras, multiple-echo and full-waveform laser scanners and the appearance of geosensor networks and unconventional platforms, most notably unmanned aircraft systems (UAS), sometimes called unmanned aerial vehicles (UAV) or remotely piloted aircraft systems (RPAS), and the ever increasing number of high-resolution and hyperspectral optical and SAR satellite sensors, small satellites and satellite constellations, which allow for both, a continued availability of satellite data over long periods of time, and a very short revisit time for any location on the globe. To give few examples: the latest Landsat satellite, appropriately called the Landsat data continuity mission or LDCM was launched on February 2013, continuing the Landsat mission which began back in 1972; during 2013 and 2014 France has put the SPOT 6 and 7 twin satellites into orbit, extending the history of high resolution space images, which started in 1986; and in April 2014 the European Space Agency (ESA) successfully launched the Sentinel 1A satellite with a synthetic aperture radar (SAR) sensor, the first of a fleet of different sensors that will be sent into space in the coming years. Sentinel 1A together with its twin system Sentinel 1B, to be launched in 2016, will continue the tremendous success story of ESA's C band SAR satellite activities dating back to 1991. Like the predecessors ERS 1, ERS 2, and Envisat ASAR, the Sentinel 1 systems are designed to cover the entire land mass with medium resolution, the repeat cycle is 12 days for Sentinel 1A alone and will even drop to six days as soon as both satellites are operational.

  13. High-resolution fluorescence microscopy of myelin without exogenous probes.

    PubMed

    Christensen, Pia Crone; Brideau, Craig; Poon, Kelvin W C; Döring, Axinia; Yong, V Wee; Stys, Peter K

    2014-02-15

    Myelin is a critical element of the central and peripheral nervous systems of all higher vertebrates. Any disturbance in the integrity of the myelin sheath interferes with the axon's ability to conduct action potentials. Thus, the study of myelin structure and biochemistry is critically important. Accurate and even staining of myelin is often difficult because of its lipid-rich nature and multiple tight membrane wraps, hindering penetration of immunoprobes. Here we show a method of visualizing myelin that is fast, inexpensive and reliable using the cross-linking fixative glutaraldehyde that produces strong, broad-spectrum auto-fluorescence in fixed tissue. Traditionally, effort is generally aimed at eliminating this auto-fluorescence. However, we show that this intrinsic signal, which is very photostable and particularly strong in glutaraldehyde-fixed myelin, can be exploited to visualize this structure to produce very detailed images of myelin morphology. We imaged fixed rodent tissues from the central and peripheral nervous systems using spectral confocal microscopy to acquire high-resolution 3-dimensional images spanning the visual range of wavelengths (400-750 nm). Mathematical post-processing allows accurate and unequivocal separation of broadband auto-fluorescence from exogenous fluorescent probes such as DAPI and fluorescently-tagged secondary antibodies. We additionally show the feasibility of immunohistochemistry with antigen retrieval, which allows co-localization of proteins of interest together with detailed myelin morphology. The lysolecithin model of de- and remyelination is shown as an example of a practical application of this technique, which can be routinely applied when high-resolution microscopy of central or peripheral myelinated tracts is required. PMID:24188810

  14. High Resolution Microendoscopy for Quantitative Diagnosis of Esophageal Neoplasia

    NASA Astrophysics Data System (ADS)

    Shin, Dongsuk

    Esophageal cancer is the eighth most common cancer in the world. Cancers of the esophagus account for 3.8% of all cases of cancers, with approximately 482,300 new cases reported in 2008 worldwide. In the United States alone, it is estimated that approximately 18,000 new cases will be diagnosed in 2013, and 15,210 deaths are expected. Despite advances in surgery and chemoradiation therapy, these advances have not led to a significant increase in survival rates, primarily because diagnosis often at an advanced and incurable stage when treatment is more difficult and less successful. Accurate, objective methods for early detection of esophageal neoplasia are needed. Here, quantitative classification algorithms for high resolution miscroendoscopic images were developed to distinguish between esophageal neoplastic and non-neoplastic tissue. A clinical study in 177 patients with esophageal squamous cell carcinoma (ESCC) was performed to evaluate the diagnostic performance of the classification algorithm in collaboration with the Mount Sinai Medical Center in the United States, the First Hospital of Jilin University in China, and the Cancer Institute and Hospital, the Chinese Academy of Medical Science in China. The study reported a sensitivity and specificity of 93% and 92%, respectively, in the training set, 87% and 97%, respectively, in the test set, and 84% and 95%, respectively, in an independent validation set. Another clinical study in 31 patients with Barrett's esophagus resulted in a sensitivity of 84% and a specificity of 85%. Finally, a compact, portable version of the high resolution microendoscopy (HRME) device using a consumer-grade camera was developed and a series of biomedical experimental studies were carried out to assess the capability of the device.

  15. A high-resolution regional reanalysis for Europe

    NASA Astrophysics Data System (ADS)

    Ohlwein, C.

    2015-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  16. Evaluation of a High-Resolution Regional Reanalysis for Europe

    NASA Astrophysics Data System (ADS)

    Ohlwein, C.; Wahl, S.; Keller, J. D.; Bollmeyer, C.

    2014-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers 6 years (2007-2012) and is currently extended to 16 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  17. Processing of high resolution seismic reflection data of Outokumpu, Finland

    NASA Astrophysics Data System (ADS)

    Heinonen, S. E.; Schijns, H.; Schmitt, D. R.; Heikkinen, P. J.; Kukkonen, I.; Duo, X.

    2008-12-01

    The Outokumpu area, located in eastern Finland, is well known for its unconventional Precambrian sulphide deposits. In 2004-2005 a 2,5 km deep research borehole of ICDP (International Continental Scientific Drilling Program) was drilled on the south-east side of the main ore belt. The main lithologies observed in Outokumpu deep drill hole were mica schist with biotite-gneiss layers (upper 2 km) underlain by pegmatic granite. The ophiolite-related Outokumpu-assemblage rocks were observed at depth range of 1,3-1,5 km. In May 2006 high resolution seismic soundings were done near the drill hole in two crooked lines to further refine the geological model of the area. Vibrator source with linear upsweep from 15 to 250 Hz was used in 20 m interval. In reflection/refraction survey 14 Hz geophones were spaced in 4 m apart. During VSP measurements 3C downhole receiver was positioned at depths of 1000, 1750 and 2500 m. Processing of Outokumpu high resolution seismic reflection data included amplitude and gain corrections, band-bass filtering, careful velocity analysis and static corrections. In Outokumpu substantial topographical variation and significant velocity contrast between the glacially deposited overburden and the bedrock caused a severe travel time variations in near surface. Static corrections were done by using standard refraction method and tomographic approach. Tomographic model of near surface layers was done using traveltime inversions of critically refracted P-wave arrivals of refraction data collected in May 2006. Quality of unmigrated stack was clearly better when tomographic model was used for static corrections. In Outokumpu both sonic log data and velocity model derived from VSP-measurements were used to improve the quality of velocity analysis. Processing of the reflection seismic data revealed a good correlation between the seismic section and the lithologies observed in deep drill hole. Sonic and density logs were used to calculate acoustic impedances

  18. Assessment of Straw Biomass Feedstock Resources in the Pacific Northwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Straw is produced as a coproduct of cereal grain and grass seed production on 6.2 million acres in the Pacific Northwest of the U.S. Some of this straw residue is returned to the soil for conservation purposes, but markets for excess straw are limited. As a consequence, much of this straw was burne...

  19. Performance of the Southern African Large Telescope (SALT) High Resolution Spectrograph (HRS)

    NASA Astrophysics Data System (ADS)

    Crause, Lisa A.; Sharples, Ray M.; Bramall, David G.; Schmoll, Jürgen; Clark, Paul; Younger, Eddy J.; Tyas, Luke M. G.; Ryan, Sean G.; Brink, Janus D.; Strydom, Ockert J.; Buckley, David A. H.; Wilkinson, Martin; Crawford, Steven M.; Depagne, Éric

    2014-07-01

    The Southern African Large Telescope (SALT) High Resolution Spectrograph (HRS) is a fibre-fed R4 échelle spectrograph employing a white pupil design with red and blue channels for wavelength coverage from 370-890nm. The instrument has four modes, each with object and sky fibres: Low (R~15000), Medium (R~40000) and High Resolution (R~65000), as well as a High Stability mode for enhanced radial velocity precision at R~65000. The High Stability mode contains a fibre double-scrambler and offers optional simultaneous Th-Ar arc injection, or the inclusion of an iodine cell in the beam. The LR mode has unsliced 500μm fibres and makes provision for nod-and-shuffle for improved background subtraction. The MR mode also uses 500μm fibres, while the HR and HS fibres are 350μm. The latter three modes employ modified Bowen-Walraven image-slicers to subdivide each fibre into three slices. All but the High Stability bench is sealed within a vacuum tank, which itself is enclosed in an interlocking Styrostone enclosure, to insulate the spectrograph against temperature and atmospheric pressure variations. The Fibre Instrument Feed (FIF) couples the four pairs of fibres to the telescope focal plane and allows the selection of the appropriate fibre pair for a given mode, and adjustment of the fibre separation to optimally position the sky fibre. The HRS employs a photomultiplier tube for an exposure meter and has a dedicated auto-guider attached to the FIF. We report here on the commissioning results and overall instrument performance since achieving first light on 28 September 2013.

  20. High Resolution Measurements In U-Channel Technique And Implications For Sedimentological Purposes

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Cagatay, Namık; Sarı, Erol; Eris, Kadir; Biltekin, Demet; Akcer, Sena; Meydan Gokdere, Feray; Makaroglu, Ozlem; Bulkan, Ozlem; Arslan, Tugce; Albut, Gulum; Yalamaz, Burak; Yakupoglu, Nurettin; Sabuncu, Asen; Fillikci, Betul; Yıldız, Guliz

    2016-04-01

    Mechanical features in-stu drilling for sediment cores and vacuum forces that affect while obtaining the sediments to the core tube are formed concave shaped deformations. Even in the half sections, concave deformation form still appears. During MCSL measurements, Laminae which forms concave shaped deformation, show interference thus, values indicate overall results for several laminae instead of single lamina. These interferenced data is not appropriate for paleoceanography studies which require extend accuracy and high frequency data set to describe geochemical and climatological effects in high resolution. U-Channel technique provides accurate location and isolated values for each lamina. In EMCOL Laboratories, U-channel provide well saturated and air-free environment for samples and, by using these technique U-channels are prepared with modificated MCSL for data acquisition. Even below millimeter scale sampling rate provides the separation of each lamina and, physical properties of every each lamina. Cover of u-channel is made by homogenous plastic in shape of rectangular prism geometry. Thus, during measurement, MSCL sensors may harm the sediment; however u-channel covers the sediment from this unwanted deformation from MSCL itself. U-channel technique can present micro scale angular changes in the laminae. Measurements that have been taken from U-channel are compared with the traditional half core measurements. Interestingly, accuracy of the positions for each lamina is much more detailed and, the resolution is progressively higher. Results from P Wave and Gamma ray density provide removed interference effects on each lamina. In this technique, it is high recommended that U-channel widens the resolution of core logging and generates more cleansed measurements in MCSL. For P- Wave Used Synthetic seismograms that modelled by MSCL data set which created from U-channel technique dictates each anomalies related with climatological and geological changes. Keywords